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Abstract

We examine the regularity properties of solutions to an elliptic free boundary problem, near a
Neumann fixed boundary. Consider a nonnegative function u which minimizes the functional

Il = [ (196 + @)xion)

9]

on a bounded, convex domain  C R*. This function u is harmonic in its positive phase
and satisfies |[Vu(z)| = Q(x) along the free boundary 8{u > 0}, in a weak sense. We
prove various basic properties of such a minimizer near the portion of the boundary I C 99
on which % = 0 weakly. These results include up-to-the boundary gradient estimates on
harmonic functions with Neumann boundary conditions ¢n convex domains. The main result
is that the minimizer v is Lipschitz continuous. The proof in dimension 2 is by means of
conformal mapping as well as a simplified monotonicity formula. In higher dimensions, the
proof is via a maximum principle estimate for |Vu|.

Thesis Supervisor: David S. Jerison
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Chapter 1

Introduction

Let 2 C R* be a domain and let @ be a smooth, bounded, nonnegative function on 2. The

subject of this thesis will be a function u with the following properties:

u(z) =0 Vze
Aulz) =0 Veec{u>0NnQ
|Vu(z)| = Q(x) Vzed{u>0}nQ (1.1)

The free boundary is the set A = {u > 0} N Q. This free boundary problem has several
applications, particularly to the study of jets and cavities. See, for example, [3] and the
other papers on the subject by Alt, Caffarelli, and Friedman referred to in that paper, as

well as the book on free boundary problems by Friedman[10).

Let {2 be a convex domain, such that 99 has Lipschitz constant L. Let S be a closed

subset of 82 and let ug be a smooth nonnegative function on R*. Let the functional J be

defined by
I = [ (196 + @)oo (12)
o
and let u be the minimizer of Jin K = {v € H' : v = 43 on S}. The function u is a solution
of the free boundary problem described above, in a weak sense. Let I' = 9Q \ S. Note

that u satisfies Neumann boundary conditions along I" in a suitable sense, as is standard fo

variational problems in which the boundary condition is not prescribed. The behavior of u
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Figure 1-1: The Domain of the Free Boundary Problem
near this Neumann boundary T' will be the focus of this work. The main result is:

Theorem 1 Let ro > 0 and define Q,, = {z € Q : dist(z,5) > ro}. Let A = supguo.
Suppose that 0S) is conver in a neighborhood of T, and let L be the Lipschitz constant of the
boundary 0. Let Q) be a measurable function with 0 < Q < M. Then there is a C' depending
only on n,L, M, A and ro such that if u is the minimizer of J in K then for almost every
z € Sy,

[Vu(z)] < C.

We make several comments about this theorem:

1. We are interested only in the behavior of u near a Neumann boundary. Nontrivial
Dirichlet conditions must be assigned somewhere in order to prevent u from being
trivial. We choose to exclude a neighborhood of the places where Dirichlet conditions
hold in order to prevent confusion. This does not mean Lipschitz continuity does not

hold there, merely that it has not been studied.

9. Q) must be convex. Without this extra condition the theorem fails. Indeed, even
harmonic functions in non-convex Lipschitz domains fail to be Lipschitz continuous.

However, if © is non-convex one can still find a minimizer v, and that minimizer

12



is Holder continuous for some 0 < a < 1 determined solely by the fixed boundary

regularity.

. The variational approach taken here allows one to consider a v which is a priori not
smooth enough for the free boundary condition in (1.1) to make sense pointwise. The
free boundary condition can be recovered almost everywhere after some regularity
results are obtained, if () is strictly positive and smooth [2]. This approach also enables
one to obtain existence and basic properties of u fairly easily. On the other hand,
energy minimization is a stronger property than simply solving the PDE; the results
of this approach do not apply to solutions which are not at least local minimizers of
J. Examples of global saddle point solutions do exist [2], and they can have lower free

boundary regularity than local minimizers.

. The proof of this theorem is different in two dimensions than in higher dimensions.
Both cases begin by extending the average control lemma of [2] to the Neumann bound-
ary case. In two dimensions, the proof proceeds by methods of conformal mapping and
the use of a monotonicity formula as in [4]. In higher dimensions, we use an interior
gradient estimate of [9], modified in the convex Neumann case as in (14]. It is likely
that this proof applies also to two dimensions, but the separate two-dimensional proof
is included because we find it to be instructive. The methods available in two dimen-
sions provide more precise information abouﬁ u, and, we expect, will make a study of

the shape of the free boundary much easier in that case.

The one-phase free boundary problem treated here was first considered by Alt and Caf-

farelli in [2]. They first concluded that a minimizer exists for the functional J with nonneg-

ative boundary conditions, then computed the basic properties of local minima, including

that they are globally subharmonic and harmonic in their positive phase. They also proved

that the free boundary condition holds in a weak sense. Alt and Caffarelli proceeded to

examine the question of interior regularity, and concluded that a local minimum % is locally

Lipschitz continuous. They found that, with 0 < m < @Q and Q smooth, the free boundary

is a C'h® surface except at a set of 0 surface measure. Moreover, for n = 2 the free boundary

13



is analytic if Q is. They finally produced a non-minimizing global solution in dimension 3

with a point singularity in the free boundary at the origin, and several other examples.

In 1984, Alt, Caffarelli and Friedman continued the study of the problem by examining

the two-phase problem [4]. They studied a minimizer u of
M) = [ (9of + @203z, (1.9
Q
where ¢ is a smooth positive function and

A >0
A(U): /\2 v<0-

l'l'li].'l()\l, )\2) v=20

They minimized I in K = fve H :v=wonS C o8}, where wy is not required o be
nonnegative. In that paper, they introduced their well-known monotonicity lemma. They

proved that, for a minimizer u, if u(zy) = 0 then the function

1 1
o) = (5 [ e i) (5 [ e V- s )
r Br(wo) r BT(IO)

is increaéing in 7. This allowed them to concluded that u is locally Lipschitz continuous in
Q). A similar technique will be used in Chapter 4. They also concluded that, for n = 2, the

free boundary is continuously differentiable.

Further work on the regularity of the free boundary was done by Weiss, who concluded
that singularities in the free boundary have codimension 3 [16]. The study of the regularity
of the frec boundary continues; in a recent preprint, Caffarelli, Jerison, and Kenig prove that
the free boundary of a minimizer is smooth in dimension 3. Since a non-smooth critical point
is known to exist in three dimensions, this shows that minimizers have higher regularity than
general solutions. They conjecture that the free boundaries of minimizers are in fact smooth

up to dimension 7 [7].

Fixed boundary regularity of u» has not been approached using variational techniques.
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However, uniform regularization methods have been used to study the regularity of solutions
near a smooth boundary. In this technique, the free boundary problem is modeled by a

smooth semilinear PDE;:

Aue = Q*(7) B (ue)

where f(z) > 0, B(z) = 0 for z < 0 and for 2 > 1, and [ Blz)dz = 1. Be(z) = 1B(2).
Uniform estimates on u, are obtained as ¢ — 0, and the ue are shown to converge uniformly
to a solution to the free boundary problem in an appropriate sense. (See, for example,
[6].) This method has the advantage of applying to a larger class of solutions, but cannot
be used if the regularity of 8 is too low, as is the case in the current work. Uniform
regularization methods have been used to study the regularity of solutions near a smooth
Neumann boundary. In (6], Berestycki, Caffarelli, and Nirenberg used these methods to
establish uniform Lipschitz continuity up to a smooth Neumann boundary. They establish
that these solutions do indeed converge to a Lipschitz continuous weak solution to the free
boundary problem, and obtain some control over the shape of the free boundary as well.
They also apply their results to a related free boundary problem of combustion theory.

