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ABSTRACT

Remote laboratories that are accessible via the Internet are becoming a common
phenomenon in higher education institutions. This thesis describes the iLab
Service Broker architecture, a software infrastructure that supports these
Internet-accessible labs by providing a number of services that facilitates their
administration and management. These common services are authentication,
authorization, lab administration, scheduling and data storage. While Internet-
accessible laboratories may be quite varied in terms of the technologies they
use, they tend to have similar topologies, consisting of a lab client, lab server
and database. The end-user interacts with the lab client to issue commands to,
and view results from the lab server, and the database stores data from the lab
server. The Service Broker's internal architecture constitutes the business logic
rules that govern how the common services are administered. Its external
architecture exposes these services, using web services, and makes them
available to the remote laboratories in a platform-independent manner. The
Service Broker attempts to cater for the different experiment models that
Internet-accessible labs host. These models are the batched experiment, the
interactive experiment and the sensor lab experiment.
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Chapter 1. Introduction

The past few years have witnessed a significant integration of web and

Internet technologies in higher education. This trend has brought about radical

pedagogical transformations, and has sparked some exceptional initiatives that

have made educational resources, which were once confined within university

boundaries, more accessible.

Many academic researchers have taken advantage of connectivity across

the Internet to make their laboratory facilities Internet-accessible and provide

their students with a hands-on experience outside of the lab. We have seen this

phenomenon at MIT and many other institutions, for example, refer to [1], [2],
and [3]. These Internet-accessible labs have made it possible to transcend space

and time as they can now be operated anywhere and at anytime.

With this capability however, the lab owner or operator is faced with a

host of administrative responsibilities: Distant users have to be authenticated,

lab resources have to be properly managed and allocated, and student data

needs to be stored somewhere, to mention a few. Since the actual lab facility

and operation are their main focal points, many lab owners do not have the time

or even wish to devise an extensive administrative / management system.

Additionally, as these Internet-accessible labs mushroom across various

academic institutions and become a core part of many student curricula, the lab
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end-user will need to maintain a separate set of user information for each

Internet lab account. This can become especially burdensome if the user is

registered with multiple labs.

These points suggest that there is a need for a "centralized" entity that

provides a set of services to leverage the common tasks required by these

Internet-accessible labs. This entity would also serve as an entry-point and

management system for the labs an end-user is subscribed to, much like a web-

based course management system would for the courses a student is registered

in. Internet-accessible labs are quite varied and tend to be constructed in ad hoc

ways that are well suited to a particular lab's needs, and hence, this entity would

need to provide its services independently of any particular platform.

Additionally, the services need to be exposed in a manner such that minimal

integration time is required by the lab owner or operator who uses them.

The following paragraphs describe Internet-accessible labs in general and

the core ideas surrounding this "centralized entity" which we have come to call

the iLab Service Broker.

1.1. A New Vision for Internet-Accessible Labs

A number of names have been used to refer to "Internet-accessible labs" -

virtual labs, remote labs, web-enabled labs. These labs have been around for a

while. By 1996, a network application called "Second Best to Being There"

(SBBT) was developed at Oregon State University that allowed students to

conduct control experiments remotely via the Internet [1].

Many Internet-accessible lab developers claim that their main motive is to

re-create the laboratory experience as closely as possible, and seek to do so by

providing graphical user interfaces (GUI), streaming video and sound, and

collaboration tools. Internet-accessible labs have had, and will continue to have,

important implications in web-based distance education. In her paper on web-

based course management systems, Dabbagh describes a "radical constructivist"

approach to web-based education tools in which students assimilate their

knowledge base by contributing to and interacting with their learning
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environments [4]. Internet-accessible labs present scenarios where the student

is a key participant in the learning process, and encourage "active learning". This

is opposed to the more traditional instructional methods that consist of imparting

educational materials to students "out of context". Active learning assumes that

knowledge transfer is difficult and is facilitated by context learning [5].

The introduction of Internet-accessible labs has also provided academia

with a considerable "reach" advantage. Students at one institution can perform

resource-intensive experiments at other institutions at a much lower cost than

that associated with acquiring the actual lab facilities. These facilities may have a

high capital cost, in addition to specialized maintenance requirements. Moreover,

these remote labs allow geographically dispersed students to collaborate on an

experiment and bring forth an amalgamation of research ideas, for example,

refer to [6].

1.1.1. The Anatomy of an Internet-Accessible Lab

A number of Internet-accessible lab initiatives have been deployed at MIT

in different departments. Some of these are the MIT Microelectronics WebLab,

the Remote Polymer Crystallization Experiment lab, and the MIT Flagpole project.

These three labs actually represent different experiment paradigms; this point

will be revisited in a subsequent section.

