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Abstract

In his letter [Ser96], J.-P. Serre proves that the systems of Hecke eigenvalues given by modu-
lar forms (mod p) are the same as the ones given by locally constant functions A5 /B> — F,,
where B is the endomorphism algebra of a supersingular elliptic curve. After giving a de-
tailed exposition of Serre’s result, we prove that the systems of Hecke eigenvalues given
by Siegel modular forms (mod p) of genus g are the same as the ones given by algebraic
modular forms (mod p) on the group GUy(B), as defined in [Gro99] and [Gro98]. The
correspondence is obtained by restricting to the superspecial locus of the moduli space of
abelian varieties.
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Chapter 1

Introduction

The study of arithmetic properties of modular forms goes back to Ramanujan, who observed

that the coefficients 7(n) of the modular form

o0 o0
A=q[[a-¢9"=> r(n)"
n=1 n=1
satisfy interesting congruence relations modulo various primes. After these congruence re-
lations had been proved by classical methods, Swinnerton-Dyer used results of Serre and
Deligne in order to conduct a systematic study of the problem. His main tool is the de-

scription of the algebra of modular forms mod p (see [SD73], [SD76]).

Consider a modular form f of weight k¥ and level N

oo
f= Z anqn
n=0

whose coefficients a, are rational and p-integral (that is, p does not divide the denominator
of a,). Write f for the reduction of f modulo p, i.e. the element of ¥, {[g]] obtained by
reducing each coefficient of f modulo p. We denote the set of all such series M (V). Set
M(N) = 3 4cz Mi(N), known as the algebra of level N modular forms (mod p). For ¢
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prime to pN, one defines the Hecke operator T, by
[o7e] (v.0)
Tef = Zat‘nqn + gh-1 Zanqﬁn-
n=0 n=0

An eigenform is an element f of My (N) which is a simultaneous eigenvector for all 7},
£tpN. Given an eigenform, one obtains a system of eigenvalues (bg)e;fp ~ defined simply by
Tef = bef.

A considerable amount of effort has gone into the study of this Hecke action on modular
forms. One of the approaches, due to Serre and inspired by the philosophy of the Langlands
program, is to interpret these modular forms in terms of adéles on quaternion algebras. More
precisely, let B be the quaternion algebra ramified at p and oo and let Aj denote the group

of adeles on B. Serre proved the following

Theorem 1.1 ([Ser96]). The systems of eigenvalues (by) (with by € F,) given by the Hecke
operators on modular forms (mod p) of any level N are the same as those obtained from

locally constant functions f : A} /B* — F,,.

Given an eigenform with eigenvalues (b;), Deligne shows in [Del71] (see also (Gro90])

how to construct a mod p Galois representation of degree 2

p: Gal(@/Q) ~ GLy(F,)

such that p(Frob) has trace b, and determinant #5~!. Serre shows therefore that the
systems of traces of Frobenii for a modular representation are the same as the eigenvalues
of locally constant functions A% /B> — F,. We remark that he was lead to this result
by working on his famous conjectures, which basically say that any Galois representation
of degree 2 that satisfies certain properties comes from a modular form in the way we
mentioned (see [Ser87]).

Inspired by this work, Gross has introduced ([Gro99]) the notion of algebraic modular

forms (mod p) on certain reductive algebraic groups G over Q. The hope is to establish a
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relation between these forms and higher-dimensional Galois.representations
p: Gal(Q/Q) — G(Fy),

where G is the L-group of @ (see [Gro98] for a precise statement). Serre’s result gives one
direction of this relation in the case G = BX, G = GL5, while the opposite direction is the
object of the Serre conjectures.

The aim of this thesis is to generalize Serre’s work to the case G = GUy(B) = the group
of unitary similitudes of the quaternionic hermitian space BY, for g > 1. We start by giving
a detailed and explicit treatment of Serre’s theorem in Chapter 2. After recalling some basic
facts about modular forms, we reduce Theorem 1.1 to the existence of a Hecke-invariant
bijection between a finite subset of the modular curve X (V) and a finite double coset space.
The reduction is based on restricting modular forms to the supersingular locus, and on the
use of the Hasse invariant to prove that this restriction is compatible with the Hecke action.
The construction of the bijection of finite sets is explicit but somewhat lengthy and takes
the remainder of the chapter.

We attack the generalization to higher dimensions in Chapter 3. After recalling the
definition of Siegel modular forms, we briefly discuss properties of superspecial abelian

varieties and of the algebraic group GUy(B). The main result is the following

Theorem 1.2. Fix a dimension g > 1, a level N > 3 and a prime p not dividing N. The
systems of Hecke eigenvalues coming from Siegel modular forms (mod p) of dimension g,
level N and any weight p, are the same as the systems of Hecke eigenvalues coming from

algebraic modular forms (mod p) of level N and any weight pg on the group GUq(B).

The proof consists of two main steps: first we show that the restriction to the locus of
superspecial principally polarized abelian varieties preserves the systems of eigenvalues, and
that systems of eigenvalues occuring on the superspecial locus can be lifted to the entire
moduli space; we then construct a Hecke bijection between the superspecial locus and a

double coset space built from GU,(B).
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CHAPTER 1.

INTRODUCTION



Chapter 2

Elliptic modular forms

We give a detailed exposition of Serre’s letter to Tate (see [Ser96]) linking elliptic modular

forms (mod p) to quaternion algebras.

2.1 The geometric theory of modular forms (mod p)

We review some of the definitions and results from Chapter 1 of [Kat73]. The reader
unfamiliar with the geometric definition of modular forms is encouraged to consult Katz’
article for details.

An elliptic curve over a scheme S is a proper smooth morphism 7 : E — S, whose

geometric fibers are connected curves of genus one, together with a section 0 : S — E-

| )o

S

We define wg,s = W*(QE/S). This is an invertible sheaf on S; by Serre duality it is
canonically dual to R! 7..(Of).
For each integer N > 1, E[N] := ker([N] : E — E) is a finitc flat commutative group

scheme of rank N2 over S. It is étale over S if and only if S is a scheme over Z[%]). In this

13
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case, we define a level N structure on E to be an isomorphism
a: E[N] S (Z/NZ):.

If such an isomorphism exists and S is connected, then the set of all level N structures is

principal homogeneous under Aut((Z/N7)%) = GL2(Z/NZ).

For N > 3, the functor “isomorphism classes of elliptic curves with level IV structure”
is representable by a scheme Y (N) which is an affine smooth curve over Z[%], finite and
flat of degree equal to #(GLo(Z/NZ)/{%1}) over the affine j-line Z[%, j], and étale over
the open set of the affine j-line where j and j — 1728 are invertible. The normalization

of the projective j-line ]P’% in Y(N) is a proper and smooth curve X(N) over Z[%}, the

1
global sections of whose s[tjiilcture sheaf are Z[+,(n]. Let (£/Y(N), ) be the universal
elliptic curve with level NV structure. There is a unique invertible sheaf w on X (N) whose
restriction to Y (N) is wg/y () and whose sections over the completion Z]4,¢n](lg]] at each
cusp are precisely the Z[+, (v][[g]] multiples of the canonical differential of the Tate curve.

The Kodaira-Spencer isomorphism

2 ™t 1
(‘*’E/Y(N)) = QY(N)/Z[%V]
extends to an isomorphism

w? = Q) (log(X (N) — Y(N))).

(N)/Z[F]

A modular form (mod p) of level N and weight k is a global section of wk on X(N}®F,

or equivalently a global section of the guasi-coherent sheaf wk ® Fp on X (N).

An important fact in the mod p theory is the existence of a modular form A of level 1
and weight p — 1, called the Hasse invariant. For its properties, see §IV.4 in [Har77], §2.0
and §2.1 in [Kat73].
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2.2 Main result and reductions

Fix a prime p and an integer N > 3 prime to p. Set X := X(N) ® F,,.

We work with Katz’ definition of modular forms (mod p) of level N and weight k:
Mp(N) = H(X, ).
Multiplication by the Hasse invariant A gives a natural Hecke embedding
My_p—1)(N) & Mi(N)

and we’re interested in the structure of the quotient Wy (N) = My(N)/My_(,_1)(N) as a
module over the Hecke operators Ty, £{ pN. On the level of sheaves, we define S;, by the
following

0 - WhP-D X4k, S — 0.

The Hasse invariant A vanishes to order 1 when evaluated on the supersingular elliptic
curves (and does not vanish anywhere else), so S is 0 over the ordinary locus and one-
dimensional over the supersingular points.

We take global sections and get the exact sequence
0 — Wi(N) = Sp(N) - HY(X,w* -y 5 HY(X, %) - 0.

Actually by Theorem 1.7.1 in [Kat73], H}(X,w* =P~y = 0if k > p+1, so Wi(N) = S(N)
when k > p + 1.
An F,-structure on an elliptic curve E/F, is an elliptic curve E' /Fy such that E is

isomorphic to E' @ F,.

Lemma 2.1. Let E be a supersingular elliptic curve over F,. Then E has a canonical
Fp2-structure E', namely the one whose geometric Frobenius is [-p]. The correspondence

E — E' is functorial.
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Proof. It is well-known that F is supersingular if and only if [-p] : £ -+ E is purely
inseparable (see for instance Theorem V.3.1 of [Sil86]). Multiplication by —p is an isogeny

of degree p?, so by Corollary 11.2.12 of [Sil86] there is a commutative triangle

where E®°) is obtained by raising to the power p? the coefficients of a Weierstrass equation

: 2°’]. Since E = F®°)

2

for E and Fx? : E — E®") is the morphism [z : y : 2] v [27° : ¢?
we have j(E) =j (E(pz)) = (B, ie. j(E) € Fy2. Therefore there exists a supersingular
elliptic curve E” /B2 such that j(E") = j(F). In other words, £ has an Fj-structure.

The curve E” is supersingular so the morphism [—p] : £ — E” is purely inseparable.

As before we have a commutative diagram

d

EH ELELLEY EII
Pk NT)‘
EII,

where 7" : E" 5 E" is the geometric Frobenius [z : y : 2] — [z : *° : 2P'], and
A € Aut(£"). Therefore
W =X o[-p = [-ploA

As usual, we write Gsz to denote Gal(Fp/Fy2 ). Let o € G]sz be the Frobenius element,
defined by z — :z;Pz; it is a topological generator of G]sz . Consider the continuous 1-cocycle
¢:Gr, — Aut(E") defined by o — A~L. Since A ! is a morphism defined over F,2, o acts
trivially on A~! and £ is a group homomorphism. Using a combination of Theorem X.2.2 and

Proposition X.5.3 in [Sil86], we know that given £ € HI(G’FP2 , Aut(E"}) one can construct
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an elliptic curve 7’ /Fy2 and an isomorphism ¢ : B @ F, » E'® Fp satisfying
{T)=¢"0pt  for all 7 € Glez'

We recall that the action of G]}i‘pz on F,-morphisms is given by
T 71 T
e = (7))

We'll now work with quasi-isogenies so that we can make sense of things like (m")=L 1t

we work on points the previous relation can be written
$°(P)=n"ogo ()1 (P),

Therefore

ATHP) = £(0)(P) = 1" 0 g o (M)t o g1 (P).

Now
m(P) = [~plo A"M(P) = [=Plen”ogo(r) togl(p) m'(P) = [-p)(P),

where we've made extensive use of the fact that [—p] commutes with everything, We
conclude that 7' = [~p] as maps E' (Fp) — E (Fp), from which it follows that they are equal
as morphisms.
It remains to prove the functoriality. Suppose we have a morphism f : E, o E> of
/

supersingular elliptic curves over Fp. Let FY, E), be the respective canonical Fy2-structures,

then f induces a morphism f': £} @ Fp — E3®F,. On points, we have as before
(F)7(P) =mho flo(x))~1(P) = (=plo f"o [-p]}(P) = f/(p).

This equality holds on points, so it also holds as morphisms. Since f' is fixed by the

generator of G]sz, it is fixed by the whole group therefore it is defined over F.. O
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Since & has a canonical Fy2-structure, so does its cotangent space w(E). Therefore the
vector space w” 1 (E) has a canonical Fp2-basis and we can identify w* () with wh+r?~1 (E).

Let Z(N) denote the finite set of Fy-isomorphism classes of triples (E, o, ), where E is
a supersingular elliptic curve over Fp, a: E[N] = (Z/NZ)?is a level N structure and n # 0
is an invariant differential defined over F,2. To save brackets, we’ll write the isomorphism
class of the triple (E, a, n) as [E,a,n).

On the other hand, fix a supersingular elliptic curve £, over Fp and let @ = End(£)),
B =End"(Fy) = 0@ Q. For any prime £ # p let O;(N) denote those elements of oF
which are congruent to 1 modulo £, where f"||N. Let O (1) be the kernel of the map

Oy — F;z given by reduction modulo the uniformizer r of Op. Finally lei

U= B3 x 05(1) x [] 07 (W)
£#£p

and

QN) = U\A}/B*.

For £1pN we have Hecke operators T; acting on both %(N) and Q(N) (sce §2.5.1 for
the definition). The main technical result of this chapter (whose proof is the object of the

next sections) is

Theorem 2.2. There exists a bijection %(N) = (N ) which is compatible with
® the action of the Hecke operators Ty, £{pN,
* the action of GL,(Z/N7.),
* raising the level N,

We now return to the topic of modular forms. We can identify S (N) with the functions

f (N} — F, such that

FUB @M = A H((B,a,m))  vae B,
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The modular forms My(SY(N)) of weight k on Q(N) are functions f : (N) — F, such that
FOD =2 (=) YA€ OF/OF (1) = F.

The Hecke operators on L(N), respectively Q(N), induce Hecke operators acting on
the corresponding modular forms. It follows immediately from Theorem 2.2 that there is a
bijection

Sk(N) = Mi(Q(N))
which is compatible with the action of the Hecke operators.
Lemma 2.3. As k varies, S (N) is periodic of period p? — 1.

Proof. By Lemma 2.1 we know that any supersingular curve E over F, has a canonical Fp2-
structure. Therefore the cotangent space w(F) has a canonical F,2-structure and wpz_l(E)
has a canonical Fy.-basis. Hence for any k we can identify w*(E) with w**?*~1(E), and

Si(N) with Sy, 2_1(N). O

Lemma 2.4. Every sequence (a¢) occurring as a system of eigenvalues of the Hecke oper-

ators acting on some My (N) also occurs in some Si/(N), and conversely.

Proof. Suppose (ag) is given by f € My(N), i.e. Tof = apf for all £{pN. Factor f = A™yg,
where m is a nonnegative integer and A does not divide g. Let ¥ = k — m(p — 1), then
g has weight &’. Since multiplication by A is a Hecke map we conclude that g is a Hecke
eigenform with eigenvalues ay.

Conversely, if (a) is given by ¢ € Si(/N) we may assume by Lemma 2.3 that k > p+ 1,

in which case the restriction map
My (N) = Sp(N)

is surjective. We now use Proposition 1.2.2 of [AS86] to conclude that (as) is given by some

[ € My(N). |
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Let k vary. We conclude that there is a bijection between the systems of eigenvalues

coming from

M.(N) := 5 My(N)
k

and those coming from

M(QUN) = P M (N).

k mod (p?2-1)

If we let N vary, we get
@ M. (N) = {functions UQ(N) — FP} .
N N

The right hand side is the space of O (1)-invariant locally constant functions from

A% /B to Fp. The following lemma is the last step of the proof of Theorem 1.1:

Lemma 2.5. Let G be a pro-p-group with a continuous action on an F,-vector space V,
and let T; be endomorphisms of V' that commute with the action of G. Let (a¢) be a system
of eigenvalues of the T} given by a common eigenvector v € V. Then we can choose v in

such a way that it is G-invariant.