In [11], Gurevich examined the uniform regularity of this singular perturbation of the
problem, near a boundary with smootﬁ non-trivial dirichlet data uy. He concluded that
an extra condition (|[Vug| = 0 when up = 0) is necessary and sufficient to obtain uniform
Lipschitz continuity of the u., which implies Lipschitz continuity of the uniform limit . This
condition is automatically satisfied in the one-phase problem if u, is smooth, so Lipschitz
continuity does hold in that case; if u, is not assumed to be smooth, the extra condition
may not hold. Without the extra condition, the best regularity that can be expected is of
the form

[ue(@) = ue(y)] < Clz ~ yl(1 + |log |z ~ y|).

This regularity is still enough to guarantee that a weak solution to the free boundary
problem exists as a uniform limit of solutions to the singularly perturbed equation, but
Lipschitz regularity of u does not hold. The question of the shape of the free boundary itself

remains open near a Dirichlet boundary.

The structure of this thesis is as follows. Chapter 2 provides detailed definitions and
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basic properties of the minimizer u. Chapter 3 gives some necessary properties of positive
harmonic functions with Neumann boundary conditions. It includes up-to-the-boundary
gradient control lemmas in both two and higher dimensions, which will be used significantly
in the proof of the main theorem. Chapter 4 contains the proof of the main theorem, including
the average control lemma which is its main step. Chapter 5 concludes with comments on

directions for future work.
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Chapter 2

Preliminaries

Consider a domain Q C R*. Let § be bounded and connected, with 99 locally a Lipschitz
graph with Lipschitz constant L. In general, {} will be convex. However, for some of the
basic properties this condition will not be necessary. Let v be the outer unit normal to a0,
where defined.

Let
Jfo] = f (179 + @ (2) x50y d,

where (J(z) is a smooth function with 0 < m < Q(z) < M. Let S be a closed, proper,
nonempty subset of 0{2. Let ug be a smooth, nonnegative function on R*. Let A = Supg Ug.

We minimize J over the set
K ={ve H :v=ugon S}

We now list some notations that we will use throughout this thesis. Let ¢ > 0. Then
{2 will be the open set {x € Q: d(z,5) > a}. Let D C R® be a domain. For a function
f € HY(D), and a measurable set T ¢ 8D of positive Hausdorff measure, f|r will denote
the trace of the function [ along T', which is in L*(T). supp(f) will denote the support of
f. Finally, |D| denotes the Lebesgue measure of I and

fodleTl)—lD/fdx.
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Let » be a minimizer of Jin K. We begin by listing some bagic properties of u, as

Dresented in [2].
Lemma 1 4 minimizer 4, ezists, and for any such minamizer (or local minimizer):
1. Au >0, in a distributional sense.
2. 0<u<A.
3. VQ’@Q,VO<@<1,u€C“(Q’).
4- {u > 0} is open.
5. Au=0in {u > 0).

‘The minimizer v is also Hélder continuous up to the boundary, although the exponent ¢ is
now controlled by the Lipschitz constant of 2, and may not be close to 1. For this lemma,
as with the main theorem, only points of ? which are far from S are considered. Once again,
this is not because we do not expect u to be Hélder up to S, provided wu, is Hélder, but

rather because we are not interested in the behavior up to the Dirichlet boundary.

Lemma 2 Letry > 0. Then Ja > 0 such that u € C* (), with o depending on n, and L,

and ||ullce depending on n, L, M, A, and r,.

PROOF Let 25 € 0. 35> 0 depending only on the Lipschitz character of Q such that one can
cover 92 with balls of radius s such that for each such ball B, BnoQ is a Lipschitz graph.
Let r = I min(1, ry, s). Cover Q with balls of radius 7 such that for each ball B, (z), Ba(z)
is either an interior ball in £ or 90 N By () is a Lipschitz graph as above. Let 2, be the
center of one of these balls. We will show that u € C%(B,(z,) N 2) for some & independent
of xy. This will suffice, as 2 is bounded.

First, suppose Ban(z) C Q. Then u ¢ C%(B,) for any & < 1, as in ([4], Theorem 2.1).
We may therefore suppose that Br(z0) ¢ Q. Let z ¢ B (o) and let r, = dist(z, dBy, (2)).
Let t < r,. Let D, = Bi(z)N 9. Let Lpe = (0By(z))n g, Un: = Bi(z) N 0. If Iye =0, let
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¢ be the harmonic function on D; such that v, = u on 8D,. In this case, as in [4] Theorem

2.1, we may conclude from the minimality of u that, for each ¢ < r,

V(u—u)? < C(rg)t".
Dy

Moreover, we may conclude that

[V (vae — vp)|* < C(r)t". (2.1)
D,

as well.

'y # 0, define v; to be the harmonic function on D with v =uonI'p; and % =0on

I'ns. As above, for each ¢ < r,
/ V(s — w)? < Clra)t™
Dy
Now, because (2 is Lipschitz, there is a bilipschitz map
F:D, — B;(0)

with {z : , = 0} = F(T'y,) and (8Bn,(0))* = F(T'p,). The Lipschitz constants of F and
F~! are controlled solely by L. Let

(a?(y)) = | det(VF ()| (VF)IVF) (F~\(3)),

whenever y,, > 0. When g, < 0, let

a“(y1, ..., —un) t#nand j#n
(@ 00) = { <., —a) = morj=n butif s
\“ij(yl,-..,—yn) i=j=n

Note that a* is uniformly elliptic with bounded, measurable coefficients on all of B:(0), and
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that the bounds on a depend only on L.

Define @y(y) = v(F'y) on By when y, > 0. For y € B; with y, < 0, let
f7(?,/1> 7yn) :ﬁ(ylu < _yn)-
Then, on B;(0), I will show that ¥, satisfies the equation

a'Ut

Z &fvj (.':?7:1

|
o

in the weak sense, i.e. for every ¢ € C°(B:(0)),

/ (aV;, V) = 0.

Bf(O)

Compute:

f (0¥, Vé)dy = / (a"1V;, Vé)dy + / (a?V0, Vé)dy

Bt(0) B (0) By (0)
- / (| det(VF~ ()| (VF)TVF) (F~1(z)) Vi, Vo)dy
B (0)

+ [ (den(VE (@) (VF)TF) (P (x) Vi, V)

B} (0)

Here, v is defined on Bi(0) by ¥(z1,...,2Zn) = ¢(1, ..., —Z5), and the last line is true by

the definition of the a¥, using the change of variables formula on the map (z1,...,%,) —

(1,...,—7,). Note that both ¢, ¥ € C®(B,N{z, > 0}) and ¢, ¥ = 0 on (0B;) N{z > 0}.
Hence, if we define ¢(y) = ¢(#(y)) and analogously for %, then both ¢ and ¥ are valid test
functions in {f € H'(B;N Q) : f =0on (0B;) NQ}).

