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Abstract

Given a smooth closed manifold X and an adapted complex structure on 7% X near the
zero section, the behavior of the Szeg projection S, on the co-sphere bundle StX as the
radius € decreases to 0 is investigated. It is shown that, provided dim X > 3, the family S,
0 < € < €y, can be understood up to € = 0 as an element of V7, an algebra of operators
on $*X x [0, €y) constructed by combining the calculus of the Heisenberg pseudodifferential
operators and the adiabatic limit formalism of Mazzeo and Melrose. The limit at € = 0 of
an element A € ¥, is a family A;, £ € X, of translation invariant Heisenberg operators
on R™ x S"~!. Most importantly, U0 g provides the appropriate setting for proving that, for
small €, the push-forward map sending smooth CR functions on S¢X to their fiber average
is an isomorphism onto C*°(X), a question earlier studied by Hormander, Lebeau, Boutet
de Monvel and Guillemin, and Epstein and Melrose.
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Introduction

The cotangent bundle of a smooth closed manifold X carries, near the 0-section, complex
structures for which X — 77X is a totally real submanifold. Furthermore, Guillemin and
Stenzel [9], and Lempert and Széke [12] proved that, once a real-analytic structure and a
real-analytic metric h on X are chosen, there exists a unique complex structure near X in
T*X adapted both to the canonical symplectic structure on T* X and to the metric h (see
§4.1). The co-ball bundles B X of small radius ¢, 0 < € < ¢, called Grauert tubes, are then
strictly pseudoconvex. Moreover, the induced strictly pseudoconvex CR structure on their
boundaries, the co-sphere bundles S7X, has the same underlying contact structure as the
one induced by the symplectic structure on 7% X.

On a general CR manifold one has, in analogy with the J-operator on complex mani-
folds, the 8;-complex of Kohn and Rossi and its associated Laplacian, O,. For embeddable
strictly pseudoconvex CR manifolds, as for example the co-sphere bundles ST X are, the ker-
nel of @, on functions is infinite dimensional and the Szeg® projection § is the orthogonal
projection on it. It turns out that both § and the parametrices for O, are pseudodifferential
operators of type (1,3), for which the main pseudodifferential techniques fail. This has led in
turn to the construction of the Heisenberg algebra of pseudodifferential operators, ¥}, de-
fined in the more general setting of contact manifolds. Such algebras have been constructed
from different perspectives by Dynin [4], Beals and Greiner [1], Taylor [17] and Epstein and
Melrose [6]. The Toeplitz subalgebra of operators of the form SAS with A € ¥% has been
carlier extended in a different direction in the work of Boutet de Monvel and Guillemin [2].

We are interested in the behavior of the Szegé projections S, on §!X as ¢\,0 and in
understanding its uniform limit in an appropriate sense (Theorem 4.3). We use this to
prove that the push-forward map sending smooth CR functions on S!X, or equivalently
holomorphic functions on the Grauert tube smooth up to the boundary, to their fiber
average:

P:S5C%(S:X) — C™(X), Pu(x) :/ u(z,y)dy, z€X
S:,.X

18 an isomorphism for € small enough (Theorem 4.8). Boutet de Monvel and Guillemin [2]

and Guillemin [8] proved that P is Fredholm in this setting and, earlier, Hérmander [10]

and Lebeau [11] had showed P is an isomorphism for X = R" and for X = S™ respectively.

Epstein and Melrose [5] considered a closely related map, namely integration over the closed



10 Introduction

balls B; , X instead of the spheres S X, and proved it is an isomorphism for ¢ small by
methods similar to the ones here.

Interest in the map P arises from the correspondence it gives between pseudodifferential
operators on X and Toeplitz operators on $*X and its connection to index theory. Also,
after extending P to distributions, one has W F(f) = singsuppu C S*X for pairs of distri-
butions f € C~*°(X) and u € S, C~*°(S*X) with Pu = f.

If S*X =T*X \ 0/R; denotes the canonical cosphere bundle with its canonical contact
structure, then each S, is in \I/%(S*X). This 1s a consequence of choosing an adapted
complex structure on T* X.

Consequently, we prefer to think of the family S, as a family of Szegé projections asso-
ciated to a smooth family of CR structures on $*X. Geometrically, this might be seen as
expanding each tube of radius € to a fixed radius, or, equivalently, as keeping the metric on
the fiber constant while blowing up the metric on the base and hence making the fibers fan
out. This scenario suggests that, at ¢ = 0, the problem becomes localized over the fiber,
that is the geometry degenerates as €\, 0, at each z € X, to a tube Tp; X x S;X. Similarly,
the limit of S, at ¢ = 0 can be understood as a family of Szegd projections S;, z € X, on
T,X x StX = R* x S*! invariant under translations in the R® variable.

The above process is called an adiabatic limit. To make it precise we combine the Heisen-
berg calculus with the adiabatic limit formalism of Mazzeo and Melrose [13] and Epstein and
Melrose [5] into an algebra ¥!,(S*X) of adiabatic Heisenberg operators on $*X x [0, €p).
The importance of the technique rests on the fact that now one can obtain information for
€ > 0 by understanding the limit ¢ = 0, i.e. the model case X = R"*. The construction
is global in the fibers and thus it is also well suited for studying the push-forward map above.

We begin by recalling in Chapter 1 the basics of the Heisenberg calculus on a contact
manifold and the interpretation of its principal symbol in the isotropic calculus on a sym-
plectic vector bundle. We continue in Chapter 2 with the study of the model case X = R”,
i.e. of the translation invariant Heisenberg operators on R® x S"~!, or, more suggestively, on
the co-sphere bundle $*V = V x SV* of a vector space V. We denote the space of these by

£y (V x SV*). As pointed out earlier, this will be our limiting case. Explicit description
of the Szegb projection, the invertibility of P and the invertibility of O, on (0, 1)-forms
(provided n > 3) are all readily obtained in this setting.

In Chapter 3 the algebra ¥, (S*X) of adiabatic Heisenberg operators on §*X x [0, €)
is constructed. Operators A € U? . restrict for each € > 0 to a Heisenberg operator on
S*X, A, € ¥%5{S*X), and at € = 0 to a family, called the normal operator, of translation
invariant Heisenberg operators N(A4), € U}, (1% X x S;X), € X. A main property, and
indeed the main reason for constructing ¥, (§*X), is that for an elliptic A, the invertibility
of its normal operator implies the invertibility of A for small € (Proposition 3.15).

In the last Chapter we return to the complex setting, interpret the CR structures on the
boundaries of the Grauert tubes as an adiabatic family, and conclude, using the results of
Chapter 3 and Chapter 2, the invertibility of the associated Dg’l (for n» > 3) in ¥} ,. One
of the main results (Theorem 4.3), the extension of the family S, to € = 0 as an element of
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¥y, follows from this.

The fact that P is Fredholm for € > 0 follows by showing that SP*PS is an elliptic
Toeplitz operator on §*X and similarly that PSP* is an elliptic pseudodifferential operator
on X. We extend the statement to the adiabatic setting and derive the invertibility of

SP*PS and PSP* for € small. Finally this proves that, for small ¢, P is an isomorphism
(Theorem 4.8).
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Chapter 1

Preliminaries and notation

Following Epstein and Melrose [6], we recall the algebra ¥% (M) of Heisenberg pseudod-
ifferential operators on a contact manifold M. By analogy with the classical calculus of
pseudodiflerential operators where radial homogeneity on T*X is used to define the space
of symbols, parabolic homogeneity with respect to the contact direction L C T*M is used
here to introduce a space of parabolic symbols and to define % (M). Such algebras of
parabolic pseudodifferential operators had been previously constructed by Dynin [4], Beals
and Greiner [1] and Taylor {17]. In [6] both the classical and the Heisenberg pseudod-
ifferential operators are included into a larger algebra U, (M), the algebra of extended
Heisenberg operators. Earlier Boutet de Monvel and Guillemin [2] considered the Toeplitz
subalgebra and extended it to the more general setting of symplectic cones.

1.1 Heisenberg pseudodifferential operators

We start by recalling briefly the radial compactification V of a vector space V, the quadratic
compactification 9V of V, and, if L C Visa subspace, the L-parabolic compactification LV .
They are all closed balls obtained by attaching smoothly to V a sphere at infinity.

For the radial and quadratic compactifications, the sphere at infinity SV = (V '\ 0)/R+
is defined by the radial R*-action v — 7v, 7 € Rt and the smooth structure near the
boundary is generated by smooth homogencous functions on V' \ 0 of degree 0 and —1 in
the case of V = V USV and by those of degree 0 and —2 in the case of 7V = VU SV. If p
and p, are boundary defining functions for V and 7V respectively, then the corresponding
spaces of one-step polyhomogeneous symbols of order m are:

S™(V)=p"mCR V), SPV) = p PO (V)

and we clearly have S7*(V) € S™(V).
On the other hand, for ¥V we use the parabolic R*-action on L x V/L

(l,v) = (T°l,7v), 7 € RT

to define the sphere at infinity SV = (L x V/L \ (0,0))/R* and set *V = V ULSV. Given

13



14 Chapter 1. Preliminaries and notation

a decomposition V = L @ H, the smooth homogeneous functions on V' \ 0 of degree 0 and
—1 under the parabolic R -action on V = L& H generate the smooth structure on LV near
the boundary. Moreover the smooth structure is independent of the choice of H and so is
the intersection of “SV with the closure of H in ZV, the equatorial sphere. The space of
one-step polyhomogeneous L-parabolic symbols of order m is defined by

P(V) = o mC=()

for p a boundary defining function.

All these definitions can be extended invariantly to the case of vector bundles. We refer
to 6] for details on this as well as for most of the material in this chapter.

Let now M?"*t! be a contact manifold, compact without boundary, assumed to be
transversally oriented. Denote by

(1.1) LcT*M and HCTM

the (oriented) contact line bundle and its annihilator, the contact hyperplane bundle. A
contact form « is a non-vanishing section of L and it satisfies the non-degeneracy condition
aA(da)® # 0; this is also equivalent with doy, being a symplectic form on H, at each p € M.

The space of L-parabolic symbols on T*M is defined as above by
(1.2) SP(T*M) = p~™C®(*T* M)

p being a boundary defining function for “T*M. Their inverse Fourier transforms will give,
via the Riemann-Weyl fibration, the Schwartz kernels of the Heisenberg operators.

For a choice of a metric h on M the Riemann-Weyl fibration is the diffeomorphism
W TM U 5V CMxM, Wzv) = (exp,(v/2), exp,(—v/2))

from a neighborhood of the O-section to a neighborhood of the diagonal A = Diag(M).

The fiber-wise Fourier transform is invariantly defined from rapidly decreasing half-
densities on a vector bundle V — M to half-densities on the dual vector bundle:

F . C®(V,QF) — C°(V*, Q1)

FH) = [ O o) [N, pe s, v eV

and extends to tempered distributions:
F:C™®(V,Q5) —» C™O(V*, Q2);

here wy is the canonical symplectic form on V, x V" and k the rank of V. In constructing
U3, we will take V = TM and, as usual, use the half-density | w21/ (2n + 1)!|Y/? defined
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by the canonical symplectic form w on T*M to trivialize Q3 (T*M).

For a compact manifold with corners N we use the notations

C®(N,E) and G ®(N,E) = (C™(N, E*@Q))'

for the space of smooth sections vanishing with all derivatives at 0N and for the space of
extendible distributional sections of E respectively. Taking N to be any of the compact-
ifications of V' discussed above gives the same space of functions on V' and therefore no
particular choice for a compactification is made in the definition of F.