Proof. We are given a continuous representation
p:G— GL(V),

where G = LiLnGj has the profinite topology and GL(V') has the discrete topology. The
kernel of p is the inverse image of the open set {1} so it is open, but a basis of open

neighborhoods of the identity in G is given by the kernels of the maps G — G;. Therefore
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p factors as in the following diagram:

G——>GL

\/

where G is a finite group. Define

wi= Y ple)

geq

We have

Tw =Y Tiplgv =" p@)Tew =Y p(g)agw = ar Y _ plg)v = aew,

gcC ge@ geG gcG

s0 w is a common eigenvector of the T, with the same eigenvalues as v. Finally for h € G

we have
plhyw = pn(h)yw = 3 Ax(W)ala)v = 3 plx(Wg)v = 3 alg')o = w,

so w is G-invariant. O

2.3 Preliminary results

2.3.1 p-divisible groups and Dieudonné modules

We start by recalling the basic terminology and results of contravariant Dieudonné theory,
following [Fon77].

A p-divisible group of height h is a system

where for all n, G, is a finite commutative group scheme of rank p**, i, is a group homo-
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morphism and the following sequence is exact:
0= Gn ™ Gri1 & Gog.

This definition was tailored specifically so that A[p™] = (A[p"]) is a p-divisible group of
height 2 dim A.

If G = (Gy,in) and H = (Hp, jn) are p-divisible groups, a homomorphism f : G — H is
a system of group scheme homomorphisms f, : G, — H, such that the following diagram
commutes for all n > 1:
G I, G+l

fnl lfn+1

In
Hy, =" Hyp1.

Let k be a perfect field of characteristic p > 0. Let W := W (k) be the ring of infinite Witt
vectors over k, i.e. the ring of integers of the absolutely unramified complete extension L
of O, with residue field &. Let o : W — W be the automorphism induced by the Frobenius
z > P of k. Let A := WIF,V], where the Frobenius F and the Verschiebung V' are

variables satisfying
FV=VF=p, Flx=cMF, Vi=oc ANV VieW.

Let W,, denote the n-th Witt group scheme. If G is a commutative k-group scheme, we

define its Dieudonné module by

M(G) = lim Homy, g (G, W) @ (W (k) @z Homy,_,,(Gy, (Gm)l'c))Gal(k/k) .

Theorem 2.6 (Dieudonné-Cartier-Barsotti-Oda). The functor M gives an anti-equi-
valence from the category of finite commutative k-group schemes of p-power rank to the

category of left A-modules of finite W-length, taking a group of rank p" to a module of
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length n. It is compatible with perfect base extension, i.e. if K/k is perfect then
M(Gk) = W(K) @w M(G).

The proof of this is on page 69 of [Dem72]. The main ingredient is to be found in §V.1.4
of [DGT0].

Theorem 2.7 (Oda). If G = (Gy,) is a p-divisible group of height h, M(G) := Yim M(Gy) is
a left A-module which is W-free of rank A. This gives an equivalence of these two categories

which is compatible with perfect base extension.

One can define the dual of a Dieudonné module M by setting M* := Homy, (M, W) and
(F*u)(m) == o(u(Vm)), (V*u)(m):=oc Hu(Fm))

forallu e M*, m € M.

Lemma 2.8. If W is a local ring with residue field &, then any W-module of length 1 is
isomorphic to k. If W is a DVR with uniformizer 7, then any W-module of length n is

isomorphic to one of the form

{

@W/(ﬂ’eiW), e; > O,Zei =n.

i=1

Proof. Let M be a W-module of length 1. Let £ € M nonzero and consider Wz. This is
a W-module and 0 C Wz C M so because M has length 1 we have Wz = M. From this
we conclude that the W-module homomorphism W — M given by w — wz is surjective
with kernel AmmM = {w € W : wM = 0}, so M = W/ Ann M. Since 7W is the unique

maximal ideal of W we have a canonical surjective homomorphism of W-modules
¢:W/AonM - W/zrW 2 k.

But M has length 1 so ker ¢ is either 0 or M. The latter is impossible since ¢ is surjective,
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so M = k.
We now prove the second assertion by induction on the length n. The base case n = 11is
what we just proved above. Now suppose the assertion is true for all W-modules of length

strictly less than n and let M be a W-module of length n. We have two possibilities:

e Suppose M = Wz. Then as before M = W/ Ann M. But AnnM is a proper ideal
of W, hence Ann M = W for some i, since W is a DVR. The quotient W/m'W has
length 4, on the other hand M has length n so ¢ =n and M = W/r"W.

e Suppose M is not generated by a single element; say {x1,...,7;} is a minimal set of
generators for M. T claim that M is actually the direct sum of the Wz;. Suppose
Wz, N Wxy # 0. Then there exist nonzero wy, wz € W such that wyz; = wez2. But
W is a DVR, so wy = u1m™, wy = ugm"? where uy,us € W* and ny,n2 € N Suppose
without loss of generality that no > n1. Then x1 = ufluQW”T”laxg, so Wz C W,

contradicting the minimality of the chosen set of generators. So
M=Wz1+Wzs+ ... Wz;

and we can apply the induction hypothesis to each of the Wz; since they have length

smaller than n.

O

Let E' be a supersingular elliptic curve over Fp, whose Frobenius satisfies 7y = —p-
The goal of this section is to describe the structure of the Dieudonné module of the p-
divisible group E'[p®], and to iden.tify its endomorphism ring. The idea is to understand
M (E'[p]) first, and then lift it to get M{E'[p%]), and so on all the way to M (E'[p™)).

Within this section we’ll use k to denote the field Fp. If 7 is an automorphism of k,
T -k — k is a 7-linear operator and A is the matrix of T with respect to some basis, we

shall write

T = AT.
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This helps eliminate the confusion that arises when composing several such operators.

The structure of M (F'[p])

We're looking for a left A-module of W-length 2 which is killed by p and such that
F? = —po? =0.
By Lemma 2.8, we have that M = (W/pW)?2 = k?. Alternatively, we know that
M(E'[p"]) = M(E'[p™])/(p")

and M (E'[p*]) is free of rank 2 because E’[p™] has height 2. Therefore M (E'[p"]) = W2.

Tt remains to find the semi-linear operators F' and V. A priori there are several cases
according to the k-dimension of ker . But the following result, applied with X =Y = F,
f = ft = multiplication by p says that E’[p] is self-dual:

Theorem 2.9 (See Theorem III.19.1 in [Oor66]). Let f : X — Y be an isogeny of
abelian varieties with kernel K, and let K be the kernel of the dual isogeny f*:Y*? — X%

Then there is a canonical isomorphism between the dual K* of K and K.

Therefore M = M (E'[p)]) is self-dual, which in particular means that the kernels of F
and V have the same dimension. First we rule out the case dimker F = dimkerV =0: F
cannot be bijective because 2 = 0.

We also rule out the case dimker F = dimkerV =0, i.e. ¥ =V = 0. This can be done

in two different ways:

e If F = 0, then the Frobenius of M (E’[p?]) can be expressed as pA for some A € M (k),

and its square will be p>A4% = 0 # —p, contradiction.

e If F=V =0, then M = M(a,) D M(,), where M(a,) = (k, F =0,V =0) is the
Dieudonné module of the finite group scheme a;,. So we want to show that E'[p] is

not isomorphic to af,. The dimension of the tangent space to E'[p] at the origin is the
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same as the dimension of the tangent space to E’ at the origin, which is 1 since E’ is
a smooth curve. The dimension of the tangent space to alz, at the origin is twice the
dimension of the tangent space to oy at the origin, i.e. 2 x 1 = 2. Therefore we get a

contradiction.

The only remaining possibility is dimker F = 1. Say ker F' = km; and pick ma € M
such that {m1,my} is a basis of M, then F = ({ % ) o. We impose F? = 0:

0 az

P
F2=(°“1“2)02=0=>a2=0.

»+1
0 a3

1/p

We can also change the basis in such a way that a; becomes 1: let m} = mq, my = a; ' "mg

(can take p-th roots because Fy2 is perfect). With respect to the basis {m}, m5} we have
F=(38)e
The Verschiebung is given a priori by some matrix
v=(hide)o
We impose FV =V F =0:

FV

VF = (8?)1):0:}()11:&
Therefore the matrix of V is of the form
V=(83)o7"

where A # 0 since dimker V = 1. Any change of basis that fixes the matrix of F' also fixes
the matrix of V, so it looks like we're stuck with the parameter X. But we can find the

actual value of X by investigating M> = M (E'[p?]).
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The structure of M(E'[p"])

We use Nakayama’s lemma to lift the basis of £* to a basis of W$. With respect to this

basis the operators F' and V look like
F=8o+pio, V=_52)o"  +pBot.
We impose the conditions F? = —po?, FV = VF =p:

2 ab. a11+ak 2 __ 2 _ _ P
Fe = p( & 11(12122 0 = —po” = a1 = —1,a11 = —ah,,

FV

. P
p (bgl bgz_i\\’;azz) :p = b21 g l,A = _17022 = —b22,

VE = p(L0fsm) =p= by = -8,

This implies that F and V are of the form

F=@op () e V=87 e ep () o

11

In particular,

MEP) = F=QHo V=31 ").

We're only a few matrix multiplications away from having the structure of M(E'[p?]), so
we might as well do it. We want to change the basis of W§ in such a way that the matrices
for ' and V look nicer. To keep this simple, we will change the basis by a matrix of the
form

I +pC, where C = (gl 12) € My(k).

The new matrix for the Frobenius will be

C C _b (4 C
(T-plat e (G0 +p (24 ))oT+p(a18) =

— (01 —b11+4-¢}, arz—cri+ch,
_(00)0'+p( -1 ¥ —cn 7
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So we can set co1 = b1, 11 = b, + a12 and get a very simple expression for F. What about

V? The new matrix for it is
aizteh, e12 0 -1 bin biz -1 ( . ai1z+ch, c12 _
(I—p( b1 022)) ((0 o) tr{ -, ) Ut b’f122Cz2 -
_ {0 -1 -1 0 b —1
= (0 g ) o +p(fozfz)o

All we can say so far is that there exists a basis of W$ with respect to which

where A € Fp2. It turns out that we can pin down A, once again by going a step higher.

Lift this basis to one of W§; we have

2 -1 0 2 2 { af; ab 2 2
F2o= p(G)e"+p (a.%la”a;rf“)U = —pa® => ag = 0,a11 = —aby,

FV = p(§9)+p° (bgl bgz;},”g?) =p = by =0,a22 = —bp, A =0.

Therefore

ME'P) = (Wi, F=(%8)oV=_(,0)0")-
Proposition 2.10. For any integer n > 2 we have

MEP) = WLF=(5%§av=(37%)c").

p 0

Proof. We proceed by induction on n, the base case n = 2 having been done above. Suppose
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the statement is true for n > 2. Use Nakayama’s lemma to lift the basis of W,% to one of

W2, .. With respect to the latter we have

We impose the conditions F? = —p, FV = VF = p:

P
F? = —po?+p" (“21 apptan ) 02 = —po? = ay =0,a;; = —aby,

2]

FV

il

p+p" (b” b22+a?2) =p = az = —by,an = by, bn =0,

VF = p+p" (‘”’25 +b“)=p=>bzz=—b’f1,

and conclude that

We'll apply a change of basis with matrix I + p®C. The new matrix of the Frobenius is

U-p (@ e (D +p (S8~ (0 5)) o+ (518 =

—b11+cE, ara—ci11+E
=@ o+p(A8)o+p (MR R )0

So if we let ¢11 = a12 + ¢}, and ¢ = b, then F is of the desired form.

The new matrix of the Verschiebung is
n c"12'4‘(1” Cc12 0 — b1 bio -1 a2+cp c
(= (" 2 (@) w8 vom (B 5,)) o7 (19 (M35 50)) =
=) +p(R) ot +p" (§3) 0

where A € F2. We want to show that A = 0; for this we need to go to M(E'[p"*?]). Lift
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the new basis of W2, | to W2, ,. Our operators are of the form

= (3} a+p(°1 )a+p”+1Ao,
00
10

= B3)e +p@D) o7 42" (§3) o 4" BT

We impose the conditions F2 = —po? and FV = p:

F2 = —p0'2 +pn+1 (a’gl 0‘22:2'1‘“1 ) 0'2 = —pO’2 = ag1 =0,a11 = _0112]27
P P
FV = ptpt! (bgl b”_j;zz) =p= by =0,a32 = —b22, A =0.
This concludes the proof of the proposition. O

A direct consequence of this is that
M(E'p®) = (W F=(%§)oV=_(,0)0).
The endomorphism ring of M(E'[p*])

Corollary 2.11. Let M = M(E'[p*]). Then End(M) = O, = O®Zp, where O = End(E’).
Moreover, Oy (1) can be identified with the group of automorphisms of M which lift the
identity map on M/FM.

Proof. Let g € End(M); it is a W-linear map that commutes with F" and V. Suppose g is
given by a matrix (gi;) € Ma(W). We have

01 _ gP gP
Fog = (%8)o(fe)=( 5 %)
goF = (&) (58)o= (e

These should be equal so we get ggl = —pgi2, 11 = 9152. We also impose the condition
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V og=goV, but this doesn’t give anything new. Therefore
End(M) = {(_%» %) 12,y € W(E,2)} = {(z 8)+ F (gy"p) - W(]sz)} .

But W (F,:) is the ring of integers of the unique unramified quadratic extension L of Q.
Let = be a solution of X? +p = 0 in L. The map o : z — z” is the unique nontrivial

automorphism of L. It is now easy to see that the map

ngnd(M) — Bp:{La_p}:B®@P

FO)+F(35) = ztmy

is an injective ring homomorphism. It identifies End(M) with O, = {z + 7y : 7,y € OL},
the unique maximal order of B,.

It remains to prove the last statement. Let g = (_zyp I%) € End(M)* = O . Note that
M/FM = {(%)+ FM: aelez}.

Let Z be the reduction of z modulo 7, then g restricts to multiplication by Z° on M/FM.
Therefore g restricts to the identity if and only if Z = 1, which means that the group

of such automorphisms is identified with the kernel of the reduction modulo , i.e. with

0x(1). O

Corollary 2.12. Let E;, E; be two supersingular elliptic curves over Fp and let EY, F}
denote their canonical Fp2-structures. Put My = M(E{[p*]), My = M(E}[p™]). Then
M; = My and any isomorphism M, /F My = M,/F M, lifts to an isomorphism M; = M,.

Proof. We already proved the first part by describing the structure of M = M(E'[p™]) for
such curves. As for the second part, it suffices to show that any automorphism of M/FM
lifts to an automorphism of M. From the description of M/FM in the proof of the previous

corollary we know that the automorphisms are given by multiplication by some \ € ]F;2.
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But then the matrix
D
(% %)
represents an automorphism of M which restricts to multiplication by A on M /F M, which

is what we wanted to show. O

2.3.2 Local study of isogenies

Lemma 2.13. Let ¢ : A — B be an isogeny of abelian varieties. For any prime £ and any
n > ordpdeg ¢, there exists a canonical isomorphism between the kernel and the cokernel

of the restriction of ¢ to the £"-torsion.

Proof. First suppose £ # p. Let #%| deg¢ and d := £~% deg ¢. For any n > 0 let K;, and

Cyn denote the kernel and the cokernel of the restriction of ¢ to A[£"):
0— Kpn — A[L"] 2, Bl =+ Cpn — 0.

This is an exact sequence of finite groups so

#(Een) - #(B[€7])

= @A) #Con)

but #(A[£"]) = £29" = #(B[£"]) (where g = dim A = dim B) so # (K ) = #(Cen).
Since (d, £) = 1, multiplication by d is an injective endomorphism of A[¢"]. But by the
order counting that we did above the cokernel is also trivial, so d gives an automorphism

of A[£™]. Therefore it makes sense to define a map f : B[¢"] — A[¢"] as the composition:

Bl -2 Al 75 ) 47 A,

f

Note that
gof=¢o(d " F¢Y) = (degp)d " F =11
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and £ : B[f"] — B[£"] is just the zero map, so we actually have f : B[{"] — ker ¢ = Ky 5.