Hence, we conclude, after another change of variables, that

20



[ @i Vo = [ (TR, RE )V del(VE ) dy
B:(0) B (0)

+ /(VF(F‘I(y))Wt,VF(F‘I(y))V;b)|det(VF*1(y))|dy
B (0)

= [(Vu,Veydz + [ (Vu, Vi) dz

Bi(z)n§t Bi(z)n2

=0,

using the energy definition of v;.

Because v; satisfies an elliptic equation of the appropriate form, by Theorem 5.3.6 of [13],
there exists C, o, with 0 < pg < 1, depending only on n and the a¥ (which in turn depend
only on the Lipschitz constant of ) such that, for any I < t,

1\ (2~ 1tno)
Vel zesnn) £ ClIV| 228,00 (E) (2.2)

This regularity holds for any I <t < 7.

Now, we return to the consideration of u. Choose some ¢ < ;. Recall that we have

/ IV (u— v)Pdz < Ct",

BN

and note that this implies that

/ |V (vgi-1y — vgip) |Pdz < C(20711)".

Bz(i_l)tﬂﬂ

Applying the result of our previous calculation to the function vy1; — Ugiy O Byuoy, N,
we find that, if T'y g1, 5 0,

24z < Gt (2022000,

/ |V {(vgi-15 — vgiy)

BN
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Recall that if T'y -1, = (), then the bound we get in (2.1) is even better.
We have, by the triangle inequality,

—log(%)
IVl ceminey < IV (= v)lleemeey + >, 1V (021 — vasd) | r2ganey + 11 V0| L2snny
i=1
—log(%)
% 1+ Z 1 IJO)‘L t?_1+“0

After summation, we conclude that, for every x € B, (), for every ¢t < r,

/ Vuf? de < C(r,)in2+20 1

Bt(:l')ﬁﬂ

Therefore, by Theorem 3.5.2 of {13], u € C*(B,(z¢) N ), with pg and ||u||cue depending

only on the given constants. O

Corollary 1 {u > 0} NI is open in K.

Finally, we consider the sense in which Neumann boundary conditions hold for u. Note
that % may not be defined pointwise along 99, and in fact » is not defined pointwise.
Throughout this thesis, when we say that Neumann boundary conditions hold “in a weak

sense” for a harmonic function on a set U, we mean that, V¢ € C*(U),

0:/UVU-V¢.

Comparison with the smooth case, where g% exists pointwise and we can integrate by parts,
indicates that this condition is equivalent to u being a harmonic function with Neumann
boundary conditions. To indicate that % = 0 only on a closed subset of 9Q, we will require
¢ = 0 on &N\ T but otherwise can be any smooth function. Once again, integration by parts

indicates that this is the appropriate condition.

Lemma 3 % = 0 weakly along I

INote that, if o = 1 then when we sum we will get C(r;)t"|log(%)|, instead of the quantity computed
above. This argument cannot be nsed to obtain the estimate with uo = 1, i.e. Lipschitz continuity.

22



PROOF Let 7 € T with u(zy) > 0. Choose s > 0 such that v > 0 on Bg(zq) N Q, and
Bs(z9) NS = 0. Let ¢ € C°(By(xp)). On B,(z4) N, we have

Suted =Tl = [ [Vt~ |Tul,

Bs (Ig)ﬂﬂ

and

=0.

e=0

(—?;J[u + €9

Since u > 0 on B,(zg), J is smooth in ¢, for ¢ sufficiently small,

0= / Vu-Vo.
B;(z0)N02

Since this holds for all such z, and s, we conclude that g—z = 0 weakly along I in the sense

defined above. O
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L fVu-Vg>g V¢EP:{f6H1[f20andf]pD=O}
0
2. Juy e L(0Q) such, thas Uty = uy > 0 on I'p.

Then u > ¢ 4, Q.

PROOF Consider the function u(z) = max(0, ~u(z)). w5 ip HY Q) and ulp, = g



Because u € H!, Vu = Vut X {u>0y — VU X{u<o}- Since supp(ut)Nsupp(u™) =0, Vu-Vu~ =

Vu~ - Vu~. Therefore, we may conclude that

—/|Vu‘|2 >0
Q

which implies that Vu~ = 0, so, since 2 is connected, v~ = C > 0. But «”|p, =0 on I'p,

so C = 0. Therefore, v~ =0,s0o u =u* > 0. O

Lemma 5 Let Q be a bounded Lipschitz domain in R™, with Lipschitz constant L. Suppose
Ty is a closed subset of Q. Let u be a positive harmonic function on §1 such that % =0

along Ty, in @ weak sense. Then, for any o € Q, for any v > 0 such that B,(xq)NdQ C Iy,

sup u(z) < C inf wu(zx)
By (wo) By {=o)

where the constant C depends only on n and the Lipschitz character of 9.

PRroOOF
It suffices to proof this inequality locally near I'y. Hence, we may choose zp € I'y and

s > 0 such that:
1. Bgs(iE) M (69 \FN) = (B
2. 'y is simply connected in By, and

3. I'y is a Lipschitz graph in the z,-direction in By, possibly after a rotation of coordi-

nates.

Then there exists a bilipschitz map F from Bs,(zo) N Q to B3(0) such that F extends con-
tinuously to the boundary and F(Ty) = {y||y| < 2s and y, = 0}. The Lipschitz constants
of F and F~! depend only on the Lipschitz constant L of I'y. Let

(a¥(y)) = | det(VE ()| (VF)"VF) (F (1)),

26



whenever y, > 0. When y, < 0, let

(a“(yl,---,—yn) t#nand j#n
(%, 90)) = § =a¥(y1,..., ) i=morj=nbutiz;.
aij(yla"'7'_yﬂ) sz =n

\

Note that a¥ is uniformly elliptic with bounded, measurable coefficients on all of Ba,(0), and

that the bounds on ¢” depend only on L.

Define u(y) = u(F~'y) on B,, when Yn 2 0. For y € By, with y, < 0, let
@ (y, ooy Yn) = @ (y1, ..., — Yn). By the same calculation as in Lemma 2, U sat-

isfies the equation

in the weak sense, i.e. for every ¢ € C(By,(0)),

/ (a"Vi, Vé)dz = 0.

B23 (0)

Then, by ([12], Theorem 8.20), & satisfies
supu < Cinf q,
U U

for any U € By,(0), where C depends only on the eigenvalues of a¥ and the distance from oI
to 0By,. Clearly, the same inequality holds when we restrict to the upper half ball because #
was created by an even reflection. Choose U = F/(B,(z)). Then, by returning to By (z) N
along F~', we conclude that sup B (z)na ¥ < C'infp, (z)nn 4, where C depends only on n and

the Lipschitz constant I of 9. O

We next present a gradient bound up to the Neumann boundary on a convex domain in
R?. This lemma uses conformal mapping to compare u to a harmonic function on the upper
half plane. The availability of this tool makes the 2-dimensional case much easier to handle

than higher dimensions. This lemma will be applied to bounded domains . However, for
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simplicity, in this lemma € is unbounded. Since this change does not affect the part of the

domain on which the function is defined, it will not affect its applicability.