What these labs do share in common is an architecture whose components

can be broken down into what are effectively a lab server, a lab client and a

backend database. Typically, lab users will interact with a lab client, which often

comes in the form of a GUI that accepts input parameters to be transmitted to

the lab apparatus, and displays experiment results in one form or another. The

lab server represents the software interface that converts messages from the lab

client into a form that can be understood by, and used to control the lab

hardware. The database may be used for a number of purposes, from storing

experimental results, to storing user data to allow for persistence across multiple

web sessions.

The way that these lab components (lab client, server and database)

communicate in executing an experiment also has some common features. An
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experiment specification made on the lab client should be validated before it is

transmitted to the lab server, otherwise it may potentially damage the lab

apparatus. A valid experiment specification should then be submitted to or the

lab server. Once the results are ready, they should be retrieved and relayed back

to the lab client. The keywords here have been italicized, and it is these common

points of functionality (and a few others) that represent one premise upon which

the iLab Service Broker has been built.

1.1.2. Separation of Domain-Independent and Domain-Specific

Aspects

Another premise that guided our design of the Service Broker was the

abstraction of those tasks that were common to or desired by most labs. We

have termed these "domain-independent" as they are not associated with any

particular type of lab. Essentially, we have identified five high-level mechanisms

that most Internet-accessible labs may want to implement:

1. An experiment-storage mechanism to store all specifications pertaining

to an experiment type or run, and all results returned by an

experiment.

2. An authentication / security mechanism to establish the identity of the

user and setup a secure web-connection with which to communicate

with the remote lab.

3. An authorization mechanism to specify each remote lab user's

privileges on the lab server and database.

4. A reservation mechanism to allocate time slots for experiments.

5. An administrative mechanism to manage user subscriptions, accounts,

and memberships in groups.

We do not advocate that remote labs implement all these mechanisms, and they

may actually be irrelevant for certain types of labs. However we try to be

comprehensive in providing domain-independent functions that many labs will

want to use.
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We also have domain-specific aspects of Internet-accessible labs that we

do not consider in our design of the Service Broker. One such example is how a

floating-number value representation of a particular voltage is translated into a

bunch of binary digits, which the lab hardware understands. It is sometimes

difficult to draw a clear distinction between domain-independent and domain-

specific functions. Generally speaking, those aspects that are hardware or vendor

specific or just too fine-grained are not considered to be common Internet-

accessible lab tasks.

Figure 1. A Generalized iLab architecture showing the lab

client, lab server and Service Broker components. Figure

adapted from [7].

1.1.3. The iLab Service Broker: An Intermediate Component

The arguments presented thus far document the need of an infrastructure

that can perform two central operations. These are (1) to facilitate the tasks that

are common to Internet-accessible labs, and (2) allow for the exchange of

messages between this infrastructure and the lab components. The former point
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refers to the Service Broker's business logic (the internal architecture), while the

latter refers to its exposed interface (the external architecture).

The Service Broker can be regarded, along with the lab client and server,

as another component within a more "generalized iLab architecture". This is

illustrated in Figure 1.

Although vendors like National Instruments and Agilent provide tools that

help make labs web-enabled, there is no 'magic recipe' to create an Internet-

accessible lab. Internet labs are extremely varied in terms of the platform they

are developed on, and the technologies they use. One critical requirement for the

external Service Broker architecture is that it allows for the interoperability of

Internet lab components regardless of the platform they are operating on or the

language they are written in. The words "interoperability", "component" and

"broker" seem to suggest there is some reference here to the Object Request

Broker (ORB) architecture. ORB is a middleware component that manages

requests between clients and a CORBA object, which represents a real-world

object and consists of data and methods that may be invoked on it [8]. Solutions

built on CORBA, however, will be dependent on the vendor or developer's

implementation and therefore do not achieve complete interoperability [9]. As

such, they are not well suited for an iLab Service Broker implementation.

We have found that web services actually provide the platform-

transparency that the Service Broker's exposed interface needs. This is because

the web service technology stack is comprised of widely accepted and open

specifications and Internet standards like HTTP, XML, WSDL and SOAP [9]. As a

result, web services permit client and server applications to be loosely coupled

and therefore achieve portability. Web services are often described as SOAP over

HTTP. SOAP (Simple Object Access Protocol) is a lightweight, object-oriented

protocol based on XML, which is a cross-platform standard for formatting and

organizing information [10].

As a general design principle, the Service Broker services have been

developed in a policy-neutral fashion. That is, by integrating with the Service

Broker, Internet labs are not required to enforce any particular policy on their
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clients. We try to provide the services in a form that allows the developers to

customize their own policies.

1.2. Taxonomy of Internet Lab Experiments

After carrying out a survey of existing Internet-accessible labs, we have

been able to distinguish three different categories of Internet lab experiments.