Next we see that
fop=(d " ¢V op=d " F(deg ¢) = ",

so f factors as

Aler] =2 Be"] —— Co —— 0.

|

Kf,n

To save letters we’ll denote this map Cyn — Ky, by f. Now we define g : Ky, — Cen
such that g is the inverse of f. Let a € Ky, and pick o’ € A such that £"a’ = a. Note that
*P(a’) = ¢(£7a’) = ¢(a) = 0 since a € ker¢. So ¢(a') € B[¢"]; let g(a) be the image of
¢(a’) in Cyy. This is easily seen to be well-defined: if a” € A is such that £*e” = a, then

"a"—d)=a-a=0s0d" —a € A[f"] and we get
$(a") = ¢(a' + (a" - d)) = ¢(a') + 4(a" - o),
and ¢(a” — a’) gets mapped to 0 in Cy,. It is clear that f and g are inverses:
flg(a)) = f(¢(£ ")) = 71" F ¢V (p(¢ "a)) = d7 & ¥ (deg )¢ "a = a,

and similarly g(f (b)) = b.

When ¢ = p we have an exact sequence of finite commutative group schemes

0= Ky — Ap"] S Blp™ = Cpm — 0,
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where the map ¢ 1s obtained by the usnal argument from

0—-——)A[p”]——>ALn+A%——>O

group-scheme-land. 4

Proposition 2.14. Let $: A~ Bbean isogeny of abelian varictjes. For any prime
£ # p, ¢ induces an mjective Z,-linear map Ty : Ty A — Ty B whose cokernel is canonically
isomorphic to (ker 4),.

When ¢ = p, ¢ induces an injective W-linear map M (¢) : M(B[p™]) - M (A[p™]) whose

cokernel is canonically isomorphic to M ((ker P)p).

Proof. We start with ¢ # p. Let (ap) € TyA, ie. a, € Al"] and g, = fay, for all n. Set
Tebl{on)) = (d(@n). We have £4(a,) = $(£%a,) = §(0) = 0 and Blan1) = p(ta,) =
£p(ay) so indeed ($(an)) € T,B.

Suppose Tyd((a,)) = 0, ie. ¢lan) = 0 for all n. But ¢ is an isogeny so its kernel
is finite, therefore the sequence (a,) has an infinite constant subsequence. Fix an integer
N > 0, then there exist n > m > N such that a, == q,,. But ap = ""™Mq,. 50 we get
("™~ 1a,, = 0, therefore a,, = 0. In Particular a; = 0 for all § < N. This works for
arbitrarily large N so (@n) =0 and Ty¢ is injective.

By Lemma 2.13 we know that if n > ord, deg ¢, the kernel Ky 5, of the restriction of ¢ to

Ale"] is isomorphic to the cokernel Cy 5 of the same map. But for n > ord, deg ¢ we have
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K¢ pn = (ker ¢)p, so in particular Cy,, stabilizes. Therefore for n > ord, deg ¢ we have
coker Tzp = Cyp % Ky, = (ker ¢)g,

which is what we wanted to show.

Now suppose £ = p. The map M (¢) : M(A[p™]) = M(B[p™])} is simply

- —B M(Bp?]) 2 M(B[p?)) —— M(Bp])
M@l Mwﬂ Mw%
co B M(AR®) =2 M(A[p?]) —2— M(Alp))

To show that M(¢) is injective, first note that Kj, , is a subgroup scheme of ker ¢ for all n.
Since ¢ is an isogeny, ker ¢ is a finite group scheme so the K}, 5, stabilize to (ker ¢),. Applying
the Dieudonné functor gives that the cokernel of M(4) is isomorphic to M ((ker ¢),,).

Suppose M($)((an)) = 0, then ap € M(Cp,) for all n. But the M(C,,) stabilize so
there exists ng such that a, € M(B[p™]) = W2 for all n. Since p™ = 0 in W3 we get
that a, = p™ag = 0 for all n > ng. Therefore (a,) = 0 and M (¢) is injective. O

2.3.3 Differentials defined over [Fpe

Lemma 2.15. Let E be a supersingular elliptic curve over Fp. Then a non-zero invariant
differential on E defined over F,. is equivalent to a choice of nonzero element of M/FM,

where M = M(E'[p™]) and E' is the canonical F,z-structure of E.

Proof. Differentials of E' defined over F,> can easily be identified with the differentials of

E', i.e. with the cotangent space w(E'). Consider the exact sequence

0+Ep-E5LHE >0
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The contravariant functor w is exact so we get an exact sequence
0= w(E") D w(E') = w(E'[p]) — 0.

But E' is supersingular so p is purely inseparable, i.e. it induces the zero map on (co)tangent
spaces. We conclude that w(E") = w(E'[p]). By Proposition I11.4.3 in [Fon77], w(E'[p]) is
isomorphic to M/FM, so w(E') 2 M/FM and a choice of nonzero invariant differential of

E defined over Fyz amounts to a choice of nonzero element in M/FM. O

2.4 Construction of the bijection

Fix a supersingular elliptic curve Ey over F, and let @ = End(Ep), B = End’(E;) = O®Q,
My = M(E[p*]), where Ej is the canonical F,:-structure given by Lemma 2.1. We know
that B is isomorphic to the unique quaternion algebra ramified at p and oco. Also fix a level
N structure og : Eg[N] ™ (Z/NZ)? and a nonzero invariant differential ny € My/F M,

defined over .

We consider triples of the form (Eq,a1,71), where E is a supersingular elliptic curve
over Fp, oy © E7[N] = (Z/NZ)? is a full level N structure and 0 # m € My/FM; is a

nonzero invariant differential form on E; defined over Fp.

Recall from §2.2 that we defined () to be the finite set of Fp-isomorphism classes of
triples (E1, a1,71) as above. By Honda-Tate theory ([Tat68]) any two supersingular elliptic
curves are isogenous; also any curve isogenous to a supersingular one is supersingular.
Therefore after the choice of (Fg, ap, ) the set T(N) can be identified with the set E°(N)
of triples

(612 Bo > Br,on : Ba[N] = (2/NZ)%0 # m € Mi/F My ),

where ¢, : Ey — F) is an isogeny. Two such triples (¢1,a1,71) and (¢2, az,72) are consid-

ered the same if there exists an isomorphism f : 1 — Fs such that M(f')(n2) = m and
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the following diagram commutes:

Ey[N] —L— Es|N] (2.1)

allw Q{N

(ZJNZ)? —— (Z/NT)2,

For any prime £ # p let O (N) denote those elements of O] which are congruent to 1
modulo £*, where £*||N. Let O} (1) be the kernel of the map O — F;z given by reduction

modulo the uniformizer w of Op. Finally let

U=B%x0y1) x [[o; ()
&p

and
Q(N) =U(1,N\Az/B*.

Since the level N is fixed throughout this section, we’ll drop the reference to N and
write simply £, %9 and § for our finite sets. The purpose of the section is to exhibit a
canonical bijection between £¢ and 0.

Let [¢1,a1,m] € £° and pick a representative (41, ay,m1) of this isomorphism class.

By [Tat66] we know that End(T;Fy) = Oy := O ® Zy. Choose a Zglinear isomorphism

ke 1 : TpEy = Ty whose restriction gives a commutative diagram

k
Ey[f") ———— Ey["]

QUJN MJN

(Z/0"T)? — (Z./0"Z)?.

Set xp = kzll o Ty¢1, then z; € End(T,Ey) = Op. Note that z, is not necessarily

invertible in Op! But it is nonzero, so z¢ € B). If £1 N - deg ¢, then Ty¢ is actually an

1

isomorphism extending a] " o ag, s0 we can take z, = 1 in this case.

How does this depend on the choice of k17 Let I;:g’l : TyEy — TyEy be an isomorphism
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extending ;! o ay : Eol€"] — Eq[€]. Let u = (kg1)~to key € End(TpEp)* = O;. Observe
that u restricts to the identity on Bpler] = (TuEp)/¢™(TyEy), so actually u € OF(N).
Conversely, if u ¢ (’)E>< (N), then kepou? : TeEy — TpF; is an isomorphism extending
al‘l © ag. Therefore an isogeny ¢, : Ey — FE) defines for each prime £ # p an element
[z] € OF (N)\B, . Moreover, (z¢] = 1 for all but finitely many /.

We need to carry out the same program at the prime p. The isogeny ¢, : By — B,
induces an injective W-linear map M(¢}) : My — My (note the contravariance!), whose cok-
ernel is isomorphic to (ker $1)p- By Corollary 2.12 there exists an isomorphism of Dieudonné
modules k1 : My = M, such that the induced isomorphism M,/FM; — My /F My
maps 7 to 1jo; by Corollary 2.11 &, is well-defined up to multiplication by Oy (1). Set
Zp 1= M(¢) o k1 € End(Mp) = Op, then we get [zp] € OF (V\B}:

M ’
M, (1) M,

NG

My.

So far, our construction associates to a triple (¢1, a1,7;) an element [z] € U(1, N)\AZ.

This depends on the choice of isogeny Fy — Ey:
Lemma 2.16. Any isogeny ¢, : Ey — FE is of the form 431 = ¢1 o u, where

u € (End(Ep) ® Q)% = BX,

Proof. We treat ¢, ¢, as quasi-isogenies, i.e. elements of Hom(Ey, E1)®@Q. Let n = deg ¢y,

then we have that as quasi-isogenies:

(¢1®%)0¢1:n®%:1:¢10(<ﬁ1®%).

We can therefore write cﬁfl = ¢, ®% and we've shown that any isogeny has an inverse quasi-

isogeny - actually a trivial modification of the argument shows that any quasi-isogeny is
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invertible. Now all we need to do is to set

u=¢7' o € (End(Eo) ® Q)* = B*.

Therefore we cannot hope to get anything better than a map %9 — U\AY /B*. We
now show that this map is well-defined, i.e. that it only depends on the isomorphism class
[¢1,01,m]. Let f: By — FE; be an isomorphism such that the diagrams (2.1) commute. By
Lemma 2.16 it does not matter which isogeny ¢, : By — E5 we work with, so we might as

well take ¢o = f o ¢). We get the following diagrams

ng)z kf,z
- =
T Fy T£¢1rTzE1 T,if>TeEz Ey["] —=— By (0] Tif > Ex[€h]
Wl\[ ke,l/[’“ ke,zT’V Q’OJN alJ,N QZJ,N
Ty Ey T Ey TeEy (Z)2)? = (Z/0"7)? == (L[ " Z)?

where kpo := Tyf o kg ). It is now clear that we end up with the same z, € O (N)\B/ as

the one obtained from E;. The exact same thing happens at the prime p.

We obtain a map
v:20 50

We need to construct an inverse. Let [z] € © and choose a representative © = (z,) € A%,
Let £ # p. We have x; € B = End(VzEy)*, i.e. zp: ViEy — VoE} is a linear isomorphism.
But VEy = TyEy ®z, Q¢ and Q; = Z[[%]. Choose an isomorphism TpFy = Z? extending
ap : Eo[¢") — (Z/€"Z)%. This gives us a matrix A; € GLy(Q) which represents z,. Let
ng € Z be the smallest integer such that £ A, has coefficients in Z,. Via our isomorphism
this matrix corresponds to an endomorphism y, € End(Z;Ey) which is injective with finite

cokernel Cy. Let £% be the order of Cy. Let K. ¢ be the kernel of the map induced by y; on
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Eo[ek]:
0 — Ky — Eole*] 25 Egld%) — Cp — 0.

For £ = p we have x, € B} = (End(My) ® Qp)*. Write , = a + b, where a,b € L,

and 72 = —p. We have

1

a = Z a; @ E,
T

b=) bi& i

=) bi® 5
j

with a;,b; € End(My). Let n, € Z be the smallest integer such that
Pz, = (0 @1)+ 7t ®1)

and set y, = a’' + 7t € End(Mp). This yp is an endomorphism of the Dieudonné module My
which induces an automorphism of Mo ® Q,, therefore this endomorphism must be injective

with finite cokernel C,,. TLet p¥ be the order of Cy, then 3, induces a map
k1y k
M(Folp*]) 25 M(Folph)) = Cp — 0.

Then C, is the Dieudonné module of a subgroup scheme K of Fy of rank pF.

Since z € A}, ng = 0 for all but finitely many ¢. Therefore it makes sense to set
q:=[]#* € @ and y := zq; the ¢-th component of y is precisely the y, above, and clearly
[z] = [y]. Now set K := @ K. then K is a finite subgroup of Ey. So to the given (z,) € A%
we can associate the quotient isogeny ¢ : Ey — Ey/K. For £ # p, our construction gives for

any positive integer m

0 —— ker —— Bo[f™] —2 (Bo/K)[4™]

|

}
0 —— ker —— Eg[¢™] —— Eg[¢™].
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Due to the structure of £™-torsion, it is not hard to see that one can construct an isomor-
phism (actually, there exist many of them) Ey[¢™] = (Ey/K)[¢™] which makes the above

diagram commute. On the level of Tate modules, we get

T,
0 » Ty Ey £¢>T£(EO/K)

0 » To By v sy ToBy.

In particular, we can set o := ag o k; !, then the isomorphisms o : (Fo/K)[¢7] = (Z.]e"Z)?

for £|N piece together to give a level N structure on Ey/K.

Let M := M ((Fy/K)'[p*]). For £ = p we have similarly

M
0 » M @Mg > coker M (¢) —— 0

Af ] |

p‘MO —rcp » 0,

and n =k, Y(mo) € M/FM gives a nonzero invariant differential on Ey/K.

The next result tells us that we have indeed constructed a map

§: 02

Proposition 2.17. § is well-defined.

Proof. First suppose that £ = zu, where u € End(Ey) is not divisible by any rational prime.

Let £ # p, then Z, = zou, so g, = ypu:

0 y TyEy —2 Ty By —— Cp —— 0

b

00— TyE, » Ty Fg >C'g_>0.
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The snake lemma gives

cokervg = 0, ker vy = coker u.
Let £ be the order of Cy, then we can restrict the above diagram to the #¥-torsion and get

Ye

0 —— Ky — Ey[¢*] Ey[¢F] > Cy >0

TR

0 —— Ky — Eo[t*] = Eo[tF] — G ——0,

where 2y is the restriction of u to EO[Ek] and g, is the restriction of v to K,. Note that
coker(uy : TpEy — TyFy) = coker(u : Eg[€¥] — Ey[£¥]). Since there’s no snake lemma for

diagrams of long exact sequences, we split the above diagram in two:

0 — Ky — Eg[¢%] — Ey[¢*]/ ker yg — 0 0 — Tmy, — Ey[f¥] — C, — 0
9(3]\ WT ]’LeT hg[ H WT
0 — Ky — Ey[%] — Ey[¢*]/ ker e — 0 0 —Img, — Ey[t*] — G, — 0,

where I have taken the liberty of using the same label b, for two maps which are canonically

isomorphic. We first apply the snake lemma to the diagram on the right and get

kerhy =0, cokerhy = ker vy,

Using this information together with the snake lemma in the diagram on the left gives

ker g = ker ug, 0 — coker g; — coker ug — coker hy — 0.

But we already have cokeruy; = cokeru 2 kerw; = coker by so the short exact sequence

above becomes 0 — coker gy — 0, i.e. cokerg, = 0.
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Let g =@g;: K — K and let f : Eg/K — Ey/K be defined by the diagram

0 » K » B ¢ » BEo/ K —— 0
R
0 y K » By ¢>E0/R'—>O.

We apply the snake lemma and get an exact sequence
0 — kerg — keru — ker f — cokerg = 0 — cokeru = 0 — coker f — 0.

But the map ker ¢ — ker u is the sum of the isomorphisms ker g; = ker ug, so keru — ker f

is the zero map; therefore ker f = 0. Clearly coker f = 0, so f is an isomorphism.

We check that this isomorphism preserves level N structures. We have a diagram

TgEg 4 Tg E()/K)
Tg'u=Ug TBED T(f ~
TgED —> Tg E[]/K)

where we know that the outer square commutes, and that the triangles situated over, to
the left, and under the central TyFy commute. Therefore the triangle to the right of the
central T;Fy also commutes, i.e. ky = Tpf o kp. The level N structures on Ejp /K and Ej /I_('

are defined in such a way that the inner squares in the following diagram commute:

f

(Bo/ K)E"] —2— Eoler] —s (By/R)[e"]

o l” aolm U-{N

(Z/02)? —— (Z/0"L)* == (2/£"L)?,

therefore the outer rectangle also commutes, i.e. f preserves the level N structures.
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The same argument with reversed arrows shows that f preserves differentials.