Lemma 6 Let @ C R? be a conver domain, such that dQ = {y» > f(y1)}, f a Lipschitz
function with Lipschitz constant L, f(0) = 0, and minyer f(y) = 0. Let u be a harmonic
function on B4(0) N, with 0 < u < A, such that % =0 along 9Q N By4(0). Then

Vu| < O(L)A

on BQ(O) N Q.

ProOF Let @ : H = {(z1,2) : @» > 0} — Q be the conformal map such that P(o0) = 0
and ®(i) = i. Let ¥ = &, Let Dy = ¥(B,NQ) and Dy = ¥(B4NQ). On Dy, let v= uod,
so that u = v o ¥. Then

Vu()] = [T [To(T())]

v is a harmonic function on D, with 0 < v < A and % = 0O along {(z1,2) € Dy 29 =0},
because conformal mapping preserves harmonicity and angles. T herefore, by even extension
v can be considered as a harmonic function on Uy = { 2 : z or Z € Dy}.

Because 99 is Lipschitz, it satisfies Ahlfors’ three-point condition with a constant depend-
ing only on the Lipschitz constant L of 2. Therefore, the mapping ¥ can be extended to a
quasiconformal mapping of C onto itself, with U (9Q) = R, and the quasiconformal constant
of the map once again depends only on L ([1], Chapter 4, Section D and Section E Theorem
5). Recall that W has the normalization ¥(i) = ¢. By applying Corollary 5.4 of [5] several
times, we may conclude that there exists ¢ depending only on L such that, if |w| = 2 and
|z| = 4, then |¥(w) — ¥(z)| > c. Therefore, v can be considered as a harmonic function on

B.(a) C Uy for each a € Dy. We may conclude that, for each such a,

o |

[Vo(a)] <

by the interior regularity of harmonic functions.
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We will therefore be able to conclude that |nabu(z)| = |VU(2)]|Vu(T(z))| < C for every
x € By(0)NQ if we can prove that |V(¥)| < C(L) on B,. First note that, again by Corollary
5.4 of [5], there exists a C' > 0 such that, for every z € B4(0), |¥(2)| < C. Define G(w) to

be the positive Green’s function on © with pole at 00, i.e.

AG(z) =0 Vz e Q)
G>0 Yz e Q
G=0 Vr € 0Q

Normalize G by G(i) = 1.

Because ® and ¥ are conformal, they preserve Green’s function. so & = @ o & is the
Green’s function on the upper half plane with pole at ¥(oo) = oo, and with normalization
G(¥(7)) = G(3) = 1. This function is just Im(z). So G(w) = Im(¥(w)). By the Cauchy-
Riemann equations, |¥'(w)| = |[VG(w)], so to control |¥| we only need to control (VG|

Recall from above that there is a constant C such that, Vz € By(0), |¥(2)| € Bc(0). This
means that G(z) = Im(¥(z)) < C. Let w € By(0). If dist(w, 0f) > 1, then by the interior
regularity of G on B;{w), [VG| < C. On the other hand, if dist(w, 90) < 1, let wy € 89 be
a point such that dist(w, 8Q) = dist(w, we) = 7. On By (we) NN, G < C. Moreover, G = 0
on N By (wy). Let L = {w : wy = 1 (w) } be a support plane for 8 at wy. Let
D=By(w) N {w : wp > [ (w)} D By (wg) N Q. Let h be the function on D

satisfying:
Ah(z) = 0 Yze D
h(z) =0 Vz € LN Ba,(wp)
hiz)=C Vz € 9(Byr(wo)) N {w : wy > I(w)}

Then, since G < h on 8(B,, (wo) NQ), by the maximum principle G < h on By, (w) N But
h < Cdist(-, L) on B,(wg). Therefore, G(w) < h(w) < Crsincer = dist(w, wo) = dist(w, L).
But then, by the interior regularity of G on B, (w), [VG(w)| < C. We may conclude that
VG| < C on all of By(0) N Q, so VP < C on B;(0) NN as well. O
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Note that, by scaling, this lemma implies that, for Q as in the statement of the lemma,
for every u which is harmonic on By, N2, with Neumann boundary conditions along 0Q2, we
have on B, N €} that

V| < C(L)if-.

We now provide a similar result for higher dimensions. The function ® was introduced in
[9], and the idea for using convexity to control the Neumann boundary is similar to that used
in [14]. The result is proven first on smooth domains, then a limiting procedure generalizes

it to all convex domains.

Lemma 7 Let Q C R* be a domain such that 9 is the graph of a smooth, convex function
f. Suppose 0 € Q and let r = dist(0,8Q). Let R > 2r and let D = Br(0) N . Let
I = BN OQ and let S = BrN Q. Let u be a harmonic function on Dwith0<u<A and
8 =0 along T'. Then 3C > 0 depending only on n such that |Vu| < C% on Bz.

PROOF Let,
(B2 [?)? [Vl
¢(z) = (042 — (u — 2A)2)2' (3.1)
Then:
1. #=00n S.

2. ® > 0 inside D.

3 & is smooth in DUT because v and Vu are smooth and the denominator of ® cannot

approach 0.

4. maxger ®(x) < max 5 ®(z).
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PROOF

0% _ (R? — |z[*)?
o ((9A2 ~(u-— 2A)2)2) (Vu- 5,V

(IR o,
(942 — (u — 24)2) v
[Vul’(R? — |z]*)? Ou
2 ((9,42 “la—z2ayy ) (0245
= (a) + (0) + (¢)
Note that (c) = 0 because 3% = 0. For (b), note that by the convexity of 0, 7- & > 0,

—.’1‘,‘2)2

50 (2) < 0. Finally, consider (a). Since 2(4141%7 > 0, we consider only V- aa Vu,
at a point z. After rotation, suppose that v(z) = e,, s0 we can use €1y..-,€n_1 a8

local coordinates for I'. Then

0 ov; du du . Ov; Ou Ou
Vi gy V= Vu v Z ( Bz, Ox; r; Z 0z, Oz, Oz;

because % = 0. But the matrix @l is just the second fundamental form of T in local

coordinates, and therefore by convex1ty 1t is positive definite. So Vu - %VU < 0 along

. We conclude that 53% < 0 along T, so the maximum of & cannot occur there. O

So the maximum of ® occurs at a point 5 € D. At Zo, we have:

o (2P | V(VUP) | 2V((u—24))
v=ves ((m P B Y A ('’ v 2A>2>> ® (32
and
_ (2P 2AV(P)E | AGYAR) V(v
0280~ (1 ® =) T Tvap 2L
2A((u — 2A)2) 2|V ((u— 2/4)2)|2
T 0A —w_24)) T AT = 2,4)2)2)‘1’ (3:3)
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24)%) = 2(u — 2A4)Vu. Plugging into (3.2), we have

Note that V(|z|?) = 27 and V{({u—
v(Vul?) 4(u — 2A)Vu

— AT v(vuP) ez 2N
|Vul? (9A% - (u— 2A)?)