The first of these, the "batched experiment" paradigm, appears to be the

simplest. A batched experiment refers to one in which an experiment

specification is made and submitted. The experiment then proceeds without any

further lab user intervention. Once the experiment terminates, the results may

be collected and reviewed. The MIT Microelectronics WebLab is an example of

such a lab. Here, the lab client is a Java applet and it presents its users with an

array of microelectronic devices, such as transistors and diodes, and users are

expected to provide a range of voltages or currents, which are input to these

devices via the lab server. The lab server will correspondingly vary the voltage or

current level on these devices, and collect measurements for each variation. At

the end of the experiment, a graphing utility displays the results to the clients,

which may also be downloaded. Typical characteristics of such an experiment

type include short running times, and that they are often unaffected by network

latency.

The second type of experiment, the "interactive experiment" refers to a

case where messages are, more or less, continuously exchanged between the lab

client and server. That is, the lab user makes experiment specifications on an

ongoing basis as results are displayed on the client. At the end of the

experiment, the lab user will have accumulated a repertoire of results that can

be used to replay the entire experiment. The Department of Chemistry at MIT

has a Remote Polymer Crystallization Experiment lab, which is interactive. Here,
the user controls the heating of a polymer sample on a movable stage. The

sample, as it cools, gradually forms a number of crystal nuclei that are observed

through a polarized light microscope. Photographs of the sample are taken at

various intervals to capture the formation and growth of the polymer crystals.
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After the experiment has terminated, the lab user may analyze the crystal

images. Compared to the batched experiment model this one takes a longer time

to complete, requires more user interaction and performance may be degraded

by network latency.

The final experiment paradigm is that of the sensor experiment, which

involves the real-time streaming of sensor data to the lab user with minimal user

intervention. The streaming data may be delivered in a raw or processed form. A

user could possibly interact with a sensor by subscribing to a trigger or an alert,

which is a particular event in the streaming data that the user is interested in.

When the trigger condition is met the user is notified, possibly by email. The MIT

Flagpole Project hosted in the Department of Civil Engineering is one example of

a sensor experiment. This project consists of a number of accelerometers

attached to a flagpole in an MIT courtyard. The accelerometers stream

displacement, stress and strain data that are broadcast through the Internet and

can be viewed with an applet client. The sensor experiment model is complicated

by the actual nature of sensor data streams: Data is produced continuously

without having been explicitly asked for that data. Often, the data needs to be

processed in real-time because it may be expensive to store it in a raw format

and because of the need to understand the real-world events that the data

represents. Additionally, sensors have a limited power supply and their streams

may be corrupted by noise. In an attempt to address some of these issues,

Madden and Franklin have proposed an architecture for querying streaming data

in [11]. Sensor experiments will be further explored in Chapter 7, Future

Directions and Limitations.

One may wonder whether these experiment types can be placed under the

umbrella of a single iLab Service Broker architecture, as they each display a

different set of characteristics. It was not immediately apparent to us but an

architecture that is well suited to the interactive experiment could be made to

cater for the sensor and batched experiments, whereas the converse is not

necessarily true. This idea will be expanded in Chapters 6.
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Development Environment and Methodology

The iLab Service Broker project is part of the iCampus initiative, which is a

MIT-Microsoft alliance geared towards using information technology to enhance

and improve university education. The Internet-accessible labs mentioned in the

previous section are also a part of iCampus, and have served as an on-going

reference for our design decisions. At the same time, our architecture does not

lose sight of other remote labs out there and is developed in the more general

context.

We have designed a number of application programming interfaces (APIs)

that correspond to the Service Broker business logic and exposed interface. We

have also drawn up some data models to be used in the backend database.

These have been implemented and successfully tested in a first-round prototype

(version 3.0.0.3); The MIT Microelectronics WebLab lab fully integrated our

services and was used in an electrical engineering course consisting of about 100

students. The overall architecture proved to be robust. Screenshots of the iLab

Service Broker and WebLab GUIs are shown in Appendix A. The current iteration

includes a redesign of APIs and data models to better accommodate interactive

experiments.

For our initial iteration we worked closely with the WebLab team and

prioritized their requirements from our Service Broker architecture. The point of

this was to establish the functionality of our API's core methods, and proceed on

a course that would reveal what aspects of our architecture needed to be

revisited. This piecewise design methodology has proved to be effective, as it did

not undermine our ability to keep the problem at hand within a manageable and

understandable scope.

1.4. Thesis Roadmap

The remaining sections of this thesis are structured as follows: Chapter 2

discusses how communication between the Internet lab components and Service

Broker occurs. The methods in the external architecture APIs are presented,
along with a description of how they have evolved since the first iteration.