Now suppose & = zf, £ # p (the case £ = p is analogous, even easier). If £ { £p, then
Ty = zpf and §p = ypé. Multiplication by £ is an isomorphism of Ty Fy, so it induces an

isomorphism Ky = Ky by applying the same argument as before on the diagram:

0 — Kp —— B[] 2 Eg[e%] — Co —— 0

N

0 —— By —— Eo[e*] —2s By[e"%] —— Cp —— 0.

Something similar occurs at p. If ¢ = ¢, we get Z; = x4 and g = y; 50 K, = K;. We
have an isomorphism K 2 K so Fy/K = FEy/K. We need to check that this isomorphism
is compatible with the level structures and the differentials. Let £ { £p, then we have a
diagram

[4

~

kpr » _
Ty (Ey/K) ——Tp By —— Tp(Fy/K)

(Z/e"2)? == (Z/#"2)* — (Z/t"L)*.

Since the top “triangle” commutes, we see that the level structures commute with the

isomorphism. The same thing happens at p. When £ = £, then K, = K; so we get the

same diagram as above, except that the top isomorphism is actually the identity map.

It remains to check the local choices. C; (therefore K;) depends on the chosen iso-
morphism Ty Fy = Z%, and this can change y; by multiplication by an element of O} (V).
Suppose we have another such candidate 9y = usyp, then we would get a commutative

diagram

0 » Ty be » Ty By yCy > 0

|, )

0 /TeEo » TeFlg 4 Cg >0,

from which we conclude as before that K, = K, and Ey/K = Ey/K. For the level N
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structure, we have the diagram

a3

(Bo/ K)e") 5 Bafer) <0, 3 iy

SV

v k)1
(Bo/K)[e) 205 Byjer) 20, (7o
a
and a similar argument holds for the 5 and 7. O

Lemma 2.18. The map 7 is bijective with inverse d.

Proof. Suppose we started with [z} € Q and got [ : Fy —» Eo/K,a,n]. For ¢ # p we get

the exact sequence (of Zg-modules)
0= TyBo X% 13(By/K) — coker Ty s 0.

We see from diagram (2.4) that y, — k[l ° Ty, where ky is an isomorphism that restricts
to o™ o . Therefore [ye] is exactly the local element that’s obtained in the computation
of v([¢, &, n]). The same thing happens at p, so indeed yo 4 = 1.

Conversely, Suppose we start with a triple (¢ : By — E a,n). We get local elements Tp
forming an adéle . We have ker ¢ — I, coker ;. Now when we apply § we already have
Te € Op 80 yp = 24 and K = €D coker z; = ker ¢. We get an isogeny Ejp —s Ey/K which has
the same kernel as ¢, therefore £ = Eo/K. Tt is clear from the construction of § that the

level N structure and the invariant differentia] will stay the same, O
We have just proved

Theorem 2.19. There is 5 canonical bijection 30 — )
Before moving on we record the following consequence of our arguments.

Corollary 2.2¢. Every class (¢, a, 1] € 3° has a representative satisfying p{deg ¢.



46 CHAPTER 2. ELLIPTIC MODULAR FORMS

Proof. Let [z] = 7([¢,,n]). Let & be a representative of [z]. Let B = {L,x} be a
description of our quaternion algebra, then 7 is a uniformizer of Byp. Therefore &), = un*,
withk € Z, u € OF. But then Z,m % € Oy . Since m € O, (1), we can use the representative
z = i1~ for computing 8, in which case Cp = 1 so the degree of the resulting isogeny is

prime to p. O

Remark 2.21. We note here that one can say more: the isogeny ¢ : Fy — E can be chosen

to have square-free degree. This is not easy to show.

2.5 Compatibilities

This final section of the chapter consists of the proof of the following result:

Theorem 2.22. The canonical bijection v : ¥°(N) — Q(N) is compatible with the action
of the Hecke algebra, with the action of GL2(Z/NZ), and with the operation of raising the

level.

2.5.1 Hecke action

In this section ¢ will denote a fixed prime not dividing pN. For generalities on Hecke
algebras, see §3.1.2 in [AZ95].

If Hy, Hy are subgroups of a group G, we say that H; is ﬁommensumble with Hs (write
H, ~ Hy) if H) N Hj has finite index in both H, and H,. If H is a subgroup of G, we define
1ts commensurator by

Comm(H) :={g€G:g 'Hg~ H}.

Finally, we say that (G, H) is a Hecke pair if Comm(H) = G. For example, one can find in
§3.2.1 of [AZ95] a proof of the fact that (GLo(Qy), GL2(Zs)) is a Hecke pair.
If (G, H) is a Hecke pair then any double coset HgH has a finite decomposition into left

cosets. Since the map H\G — G/H given by gH — Hg~! is a bijection, we also know that



2.5. COMPATIBILITIES 47

HgH has a finite decomposition into the same number of right cosets, i.e. we can write

& s
HgH = I_Iasng: |_|Hgyj,

where z;,y; € H for all j.

The Hecke algebra of the Hecke pair (G, H) is by definition #(G, H) := Z[H\G/H],
with the multiplication described above. From now on we set G = GLy(Qy), H = GL2(Zy)
and Hy = H(GL2(Qr), GL2(Zy)). We call Hy the local Hecke algebra at £.

Take an isogeny ¢ : E1 — F» whose degree is a power of £. It induces an injective
Zy-linear map Tp¢ : TyE) — TeE, which gives an element g € G = GL2(Qy). Since g is
defined only up to changes of bases for Ty F) and TpF;, ¢ actually defines a double coset
HgH, where H = GLy(Z;). In this situation we say that ¢ is of type HgH. We say that a
finite subgroup C of an elliptic curve E is of type HgH if the quotient isogeny £ — E/C
is of type HgH.

If HgH € H;, we denote by det(HgH) the ¢-part of the determinant of any representa-

tive of HgH. The action of H; on X0 is defined as follows. If det(HgH) > 1, set

Thou([¢ : Eo = B, o, 7)) 1= > [Bo % E Y% E/C,ac,nc),
: C C E of type HgH

where n¢ := M (¢)"1(n), and ac is defined by the diagram

EIN] Y (B/O)[N] (2.2)
(Z/NZ)>——= (Z/NZ)

Note that these definitions make sense because (deg o, pN) = 1.

Now suppose det(HgH)} < 1. Given a finite subgroup C of E of type Hg 1H, let
Yo (E/C) — E be the dual isogeny to the quotient 9)c : E — E/C. The action is defined
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Treu ([ : Bo — B, o)) i= 3 By S B &S B0, a0, ncl,
CCFoftype Hg ' H

where ng = M ('J,Zr’c.)(n), and o¢ is defined by the diagram

BIN] Y (B/C)[N] (23)
(ZINZ)> == (Z/NZ)%

The algebra H, acts on H\G as follows: let HgH = [[, Hg;, let Hx € H\G and choose

a representative £ € Hz. Then there exist representatives g; € Hg; such that

THgH(HCE) = Z Hgl’l?
The algebra H; acts on § by acting on the component Hz; of [z] € Q.

Lemma 2.23. The bijection 7 : 3% —  is compatible with the action of the local Hecke
algebra Hy, i.e. for all HgH € H; and [¢, o, 77] we have

Y (Trgn ([, &, n))) = Tagn (v{[¢: @, n]))-

Proof. Let HgH € My, let [¢: Eg — E,a,n] € 0 and let [z] = y([¢, o, 7))
Suppose at first that det(HgH) > 1 and let C be a subgroup of E of type HgH. Let

ze] == y([Wo o ¢, ac,nc]). If (¢, pf) = 1, we have a diagram

Tor Ty
ToEy 2% 1 B ¥ 10 (B C).

k
xZ;J/ %

Ty Ey

Since (Tpc) o ky : TpEy — Tp(E/C) is an isomorphism restricting to agt o ao (see

diagram (2.2)), we get that [zo ] = [z¢].
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A similar argument, based on the following diagram, shows that (Top] = [Tp]:

My /
{¥e) M M(¢') M,

kp Tmp

M,.

Mc

Let’s figure out what happens at £. Fix z; € Hzy, then the isomorphism k; : T, Ey — T.F
is fixed and allows us to identify these two Z;-modules. Choose a Zlinear isomorphism
ko : Ty — T;(E/C) and set yo; = kal o Ty Via the identification kg, yo induces a map

zg Ty — Ty Ey. We have a diagram

1B, 2 1,8 T 1)),

) - yo
J ke l %

T, E, T.E

zZa ~
kg

T Ey

Since k¢ o kg is an isomorphism Ty Ey — T;(E/C) and z¢ o z, satisfies all the properties zc g
should, we conclude that Hz¢y = Hzoze. The assumption that C' is of type H ¢H implies
that Hze C HgH.

It remains to show that the map C — Hz¢ gives a bijection between the set of subgroups
C of E of type HgH and the set of right cosets Hz contained in HgH. We start by
constructing an inverse map. Let Hz C HgH and pick a representative z. This corresponds
to a map z : TyFy — TyFy, and hence induces via k¢ a map y : T)F — TyE. We use the
same construction as in the definition of the map ¢ in §2.4 (pages 39 and following) to get
a subgroup C' of E which is canonically isomorphic to the cokernel of y. C will be of type
HgH because Hz C HgH. The proof of the bijectivity of C — z¢ is now the same ag the
proof of Lemma 2.18.

It remains to deal with the case det(HgH) < 1. This works essentially the same, except

that various arrows are reversed. We illustrate the point by indicating how to obtain the
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equivalent of the map C — Hzc in this setting. Let C be a subgroup of E of type Hg L H.
This defines a new element of %0 which we denote by 15" © ¢, ac,nc] (by a slight abuse
of notation since ¢ is not invertible as an isogeny). Let [z¢] = 7([’(&51 o ¢, ac,nc]). I
(¢',pf) = 1, we have a diagram '

T Ty
To By 222 1 B £ 10 (B ).

Fogr
xell .

Ty Fy

Since (Tytpc) L o ky : Ty Ey — Tp(E/C) is an isomorphism restricting to agt o ag (see
diagram (2.3}), we get that [zgce] = [z¢]. The situation at p is similar and we have

[zop] = [z

What about £7 As before, we fix 2y € Hzp and with it the isomorphism &y : Ty Eo — Ty F.
Choose an isomorphism k¢ : TyE — T;(E/C) and set y¢ = Tppeoke. Viathe identification

ke, yo induces a map z¢ : Ty Fg — TpFy. We have a diagram

T8 225 B ST (B/O).

2 ~ o
Jv kg TA‘

T, Eq TE
o] 4

£
T:Ey

It is now clear that z¢ o zc¢ = ¢, # is only defined up to right multiplication by elements
of H (because of the choice of k), so we get the formula Hzcy — Hzala:,g. The assumption
that C is of type Hg~'H guarantees that H 251 C HgH. The rest of the proof proceeds
similarly to the case det(HgH) > 1. d
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2.5.2 Action of GLy(Z/NZ)

Within this section we’ll write G to denote GL2(Z/NZ). The group G acts on £? as follows:

g- [¢9a’n] = [¢=g° a»’)]-

The action on ) is more delicate. It is easy to see that since @ = End(T;Fp), we have
OF (N)\O, = Aut(Ey[¢"]), where £*||N. Our fixed isomorphism o : Fo[N] — (Z/NZ)?
identifies G with Aut(Eg[N]) via g = oy’ o g o ap. Therefore we get an identification
¢ = [Jorvnoy
¢

g = [[or)agtogoam),
2

where the product is finite since the terms with £4 N are 1. The action of G on § is then

given by

g- [HOE‘(N)Q:@] = [HO;(N)(aO_logoa)mg .
¢ ’

Lemma 2.24. The bijection v : % — € is compatible with the action of G = GLy(Z/NZ).

Proof. Let [[]OF (N)ze] = 1([4, 7)) and [[] OF (N)}] == 1(g- (¢ 7)) = ([ goo, 7).
Pick some £ # p and set H := O, (N); we claim that Hz}, = H(a, ' 0 g o @)z, Recall that
Ty = kg_l o Ty, where k; : TyEy — T¢E is some isomorphism extending a1 o erg. Therefore
k) :=keo(ag'ogoayp) is an isomorphism extending a~! o go ap and is thus precisely what

we need in order to define zj, = (k;) ~! o Ty¢. By the definition of k&, we have
zy= (05" o5 o) ok 0 Ty = (a7 0 g™ 0 6z,

which is what we wanted to show. O
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2.5.3 Raising the level

Suppose N’ = dN for some positive integer d. A level N' structure o : E[N'] - (Z/N'Z)?
on an elliptic curve E induces a level N structure on F in the following way. Multiplication
by d on E[N'] gives a surjection d : E[N'] — E[N], and there is a natural surjection
7 : (Z/N'Z)? — (Z/NZ)? given by reduction mod N. We want to define an isomorphism
a: E[N] — (Z/NZ)? that completes the following square

E[N']—2 (Z/N'Z)?

dl |-

E[N] - %> (Z/NZ)?.

This is straightforward: let P € E[N] and take some preimage @ of it in E[N'}. Set
a{P) := n(c/(Q)). This is easily seen to be well-defined and a bijection. We conclude that

[¢,a, ) — [, ] gives a map
»O(N') — TOUN).

There is a similar map on the £2’s. We only need to consider primes £|N'. Here we have
O (N') C O (N) so we get maps O; (N')\B; — O (N)\Be, which can be put together
to form

QN') = Q(N).

We want to show that the bijection v commutes with these maps. This is clear at primes
£1 N', so suppose £ is a prime divisor of N'; say £™||N and £*||N'. Let [¢, o/, 7] € YONY),
[z'] = ¥([$, &/, n]) and [z] = ¥([¢, @, 7]). By definition, z, = (k;) 'o¢ where kj : T¢Fo — T;E

is an isomorphism restricting to

Eolt"] —— B[]

a{)J(N a"J{N

(Z.)477)2 —— (Z/6VL)2.
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This defines the local component O (N')z,. We can restrict &}, even further to the ¢™-

torsion, and then by the definition of a we have

'

Eole™] —__, gpm)

~

(Z/0™T)? == (Z.)¢™Z)?.

But this means that k) plays the role of the k; in the definition of x4, so

O} (N)z) = OF (N)zy.

This is precisely what the map Q(N') — Q(N) looks like at £, so we're done.
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Chapter 3

Siegel modular forms

Following a suggestion of Gross, we generalize the results of the previous chapter to dimen-
sion g > 2. More precisely, we link Siegel modular forms (mod p) to reductions modulo p
of modular forms on the algebraic group GU,(B), as defined in [Gro99].

Fix a prime p and an integer N > 1 prime to p.

3.1 The geometric theory of Siegel modular forms

We review the basic definitions and results from [Cha86].
All the schemes we consider are locally noetherian. A g-dimensional abelian scheme A

over a scheme S is a proper smooth group scheme

/Yo

S,

whose {geometric) fibers are connected of dimension g¢.
A polarization of A is an S-homomorphism A : A — A* = Pic®(A/S) such that for any
geometric point s of §, the homomorphism A, : A; — A? is of the form A\ (a) = thL.®L;1! for

some ample invertible sheaf £; on As. Such A is necessarily an isogeny. In this case, A, O 4 18

35
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a locally free O 4¢e-module whose rank is constant over each connected component of S. This
rank is called the degree of \; if this degree is 1 (so A is an isomorphism) then X is said to be

principal. Any polarization is symmetric: A* = A via the canonical isomorphism A 22 A%,

Let ¢ : A — B be an isogeny of abelian schemes over S. Cartier duality (Theo-
rem II1.19.1 in [Oor75]) states that ker ¢ is canonically dual to ker ¢*. There is a canonical
non-degenerate pairing

ker ¢ x ker ¢* = Gy,.

