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Abstract

This thesis is organized into two papers. All results are proven over an
algebraically closed field of characteristic zero.

Paper 1 concerns morphisms between hypersurfaces in P*, n > 4. We show .
that if the two hypersurfaces involved in the morphism are of general type,
then the morphism of hypersurfaces extends to an everywhere-defined
endomorphism of P". A corollary is that if X — Y is a nonconstant
morphism of hypersurfaces of large dimension and large degree, then degY’
divides deg X. The main tool used to analyze morphism between
hypersurfaces is an inequality of Chern classes analogous to the
Hurwitz-inequality.

Paper 2 is a long example. We check that every morphism from a quintic
hypersurface in P* to a nonsingular cubic hypersurface in P* is constant.
In the process, we classify morphisms fromn the projective plane to
nonsingular cubic threefolds.
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PAPER 1:
TOWARDS CHARACTERIZING MORPHISMS
BETWEEN HIGH DIMENSIONAL HYPERSURFACES

DAVID C. SHEPPARD

ABSTRACT

We prove the following theorem over an algebraically closed
field of characteristic zero. Let f : X — Y be a nonconstant
morphism of hypersurfaces in P*, n > 4. If Y is nonsingular
and of general type, then there is a morphism F : P* — P
such that F|x = f and F~}(Y) = X. As a corollary, we see
that deg Y divides deg X with quotient m, and f is given by
polynomials of degree m.

SURVEY OF THE LITERATURE

Classically, algebraic geometry has sought to classify varieties. Recently
focus has expanded to include the classification of morphisms between alge-
braic varieties. Qur goal in this paper is to shed some light on what type of
morphisms can occur between hypersurfaces. Let us give some results from
the literature.

In [11], Paranjape and Srinivas show that every nonconstant morphism
between smooth quadric hypersurfaces in P is an isomorphism for n > 4.

Schuhmann shows in [12] that the degree of a morphism from a smooth
hypersurface of degree d in P* to a smooth quadric threefold is bounded
from above in terms of d. For d = 3 she obtains a very good bound on
the degree of possible morphisms and proves that every morphism from a
smooth cubic threefold to a smooth quadric threefold is constant.

Amerik proves in [1] that the degree of a morphism from a smooth hy-
persurface in P" to a smooth quadric hypersurface in P* is bounded from
above for n > 4 using a different argument than [12].

Beauville shows in [3] that every endomorphism of a smooth hypersurface
in " of dimension at least 2 and degree at least 3 is an automorphism.
For this he uses a Hurwitz-type inequality from [2]. We will generalize this
inequality in Section 1.

MAIN RESULTS AND POINT OF VIEW

The main result of this paper is the following Theorem, which we prove
in Section 2.
3



4 DAVID C. SHEPPARD

Theorem 2. Assume the base field is algebraically closed of characteristic
zero. Let f : X = Y be ¢ morphism of hypersurfaces in P*, n > 4. IfY
is nonsingular and of general type, then there is a morphism F : P* — P
such that f = F|x and F~1(Y) = X.

The proof of Theorem 2, and our study of morphisms between hypersur-
faces in general, relies on the following definition.

Definition. Let f : X -+ Y be a morphism of projective k-varieties with
specified very ample invertible sheaves Ox (1) and Oy (1) such that f*Oy (1) =
Ox{m). Assume X is positive dimensional so that there is a unique such
. We will refer to m as the polynomial degree of f, because f is given by
polynomials of degree m.

As a consequence of the Grothendieck-Lefschetz Theorem on the Picard
group, every morphism f : X — Y between hypersurfaces of dimension
at least 3 has a polynomial degree, cf. Lemma 2.1. We will see that the
conclusion of Theorem 2 is equivalent to the following statement: degl
divides deg X with quotient equal to the polynomial degree of f.

In light of this restatement, our first goal will be to bound the polynomial
degree of possible morphisms between two given hypersurfaces. To do this,
we generalize the Hurwitz-Type Inequality of [2] in the case of morphisms
between complete intersections. This inequality gives good bounds on the
polynomial degree of possible morphisms between hypersurfaces of high de-
gree. In particular, if f : X — Y is a morphism between hypersurfaces in P
and Y is nonsingular of degree at least n + 2, i.e. Y is of general type, then
the bound on the polynomial degree of f is good enough to prove Theorem
2.

Acknowledgements. I would like to thank my advisor, A. Johan de Jong,
for his enumerable insights, gentle corrections, and tireless enthusiasm dur-
ing every stage of this project. Thanks also to Roya Beheshti for helpful
conversations about mapping surfaces to threefolds, which lead to Proposi-
tion 2.5.

1. A HurwiTZ-TYPE INEQUALITY

In this section the ground field is algebraically closed of arbitrary charac-
teristic. The main result of this section is the following Theorem.

Theorem 1. Let X be a complete intersection variety in P* and Y o non-
singular projective variety of the same dimension as X. Fiz a very am-
ple invertible sheaf Oy (1) on Y. If f: X =Y isa morphism such that
[*Oy (1) = Ox(m) for some positive integer m and the extension of function
fields k(Y') — k(X) is separable, then

f*ctop (Q;(Z)) S Ctop (Q}(@m)) .
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Theorem 1 is more general than the Hurwitz-Type Inequality of [2] in the
sense that we do not assume the ground field has characteristic zero or that
X is smooth. However, it is less general in the sense that we assume X is a
complete intersection.

It is worth noting that Theorem 1 can fail if Y is singular. For example,
Y could be the image of a hyperplane in P™.

Also note that if X is singular, then £}, (2m) is not locally free. However,
the top Chern class ¢;op (2% (2rm)) 18 defined via a finite locally free resolution
of % (2mn), such as the conormal sequence for X C P".

We give some preliminary lemmas before proving Theorem 1.

Lemma 1.1. If X C P" is a positive dimensional complete intersection and
f: X = PN is a morphism such that f*Opn (1) = Ox(m) for some positive
integer m, then f extends to a rational map F : F" --» PN defined on a
Zariski open set containing X .

Proof. Let &1,...,&: be the homogeneous polynomials that generate the ho-
mogeneous ideal of X, where ¢ is the codimension of X in P™. Let &; have
degree d;, and let X; := V(&,...,&) so that X = X, C --- C Xg = P
The morphism f is given by sections fo,..., fv € H'(X,, Ox, (m)). To lift
f from X, to a rational map on X, ; we need to see that the restriction
map

H°(X.1,0x._,(m)) — H°(X,, Ox,(m))

is surjective. So it suffices to check that H'(X._1,I(m)) = 0, where I C
Ox._, is the ideal sheaf of X, in X._;. Since I = Ox,_,(—d.) is a twisted
structure sheaf and X._, is a complete intersection in ]P’" of dimension at
least 2,

HY (X, 1,I{m)) =0.
So the global sections f; lift from Ox_(m) to Ox,_,(m). Continuing, we lift
the f; to global sections F; of Opn(m). Set F = (Fy,..., Fn) : P? --+ PV,
and note that F is undefined on V(Fy,...,Fx), which is disjoint from X
because F'|x = f is a morphism. O

The following positivity result ‘essentially appears. in [6].

Lemma 1.2. Consider the following fiber square

w — VvV
! 1
s LT

where p: 8 —+ T is a regular imbedding of varieties of codimension i and V
is a k-dimensional variety mapping to T. If NgT is globally generated, then

SV =3 wlR]+P
;
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where the R; are the reduced structures on the (k—1)-dimensional irreducible
components of W, the p; are positive integers, and P is an effective (k ~ i)~
cycle on W.

Proof. We apply a positivity result to the Basic Construction in [6, Chapter
6).

Let N be the pullback of NgT to W. Then N is a globally generated
vector bundle of rank 7 on W, and the normal cone NywV — N is a purely
k-dimensional closed subscheme of N. If ¢ is the zero section of N, then
p*[V]is defined to be o*[Nw V. Recall that [Ny V] is the sum of the k-cycles
associated to the irreducible components of Ny V taken with appropriate
multiplicities.

If Z; is a (k — %)-dimensional irreducible component of W, then Ny V
has an irreducible component C; that dominates Z;. If R; is the reduced
structure on 7;, then Nig, is the reduced structure on Cj because Nl|g, is
reduced and irreducible, dlrnC' = k = dimN|g,, and N |r, contains the
reduced structure (Oj)red So by definition, [C;] = ;[ N|p,], where y; is the
length of the stalk of O¢; at the generic point of C;. Therefore o*[C;] =
1i[R;] because 6*[N|g,] = [R;]. This accounts for the term ) p;[R;] in the
formula for p*[V].

Moreover, o* takes effective cycles to effective cycles because N is globally
generated, cf. [6, Theorem 12.1(a)]. So if C is an irreducible component of
NwV other than one of the C; described above, then o*[C] is effective.
These other components ¢ account for P. O

Lemma 1.3. Let E be a globally generated vector bundle over a variety X.
Let K C F be a closed subscheme with dim K < rank E. Then there is a
section o of E such that o(X) N K is empty.

Proof. Since E is globally generated, there is a surjective morphism of vector
bundles 7 : X x A" — E, where h® := h%(X, E). All the fibers of 7 are affine
spaces of the same dimension. So dim 7~ !(K) = dim K + (h° — rank E). In
other words, h’ — dim 771 (K) = rank(E) — dim K > 0, whence there is a
constant global section 7 of X x A® over X that does not intersect 7 (K.
Take o = mo 7. |

Lemma 1.4. Let0 — L - E — F — 0 be a short exact sequence of vector

bundles on a complete variety X such that rank F = dim X . If E s globally
generated, then for any morphism of vector bundles i : L — E we have

*[i(L)] £ ciop(F)

where o is the zero section of E and i(L) is the scheme-theoretic image of
i: L = E. Eguality holds if i is a closed immersion.
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Proof. First assume that 7 is the given closed immersion L — E. Consider
the fiber diagram
L — X
Li o
x % B % F
where 7 is the zero section and ¢ is the quotient map. Calculate
o"[i(L)] = o*¢"[X]
= (¢ o) [X]
= cop(F).

Ifi: L — E is any closed immersion of vector bundles on X with quotient
bundle Fj, then the last statement of the lemma follows from

o= {25) et

Now assume that ¢ : L — F is any morphism of vector bundles on X.
If dimi(L) < dim L, then o*[i(L)] = 0. So o*[{{L)] < ¢40p(F) because F
is globally generated, c¢f. [6, Theorem 12.1(a)]. Therefore, we may assume
dimi(L) = dim L.

Let ¥ be the zero section of E x Al over X x Al, and let 0; := X|xx;
be the zero section of E x t over X x¢t. Let z; : X xt - X x A! and
e; ' E xt — E x Al be the inclusion maps. These maps fit together in the
following fiber square.

Xxt v Ext

zt le

X x Al Z ExAl
Therefore, £} 5*a = ofeja for any cycle a on E x Al

Let ¢p = ¢, and let ¢; be the given closed immersion L — E with quotient
F. Consider the morphism
I:LxAl — Ex Al
(v,8) — tdp(v) + (1 —¢t)  ip(v)
of vector bundles on X x Al, and let iy = I|px; : L xt — E xt. Let Z
denote the scheme-theoretic image of I, and define
At = ;X[ Z] = o} e} | Z).

The remainder of the proof will rest on the fact that e{[Z] = [i1(L)]. To
see this, note that I is a closed immersion away from its degeneracy locus,
which is a Zariski closed subset of X x A! disjoint from X x 1. So I is
a closed immersion above some Zariski open neighborhood U of X x 1 in
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X x Al. Consider the following fiber diagram
e;H(Z) — LxA!

l T
Ex1 2 ExA!
il l

Xx1 — X xAl

Base change the diagfam from X x Al to U C X x Al. Now all the arrows in
the diagram are closed immersions. Since the outer square is a fiber square,
we obtain
efH(Z)=2Lx1
In other words,
eTHZ)=I(L x 1)
= 11(L)

Because e7'(Z) is reduced at the generic point, we have e*[Z] = [iy(L)],
which implies that

A = o7lir (L))
Now that we have analyzed A1, we will analyze ).

Note that ig(L) is an irreducible component of e;*(Z) because 4g(L) C

ey (Z) and
dime, ' (Z) + 1 = dim Z = dimip(L) + 1.
So by Lemma 1.2, ef[Z] = [io(L)] + P for some effective cycle P. Therefore,
o = aplto(L)] + o P
Moreover, o3 P is an effective O-cycle because E is globally generated.