21
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Chapter 3 provides details on the core Service Broker business logic APIs, and

Chapter 4 gives a more in-depth discussion of the iLab Authorization model and

how it was implemented in the first iteration. Chapter 5 introduces the data

models that correspond to the internal architecture APIs. Chapter 6 describes the

Remote Polymer Crystallization Lab in more detail and how we have remodeled

our architecture to leverage this interactive lab. Finally, Chapter 7 gives an idea

of the direction this project is heading and what some of its current limitations

are.

The ideas and concepts presented in chapters 1 through 5 are based on

the collective efforts of the iLab architecture team at MIT. The team members

are V. Judson Harward, Jesu's A. Del Alamo, Vijay S. Choudhary, James L.

Hardison, Steven R. Lerman, Jedidiah Northridge, Charuleka Varadharajan,

Shaomin Wang, David Zych, and the author.

The author's main contributions towards original work and implementation

include Chapter 4, the iLab Authorization Model, and Chapter 6, the iLab

Interactive Experiment, to which Jedidiah Northridge is also a main contributor.
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Chapter 2. The External Architecture

The external architecture, or equivalently, the exposed interface refers to

the set of APIs that allows the iLab Service Broker to communicate with the other

iLab components (the lab client and lab server). This interface is "exposed"

because it must be implemented by Internet-accessible labs that want to make

use of the iLab architecture and Service Broker services. Furthermore, it

represents the boundary through which information flows to and from the

internal Service Broker architecture where the business logic is implemented.

The external architecture designed in the first development cycle mainly

catered to the batched experiment mode. This was a proof-of-concept design

that leveraged the WebLab experiment and served to illustrate how practical and

applicable our architecture was to Internet-accessible laboratories in general. The

discussion below will show that the Service Broker plays an intimate role in this

prototype since it takes part in all message exchanges between the iLab

components. Chapter 6 will explain why this model is not necessarily applicable

to interactive experiments.

Before our discussion of the external architecture, we first describe the

programming environment the iLab prototypes are developed in and the

technologies used in implementation. Our APIs were implemented in C#, a new

object-oriented and Internet-centric language that shares some features of Java,
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Visual Basic and C++. C# was introduced as part of Microsoft's .NET platform, a

framework that provides a new API for the Windows operating system. The .NET

platform combines a number of existing technologies such as COM+ component

services, and the ASP web development framework, as well as a commitment to

XML and object-oriented design, and support for web services protocols such as

SOAP, WSDL and UDDI. The Service Broker services were exposed as ASP.NET

web forms and web services. ASP.NET builds on classic ASP, and makes it easier

and faster to build dynamic and data-driven web applications. The Visual Studio

.NET integrated development environment (IDE) was used to author the APIs

and web forms. This IDE offers a number of tools that help expedite the

development process, such as visual development of web pages, IntelliSense

code completion and integrated debugging [10]. Microsoft's SQL Server 2000, a

relational database management system (RDBMS) was used in our

implementation of the backend database. The initial prototype was deployed on a

Dell server machine (Intel Xeon CPU 1.80 GHz; 1 GB RAM) running a Windows

Server 2000 operating system.

2.1. Service Broker Communication: Top Looking Down

We must make a distinction between the types of communication that take

place within the iLab architecture: Intra-iLab communication refers to the

exchange of messages between the various iLab components whereas Inter-

institutional communication refers to the exchange of messages involving

different institutions to allow for sharing of iLab resources on a more global scale.

2.1.1. Intra-iLab communication

The current prototype allows messages to be exchanged only between lab

client and Service Broker, or lab server and Service Broker. There is no direct

communication between the lab client and lab server components. We provide

this layer of indirection because Lab server developers often author the

corresponding lab clients and the two components usually use complementary

technologies. Our architecture however, allows a third party developer, who need

not be directly associated with the lab server, to construct a client based on
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some technology of their preference. This is possible because our layer of

indirection allows lab components to communicate in a platform-independent

way. Additionally, because all messages are routed through the Service Broker,

security can be regulated and enforced in one central location.

Lab Client 0-- Service LbSre

Pr y object Lab client-to-Service Service Broker-to-lab Diferent
Broker API server API methods

Figure 2. Figure showing where intra-iLab APIs and proxy objects reside.

Arrows point in the direction of the interface whose methods are invoked

In order to enable intra-iLab communication, two APIs are exposed. They

are the client-to-Service Broker API, which resides on the Service Broker and the

Service Broker-to-lab server API, which resides on the lab server. These APIs

have been exposed as .NET web services and consist of pass-through methods,

that is, a method invocation in the former API will trigger the invocation of a

corresponding method in the latter API and allow for a flow of information

through the Service Broker business logic. A proxy object exists on the lab client

to invoke methods of the client-to-Service Broker API, and another proxy object

lives on the Service Broker to complete the method invocation of the Service

Broker-to-lab server API. This is illustrated in Figure 2. The specifics of these

APIs are detailed in sections 2.2.1 and 2.2.2.