0= Tl

which implies that

\V(IVul)? 16!x| 16(u — 24)%|Vul® 39|z][u — 24]|V|
= T (9A% — (u—24)")? N (R? — |z|2)(9A% — (u— 24)%) (3:4)

vult (R

Because Au = 0, we have A(|Vul?) = 224;,3-(83{25“1,)2, and

ou du  O*u u

v N2 — == :
[ (\VU\ ) 4; Ox; Oty 0,07 Oz;0%k

Therefore, comparing 2\Vu\2A(]VU\2) with [V (|Vul?)|?, we have:

A(|Vul?) }m\V(\V'Mlg)\2
Gap o2 vult (3:5)

We also have A(|z[*) = 2n and A((w — 24)Y) = 2|Vul?. Plugging these and (3.5) into 3.3,

we get:
—4n 8|x|? l\V(\Vu\Z)\Q 4\Vul? 8(u — 2A)%|Vul’
02 mroE (-l 2 IVl FoE o oAR | eAT— (u - 24P
S —4n 8lr)? glz? 8(u — 2 A)?|Vul?
Z o e (B2l @ - |2 (94 — (v 24)%)?
_ 16]z||u — 2A||Vul N 4\ Vul? N 8(u — 24)?|Vul®
(R2 — |z?) (9A% - (u— 2A)?)  9A% - (u—24)° (942 — (v~ 2A)2)?

+

Therefore,
4|Vul? < 16|z ||u — 2A||Vu| N an(R? — |z°) + 16x|?
gA? - (u—24)%2 (R? — |=)?) (9A2 — (u — 2A)?) (B2 — |=[%)? '
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Multiplying by (R? — |z|?)?, dividing by 9A% — (u — 24)?, and recalling the definition of &

given in (3.1), we have:

16RB\/(®(zy))  (4n+ 16)R?
40(w0) < ST w24y T 942 — (u— 24)

Recall that 542 < 942 — (u — 2A4)% < 842%. Let z = \/®(zg). Then the quadratic formula
applied to z implies that
(I)(xO) S On

-5

Since zg is the maximum of @, we infer that

Sk

®(z) < Cn

on all of Br(0) N2 Hence, on Bg(0) N2, where R? —|z|?> ~ R? and (u — 24) ~ A, we find

2

A
|V’U,|2 S Cn—RTQ.

Lemma 8 Let Q C R™ be a convez domain, with 0 € Q. Let r = dist(0,0Q) and let R > 2r.
Let D = Br(0)N$, and let u be a harmonic function on Bap(0) NQ with 0 < u < A, and

% — 0 weakly along 3Q N Bg(0). Then 3C > 0 such that, on Bz(0) N,

A
<C—.
Vul < 0%

PrOOF Let £2; be a collection of smooth, convex domains increasing to 2, with 0 € €2;. Let

D; = Bg(0) N §;, and let u; be the function on D; satisfying

Au;(z) =0 Yz € Q;

ui(z) = u(z) Vz € 8Br(0) N
Bui
Y (CE) =0 Vz € BR(O) N 691
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Note that 0 < infp, u; and supp. u; < suppu = A.
Then, there is a subsequence u;; and a ug such that:
1. u;; — ug uniformly on DN B3z (0).

By Theorem 5.3.7 of [13], u; € C?(D; N Ba_ii) for some 8 > 0 depending only on
L and moreover |lu,|lcs < C{n, L, B). Since the u; are uniformly bounded in C?, a

subsequence u;; converges uniformly to a function uy on D N Baz (0).
4

2. We may assume that the u;, converge to up in C* on compact subsets of D N Bz (0).
4

3. Recall that there exists a bounded extension operator from H*(D;) to H'(D). Consider
the function 4; given by this extension of u; to D; ||| z1(py < Cllwil| g (py-

Consider U; = §; N Byg. Let w; be the minimizer of

/ |Vv|?dz
Ui

in K; ={ve H' :v=wuonU;\ D;}. Then w; = u; on D; because, V¢ € C¢°(Br),

/ (Vw; - V¢)dz,
D;

so w; 18 harmonic and %i = 0 on 0D; \ 0Bg. In addition, w; = u on 8B N €, so

w; = u; on ;. We conclude that u; satisfies
[ 1vuda < [ 1Vulds < fullmgs,ann
U; U;
Since, in addition,
/ uldr < (2R)"B?,
U
we conclude that [luil[3(p,) < C(n, B, R).

Therefore, ||4;][z1(py < C(n, B, R), so we may assume that the sequence i;; also con-
verges weakly in H'(D). Moreover, this weak limit function must also be the weak

limit of the @;; on any fixed Dj,, but for i3; > 4o, %; = u;; on D;,. Therefore, since
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ui; — ug uniformly on Dy, the weak limit of 4;; must also be ug.

By interior C* convergence, we know wug is harmonic in D, and by construction uy = u
on 0Bg(0) N . Moreover, for any ¢ € C$°(Bg), we have:

/ Vug -V = (Vug - Vuy) - Vo + Vu;, - V¢ + / Vug - Ve
D Di].

DiJ- D\Dm-7

=)+@)+3)

As 4; = oo, (1) = 0 by weak-H' convergence of the u;; to ug. By construction of the
ui, (2) = 0. Finally, (3) < |luollz||¢llan]|D \ Di;| = 0 by construction of the D;, since
[ollz < {lalf -

We conclude that %—TLQ = 0 weakly along Bz N 9Q. Hence, by the uniqueness of harmonic
functions on these domains (Lemma 4), ug = u on D. So, u is the uniform limit of the "y

on DN B¥(0). Note that, by Lemma 7, the u;; satisfy the gradient bound

AZ

|Vu,, |* < Cn 73

for each 7, on DN B% (0). Therefore, by uniform convergence, u also satisfies the bound

AZ

on DQB%(O). O

Note that this lemma has some interest in its own right, as a boundary regularity result
for harmonic functions. One example of an application of this is to the size of the first
nontrivial Neumann eigenvalue of the spherical laplacian on (geodesically) convex subsets
of the sphere. Let f(#) be such an eigenfunction on V ¢ S"~1, with eigenvalue A. Let o
be given by a(a+n ~ 2) = A. Then the function f= |ac|“f(l—;—|) is harmonic in the set
V={zecR: lz| < 1, il € V}. The geodesic convexity of V implies that V is convex in
R", and the Neumann boundary conditions on V in 71 correspond to Neumann boundary

conditions for f along AV N {z : |z| < 1}. Therefore, the above lemma, applies to f on
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V, so f must be Lipschitz up to the boundary on %f/, including the origin. But Lipschitz
continuity of f at 0 is equivalent to o > 1, which is equivalent to A > n — 1.