If o is any cycle on X x Al then since X x A — Al is proper, the degree
of the restriction z}a of a to the fiber X x ¢ does not depend on ¢, cf. [6,
Proposition 10.2]. Take @ = Z*[Z] to see that the 0-cycles A; on X all have
the same degree. Now we can calculate

deg ag[io(L)] < deg A¢
= deg A
= deg o7 [i1(L)]
= Ctap(F).
O

Proof of Theorem 1. Let f : X — Y be a morphism of projective vari-
eties. Assume X is a complete intersection in P" and Y is nonsingular of the
same dimension as X. Fix a very ample invertible sheaf Oy (1) on ¥ with
corresponding projective embedding Y — PV, Assume f*Oy(1) = Ox(m)
for some positive integer m, which implies that f is finite and surjective.
Assume also that f is a separable morphism.

By Lemma 1.1, there is a rational map F : P" --» PV defined on a
Zariski open subset of P" containing X such that f = F|x. This extended
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map F induces a morphism f*(Qpw|y) = Qp.|x, which gives the following
commutative diagram of sheaves on X:

(1.1)

0 — frIy/IZ(2) — [ (Qaly(2) — FRB2) — 0

) 2 I

0 — Ix/I%(2m) — Q.ix(2m) — QLk@2m) — 0
where Ix C Op- and Iy C Opw~ are the ideal sheaves of X and Y. The
bottom row is exact because Ix is the ideal sheaf of a reduced complete
intersection.

To apply our intersection-theoretic lemmas, we transform diagram (1.1)
of sheaves on X into a diagram of schemes over X by applying the covariant
functor

® : {coherent sheaves onX} — {schemes of finite type overX }
F — Spec (Symg, [Homp, (F, Ox)])

where Sym, (—) denotes the symmetric algebra of an Ox-module. If F is
a locally free sheaf, then ®(F) is the vector bundle whose sheaf of sections
is 7. Apply @ to diagram (1.1), and denote the resulting diagram of X-
schemes by

Ly -tl} Ey — Fy
(1.2) Lol
Lx -li} EX - FX
Note that every scheme in (1.2) is a vector bundle on X, except for Fx if X
is singular. Also note that iy is a closed immersion because Y is nonsingular,
and that Fx, Fy are generated by global sections because QL. (a) is globally
generated for a > 2. |
Let ¢ be the zero section of Ey so that ¢ o o is the zero section of Ex.
By Lemma 1.4, ’ o -
(13 et (R4 2)) = o"liv (L)
Let tx(Lx) be the scheme-theoretic image of ix : Lx — Ex. By equation
(1.3), it suffices to show ‘
(1.4) iy (Ly)] < (o o) [ix(Lx)]
(1.5) < crop (25 (2m)) .
To prove (1.4) it is enough to show ¥*[ix(Lx)] = [iv(Ly)] + Py for some
effective cycle Py on Ey. Indeed, o* Py is effective because Ey is globally
generated, whence

o*[iy(Ly)] < o*[iy (Lv)] + o Py
= o p*[ix(Lx)]
= (Yo o) [ix(Lx)]-
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Consider the fiber diagram

Y~ UWix(Lx)) — BEy xxix(Lx) — ix(Lx)

4 + 3

r
Ey _\u> EY X x EX ﬂ) EX

where I'y is the graph of 4. Then ¢ = m3 o Ty, whence
¥ lix (Lx)] = Tym3lix (Lx)]
== P:})[Ey Xx ix(Lx)].
Since I'y, is a section of the vector bundle Ey x x Ex over Fy
P:L(N) =By xx Ex

where N is the normal bundle of T'y(Ey) in Ey xx Ex. Therefore, N
is globally generated because Ex is globally generated over X. So it suf-
fices by Lemma 1.2 to show that iy (Ly) is an irreducible component of
% ix (Lx))-

By the assumption that k(Y) < k(X) is a separable field extension, the
stalk of Q}{/Y at the generic point of X is Qi(x)/k(Y) = 0. Hence there

is some nonempty open U in X such that the restriction of f*Ql. — Q%
to U is an isomorphism of locally free sheaves. So when diagram (1.1) is
restricted to U, the morphism f* (Q,(2)) — QL (2m) becomes an isomor-
phism. Hence Fy — Fx is an isomorphism when restricted to U. It follows
that ¢ ~'(ix(Lx)) and iy(Ly) coincide over U. Therefore, iy (Ly) is an
irreducible component of 9~ (ix(Lx)). This establishes equation (1.4).

To prove equation (1.5), it suffices by Lemma 1.4 to show that there is a
closed immersion Ly — Ex of vector bundles, i.e. that there is a morphism
of locally free sheaves Ix /1% — QL.|x with empty degeneracy locus.

Let X be cut out by homogeneous polynomials &;,...,&. where ¢ is the
codimension of X in P". Let a; = deg¢; so that

Ix/fz =~ @0){(—&,‘).
i=1

By decreasing n if necessary, we assume a; > 2 for each a;. If ¢ = 0, then
there is nothing to prove, so assume ¢ > 0. We will construct a morphism
@ Ox(—a;) = Qp.|x with empty degeneracy locus one summand at a time.

Since a; > 2, the locally free sheaf 3.|x(a;) is globally generated. By
Lemma 1.3, the rank n vector bundle @ (€2}.|x(a1)) has a section that
avoids the zero section. Hence there is a morphism o1 : Ox — Qh.|x(a1)
with empty degeneracy locus. Tensoring oy with Ox({—a;) gives a morphism
¢1 : Ox(—a1) = Q.| x with empty degeneracy locus. If ¢ = 1, we are done.

If ¢ > 2, then let ¢} : Ox(az — a1) = Q}.|x(a2) denote the morphism
obtained from ¢; by tensoring with Ox{as). Since n > n — ¢+ 1 and the
image of ®(¢}) has dimension n — ¢ + 1, Lemma 1.3 implies that there is
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a section of @ (2}.|x(az)) that avoids the image of ®(¢}). In other words,
there is a morphism a3 : Ox — Qp.]x(az) such that

P o2 Ox(az — a1) ® Ox = Qpa|x{as)

has empty degeneracy locus. If ¢y : Ox(—a2) = Q. |x is obtained from
a5 by tensoring with Ox(—as), then tensoring the above morphism with
Ox (—az) yields a morphism

$1 @ 2 : Ox(—a1) ® Ox(—az) — Opn|x

with empty degeneracy locus.
Continuing like this, we obtain a morphism @ ¢; : @ Ox(—a;) — Q. |x
with empty degeneracy locus. This completes the proof of Theorem 1.

2. MorpHISMS BETWEEN HYPERSURFACES

We will apply Theorem 1 to the case of hypersurfaces in P*. We fix
the notation and assumptions of the following discussion for the rest of the
paper.

Let f : Xy — Y. be a nonconstant morphism of hypersurfaces of the
indicated degrees in P*, n > 4. Assume X is integral and Y is nonsingular.
We also assume e > 3 because the inequality of Chern classes in Theorem 1
only gives good information in this range.

The Grothendieck-Lefschetz Theorem, [8, Theorem 4.3.2], states that
Pic X is generated by Ox(1). Therefore, f*Oy (1) = Ox(m) for some non-
negative integer m. Since f is not constant, the polynomial degree m of f
is positive.

As f*O(1) is ample, f is finite. Therefore, f induces a finite extension of
function fields. We assume that the extension k(Y) — k(X) is separable.

Now we introduce a hypersurface A that will be central to our study of
f:X —= Y. By Lemma 1.1, the morphism f : X — Y of Theorem 2
extends to a rational map F : P* --» P" defined at all but finitely many
points away from X. Since e > 3, Y is not the image of a hyperplane in
P". because the only smooth variety that is the image of a morphism from
a projective space is projective space itself, cf. [10]. Therefore, Y is not
the image of F : P? --» P*. Hence, F' is dominant because its image is
irreducible and contains Y. It follows that F~!(Y) is a hypersurface in P™.
Since X C F~!(Y), we may define the hypersurface H in P™ as the difference
of divisors

H=FYY)-X
We will study H because F~1(Y) = X if and only if H = 0 as a divisor on
P", i.e. H is empty.

2.1. First Calculations. The ground field will be algebraically closed of
arbitrary characteristic in this subsection. We will derive closed formulas for
cno1 (% (2m}) and f*cn—1 (24(2)). So consider the short exact sequences

0 — Ox(—d) — . — 0L —0
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0 — Q. — Op (-1)®" — Op. — 0

Let h:=¢1(Ox(1)), and calculate the total Chern class of QL to be

. n+1
e(a) = S
n—1 n—1
= (Z (njl)(—h)i) _ (Z(dh)j
i=0 =0

The i*! Chern class of ) is therefore given by

e (04) =1 319 (")

The usual calculation with Chern roots shows

(2.1) en—1 (24 ( (2m)) Z )(2mh)" 1
i=0

(2.2) - hn-lnzu (n—H)dl i (2rmyn1-

1=0 j=0

Notice that for each pair of integers a,b such that @ > 0, & > 0, and
a+b < n—1, the monomial d**1(2m)® has coefficient (—~1)" ("%') in (2.2),
where N =n — 1 — a — b. Therefore, we introduce the notation

Oy(z,y) =" +2¥ Ty oy 4N

and use the observation A"~1 = d to obtain

Cn—1 (QX Zm Z (n + l)éﬂ_l_k(d, 2m).

k=0
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We continue the calculation of ¢,_1{€2%(2m)) as follows.

ey (@kom) = 3o (1) (2

k=0

= e (e

=0

n

3=0
(2m)(a!1 — 2m) {ng(—lr (” j 1) drti-e
_ d§(_1)j (nj- 1) —

+ (=1)"*(d - Zm)}

_2m(d - )" —d(2m — 1)V 4 (1) (d — 2m)
N 2m(d — 2m)

Introducing z = 2m — 1 and y = d — 1, we calculate ¢,—1 (24 (2m)) to be

ey (R (2my) = EHDYT = D+ ()Y —0)

@+ )y =)
_zy(y" —2") + (" — 2™ 4+ (1) (y — 2)
B (z +1)(y — )
_ 2y®u-1(z,y) + Bn(z,y) + (1)
z+1
_zy®ui(r,y) + 1 (Paoa(zy) + L) + (1)
z+1
_ 2y + D)®ua(z,y) +y" + ()
z+1

Therefore we obtain the formula
(2.3)

Cn—1 (Qk(Zm)) =

d2m — 1)@, 1(2m —1,d = 1)+ (d — 1) + (=1)"*!
2m
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By taking m = 1 and substituting e for d in formula (2.3), we have a formula
for cn—1 (R24-(2)). Therefore, we can use the equations

dmn—l

T QY(2)) =deg f "L (4(2))  and  degf =

to derive the following formula for f*c,_; (Q(2))
(2.4)

fren-1 (2 (2) =

dm™ ! fe ®,_1(l,e—1)+ (e — 1)* + (=1)"*!
e ( 2 )

We will need the following polynomial fact in the proof of Proposition
2.2.

Lemma 2.1. If x, y are positive real numbers with z > 3, N > 3 is an
integer, and @y (y,2) > (z + DY + 1, then y > .

Proof. Since ®n(y,2) increases with respect to ¥ it suffices to show that if
r > 3, then @n5(2,2) < (z + 1) + 1. Notice that the coefficients of the
polynomial P(z) = (r + 1)~ + 1 — ®x(x,2) have only one sign change. So
by Descarte’s rule of signs, P(z) has only one positive real root. Therefore,
since P(0) < 0, it suffices to check that P(3) > 0. One easily checks this for
N > 3. O

Proposition 2.2. In the notation established ot the beginning of this Sec-
tion:

(1) For each triple (d,e,n) there is an integer M = M(d,e,n) such that
m< M.

(2) d>e.

(3) Ifd = e, then m = 1.

(4) Ife > 5, thend— 1> m(e—2).

Remarks. If the base field is C and X is nonsingular, then (2) has the
following proof, which is independent of Theorem 1. There is an injection
of singular cohomology rings H*(Y,C) — H*(X,C). So in this case, (2) can
be proved by computing the dimension of the middle cohomology groups of
X and Y.

Part (3) is a generalization of the result in (3] that in characteristic zero
every endomorphism of a smooth hypersurface of degree at least 3 and di-
mension at least 2 is an automorphism. We only assume X and Y have the
same degree, not that X = Y, and we do not assume characteristic zero,
only that the morphism is separable. The case n = 3 can be checked without
much work using Theorem 1.