Since the Service Broker vouches for all lab clients and transmits all of

their messages to the lab server, the lab server must first authenticate the

Service Broker. This trust is negotiated upfront before any messages are

transmitted, with the Service Broker and lab server exchanging unique identifiers

and passkeys. Thereafter, all API method calls involve the passing around of
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these parameters. This security mechanism is further discussed in section 2.2.1,

the Service Broker-to lab server API.

The interjection of the Service Broker component does not come without a

cost, and this is mainly due to the use of web services. One performance hit in

web services is their underlying messaging and transport protocols. A request to

a SOAP-based web service method begins by using the Web Services Description

Language (WSDL) document to understand the nature of the API methods and

parameters. Also, data is marshaled into XML SOAP requests and response

documents to be moved across software packages using HTTP. These processes

require some XML parsing and validation and are therefore time-consuming [12].

A batched experiment such as WebLab can tolerate this latency, but an

interactive experiment which requires near real-time interaction cannot.

2.1.2. Inter-Institutional Communication

One ultimate goal of the iLab project is to establish the ubiquity of

Internet-accessible labs. In an academic setting, this amounts to placing a

Service Broker component in each institution that wants to grant its students the

permission to use Internet-accessible labs in other universities, as well as its

own. A student's identity is established within a particular Service Broker

context. To access a lab server, the student's Service Broker must vouch for his

or her identity, and the lab server must trust the Service Broker. Figure 3 shows

how this inter-institutional communication happens. Here, students of institution

A and can run experiments on Lab Server B, which is not aware of any specific

user, but rather is aware of the Service Broker that has authenticated that user,

which in this case is Service Broker A.

Lab servers will find this scheme elegant because it frees them from the

burden of administering students - they can rest assured that they are dealing

with trustworthy Service Brokers and not just any lab client.

One may wonder how such a scheme would allow for the fair / policy-

based allocation of timeslots on an interactive lab that shares its resources

among multiple Service Brokers. Although Service Brokers are not aware of each

other's end-users, it is still possible to allocate time fairly among them since we
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envision a scheduling / reservation service that negotiates time allocations

between one lab server and many Service Brokers.

Figure 3. Inter-institutional communication: Student of institution A can gain

access to Lab Server B via Service Broker A

This inter-institutional communication can be realized once the iLab

Service Broker architecture is released in a shippable / configurable form and

distributed among multiple institutions.

2.1.3. A Web Service Implementation

To recap from Chapter 1, web services were chosen to implement the

external architecture because they are ideal for heterogeneous environments.

That is, clients and servers can be running different architectures and platforms,

yet are still able to communicate with each other using web services. An XML

web service is essentially a remote procedural call (RPC) service in which

requests and responses are encoded in XML as SOAP envelopes, and transported

over HTTP [13].

By committing ourselves to web services, we have a clear interoperability

advantage. However, we do relinquish some of the advantages of other

proprietary RPC or messaging middleware. Typically, RPC technologies such as
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the Java Remote Method Invocation (RMI) or .NET Remoting protocols allow data

to be transferred over the wire in some binary format, which is less bulky and

faster to transport than XML. Web services can only be accessed at the

application (HTTP) layer, whereas some proprietary messaging middleware can

be accessed at the transport (TCP), in addition to the application layer.

Moreover, web services are stateless and preservation of state requires the

passing around of session objects, which is not necessary in certain RPC

implementations where singleton objects can be used to maintain state [14].

For the purposes of the Service Broker, the interoperability advantage

gained with a web service implementation outweighs its disadvantages.

Additionally, because web services use XML and HTTP, they can penetrate

firewalls and other restrictions.

2.2. The External Architecture APIs

The Service Broker communication described above can be accomplished

using the Service Broker-to-lab server API and the lab client-to-Service Broker

API. The currently deployed version of the APIs contain a number of methods

that (1) allow the lab client and Service Broker to learn about the present state

of the lab server and (2) allow the lab server to accept and validate experiment

specifications, and to subsequently return experimental results. In the case of

interactive experiments, Chapter 6 will explain why the validation of experiment

specifications should not be routed through the Service Broker.

The APIs define a number of object types that represent real-life entities

like lab server, user, and group. The Service Broker is the central "management"

hub which stores these objects and can modify them. Often, copies of these

objects or IDs that refer to them are passed to the other iLab components (the

lab server and lab client) for various reasons. We wanted to emphasize that any

changes made to the copy would not be reflected in the original object that lives

on the Service Broker. We therefore defined these objects as "structs" which are

value-types, rather than "classes" which are reference-types. Additionally,
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various immutable fields of these types such as object IDs were declared as

"read-only" such that they could not be changed once set.