This lower bound for eigenvalues is known on manifolds of positive Ricei curvature with
convex boundary ([15], [8]). However, as the above lemma is proved using a maximum
principle argument, it represents a new, entirely non-variational proof of this result for the

special case of the sphere.
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Chapter 4

Lipschitz Regularity

This chapter contains the proof of the main theorem of this thesis, namely that solutions
of the free boundary problem are Lipschitz continuous up to convex Neumann boundaries.
The problem is as defined in Chapter 2. The main tool is a lemma that gives an average
growth rate of u away from the free boundary which is compatible with Lipschitz regularity.
This result follows from a generalization of the techniques used in [2], so that they apply
close to a convex boundary with Neumann boundary conditions. The next step is to prove
Lipschitz regularity on the Neumann boundary itself. In two dimensions, this iS‘ done via,
a monotonicity formula argument; in higher dimensions we apply the gradient control of
Lemma 8. After these lemmas, we are able to give a complete proof of Lipschitz continuity

in all dimensions via the maximum principle.

Lemma 9 There is a C depending only on n,L, and M such that Yz € 89, VB, (z) C R*
such that Ba.(z) N S = Qand B,(z) N O is a Lipschitz graph,

“(u(@)) > O = u> 0 in B(z) N0,

Proor
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Define D = B.(z) N Q. Let T'p = 8B, (z) N Q@ and T'y = B,(z) N dQ. Then, let
v € H' (B, N Q) be the minimizer of the functional [ |V | on the set

BN

K ={fe H(D)|f=uonIp}

Then v is harmonic, v = u > 0 along I'p and v satisfies:

/V’U Vo =0
18
for every ¢ € HI(BT N§2) such that ¢ > 0 and ¢ =0 on I'p. In this weak sense, v satisfies

the Neumann boundary condition g—z =0 along I'y.

We can conclude by LLemma 4 that v > 0 on B, N}, and therefore, by the usual strong

maximum principle, v > 0 on the interior.

Moreover, v is a valid competitor for « as minimizer of .J, so:

/ (Vo + Q%) > / IV + @xusoy),

B,n% B,nQ
which implies that
/ V(v —u)? < / Q"X (u=0}- (4.1)
B.NQ B,NQ

Now, we need to obtain an estimate in the opposite direction, namely we want to prove that

(%u(z))z / Niuzo} < C / Vo — w2

B,N&Y BN

Comparing this estimate with (4.1) will imply the claim of the lemma.

To prove this, first let = 0. Note also that if we dilate by the formula u,(y) = *u(ry)
then everything scales the same way, so we may assume that » = 1. So we may assume that
we are in D = B,(0) N Q. In addition, we assume (possibly after a rotation) that 92N B;(0)
is a Lipschitz graph in the z,-direction, with Lipschitz constant L. Then, there exists an

¢(L) such that By (0,0,...,0,3) C D. Note that € < 1. For each z € B,((0,0,...,0, $)), D
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is star-shaped with respect to z.

0

Figure 4-1: The shape of the domain near the intersection of free and fixed boundary

Note that since 0 € 8Q and Q is .convex, 91N B1(0) is simply connected, and 2 N B;(0)
is contained in {z € Bi(0) : z, > 0}. Let F be a bilipschitz map from D = QN B1(0) to
D' = B;(0) \ D, such that F extends continuously to a map from D to I’ with F v Id,
and F(Q2N8B1(0)) = (8B,(0)) \ 2 . The Lipschitz constants of F and F— depend only on

L. Define the function @ on B;(0) by

i) = u(x) Vz € QN B;(0)

w(F~'z) Vze Bi(0)\N
and define 7 similarly.

For every £ € 5™, we define

Re = sup{r|r€ + 2 € By(0)}

TE:inf{rlggrgRE and u(r{ + z) = 0}

If{r|§ <r < Reand u(ré+2z) = 0} = 0, let re = R. Define 7¢(t) = z+t€ forry < t < R,
Note that #(7(R¢)) = 4(r(Rg)) because we are on the boundary of By(0): if 7(R,) €
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QN B, (0), then #(7(Re)) = v(r(Re)) = u(7(Re)) = a(r(Re)) by construction of v. Otherwise,
v(7(Re)) = v(z) for z = F~Y(1(Re)) € QN 8B1(0). Since v(z) = u(z) = u(F(z)), we have
3(r(Re)) =

recall that 4(r(r¢)) = 0. Then

@W(7(Rg)) as before. Also note that the path 7 has unit speed at all times, and

B(re€ + 2) = 0(reb + 2) — G(ref + 2)
= a(r(r)) = i(r(re)
B(r(Re) - alr(R) - [ 5 (15— 8)(re()

=0+ [ 5 (@ = D)rde))
g/ V(5 — @)|dt

B(re€ +2) < /Il ( / V(5 — ﬁ)|2dt) . (4.2)

Now, |re| = R¢ — r¢. Define s¢ to be the unique s < R¢ such that 7(s) € 09 if such an s
exists. Otherwise, let s = Re. Note that, for all £, 7¢ < s¢. Then

/Te V(5 — B)dt = /sE V(5 — @)[2dt + /Ré V(5 — @),

e ¢

Now we will estimate v(re€ + 2) = 9(r¢€ + 2) from below. We know that v is harmonic
on B L (0) N © and moreover that this domain is far from any Dirichlet boundary pieces of
D = B;(0) N Q which is the domain of definition of v. Hence, by the modified Harnack
inequality (Lemma 5), v(z) > cv(0) for every z in B (0)." Now, let V =D\ By (0), and on
V define

—cv(0)

Then, on V, the function v — H has the following properties:

11n the lemma, the center point of the ball is required to be inside the domain rather than on the boundary,
but this is irrelevant. For example, one can consider instead the result of the lemma on B Y 10,50, €)
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/V(U—H)-Vd)zo Vo€ {f € H'(V)|f >0 and f = 0 on (8B,(0) UDB,(0)) N )}
1%
v—H>0 on BB%(O)HQ and 8B, (0) N Q

The first property holds because v — H is weakly harmonic, and in addition %—f < 0 by

d(v—H)
v

the convexity of D, so > 0 weakly. Hence, by Lemma 4, v — H > 0 on V, so

v(z) > cw(0)(1—|z])  Vz e B(0)?

So,
v(rek +2) 2 cv(0)(1 — |ref + 2|).

But 1 — [ref + 2| > ¢(R¢ — r¢). To check this we may suppose first that (1= jref+2]) < &,

because otherwise, since R¢ — r, < 2 we are trivially done.

Figure 4-2: Comparision of Ry —r, and 1 — e + z|.

Because |2] < &, if |re€ + 2| > 2, the ray from 0 to the point 7¢§ + 2z and the ray from 2

to that point must meet at an angle less than 7y < 90°. But then, by definition of cosine

*Note that, if |z] < &, we already know that v(x) > cv(0) > cv(0)(1 — z|).
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on the triangle shown in the figure, B — 7 < Cosl(T) (1 —|re€+2|) < cos(To) (1 —Jre€+2|) <
C(1 — |re€ + z|)- Hence,
cv(0)(Re — re) < w(re€ + 2).