The space UG (M; Q%, Q%) of Heisenberg operators of order m € R consists of operators
A C®(M, Q1) —> C™(M,Q3)
with Schwartz kernels smooth outside the diagonal
AeC™™(M x M,Q%), singsupp A C A
and such that
(1.3) FW*(xA) € SPHT*M) = p~™C>®(*T*M)

for some choice of a metric £ in the definition of W and for any x € C®*(M xM),supp x C V
and y = 1 near A.

The principal symbol ap,(A) = [a] € ST/SLm'l, where ¢ = F W*(xA), is independent
of the choices made above and gives a short exact sequence:

(1.4) 0 — U= uf I SsP/ST 0,

We will give next a second interpretation to the space SZ‘/SE”A. The product # on
S /ST=! for which o,y is a homomorphism will be postponed to the next section, described
there in the context of the isotropic calculus.

Since L is trivial, “S*M = §(LT=M) splits globally in two hemisphere bundles
Lg*m =Ls* M ULS* M,
with their interiors identified with the hyperplane bundle
(L5 W=T"M/L ® L“% =, int(*SLM),
w=v®172 — [v,l],

where [ in the expression of w is chosen to ble in the positive and respectivlely negative
direction of L. Gi\{en [ € L%, the rllotation {72 is used for the element in L™2 defined by
L e C®(L*\0), 73 (I*) = £[I*(D)| " 2.
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The maps (1.5) extend as smooth diffeomorphism
qu — LS;M

from the quadratic compactification of W, 9W, to the upper and lower hemisphere; the
signs specify the identification (1.5) used.

Most importantly, the principal symbol o, (A) splits in two components corresponding
to the two hemispheres and we have the identification

SPT"M)/SP U T* M) — py 2 C™( W4, L73) @ py * C(W_, L™ %)

(1.6)
[(1] — (G;+,O,,), G.+|SWECL*|SW,

the equality of . and a_ being in Taylor series at SW. Above, L — W is the lift of the
contact line bundle L — M to the hyperplane bundle W — M.

Heisenberg operators acting between sections of complex vector bundles £ and £ on M:
A:C®(M,E) — C*°(M, F)
identified as always with their Schwartz kernels:
ACcC®Mx M,FR(E*®Q)) = C"°(M x M,Hom(E® Q1 F))
are defined by:
V(M E,F) = U(M;Q3,Q7) @coo(arxar) CF(M x M,Hom(E @ 273, F @ Q7).
The vector bundles Hom(E, F) and E X F over M % M are those with fibers
Hom(E, F)p r = hom(Ey, Fp), (ERF),y = E, @ Fy (p,p) e M x M

and we have Hom(F, F) = F X £*.
The corresponding range for the principal symbol map is the space of

(1.7) (ay,a-) € py * C®(FW 4, L~ % @ hom(E, ) ® p, * C®(*W_, L% ® hom(E, F))

with a4 |sw = a_|sw. Again, as in (1.6), L~ 2 ® hom(E, F) is the lift from M to W.



1.2. Isotropic algebras 17

1.2 Isotropic algebras

Let (W?", w) be a symplectic vector space. The isotropic and the quadratic isotropic algebras
on W are the spaces of symbols:

W)= | vrw),  ww) = | vgw),
mcR meR

(1.8) VE(W) =p™mC2(W), IR = p;™2C2 (W)
Vi (W) C ¥t (W)

with the non-commutative product:

(1.9) a#b(w) = 7~ / 2w we) ooy 4 wy) b(w + wa) |w] Wi /(n))?,
WxW

a,b € Vi (W). The smoothing elements in these algebras are the Schwartz functions on W,
Y (W) = TL2(W) = C®(W) = C®(TW); they form an ideal in both Ui and U3,

It is sometimes useful to represent these algebras as algebras of operators on § (V) for
V C W a Lagrangian subspace. More precisely, the choice of a Lagrangian complement, U,
gives a symplectic isomorphism:

W=VolU —VeaeV* w=v+u— (v, w(,u)ly),

where on V @ V* the symplectic form wo((v1,v}), (v2,v3)) = v3 - U1 — 0} - vo is used. This
identifies Ui (W) = ¥ (V & V*) and ¥f (W) = ¥} (V @ V*) which can now be understood
as full symbols spaces for algebras of operators on V, U2 (V) and ¥%_(V) respectively:

iso Iso
O’w HW
Vi (V) —— Yg(W), ko(V) — T (W)
qw aw

The above correspondences are given by the Weyl symbol and quantization maps:

: 1Y% !
A(’U,'U’) — (27")_’1 / et(v—v ) a('U';'U ,’U*)d'U*,

*

a(v,v*) = / eV A(w + /2,0 — o' /2) dof
Vv

and the product # corresponds to the composition of operators, qw (a#b) = qw (a) o quw (b).
Even if no particular representation as above if fixed, we will still refer to the elements of

V(W) and Wi (W) as isotropic and quadratic 1sotropic operators respectively.

Let now J € hom(W}, J? = —Id, be a complex structure on W compatible with the
symplectic structure, that is

w(Ju, Jv) = w(u,v) and w(u,Ju) >0, Yu,veW
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or equivalently
H{u,v) = wlu, Jv), u,v €W Iisa positive inner product on W.

For any Lagrangian subspace V' C W this gives an orthogonal Lagrangian decomposition
V & JV = W; in fact we can choose linear orthogonal coordinates (z,€) on W and identify
(W,w) with (Rg?g,dmdf), JOy = 0.

The harmonic oscillator, H = A, + 22, is a second order isotropic operator on R™,
H e U2 (R*) C U2 (R), with symbol h(z,£) = |z]* + [ € TE(R*) C T2 (R™) defined
in fact invariantly on W':

he UA(W) c ¥i(W),  h(u) = H(u,u) = w(u, Ju).

The eigenvalues of H are of the form n+ 2k, k € N. The ground state, the eigenspace asso-
ciated to the lowest eigenvalue, is one-dimensional and the projection on it is a smoothing
isotropic operator on ™. Its symbol is defined again invariantly on W:

s=2""" e U_*(W).

and satisfies:
s#s =38, (h—n)#s=s#h—n)=0.

We will refer to h and s as the harmonic oscillator and the ground state projection.

The isotropic algebras ¥% and ¥}, can be constructed in the more general setting of

15
symplectic vector bundles W — M by defining the product (1.9) fiber-wise; however, since
a global Lagrangian splitting might not exist, we do not have in general the representations
as operators, ¥%_ and ¥},,. Vector bundle coefficients can also be added. A complex vector
bundle E on M lifts to W to be trivial along the fibers; taking sections of (the lift of) E in
(1.2) the spaces U5 (W; E) and ¥;(W; E) are defined and the product (1.9) is well-defined
T (W3 E)# UL (W F) = U5 (W; E® F) for F — M a second vector bundle.

We return now to the principal symbol map in the Heisenberg calculus, (1.6) and (1.7).
First, the hyperplane bundle W = T*M/L ® L™ = M is canonically a symplectic vector
bundle. To see this, recall that each section of L gives H in (1.1) a symplectic vector bundle
structure and the same holds for the duals, L~=! and T=M/L. Then on the fibers of W the
form w(v ® 712, vy @ 171/2) = (1712 @ I71/2)(v1,v2), | > 0 gives a symplectic structure
and so does —w; we write W, or W_ to indicate the symplectic structure used.

The symbol space in the short exact sequence (1.4) can now be identified, as in (1.6),
with the set of

(1.10) (a4,0.) € V(W L H) @ UR(W_ L7 7)), atlsw = a-lsw
and most important, as shown in [6]:

i (AB)s = om(A) s #om (B)z, A€ U, BeVE.
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In the case of vector bundle coefficients, ¥>(W, L™ % ® hom(E, F)) should be used in
(1.10).

1.3 Hermite ideals and Toeplitz operators

Taking Heisenberg operators with symbols vanishing rapidly at the lower or upper hemi-
sphere we get the upper and lower Hermite ideals:

Ti(M) = {A€ ¥y (M): FW*(xA) =0 at ’SLM).
Their principal symbol satisfies:
om(A)x € VP (We; L7%), om(A)z =0, AcIP(M).

Given a family of ground state projections s € ¥ (Wy) associated to a compatible
complex structure on W a generalized Szegd projection on M is an operator

S €I (M) with 0¢(S) =5, S = §

and self-adjoint for some trivialization of the density bundle. Such operators exist; in fact
their space has countable many connected components and the relative index map of Epstein
and Melrose [6], R-Ind(S, §') = Ind(5'S), gives a relative labeling of the components.

The Toeplitz algebras associated to a generalized Szegé projection S are given by:

Ts(M) = {A€Ti{(M): A=SA=AS} = {SBS € (M) : B € U}(M)}
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Chapter 2

The model case; translation invariant
Heisenberg operators on R* x S*!

Consider the co-sphere bundle $*V = V x SV* = V x (V*\ {0}) /R, of a n dimensional real
vector space V' with its canonical contact structure and denote by L the oriented contact
line bundle over §*V, L C T*(S*V); the orientation used here is such that the positive
half-line is given by:

L, ={(60): [[] =y} CV* X T;(SV*), (z,5) € V x SV*.

Note that this contact structure is translation invariant in the V-variables, or, in other
words, L is a pull-back from SV* to V' x SV*. In light of this, we will mostly regard L as a
line bundle over the sphere SV*.

For simplicity, we will occasionally identify S*V with R* x §?—1 by introducing linear
coordinates on V. Later in the section, our choice of CR structure on $*V will be obtained
via by embedding S*V in C" as the tube of radius 1 around R in the standard euclidean
metric. However, only the contact structure is needed for the Heisenberg calculus and hence
our coordinate free approach.

2.1 Definition and properties

Briefly, translation invariant Heisenberg operators on $*V = V x SV* are Just Heisenberg
operators (in the sense that their symbols are L-parabolic symbols on T*(S*V)) that are
invariant under translations in the V-variables and subject to an additional decay condition
on their Schwartz kernels, needed for composition. The translation invariance property we
require for our operators:

(2.1) A:S(V x SV*) — S(V x SV*)

21



22 Chapter 2. The model case; translation invariant Heisenberg operators on R™ x §n—!

forces their Schwartz kernels to be of the form K(z,y,2',v’) = Ka(z — z’,y,3'), i.e. convo-
lution in the V-variables, formally written as:

Au(z,y) = / Ka(x =2y, ¢ ) uld',y) dz'vy,
Vx§v+

with v, a density on SV*. Consequently, their symbols a(y,&,n), vy € SV*, £ € V*,
n € Ty (SV”) will be independent of the z-variable, z € V.

Remark 2.1. By the above, we prefer to view the symbols as being defined on the vector
bundle:
(2.2) Ve THSV*) — SV*

instead of the cotangent bundle T*(V x SV*) — V x SV* that we would normally use. The
contact line bundle L, regarded by translation invariance as a bundle over the sphere SV*
instead of the whole space S*V =V x SV* is a subbundle of (2.2).

More precisely, following the recipe in [6], a parabolic symbol of order m will be, as in
(1.2), an element of:

(2.3) ST = p mC IV @ TH(SVY)),

where “V* @ T*(SV*) is the fiber-wise L-parabolic compactification of the bundle (2.2).
Consider the fiber Fourier transform F between tempered distributions on V @ T(SV*)
and tempered distributions on V* @ T*(SV*) and the Riemann-Weyl fibration

WV xU -V xU, W=/(id Ws)

where
Ws : T(SV*) U -»U, C SV* x SV*
is a Riemann-Weyl fibration for some metric on SV*.