2.2.1. Service Broker-to-lab server API

Prior to any message exchange between the Service Broker and lab

server, the two components must first acknowledge each other and setup a

secure mechanism with which they can communicate. Both components will

generate their own unique identifiers (as global unique IDs or GUIDs), which

they will use to identify themselves to each other. Each component will also

generate a passkey for the other. These passkeys and GUIDs are relayed

between the two out of band in an encrypted email or telephone call. Thereafter,

the combination of GUID and passkey must be included in the SOAP headers of

all method calls made between the two entities. Each entity will only admit

messages that have a valid GUID / passkey combination. This, in addition to the

fact that communication takes place along an SSL connection, makes our

security mechanism a very stringent one. There is already some functionality

built into the Service Broker (specifically in the internal architecture's

Administrative API) to generate and register GUIDs and passkeys. The lab

server, however, is free to choose its implementation to do this.

Having established valid GUIDs and passkeys, we move on to the API core

functions that have been implemented in the current version. These functions

concern the following areas:

1. Lab state:

. Query the lab server status, configuration and information.

. The "status" of a lab refers to whether it is currently online or

down, whereas "configuration" refers to what the user can do given

the current lab setup. This is dependent on his / her privileges.

"Information" implies lab-specific information resources.

"Configuration" and "information" are readable string types whereas

"status" is a user-defined type.
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2. Experiment:

. Validate an experiment specification to ensure it won't damage the

lab hardware.

. Submit valid experiment specifications to the lab server for

execution.

. Query experiment status once a specification has been submitted

(for example, whether it is running or has terminated) or cancel the

experiment.

. Obtain an estimate of the wait time until experiment completion

based on the length of the experiment queue. When an experiment

has terminated, the lab server notifies the Service Broker.

. "Experiment specification" is a domain-dependent string

representation. The processes of validating and submitting an

experiment specification respectively return "validation" and

"submission" reports, which are user-defined types. These reports

are explained in further detail in section 3.5, the Experiment

Storage API.

3. Experimental results: Retrieve experiment results once they are ready.

Results are returned in the form of a result report, another user-

defined type.

For a comprehensive listing of methods and structs in this API refer to

[15].

2.2.2. Lab client-to-Service Broker API

In order for the lab client to communicate with the lab server, we expose

the lab client-to-Service Broker API, which contains "mirror images" of the

methods described in the previous section. A user can log into the Service Broker

and launch a lab client, which provides an interface to call methods on the lab

client-to-Service Broker API such as validating or submitting an experiment

specification. Such method invocations will pass arguments specified by the user

30



to the Service Broker, which in turn will call corresponding methods on the

Service Broker-to-lab server API after appending its GUID and passkey in the

method SOAP header. Aside from shielding the lab server from direct contact

with lab clients, method calls are channeled via the Service Broker to gain access

to the business logic. This allows us to determine whether the user has the

privilege to call a method, say on a particular lab server with a particular

configuration, and also to store results in the database.

Additionally, this API specifies a number of non-pass-through methods.

Typically these methods deal with client or user specific items. An item is a name

/ value pair. For example, this capability allows a user to save an experiment

specification without validating or submitting it until another session. Here, item

name is "experiment specification" and item value is the actual specification.

The lab client-to-Service Broker specification given in [16] provides a

detailed listing of methods and structs in this API.
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Chapter 3. The Internal Architecture

The internal architecture refers to the set of APIs that constitute the

Service Broker business logic. These APIs provide the domain-independent

functionality that most laboratories need to implement in order to become

securely accessible to users across the Internet. They are useful to lab owners

who are often preoccupied with integrating various technologies to achieve

Internet connectivity, and simply don't have the time or the expertise to design a

system that encapsulates all aspects of user management.

In order to make the APIs as reusable as possible we set a design principle

to try to keep them free of any particular policy. Instead, they are in a form that

allows lab owners to configure their own policies. One such example is in the

authentication API where labs have the choice to use the native Service Broker

authentication mechanism provided, or implement an external authentication

scheme such as Kerberos.

The APIs encompass different aspects of user management systems and

have been broken down as follows: administrative, authentication, authorization,

experiment storage, and reservation / scheduling. APIs pertaining to the first

four domains have been built in the initial prototype. The scheduling functionality

was not implemented because it wasn't relevant to the WebLab experiment,

where experiments are submitted to a queue and processed in a first-in first-out
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(FIFO) manner. The scheduling component, however, is important for labs whose

resources need to be allocated among many users at different times.