Part (4) will be needed for the proof of Theorem 2.

Proof. Theorem 1 states (2.3) > (2.4). Dividing both sides of this inequality
by dm™ ! results in

_ d—1 2m—1 d—1 1 [fd—1\"" —1)nt!
2m 1@n—1( m )+ ( ) +( )

2m m ' m d 2m\ m 2rmnd
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(e —1)" + (—1)n+

1
2 _@n—l(e -1, 1) +

-2 2e
Using 4 < 1, combine the first two terms in the above inequality to see
d— (e—1)" + (—1)"!
Py | —,2 —<I>n_ -1,1
1 ( — ) > 3 1le—=1,1) + oo
_1f(e-1"-1 N (e — 1) + (1)1
- (e—-1)—-1 2e
_ 2e—1)" —et (1)l (e~ 2)
- 2(e - 2)
_ n+1
L =)™ —(e—1)
- e(e - 2)
Since we assume e > 3, this implies
d—1
(2.5) D, 1 (T, 2) > (6 — l)n_l + 1.

Suppose m were not bounded from above. Taking the limit of (2.5) a:
m — oo shows 2"~! > (e — 1)"~1 + 1. This contradiction proves (1).

To prove (4), notice that if e > 5, then Lemma 2.2 and inequality (2.5)
imply that dm;l >e—2.

If m = 1, then d = e, as follows. Use Lemma 1.1 to extend f to a
rational map F' : P" --» P" with F*O(1) = O(1). The image of F is a linear
subspace of P that contains ¥, namely P" itself. So F' is an automorphism
of P*, and d = e.

To prove (2) and (3) we assume m > 2 and prove d > e. If e > 5,
then d > e by (4). The cases € = 3 and ¢ = 4 can be checked by hand in
case n = 4, and it suffices to check (2) and (3) for the case n = 4 because
the upper bounds on m given by the inequality of Theorem 1 improve as n
increases. O

Corollary 2.3. Let f : X — Y be a nonconstent separable morphism of
hypersurfaces in P, n > 4, such thatY is nonsingular and deg X = degY >
3. There is an automorphism F : P* — P® such that f = F|x.

Proof. By Proposition 2.2(3), f*Oy(1) = Ox(1). By Lemma 1.1, there is
a rational map F' : P* --» P" such that f = F|x. Since F*O(1) = O(1),
the image of F' is a linear subspace of P* containing Y. So F is in fact an
automorphism. g

2.2. Hypersurfaces of General Type. We now assume the ground field
is algebraically closed of characterlstlc zero., The purpose of thls subsechon
is to prove the following Theorem ‘

Theorem 2. Assume the base field is algebraically closed of characteristic
zero. Let f: X — Y be a morphism of hypersurfaces in P*, n > 4, IfY
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is nonsingular and of general type, then there is a morphism F : P* — P
such that f = F|x and F~YY) = X.

The proof will rely on Proposition 2.4 below, which is an inequality that
will bound the polynomial degree m of f from below.

To prove Theorem 2, we focus our attention on the hypersurface H :=
F7Y{Y) = X in P" defined at the beginning of Section 2. In particular, we
wish to show that H is the 0 divisor, i.e. that F1(Y) = X.

Define % to be an irreducible component of a general hyperplane section
of H, taken with its reduced structure. Then F is defined at every point
of ¥ because F is undefined at only finitely many points in P". We will
analyze the morphism Fly : 3 — Y using the following Proposition.

Proposition 2.4. Let & be an integral hypersurface in P! and Y be a
smooth hypersurface in P*, n > 4. Let 6 = degd, and e = degY. If
g: X — Y is a morphism with ¢*Oy (1) = Ox(m) for some positive integer
m, then

n—48+mle—n) <0.

Proof. First we claim that there is a canonical morphism

n—2
(2.6) N\ Q5 = o,
that is an isomorphism on the nonsingular locus of ¥, where wy, is the
dualizing sheaf of . Let I denote the ideal sheaf of ¥ in P*. Since ¥ is a
reduced local complete intersection in P", there is a short exact sequence
(2.7) 0 —I/I* — Qk.|s — Q% — 0.

Therefore the morphism

2 n—2 n
o (/\I/Iz) ® A\ Ok — AQIs
LA @dA A Adpy o —> dEr NdEg Addr A+ Adys
is well-defined. Using the formula

Wl = (/2\1/12)‘1 ®/n\931,"1g

tensor ® with the dual of the invertible sheaf /\2 I/I? to obtain the mor-
phism (2.6). This is an isomorphism when restricted to Ty, because all
the sheaves in (2.7) are locally free on Xyeq.

Since g*Qy (1) = Og(m) is ample, g has finite fibers. So the canonical
morphism ¢g*Q}, — 0% is a surjection at the generic point of ¥ by the
characteristic zero assumption of this subsection. By taking exterior powers
and composing with (2.6), we obtain a composite morphism

n—2 n—2

A — A0 —wi
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that is a surjection at the generic point of 3. Since ¥ is a hypersurface in
P! of degree 8, w% = Ox(d — n). So dualizing the above morphism gives

the exact sequence
n—2

(2.8) 0— Ox(n—108) — N ¢*Tv.

This is an injection because it is an injection at the generic point of ¥ and
Os(n—4) is torsion-free. Tensoring (2.8) with Ox(m(e—n)—1) and applying
the formula /\"_2 Ty = QL(—Ky) yields the exact sequence

(2.9) 0— Og(n—6+me—n)—1) — (¢*QY) (m - 1).

Tensoring with Oy (—Ky) = Oy (n + 1 — e), the conormal sequence for Y’
in P and the Euler sequence for P" give the following short exact sequences,
respectively:

(210) 0— Oy(n+1-2¢) — QL. @ Oy(—Ky) — QL{-Ky) — 0

(2.11) 0 — Q. @Oy (—Ky) — Oy (n—e)®*t 5 Oy(n+l-e) — 0

Tensor (2.10) and (2.11) with Oy (e — n), apply g*, then tensor with
Ox(—1) to obtain the following short exact sequences:
(2.12)

0— Os(m(l—e)—1) — (g*Qﬂh) (m—-1) — (g*ﬂ%,) (m—-1)—0

(2.13) 0 —> (9*Qp) (m —1) — Ox(-1)®"*! — O5(m - 1) — 0

Since HY(Z, Ox(—1)) = 0, (2.13) yields H° (£, (¢*Q.) (m — 1)) = 0. There-
fore (2.12) implies H° (%, (9*Q},) (m — 1)) = 0 because H' (T, Os(m(l—e)—
1)) =0. Hence n —§ +m(e —n) —1 < 0 by (2.9), as desired. O

Proof of Theorem 2. Suppose that F~1(Y) # X. Then H is not empty,
and Proposition 2.4 implies

n+mle—n) <degX <degH =em —d.

Therefore d < n(m — 1). I Y is of general type, i.e. e > n + 2, then
Proposition 2.2(4) implies d > mn. This contradiction finishes the proof.

Remark. Suppose the ground field ¥ has positive characteristic. If the
characteristic is large, say chark > o, where a := emT_dm”_Q, then the mor-
phism F|g : ¥ — F(X) is separable. Indeed, the Grothendieck-Lefschetz
Theorem, [8, Theorem 4.3.2], implies that the divisor F(XZ) C Y is the inter-
section of ¥ with another hypersurface. So one can check that deg F|y < «
by applying the projection formula to F|y — F(X).

It follows that if char k > ¢, then the proof of Proposition 2.4 is still valid.
Hence, Theorem 2 will also hold in positive characteristic if chark > a.

Corollary 2.5. If f : X = Y is a nonconstant morphism between hyper-
surfaces in P™, n > 4, such that Y is nonsingular and of general type, then
degY divides deg X with quotient m such that f*Oy (1) = Ox(m).
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Proof. By Theorem 2, there is a morphism F : P* — P” such that X =
F~1(Y) and F*O(1) = O(m). 1t follows that X is a hypersurface of degree
m-deg?. |

2.3. Hypersurfaces Not of General Type. The ground field will have
characteristic zero unless indicated otherwise. We will show that if 3 < e <
n+ 1 and d is not too much larger than e, then the conclusion of Theorem
2 still holds. The following definition will be central to our point of view.

Definition. If Z is any scheme and F : Z --+ P" is a rational map given
by sections Fy,...,F, of some line bundle on Z, then let indet(F) denote
the scheme of common vanishing of the F; in Z:

indet(F) .= V(Fy,...,Fy) C Z.

Lemma 2.6. Using the notation at the beginning of Section 2:

(1) If H+#0, then deg H = em —d > e. This holds for e > 2.

(2) If p € indet(F), then H has order at least e at p, regardless of the
characteristic of the ground field.

Proof. Suppose p € indet(F) is a reduced closed point. If Y = V(G) for
a homogeneous polynomial G = G(yp, ..., yn) of degree e, then F~1(Y) :=
V(G(Fy, ..., F,)) has order at least e at p because the F; are all zero at p.
But F~(Y) = X + H, and p is not contained in X. So H has order at least
e at p. This proves (2), and it proves (1) in case F is not defined at some
point of H.

If F|g is a morphism, then (1) follows from Proposition 2.2(2) in case
e > 3. And in the case e = 2, we need only see that d # 1. However,
Lazarsfeld shows in [10] that if a smooth variety Y is the image of a morphism
from a projective space, then Y is itself a projective space. ]

Proposition 2.7. If m = 1,2, then the conclusion of Theorem 2 holds, i.e.
there is a morphism F : P* — P" such that f = F|x and X = F~1(Y).

Proof. If m = 1, then the image of F : P" --+ P" is a linear subspace that
contains Y. So I is an automorphism of P", and d = e.

Suppose m = 2 and d # 2e. Then X and H both have degree e by Lemma
' 2.6 and Proposition 2.2(2). If e > 3, then m = 1 by Proposition 2.2(3),
which is a contradiction. If ¢ = 2, then m = 1 because every nonconstant
morphism of smooth quadrics in P™ is an isomorphism for n > 4, cf. [11].
This contradiction shows d = 2e after all. O

Proposition 2.8. Fiz d, e, m with e > 3, and assume one of the following
three conditions holds:

(i) d < e*

(i) d > (m — 1)?

(iti)) m < e

Then the conclusion of Theorem 2 holds for n sufficiently large.
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Proof. Using Theorem 1 and formulas (2.3) and (2.4), let n tend to infin-
ity and get d — 1 > m(e —1). If H # 0, then em —d > e by Lemma
2.6(1). Together, these two inequalities contradict each of the three condi-
tions above. O

Examples in Characteristic Zero. Theorem 1 gives an upper bound on
the polynomial degree m of f whenever e > 3. Using these explicit upper
bounds, along with Proposition 2.4 and Lemma 2.6(1), one can check that
the conclusion of Theorem 2 holds for the following cases in P'*:

e=3 d<4
e=4 d<10
e=5 d=1,...,23,25,26,29

Examples in Positive Characteristic. Theorem 1 and formulas (2.3),
(2.4) hold in arbitrary characteristic. So we may compute upper bounds on
the polynomial degree m of f in positive characteristic as well.

If em # d and deg H = 1, then F|g is a morphism by Lemma 2.6(2).
This is impossible because Y is not the image of a morphism from Pl as
shown in [10]. So if H # 0, then deg H > 1.

Using the fact em — d > 1 and the explicit upper bounds on m that we
obtain from Theorem 1, we see that the conclusion of Theorem 2 holds for
the following cases in P*:

e=3 d<3
e=4 d<8
=5 d=1,...,11,14
e=6 d=1,...,14,17,18
e=7 d=1,...,17,20,21,22,27

Question. One can ask if the general type hypothesis of Theorem 2 is too
strong. The results of Section 2.3 seem to indicate that this is indeed the
case. To be precise, if f : X — Y is a nonconstant separable morphism of
hypersurfaces in P*, n > 4, such that Y is nonsingular of degree at least 2,
is it true that there is an endomorphism F : P* — P" such that f = F|x
and X = F~1(Y)? .