Definition 2.2. The space V7', (V x SV*) of translation invariant Heisenberg operators of
order m on S*V =V x SV* consists of the operators (2.1) with kernels

A€ O™V x SV* x §V*),

smooth outside the ‘diagonal’ {0} x Diag(SV™), rapidly decreasing at infinity in V and near
the diagonal satisfying :

(2.4) FW*(xA) € ST

for any cut-off function x with supp x C Us and x =1 near Diag(SV™).

As in the compact case, Heisenberg operators between sections of vector bundles can be
considered, ¥ (V x SV*; E, F'). However, here the bundles F, F — V x SV* are assumed
to be pull-backs of bundles on the sphere SV*, also denoted F and F.



2.1. Definition and properties 23

Define the full symbol o(A) and the principal symbol o,,(A) as the class of FW*(xA)
in S7°/57°° and respectively in ST/ SE”’]. The principal symbol is invariantly defined and
gives a short exact sequence:

(2:9) 0 — Vg (V X SV*) = Ui (V x SV*) 2% S7'/S7~1 — 0,

As usual, this has an interpretation in terms of the isotropic calculus on the symplectic
vector bundle )
We=WV*"®@T*(SV*))/L @ L7 - SV*

the sign specifying, as in §1.2, the symplectic structure on the fibers of Wy
We also have an algebra structure:

Proposition 2.3. The space of translation invariant Heisenberg operators % (V x SV*)
s closed under composition

Uity o Vigy C UH™
and the principal symbol map in (2.5) is a graded algebra homomorphism:

Um+m’(AB) = Um(A) #Um’(B)a Ac \I’;?Ha B e ‘I’Z"}I

Proof. Note that any A € U7 (V x SV*) can be decomposed as A = Ay + A; with A€
Vg = S(VXSV*xSV*) and 4y € U7, with compact support, A, € Cy (VxSV*xSV*).

The proposition follows as in the compact case once we know that V.7 is an ideal in Y
which in turn follows as for classical pseudodifferential operators. U

Most of the definitions in the compact case can be repeated here without change. We
mention the upper and lower Hermite ideals, denoted I7*(V x SV*) and I™(V x SV*),
defined as the space of operators in Uity with full symbols vanishing to infinite order at
the lower and upper hemisphere respectively. Also, given a choice of a compatible complex
structure JJ on the fibers of W — SV*, a field of harmonic oscillators are obtained. The gen-
eralized Szegd projections are then fixed as those self-adjoint projections § € I9(V x SV*)
having as principal symbol s € V@ (W,), the projections onto the ground states of the
above harmonic oscillators.

Given A € ¥, (V x SV*) denote by A\(f,y,y’) the Fourier transform of its kernel
A(z,y,y') in the z-variable and by A(¢), £ € V*, the operator on SV* having as Schwartz

kernel A(¢,y,9'), y,¥' € SV*. By analogy with the suspended algebra of Melrose, we will
call A(-) the indicial family of A and have:

Lemma 2.4, For an operator A c U (V x SV*), the indicial family
A e C®(V*, T (SV)

is o smooth family of pseudodifferential operators of order m on the sphere SV*. In partic-
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ular
A€ C®V,¥™®(SV") jor Ae T4,
B e &V T™®(SV*) for R € W%
Proof. Follows directly from the symbol estimates for the symbol of A. O

Remark 2.5. A more precise description of the indicial families than provided by the
previous lemma can be obtained. Such a description is not needed here, but it is useful in
understanding the space of generalized Szegd projections, a questions that will be taken up
elsewhere.

For an elliptic operator A € ¥}, i.e. with principal symbol invertible as isotropic
operators, the standard construction of a parametrix gives a remainder R € V7. Using
the indicial family a little bit more can be achieved:

Lemma 2.6. Given A € Uy, elliptic, there exist left and right parametrices P, P' € U, [}
such that the following is true for the remainders R = Id — PAand R'=Id — AP':

R, R e CP(V*, T°(SV).
Consequently, Z(ﬁ) € U™(SV*) is invertible for £ € V™ large.

Proof. Standard arguments yield a left-parametrix Bev,. B, BA=1I-FE with remainder
E € ¥,_5. Passing to indicial families, i.e. taking Fourier transform in the z-variables,
gives: o R R

Be)A(E) =1-E(¢), VEeV™;, EcSV, ¥ =@ V)
the same notation, I, is being used for both the identity operator in \I!?i g and the identity
in UO(SV*).

For ¢ large, |£| > 7', the operator norm of E(¢) acting on L2(SV*)is small enough to
make I — E(¢) invertible with inverse I — F(£). The operators F(¢) are smoothing as
follows from F(£) = —E(¢) - E(6)? + E’(&)ﬁ(é)@({) and, after extending smoothly to |¢]
small, they form a family F e ¢oW*, ¥=>°(SV*)). In fact F(¢) is rapidly decreasing as
l€] — oo, le. F is the indicial family of a smoothing operator I' € V,.%7. To see this

—0

choose a perturbation B € U,y of E, having a compactly supported associated family
Ei() e S(IRQ,\I!'C"’(S”_I)), supp 1 () C {|¢| < 7"}, such that I — E + F; is invertible (this
can be arranged by taking E; to equal E on a large ball, an so making the L2 norm of the
kernel E — Ey small). The inverse of I — £+ Eq is of the form I — Fy with F € ¥77. Note
that F(¢) = F1(8) for |¢| > max{r’,r"} and hence F € V7.

Taking now P = (I — F)Band R=1T - (I = F)(I —- F) proves the lemma. O
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2.2 The 9, complex and the Szegd projection

Given a euclidean metric on V, one can embed V x SV* C T*V via a contact diffeomorphism
as the unit cosphere bundle in that metric. Normal coordinates on V. identify then T*V
with C?

TV 5 (z,y) =ydz; — z=1z — iy € ("

and we use this to fix a complex structure on T*V.
In coordinates the d-operator is given by:

= 1 : .
9= Z E(sz — iy, ) (dz; + idy;)
j

and its indicial family {though not defined previously in this context, the analogy is straight-
forward) by:

= 1
(2.6) &) =D 5(& ~ 8y,) dys;
J
here the identification of the trivial form bundles on T*V with their restriction at © — 0
was used, identifying dz; +4dy; with dy;. By direct computation, it follows from (2.6) that:

2.7) EIB(E) £V = 3(0) = ~La,,

where dy, is the exterior derivative on R® in the y-variable.

The above complex structure gives rise to a strictly pseudoconvex CR structure on the
co-sphere bundle V' x SV* = {(z,y) : |y| = 1} underlying the contact structure introduced
above. Note that the one-form a = id(|y|?)|s-v = vidz; is a positive contact form on S*V.

The dp-complex of Kohn and Rossi, and the associated Laplacian, O = 5@; +5Z§b, are
Heisenberg operators of order 1 and 2 respectively. Of course, in our case, they are invariant
under translations in the base variable. From (2.7), one gets for the indicial family of 8y

-~

(2.8) Op(€) = £V Fy(D) etV = _%eﬁ-y dse Y,
with dg denoting the exterior derivative on SV*.
For OJ, on (0, g)-forms we have:

Lemma 2.7. For n > 3, Dg’q is invertible in U2, for 0 < g<mn— 1.

Proof. The principal symbol of (I is oa(00): = —(hF(n—1— 2q)), where A is the field
of harmonic oscillators on W. Since the eigenvalues of & are of the form n — 1 + 2k with
k >0, it follows that O'Q(Dg’q)j: i1s invertible in the isotropic algebra for ¢ # 0 and ¢ # n— 1.
Thus Dg’q is elliptic and, by Lemma 2.6, a parametrix P ¢ \Ilt_i?, can be constructed

UpoP=Pol,=1Id~ R, RE‘I‘;}?
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such that the indicial family of R has compact support, i.e. R e C(R*, ~°(S™1)). This
proves that [;(£) is invertible for ¢ large. 3
From (2.7), one gets for the indicial family of 85:

o~

(2.9) Op(&) = ef-yﬁb(o) e €Y = _%eé-y dse Y,

with dg denoting the exterior derivative on SV*. This implies that EI;(&) is invertible
everywhere. Denote by L € C*(R", U~2(S" 1)) the inverse family. We have:

L) = L OO PE) + R©) = P& + LEOR(E).
which proves that T is in fact the indicial family of an operator L € \Ift_ifq, the sum of P
and a smoothing operator. O

The Szegd prajection S, defined as the projection on ker 9 = ker Dg’ﬂ, can be written
as: B
S =1d—a; (0y") 0.

As follows from (2.9), the indicial family of S consists of rank 1 projections on the
ker 9,(¢) = span{e®¥}:

§eoo(wr, u=EVY),  Sell

S, y,9)

£y ety

leE ey et e vy

The Schwartz kernel of S follows from this or could have been computed directly by ele-
mentary means:

S(z —z',y,y) = 2r)™" / L R _g_;——
Jyx lle '”Lz(gv*)

de.



Chapter 3

Adiabatic Heisenberg Algebra

The adiabatic Heisenberg algebra ¥, (S*X) of operators on the co-sphere bundle $*X
of a compact manifold X is constructed here. Adiabatic calculi for a fibration have been
studied before by Mazzeo and Melrose [13] and Epstein and Melrose [5]. The fact that
we can combine this formalism with the Heisenberg calculus rests on $*X — X being a
Legendre fibration. In fact this is the only such Legendre fibration with compact fibers, at
least for dim X > 3.

3.1 Adiabatic structure for a Legendre fibration

Let X™ be a smooth compact manifold without boundary and
¢: M™ T =§'X = (T" X\ {0})/R; — X

its canonical co-sphere bundle. Mazzeo and Melrose [13] defined the adiabatic tangent and
cotangent bundle, *T'M and *T*M, for a general fibration ¢ : M — X. We will briefly
recall the construction here and show that in our case, M = $*X, the contact structure can
be easily added to the construction.

Following [13], consider the space V, of vector fields on M x [0, ¢g) tangent both to the
fibers M x {e} of the fibration M x [0,¢9) — [0,€o) and the fibers of M x {0} — X:

Vo ={V eC® (M x[0,¢), T(M x [0,€0))) : Ve=0,
V tangent to S;X at e =0,Vz € X}

In local coordinates zy, ..., Zn, Y1, ..., ¥n_1 on M that trivialize ¢, 2's being coordinates on
X and y's coordinates on S"7!, these vector fields can be written as linear combination of
€0z, .- €0,,0y,,...,0y,_,. As shown by Mazzeo and Melrose [13], V, is the space of the
€ sections of a vector bundle of rank 2n — 1(= dim M) over M x [0, €0):

Vo = C% (M x [0,e0), *TM)

27
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and
68117 Rl Eai:rn ayu Y Bynfl

form a basis for *TM.

The natural inclusion V, <> C® (M x [0,ep), 7*T M), where 7 : M x [0,€9) = M is the
projection on the left factor, gives a natural map of bundles over M x [0, ¢p) which is an
isomorphism for € > 0:

(3.1) L *TM — 7*TM 2 TM x [0,¢);

identifying T M|, (the restriction of *TM to M x {e}) with TM, € > 0. At ¢ = 0 the range
of ¢ is the tangent bundle to the fibers of ¢ and its kernel e ¢*TX C *T M|y (the restriction
to € = 0 of the pull-back of T'X to M x [0, y), rescaled by ¢; it is naturally isomorphic with
¢*TX; for more on rescaling vector bundles see [15]). With T'M, C *T M|y denoting the
natural subbundle of vectors ‘tangent to the fiber’ (i.e. of vectors v € *T, oM, p € M for
which a vector field V € V, exists with V, p = v and tangent to all the fibers S;(p)X x {e},

0 < e < €g) we have at € = 0 the natural splitting of “T'M:
“TM|o = e¢*TX T My;

(3.2) N . .
TryoM = eT; X ®Ty(S;X), z€X,yeSX.