In the current prototype the external architecture was exposed as a web

service while the internal architecture was kept hidden from outside processes.

Only Service Broker ASP.NET processes (the external architecture web service

and the web application) can access and make use of the business logic APIs.

One disadvantage of this design is that it is not modular - labs that choose to

become part of the Service Broker architecture cannot, for example, implement

an external experiment storage mechanism. This design restricts the iLab

architecture's topology. Since many labs want more flexibility, future versions of

the system will include stand-alone experiment storage and scheduling services.

3.1. The iLab Web Application and User Sessions

An understanding of how a typical user session proceeds will facilitate our

discussion of the internal architecture APIs. Figure 4 presents a detailed map of

the iLab Service Broker web application, and the functions exposed by each web

page. The session begins with the user first logging in at an ASP.NET web page.

Authenticated users are redirected to the "Effective Group" page where they

choose a role they will assume for the remainder of the session. The concept of

effective user group will be introduced in a later section, but for now we can

think of this as a group with a specific set of privileges. Depending on the user's

privileges, he / she may log in as a member of a lab user group or as a member

of an administrator group.

Let's first follow the path a lab user would take. The first page the lab user

would see is the "My Clients" page, which enumerates the lab clients associated

with the chosen effective group. Here, a lab client may be launched using the

"Launch Client" button and an experiment performed. Whereas the Service

Broker web application consists of only ASP.NET web pages and forms, the lab

client might be based on some other technology, such as a Java applet as in the

case of the WebLab client (refer to screenshots in Appendix A). The client

appears in front of the My Clients page, thereby indicating that the user is still in
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the same session. Even after the user has closed the lab client, he / she remains

in session until the "Logout" button is clicked or the browser hosting the ASP.NET

page is closed. The controls on the lab client will invoke methods in the external

architecture lab client-to-Service Broker web service, as illustrated in Figure 2.
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Figure 4. Figure showing the iLab web application structure and flow.

From the My Clients page, users can navigate to the "My Account" page

where they can modify account information, reset their password, or request to

join a new lab group. They can also navigate to the "Report a Bug" page or the

"Help" page.

Moving on to the path an administrator would take, the user is presented

with either all the pages shown in the administrator interface of Figure 4, or a

subset of them as determined by the privileges of the group chosen in the

Effective Group page. The current prototype has only a single administrator

group called the "Super User" group, whose members have the authorization to

access all administrative functions, including key tasks like managing lab servers
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and clients. Future versions will include administrator groups with more

restricted access, such as a "Teacher Assistants" group whose members are

authorized only to manage users and groups, and experiment records.

The "Manage Lab Servers" and "Manage Lab Clients" pages allow

administrators to add, remove or edit existing lab servers and lab clients

respectively. The "Manage Users / Groups" and "Manage Grants" pages permit

administrators to establish authorization trees that will determine what each iLab

user's privileges are. Section 3.3 describes some concepts behind the iLab

authorization model and Chapter 4 discusses it in further detail. The "System

Messages" page provides the capability to manipulate the messages displayed on

certain ASP.NET pages and in the "Experiment Records" page one can review and

annotate experiment records.

3.2. The Administrative API

The Administrative API provides much of the functionality exposed by the

administrative interface web pages shown in Figure 4. This API defines several

sets of methods, and each set acts upon one of the following value-types: User,

Group, Lab Server, and Lab Client. Chapter 2 described that these objects were

defined as structs, which are value-types, to emphasize the idea that any

changes made to copies of them does not affect their original values.

The "User" type is special because different institutions might perceive it

differently. Its definition contains a number of standard fields (such as user ID,

first name, last name, etc.), in addition to a string field to hold extensible, XML-

encoded information. For example, since "telephone number" is not a standard

User field, a particular institution may choose to include this information in the

XML-extension field. The contents of this field need to conform to a particular

XML schema, which is set using one of the methods in this API. Another thing to

note about this type is that, although a password needs to be associated with a

user for authentication purposes, the password field has been abstracted away

from the type definition. This is because "password" is a security-sensitive field

and should not be sent on the network in the open. The association between user
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and password is maintained in the Service Broker database where passwords, as

well as the other fields are stored.

Users and groups are collectively referred to as "agents". An "agent

hierarchy" is a non-cyclical tree structure where the root nodes are groups and

the leaf nodes are users. Intermediate nodes represent sub-groups. Sub-groups

and users can have multiple parents. In the iLab architecture, the concept of

"group" serves one primary purpose - it is a logical entity upon which

authorization rules are applied.

The methods of the Administrative API that were implemented in the initial

prototype allowed us to manipulate the aforementioned types as follows:

1. Lab servers: Add, remove or modify a lab server instance; Retrieve lab

server instance(s) or lab server ID(s); Generate and retrieve passkeys

and GUIDs which Service Brokers and lab servers use to authenticate

themselves to each other.