More generally, suppose Y is a nonsingular complete intersection in P of
hypersurfaces of degrees e1,...,ex = 2 where k is the codimension of V' in
P?, and f : X — Y is a nonconstant morphism from a complete intersection
X C P to Y with dimX = dimY > 3. Is it necessarily true that X is
a complete intersection in P™ of hypersurfaces of degrees eym,...,e;m and
that f extends to a morphism F : P* — IP® such that FYY) = X7
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PAPER 2:
MORPHISMS FROM QUINTIC THREEFOLDS
TO CUBIC THREEFOLDS ARE CONSTANT

ABSTRACT

We show that every morphism from a quintic threefold in P?
to a nonsingular cubic threefold in P? is constant in charac-
teristic zero. In the process, we classify morphisms from P2
to nonsingular cubic hypersurfaces in P* given by degree 3
polynomials.

INTRODUCTION

The author shows in [14] that if f : X — Y is a morphism of hypersurfaces
in P* such that degY = 3 and deg X < 4, then f is either constant or
deg X = 3 and f is an isomorphism. The purpose of this paper is to extend
this result by proving the following theorem.

Theorem 1. If f: X — Y is a morphism of hypersurfaces in P* over an
algebraically closed field of characteristic zero such that degX =5, degY =
3, and Y is nonsingular, then f is constant.

The motivation for investigating such morphisms to cubic hypersurfaces
is the expectation that if f : X — Y is a morphism between hypersurfaces
in P*, n > 4, such that Y is nonsingular of degree at least 2, then degy
divides deg X with quotient ¢, and f is given by polynomials of degree ¢, i.c.
f*Oy (1) = Ox(g). This result is proven in [14] when degY > n + 2. It is
also proven in some cases where 3 < degY < n+1. The fact that morphisms
from quintic threefolds to cubic threefolds are necessarily constant is the first
nontrivial case of morphisms to cubics.

1. OUuTLINE OF PROOF

Throughout the paper, the base field will be algebraically closed of char-
acteristic zero, and f : X — Y will denote a nonconstant morphism of
hypersurfaces in P*, such that deg X = 5, degY = 3, and Y is nonsingular.

The Grothendleck Lefschetz Theorem, [8, Theorem 4.3.2], states that
Pic X is generated by Ox(1). So f*Oy(1) = Ox(m) for some positive
integer m. In terms of m, [14, Theorem 1] states that deg f*c3 (Q%,(Z)) <
degcs (% (2m)). By computing the Chern classes in this inequality, one
checks that m < 3.
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We claim there is a rational map F : P* --» P* undefined at only finitely
many points disjoint from X such that f = F|x. To see this, consider the
short exact sequence

HY(P', Ops(m)) — H(X,Ox(m)) — H' (P*, Ops(m — 5))

Since H(P*, Ops(m—5)) = 0, the sections of Ox (m) that deﬁne f:X—> P
lift to P* and define a rational map F : P* —-» P4, as claimed.

We introduce a hypersurface H in P* that will play a key role. Lagzarsfeld
proves in [10] that P* is the only smooth k-dimensional variety that is the
image of a morphism from P*. In particular, Y is not the image of a mor-
phism from P3. Tt follows by considering a general hyperplane in P* that the
image of F : P* --» P* is not Y. So F is dominant because the image of F is
irreducible and contains Y. Hence F~1(Y) = X + H for some hypersurface
H of degree 3m — 5. ‘

This shows m # 1. We see that m # 2 as follows. Suppose m = 2.
Then H is a hyperplane in P*. Therefore F|y : H --+ Y is not a mor-
phism. Let p € H be a point of indeterminacy of F. This means that F =
(Fy, ..., Fy) for homogeneous polynomials F; of degree 2 that all vanish at
p. If Y is defined by the homogeneous cubic polynomial G' = G(yo, ..., y4),
then F~ (Y) X U H is defined by the homogeneous sextic polynomial
G(Fy,...,Fy). Since the F; all vanish at p 'and G is homogeneous of degree
3, G(Fy,...,Fy) vanishes to order at least 3 at p. In other words, p is a
triple point of F~}(Y) = X U H. This is impossible because p is contained
in the hyperplane H but not contained in X. Therefore, m # 2.

It is considerably more difficult to check that m = 3 is also not possible.
That task will occupy us for the remainder of the paper. We focus our
attention on the degree 4 hypersurface H and the rational map F|gy : H --»
Y.

We prove Theorem 1 by considering the various possibilities for H. If H
contains many copies of P2, then we will use the resulting maps P? — Y,
which would be given by degree 3 polynomials. So our first task is to classify
such morphisms from P2. This is done in Section 2. Then we return to the
map H --» Y in Section 3 and work through several cases using the geometry
of rational maps from threefolds to three dimensional cubics.

2. MorpPHISMS FROM P? 70 CUBIC THREEFOLDS

Let g : P2 » Y be a morphlsm given by degree 3 polynomials, i.e.
g*Oy (1) = Op2(3). The purpose of this section is to prove the following
result about g.

Theorem 2. We can choose coordinates xo,x1,T2 on P? and coordinates
on P* such that

g= (3"37 ‘T?J 'T%u ToT172, 0) :]P)z — Y C HD4.



22 DAVID C. SHEPPARD

Let S be the image of g. Since Y is nonsingular, S C Y is a Cartier
divisor. So by the Grothendieck-Lefschetz Theorem, {8, Theorem 4.3.2], S
is the zero locus V(s) of a section s € H*(Y, Oy (a)) for some a > 0. To see
that S is the scheme-theoretic intersection of ¥ with another hypersurface
Y’ in P*, consider the following piece of a long exact sequence of cohomology
groups.

H°(P*, Ops(a)) — H(Y, Oy (a)) — H'(P',Ops(a - 3))
Since H'(P*, Ops(a — 3)) = 0, s is the image of some s’ € H®(P*, Opa(a)).
So §=V(s)NY. Take Y':=V(s').

Calculate g*c1 (Oy(1))? to be 9 = deg g-deg S to see that 3 = deg g-deg Y.

Hence we will break the proof of Theorem 2 into two cases depending on

whether deg Y’ = 3 or deg Y’ = 1. First, we recall the following result from
[4], which we will use repeatedly.

Proposition 2.1. Let A be the space of lines on the smooth cubic threefold
Y. Then A is a complete nonsingular surface that does not contain a rational
curve.

Case 1. Assume Y’ has degree 3. We will derive a contradiction.

By assumption, g : P> — $ has degree 1, so it is a finite birational
morphism. Qur strategy is to analyze the double point class D{g) of ¢ :
P? = Y. See [6, Section 9.3] for the construction and computation of D(g).
The construction will be used implicitly in the proof of Proposition 2.6 and
Corollary 2.7. Following [6], we calculate the double point class of g:

D(g) = " g.[F°] = c1(9*Ty) + c1(Tpe)
= g"c1(Oy (3)) — g*c1{Or (2)) + c1(Op(3))
= ¢1(Op2(6)).

‘An important fact for our purposes is that the construction of the cycle
D(g) not only gives a l-cycle modulo rational equivalence, it actually con-
structs a Weil divisor in P?2. We will denote this Weil divisor by D(g) and
consider it as a closed subscheme of P2. This notation differs slightly from
[6] in that we use D(g) to denote a divisor, not just a set. Roughly speak-
ing, D{g) is the curve in P? consisting of the closed points x such that either
g(z) = g(y) for some y # = or such that T,P? — T,,yY is not injective.
The scheme structure of D(g) comes from the fact that an integral curve D
in D(g) will appear with multiplicity if for a general point x € D there is
more than one other point y € P? with g(z) = ¢(y) or if g ramifies to high
order along D.

The following result tells us that the image of D(g) under g is equal to
the singular locus of S as a set.

Lemma 2.2. Let g : V — W be a finite surjective birational morphism of
varieties with V reqular. Then for w € W a closed point, w is a nonsingular
point of W if and only if the scheme-theoretic preimage g~ (w) is a single
reduced point.
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Proof. Suppose g~ (w) is a single reduced point v. Let D < W be a general
curve in W through w such that 7 is a local complete intersection in W at
w and

dim T, W —dimTy, D =dim W — 1.

By assumption, the pullback of the maximal ideal of w generates the max-
imal ideal of . So the curve C' := g~'(D) is nonsingular at v because C
is cut out near v by the dimV — 1 equations that define D near w. The
morphism g|¢ is an isomorphism in a neighborhood of v because g~ (w) = v
and g|¢ is birational in a neighborhood of v. So D is regular at w, whence
W is too by the above equation.

Conversely, suppose w is a regular closed point of W. Let A be the
ring of regular functions on an open affine U of W containing w, and let
B be the ring of regular functions on the open affine g=1(U). Let m C A
be the maximal ideal corresponding to the point w, and let M denote the
multiplicative set A\ m. Then M~!B is the integral closure of A,, = M~14
in its field of fractions. But A, is integrally closed because it is regular.
Therefore M 1B = A,,, whence M !B is a local ring whose maximal ideal
is generated by m. In other words, g~'(w) is a single reduced point. a

Now let C' C S denote the image of D(g) with its reduced structure:
C = g(D(9))red

By Lemma 2.2, C' is the maximal reduced curve contained in the singular lo-
cus of §. We will rule out the case deg Y’ = 3 by comparing D(g) to g 1O,
where g~1(C) denotes the scheme-theoretic preimage. So our strategy is to
compare the multiplicity of integral curves in D(g) and g~}(C).

Lemma 2.3. There is a cubic hypersurface Y" in P* such that S =Y NY",
and Y" is singular along C.

Proof. Let {Y;} be the pencil of cubic hypersurfaces spanned by Y and Y.
Since ¥; NY = S so long as Y} # Y, it suffices to show that one of the Y; is
singular along C.

Let Co be an irreducible component of C'. For every point p € Cy we have
T,8 = T,Y because S is singular at p. Therefore 1,5 = T},Y; for ¢ general,
and there is a unique ¢, say ty, such that ¥; is singular at p. Only finitely
many of the Y; are singular, so one of the Y}, say Yy, is singular at infinitely
many points of Cy. Hence Y}, is singular along Cp.

If C is another irreducible component of C', then Cyp and €' meet at some
point p because Cp and ) are both images of curves in P2, 1f Ytl is smgular
along C1, then Y;, and Y;, are both singular at p, so ¥;, = Y;,. The Lemma
follows. 0O

We now assume Y’ to be singular along C.

Lemma 2.4. The scheme-theoretic preimage g~ '(C) does not contain a
curve of degree 6 or more.
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Proof. Let G' = G'(yo,...,ys) be the homogeneous equation for Y* in P%.
Set C; == 8N V(‘Z—g) and D; := ¢ 1(C;) for i = 0,...,4. The D, are all
degree 6 plane curves containing g~!(C). So it suffices to show that the D;
are not all equal.

Suppose they were. Then the equations for the D; in HO(P2, Op2(6)) are
all scalar multiples of each other. These equations are the images of the
partials %—g under the composition

HO(P*, Op: (2)) -2 HY(S, 05(2)) 25 HO(P2, Op: (6))

where p is restriction. This composition is an injection because S is not
contained in a quadric. So the ‘?9% are also scalar multiples of each other,

say ?95 = o 5 BG for scalars «;. By Euler’s formula,

4
oG’ oG’
3GI = = 4
Sud o B
which implies Y’ is not integral. So § = Y NY’ is not integral. This
contradiction finishes the proof. a

Now we make several observations, which we list in the following Lemma.

Lemma 2.5.

(1) If A C P* is any 2-plane, then g ' (AN S) does not contain a curve of
degree 8 or more.

(2) For C' C C any curve, the secant variety of C' is contained in Y'.

(3) Every curve in C that lies in a hyperplane is a plane curve.

(4) C does not contain a conic curve.

(5) For every z € P?, g induces a nonzero map T,IP? — Tyn)Y .

Proof. (1) follows from the fact that the preimage of every hyperplane con-
taining A is a distinct degree 3 curve in P?. The preimages are distinct
because S is not contained in a hyperplane, which is our assumption for
Case 1.

(2) holds because every line meeting Y’ at two singular points is contained
inY’, and Y is singular along C".

(3) follows from (2) because Y’ does not contain a hyperplane. This is be-
cause degY’ =3 and Y NY' = 5 is integral.

(4) Suppose C' C C is a conic curve. Then g~}(C') contains a curve of
degree at least 2 because lines in P? map to either lines or cubics. If A is
the 2-plane containing C’, then A C Y/ by (2). So ANS = ANY is a degree
3 plane curve consisting of C’ and a line. This line is the image of a curve
in P2, Therefore, g~!(A) contains a curve of degree at least 3, contradicting
(1).