Taking the dual of (3.1) we get:
S T*M % [0,e0) 2T M — “T"M,

which is also an isomorphism for € > 0. Here T M is the dual of *TM; in local coordinates
a generic point in *7T* M is f—l@—fl +..+ fnd“’T” +mdy; + ... + 7y 1dyn—1. Dually to (3.2) we
have at e = 0:

1

T*Mly = ~¢"T* X & T* M,,
€

(3.3) ,

TryoM =T X @ T,(5;X), z€X,ye8X

where T* M, is the dual of TMy, co-tangent vectors to the fibers.

The exterior powers *A*M = A*(*T*M) also have splittings as above at € = 0. Their
sections will be the adiabatic forms written in local coordinates as:

dzr
a = GI,J(QT,CU,G)WG'?JJ

Also the differential on M, which, for e > 0, can be lifted by ¢* to act on sections of *A* M,
extends to € = 0:

(3.4) d:C®(M x [0,e), "APM) — C® (M x [0,€0), APT'M), p=0,...,2n 1,
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in local coordinates taking the form:

dz; dz dz
da = (faxlal,J)(Ia Y, E) : Y

I
dew + (=)"1(3y,ar,1)(z,y,¢€) mdyjdw-

Recall that the space of s-densities on a k-dimensional real vector space V is
Q°V = {w: A*V\0 = C wty) = |t|'w(y)Vy € A*V\0,t € R\ 0}, s€ER

and, in the case of a vector bundle £ — Z, the fiber-wise construction gives a line bundle
Q°E — Z. The 1-density bundle Q' will be shortly denoted by Q.

On M x[0, eg) there are a few possible choices of density bundles. In addition to the usual
ones, 2° = Q°(T(M x [0,¢p))), we also have the adiabatic density bundles *Q* = Q°(“T'M)
and the ones in the e variable, @ = Q*(T0,¢)), given by the lift to M x [0,¢9) of the
tangent bundle to [0, ¢). Note that *Q ® Q. = ¢ or equivalently:

(3.5) 902 @ ("°N: @ N,) = 0.

In local coordinates, a(x,y,e)lf—ﬁdyP/Q is a section of ®QZ. We are going to use adiabatic
densities in a more general context than defined here, namely on *T*M, *T'M, on their
compactifications, and on the double space M? defined in the next section. All these man-
ifolds have € as a defining function for the boundary or a face of the boundary and also
all have a fibered boundary face. In general, adiabatic structures can be defined at such a
fibered boundary face by following the construction above, starting with V,. It is beyond
our objective to include a complete treatment of this, since we are interested only in adi-
abatic density bundles, which can always be trivialized or described as above in terms of
other density bundles. For example, on ?T*M, a(z,y,&,n, e)lf—fdy d¢ dn|'/? is an adiabatic
half-density associated to the fibration *T*AM — X at e = 0.

To investigate the behavior of the contact structure as ¢ — 0 consider over $*X x [0, €p)
the trivial line bundle L C *T*(S*X) with positive half-line given by:

1
L;‘yyﬁ:{ﬁegT;X:[ef]zy}C“T* (S*X), ze€X,yeSiX,e>0;

Ilyle

multiplication by e is used above to identify 1/e Ty X with T X. In particular, at e=0, using
this and (3.3):

(3.6) ' Li,0=1{(60) : €] =y} C TIX & T,(S;X).

LY,

The line bundle defined above will be the adiabatic contact line in the sense of the following
lemma:

Lemma 3.1. For € > 0, the restriction of L to $*X x {c} s identified through +* with the
contact line bundle on S*X. On the other hand, at e =0, for every z € X it restricts to a
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line bundle L* C 1 T3 X @ T*(S3X) over S3X identified via (3.6) with the contact structure
on the model space T; X ®S;X of Chapler 2. Moreover, every contact form o on S*X lifts
to a non-vanishing section & = ¢ L*r*a of *T*M spanning L.

Proof. The only thing to be checked is that & is well-defined and non-zero. For every V € V),
we have ¢*m*@(V)|e=0 = 7" @(t:V)|e=0 = @(V|e=0) = 0 since, by definition, V.- is tangent
to the fibers of ¢ and so annihilated by the contact form. This proves that & = E_lb*ﬂ'zoz is
a well-defined section of *T* M. To prove that is non-zero, test it on the Reeb vector field

R: a(eR) = a(R) = 1. O
Remark 3.2. An adiabatic contact form & can be defined as a form
& : M x[0,6) = °T*M s.t. an{(da)" 1 #0

where d is the differential in (3.4).

In our case, that is the co-sphere bundle with its canonical contact structure, the above
lemma provides such an example, namely & = a/e for a a contact form on S*X. It can be
easily seen in local coordinates why & is an adiabatic form and why it induces at ¢ = 0 a
contact structure on the model spaces T, X x S7X.

3.2 The double space

Note the existence of a Schwartz kernel theorem, i.e. a bijective correspondence between
operators:

(3.7) A C®(M x [0,6),%Q7) — C(M x [0, ), *Q27)

and their Schwartz kernels

(3.8) K4 € C (M x M x [0, e),%07)
given by:
(3.9) (Au,v) = (K4, 7m0 - Thu),

Ve C®(M x [0,e),*02), v € C®(M x [0,e),*Q% ® 0,

where 7y, g : M x M x[0,e5) = M %[0, €9) are the projection off the second and respectively
first factor in M. The adiabatic density bundle in (3.8) is associated to the product fibration
M x M — X x X. In local coordinates

dz dz’ L

Ka=Kalz,y,2',y, E)‘e_ﬂe—"dy dy'|2.
The operators in ¥, (M) will be defined in §3.4 by selecting kernels as in (3.8) with a
special type of singularity at the diagonal Diag M X [0,€q). In fact the precise description
of the kernels will be given on a blown-up version of M x M x [0, ¢g), the double space M?
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defined next. By blow-up the space of functions vanishing to infinite order at the boundary
does not change and hence neither the space of extendible distributions:

(3.10) Be: C7R(M2,203) =5 C™°(M x M x [0, ), °027).

For the exact construction of the kernels of the operators in ¥ ., (S*X) as distributions on
M? see Definition 3.7.

We refer to [14] and [15] for more on blow-ups and analysis on manifolds with corners.

Definition 3.3. The double space M? is defined as the radial blow-up in M x M x [0, €)
of the fiber diagonal D at € = 0:

B:M;=[MxMx[0,e); D] — M x M x [0,¢),
D =M xx M x {0} = {(p,#',0); ¢(p) = ¢(p")}.

Given the fibrations ¢ : M — X, ¢ : N — X, the notation M x x N stands for the
submanifold {(p,q) € M x N; ¢(p) = 1(q)} of M x N.

The blown-up space M? is a manifold with corners of codimension 2. Its boundary has
two faces (assuming M is connected): the closure of

(M x M x {0} \ D)

and the front face
fi(M?7) = B~1(D).

By construction, ff(M2} is the inward-pointing hemisphere bundle of D in M x M X [0, €).
It is canonically isomorphic with the radial compactification of N Diag(X) xx M xx M,
the normal bundle of D as a submanifold of M x M (here N Diag(X) is the normal bundle
to the diagonal in X x X). Thus

(3.11) int(fF(M2) =TX xx M xx M
and, most importantly, it is fibered over X:

R" % Snfl > Sn—l

(3.12) J
X

7 Hz) 2T X xSIX xS$¥X, z e X.

int(8(M2)

Denote by A the diagonal Diag(M) % (0,¢0) = {(p,p,€) : p € M,e > 0} C M x M x[0, &)
and by
A, = ﬁhl(A) - Ma2

the closure of its lift to M2. A, intersects the boundary of M? transversally in the interior
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of the frount face, in fact in the 0-section Diag(M) of Ag = TX xx Diag(M):
A, NF(M2) = Diag(M) C A.

Let (z,y,z',1',¢) be local coordinates on M x M x [0,€p) near A, where (z,y) and
(z',y') are the same coordinates on the left and the right copy of M. Then (X, X'y, €)
are local coordinates on M2, near A, U Ap, where:

T = %X +X', '= —EX + X' or equivalently

, X' = for € > 0.

€
In terms of these A, = {X =0, y =y}, Ag = {y =%, ¢ = 0} and the fibers of 7 are given
by m Hz)={X'=z,e=0},z € X.

In these local coordinates, ¢(X, X' v,y €)|dX %idy dy’ |% is an adiabatic half-density
on Mg.

Remark 3.4. The structure of M2 is essential in what follows, especially in understanding
how does a family A, € (M), € > 0, of Heisenberg operators glue at ¢ = 0 with a family
Ay € U7 (T, X x S3X), x € X, of translation invariant Heisenberg operators to form an
adiabatic Heisenberg operator A € U™ (M). The slices M x M x {c}, ¢ > 0, forming the
interior of M2, and the fibers Ty X x §;X x S3X of the important part of its boundary,
ff(M2), are the spaces on which the kernels of the A.’s and A;’s have been defined in
Chapter 1 and Chapter 2 respectively. Moreover the singularities of the kernels occur only
at A,. We will have this in mind when defining the kernel of the adiabatic Heisenberg
operator A in §3.4.

3.3 Riemann-Weyl fibration

Let & be a Riemannian metric on X and g € C°(M;T*M ® T*M) a symmetric 2-cotensor
on M = S*X, positive definite when restricted to the fibers of ¢. For € > 0 sufficiently
small (suppose for € < €)

¢*h
(3.14) ge=9+" 3

gives a family of metrics on M. This lifts and extends to a positive definite symmetric 2-
cotensor § € C(M x [0, €g); “T* M ®°T* M), the natural choice of a metric in the adiabatic
setting (in fact, such a family of metrics is the motivation for the construction of “T'M, [13)).
Moreover, at € = 0, the splittings (3.2) and (3.3) are orthogonal with respect to g.

For each ¢ > 0, let we(v) = (exp,  (v),expp (—v)), v € TpM be the Riemann-Weyl
fibration associated with the metric g on M. It extends to:

w: TM < TM x [0,69) DU — V C M x M x [0, &)
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having as range at e = 0 the fiber diagonal D. We claim that it lifts to the blow-up space
M? to give a Riemann-Weyl fibration:

Lemma 3.5. There ezist open neighborhoods U of the 0-section in °TM and V' of A, in
M2 with Ag CV N OM? C fF(M?) and a b-diffeomorphism:

W:“TM DU —V C M2,

satisfying the following:

a) BoW = w; i.e. fore> 0 s restriction W, : *TM|. DUl > V|. C M x M x {¢} is a
Riemann- Weyl fibration on M (associated to g.);

b) at e =0, W restricts to Wy : °TM|g D Ulg = Vo C int(f(M2)); it further restricts, for
each z € X, to be:

W e XoTESX) DeT XU - T, XV CT,X®SIX ®SiX,
W? = ("' 1d, Ws;),

the Riemann-Weyl map in the model case,§2.1. Above the map e 'Id is the identification
€T, X = TpX and Wsy : T(S;) D U™ = V* C S;X @ S3X the Riemann-Weyl map on S§:X
associated to gls:x.

Proof. We define W for € > 0 to be equal with w and show that it extends to be C* up to
e = 0. Clearly, conclusion a is then automatically satisfied.