We conclude, by (4.2), that:

[ Ll

e0(0) (Re — 1) < CO'(Re — re) / V(- w)d)

which implies that

C o (0)(Ry — re) g/ |V(ﬁ~ﬁ)|2dt§/5£ |V(v—u)|2dt+/ V(- @)

%

Integrating in £, we obtain, for the left-hand side:

/(Rgrgdf—f/REdrd!;‘zan// rdrdé
Sn_

> gn—1 / X{“_O}dx = 9n-1 / X{u*[}}dw
B {0)\By (2) D\Bg(z)
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and, for the right-hand side:

// v—ul2drdf< nl// (v —u)(r& + 2)Pr"~tdrde
< W/'V(U_U)Fdx
D
//RE Iv(ﬁ—a)ﬁdg,,dgg6(_2;);__1//R€ V(5 — @) Prdrdé
g1 % s

< L)n 1/IV i) *de

2 _ 2 D -1 d
——E(L)H_I/wm V(v — u)|?|DetF|da
D

L)/!V(v — u)Pds

[

We combine to find that:

U(0)2/X{u:g} <C /IV('U — )%
D\By (2) D

Finally. we integrate over z € B,r,((0,...,0, 1)) to conclude that

20 [ Xpumoy < O(L) [196-wp

D

which, when we combine with equation (4.1), yields:

U(O)Z/X{u=0} < C(n,L, M)/X{u:O}-
D D
and we conclude that if v(0) > \/C(n, L, M) then {u = 0} has measure zero in D. But
then Equation (4.1) implies that u is identical with v, l.e. u is a positive harmonic function
in D, so u is strictly positive in D. Recall that u(0) < v(0), so we may conclude that, if
{u=0}NB, #0, then u(0) < C. O
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The next step is to check the Lipschitz gradient bound on the fixed boundary, near the
free boundary. The two dimensional case will again use different methods than the case of
general dimension. The two dimensional lemma employs a monotonicity formula to obtain
the gradient control, whereas the higher dimensional lemma depends upon the gradient

estimate in Lemma 8.

Lemma 10 Let Q C R? be o bounded, conver domain. Let ry > 0. Let z € 00 with
dist(z, A) < ro where A is the free boundary, and d(x,S) > r9. Then

[Vu(z)| < C.
Proor
The proof will require several steps:
1. For each z in 02, for any r > 0,
2. C 2
|Vu(z)]* < 2 [Vul® (4.3)
- (z)NQ
PROOF
Define
1
60) = [ 19
B, (z)n§2
and let
c(r) = fu
Sr(z)N$y




Then,

#0) = [Ivur-2 / Tup

5, (z)NQ B, (2)n0
ety o
-5 / V= e = 5 - - crnam—cin) +
Sa(z)n2 B.(2)N0
# e+ [a-dnZu-dn)
S, (z)N0 80N B, (z))
= [ (v P = S ) - )
5.(z)NQ
-1 ((5%( - c(r)))2 + (2= c<r>>)2 —otdn g, c(r)))
5.(2)N0
-1 ((%(u—t:(v"))>2 (“—“Q)+(a—(u () “‘f”)z)
o (2)N0

But, since €2 is convex, for z € 6Q the arc S, N Q has length at most 77, which
implies that the first Neumann eigenvalue of the laplacian on this arc is at least 1 In
addition, the function (u — ¢(r))|s,ng is a valid competitor for the Rayleigh quotient
corresponding to this eigenvalue because its average value is zero on the arc, and for

almost every r,(u — c(r))

s,nn is in H' of the arc by Fubini’s theorem. So we may

| conclude that

/(;(u-m)) > /(u—cr)

SN Sr NN

and hence ¢'(r) > 0. Moreover, for almost every choice of center point z

1
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lim 6(r) = lim T—lz / Vuf? = C [Vu(z)]?

r—0
B, (z)NQ

where here C is the inverse of the limiting size of  in B, as r goes to zero, which is
bounded above because €2 is a Lipschitz domain. Hence, for almost every x in 9, for

positive 7, we conclude that

C
Vul@)l < [ VP

B..(z)NQ

as desired. O

. Suppose u is a positive harmonic function in B,(x) N €2 Then

/|Vu|2 < % /UZ. (4.4)

Bﬁ(w)ﬂﬂ B% (I)ﬂﬂ

PROOF Let ¢ be a smooth cutoff function on the unit ball, i.e. ¢ =1on B% and
¢ € C(B,), and let ¢, = ¢(%). Then,

[ 19ty < [ 1vu? ity -z

By (2)n9) By (z)N8

T
z

N LA

B\E‘ ()N

by integration by parts. Note that all the boundary terms are zero, because on each
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boundary either ¢ = 0 or g— = 0. Moreover, since u is harmonic,

1962 (5 - a)ay = -2 [6u96; - vuyay
B%(:Z:)ﬂﬂ Ba_ (:l:)ﬂﬂ.

1

2

[

<2 [ vatay| | [ 9o - nPa

v3(:5')r'1ﬂ g(z)ﬂﬂ

Dividing through by the first term, and recalling that Ve (y — z) = ng(%y;—zl) =

2V$ < £, we obtain

/|w!2 < /|Vu|2¢2 < 7% /u2

B'E (z)nQ B’E {z)N) B%(E)ﬂﬂ

which concludes the proof. O

We will now complete the proof of the lemma. Let z € I', the Neumann part of the

boundary of Q. Let
ry = inf{r|B,(z) N {u = 0} # 0} < r,.

By (4.3), we know that, for almost every such z,

w=

Vu(z)| < © / Tuf?

B,E_ (I)ﬂﬂ

and, by (4.4) we know that

C f}Vu|2

=

(A
& | QY
S

Qto

B%(a:)nn Bg(m)nn
C

< — supu.

Te By (z)ne
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Now, u is positive in B,_(z) N, and is hence also harmonic there. We can therefore apply

our modified Harnack principle (Lemma 3) to conclude that
SUPp, (z)nq U <C infB%(m)ng u < Culz).
Putting everything together, we find that

Vu(@)| < “ulz).

Finally, by Lemma 9, for any é > 0,

1
re +0

u(z) < C

because {u = 0} N B,,15(z) has positive measure. Allowing J to approach zero, we conclude

that

We now provide the corresponding result for higher dimensions:

Lemma 11 Let Q@ C R® be a bounded, conver domain. Let ro > 0. Let z € oQ with
d(z, A) < o where A is the free boundary, and d(z,S) > ry. Then

|Vu(z)| < C.

PROOF Define r, = inf{r > 0 : B,(z) N {u = 0} # 0} < ro. Note that u is a positive
harmonic function on B, (z) N Q. Therefore, by Lemma 5, there is a C > 0 such that

SUPg,, (z) < Cu(z).
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Now, for any § > 0, B,,_1s(z) N {u = 0} has positive measure. So by Lemma 9

1
< .
u(z) < C(n, L, M)Tm 5
Therefore,
C
u(z) < Cn L, M)
T‘fE
So, Yy € B,

u(y) < C(n, L, M)r,.

Now, u is again a positive harmonic function on Bz M. Moreover,0 < u < C(n, L, M)r,

on Bz N ). We may therefore apply Lemma 8, with 4 = ¢ (n, L, M)r; to conclude that

[Vu(z)| < C

C(n’—fj"n/[)& < C(n,L, M)

T

Finally, we come to the main result. T will here combine the two separate cases, n = 2
and n > 2, as the method is the same and the differences occur only in which lemmas are

referred to.