An important example is ¢ = [N] for an integer N. The kernel A[N] of multiplication by N
on A is a finite flat group scheme of rank N?¢ over S; it is étale over S if and only if S is a

scheme over Z[%]. We get the Weil pairing
A[N] x A'[N] = Gy,

A principal polarization A on A induces a canonical non-degenerate skew-symmetric pairing
A[N] x A[N] = un,

which is also called the Weil pairing.

For our purposes, a level N structure on (A, \) will be a symplectic similitude from A[N]
with the Weil pairing to (Z/NZ}?9 with the standard symplectic pairing, i.e. an isomorphism

of group schemes « : A[N] — (Z/NZ)?9 such that the following diagram commutes:

AIN] x AN LD (2N 7y x (2N T2

WeilJr stdl

KN - »Z/NZ

for some isomorphism py = Z/NZ.

If N > 3, the functor “isomorphism classes of principally polarized g-dimensional abelian

varieties with level N structure” is representable by a scheme A4, x4 which is faithfully flat
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over Z, smooth and quasi-projective over Z[%] Let

/| )o

-A97N

be the corresponding universal abelian variety. Let E = 0*(Qy, A, ~); this is called the

Hodge bundle.

3.1.1 Twisting the sheaf of differentials

Let X be a scheme and let F be a locally free Ox-module whose rank is the same integer n
on all connected components of X. Let {U; : 4 € I'} be an open cover of X that trivializes F,
then we have F|y, = (Ox|v,)", and for all 7 and j we have isomorphisms Floinv, = Flu,nu,

given by ¢;; € GL,(O x|u:nu;) satisfying the usual cocycle identities.

Now suppose we are given a rational linear representation p : GL, — GL,,. We construct

a new locally free Ox-module F, as follows: set (F,); = (Ox|y,)™, and for any i, j define an

isomorphism (Fy)ilvnu, = (Fp)jlvinu; by plgi;) € GLm(Ox |u,ny,). Since the transition
functions p(g;;) satisfy the required properties, we can glue the (Fp)i together to get the
locally free Ox-module F,. We say that it was obtained by twisting F by p. It is obvious

that F = Fiq, where std : GL, — GL,, is the standard representation.

‘The correspondence p > F, is a covariant functor from the category of rational linear
representations of GL,, to the category of locally free Ox-modules. This functor is exact

and it commutes with tensor products.

The scheme Ay v can be compactified in various ways (see [FC90]). Pick some compact-
ification A;J n and let X denote its base-change to F,. According to the Koecher principle,

the Hodge bundle E extends uniquely to a locally free sheaf E on X.

Given a rational representation p : GLy — GL,,, the global sections of E, are called
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Siegel modular forms (mod p) of weight p and level N and they can be written

M,(N) = H°(X,E,)

= {f{[A N an} 2 Fy (AN a,Mn) = p(M)™' f(A, X, a,n),VM € GLy(Fp) },

where 77 is a basis of invariant differentials on A.

3.1.2 The Kodaira-Spencer isomorphism

We recall the properties of the Kodaira-Spencer isomorphism. For a detailed account see

§I11.9 and §V1.4 in [FC90).

If 7: A — S is projective and smooth, there is a Kodaira-Spencer map
k:Tg— R! 7u(Tays)-

If

Do

S,

is an abelian scheme, set E/g = 0*(92/5). Then
Tays = 7 (0°(Tass)) = 7 (B} s)-
The’ projection formula gives
REmy(r*(EY5)) = RN me04a) ®o, Eiys-
Let 7t : A* = S be the dual abelian scheme, then

R' 1.04 = 0*(Taess) = (Batys)”.
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So the Kodaira-Spencer map can be written as follows:
i v Y
k:Tg — (IEAt/S) ®og ]EA/Sa

which after dualizing gives

K.V : EAi/S ®os EA/S - Q}g

Now suppose that A : A/S — A!/S is a principal polarization, i.e. an isomorphism. Then

the pullback map A* : E4¢ /s — Ey s is an isomorphism and we get a map

@2 1
Ears — Q.

This map factors through the projection map to Sym?(E, /s), and the resulting map
Sym*(E4/s) — Q%
is an isomorphism. In particular, in the notation of §3.1.1 we have a Hecke isomor-

phism Eg 2.4 & Q, where X = A .

3.2 Superspecial abelian varieties
For a commutative group scheme X over a field K we define the a-number of X by
a(X) = dimg Hom(ay, X).

If K C L then dimg Hom(ayp, X) = dimz, Hom(ayp, X ® L) so a(X) does not depend on the
base field.

An abelian variety A over K of dimension g > 2 is said to be superspecial if a(A4) = g.

Let k be an algebraic closure of K. By Theorem 2 of [Oor75], a(A) = g if and only if

A®kEE’1><...ng,
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where the E; are supersingular elliptic curves over k. On the other hand, for any ¢ > 2 and

any supersingular elliptic curves Ey, ..., By, over k we have (see Theorem 3.5 in [Shi79))
Eyx...xE;=FEypy X ... x Ey,.

We conclude that A is superspecial if and only if A ® & = EY for some (and therefore any)
supersingular elliptic curve £ over k.
Any abelian subvariety of a superspecial abelian variety A is also superspecial. If A is

superspecial and G C A is a finite étale subgroup scheme, then A/G is also superspecial.

Lemma 3.1. Let A be a superspecial abelian variety over Fp. Then A has a canonical
Fp2-structure A’, namely the one whose geometric Frobenius is {—p]. The correspondence

A — A’ is functorial.

Proof. Let E be a supersingular elliptic curve over Fp, then A = E9. By Lemma 2.1 we know
that F has an F-structure E' with g = [—p|g/, therefore A" := (E')? is an Fj2-structure

for A such that
WA =T XTgpt X ... X T = [*p]Er X [—p]El X0 X [—p]Er = [—p]Al.

The functoriality statement follows from the corresponding statement in Lemma 2.1.
Since any superspecial abelian variety over Fp is isomorphic to E9, it suffices to consider a
morphism f : E9 — E9. This is built of a bunch of morphisms £ — F, which by Lemma 2.1
come from morphisms E' — E’. These piece together to give a morphism f’: (E') — (E')¢

over Fp2, which is just f after tensoring with F,. O

An easy consequence of the functoriality is that if A is a principal polarization on A,
there exists a principal polarization A of the canonical [,z -structure A’ of A such that

XN ®@F, = \. We say that (A4’ N) is the canonical Fyz-structure of (4, \).
P P
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3.2.1 Isogenies

We need to define what it means for two principally polarized abelian varieties (A1, A;) and
(A2, A2) to be isogenous. The natural tendency is to consider isogenies ¢ : A; — Aj such

that the following diagram commutes:

AILAQ

)\IJVN Azlw
\]

t, t
Al A21

i.e.

¢todzod=A.

But then deg¢ — 1 so the only isogenies that satisfy this condition are isomorphisms. We

therefore relax the condition by requiring ¢ to satisfy
¢t o0 =mh,

where m € N. By computing degrees we get (deg ¢) = m9.

We now consider the local data given by the presence of a principal polarization. Let
(A, A} be a g-dimensional principally polarized abelian variety defined over Fp. Let £ be a
prime different from p and set as usual Z,(1) = Jim jign. We have the canonical Weil pairing
(see §12 of [Mil98] or §16 of [Mil86])

er: TyA x TpAY — Zy(1),

which is a non-degenerate Zg-bilinear map. When combined with a homomorphism of the

form o : A — At it gives

e'é’ :TeA x T A — Zg(l)

(a,a’) — ea,ad).
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If o i3 a polarization then e} is an alternating (also called symplectic) form, i.e.
ef(a’,a) = e (a,a’) "
for all a,a’ € TpA. If f : A = B is a homomorphism, then
ef 7 (a,) = € (/(a), ()
for all a,a’ € TyA, o : B — B*.
Let ¢ : (A1, \1) = (A2, A2) be an isogeny of principally polarized abelian varieties. ¢
induces an injective Zg-linear rhap on Tate modules Ty¢ : Ty A1 — TyAs, with finite cokernel

Ty Az /(Ty¢)(Te A1) isomorphic to the £-primary part (ker ¢); of ker ¢. Since ¢p'odsod = mhy,

we have

2 ((Tud)a, (Ted)a') = f *2°%(a,d’) = €™ (a, ')

= epa,mAa’) = eg(a, \a)™ = e) (a,a)™.
We say that Ty¢ is a symplectic similitude between the symplectic modules (Ty A1, ez\l) and
(TgAQ, 62\2 ) .
What happens at p? Let W = W (k) for k a perfect field of characteristic p and let M
be a free W-module with semi-linear maps F' and V satisfying
FV=VF=p,  Fz=2aFF, Vi =z/PV.
A principal quasi-polarization on M is an alternating form

e MxM-—=W
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which is a perfect pairing over W, such that F and V are adjoints:
e(Fz,y) = e(z, Vy)F.

A principal polarization on A defines a principal quasi-polarization e, on the Dieudonné
module M of A (see Jeff Achter’s thesis [Ach98] for references). If A is defined over Fp

then e, defines a hermitian form on M/FM as follows:

M/FM x M/[FM — Fp

(z,y) = (2,y) :=ep(z, Fy)’ (mod p).

An isogeny ¢ : (A1, A1) — (A2, A2) induces a symplectic similitude ¢* : My — M of

principally quasi-polarized Dieudonné modules.

3.2.2 Quaternion hermitian forms

Let B be a quaternion algebra over a field F. Let - denote the canonical involution of B
(i.e. conjugation) and let N denote the norm map. Let V be a left B-module which is free

of dimension g. A quaternion hermitian form on V is an F-bilinear map
f:VxV B

such that

f(bz,y)zbf(z,y), f(w,y)zf(y,:c)

forallb € B, z,y € V. We say f is non-degenerate if f(x,V) = 0 implies z = 0.

The following result says that any quaternion hermitian form is diagonalizable (see §2.2

in [Shi63]):

Proposition 3.2. For every quaternion hermitian form f(z,y) on V, there exists a basis
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{z1,...,24} of V over B such that
fzi,25) = by

for 1 € 4,5 < n, where a; € F. Moreover if f is non-degenerate and the norm N : B — F

is surjective, then there exists a basis {y1,...,yy} of V over B such that
Fui, ;) = 6ij-

Furthermore, we have the following result (see §3.4 of [Vig80)):

Theorem 3.3 (The norm theorem). Let B be a quaternion algebra over a field ¥, and
let Fg be the set of elements of F' which are positive at all the real places of F' which ramify

in B. Then the image of reduced norm map n : B — F is precisely Fg.

We conclude that if B is the quaternion algebra over Q ramified at p and oo, then

n(B) = Qso.

3.2.3 The similitude groups

Let B be a quaternion algebra over a field F. We define the group of unitary g x g matrices

and its similitude group by

U,(B) = {M €GLy(B): M*M — I},

GU,(B) = {M €GLy(B): M*M =~(M)I,y(M) € F*}.

These are algebraic groups over F: let (f;;) = M*M, then Uy(B) is defined by the equations
fij =0 (i # j), fuu = 1, and GUy(B) is defined by the equations

fij=0for i #j, fu=/foo=-...= fg

(these are automatically in F because they are sums of norms of elements of B).
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We define the group of symplectic 2g x 2g matrices and its similitude group as follows:

Spag(F) = {M € GLyg(F) : MthagM = J,},
GSpoy(F) = {M € QLyy(F): M'JoyM = y(M)Jsy, v(M) € F*},

0 I
where Jyg = (_Ig 6").

Lemma 3.4. Let K be a field. The subgroups GUy(M2(K)) and GSp,,(K) are conjugate
inside GLgg(K). In particular, they are isomorphic and the F-algebraic group GUy(B) is
an F-form of GSpy,.

Proof. If A= (2%) € M3(K), then the conjugate of A is

A=(47),

—C a

therefore the adjoint of A is
A = (450) = JAn.
Set jzg = diag(Jg, . .,JQ) and let M = (Aij)lfiajﬁg € Mg(M2(K)) We have

M* = Jy )t Mt Jyg

therefore

M*M = J3 ' M 3y M.

I claim that there exists a permutation matrix P such that PtjggP = Jog. If g is odd

(resp. even), let Py be the matrix corresponding to the product of transpositions

(2(29 —1))(4(29 - 3)) ... ((g — 1)g), (vesp. (2(2g — 1))(4(29 — 3)) ... (g(g + 1))),
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then

o
-0

3 1
PyJygPL = -1 ;
10

10
0 -1

respectively

(=1
ol =)

PlIy, P = -1 0
S0 -1
-10
0 -1
In both cases it is clear what permutation matrix P» will finish the job; set P = PP and
the claim is proved.

We have Jay = P'Jog P, 50 Jog = PJoy P and
M*M = PJ; ' PPM'PJog P M.

Now if M € GUy(M>(K)), then M*M = ~I for some v € K* and a little manipulation
gives

(P*MP) J2g(P'MP) = vJag,
i.e. PPMP € GSpy,(K). Conversely, if PMP € GSpyy(K) then
M*M = PJy (PP MP)'JyyP*M = PJ3 v oy P* = 71
so M € GU,(Mz(K)). Therefore P~ GUy(M3(K))P = GSp,,(K), as desired.

Since B® F = My(F), we conclude that GU,(B) ® F =2 GSp(F). 0

3.2.4 Algebraic modular forms (mod p)

We give the definition of algebraic modular forms (mod p) on the group G = GU,(B),
where B is the quaternion algebra over QQ ramified at p and oo. See [Gro99] and [Gro98]
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for more details.

The definition given by Gross requires G to be a reductive algebraic group over Q which
satisfies a technical condition for which it sufficient to know that Gp(R) is a compact Lie
group. Our G is reductive, being a form of the reductive group GSpy,- We also know that

Go(R) is compact, since it is a subgroup of the orthogonal group O(4g).

Let O, be the maximal order of B® Q,. We define U, to be the kernel of the reduction

modulo a uniformizer 7 of O, i.e.
1 = Up = G(0,) 22T, QU (F,2) — 1.
For £ # p, we set
UN) ={z€G(Zg) : z=1 (mod £"),¢"||N}.

The product

U=, x [JUV)
&p

is an open compact subgroup of G(Q), called the level (Q is the ring of finite adeles). Set

Q(N) := U\G(Q)/G(Q). By Proposition 4.3 in [Gro99], the double coset space Q(N) is

finite.

Now let p : GUy(F,2) — GL(W) be an irreducible representation, where W is a finite-
dimensional Fp-vector space. We define the space of algebraic modular forms (mod p) of

weight p and level U on G as follows:
M(p,U) :={f : QN) > W: f(Ag) = p(A) " f(g) for all X € GU,(F,2)}.

Since Q(N) is a finite set and W is finite-dimensional, M (p,U) is a finite-dimensional Fp-

vector space.
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3.2.5 Differentials defined over ]sz

We know from Lemma 3.1 that 5 principally polarized superspecial abelian variety (A, A) has
a canonical Fz-structure (4", X). We are therefore lead to consider invariant differentials

on A defined over sz.

Lemma 3.5. [et Abea Superspecial abelian variety over F. ps let A’ be itg canonical . -
structure and M = A (4'[p™]). Then giving a basis of invariant differentials on A defined

over K2 is equivalent to giving a basis of M /FM over Fp..

Proof. The invariant differentials on 4 defined over F,2 are identifieq with w(A’), the in-
variant differentials on 4’ We have w(A4') = w(E') = w(E')9. By Lemma 2.15 we know

that
w(E') = M(E'[p>)) /Fag (E'[p™)),

and since M(A'[p=]) ~ M(E'[p>])9 we conclude that
w(A') = M/Fpr

d

Note that as we've seen in §3.2.1, the presence of a principal polarization ) on an Fpe2-
abelian variety A’ induces a hermitian form on the g-dimensiona] Fp2-vector Space M/F M.
We say that an mvariant differentia] on A defined over Fp2 is an invariant differential on

A\ ifit respects this hermitian structure. We can therefore conclude that
?