First we find an expression for w. In fact, by the metric identification of the tangent
and cotangent bundles, we consider w to be defined on *T*M. Let |- | be the length
function on °T*M fixed by the metric §. At a point v = &% + n; dy; € °T*M, we have

€

Uy) = 3v[2 = 4[RY (z)éif; + 99 (z, y)min; + O(e€)]. The Hamiltonian vector field is given by

H, = h*(2)¢; (¢0z,) + 9™ (z,y)nidy, — %8“9” (@, Y) 138y, + O(e),
with O(e) representing an adiabatic vector field on ®T* M multiplied by e. By an adiabatic
vector field on *T*M we mean a vector field on *T*M which, at ¢ = 0, is tangent to the
fibers of “T*M — X (a base for these vector fields is given by €d;,, 8,,, O, and n).
The map w is given then by w : (Z,9,£,79,¢) — (z(1),y(1),z'(1),y'(1),¢e(1)), where
(,y,€,m,€) and (z', ¢, €', 1, €') are integral curves of Hj, i.e. solutions of:

dz

k __pikiog 2 ek _
- = eh¥(2)¢i + O(e) —& = 0(¢)
(3.15) % = g"*(m, y)m + O(e) di: = —50.9" (z, y)nin; + O(e)
de
Fra

with initial data, at ¢ =0, (Z,,£,,¢) and (Z,§, —&, — 1, €) respectively.
In the local coordinates (X', X,y, 1/, ¢) introduced above on M? near A, UAg, the map
—

W is given by W : (z,5,€,7,€) = (X'(1), X(1),5(1),y'(1),€) with (X', X,y,v',£,&,n,7)
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a solution of the system of differential equations obtained from (3.15) by the change of
coordinates: = = §X + X', o' = —£X 4+ X'. With the exception of

dX,

— = 00,
dXp _ 1 ik € ne _ pik(_ & et
(3.16) el 2[h (2X + X"& — h*( 2X + XNE] + O(e),

the other equations of the system are basically unchanged (modulo the substitution of
z and ' in terms of X and X’). The solution is also subject to the initial conditions

X'(0) = 2, X(0) =0, y(0) =4'(0) = §, &(0) = —&(0) = &k, 1k(0) = — 1 (0) = 7k

At € = 0, note that &() = —&() = & and X'(-) = £. The equation (3.16) rewrites
ié% = hi*(z)E; with solution Xi(t) = [hi%(2);) ¢, t € R Note that IE'GLY 53— X(1) €Tz X
is, by the metric identification of the tangent and cotangent bundles, the map ¢~ 'Id in the

statement of the lemma. The remaining equations of the system:

dyk k- ani, 1 .
T g% (z, ¥)mi, — = 509" (Z, y)mn»
dy; Ko dm, 1 L
—5 =% @y, = = —5049° (@ ¢)min

solve to give the Riemann-Weyl map Ws; (7,7) = (y(1),5'(1)) on 53X, again the metric
identification of T(S3X) and T*(S;X) being employed. So at € = 0 the map W restricts to
W, proving part b of the lemma.

We still have to check that W is a local diffeomorphism near the 0-section of 2T™*M,
ie. that its differential at £ = 0, 7 = 0 is non-degenerate. By construction this is clear for
¢> 0. At ¢ = 0, from the above equations (or from the form of Wy) it follows that the
differential is:

I 0 0 *

D(X'(1), X(1), (1), ' (1), €) o @ 0 .
D(ja ga ’ga 7_’7 E) £=0,7=0,e=0 0 0 D(WMi)Iﬁ:O % 1

0o o0 0 1

this is non-degenerate since h(Z) is positive definite and

I ¢(z,9) )
D(Ws:)|g=0 = i
(Wsz)la=0 (I —g(%,79)
is the differential of the diffeomorphism WZ. So W is a diffeomorphism from some open
neighborhood U of the 0-section in aT* M to an open neighborhood V' of A, The results
obtained above at € = 0 (i.e. the domain of definition of Wy) show that we can choose the
neighborhoods U and V' subject to the extra conditions in the statement of the lemma. 0
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3.4 Adiabatic Heisenberg operators and principal symbol

As already stated in §3.2, the operators 4 in (3.7) are identified with their Schwartz kernels
Kpe C7®(M x M x [O,eo),“Q%) or, equivalently, with K4 € C‘°°(M3,“~Q%), the lift of
K4 to M2. The identification is given by {3.9) or, after inserting K4 = 8,K4, by:

(3.17) (Au,v) = (Ka, 8" (njv - whu)).

In view of this we will often use the same notation both for an operator A and its Schwartz
kernel A = K 4.
To define ¥} ,,, we will follow the construction of ¥}, in [6] and adapt it to the adia-

batic setting. We will define a class of kernels 4 € C‘W(Mcf,aﬂ%), with singularities at
A, C Mg of the same type as ¥}, uniformly up to e = 0. More precisely, we will use
the adiabatic contact structure of §3.1 to define parabolic symbols on ®T*M and then use
the inverse Fourier transform and the Riemann-Weyl fibration of §3.3 to characterize the
Schwartz kernels A € C~>° (M2, QQ%) that the operators in ¥*, should have.

The adiabatic symbols will be defined on “4T" M, the L-parabolic compactification of
the adiabatic cotangent bundle *T*M — M x [0,¢). It is a manifold with corners of
codimension 2 and has two boundary faces, the restriction L7 M l|o of LeT*M to e = 0
and the parabolic cosphere bundle L°S*M. With p denoting a defining function for the
boundary face L°S*M we have:

Definition 3.6. For any m € R, the space of 1-step polyhomogeneous adiabatic L-parabolic
symbols of order m on M is

STa(*T™M) = p"mC=("T " M),

also denoted shortly by ST.. Also set S;®° = N\SP.
m

Note that S;° = C$°(“*T" M), the space of smooth functions vanishing to infinite order
at “eS*M.

The fiber-wise Fourier transform on smooth densities, defined as in Chapter 1:
F : C®(°TM,°Q3) — C°(T" M, °03),

(FF)(y) = / e 1 f0) Ay, 7 € 9T, M,
'UE”'T(p’E)M

extends to act on distributions:
F O™ (TM, Q7)) — C™(°T" M, 90%).

Above ), . is the canonical half-density on “Tp,MOT; M. Asalways, if w is the (adiabatic)
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symplectic form on *T"M, we use w1/ (2n — 1)!|% to trivialize the half-density bundle
on *T* M.
We are now ready for:

Definition 3.7. An adiabatic Heisenberg operator of order m € R on M is an operator A
as in (3.7) whose Schwartz kernel A = K, satisfies:

(3.18) A€ C_OO(ML?,“Q%) with singsupp A C Ag;
(3.19) A=0 at OM2\ int(F(M2)) (i.e. vanishes to infinite order);
(3.20) FW* (xA) € ST, for some choice of a metric as in (3.14) (and

hence of a Riemann- Weyl fibration W as in §3.3) and for every
x € C(M?), with supp X NE(M2) CV, and x =1 near A, U Aq.

We denote by \I’TH(M;“Q%,“Q%) C C‘“(ME,“Q%) the space of such operators.
For complex vector bundles E and F over M x [0, €0), the space of the adiabatic Heisen-
berg operators from sections of E to sections of F is:

ZnH(M; E7 F) =
= U (M 90, °0}) @ (ayz) C°(ME, 8 Hom(E @ “Q71, F  °071)).

The principal symbol of an operator A as above is defined as the class:
om(A) = [FW*(xA)] € S’L”a/Szla_l.

Remark 3.8. As follows directly from Definition 3.7 and the first part of Lemma 3.5,
an adiabatic operator A € ¥* (M) can be understood on (0,€p) as a smooth family of
Heisenberg operators on M = §*X

A, € Uig(M), 0<e<e,

defined by restricting the kernel of A to the slices M x M x {e}, e >0, of M?2. Of course,
the symbol a = FW*(xK.4) and the principal symbol of A restrict for each ¢ > 0 to the
ones of 4.:

om(A)|Mxiep = om(Ae), 0<e<eo.

The restriction of A to € = 0 will be described in the next section.
We have;

Proposition 3.9. The principal symbol om(A) is independent of the choice of the metric
(3.14) and the cut-off function x in its definition. It gives a short ezact sequence:

(3.21) 0 Ut — Ui T ST /ST 0.

T
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Proof. Let a1 and a; be F W™ (xA) for two different choices of metric and cut-off function.
To prove the independence, we have to show that ¢ = p™(a; — az) € C®(L*T M) is in
fact in pCm(LGT*M). For ¢ > 0 this is, in view of the remark above, the independence
for Heisenberg operators proved in [6]. Consequently ¢ = 0 on £2§*M for ¢ > 0 and, being
smooth, it also vanishes at ¢ = 0, i.e. ¢ € pr(L“T*M). The exactness of the sequence
follows easily. O

The parabolic co-sphere bundle splits into the upper and lower hemisphere bundles
Lag*mr = Leg M U Post M

diffeomorphic to the quadratic compactifications TW . and 9W _ of the the hyperplane
bundle: )
W ="*T"M/L®L 2 — M x[0,¢).

Each non-zero section & of L, i.e an adiabatic contact form, gives a symplectic structure on
the annihilator of L, the contact hyperplane H C T M. Thus, as is in the non-adiabatic
case, W is canonically a symplectic vector bundle and hence, as in §1.2, isotropic algebras
can be defined on its fibers.

Remark 3.10. The range of the principal symbol in (3.21) can be replaced, as in (1.10),
with the set of

(3.22) (ay,a_) € V(W L7 7) @ U(W_; L™%), st aylsw a_lsw
the equality of a4 and a_ being in Taylor series at SW. As in §1.2, in the case of vector
bundle coefficients Y2 (W, L™ 2 @ hom(F, F')) should be used above.

The lower and upper Hermite ideals, I}, (M), generalized Szegd projections and the
associated Toeplitz algebras, T 's(M), can be defined as in the compact case of (6], recalled
in Chapter 1.

Remark 3.11. Given an adapted complex structure on the fibers of W and hence a field of
ground state projections s € U *°(W, ), it can be shown that generalized Szegé projections
S € I3, (M) with 09(S)+ = s exist. Since this will not be needed later, we do not prove it
here. However, such examples of generalized Szegd projections will be provided in the next
chapter, Theorem 4.3.

3.5 Normal operator

For A € U7, (M; E,F) the normal operator is defined as the restriction of A to the front
face:
N(A) = Alg(nz)-

Recall from §3.2 that ff(M?2) is fibered over X, (3.11) and (3.12), with fibers:

T, X x S*X xSiX, z¢X.
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We will show that the restriction of the kernel of A to each of this fibers is the kernel of a
translation invariant Heisenberg operator on Tp X x S7X:

N(A)l € W:?H(TTX X S;X;EULMFUx)a z € X.

The bundles Ey — M and Fy — M are the restrictions of E, I¥ - M x [0,e0) to M x {0}.
FEy, and Fy, are the restrictions to the fibers S3X, z € X, of M, and, as in §2.1, they
are the appropriate vector bundle coefficients of translation invariant Heisenberg operators
on Ty X x StX. This restrictions should also be understood at the level of kernels, i.e. at
f(M7).

To prove this we need to understand better the restriction to € =0 of the symbols in
Definition 3.6, or, for the beginning, the structure of the boundary face LaT™ M lo on which
the symbols are defined. This is of course the L-parabolic compactification of the vector
bundle *T* M|y — M which splits according to (3.3). Further restriction of “T*Mly and
LaTT™ Mo to the fibers S1X, z € X, of M = $*X gives:

MM = TEX @TH(SEX) — SiX, z€X

and

LT Mo = PTpX @ T+(S:X) — §;X, X,

where L* is the restriction of the adiabatic contact line L to S;X at e = 0 as described
in Lemma 3.1. By the same lemma, L? is the translation invariant contact structure on
T X @ T*(SEX).

We claim that

Proposition 3.12. The normal operator Ny, defined as the restriction of the kernels to the
front face f(M?2), gives a short exact sequence:

(3.23) 0 — U™ (M;E, F) = U7y (M; E, F) Ney g (TX xx S$*X; Elo, Flo) — 0.