Theorem 2 Let @ C R" be a bounded domain. Let S be a closed subset of 002 and let
I' =90\ S. Suppose 9 is convez in a neighborhood of T'. Let rq > 0. Then there is q
constant C{n, L, o, M, A) such that for almost every z € Qry, |Vu(z)| £ C.

PRrROOF

Let U= {z|u(z) >0} and let A = QN AU be the free boundary. Let z € ,,. There are

five cases (These cases may partially overlap.):

1.z € (Q\U). |Vu| =0 for almost every such z.3

2. z € U and d(z,0U) > 1. Then, by the interior regularity of harmonic functions on
B1 (SL‘),

|Vu(z)| < supu < supu = A.
Q g

%A itself has measure zero, so we do not need to consider |Vu| there.
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3. z € U and d(z,09) > d(z,A). Then, let r = d(z,A). As in ([2], Corollary 3.3), we can
conclude that

[Vu(z)| <

4. z € U and d(z,A) > 1. Let r = min(ro,1). Then u is a positive, harmonic function
on B,(z) N Q, bounded by A. Therefore, by Lemma 6 or Lemma 8 (depending on
dimension), |Vu(z)| < C(n,L)%.

5. Finally, consider z € U N Q,, such that d(z,I') < d(z,A) < 1.

Recall from Case 3, that, for every ¢ € U such that dist(z,A) < dist(z,0),
|Vu| < C(n, M). Therefore, we can create a set U’ C U such that |Vu| < C(n, M)
on (8U") N § and AU’ is Lipschitz.

Since v is in H!, Vu is in L?. Therefore, by Fubini’s Theorem, there exists a radius r
such that 3rg < r < rp and Vu € L*(8B,(z) NU) with 1Vull 208, (2)) < l|ullar-

Consider, D = B,(z) N U’. Then u is a positive harmonic function on D. Moreover,
AD has three parts: ['y = B,NT, Iy, = B, NQNoU’, and ['; = U’ N 9B,. These parts
may not each be connected, but they are disjoint and the union of their closures is the

entire boundary of 0D.

Note that T, is a convex Lipschitz hypersurface and, by Lemma 10 or Lemma 11
depending on dimension, |Vu| < C on T';. Note also that I'; 1s a Lipschitz curve on

which |Vu| < C by construction. Finally, I'y is a smooth curve.

We define the function v on B,(z) by:

Av =0 on B.(z)

v =C?+ (|Vu|)*xr, on 0B, (z).
Then, on I'; and Ty, v > C? > |Vu/?, and on ['s, v = C* +|Vuf* > |Vu|?. Hence, since
|Vu|? is subharmonic, by the maximum principle v = |Vu|? on D. So v(z) > |Vu(z)®.

But, using the Poisson kernel, we find that
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v(z) = /P * v(y) do(y)
8B, (z)
= fr)iow)
8B (1)
, 1
=C'+ — v(y) xrs(y)do(y)
" IB:(z)

1

<C*+ P lvllz2|Ts|2
1

< O IVl T2

< C*(n, L, M, 1y, A)

And we conclude that |[Vu(z)| < C(n, L, M, g, A).

So, we can finally conclude that for almost every z € Qro, |Vu(z)| < Clry, A, M, L), and,
hence u € C%1(Q2,). O
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Chapter 5

Conclusion

There is a variety of further work which remains to be done on this problem, now that the
Lipschitz bound is known to hold up to the boundary. We briefly outline a list of future

questions which we plan to address soon:

1. The Two-Phase Problem:

One can also ask for a Lipschitz bound in the two-phase case, the problem described by
(1.3) and addressed in [4]. That is, suppose that u; is not required to be nonnegative.
Then v will satisfy Au = 0 in both {u > 0} and {u < 0}. Along the free boundary
0{u > 0}, the condition will be |Vu,(z)? — |Vu_(z)]? = Q*(z). In this case, one

wants to prove the same result as in Chapter 4, i.e.
[Vu| < C

for some C depending only on the given constants.!

We believe this bound to be correct. At the intersection of free boundary and fixed
boundary in the two-phase case, one can repeat the monotonicity formula calculation
of Lemma 10 and it works, without regard to dimension, up to the point where one
compares the functions to eigenfunctions of the spherical laplacian. We have two

subdomains of the sphere whose union is geodesically convex. Let A, be the first

In this context, note that since u € HY Vu = Vi Xusoy + Vu_X{u<o}, 80 it suffices to check the
Lipschitz bound for each of u, and u_ separately.
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eigenvalue of the laplacian on one of the subdomains, with appropriate mixed boundary
conditions, and A_ is the corresponding cigenvalue on the other subdomain. The
boundary conditions required are Neumann on the restriction of the fixed boundary
to the sphere, and Dirichlet on the restriction of the free boundary, which cuts the
domain into the two subdomains. Then, the proof of the monotonicity formula case

reduces to proving the Friedland-Hayman inequality
oy ta_>2

for this case, where o (ay +n —2) = A; and a_(a- +n —2) = A.. We conjec-
ture the desired bound to be correct, however it is unproven at this time. Once this
monotonicity formula is proven, it should be straighforward to complete the proof of
Lipschitz continuity for the two-phase case. In particular, since the Friedland-Hayman
inequality clearly holds for this case in dimension 2, we should be able to conclude

Lipschitz continuity there.

. The Shape of the Free Boundary:

Once we have the Lipschitz bound, the natural next question (in both the one- and
two-phase cases) is what the shape of the free boundary is as it comes into the fixed
boundary. In both cases, the free boundary is known to be smooth up to a set of
codimension 3 on the interior of the domain. Does it hit the fixed boundary smoothly?
Does it have to come in at a particular angle? Can it hit non-smooth boundary points,

and if so is there any restriction on which such points it can hit?

Some preliminary calculations suggest that in two dimensions the free boundary cannot
hit the fixed boundary at a corner of less than 90°. We do not know whether it can

hit an obtuse angle, or what the picture might be like in higher dimensions.

. Stability with Respect to Boundary Data:

The question of how the free boundary behaves near corners in the fixed boundary
leads naturally to the question of stability with respect to the boundary data. That

is, suppose that the boundary data is such that the free boundary is forced to land
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near but not at such a corner. Suppose it is then perturbed to move the free boundary
towards the corner. Will the free boundary move continuously? Will it jump across
the corner? If we conclude that the free boundary cannot hit narrow angles, then it

follows that there must be a jump in this flow. How close to the corner can it get?

. Non-Minimizing Solutions:

A related question is whether, if energy minimizers cannot hit the corner, does that
mean there are no solutions that hit the corner, or only that such solutions have a
larger, or even infinite, energy. In general, we would like to know more about what
non-minimizing solutions look like near a rough boundary, although we do not know

what methods we might use to study such a question.

. Other Elliptic Operators:

We would finally like to generalize our result to other elliptic operators. We do not know
what is the most general type of operator to which it should apply, but it should at
least apply to other smooth elliptic operators besides the laplacian. If indeed this result
also holds for other smooth elliptic operators, then it would most likely follow that it
also holds on domains with an exterior ball condition rather than strict convexity. We
are also interested in other boundary conditions, and what type of regularity might

hold in more complex boundary situations.
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