Corollary 3.6. Let (4,1) be a principally polarized Superspecial abelian variety over Fp,

let (A’, )Y be its canonical F,z-structure ang M = M(A'[p™>]). Then giving a basis of

3.2.6 Dieudonné module of a superspecial abelian variety

We use the notation introduced in §2.3.1.
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We want to describe the structure of the principally quasi-polarized Dieudonné module
M = M(E'[p>]?), where E' is a supersingular elliptic curve defined over F,:. What we

need is a simple consequence of the following result (Proposition 6.1 from [LO98]):

Proposition 3.7. Let K be a perfect field containing F2, and suppose {M, (,)} is a quasi-
polarized superspecial Dieudonné module of genus g over W = W (K) such that M = A’l’,l.

Then one can decompose
M2M &M ®...0 My ((Mz',Mj)ZOifi?éj),

where each M; is of either of the following types:

(i) a genus 1 quasi-polarized superspecial Dieudonné module over W generated by some

z such that (z, Fz) = p"e for some r € Z and € € W \ pW with ¢/ = —¢; or

(ii) a genus 2 quasi-polarized superspecial Dieudonné module over W generated by some z,

y such that (z,y) = p" for some r € Z, and (z, Fz) = {y, Fy) = (=, Fy) = (y, Fz) = 0.

Corollary 3.8. M(E'[p™]9) = Ail as principally quasi-polarized Dieudonné modules,

where Ai’g is endowed with the product quasi-polarization.

Proof. In the direct sum decomposition of the proposition, the degree of the quasi-polariza-
tion on M is the product of the degrees of the quasi-polarizations of each of the sumﬁands.
Since our M is principally quasi-polarized we conclude that each summand is also principally
quasi-polarized, i.e. the bilinear form (,} is a perfect pairing on each summand.

Let My be such a summand and suppose Mj is of type (ii) from the proposition. This
gives a W-basis for My consisting of z, Fiz, y and Fy. The quasi-polarization (,) defines
a map My — M{ given by z — f;, where f,(v) := (z,v). Let at, (Fz)!, y* and (Fy)
be the dual basis to 2, F'z, y and Fy. It is an easy computation to see that f, = p"yt,

fre =" (Fy)t, fy = —p"zt and fp, = —p"+}(Fz). For instance

fry(Fz) = (Fy,Fz) = (y,VFz) = (y,pz) = —p(z,y)° = ~p"t1.
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But the map My — M{ given by z — f, is an isomorphism, hence p" = p™*1 = 1,
contradiction.

So M has only summands of type (i). A similar (but even simpler) computation shows

that each summand must have {z, Fz) = 1. O

Corollary 3.9. There exists an isomorphism End(M, eg)* = GUy4(O,), such that the sub-
group of symplectic automorphisms which lift the identity map on (M/F M, ep) is identified

with U}, defined by the short exact sequence
1 = Uy = GUg(Op) = GU,(F2) — 1,

where the surjective map is reduction modulo the uniformizer m of Op.

Proof. Recall the identification End(4; ;) & O, from the proof of Corollary 2.11:

(p:End(Al,l) — Op

(_;yp 317) — T+ Ty

On the other hand, any T' € End(M) = End(A{ ) is a 2g x 29 matrix made of 2 x 2 blocks

of the form

Tij  Yij

7= (S o)

Therefore we have an isomorphism

¢:End(M)* — GLg(O)

T=(Ty)ig — (Tij +7Yij)ig-

We want to prove that under this isomorphism, End(M, eg)* corresponds to GUy(O,). For

this we use Corollary 3.8, which says that the bilinear form eg is given by the block-diagonal
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matrix

Ey

Il

Therefore we have
End(M, eq)* = {T € End(M)* : T*ET = yEq,y € Zyp}-
Note that for the 2 x 2 block T;; we have
(%) 7T (%8 = (py ;ff) :

which maps under ¢ to zfj — TYi; = T4 + 7y = @(Ty4), where = denotes the conjugation
in the quaternion algebra B, = O, ® Q. This means that Ej 'T*Ey maps to ¢(T)*, where

we write U* = U, Putting it all together we conclude that for any 7' € End(M)* we have
T € End(M,e0)* <= Ej'T'ET =v <= o(T)p(T) =7 < o(T) € GU,(O,),

which is precisely what we wanted to show.

For the second part of the statement note that
M/FM = {(0,01,0,a2,...,0,a5)" + FM : a; € F2 }.

Let T = (T;;) € End(M, eg)*, then its induced map on M/FM is

T((0,a1,0,as,...,0,a,)" + FM) = O,Zaj:a’l’j,...,o,zajzgj +FM,
i j

where Z;; denotes the reduction modulo 7 of z;;. Therefore T induces the identity map on
¥ J Y p
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M/FM if and only if

T 2 T1g
I Tag iZg

, =1
Zg1 Zg2 ... ZTyg

But the matrix above is precisely the matrix of the reduction of (7)) modulo w, so T

induces the identity on M/FM if and only if @(T) € U,. O

3.3 Construction of the bijection

Let A be a superspecial abelian variety of dimension ¢ over Fp. Let A" = E'9 be its canonical
Fp2-structure, then 4 = F9 for £ -— E'® Fp. Until further notice, T will write A to mean
E9 and A’ to mean E'. Let Ag be the principal polarization on A’ defined by the g x ¢
identity matrix, let Ay := Ao ®Fp, let ay A[N] = (Z/NZ)? be a level N structure on 4,
and let ng be a basis of invariant differentials on (A4, \q) defined over B,z (i.e. a hermitian
basis of M/FM), where M = M (A’'[p*]). The various Weil pairings induced by A, resp.
A will be denoted e, resp. eg.

Let ¥ denote the finite set of 1somorphism classes of pairs (A, ), where ) is a principal
polarization on A and « is a level N structure. ¥ is a subscheme of X We also define 3
to be the set of isomorphism classes of triples (A, «, ) with A and « as above and n a basis
of invariant differentials on (A4, A) defined over fy2. Isomorphism is given by the condition

F'(m2) = n1 and the commutativity of the diagrams

A—-L4 (A[N] 1) —L—— (A[N), ) (3.1)
All"’ p Azlﬁ‘ QIJN azlm
AP A (Z/NZ)?, std) == ((Z/NZ)%, std),

where std denotes the standard symplectic pairing on the various modules.
Let O := End(E) and B .= 0 @ Q. Let G := GU,(B), and recall the notation of
§3.2.4. The purpose of this section is to construct a bijection between the finite sets 3 and

(¥ = Q(N), generalizing the result of §2.4.
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Lemma 3.10. Given any principal polarization A on A, there exists an isogeny of principally

polarized abelian varieties ¢ : (4, Ag) — (4, A).

Proof. We want an isogeny ¢ : A — A such that
¢'odo g =mg

for some m € N.

There is an obvious bijective correspondence associating to a homomorphism vy : 4 — A
a matrix ¥ € My(O). Under this bijection, 9! : A* - A? corresponds to the adjoint W*. If
¢: A — Ais an isogeny, then ® € GLy(B). If A\: 4 - Al is a polarization, then \¢ = )
so A* = A. Also A is positive-definite. If X is a principal polarization, then A € GL4(O)
defines a positive-definite quaternion hermitian form f. By Proposition 3.2 we know that

A can be diagonalized, i.e. there exists M € GL,(B) such that
M~IAM = diag(an, .. ., ay),

with a@; € Q. The form f is positive-definite so o; € Q-0. But the norm theorem 3.3 says
that the norm map is surjective onto Qusg, so by the last part of Proposition 3.2 there exists
M’ € GL,4(B) such that

(M)'AM' = 1.

So there is a basis of BY such that the quaternion hermitian form f is represented by
the matrix 7. But the matrices representing f are all of the form Q*AQ for Q € GL, (B).
Now B = O ® Q so there exists a positive integer n such that nQ has coefficients in ©. Let
® =nQ and let ¢ : A — A be the homomorphism corresponding to ®. Since & € GL,(B)
and the fixed principal polarization Ay corresponds to the identity matrix, we conclude that
¢ is an isogeny and

¢tOAO¢=n2_
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We can now mimic our approach from Chapter 2. Lemma 3.10 allows us to identify ¥

with the set 30 consisting of isomorphism classes of triples
((4.20) B (4,30, 0+ 4] (/32 7),

where (A, \g) LA (A4,}) is an isogeny of principally polarized abelian varieties and isomor-

phism is defined by the diagrams (3.1).

Proposition 3.11. An isogeny ¢1 : (4, X)) — (A, A1) defines for any prime ¢ # p an
element [.’Eg] € Ug(N)\Gg Ifffdeg ¢1 then [:Eg] =1].

Proof. Pick a prime ¢ # p and let n satisty ¢*||N. As we’ve seen in §3.2.1, ¢ induces an
injective symplectic similitude Ty @ (T, A, ej‘o) — (T2A, ez,\l), with finite cokernel isomor-
phic to (ker ¢;);. To ease notation, we’ll just write eg for eé\[’ and ¢, for eg\l (and we use the
same letters for the corresponding Weil pairings on Alen)).
Let ko : (TA, eo) — (TyA, e1) be a symplectic isomorphism whose restriction gives a
commutative diagram
(AL o)~ (Afe],e1)
a0 lw o lN

(Z/£"Z)% == (z,/em7,),

Let z, = k[ll o Ty, then z, : (TyA, o) — (TyA, ep) is a symplectic similitude and sits

in the commutative diagram

(124, e0) =4 (T, 4, e1) (3.2)
kg 1
Z‘gl -

(TﬁA: 60)-

The map z, is not necessarily invertible, but since it's injective with finite cokernel it
defines a symplectic automorphism of (V24, ey), i.e. Ty € GSpyy(Qp) = Gy. If 7 { deg ¢ then

Ty¢ is a symplectic isomorphism so we can take zp = 1.
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How does this depend on the particular choice of k17 Let Iuvg,l : (TeA, e0) = (TeA, e1)

be some other symplectic isomorphism that restricts to afl o ag. Let
u = (kg1) ™" o kg1 € GSpyy(Ze) = U

Note that u restricts to the identity on A[£"] so actually u € Uy(IV). Conversely, if u € Uy(N)
then kgyou™! : (TpA,eq) = (TrA,e;) is a symplectic isomorphism restricting to al_l o a.

Therefore ¢, gives us a well-defined element [z;] € U(N)\G,.

What happens at p? The isogeny ¢; induces an injective symplectic similitude
M(¢1) : (M, e1) = (M, e)

with finite cokernel. Let k,; : (M,e1) — (M,ep) be a symplectic isomorphism whose
reduction (M/FM,e1) = (M/FM, eq) maps 71 to ng. Set z, := M(¢}) okp_,}, then the map
zp : (M,e0) — (M, ep) is an injective symplectic similitude with finite cokernel. Hence T
induces a symplectic isomorphism of (M ® @y, eg), so by Corollary 3.9, z, gives an element
of GUg(Bp). Since ky ;1 is well-defined up to multiplication by Up, we have that ¢; defines

a element [z,] € U,\ GU,(B,).

Lemma 3.12. Any two isogenies ¢1, ¢, : (4, Ag) — (A, A1) are related by ¢; = ¢ o u,

where u corresponds to a matrix U € GUy(B).

Proof. Suppose ¢1, ¢ satisfy

piodiogy = m,
giododr = mh.

We treat ¢, ¢; as quasi-isogenies, i.e. elements of End(A) ® Q. Let n = deg ¢;, then
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we have that as quasi-isogenies:

(051@%)0%:71@%:1*?510(¢§1®%)-

We can therefore write qbl_l = ¢ ®% and we’ve shown that any isogeny has an inverse quasi-
isogeny — actually a trivial modification of the argument shows that any quasi-isogeny is

invertible. Set

u=¢rlod €(End(4)®Q)".

Denote by capital letters the matrices corresponding to the various maps. We have

~ " = = 1 =
UU = &} (o71) &' @1 = 9} (EAI) o =271

3

so U € GUy(B). O

The next lemma says that we have indeed constructed a map
750 0 =U\GQ)/G).

Lemma 3.13. The map v is well-defined.

Proof. We need to show that y only depends on the isomorphism class [¢1, a1, m]. Suppose
f:(¢1,01,m) = (¢2,a2,72) is an isomorphism of triples. By Lemma 3.12 we can assume

without loss of generality that ¢2 = f o ¢1. For £ # p, we get the following diagrams

Typz ks o
k 2
(TuA, e0) 295 (T4, e0) 2 (TAsen) (AL, e0) — (A, e1) —Ls (A£"],2)

mll kl,lTN ke.zT#—* aolw a1l~ aglru

(Ty A, ep) (TyA, eq) (TeA, ep) (Z/6Z)%9 (Z)0"7.)%9 —— (Z/4"Z)%,

where kg := Tyf o kp;. It is now clear that we end up with the same z; € O;(N)\Bé‘ as

the one obtained from ¢;. The exact same thing happens at the prime p. O
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We need to construct an inverse. Let [z] € Q and pick a representative z = (z,) € G(Q).
Let £ # p. We have 7y € G(Qu) = GSpyy(Qr) = Aut(Vy,e9). Let ng € Z be the smallest
integer such that y, := £™z; € GSpy,(Z) = End(7}A,ep). The endomorphism y, is
injective with finite cokernel Cy. Let £F be the order of Cp. Let K, be the kernel of the map
induced by y, on A[£¥]:

0 Ko - A[eF] % Ale*] - ¢, — 0.

For £ = p we have z, € GUy(B;) = (End(M,ep) ® Q,)*. Write z, = a + 7b, where
a,b € My(L,) and 7% = —p. We have

1
a = Z a; & E’
i
1
b= Z b ® 5
j
with a;,b; € End(M, eg). Let n, € Z be the smallest integer such that
PPz, =(d ®1) +7( ®1)

and set y, = a'+7b’' € End(M, ¢;). This y, is an endomorphism of the Dieudonné module M
which induces an automorphism of M ® @, therefore this endomorphism must be injective

with finite cokernel Cp. Let p* be the order of Cp, then y, induces a map
M(AP*) 2 M(AP") = C, — 0.

Then C), is the Dieudonné module of a subgroup scheme K, of A of rank p*.

A

Since z € G(Q), ng = 0 for all but finitely many £. Therefore it makes sense to set
q:=[]€" € @* and y := zg; the £-th component of y is precisely the y; above, and clearly
[z] = [y]. Now set K := (D K, then K is a finite subgroup of A. So to the given [z] € Q we

can associate the quotient isogeny A — A/K. After picking an isomorphism A/K = A we



78 CHAPTER 3. SIEGEL MODULAR FORMS

get an isogeny ¢ : A —+ A, and this induces a principal polarization A on A such that ¢ is
an isogeny of polarized abelian varieties. For £ # p, our construction gives for any positive
integer m

0 —— ker —— (A[f™], ep) L* (A[f™],e)

0 —— ker — (A[™], e0) = (A[£™], e0).

Due to the structure of £™-torsion, it is not hard to see that one can construct a symplectic
isomorphism (actually, there exist many of them) (A[¢™],e) = (A[€™], e) which makes the

above diagram commute. On the level of Tate modules, we get

0—— (14, e0) e, ——— (TyA, e)
H r-
00— (TyA, ep) —=— (Ty A, eg).

In particular, we can set o := qg o ke_l, then the symplectic isomorphisms
a: (A, e) = ((Z/00Z2)%8, std)
for £|N piece together to give a level N structure on (A, A).

For £ = p we have similarly

0 —— (M, €) =24 (11, e4) —— coker M(¢) —— 0

- I

0 —— (M, eg) —2 (M, eo) » Cp » 0,

and 1 := k, L(mo) gives a nonzero invariant differential on (4, X).

The next result tells us that we have indeed constructed a map

§: 0= %0
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Proposition 3.14. The map ¢ is well-defined.

Proof. First suppose that z = zu, where v € End(A, A¢) is not divisible by any rational

prime. Let £ # p, then I; = zsu, s0 1 = ypu:

0—— (T4, ep) BN (TpA,ep) — Ce —— 0

1o,

0 — (TeA, eg) —2— (T4 A, e9) —— Gy —— 0.

The snake lemma gives

cokervg =0, kerwv; = coker u.