Moreover, for each z € X
om(N(A)z) = om(A)

S:Xx{0}-

Proof. Follows directly from the construction of U7 (M) and ¥ty (TX xx §*X), ie. all
the data in Definition 3.20 and Definition 2.2 match. [l

3.6 Mapping properties and composition

The operators A € \IIZ}I(M;“Q%,“'Q%) C C“W(Mf,aﬂ%) have better mapping properties
than initially suggested in (3.7). Of course, for ¢ > 0 they inherit the mapping properties
of the Heisenberg operators on M. Few words have to be said at ¢ = 0.

Recall the two possible representations of its kernel, A and K. They are identified via
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(3.10), identification written in local coordinates as:

dx’ dz dz’
dydy'|z «— Ka(z,y,7, v, 6)| = —dy dy'|3.
n ETL ETL

(3.24) AX, X' y,y, e)|ldX

£

For example, the kernel of the identity operator is given in this two representations by

14

dX L
1d = §(X)6(y — )X 2 dy a1
and Jr de!
" T dx 1
Krg = €"d(z — z')o(y — y')le—nETdydy'P-

As follows from (3.9) and (3.17), the action of 4 on
d X
u=u(z,y,0)| Srdyl? € C(M x [0,e0),“2%)

can be expressed in terms of K4 as:

dr , 1 dz' dz , 1
(3.25) (Au)(z,y, e)|6—ndy| 7 = /M Ka(z,y,z', ¢, €) u(z', ', €) ]E—ndy’||€—ndy|z.
and in terms of 4 € C_m(Mf,“Q%):

d d
(3.26) (Au)(a:,y,e)|6—:dy|% = /A(X,:c — %X, y, ¥, €) u(z — eX, y',e)|dXdy'||—:dy|%.
€

We have:
Proposition 3.13. Each A € V7, (M; “Q%,“Q%) defines a continuous linear operator
(3.27) A:C®(M x [0,6),°02) — (M x [0,¢0),°Q7)
and by duality
A:C™®(M % [0,60),°07) — C™°(M x [0, &), °Q3).

Furthermore, A :C®(M x [U,ED),QQ%) — (M x [U,eo),“Q%).
For maximally residual operators A € em\If;I‘}O(M;aQ%,“Q%), i.e. those with kernels
A€ C’N(Mf,"ﬂ%) = (M x M x [0, eo),“Q%), more is true:

(3.28) A: C%([0,60), C™(M)) ® C°(®Q2) —» C°°(M x [0, 0),223).
Furthermore, this mapping property characterizes the mazimally residual operators.

Proof. We start with the maximal residual ones. For these the statement is a slight variation
of the well known mapping properties of smoothing operators on closed manifolds. Indeed,
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as a smooth family of smoothing operators on M, A ¢ ¢ ¥ 7° maps into smooth densities.
Additionally, the vanishing of A to infinite order at ¢ = 0 proves (3.28). Reversing the
argument, an operator having this mapping property is a smooth family of smoothing
operators on M and thus it has a smooth kernel A on M x M x [0, ¢). The extra vanishing
requirement for its range implies that in fact A vanishes to infinite order at ¢ = 0.
Returning to (3.27), Au is smooth for ¢ > 0 since, as can be seen in (3.25), it is just
the parametric version of the fact that the Heisenberg operators preserve the smoothness.
To prove that Au is smooth up to € = 0 we use the representation (3.26), in which the
kernel A is smooth outside X = 0 and, most importantly, rapidly decreasing as | X| — oo.
Because of this rapid decrease the smoothness of the integral in X and y' follows as in the
compact case, i.e. by integration by parts and symbol estimates. In fact, this proves that
Aw is smooth on M x [0, €9) for u smooth, even without any rapid vanishing assumption on
u. Of course, since any power of € in u can be taken in front of the integral, this also proves

(3.27). O

Vector bundle coefficients can be added without difficulty to the mapping properties
above.

As follows from Proposition 3.13, adiabatic Heisenberg operators can be composed. We
claim that the composite is also an adiabatic Heisenberg operator. Of course, for € > 0 this
is just a parametric form of the composition in ¥%,(M). In fact, this is the case uniformly
to e =0.

First recall from [6] the composition formula for Heisenberg operators. The kernel of
A € U (M) is given in terms of its symbol a € S7*(T* M} by (1.3), which in local coordinates
near the diagonal is written as:

! !
(320)  A(z,y,2,y) = (27)"27=D / oi(E—2) €+ —y)n) a(%i, “Ty £,m) dédn.

Choose now local coordinates z = (z,y) = (t,u,y) on M = S*X better adapted to the
contact structure and to the fibration, i.e. in which a contact form is given by

n—1

a=dt+ ) ydu

i=1

The vector fields 8,, and 8y, — y:0; span locally the contact field, whereas ; is the Reeb
vector field. Instead of the dual coordinates (£,7) = (7,4,7) on the fibers of T*(S*X), we
prefer to work with the symbols of the above vector fields as linear coordinates on the fibers.
In these new coordinates on T*(S*X):

(330) (Z, U) = (t1u7y7T7Can)7 Ci = Wi — T,

the parabolic dilatation is given by (7,¢,n) — (M%7, A(, An), A > 0.
Write a¥ for a in the new coordinates, a” (z,0) = a(z, (¢,7)). The upper and lower part
of the principal symbol of A, lying in the isotropic algebras on the symplectic hyperplane
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bundle W, are then given by:

(331) Tm (A)i(z7 C_v ﬁ) = lim T_m/2 CL#(Z, j:T; 71/257 71/277)

T—00

where (C,7) are local coordinates on W.

In the new coordinates, (3.29) reads as:

(3.32) Az, 2') = (2r)~(2D) / (92,20 a#(Z;Z"U) do,
$(z,7,0) = (z—2) -0+ (u—1) - y;y’T

and

(3.33) a#(z,0) = /ei¢(z+w/2,z-—w/2,o')A(z + %,Z B %) -

It is shown in [6] that if A and B are two Heisenberg operators then so is the composite
C = Ae B. Tts symbol can be computed using (3.32) and (3.33):

(334 H(z,0) = x~(4n=2) [62'5(2102—2201+(U1y2—uzy1)7) a#(t+t1—ul(y+yz),u+u1,y+y1,c+cr1)

b#(t +to —ua(y + 41),u + up, ¥ + y2,0 + 02)dz1dzodo dos.

This expression is slightly different from the one obtained in [6], but only because we use
local coordinates in which the expression of the contact form in not symmetric. We will
however do this computation, or rather a somewhat more complicated version of it, in §4.3.

Let now A € ¥, (M; “Q%,"’Q%) C C_N(Mf,"ﬂé) be an adiabatic Heisenberg operator
on M. As follows from Definition 3.7, the representations (3.24) of its kernel are written as:

z+z y+y
2 7 92

(335) KA(.’L‘, Y, £L", y!’ E) — (2#)‘(2”‘1)/ei((z_zl){/eﬁyﬁyl)'n)a,( €, fﬂ?) dfd'n

in local coordinates near Diag(M) for € > 0 and as

. ’ ,
(336)  A(X,X',y.y,9) = (2m)~Cr7Y / e 0) o (xr VXV ¢ ) dean
in local coordinates near A, U A for small e. Above, a is a parabolic symbol on *T*M and
a(z,y,¢,£,1) is its local coordinate expression at a point v =& 4%1 + nidy; in °T*M.

Take on M local coordinates z = (z,y) = (,u,y) as above in which the adiabatic

contact form is given by
n—1

- dt du
=afe=—+> y—.
& = afe S =
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As in (3.13), the induced coordinates on M? near A, U A are:

(T, T',U,U,y, y',e)  with

tFt’,T,:t+t',U:u—u’7U,:u+u’-
€ 2 € 2

T =

Also take (z,¢,0) as coordinates on ®T* M, where (z,0) are given in (3.30).

By analogy with (3.32), writing (3.35) and (3.36) in the new coordinates gives

z4+ 2
2

Henr06) = Bz, 2,5) with 5=(T, %)

(3.37) KA(Z, ZI,€) — (271_)*(271—1) /ei¢(zgz’,a,ﬁ) a#( ,E, o—) do-’

and
(3.38) AT, T, UU y,y €)= (277)_(2”—1) /ei"b’(z’z"") a#(Z',e, a) do,

!
) and ¢'(Z,Z',o):Z-a+U-y+y7'.

Z:(T’Uay_y,)a Z’=(T,5U’7 9

y+y
2

Taking Fourier transform in (3.38) and (3.37) gives a# in terms of A:

(3.39) a?(z,¢,0) :/e_i¢'(z’z’“) A(T,t,U,u,y + g,y - g,e) dz, Z = (T,U,v)
and of K 4:
(3.40) a¥(z,¢,0) :/e_w’(z’z"}) Ka(z+ g,z - g,e) dZ,

Z = (T,U,v), Z = (eT,eU,v)

Finally, the adiabatic Heisenberg operators form an algebra:

Theorem 3.14. Adiabatic Heisenberg pseudodifferential operators are closed under compo-
sition:
! ’
Uy o Uy C U™

and the principal symbol map in (3.21) and the normal operator in (3.23) are algebra mor-
phisms:

Um+m’(A o B):I: = Um(A):I:#O'm’(B):I:,
N(AoB) = N(B)o N(B).

Proof. For the composition, it suffices to consider kernels supported near A, U Ag. As
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follows from (3.25):

S

d:
KAOB(:E)yJ‘T")y’?E) :/KA('T7y!$”7y"’E) KB(:L‘HJy”VI”y"IE)l ’:;dy”‘
c
and lifting to M2:

(Ao B)(X, X', y,y,€) = /A(X -X" X'+ ';-X”,y,y",e)-

BX", X' = =(X = X"),y",y/, ) dX"dy"].

The same computation as in (3.34), i.e. rewriting the previous expressions using (3.37)-
(3.40), shows that the kernel of C = A o B can be represented in the form (3.37), or
equivalently (3.38), with ¢# given by:

—fdn— 2 _ e
C#(Z, 60) =m {4n 2)/6 ilz102— 2201 H{u1y2—u2p1 )7) a#(t+et1—eu1(y+y2),u+eu1,y+ey1,a+al)

b#(t + ety —eua(y + y1),u + eun, y + ey, 0 + o2)dz1dzada do.

This expression is uniform in € up to € = 0 and hence the argument in the non-adiabatic
case can be implemented without change. See [6] and a version of it later in §4.3. Briefly,
one needs to understand the behavior of ¢# near the parabolic cosphere bundle, i.e. to
understand the limit in (3.31). The stationary phase lemma is employed for computing the
limit and it also gives the isotropic composition of the symbols as stated in the statement.
For the composition of the normal operators, take ¢ = 0 in the expression of ¢# and keep the
first coordinate, z, in 2z = (z, y) fixed. The composition of normal operators is obtained. O

3.7 Ellipticity and invertibility

Proposition 3.15. Let A € ¥73, (M) be fully elliptic, i.e. it has invertible principal sym-
bol om(A)x € V(W) in the isotropic algebra and invertible normal operator N(A) €
Ui (TX xx 8*X). Then there exists a parametriz B € U7 such that:

AoB~1Id, BoA—1Id € eV 2(M).

Moreover, A restricts to be invertible in the adiabatic Heisenberg algebra on M x [0,€1) for
some €1 < €g.