(5) If T,P? — Ty(z)Y is the zero map, then every line in P2 through = maps
to either a line or a cuspidal plane cubic with cusp at g(x). In particular,
the image of every line in PP? through z is contained in Ty(z)Y, which is
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impossible by the assumption for this subsection that S is not contained in
a hyperplane. O

We will describe the integral curves D that might occur in D(g) in terms
of their multiplicity in D(g) and in the scheme- theoretic preimage g~ 19(D).
For this purpose, we recall the following definition.

Definition. If D is an integral curve contained in a one dimensional scheme
Z, then multpZ will denote the length of the Artin ring obtained by local-
izing Oz at the generic point of D.

Proposition 2.6. If D C D(g) is an integral curve with n:= degg|p, then
one of the following four cases holds:
(1) n =1, multp g~'g(D) = 2, multp D(g) = 1, D is a nonsingular
conic, and D 1s the only integral curve in g~'g(D).
(2) n =1, multpg~'g(D) = 1, multp D(g) = 1, and g~ 'g(D) contains
two distinct nonsingular conics D, D'. o
(3) n = 2, multpg~tg(D) = 1, multp D{(g) = 1, D is o nonsingular
conic, and g(D) is a singular plane cubic.
(4) n =3, multpg 'g(D) = 1, multp D(g) = 2, and D, g(D) are both
lines.

Proof. We calculate multp D{(g) as follows. First suppose that ¢ is unrami-
fied along every curve in g~'g(D) in the sense that T, P? — Tyr)Y is injective
for z a general point on any irreducible curve in g !g(D). In this case, if
D,,..., D, are the distinct integral curves contained in g~lg(D), then

.
(2.1) multp D(g) = -1+ Y _ degglp,

i=1
because the number of preimage points of a general point in ¢g(D) is the
sum of the degg|p,. On the other hand, if D is the only integral curve
contained in g~'¢(D) and g is simply ramified along D in the sense tha.t 2D
is contained in g~'g(D) but 3D is not, then

(2.2) multp D(g) =

These are the only cases that will arise in our discussion here. See [6, Section
9.3] for the construction of the Weil divisor D(g) representing D{g).

We claim that if D C D(g) is a line, then g(D) is a line too. So suppose
D C D(g) is a line. By Lemma 2.5(3), g(D) is not a twisted cubic. So it
suffices to show that g(D) is not a plane cubic. If it were, then by Lemma
2.5(2), Y' contains the 2-plane A spanned by g(D). Choose any hyperplane
[ containing g(D), and let £ :=TNY'. If p ¢ TNY' is a singular point
of Y' away from A, then I' MY’ contains the cone £, over g(D) with vertex
p. Since AU XY, C ¥ and ¥ and ¥, both have degree 3, no such p can
exist. In particular, C C A. By Lemma 2.5(1), g (C) is either D, D
with multiplicity 2, or D and another line. So D(g) will have respectively
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degree 0, 1, or 2, according to the formulas for multp D(g) above. However,
deg D(g) = 6. So g(D) is not a plane cubic. Therefore, if D C D(g) is a
line, then g(D) is too. '

Now let D C D(g) be any integral curve. Using (n — 1)D ¢ D(g) and
taking degrees, we obtain the inequality (n — 1)deg D < 6. The projection
formula yields 3deg D = ndeg g(D). Therefore, if n > 2, then

(2.3) %degg(D) =degD < n—f—l-
This shows n < 3 because the left hand side is an integer. Now we analyze
what happens for each value n = 1,2, 3.

Suppose n = 3, so that deg D = degg(D) < 3. If deg D = 3, then Lemma
2.5(1) and (3) imply that ¢g(D) is neither a plane cubic nor a twisted cubic.
So degg(D) < 2. By Lemma 2.5(4), deg D # 2. So D, g(D) are lines, as
claimed in Case (4).

To see multp g~ 'g(D) = 1, suppose 2D C g~ 1g(D). By Lemma 2.5(5); for
z € D a general point, the map T;P? — T(,)Y has rank 1. Choose p € g(D)
general so that (g|p)~!(p) consists of three distinct points 1,2, 23 € D.
Through each z; there is a unique line I; in P? such that 7 l; — T,8 is the
zero map. Each g(l;) is either a line through p or a cuspidal plane cubic
with cusp at p. In both cases, g(l;) is contained in T,Y. Now the degree
3 curve g~}(7,Y) contains 2D + I + l2 + {3. This contradiction proves
multp g 1g(D) = 1.

To show multp D(g) = 2, it suffices by formula (2.1) to show there is
no integral curve D' C g~'g(D) other than D. If D' were such a curve,
then degg|p = 3deg D’ because g(D) is a line. So for p € g(D) a general
point, g~*(p) would contain 3 points on D and 3 deg D' points on D’. There
would be 9deg D' lines joining one of the points on D to one of the points
on D', and these lines would map to either lines through p or nodal plane
cubics with node at p. These image curves would be contained in T,Y, so
we would have the impossible situation that these 9deg D’ lines would all
be contained in the degree 3 plane curve g~1(7,Y). So there is no D', and
multp D(g) = 2. This gives Case (4).

Suppose n = 2. If 2D C g~ 'g(D), then 2D C ¢ 'C, which implies
2deg D < 6 by Lemma 2.4. By formula (2.3), g(D) can not be a line. So D
is not a line, from above. Hence deg D = 2 and degg(D) = 3 by (2.3) and
the fact deg D < 3. Since g(D) has degree 3 and can not be a twisted cubic,
g(D) is a singular plane cubic. By Lemma 2.5(1), 2D can not be contained
in g~'g(D), so multp g~'g(D) = 1. Likewise, D is the only integral curve
contained in g 1g(D), so multp D(g) = 1 by formula (2.1). This gives Case
(3).

Suppose n = 1. By (2.3), degg(D) = 3deg D. Since g(D) is not a line,
D is not a line. So degg(D) > 6. If D' is another integral curve contained
in g~'g(D), then D' C D(g). By Cases (3) and (4), degg|p- = 1 because
deg g(D') > 6. Therefore, deg D' = 3deg g(D) = deg D.



MORPHISMS OF HYPERSURFACES 27

If D is the only integral curve in g~'g(D), then 2D C g~!g(D) because
D c D(g) and n = 1. By Lemma 2.4, g 1g(D) does not contain a curve
of degree 6. So the only possibility is multp g~!g(D) = 2 and deg D = 2
because deg D > 1. Since D is integral, D is a nonsingular conic. This gives
Case (1) by formula (2.2).

The same reasoning shows that if D' is another integral curve in g~ 1g(D),
then the maximal curve contained in g~'g¢(D) is D+ D', and D, D’ are both
nonsingular conics. This gives Case (2) by formula (2.1). O

Corollary 2.7. There are distinct lines 11,1y, 13 in P? such that
and the g(l;) are distinct lines in S.

Proof. In cases (1), (2), (3) of Proposition 2.6, D has multiplicity 1 in D(g).
So if D(g) does not contain a line, then D(g) is reduced and D(g) C g 1(O).
This contradicts Lemma 2.4. So D contains a line D. If L = g(D) is the
image line of D, then D is the only curve contained in g~ 'L by Case (4) of
Proposition 2.6.

Now suppose D' # D is another integral curve in D(g). We will show
that D' is also a line. So suppose deg D’ > 1. Then g(D') is not a line
by Proposition 2.6. Since D and D’ meet at a point, so do L = ¢g(D) and
g(D"). Tf g(D'} is contained in a hyperplane, then by Lemma 2.5(3), g(D')
is contained in a 2-plane. So either L and g(D’) are contained in the same
2-plane, which is impossible by Lemma 2.5(1), or the curve LUg(D') spans a
hyperplane, which is impossible by Lemma 2.5(3). So ¢g(D’) is not contained
in a hyperplane.

Let p € g(D') be a general point, and let A, be the 2-plane spanned by p
and L. Since the cubic Y’ is singular along L and at p, A, is contained in
Y’. Therefore, A, NS = A,NY is equal to L + @, for some conic curve @,
contained in Ag.

If L is contained in @p, then 2L is contained in A, NY. So for every
point ¢ € L, T,A, = Ty2L C T,Y. Since g(D’) is not contained in any
hyperplane, there is no hyperplane that contains A, for every p € g(D').
Therefore, dim7,Y" = 4 for every ¢ € L because TyA, is contained in T;Y
for p € g(D') a general point. Since Y is nonsingular, one concludes that L
is not contained in Q.

If Q, is not a double line, then g~'@, contains a curve of degree at least
2. This is impossible by Lemma 2.5(1), because A, contains L and @Q,. So
for every p € g(D'), Qp = 2Ly for some line L, # L.

Therefore, g(D') parametrizes a one dimensional family of lines on Y. By
Proposition 2.6, every curve in D(g) is rational, so g{D') is rational. How-
ever, the space of lines on Y does not contain a rational curve by Proposition
2.1.

This proves that every integral curve in D(g) is a line, and every line in
D(g) occurs with multiplicity 2 by Proposition 2.6. O
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Proposition 2.8. The case degY’ = 3 does not occur.

Proof. We will use the [; from Corollary 2.7 to give an explicit formula for
g and derive a contradiction using this formula.

Let L; := g(l;). Bach of the L; intersect the other two, but they are not
all contained in a plane by Lemma 2.5(1). So they all meet at some point p
in S, and T,Y is the unique hyperplane containing all the L;.

I claim the I; do not all meet at a point z. So suppose there were such
a point z, and note g(z) = p. By Lemma 2.5(5), at most one of the g|;,,
say gli,, ramifies at . Therefore there are points =, € {3 and z3 € I3
different from z such that ¢(z;) = g(z3) = p, and g maps the line ly5
containing z» and z3 to either a line or a nodal plane cubic with node at p.
In particular, g(l23) is contained in T,Y. Now the degree 3 curve g~ (T},Y)
contains I 4+ Iy + I3 + lo3, which is impossible. So the {; do not all meet at z.

Let z;; := l; Nl;, and note g(z;;) = p. If g|;, is not ramified at either
T12 or x13, then there is a point 2’ on Iy different from 12, z13 such that
g(z') = p, and the line from z’ to x33 gives a contradiction just as the line
lo3 did above. Hence each g|;, ramifies at exactly one of the z;;. So the
scheme-theoretic preimage g~!(p} consists of three copies of Spec k[e]/(¢?),
one supported at each of the z;;. The scheme g~'(p) is contained in the
scheme I; + I + I3, but with no two copies of Spec k[e]/(e?) contained in the
same [; because (g|;,) "}(p) has length 3, as g|;, is a morphism of degree 3 of
nonsingular curves, and is therefore flat. Hence, we can choose homogeneous
coordinates zq, z1, 2 on P? such that [; = V(zs—1) and

9 Up) = V(adz1, 2222, 2330, ToT122).

There is a 3 dimensional space of hyperplanes in P* containing p, and
these hyperplanes pull back to the linear system of cubics on P? spanned by

2 2 2
oLy, T1T2, Tolg, ToT1T2.

Set p = (0,0,0,0,1) so that for a suitable choice of coordinates yq, ..., y4 on
P* we have

(2.4) g = (.’E%Il, :E%Cl?z, .’L‘gmo, ToT1T2, g4) :P? — pt

for some homogeneous polynomial g4 of degree 3.
Since g7V {y3) = I1 + Iz + I3, one sees that T,Y = V(y3). So if G is the
homogeneous equation for Y, then

(2.5) G = yiys + yaG2 + G

where G; = G;(yo,. . -,y3) is homogeneous of degree 7.

By equation (2.4), the fact that g is defined at (1,0, 0) € P? tells us that
mg has nonzero coefficient in g4. Considering equation (2.4), we see that
zlz1 7o has nonzero coeficient in g* (y3y3). Since g(F?) C Y, ¢*G is the zero
polynomial, so £{z12> has nonzero coefficient in ¢*(y4G2 + G3) by equation
(2.5). The highest power of zy that can appear in ¢*Gs is z§ by (2.4).
Therefore, z/z172 has nonzero coefficient in g*(y4Gs).
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The highest power of ¢ that can appear in a monomial of ¢*G5 is :1:3,
and this necessarily occurs in the monomial g§ = zdz?. So if x{ appears in
a monomial of g*(y4G2) = ¢s4g* G2, then that monomial is zjz?, not z/zz,.