Let £F be the order of Ce, then we can restrict the above diagram to the ¢5_torsion and get

0— K; —— (A[Zk]’ 80) ___'{ll_> (A[Ek]’eo) E— Cf —0

N

0 —— Ky —— (A[t¥], e0) —— (A[¢"], e0) — Cp — 0,

where uy is the restriction of u to A[¢¥] and g, is the restriction of u to K;. Note that
coker{ug : TpA — TyA) = coker(u : A[¢*) — A[¢¥]). Since there’s no snake lemma for

diagrams of long exact sequences, we split the above diagram in two:

0 —— Ky — (A[£"], e9) — (4[], e0)/ keryp — 0 (3-3)

SN

0 — K¢ — (A[l¥], e0) — (A[€¥], e0) / ker §o — 0,
0 —— Imy, —— (A[fF],e9) — Co —— 0 (3.4)

0——Im g, —— (A[f¥],eg) — C; —— 0,

where I have taken the liberty of using the same label h, for two maps which are canonically
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isomorphic. We first apply the snake lemma to diagram 3.4 and get

kerhy = 0, cokerhy = ker vy,
Using this information together with the snake lemma in diagram 3.3 gives

ker g¢ = keruy, 0 — coker g¢ — coker ug — coker y — 0.

~

But we already have cokeru; = cokeru = kerwv;, = coker hy so the short exact sequence

above becomes 0 — coker gy — 0, i.e. coker gy = 0.

Let g =@ g, : K — K and let f: (A, A) - (4, ) be defined by the diagram

0 —— K —— (A, Ao) —+ (4,\) —— 0

oo

0 —— & —— (A, \o) —2 (4, }) —— 0,

where we use some isomorphism A/K = A to define the isogeny $ and the principal polar-

ization A. We apply the snake lemma and get an exact sequence
0 — ker g — keru — ker f — cokerg = 0 = cokeru = 0 — coker f — 0.

But the map ker g — ker u is the sum of the isomorphisms ker g; = ker uy, so ker u — ker f

is the zero map; therefore ker f = 0. Clearly coker f = 0, so f is an isomorphism.

We check that this isomorphism preserves level N structures. We have a diagram

Ty
(TyA, ep) ‘ y (TyA, €)
X‘ ke
T[’LL—U( (TQA, 60) ~ Tff
Ue ke
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where we know that the outer square commutes, and that the triangles situated over, to
the left, and under the central (T;A, eg) commute. Therefore the triangle to the right of the
central (TyA, eg) also commutes, i.e. k; = Tpf o k;. The level N structures on (A,A) and

(A, X) are defined in such a way that the inner squares in the following diagram commute:

f
(A[EI], ot (Awf, o) — (A[T, e)
(Z)07Z)29, std) == ((Z/£72)%, std) = ((Z/£"Z), std),

therefore the outer rectangle also commutes, i.e. f preserves the level N structures.
The same argument with reversed arrows shows that f preserves differentials.

Now suppose Z = £, £ # p (the case £ = p is analogous, even easier). If ¢ { £p, then
Tp = zpf and §p = ypl. Multiplication by £ is an isomorphism of (T A, eg), so it induces

an isomorphism Ky = Ky by applying the same argument as before on the diagram:

0 —— Ko —— (A[P'¥], e0) —2 (A[£"], eg) —— Cor —— 0

A

0—— Ry — (A[£¥], e0) — (A[¢*], e0) — Cp —0.
Something similar occurs at p. If £/ = £, we get Ty = z¢f and §; = y; so K, = K;. We
have an isomorphism K = K so (4, A) = (4, )). We need to check that this isomorphism

is compatible with the level structures and the differentials. Let ¢’ t £p, then we have a

diagram
£
(ToA,e) ¢ — 2 (TyAep) ——2  (TpA,z)
al ﬂol al
(Z/0"Z)%, std) ——= ((Z/¢'"Z.)%9, std) == ((Z/¢'™Z)?9, std).

Since the top “triangle” commutes, we see that the level structures commute with the
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isomorphism. The same thing happens at p. When # = ¢, then K; = K; so we get the
same diagram as above, except that the top isomorphism is actually the identity map.

It remains to check the local choices. The group C, (therefore K;) depends on the
chosen isomorphism (T34, eq) = (Zzg,std) and this can change y; by right multiplication
by an element of Uy(N). Suppose we have another such candidate e = ugye, then we would

get a commutative diagram

0—— TgA 60 (TgA 60) — Cy——0

T

0 —— (TpA, ep) —— (Ty A, e) — = Ce—0,

from which we conclude as before that K, = K, and (A,A) = (A,)). For the level N

structure, we have the diagram

[43

~1

(A[€°), €) 2 (A[E], e0) —2 (2072)29, std)

b |

(A[€"],8) = (A[f"],e0) —2 ((Z/e7.)2%, std)

and a similar argument holds for the 7 and 7. a

Lemma 3.15. The map ~ is bijective with inverse 6.

Proof. Suppose we started with [z] € Q and got [(A4, Ao) 4 (A4, X), e, 7). For £ # p we get

the exact sequence
— (Ted, e0) =2 (T,A, ¢) — coker Tap — 0.

We see from diagram (3.3) that y, = k[l o Ty, where k; is an isomorphism that restricts
to a~! o ay. Therefore [y¢] is exactly the local element that’s obtained in the computation

of ¥([¢, o, 7]). The same thing happens at p, so indeed yod=1.
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Conversely, suppose we start with a triple ((A4, Ag) 2 (A, \), a,m). We get local elements
1z, forming an adéle z. We have ker ¢ = [], coker z;. Now when we apply § we already have
2 € GSpy,(Zy) s0 yp = ¢ and K = P coker 7 = ker g. We get an isogeny (A, X)) — (4,0)
which has the same kernel as ¢, therefore (A4, 2) = (A4, ). It is clear from the construction

of § that the level N structure and the invariant differential will stay the same. O
We have just proved

Theorem 3.16. There is a canonical bijection 30 — Q.

3.4 Compatibilities

We now turn to the proof of the following result:

Theorem 3.17. The canonical bijection 7y : £9(N) — Q(N) is compatible with the action
of the Hecke algebra, with the action of GSp,,(Z/NZ), and with the operation of raising
the level.

3.4.1 Hecke action

In this section ¢ will denote a fixed prime not dividing pN.
An isogeny of polarized abelian varieties ¢ : (A1, A1) — (A2, A2) is said to be an £-isogeny

if its degree is a power of £. Such ¢ induces a symplectic similitude
Teg : (TeAr, e1) — (TeAs, e3)

which gives an element g € GSpy,(Q). Since g is defined only up to changes of symplectic
bases for Ty A and TyA3, ¢ actually defines a double coset HgH, where H = GSpy,(Zy).
We say that ¢ is of type HgH. If C is a finite £-subgroup of an abelian variety A and A is a
principally polarization on A, there exists a principal polarization A¢ on A/C that makes
the quotient isogeny 4 — A/C into an isogeny of principally polarized abelian varieties.

We say that C is of type HgH if the quotient isogeny (A,2) = (A/C, A¢) is of type HgH.
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Since (GSpa,(Qr), GSpyy(Zy)) is a Hecke pair (see §3.3.1 of [AZ95]), we can talk about
the local Hecke algebra H, := 1 (G, H), where G' = GSpy,(Qy) and H = GSpy,(Zy).

If HgH € M4, we denote by det(HgH) the £-part of the determinant of any represen-
tative of HgH. The action of He on 20 is defined as follows. If det(HgH) > 1, let C be
a subgroup of A of type HgH and let [(A, \o) 94, (A,)),a,7] € £°. The abelian variety
A/C is also superspecial, so it can be identified with A. We denote by 1)¢ the composition
A — A/C = A, and we denote by A¢ the principal polarization induced on the image A.
We set

Taor((4,20) D (AN, 00m) = 3 [(A2) S (4N 25 (4,20), ac,ncl,
C of type HgH

where ¢ := M (1)~} (n), and ac¢ is defined by the diagram

Yo

(A[II’], e) ————— (A[NJ], ec) (3.5)
(Z/NZ)%, std) =—— ((Z/NZ)%, std).

Note that these definitions make sense because (deg¢c,pN) = 1.

Now suppose det(HgH) < 1. Given C a subgroup of A of type Hg 1H, let 1c be
the composition A — A/C = A and let ¢c : A — A be the dual isogeny to ¥c. Given
a principal polarization A on A, there is a principal polarization Ac on A such that the

following diagram commutes:

A4
1k
At ()t At
The action is defined by
THQH([(A'J ‘)‘0) 2) (Av }\),a,n]) = Z [(Aa AD) i} (A: )‘) ébi (Aa )‘C): AC,annC]a

C of type Hg™'H
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where ng = M ('&’C)(n), and a¢ is defined by the diagram

(A[N], €) ¢ —=—— (A[N], ec) (3.6)

((Z/NZ)?9,std) = ((Z/NZ)*, std).

The algebra H, acts on H\G as follows: let HgH =[], Hg;, let Hz € H\G and choose

a representative © € Hz. Then there exist representatives g; € Hg; such that
Tuon(Hz) = Zng

The algebra H; acts on by acting on the component Hz; of [z] € Q

Lemma 3.18. The bijection v : £° — € is compatible with the action of the local Hecke
algebra H,, i.e. for all HgH € #H, and [$, @, ] we have

Y(Tagu([$ o, 1)) = Tron (v([4, a, 7))

Proof. Let HgH € Hy, let [(A4, Ao) LA (A, X), a,n] € Y and let [z] = y([¢, o, 1]).
Suppose at first that det(HgH) > 1 and let C be a subgroup of A of type HgH. Let

[zc] :==([¥c © ¢, ac,ncl)- I (£, pf) = 1, we have a diagram

Tyr
(Tg:A, 80) (TglA e) (T}yA ec)

k‘zl
>

(Tr A, e)

Since (Teypc) o ke : (TeA,eq) — (TpA,ec) is a symplectic isomorphism restricting to

(151 o ag (see diagram (3.5)), we get that [z¢p] = [ze].
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A similar argument, based on the following diagram, shows that [z¢p| = [zp):

My, '
(M, ec) 249) (a1, 6) L4 (M, e0)

~

Let’s figure out what happens at £. Fix z; € Hzy, then the symplectic isomorphism
ko : (TpA,eq) — (TpA,e) is fixed and allows us to identify these two symplectic Z,-modules.
Choose a symplectic isomorphism k¢ : (TpA,e) = (T;A, ec) and set yo = kal o Toyipe. Via

the identification kg, yc induces a map z¢ : (TeA, e0) — (TvA, ep). We have a diagram

(TgA, 60) ﬂ) (T@A, e) %C.’ (TgA, 60).

z{ / ve /
ke ko
(TEAi 60) (TEA’ e)
zcl ~

ke

(TeA, ep)

Since ke o kg is a symplectic isomorphism (T34, e9) — (134, ec) and z¢ o z, satisfies all
the properties ¢ ¢ should, we conclude that Hzg ¢ = Hzozg. The assumption that C is of

type HgH implies that Hz¢c C HgH.

Tt remains to show that the map C — Hz¢ gives a bijection between the set of subgroups
C of A of type HgH and the set of right cosets Hz contained in HgH. We start by
constructing an inverse map. Let Hz C HgH and pick a representative z. This corresponds
to amap z: (TeA,ep) — (TeA, eq), and hence induces via kg a map y : (TyA,e) = (T;4,¢).
We use the same construction as in the definition of the inverse map ¢ in §3.3 (pages 77 and
following) to get a subgroup C of A which is canonically isomorphic to the cokernel of y.
This €' will be of type HgH because Hz C HgH. The proof of the bijectivity of C — z¢

is now the same as the proof of Lemma 3.15.

It remains to deal with the case det(HgH) < 1. This works essentially the same, except
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that various arrows are reversed. We illustrate the point by indicating how to obtain the
equivalent of the map C + Hz¢ in this setting. Let C be a subgroup of A4 of type Hg ' H.
This defines a new element of £° which we denote by [@51 o ¢, ¢, ne] (by a slight abuse
of notation since tc is not invertible as an isogeny). Let [ze] = 'y([zﬁal o ¢,ac,nc]). It
(¢,pf) =1, we have a diagram

Ty )
(Tw A, e0) —225 (Ty A, €) 25 (Ty A, ec).

kg
>

(Tf’A7 60)

Since (Tp4pc) "t o kp = (Te A, eq) — (TpA, ec) is a symplectic isomorphism restricting to
oz o ag (see diagram (3.6)), we get that [zc ] = [zp]. The situation at p is similar and

we have [z¢p) = [z,)-

What about £7 As before, we fix z; € Hz, and with it the symplectic isomorphism
ke : (13A,e0) — (TzA,e). Choose a symplectic isomorphism k¢ : (TpA,e) — (TyA, ec) and
set yc 1= Tytho o ke. Via the identification k., yo induces a map z¢ : (TpA, e0) = (TeA, eg).
We have a diagram

(TuA, e0) =25 (T1A, €) 2 (Ty 4, ).

g P ve
l k( T %

(Te A, eq) (TeA, e)
o|
(Tz A, o)

It is now clear that z¢ o ¢ = z4. 2z is only defined up to right multiplication by elements
of H (because of the choice of k¢), so we get the formula Hzc, = H Zalmg. The assumption
that C is of type Hg~!H guarantees that H zal C HgH. The rest of the proof proceeds
similarly to the case det(HgH) > 1. O
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3.4.2 Action of GSp,/ (Z/NZ)

Within this section we’ll write G to denote GSpy,(Z/NZ). The group G acts on 30 as

follows:

g- [457)\,05777] = [¢7>‘7g 007")]'

The action on € is more delicate. It is easy to see that since U, = Aut(TyA,ep), we have

Ug(N)\Up = Aut(A[€"], e0), where £7||N. Our fixed symplectic isomorphism
a0+ (A[N), e0) — ((Z/NZY,std)
identifies G with Aut(A[N],ep) via g — ag ! 6 g o . Therefore we get an identification

¢ = JJUdN
¢ .

9 = JLU@)(ag" ogeao),
£

where the product is finite since the terms with £+ N are 1. The action of G on {2 is then

given by

g -

11 Ug(N)a:g} =
V4

H Ug(N)(O{al ogo )Ty
£

Lemma 3.19. The bijection y : £° — Q is compatible with the action of GSp,,(Z/NZ).

Proof. Let [[JUe(N)z4] := v([¢, A, &, 7)) and
TTve(vzy] = (g - 19,2 ) = (g, h9 0 7).

Pick some £ # p and set H := Uy(IN); we claim that Hz) = H(ap' o g o a)zy. Recall that
zo = k' o Tpp, where kg : (TpA,eq) = (T4, e) is some symplectic isomorphism extending
o~ loay. Therefore kj := kgo(ap ogoay) is a symplectic isomorphism extending o~ ' ogoeyg

and is thus precisely what we need in order to define ), = (kj) * o Ty¢. By the definition
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of kj we have

1

7y = (a5 o g7 o a)ok; o Ty = (ag 0 g 0 a) oy,

which is what we wanted to show. O

3.4.3 Raising the level

Suppose N' = dN for some positive integer d. A level N’ structure
o' 1 (A[N"],e) = ((Z/N'2)%,std)

on the principally polarized abelian variety (A, A) induces a level N structure on (4, A) in
the following way. Multiplication by d on A[N'] gives a surjection d : A[N'] — A[N], and
there is a natural surjection 7 : (Z/N'Z)?9 — (Z/NZ)?* given by reduction mod N. We

want to define a map o : A[N] — (Z/NZ)? that completes the following square

AIN'| =% (Z/N'Z)?

This is straightforward: let P € A[N] and take some preimage @ of it in A[N']. Set
a(P) = w(a’(Q)). This is easily seen to be well-defined and a bijection. Since both
surjections d and 7 respect the symplectic structure, « is a symplectic isomorphism. We

conclude that [¢, A, &', 7] — [#, A, a, 1] gives a map
EoUN') = ZO(N).