Proof. The general parametrix construction can be implemented here, using the invertibility
of both ¢,,(A) and N(A), to reduce at each step the order of the error and increase its
vanishing order in . More precisely, by Proposition 3.9, Remark 3.10 and Proposition 3.12,
there exists an operator By € ¥_7'(M) with

0_m(Bo)s = 0m(A);' and N(Bp), = N(A);!, Vz c X.
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This gives an error
Id —AoBy=¢R, ¢ E\I‘;;](M)

Assume now that B; € \I’;}T’g"(M), J
reduce the error to:

0,...,k — 1, have been constructed to further

Id— Ao (By+eBi+-- ¥ 1B,_1) = Ry € FUE(M).
Again, by the invertibility of o,,(A) and N(A), there exist By, € Vo k(M) with
Omt(Bi)x = om(A) T #0_(Rr)= and N(By)y = N(A);'o N(Rp)s, Vo e X

This gives the next step in the induction and the asymptotic sum of 5By, k € Ny, provides
a right parametrix and, as usual, also a left parametrix.

For the second part, recall that the remainder R = Id — Ao B € €*V_ (M) is a
smooth function on M x M x [0, €) (and also on M?2) vanishing to infinite order at e = 0. In
particular, its norm can be made arbitrarily small by restricting to [0, €1) for small enough ;.
Consequently, Id— R is invertible, for example as an operator on C®(M x[0,¢€;)). Moreover,
its inverse is of the form

(Id-R)y™'=Id- R

with
R'=-R-R*+RRR.
Proposition 3.13 implies that RR'R is maximally residual and hence R' ¢ ¥ _°(M).

Thus Id - R’ is in the adiabatic Heisenberg algebra (on M x [0,€1)) and B' = Bo (Id - R')
is the required inverse of A. 0

The proof above can be adapted to show that a similar result also holds for Toeplitz
operators:

Proposition 3.16. Let S € I, (M) be a generalized Szegé projection and SAS € 17 (M)
o fully elliptic Toeplitz operator, meaning that the principal symbol is invertible on the range
of s = 0p(S) and normal operator is invertible on the range of N(S). Then SAS is invertible
as a Toeplitz operator on M x [0,€1) for some €1 < €.



Chapter 4

Degeneration of the Szegé projection and
the push-forward map

In defining the adiabatic Heisenberg operators in the earlier sections only the canonical
contact structure on S*X has been used. On the other hand, as will be recalled in the next
section, if X is real-analytic and a real-analytic metric is given on X a complex structure
can be introduced in the neighborhood of the zero section in 7*X such that the sphere
bundles S{X in this metric carry a strictly pseudoconvex Cauchy-Riemann structure. The
underlying contact structures of these CR structures are all contactomorphic with the one
on §™X.

The initial objective of the current chapter is to put together these notions, the adiabatic
structure on §*X x [0,¢) and the CR structures on S*X, 0 < ¢ < €. An adiabatic
Szegb projection S is then constructed in 9, which for positive €'s restricts to the Szegd
projection on S;X and has as limit at ¢ = 0 the model ones on B" x S™ 1. The existence
of 5 allows us to use the adiabatic Heisenberg calculus to prove that the push-forward map
1S an isomorphism for € small.

4.1 The Cauchy-Riemann structure

Suppose that a real-analytic structure refining the differentiable one has been chosen on
X this is always possible as follows from Nash [16]. By a result of Bruhat and Whitney
[3], X, as a real-analytic manifold, can be embedded as a totally real submanifold in an
n-dimensional complex manifold X, the complexification of X. In fact, Grauert [7] proves
the existence of a smooth strictly plurisubharmonic function p = 01n a neighborhood of X
such that X = p~(0); in particular the tubes p=1([0, ¢), called Grauert tubes, are strictly
pseudoconvex. As shown by Guillemin-Stenzel [9] and Lempert-Szoke [12], this complex
structure can now be transferred to a neighborhood of the zero section in T*X such that
the Grauert tubes are exactly the co-ball bundles associated to some given real-analytic
metric on X.

More precisely, following [9], let & : T*X — [0,00) denote the square of the length
function, A(¢) = [¢[?, for some real-analytic metric on X , also denoted by h. Also consider
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the involution o : T*X — T*X, o(€) = —¢. Then there exist a o-invariant neighborhood
U of X in T*X and a unique complex structure on U such that

(4.1) o is anti-holomorphic,

(4.2) ~Imdh=f=) &dz,

(this complex structure is in fact the conjugate of the one originally introduced in [9]).
Additionally the inclusion ¢ : X — U C T X is an isometric embedding, where on U the
Kahler metric given by the Kahler form w = df = {d3h is considered.

For € > 0 small enough, 0 < € < €y, the co-ball bundles
B X = {h(x,8) <€} CU

are strictly pseudoconvex. The strictly pseudoconvex CR structure induced on their bound-
aries, S;X, is defined by the n — 1 rank complex subbundle

THS!X = 7B X|s:x N C®TSIX.
Set TO!S:X = T19S*X and note that T19S!X @ TO!S*X = C ® ker o, where

(4.3) o, = i0g

sex = —i0g|s:x = —Imdg|s:x = Bls:x

is a contact form on $X and ker a C T'(S!X) the contact hyperplane field. Also denote by
Je the restriction to ker o, of the complex structure on U C 7" X and by g, the restriction
to S7X of the metric on U.

As (4.3) shows, the main consequence of (4.2) is that the contact structure on S}X
as a strictly pseudoconvex CR manifold (given by a.) agrees with the one induced as a
submanifold in T X (given by Bis:x).

We will next transfer these CR structures on S;X, 0 < € < ¢ to an adiabatic family of
CR structures on $*X = (T*X \ {0})/R.. First note that the canonical projections

P SIX & §*X

are contact diffeomorphisms for each € > 0. Also note that the homogeneity of the length
function A : T*X — [0,00) and the definition of a, imply that the contact forms a./e are
all mapped by p.’s into the same contact form o := (p;})*{c./€) on $*X. In fact, as shown
in §3.1, @./€® extends to an adiabatic contact form

&:S*X x [0,¢9) = *T(S*X), & = (p71)*(e/€?).
We can use now the 1dentification
(pe)s  kerae C T(S:X) — kera, C *T(S8"X)], 0 < € < eg,

to transfer the complex structure J, on ker o, to a complex structure :7; on ker &, for each
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positive e. Of course this just introduces a strictly pseudoconvex CR structure on each copy
of $*X in §*X x (0,¢). Our objective is to show that it is well-behaved as € N 0:

Proposition 4.1. .J extends to a complez structure on ker& up to € = 0. Moreover, at
¢ =0, st induces for all z € X the CR structure on 13X x S1X associated as in §2.2 to the
metric hy on Ty X.

Proof. Denote by V' the set of vector fields V' in the interior of B, X C T™*X tangent to
each S{X, such that V’ = 0 at the zero section in T7*X and 8(V’) = 0. Note that

JvieV, vvieV.

They all lift to be smooth adiabatic vector fields on §*X x [0, €0); this can be seen by
identifying S*X x [0,€p) with the blow-up of the zero section in T*X and checking the
statement in local (polar) coordinates. We use the same notation, V', for their lifts. They
do not span all of V,, but they span over C*®(8*X x [0,€p)) the set V! C V, of those
annihilated by &, i.e. each V' € V! can be written as a finite sum:

(4.4) V=>"aV], VeV, a €C®SX x[0,e)).
The complex structure J can now be extended from V' to V!:
V=% aiv,, VeV

It is well defined since for € > 0 we recover the J introduced above; hence two representation
(4.4) give the same~jV for ¢ > 0 and by continuity also at ¢ = 0. Being linear over
C®(S*X x [0,€p)), J descends from V! to a smooth complex structure on the hyperplane
bundle ker & C *T(S*X).
For the second part fix e = 0 and £ € X. A verification in normal coordinates at
proves the statement.
O

4.2 The adiabatic 8, complex and the Szegb projection

The definition of the 8-complex on CR manifolds works in the adiabatic context without
change, ie. the adiabatic contact form, &, the adiabatic complex structure, J, and the
adiabatic metric are used instead to construct the exterior powers 2AP(S*X), 0 < g < n— 1,
to endow them with Hermitian metrics and represent them as subbundles of the complexified
adiabatic exterior powers of Chapter 3, ®A%(S*X) @ C.

For 0 < g < n — 2, the 8, operator on (0, ¢)-forms is given by

By : CF(S™X x [0,60), "A%) —> C®(S*X x [0, ), *A%H),  F, = My 0d,

where d is the differential in (3.4) and II, the orthogonal projection from CAIS*X) @ C
onto *A%9(S*X).
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It is not hard to see that 9, is an adiabatic Heisenberg operator of order 1. At each
¢ > 0, 0 restricts to J,, the operator associated to the CR structure on SgX. The normal
operator N (3p)¢ is, for each 2 € X , the translation invariant Fpon Ty X xSEX 2 R? xS™ L
Similar statements hold for its associated Laplacian, L.

Proposition 4.2. Forn > 3 and 0 < g <n — 1, Dg’q is invertible as an element of the
adiabatic Heisenberg algebra on M x [0,€1) for some €1 < €.

Proof. Follows from Proposition 3.15 and the invertibility of the normal operator given in
Lemma 2.7. 1

This allows us to define the (adiabatic) Szegd projection on M x [0,¢1) by:
S=1d— 9,0y 19, € V) p(S*X).
Of course, as follows from the above formula, for each e positive the restriction of S to
$*X x {e}:
S, € U%(S*X)

is the standard Szegd projection associated to the CR structure on S¢X. Also its normal
operator is a family

N(8); = 5% € U2 (T,X xS;X), zcX
of translation invariant Szegé projections as in §2.2. This concludes:

Theorem 4.3. For n > 3, the family of Szegd projections Se on the the co-sphere bundles
S*X, e > 0, extends to € =0 as an element of v (S*X).

4.3 The push-forward map
Given a metric g on S*X consider the push-forward:
P:C™(S*X) = C®(X),

Puo) = f_ ule)ldoswl, w€ X

defined as fiber-wise average. The density |dg,| is defined by the restriction g, of the metric
to the fiber S:X. Also consider the pull-back:

P*:C®(X) » C°(S*X), P*f=fo¢

In this section we are interested in understanding the maps PSP* and SP*PS as ele-
ments of the pseudodifferential calculus on X and of the Heisenberg calculus on S$*X respec-
tively. Using the tools developed in Boutet de Monvel and Guillemin [2], Guillemin (8] has
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shown that these operators are elliptic and concluded that P is Fredholm on the range of §.
We are going to reprove this using the calculus of Epstein and Melrose (6] and extend it to
the adiabatic setting in the next section. In fact, slightly more general, we will consider the
maps PAP* and AP*PB for A,B ¢ I_?_(S*X ) elements of the Hermite ideal and identify
their symbols in the isotropic calculus.

Since we want to avoid the theory of Fourier integral operators with complex phase, we
will show first that PAP* and AP*PB have the right wave front relations and then, by
localizing near points in $*X in the positive contact direction, that their singularities are
of the expected type.

We have for A ¢ Z9(S*X):

WE'(A) C LT xg«ex LT C T*(S*X) x T*(S*X)
and for P and P*:

WE(P) = {(v;¢") : 7 € T"X\ 0} = {(2,£), (z,5,£,0)} C T*X x T*(S"X),
WF(P*) = {(¢"7,7) : ¥ € T"X\ 0} = {((=,1,£,0),(z,6))} C THS*X) x T*X.

Denoting by €' C T™X x T*(S*X) and C* C T*(S*X) x T*X the graphs of the identity
map:
1d:T*X\0—= LT, (z,€) = (2,[£],£,0)

we get by composing the above relations:

WF/(PA) C C CT*X x T*(§*X),

45
(4:5) WF'(AP*) C C* C T*(S8"X) x T*X

and finally:

WF'(PAP*) C Diag(T*X \0) C T*X x T*X,
WF'(AP*PB) ¢ Diag(L) C T*(S'X) x T*(S*X).