This contradiction shows that degY”’ # 3. a

Case 2. By Proposition 2.8, the image of g : P> - Y is the surface S :=
Y NY', where Y’ is a hyperplane in P*. We will derive a contradiction, thus
proving Theorem 2.

The morphism ¢ : ¥ — Y™ sending a point p to the hyperplane T,Y is
given by an ample invertible sheaf on Y, since Oy (1) generates PicY by the
Grothendieck-Lefschetz Theorem, [8, Theorem 4.3.2]. So ¢ is a finite mor-
phism. In other words, no hyperplane in P can be tangent to Y at infinitely
many points. Therefore S is a cubic surface with isolated singularities.

For s € S a general closed point, let { F;} be a general pencil of hyperplane
sections of S containing s, and let E} := ¢71(E;). Then E; and E} are both
smooth plane cubics for ¢ € P! general.

Since ¢ : P> — S has degree 3, we can set g”'(s) = {a,b,c}. Then
(E},a) — (F,s) is an isogeny of elliptic curves of degree 3 for ¢ general.
Note that & is a 3-torsion point of Ej.

Let E' C P! x P2 and E C P! x § be the total spaces of the families {F}}
and {E;} over the base P!, and consider the diagram

E — Pp?
lg lg
EFE — 5

where ¢’ is the restriction of idp1 x g to E' C P! x P2.

Let ¢ be the generic point of P!, and let Eé, E¢ be the fibers of E', E over
¢ € PL. Then A :=( x a and B := { x b are ¢-valued points of Eé, and B
is a 3-torsion point of the elliptic curve (Eé, A). Hence P +— P + B gives an
automorphism of E’C over E; of order 3 that extends to some birational self-
map ¥ : E' --+ E' of E' over E. In other words, g’ = ¢’ o4/ as rational maps.
The horizontal arrows in the diagram above are birational morphisms. So 1
induces an order 3 birational self-map ¢ : P2 --» P2 of P? such that g = go ¢
as rational maps. Therefore ¢ is an automorphism of P? by the following
lemma.

Lemma 2.9. If ¢ : P2 ——» P? is a birational map and g : P? = S is a
dominant morphism to a surface S such that g o ¢ = g as rational maps,
then ¢ eztends to an automorphism of P2.

Proof. Let U C P? be the domain of definition of ¢. Then U is the com-
pliment of finitely many points in P?, and PicU is generated by Oy (1), the
restriction of Op2(1) to U. From go ¢ = g it follows that ¢*g*Og(1) =
g*Og{1)|y. In other words, ¢*Op2(3) = Op(3). Therefore ¢*Op2(1) =
Ou(1).
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Since ¢ is dominant, ¢ : U — P? is given by three linearly independent
sections g, 01,02 of Oy (1), and these sections are the restriction to I/ of sec-
tions 79, 7y 72 of Op2(1). The 7; are linearly independent, and hence there is
no p;)int where they all vanish. So ¢ extends to the automorphism (7g, 71, T2)
of P=. : O

Since ¢ has order 3, its matrix is one of the following after being placed
in Jordan form and scaling:

where p° = 1, p # 1. Fix an identification of ¥’ with P? so that we can
write g : P2 - S C Y' as (g9,...,93) for some degree 3 polynomials g;.
Then (go,...,93) = (¢*go,...,#*g3). So each of the g; are eigenvectors of
¢* : HY(P?,0(3)) — H°(P?, O(3)) with the same eigenvalue.

Suppose

p
Then the following are a basis for each of the eigenspaces of ¢*:

. 3 3 3 2 2
1: Lg;y T1y Ly, T1T2, T1Ty

2 2
P IpZ1, TpT2

2. 2 2
£ I IoTy, ToTy, XoT1T2

Since S is not a 2-plane in P?, the eigenspace containing the g; has dimension
at least 4. So the g; all have eigenvalue 1.
Now consider the morphism

— (3 .3 .3 .2 2\ . m2 4
h = (x5, =3, T3, iT2, T1275) : P° - P

The image surface S’ of A is a cone over a twisted cubic curve T/ with vertex
(1,0,0,0,0). The morphism g : P? — Y’ = P3 is the morphism A followed
by projection m, from some point p. Projection maps lines to lines, so the
image S of g is a cone over some cubic plane curve T. The curve T is
singular because it is the image of a rational twisted cubic curve. Therefore,
S is singular along a line. We already saw that S has only finitely many
singularities. This contradiction rules out the first possibility for ¢.
Therefore

So the following are bases for the eigenspaces of ¢*:
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. 3 3 3
1: =z, z7, 5, ToZ1%2
. 2 2 2
p . 1:01:1, $0$2, :L'l.’L'z
2. 2 2 2
P TpTz, ToTy, T1Xyp

The eigenspace containing the g; has dimension at least 4. Sog: P2 = Y' =
3 is the morphism (3, x§, 23, ToT172). Embed Y’ in P* as V' (y4) so that
g : P2  P* has the form claimed in Theorem 2.

3. MoORPHISMS FROM QUINTIC TO CUBIC THREEFOLDS

In Section 3.1 we discuss preimages of lines on Y under the rational map
H --» Y. Section 3.2 gives some information about H in case it has a com-
ponent that does not map dominantly onto Y. In Section 3.3, we consider
the various possibilities for H and rule them out case by case. When H is
integral, the results of Section 3.1 will be the main tool. When H is more
degenerate, Theorem 2 will play a central role.

3.1, Preimages of Lines on Y. First we will prove a basic fact about how
the dualizing sheaf of a curve behaves under normalization. Then we will
discuss the family of lines on Y and what can be said about the preimage
in H of a general line in Y. The main result is Corollary 3.6.

Lemma 3.1. Let C be a projective Gorenstein scheme of pure dimension
1 that is reduced at the generic point of one of its irreducible components
C'. Ifv:C — C'is the normalization map of the reduced structure on
C' and N is the number of points p € C such that the map of local rings
Ocup — Oé,p fails to be an isomorphism, then

degrwg > degws + N.
If N =0, then equality holds.
Proof. Following‘[Q, Ex. 3.7.2], we compute
we = Home (1,04, we)
= Home(1.Og, Oc) ®o. Wi

as Og-modules. Since ws and w are invertible, Home (1.0, Oc) is an in-

vertible sheaf of Os-modules. So it is enough to show that Hom¢ (v, Op, Oc)

is isomorphic to an ideal sheaf in Op corresponding to a closed subscheme

of C supported at the points where v : ¢ — C fails to be an isomorphism.
Consider the map of local rings

A= OC,u(p) — B = Oé‘,p
for some closed point p € C. We will show that Hom A(B, A) is an ideal in
B and is the unit ideal if and only if A — B is an isomorphism.

Note that B is the normalization of A/P in its field of fractions, where
P C A is the prime ideal of C' C C. Consider the map of B-modules

~®:Homyu(B,A) — B
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that sends ¢ € Hom4(B, A) to the equivalence class (1) of ¥(1) in A/P,
which injects into B.

If &(¢p) = 0, then 14(1) € P, whence 1/(B) is contained in the ideal P C A.
In other words, 7 is a local section of the @g-module Homc(v*Oé,Oc)
defined in a neighborhood of v(p) in C such that ¢ vanishes on the reduced
structure of C'. If we consider Home(v*Op, O} as an Opz-module, then 1

is a local section defined on a neighborhood of p in C, and 1 vanishes at
all but finitely many points in the neighborhood. Since Hom¢g(v*Op, Oc¢) is
an invertible Os-module, ¢ = 0. Therefore ® is an injection of B-modules,
whence Hom 4 (B, A) is realized as an ideal in B. It remains to check that
A — B is an isomorphism if and only if & is.

If A — B is an isomorphism, then @ is clearly an isomorphism. Con-
versely, suppose ® is an isomorphism. Then there is some ¢ € Hom 4 (B, A)
such that ®(¢¢) = 1, i.e. ¥(1)—1 € P. Therefore 1/(1) is a unit in A because
A is local. Hence ¥ : Homy(B,A) — A given by 3 — (1) is surjective
because it is a morphism of A-modules. Note that ® factors as ¥ followed
by A — B. Since V¥ is surjective and ® is injective, we conclude that 4 —+ B
is injective. And since ® is surjective, A — B is surjective. O

Lemma 3.2. There are only finitely many closed points p € Y such that
there are infinitely many lines on 'Y through p.

Proof. Suppose not. Then there is a curve C C Y such that for every point
p € C there are infinitely many lines on Y through p. So for every p € C
there is an irreducible component £, of Y NT,Y such that X, is a cone over
a plane curve with vertex p.

Recall from (7] or [13] that the family A; of lines on Y is an irreducible
surface, so a dimension count shows that every line on Y lies on one of the
surfaces ¥, for some p € C. Also recall from [13] that a general line L in ¥’
has normal bundle Ny, /y = Op @ Of.

Fix a general line L on Y, lying on X,. There is some 2-plane A that is
tangent to T, at every point of L on account of I, being a cone. Therefore
T,A C T,Y for every g € L. It follows from Nakayama’s Lemma that these
pointwise inclusions give an injection Ty|;, = Ty|z of Op-modules. Note
that Ty | = Or(1) ® Or(2), and consider the normal bundle sequence

0—$TL.—->Ty‘L i)OLGBOL — 0.
By the above description of Tj|z, the composition
Talr, — TylL 20,80,

is the zero morphism. So ker ¢ has rank at least 2, cont_radictihg kero =
Ty | | L o

We will need the following modification of 13, Lemma 2.1].



MORPHISMS OF HYPERSURFACES 33

Lemma 3.3. Let g : Z — Y be a morphism from a purely 3 dimensional
separated scheme of finite type over the ground field. If L is a general line
onY, then g~ (L) has pure dimension 1.

Moreover, if 7 is integral and g is dominant, then g~'(L) is singular at
only finitely many points. In other words, g~' (L) is reduced at the generic
point of each irreducible component.

Proof. Let F be the total space of the family of lines on Y with base A.
From [13], A is a smooth surface, and there is some open subscheme Aj in
A with preimage Fy in F such that Fy is a locally trivial fiber bundle over
Ayp, whose fibers are lines in Y.

Let Zp be the union of the surfaces in Z that are mapped to points in ¥,
let Z, be the union of the curves on Z that are mapped to points in Y, and
let Zy be the set of points in Z at which ¢ fails to induce an injection on
tangent spaces. Note that Zy contains the singular locus of Z.

Note that g(Zp) has dimension at most 1, and g(Z;) has dimension at
most 2. Since the canonical morphism Fy — Y is dominant, a general line
will meet g(Z;) in only finitely many points. Also, if a general line meets
g(Zy), then g(Zp) is a curve such that for every point p € g(Zg) there are
infinitely many lines on Y through p. This contradicts Lemma 3.2. So a
general line does not meet g(Zg). Therefore, g~!(L) has pure dimension 1
for L a general line on Y.

Now suppose that Z is integral and g is dominant. Then dimg(7;) < ¢
for ¢ = 0,1,2. We use the characteristic zero assumption of this section
to get dimg(Z2) < 2. So a general line will meet g(Z2) in only finitely
many points, and will not meet g(Zy) and g(Z;) at all. Hence g (L) is
nonsingular away from the preimage of L N g(Z3), which consists of only
finitely many points. O

Definition. If Z is any scheme and F : Z --+ P" is a rational map given
by sections Fy, ..., F, of some line bundle on Z, then let indet(F) denote
the scheme of common vanishing of the F; in Z:

indet(F) = V(Fy,...,F,) C Z.

Lemma 3.4. Take F s as in the definition, and let m : Z — Z be the
blowup of Z in indet(F). Then there is a canonical morphism F : Z 5 pr
such that F = Fon as rational maps. Moreover, if p € indet(F) is a closed
point, then F induces a closed immersion of 7~ Y(p) into P".

Proof. Recall that Z is isomorphic to the closure of the graph of F, I'r C
Z x P, Thus projection onto P* induces the desired morphism F:7 P
If p € indet(F) is a closed point, then 7~!(p) is a closed subscheme of p x P",
which maps isomorphically onto P® by projection. O

Lemma 3.5. If p € indet(F) is a closed point, then p € H is a point of
order at least 3.
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Proof. Let F = (Fy, ..., Fy), and let Y have homogeneous equation G. Since
the F; vanish at p and G has degree 3, G(Fy,. .., Fy) vanishes to order at
least 3 at p. In other words, p € F~}(Y') is a point of order at least 3. But
p is contained in H and not X. The lemma follows. O

IfLisa general line in ¥ with L := V(¢ £,&3) for some linear forms ¢
on P%, then define

F~YL) := V(F*€), F*&, F*&3)
C=FYL)NnH
D=FYLnX

If H - H is the blowup of H at the indeterminacy scheme indet(F|z) and

h:H =Y is the resulting morphism, then Lemma 3.3 says that (L) is
purely one dimensional, so the same holds for C. Lemma 3.3 implies D is
also purely one dimensional. So F~1(L) is a complete intersection in P%.