There is a similar map on the 2's. We only need to consider primes ¢|N’. Here we have
Ug(N') C Ue(N) so we get maps Up(N")\Gy = Up(N)\G¢, which can be put together to
form

Q(N') = QN).
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We want to show that the bijection v commutes with these maps. This is clear at
primes £ { N', so suppose £ is a prime divisor of N’; say £™||N and £"||N’. Choose elements
6 M lom] € BN, (o] = (16, M, o, ) and [a] = (16, X, @, n]). By definition, we have

T, = (k})~' o ¢ where kj, : (TyA,eq) = (T¢A, e) is a symplectic isomorphism restricting to

4

(A7), e0) ——c—— (A7), €)

QZ]J(N QIJVN

(Z/er2)%,std) == ((Z/€"Z)?9, 5td).
This defines the local component Uy (N')z),. We can restrict k) even further to the £™-torsion,
and then by the definition of o we have

r

(A[E™), e) ——-— (A[£™], €)

a[)lfu aJN

((Z/0mZ)%9, std) (Z/0™E)?, std).

But this means that k} plays the role of the k; in the definition of x4, so Up(N)zjy = Uy(N)zy.
This is precisely what the map Q(N') — ©Q(N) looks like at £, so we're done.

3.5 Restriction to the superspecial locus

Let V be an Fy-vector space and let p : GUy(Fpz) — GL(V) be a representation. A

superspecial modular form' of weight p and level N is a function f: ¥ — V satisfying

FUA N, @ Mn)) = p(M)™ F([A, A 7)), for all M € GU,(Fye).

1This is not standard terminology.
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The space of all such forms will be denoted S,. If 7 is a subrepresentation of p, then

S; C S,. If p and 7 are representations, then
Spgr = S, @ S7.
Let 7 denote the ideal sheaf of 7: ¥ <+ X, i.e. the kernel in:
07— 0x —1.0-=20.

The sheaf 7 is coherent (by Proposition I1.5.9 of [Har77]). Given one of our sheaves E,, we

obtain after tensoring and taking cohomology
0—H(X,I®E,) - H(X,E,) > H*(X,i.05 ® E,) = H(Z,7E,) - HY(X,Z®E,).
We rewrite the part that interests us in a more familiar notation:
0= HYX,ZQE,) - My(N) 5 Spes, = HY(X, IR E,),

where Res restricts representations on GLg4 to the finite subgroup GU,(F,z).

We'll use the following result to determine when the map r is surjective:

Theorem 3.20 (Serre, see Theorem II1.5.2 in [Har77]). Let X be a projective scheme
over a noetherian ring A, and let F be a very ample invertible sheaf on X over Spec A. Let

G be a coherent sheaf on X. Then
(a) for each i > 0, H'(X,G) is a finitely generated A-module;

(b) there is an integer ng, depending on G, such that for each 7 > 0 and each n > ng

(X, 0@ F*) = 0.

Let w = AIE = Eget; it is an ample invertible sheaf (see Theorem V.2.5 in [FC90]).
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Then for n >> 0 we have
HY{X,(Z®E,) ®w") =0,

so for n > 0, r is a surjective map
L Mp@det“ (N) — SRes(p@det”)~

3.5.1 Lifting weights

If H is a subgroup of a group G, we say that a representation p of H lifts to G if there
exists a representation 7 of G such that p = Resp. It is clear that if p lifts to 5 and 7 lifts
to 7, then p® 7 lifts to p @ 7.

Let ¢ be some power of p. The following is a direct consequence of Theorems 6.1 and

7.4 from [Ste63]:

Proposition 3.21. Every irreducible representation of SL4(F,) lifts to a unique irreducible

rational representation of SL,(Fp).
We now extend this to

Proposition 3.22. Every irreducible representation of GL4(IF,) lifts to an irreducible ra-

tional representation of GLg(Fp).

Proof. Tt suffices to prove that every irreducible representation lifts to a completely reducible

one. Let p: GLy(Fy) — GL(V) be irreducible.

Via, the canonical embeddings SLy(F,) C GL,(F,) and Gy, (Fy) C GLy(F;), p induces
representations pg : SLy(Fy) = GL(V) and pm : Gin (Fy) = GL(V}, such that Im p, com-
mutes with Tm pr,. Since GLy(F,) = SLyg(Fy) - G (Fy) and SLg(Fy) NG (Fy) = pg(Fy), we
also have that p;(¢) = p(¢) for all { € py(Fy).
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Any representation of Gy, (F;) is of the form

Gm(F;) — GL{V)

A2l
A = ( )
aen

with a; € Z/(qg — 1)Z. T claim that in our case G, (F,) acts by scalars on V. Suppose
this is false, then there exists A € G,, (Fy) such that at least two of the diagonal entries of
pm(X) are distinct. By changing the basis of V' we can assume py,()) is in Jordan canonical
form. Let A € SLy(F,2), then the fact that p,(A) commutes with p,(A) forces A to have
the same shape as p,,(A) (i.e. it is block-diagonal with blocks of the same dimensions as
pm(A)). Since this holds for all A € SLy(F,), we conclude that as an SLy(F,)-module, V
has a direct sum decomposition

corresponding to the shape of p, (A} (in the chosen basis for V, V; is the span of the first &
vectors, where k is the size of the first Jordan block of p,,,()), etc.). But this means that V;
1s a proper subspace of V' which invariant under both SLy(Fy) and Gy, (Fy), contradicting
the hypothesis that V is an irreducible representation of GL,(F;). So G, (F,) acts by scalars
on V, say pp,(A)v = A% for some a € Z/(q— 1)Z.

From this it is clear that pp, is completely reducible and that any choice of @ € Z with
a = a (mod g — 1) yields a completely reducible lift 5y, : Gm (Fp) — GL(V) given simply
by A+ A®. Note that p, is a rational representation. Later on we’ll need to choose a lift

of a to @ € Z that suits us better.

It is also pretty clear that p; is irreducible: if W is an irreducible SL,(F, )-submodule,
then W is also Gy, (F, )-invariant so it is GL,(F,)-invariant, hence either W =0 or W = V.

By Proposition 3.21, p, lifts to an irreducible rational ps : SL,(Fp) — GL(V). Since
G acts by scalars, Im g, commutes with Im g;. I claim that the maps g, and g, agree on

p4(Fp) = SLy(Fp) NGy, (Fp). Assuming this is true, we can construct a rational representa-
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tion

5:GLy(F,) — GL(V)

M = pm(det M) - 5s ((det M)~M) .

Since the restriction of 5 to SL,(F,) is ps and in particular irreducible, we conclude that p

is irreducible.

It remains to prove that p,, and p; agree on the g-th roots of unity. It suffices to do
this for a primitive g-th root {. Write g = p*¢’ with (p,¢') = 1. We have (9P =¢9=1,
so (9" = 1 since the only p°-th root of unity in characteristic p is 1. Therefore ¢ is a g'-th

root of unity, so without loss of generality we may assume that (p,g) = 1.

Consider the linear transformation 5,;(¢). It is diagonalizable if and only if its minimal
polynomial has distinct roots. But the transformation satisfies X9 — 1 = 0, which has
distinct roots, and hence the minimal polynomial will also have distinct roots. So we can
choose a basis for V such that ps(¢) is diagonal. If it has at least two distinct diagonal
entries, we can apply the same argument as before to conclude that since it commutes with

all of ps(SLe(Fp)) the representation ps is reducible, which is a contradiction. So
5s(0) = ¢, for some b € Z /gZ.

We want to show that p,,(¢) = ps(¢), i.e. that we can choose @ € Z such that a = b
(mod g). Let d = (g,q9 — 1) and write g = dm, ¢ — 1 = dn. We have (C™)% = (9 =1 s0
(¢™)1 = (™" = 1 so (™ € F,;. Therefore ("™ € p,(F;) and hence

(€)™ = Bs(C™) = Am(C™) = (¢™)™

This implies that ma = mb (mod g), i.e. @ = b (mod d). Since d = (9,9 — 1) and d|(a — b)
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there exist integers u, v such that @ — b = ug + v(g — 1) and therefore
(@a—v(g—1))=b (mod g),

which is what we wanted. O

Note that in contrast with Proposition 3.21 the lift of p to GLy(Fp) is not unique. Fix
some lift p, then any lift can be written in the form det™ ®p, where m is a common multiple

of g and g — 1.

Corollary 3.23. Given an irreducible representation 7 : GUy(F,2) — GL(W), there exists

an irreducible rational representation g : GL,(¥F,) — GL(V) such that 7 C Resp.

Proof. Consider the induced representation from GUy(F,2) to GLg(F,2). This has an irre-
ducible subrepresentation p : GL,(F,2) = GL(V') with the property that 7 C Resp. The

result now follows from the previous proposition. O

3.5.2 Proof of the main result

We have come to the main result of the chapter. Recall the notation Up(IV) = GSpy,(Z¢)(N)
for £ # p, Up = ker(GU4(0p) = GUy(F,2)) and

U=U, x [JUAN).
I#p
Theorem 3.24. Fix a dimension g > 1, a level N > 3 and a prime p not dividing N. The
systems of Hecke eigenvalues coming from Siegel modular forms (mod p) of dimension g,
level N and any weight p, are the same as the systems of Hecke eigenvalues coming from

algebraic modular forms (mod p) of level U and any weight ps on the group GUy(B).

Proof. Let f be a Siegel modular form of weight p : GL; — GLy,, which is a Hecke eigenform.
Ifr(f) =0, then f e HY(X, I ® E,). The quotient map of Ox-modules Z = Z/Z? induces
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(after tensoring with E, and taking global sections) a map
THYX,I®E,) - HY(X,Z/I*®E,).
Consider f ¢ H%(X,Z/Z? ® E,). We have an exact sequence
0-2IRIZ/I°®E, 5 I/T*®FE, +i.0s ®I/I°QE, -0
which gives us a long exact sequence that starts with
0 - HY(X,7%/7° ®E,) —» H*(X,Z/7? ® E,) = H(Z,i*(Z/T* Q@ E,)).

If r1(f) = 0 then f € H°(X,Z%/7% ® F,) and we can similarly consider ra(f), r3(f) etc.
There exists some n such that r,(f) # 0. Let fs = r,(f) € HO(Z,i*(Z"/I""! @ E,)).
Note that Z?/Z**! = Sym™(Z/Z?) and that ¢*(Z/Z%) = i*(Q). Recall from §3.1.2 the
Kodaira-Spencer isomorphism Q% & Egym2gq- We conclude that fs € Sges((sym?" std)gp)-
So our process associates to a Siegel modular form f of weight p a superspecial modular
form fg of weight Res({Sym?®" std) ® p) for some integer n depending on f. Moreover, since
the restrictions r; and the Kodaira-Spencer isomorphism are Hecke maps, we conclude that

fs is a Hecke eigenform with the same eigenvalues as f.

Now let fg be a superspecial Siegel modular form of weight pg : GUg(F,2) — GLn (Fy).
By applying Corollary 3.23 we get a rational representation p : GL; — GLy, such that
ps C Resp. By functoriality we get Sy, C Spesp- We know that the map

T+ Mpgdet® (N) — SRes(,E@det")
is surjective for n > 0, and therefore there exists an integer k such that

r:M_

pRdethPZ -1} (V)

- SRes(p@)detk(Pz-l)) = SResj 2 Sps
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is surjective. Since this map is also Hecke-invariant, we conclude from Proposition 1.2.2

of [AS86] that any system of Hecke eigenvalues that occurs in S, also occurs in Mﬁ sdeth P —1)-

So far we showed that the systems of Hecke eigenvalues given by Siegel modular forms
(mod p) of all weights are the same as the systems of Hecke eigenvalues given by superspecial
modular forms S, of all weights. By Theorem 3.17 we know that S, is isomorphic as a
Hecke module to the space of algebraic modular forms (mod p) of weight pg, and we’re

done. ]

3.5.3 Agreement with the definition of Gross

In this section we’ll write G = GU,(F,z2).

Recall from §3.2.4 that Gross defines algebraic modular forms (mod p) as follows: let
p: G — GL(V) be an irreducible representation where V is a finite-dimensional vector

space over Iy, then set

M(p) :=={f: Q= V|f(Az) = p(A\) "L f(2) for all X € G}.

For comparison, our spaces of modular forms on 2 are defined as
M(7):={f: Q> W|f(Az) = p(A) "' f(z) for all A € G},

where 7 : G — GL(W) is an irreducible representation and W is a finite-dimensional vector

space over [p.

The purpose of this section is to show that the spaces M(p) and M (r) for varying p and

T give the same systems of Hecke eigenvalues.

First suppose that (ar : T) is a system of Hecke eigenvalues coming from M (p). Then

there exists f € M (p)®F,, such that T(f) = arf for all T. Let p®F, denote the composition
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G & GL(V) — GL(V @ F,). The map

M(p)®Fp, — M(poF,)

meaoa — om

is an isomorphism compatible with the action of the Hecke operators, so the image of f in
M (p ®F,) is an eigenform with the same eigenvalues as f. Therefore the system (ar) also
comes from M (p ® Fp).

Conversely, suppose that (ap : T) is a system of Hecke eigenvalues coming from M (7)
for some 7 : G — GL(W), W a finite-dimensional F,-vector space. Then there exists
f € M(7) such that T(f) = arf for all T. Since G is a finite group there exist ¢ = p*%,
a finite-dimensional Fy-vector space W' and a representation 7' : G — GL(W') such that
7' @ F, = 7. Similarly, Q is a finite set and f is a map £ — W so by enlarging q if
necessary, there exists f' € M(7') such that f is the image of /' ® 1 under the isomorphism
M(v") @ F, = M(7). Clearly T(f') = arf' for all T}; in particular ar € F, for all T.

We now use the following

Proposition 3.25. Suppose L/K is a finite Galois extension with Galois group G and V is
a finite-dimensional vector space over L. Let 7 be a collection of commuting diagonalizable
linear operators on V and let Vg be the space V viewed as a vector space over K. If a
T-eigenvector v has system of eigenvalues {ar : T € T}, then for every o € G there exists

an eigenvector v, € Vx with system of eigenvalues {o(ar): T € T}.

Let’s first see how this concludes our argument. We apply the proposition to the finite
Galois extension F, /I, the vector space M(7'), the Hecke operators T', the eigenvector f’
and the identity Galois element ¢ = 1. We conclude that if we consider M (7') as a vector
space over F,, there exists an eigenvector f” with the same system of eigenvalues as f '

This is precisely what we needed to show.

Proof of Proposition 3.25. The isomorphism ¢ of the next lemma induces an isomorphism
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of L-vector spaces

w: Le®xgV — @Veg
e

Let vy := ¢~ {ve,—1). We have
Tvg = ¢ ((Tw)eg-1) = ¢ ' ((av)es-1) = alar)p™ (ve,-1) = o(ar)v,,

s0 v, is an eigenvector of T' with eigenvalue o{ar), and this holds for all T' € T. O

Lemma 3.26. Suppose L/K is a finite Galois extension with Galois group G. The map

¢:L®g L P Le,
geG

defined by a ® f +— 3 .5 0(a)fes is an isomorphism of L-algebras.

Proof. Tt is pretty clear that ¢ is an L-algebra homomorphism. Since the dimensions of
the domain and of the range are equal (and equal to [L : K1), it suffices to prove that ¢ is
injective.

Let {o1,...,0,} be a basis of L as a K-vector space. Then {q; ® a;j 11 <45 <n}
1s a basis of L ®k L as a K-vector space. Suppose ¢(3 cija; ® ;) = 0. If we write

G ={o1,...,0p}, then we have

Z cijak(ai)aj =0 forall k. (3.7)
Y]
Let A be the n x n matrix whose (¢, )-th entry is o;(c;), and let ¢ be the column vector
whose i-th entry is 3. ¢;j;. Then the system (3.7) can be written as Ac = 0. But it is

an easy consequence of independence of characters (see Corollary V1.5.4 in [Lan93]) that
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A € GL, (L), therefore we must have ¢ = 0, i.e.

Zci]-aj =0 for all s.
b]

Since the ¢, are linearly independent we conclude that ¢;; = 0 for all 4 and 7, hence ¢ 1s

injective. ]
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