Proposition 4.4. If A € T}  (S*X) then PAP* ¢ \I""T_l(X) and
o o2 (PAPY) = [ oo(A)lv i € 0¥(s7X, 17
1%

where V — S§*X is the Lagrangian subbundle of T*(8*X)/L ® L3 given by:

1
Viwy =Ty X/Lyy ® Ly, (z,y) € S$*X

n—1

and piry € C°V3y, Q@ L2 ) is the lift to Vi of the density |dg.(y)| on T,(SLX).

Before proving the proposition, the statements above need to be understood canonically.
First note that T3 X//L;, ® L, is canonically isomorphic with T,(S:X); in general, for an
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oriented line in a vector space L C W and y € SW the class of an element in L, the
isomorphism is given by:

W/Le L™ 5w @™ —veT,(SW)
v(f) := 85 f([l + sw])|s=o, for any f e C(S*X).

Thus dh,(y) lifts to a density pf, , on TiX/Lyy® L;y which in turn can be seen as the

n—1

density pzyon Voy =T; X/Lyy ® ngj with coefficients in Lz3 ):
pry(Vi AL Avg ) (7)) = ,ugjy(l*(vl) A AT*(vn)), YITeL™\0.

We still have to check that sections of L=™ — S*X are naturally the principal symbols
of pseudodifferential operators of order m on X. If s is a section of L™ define on 7% X:

a(y) = s(ID) - [yI)™, v € Liy\0 € T°X, 1" € Ly \ 0.
Note that a is well-defined by the homogeneity of s and that it is homogeneous of order m.

Proof of Proposition 4.4. Formally for the beginning, the kernel of PAP* can be written as
(16) PP )| = [ / 2,9, ') lda’ o ldga (9)]

The wave front relations (4.5) show that the only non-rapidly decreasing contribution of A
to the full symbol ¢ of PAP* at a point £ € X in the direction { € TxX is given by the
singularities of A near the point (z,y,z,y) with y = [¢]. In other words, for computing

¢z, &) we can localize A near the point (z,y,z, y), y = [€], in (4.6). Using local coordinates
on $*X adapted to the contact structure, as in §3.6, and expressing A in terms of its symbol
a we get:

Lt a . t
PAP (t+§,u+§,t—§

| e

Ju—z) = (2r)~(n1) / Tt o (¢, y, 7, 4, m) dT dudn dgs (y)

2

and taking Fourier transform in (%, %):
) = [ 6wy =9,0) o)
Evaluating at the center of the coordinate system in the positive contact direction gives:

¢(0,0,7,0) = f (0,0, 4,7, —79,0) |dgs ()]

and after a change of variables y = —7~ /2

¢(0,0,7,0) = 77"F / a* (0,0, =7~ 25, 7,77, 0) |dgs (v 7/%5)|
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Taking 7 — oo we recover, via (3.31), the symbol in the statement. O

Proposition 4.5. Let A, B ¢ IEL(S*X) be elements of the Hermite ideal. Then AP*PB ¢
Z."YS*X) and

(4.7) o ni1(AP"PB) = oo(A) # Q# ay(B) € W (W, L")

where @ it the operator with Schwartz kernel identically 1 (on W), i.e. the projection on
constant functions.

Proof. Since the wave front set of AP*PB turns out to be concentrated on the contact line

bundle we can localize near a point in §*X and it will suffice to understand its symbol in
the positive contact direction. We have modulo smoothing operators

w

(AP"PB)(z+ 3,2~ 5)

= /A(z + %, z')x(y' —y")B(z", z - %)dt'dz'dy'dy”
where 2’ = (¢',4/,y'), 2 = (¢,v/,4") and x is compactly supported near 0 with x(0) = 1;
also set v = y' — y" and we will always identify v = z' — z”. Hence the symbol p(z,0) of
AP*PB is given via (3.32)-(3.33) by:

p(zag) :(27r)—(4n~2)/e—i¢(z+w/2,z—w/2,a’)+i¢(z+w/2,z',o’)+i¢(z’—'u,z—w/Q,cr”)
(4.8)

2 ! h— —w/2
a(%i, o) x(v) b(z Y +22 w/ ,0")dz' dvdo’do” dw.

Changing the variables from 2/, w, o', 0" to:

—z+w/2+ 2 —z+2 —v—w/2 , "
=, Zp = y 01 =0 —0, gy =0 —0O

2 2

(4.8) becomes:
plz,0) = a2 /e—iv(n+n1 +12)42i (2102 — 220y +u1(y+'yz)T2—u2(y+y1)T1+('u,1y2—'u,gyl)-r)
a(z + 21,0+ 01) x(v) b(z + 22,0 + 03)dvdzdzodor doy
and further changing #1,¢y to 1 — u1(y + y3) and £y — uz(y + y1) respectively:
p(z,0) = n—(7=2) fe2i(zlag—1201+(u1y2uzyl)T) a(t+t1 s (y-bya) -t g o)
X(n+m +n2) bt + b3 — ua(y + y1),u + vz, y + Y2, 0 + 02)dz1 dzedo dos.

We rescale o) and g3 by a factor of 7 to o1 = 70,09 = 702 and apply the stationary
phase lemma to the integral in 71,72 2y, z,. The phase function

207" —tart tuy - oy e by — g )T
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: : _ _ 1 _ 2 _ _ _r1 _ /2 — nl — 2 :
is stationary at t1 =t =0, 7" =7 =0,y =—CLy=-C,ma=n,u=19" Rescaling
back by a ~1/2 factor:

C'l — 7_—1/25/, C2 _ 7_-—1/25/1’ 771 — 7;1/2,,71, 772 - 7‘—1/27_]"

after applying stationary phase lemma we get:

plz, 7, 7V2E, 7Y/27) ~ 220 () / 2T T T2 + 7 + "))

aft = V2 (g — 7 w72y — T P ), )
bt — 72" (y — 7 2w 2y — T A A O )
déldc_ﬂdﬁldﬁﬂ

(and lower order terms)
Since ¥(T2(7 + 7 + 7)) ~ (ZW)”_lT”n_;lé(ﬁ + @ +7") as T — oo we get from the
above expression:

o_nt1(APP*B)(z,{,7) = 23”_17r_”+1/6_2%"7”*2"3”’7’

o0(A)(z ¢ + &7 + )8 + i + 7" oo(B)(2,C+ "+ 7"yd¢'d(" diy dif”

(4.9)

To show (4.7) one just has to check that in the isotropic calculus the symbol of the operator
oo{A) Q op(B) is given by the right-hand side of the above expression. O

Taking A and B in the previous propositions to be a generalized Szegd projection gives:

Corollary 4.6. If S is a generalized Szegd projection, SP*PS ¢ I;"H(S*X) is an elliptic

Toeplitz operator on $*X and PSP* ¢ \IJ_%I(X) is an elliptic pseudodifferential operator
on X. In particular, P SC®(8*X) — C®(X) is Fredholm.

Proof. The symbol of SP*PS, given by (4.7), is just a positive multiple of s and hence
invertible (on the range of s), i.e. SP*PS is elliptic. the principal symbol of PSP* is, at
each point in $*X, a positive multiple of [ e~ l<I? d¢, hence non-vanishing. O

4.4 The isomorphism

The results in the previous section, especially Corollary 4.6, extend to the adiabatic case.
Consider the lift of the metric ge of §4.1 from S*X to $*X and let P. be the push-forward
map of the previous section associated to the metric g./€2 on $*X. We will denote by P
their family and also use the same notation for the push-forward map in the translation
invariant case, R® x §*°1.

Proposition 4.7. Let S be the Szegd projection of Theorem 4.3. Then

n—1

SP*PS € I, (S*X), PSP e ¥, 7 (X)
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and both are elliptic. Moreover, for cach © € X, the normal operators satisfy
N(SP*PS), = N(8)e P*PN(S)z, N(PSP"); =P N{(S)z P".

Proof. For ¢ > 0, the above statement is contained in the previous section. The statement at
and near € = 0 follows from the study of the Schwartz kernels near ff(M2) and, in fact, local
coordinate computations near ff (M2) are enough. S5 1s completely described above and P
has a simple form. The same computations as in Propositions 4.4-5, but using (3.37)-(3.40)
instead of (3.32)-(3.33), extend the statements from e > 0 to ¢ = 0.

This gives:

Theorem 4.8. (n > 3) There exists € > 0 such that SP*PS and PSP* are invertible
in the adiabatic Heisenberg algebra on $*X x [0,€1) and in the adiabatic pseudodifferential
algebra on X x [0,¢1). In particular for each 0 <€ < e, Fe: 5.0%°(S:X) = C°(X) is an
isomorphism.

Proof. Follows by Proposition 3.16 and the corresponding result for T*(X) from the ellip-
ticity as adiabatic operators and the invertibility of their normal operators, i.e. invertibility
in the model case. A
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Appendix

As an example, the adiabatic limit construction is briefly described here for the torus
X =R"/(2aZ)™. The complex structure on T*X = R™/(2xZ)" x iR" is the one inherited
as a quotient of C*. We use y,dz; <> z —iy to identify T* X and C*, instead of the conjugate
map, yidx; <  + 1y, used in the previous chapters.

Since the push-forward map is an isomorphism in this case for every radius (as can be
easily seen by Fourier series expansions), we will concentrate on the degeneration of the
Szegd projections as the Grauert tube shrinks.

More precisely, we will rccover a family of translation invariant Szeg6 projections on
R" x §"1, each with Schwartz kernel on B* x §*~1 x §"~! given by (see §2.2):

(A1) S(X,,Y") = (ZW)‘"/ eiXegveye 1 de, |Y)|=|Y'|=1,
n 1(2¢)
10) = e Ifagny = [ e
[w|=1

as the adiabatic limit at € = 0 of the Szegd projections S, on R*/(27Z)™ x ST 1;

(A-Q) S, (:Z', I’, Y, y') — Z eik(a:-f—iy)e—ilc(z’—iy’)

k=—-c0

1
(2m)nen—17(2¢k)

with z,2' € B*/(27Z)", v,/ € B, [y = |y'| = .

Rescaling y = €Y, ' = €Y', we land in the setting of the previous chapters, namely
a family S, of Szegd projections on a fixed manifold, R"/(27Z)" x §"~1, associated to a
varying CR structure. After a second change of variables X = (z — z') /e, X' = (z + 2')/2,
corresponding to the blow-up in §3.2, the family S, becomes:

n. oo i
i > S(ek, Y, Y X X' e RY/(20Z)", Y, Y € §™

k=—0o0

€
(27

S(XaX,:KY’aE) =

periodic in X € R" of period 2n/e. Above, §(, Y,Y’) stands for the Fourier transform of
(A.1) in the X-variable, i.e. the indicial family of the translation invariant Szegd projection
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on B x §"~1. Then Poisson’s summation formula (see [10]) gives:

s 27k
S(X,X"Y,Y' e) = X+— YY"
(XX VY= ) S(X+==,Y.Y)

k=—o0

To make sense of the sum above (as a periodic tempered distribution with period 27 /e in
the X variable) recall that S(X,Y,Y”’) is smooth outside the ‘diagonal’ {X = 0,Y =Y"'}
and rapidly decreasing as |X| — co. In particular it can be written as a sum of a rapidly
decreasing function and a distribution supported in a neighborhood of X = 0. This justifies
the sum. Taking the limit (in §’) as € — 0, we finally get:

S(X,X',Y,Y',0) = S(X,Y,Y'), VX' cR/(2xZ)".

Important parts of the general construction are not apparent here, mainly because S¢
is translation invariant in this example even for € > 0.
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