Lemma 3.6. With C as above, w@ = O¢(—1).

Proof. Since F'1(L) is the complete intersection of three cubic hypersurfaces
in P*,
w%_l(L) = Op—l(L)(—E) +34+3+ 3)
= OF—I(L)(4)
Following [9, Ex. 3.7.2], compute
UJ% = Homp-l(L)(OC,w%_l(L))
= Homp-1(1)(Oc, Op-1(1)) ® Op-1(1)(4).

Therefore, if I¢, Ip C Op-1() denote the ideals of C, D C F~Y(L), then it
suffices to carry out the following computation

(3.1) Homp-1(1)(Oc, Op-1(1y) = (0 : I¢)

(3.2) =Ip

(3.3) > 0u(-CN D)
(3.4) > Op(=5).

The isomorphism (3.1) is given by ¥ — 1(1).

To see (3.2), note that D is Cohen-Macaulay since it is a local complete
intersection in X and X is C.M., as L is a l.c.i. in Y. It follows that C and
D are linked because F}(L) is Gorenstein, cf. [5, Theorem 21.23].

To see (3.3), we will show that

Ip +I¢
Ic
is an isomorphism of O¢-modules, i.e. Ip NIz = 0. So let a be a local
section of Ip N Iy, which is necessarily supported on C N D. We will show
a=0.

Ip —
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Let A = Op-1(y), for some closed point p € C'N D with maximal ideal m.
Let b denote the image of a in A. Some power of m annihilates b because b
is supported at p. Therefore m is the annihilator of some nonzero multiple
of b, provided b # 0. So m is an associated prime ideal of A. But A is C.M.
and one dimensional, so every associated prime is minimal. Hence 6 = 0
after all. Therefore a = 0 because its localization is zero at every point.

The isomorphism (3.4) follows from CND =CnN X. O

Corollary 3.7. If C := F~Y(L) N H is reduced at the generic point of an
irreducible component C', then C' is either a smooth plane conic disjoint
from the rest of C, or C' is a line meeting the rest of C' at only one point.

Proof. This is immediate from Lemma 3.1 and Lemma 3.5 because the de-
gree of the dualizing sheaf of a smooth curve is at least —2. a

3.2. A Multiplicity Result. The following result holds in arbitrary char-
acteristic and will be used in the next subsection.

Lemma 3.8. Let Z be the reduced structure on an irreducible component
of H. Assumem < d. If F|z : Z --+ Y is not dominant, then 2Z C H as
divisors in P".

Proof. Suppose F' does not map Z dominantly onto Y. Then Z is covered
by curves that are mapped to points under F'. So suppose that ¢’ C Z is an
integral curve with F(C} = (1,0,...,0) for simplicity, and let I C Op~ be
the ideal sheaf of C. If F = (Fy,..., Fy), then F, € HO(P", I(m)) for i > 0.
We show that H is singular along C.

Let K € HO(P", I(em — d)) be the homogeneous equation for H. Let
I C Op~ be the ideal such that I/I(®) = (I/I%)/torsion. Then K induces
a section K € H(P",1/1®(em — d)). We will show K = 0. '

If G = G(yo,-.-,yn) is the homogeneous equation of Y, then we can
write G = y§ Gy + - + y0Ge—1 + G, where the G; = G;{y1,...,yn) are
homogeneous of degree i. So the homogeneous equation of F~1(Y) = X+ H
is
(3.5) F*G = F{'F*G1+ F{ 2F*Gy + ...

where F*G = G(Fy, ..., Fp).

Let D be the Cartier divisor V(F¢™!) N C on C. Note that D is disjoint
from X because D is supported on CNV(F,...,F,) and V(Fy,..., F,) is
disjoint from X. So from (3.5) it follows that K restricts to the zero section
on D because F¢ 'F*G; restricts to zero on C for i > 2, and F¢ ! restricts
to zero on D.

Tensor the exact sequence

0— O¢(—-D) — O¢ — Op — 0
with I/I® (em — d} and use Oc(—D) = Oc(—m(e — 1)) to obtain
1/I%m = dy 5 1/IP(em — d) -2 1/I® @ Op(em — d) — 0
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'To see that 7 is an injection, note that 7 is multiplication by Fg_l, which
i3 a unit in the local ring of almost all the points of C. Therefore 7 could
only have torsion elements in its kernel. But I/I(?)(em — d) is a torsion-free
sheaf. So 7 is injective.

Since p(K) = 0, K is the image of a section

K € HYC,I/I®(m - d)).

From the conormal sequence of C' in P™, we get a morphism 1/1®) (m—d) —
Ob.|c(m — d) that is an injection on the regular locus of C, and is therefore
an injection because I/I{2)(m — d) is torsion-free.

The sheaf QL.|c(m — d) has no nonzero global sections because of the
injection Q. |c(m — d) = Opn(m — d — 1)®"*! from the Euler sequence.
Therefore, I/1(%}(m — d) has no nonzero global sections. So K = 0, whence
K = 0. Therefore K € H(P*, I?), which implies I is singular along C.
Since Z is covered by such curves, H is singular at every point of Z. This
is only possible if 2Z € H as divisors. a

3.3. Morphisms from Quintic to Cubic Threefolds. Recall the de-
composition ¥ ~1(Y) = X + H from Section 1. We will consider the various
possibilities for H and rule them out one at a time, thus proving Theorem
1.

Proposition 3.9. H does not contain a hyperplane in P* that maps domi-
nently onto Y.

Proof. Suppose Z C H is a hyperplane that maps dominantly onto Y. If
we restrict F' to any P? contained in Z, then F|p» is described by Theorem
2. In particular, F(P?) is the intersection of Y with a hyperplane tangent
to Y at 3 points. The family of 2-planes contained in Z and the family of
tangent planes to Y both have dimension 3, so a general tangent plane to Y’
is tangent to Y at 3 points. However, since Y is a nonsingular hypersurface,
a general tangent plane to Y is tangent at only one point, cf. [4, Lemma

5.15]. O
Corollary 3.10. If K is a hyperplane contained in H, then 2K C H,
and we can choose coordinates xy, ..., 24 on the P4 containing K such that

K =V (z4) and F|k is given by the formula

Flg = (£, z3, 23, zoz129, 0)
Proof. By Lemma 3.7 and Proposition 3.8, 2K C H.

Since F|g is not dominant and K 2 P?) F|g can not be a morphism.
Choose a point p in the indeterminacy locus of F|g. Let 7 : K — K be the
blowup of K at the indeterminacy scheme indet(F|x), so that the rational
map F)| extends to a morphism ® : K — S, where S is the image surface of
K under F. By Lemma 3.4, 7~!(p) maps 1som0rph1cally onto S under the

morphism ®. So for s € S a general point, ®1(s) is a curve in K that meets
m~1(p). Therefore the preimage of s under F|x is a curve in K through p.
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If A is any 2-plane in K disjoint from indet(F|g), then F|, is described
by Theorem 2. In particular, for s € S any nonsingular point, the preimage
of s in A consists of three reduced points. Therefore the preimage of s in
K consists of three distinct lines that are reduced away from indet(F|g).
Indeed, if the preimage of s in K contained a curve other than a line, we
could choose A such that F|*(s) was not 3 reduced points by choosing A to
be tangent to F!Kl (s) at a point but not contain any component of F|;!(s).

So there is a two parameter family of lines in K that are mapped by F
to points in S. Every such line meets indet(F|g), which consists of finitely
many points. So there is some point p € indet(F|g) such that there is a two
parameter family of lines in X through p that are each mapped to a point
in § under F.

A line L is mapped to a point by F exactly when the scheme LNindet(F)
has length 3 because F*O(1) = O(3). Since a general line in P* through
p meets indet(F) in a scheme of length 3, the same holds for every line
through p. So every line through p is mapped to a point. Therefore, F|g
is determined by F|y for any 2-plane A in K not containing p. Theorem
2 determines F'|z. If one takes p = V{zp,x1,22) and A = V(z3), where
Zo,...,Z3 are homogeneous coordinates on K, then F|x has the desired
form. O

Proposition 3.11. H is not equal to Q + 2K for an integral quadric Q and
e hyperplane K.

Proof. Suppose H = Q + 2K. By Corollary 3.9, F|k factors through pro-
jection from some point p € K. By Lemma 3.5, H has order at least 3 at
every point in indet(F). So every point in indet{F) is in K N Q. Hence, p
is the only point in indet(F') because it is the only point on K where F is
undefined. _

The map F|g is dominant by Lemma 3.7. Let 7 : @ — @ be the blowup

of § at the indeterminacy scheme indet(F|g), and let g : Q — Y be the
resulting morphism extending F|g. Apply Lemma 3.3 to g to see that for L
a general line, ¢~ (L) is reduced at the generic point of each of its irreducible
components, whence the same is true for Cg := F~1{{L) N Q.

By Lemma 3.4, g is a closed immersion when restricted to 7! (p). Since
g(m~1(p)) is an effective divisor on Y, it is ample by the Grothendieck-
Lefschetz Theorem,[8, Theorem 4.3.2]. So every line in ¥ meets ¢(m~!(p)).
Therefore, Cg has an irreducible component C) containing the point p. By
the same argument, F~1(L) N K has an irreducible component C, that
contains p. Since L is a general line on Y, which is covered by lines, L
is not contained in the image of K N Q. So C; # C> By Lemma 3.6,
wg = O¢(—1). Since C has more than one irreducible component than
contains p, Lemma 3.1 shows that every irreducible component of Cg that
containsg p is a line because the dualizing sheaf of every smooth curve is at
least —2. So () is covered by lines through p, and these lines are parametrized
by a general hyperplane section Q N P? of Q. Because the line L C Y is
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general, dim@ NP3 = 2, and dimA = 2, where A is the space of lines
on Y, we conclude that every general line on ) through p maps to a line
on Y. Hence the rational map F|g : Q@ --+ Y induces a rational map
QNP3 --» A, However, A does not contain a rational curve by Proposition
2.1. This contradiction finishes the proof. a

Lemma 3.12. If L is a line in P* such that L Nindet(F) is nonempty and
18 not a single reduced point, then L is contained in IT.

Proof. Suppose L intersects indet(F'). Then LNindet{F) is zero dimensional,
so its structure sheaf has finite dimension X over the ground field k. So the
rational map F|, is given by Op:(3— A) after F|L is extended over the points
of indeterminacy. The intersection L N indet(F') is a single reduced point
exactly when A = 1.

If A =2, then F maps L isomorphically onto a line. This is impossible if
L is not contained in I because L would meet X in a scheme of length 5
while F(L) would meet ¥ in a scheme of length 3. If A\ = 3, then F(L) is a
point in Y, so L C H. This completes the proof because A < 3. a

Proposition 3.13. H is not 2K, + 2K» for distinct hyperplanes K, and
K.

Proof. Suppose H = 2K + 2K5. According to the formula of Corollary
3.10, there are points p; € K; such that F|g, factors through projection
from p;, and the tangent space to the indeterminacy scheme indet(F|g,) at
p; 18 equal to the tangent space of K; at p;.

We claim p; # ps. Indeed, if p = p; = ps, then T, K # T, K> because
the K; are distinct hyperplanes. So indet(F) would have a four dimensional
tangent space at p. But now every line in P* through p meets indet(F) in a
scheme that is nonreduced at p. So Lemma 3.12 implies that every line in
P* through p is contained in H. This is impossible because H is not all of
P4, so p1 # pa.

Let L be the line containing pq,ps- By Lemma 3.5, H has order at least
3 at both p;, so p1,p2 € K1 N Ks. Therefore, L C K; N K>, so that L meets
indet(F) in a scheme of length 6, which is impossible because L M indet(F')
can have length at most 3. O

Proposition 3.14. H does not contain a hyperplane.

Proof. The only case left to rule out is H = 4K. So suppose H = 4K. We
will lift the polynomials that give F|x from K to its second infinitesimal
neighborhood 2K and then derive a contradiction.

Using Corollary 3.10, we choose homogeneous coordinates zg,...,z4 on
P* such that K = V(z4) and
(3.6) F = (2} + raq0, 2} + zaqr, 75+ 2402, T0z132 + Tags, Tagu)
for some homogeneous polynomials ¢; of degree 2 in the z;. Let yo,...,%4

be homogeneous coordinates on the target P4, Since Y NY” is the image of



MORPHISMS OF HYPERSURFACES 39

K =V(zy) weseeY' = V(yy),and Y NY' = V(ys, yov1v2 —y3). SoY is
given by the equation

G = yoy1y2 — Y3 + yaGa

for some homogeneous Gz of degree 2 in the y;.
Since 2K C H, z3 divides the pullback

F'G = (1'{3) + -T4QO)(1‘:I' + $4Q1)($% + z447)
— (zoz1T2 + T4q3)® + 24qaF* Gy

z4(q7ia} + zad + q23de} — gaaiaizy + quF* Ga)

+ z%(other terms)
Therefore 4 divides
(3.7) 207373 + Qe + quude] — 3gsagzizd + uF G
Using the notation 9; := 3—‘37, the partial derivatives of G are

HG = y1y2 + yao G2

G = yoy2 + yadh Ge

G = yorn + Y162 Go

3G = —3y3 + ya03G2
04G = Gz + y404G

It follows that V(yoy1, %ols, ¥1¥2, Y3, ¥4, G2) is empty because it is con-
tained in the singular locus of Y. Hence V(Gg) does not contain the point
(1:0:0:0:0). In other words, y? appears with nonzero coefficient in G>.
Therefore by equation (3.6), 2§ has nonzero coefficient in F*G5.

Moreover, q4F*G3 is the only term in formula (3.7) in which a:g can occur
because the ¢; have degree 2. Since (3.7) is zero (mod z4), the z§ term
in (3.7) disappears when considered (mod x4). This can only happen if
z4 divides g4. Further consideration of (3.7) shows that there are scalars
ag, a1,a9 such that the following equations hold (mod z4): '

2
do = apxy
2
qr = a11;
2] = 0321'2
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Therefore, equation (3.6) yields
Fy = wg + agm4$g —+ .’Bihg
= m? + a1w4:c% + 'Jsihl

Fy = 23 4 agzexs + z2hs
1 2
F3 = xzgri22 + §1'4(a01:11'2 -+ a1Toz2 4 agfl,'o:t?l) + .’B4h3

F4 — .’EZ’M

for some homogeneous linear polynomials k; in zg,...,zq4.
As H = 4K is contained in F~1(Y), z} divides

G = o Py — Fg + FyF*Go.

Since F*G has degree 9, the monomial mgmﬁ can not appear with nonzero

coefficient in F*G. On the other hand, the monomial z§ does have nonzero
coefficient in F*G». So z§ must appear in a monomial with nonzero coeffi-
cient in

F*G — FyF*Gy = FF\F, — F3.
However, by the formulas for Fy, ..., Fy given above, the highest power of zg
that can appear is mg. This contradiction finishes the proof. O

Lemma 3.15. Every point p € indet(F) is a point of order 3 on H.

Proof. Let T, denote the tangent space of the indeterminacy scheme indet(F")
at some closed point p € indet(F). If L is a line in P* tangent to indet(F)
at p, then L is contained in H by Lemma 3.12. Proposition 3.14 asserts that
H does not contain a hyperplane, so T, can have dimension at most 2.

By Lemma 3.5, H has order at least 3 at p. So we only have to rule out
the case ord, H = 4.

Suppose p € indet(F) is a point of order 4 in H, so that H is a cone over
p. Let 7 : P* — PP* be the blowup of P* at indet(F'), and let F:P* S Y be
the resulting morphism that extends ¥. Let E, = 7~ !(p) be the preimage
of the reduced point p. Since the dimension of T}, is at most 2, if /; and
l, are two general lines in P* through p, then the scheme [; U [5, which is
contained in a 2-plane, meets indet(F') in the reduced point p. So the strict
transform of I} Ul is the blowup of [; Uly at p, which is the scheme-theoretic
intersection I; N l;. Therefore the strict transform of {; Uly is the disjoint
union of the strict transforms {; and I of I; and 5. In particular, a general
line [ in P4 through p determines a point on Ejp, and distinct general lines
yield distinct points in E,. Hence Ep, has an irreducible component Ej, that
is the birational image of the space P? of lines in P* through p. .

If | is the strict transform of a general line ! in P* through p, then !
meets #~1(Y) in a scheme of length 6. Indeed, the morphism F|; is given
by sections of the line bundle Op:(2) because the rational map F|; is given
by Op:(3) and has indeterminacy scheme equal to a single reduced point.
When the indeterminacy is resolved the resulting line bundle is Op1(2). The
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Cartier divisor #~1(Y) is the pullback of the degree 3 divisor Y. So F~YY)
has intersection product 6 with the curve [,

Moreover, E;, maps onto Y, as follows. If H is the strict transform of H
in @4, then H intersects Ep in a scheme of dimension 2. In particular, E;J is

not contained in E, N H. Forla general line in P* through p, ! only meets
H at p because I is a cone over p. So the strict transform I of I does not
meet H. : ,
Since [ meets the strict transform X of X in a scheme of length 5 and [
does not meet H, the other point of [ ﬂﬁ—l(Y) lies in £, and therefore in F,.

So F maps E]’J isomorphically onto Y because F gives a closed embedding
of E, into P* by Lemma 3.4. This is a contradiction because E’ is rational
and Y is not. Therefore every point p € indet(F) is a point of order 3. O

Proposition 3.16. H is not 2Q for an integral quadric Q.

Proof. By [14, Proposition 2.2(2)], Y is not the image of a morphism from
a hypersurface in P* of degree 2, so F | is not a morphism. Let p € indet I
be a closed point. If H = 2Q), then every closed point in Q has order 2 or 4
in H. By Lemma 3.5, p is a point on H of order at least 3. So p has order
4, which is impossible by Lemma 3.15. We conclude H # 2Q. 0

Proposition 3.17. H is not Q| + Q2 for distinct integral quadrics Q1 and
Q2.

Proof. Suppose H = Q1 + Q2. By Lemma 3.8, the Q; map dominantly
onto Y. Therefore, by Lemma 3.3 applied to the blowups of @1 and @,
at the indeterminacy schemes of F|g, and F|g,, for L a general line in Y,
C := F7Y(L) N H is reduced at the generic point of each of its irreducible
components.

By Lemma [14, Proposition 2.2(2)], F|g, can not be a morphism because
degY > 2. Pick p € indet(F|g,). By Lemma 3.15, p is a point of order
3 in H, so @9 contains p. I claim that € has an irreducible component
contained in each of the J; through p. Indeed, if m; : Q; — @Q; is the blowup
at indet(F|q,), and ¢; : @i — Y is the resulting morphism, then a general
line L in Y will meet q,;(ﬂi_l (p)). So the preimage of L in Q; passes through
p.

Therefore, by Corollary 3.7, the connected component of C' containing p
is the union of two lines through p, one line contained in @ and the other in
(2. But now each of the ; contain a two parameter family of lines through
p because V' is covered by a two parameter family of lines. So both the
@Q; are cones over p, so that p is a point of order 4 in H. This contradicts
Lemma 3.15. O

The following Lemma will be needed to analyze the preimage in H of a
general line in Y in the case where H is integral.
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Lemma 3.18. Let 7 : F — B be a projective morphism with B integral.
Suppose ¢ : B — F is a section of m, and for each b € B the connected
component By of m~1(b) that contains o(b) is irreducible. Then |J, Fp is an
irreductble comnponent of F.

Proof. Let F T, B' % B be the Stein factorization of 7. So 7’ has connected
fibers, and g is finite. Then 7’ oo is a section of g, and (7') "1 (' 0 ) (b) = F.
Notice that (7' 0 o)(B) is an irreducible component of B’ because they have
the same dimension. Since (7'} }{(r' 0 ¢(B)) has irreducible fibers F;, and B
is irreducible, (') 1 (z’ 0 g(B)) = |J, F is irreducible. a

The only case left to rule out is when H is integral.
Theorem 3.19. H is not integral.

Proof. Suppose H is integral. By Lemma 3.8, F|y is dominant because H
has multiplicity 1 in F~1(Y). However, F|g can not be a morphism, because
if it were then Table 1 in the Appendix would imply that the polynomial
degree m of F would be at most 2, not 3. Choose p € indet(F') a reduced
point.

Let L be a general line in Y, cut out by the linear forms &;,&2,£3 in P
Define

F~YL) := V(F*¢), F*&, F*&)
C(L):=FYL)nH
D(L):=F Y (L)nX

By Lemma 3.3, C = C(L) and D = D(L) are reduced at the generic point
of each of their irreducible components, and

Since the linear forms F*¢; vanish on the indeterminacy scheme indet(F) :=
V(Fy, ..., Fy), indet(F) is contained in F~!(L) = CUD. Therefore, indet(F)
is contained in C because indet{F'} does not intersect D, as D is contained
in X. By Corollary 3.7, the connected component of C' that contains p is
either a smooth quadric curve or the union of two lines meeting at some
point. According to Lemma 3.15, p is triple point on H, so that H is not a
cone over p. By Corollary 3.7, the connected component of C' that contains
p is a plane conic. Since H is not a cone over p, ¥ has a two dimensional
family of lines, and L is a general line on Y, the connected component of C
that contains p is a smooth plane conic.

Let B be an open subscheme of the space of lines in Y such that for every
L € B, every component of C(L) that meets indet(F) is a smooth plane
conic. For L € B, F~'(L) has degree 27, and D(L) has degree 15. So C(L)
has degree 12 and is the disjoint union of 6 reduced plane conics.

Choose a general Lo € B, and let C1(Lg),...,Cs(Lp) be the connected
components of C(Ly). Let {; := Ci(Lg) N indet(F), and let A((;) denote
the length of the zero dimensional scheme ¢;. The polynomial degree of F
is m = 3, Ci(Lo) has degree 2, and Lo has degree 1. So the restriction
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Ci(Lo) --+ Lo of F to C;(Lo) has degree 6 — A((;). Therefore deg F'|g is the
sum of the deg F|¢,(1,):

6
(3.8) deg Flg = > 6 — MG).
i=1

Now number the C;(Lo) so that A(¢1) > --- > A((s), and let p be a closed
point of {;. Let F C B x H be the total space of the family 7 : F — B whose
fiber over I € B is C{L). The closed subscheme B x p C F is a section of
7. So ' ‘

Fi:= |J Gi(L)

LeB

is an irreducible component of F by Lemma 3.18.

Notice that there is a morphism F — By, where By is the space of quadric
plane curves in H that contain p, given by sending a point (L,z) € FC BxH
to the irreducible component of C(L) that contains z. The fibers of F — By
are one dimensional and dimF = 3. So the image in By of the intersections
of the various irreducible components of F has dimension at most 1. Hence
there is at most a one dimensional space of lines in ¥ such that C(L) has
a component corresponding to a point in By whose fiber in F lies in more
than one irreducible component. So by generality of Ly € B, F; is the
only irreducible component of F that has nonempty fiber over the point
C1(Ly) € By. Therefore, the irreducible component Iy of F did not depend
on the choice of p € (; because for any p € (| the connected component of
C(Lg) that contains p is C1(Lg).

Since F; did not depend on the choice of p € (1, for every line L € B,
the component C; (L) := 7~ ([L]) N F; of C(L) that is contained in F; has
the property that C)(L) Nindet(F) = ¢;. This is because for every q € (1,
B % q is contained in F; C B x H.

Consider the composite morphism ¢ : F; - H f—"—’» Y. Let y€ Y bea
general point. There are six lines Ly,...,Lg on Y through y, and ¢—1(L;) =
(4(L;). By counting preimage points of y we see that deg¢ is the sum of
the degrees of the Cy(L;) --» Ly

(3.9) degp =3 6— A(G1):

1=6

Since deg ¢ > deg F|y, equations (3.8) and (3.9) show that all the A(¢;) are
equal by maximality of A({;). Therefore F; — H is a birational morphism.

Let p € indet(F). By Lemma 3.15, p is a triple point on H, and so H is
rational. Therefore F; is rational and dominates the surface B. However,
B does not contain a rational curve by Proposition 2.1. This contradiction
shows that H can not be integral. a
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