2. Lab clients: Add, remove or modify a lab client instance (the add and

modify methods allow us to associate a lab client with a particular lab

server); Retrieve lab client instance(s) or lab client ID(s).

3. User: Add, remove or modify a user instance; Retrieve user instance(s)

or user ID(s); Set XML schemas to validate the User XML extension

field.

4. Group: Add, remove or modify a group instance; Retrieve group

instance(s) or group ID(s); Retrieve information on group memberships

and the agent hierarchy.

The specification given in [17] provides a comprehensive listing of structs

and methods in this API.

3.3. The Authentication API

Authentication in the iLab project refers to the process of identifying

clients that log into and use the resources of the Service Broker web application.

Authentication happens across several tiers: The end-user's credentials are
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validated in the login page, requests made by valid end-users are checked for

authenticity (one example of this is the GUID / passkey combination passed in

SOAP headers of web service invocations), and connections to the database

server are verified.

The Authentication API supports two types of authentication, native and

external. What we have termed native authentication refers to a security

mechanism that is only applicable to the iLab system. In contrast, external

authentication refers to any enterprise-wide mechanism that is developed by a

third party, and supports multiple systems of an organization. One such example

is Kerberos at MIT. Provision for external authentication has been made in this

API because many organizations are adopting a single authentication mechanism

for the systems they use. Only the native approach has been implemented in the

initial prototype.

Native Service Broker authentication is provided by ASP.NET "Forms

authentication". This means that unauthenticated user requests are redirected to

a login page (this has been labeled "iLab Home" in Figure 4), which contains a

web form to collect the user's credentials. The form information is checked, and

if it is valid the ASP.NET process attaches an encrypted session cookie that

identifies the user for subsequent requests [18].

We use the term "principal" to refer to a valid client. Principal identities

must flow through the web application to be used by the Authorization API to

control access to resources on different tiers. This is accomplished by storing

session parameters like user ID and the session group chosen by the user. These

session parameters are passed to certain methods in the Authorization API at

runtime to determine whether to grant access to certain resources. User-to-

resource mappings are maintained in the backend database.

The Authentication API is a simple one and contains only a few methods

that accomplish the following:

1. Manipulate native principal ID and password: Add and remove native

principal IDs; Set or modify native passwords associated with a

principal ID.
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2. Check user credentials: The "Authenticate" method takes a single

argument "Type" which could be either native or external. The user ID

and password provided by the user are checked against the backend

database.

Further details on these methods can be found in [19].

3.4. The Authorization API

The authorization mechanism in the iLab project is an elaborate one. This

section is intended to introduce some of the high-level concepts behind this API,

and details are left for discussion in Chapter 4.

Meier et al. describe two approaches to authorization in [18], a "role-

based" one and a "resource-based" one. In the former approach users are

divided among a fixed number of roles by the web application and each role

possesses different privileges to perform operations on resources. Fixed identities

(such as the web application's identity), which are trusted by resource managers,

are used to access resources. The latter approach, on the other hand, requires

that the user's original identity be conveyed at the operating system level and

access to resources is determined by each resource's access control list (ACL)1.

For the iLab Service Broker, we implemented the role-based approach

because it presented several advantages over the resource-based one, the

primary advantage being one of scalability. With this approach, our resource

manager, the backend database server, needs to trust only a single fixed

identity, that of the Service Broker application. This allows for effective database

connection pooling. That is, our application can cache and reuse a database

connection for many requests to access resources. In a resource-based

mechanism, we wouldn't have been able to effectively use connection pooling

since all database connections are tied to the individual security context of the

'An access control list (ACL) is a table that tells a computer operating system which

access rights each user has to a particular system object, such as a file directory or

individual file.
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original callers. Logging into and connecting to a database are expensive

operations [18].

Although a single fixed identity communicates with the resource manager,

the identities of individual users must be conveyed at the application level. This

is to allow per-user access to certain resources, such as an experiment

performed by a specific user. The preceding section explained that user ID and

effective user group were set as session parameters upon login. These

parameters are then passed to stored procedures in the backend database to

allow us to retrieve and process user-specific data. For example, suppose we

have the following stored procedure:

SELECT * From storeditemsummary Where UserID = @userID

having a single parameter, @userID. If "jsmith" is passed to this procedure, then

the field "storeditemsummary" will be retrieved from a record that is

associated with the user ID "jsmith".

Earlier on in the chapter, the concept of "effective user groups" was

introduced as groups with different sets of privileges, and hence these groups

can be regarded as having different roles. Figure 4 shows that an effective user

group selection is made after login, and this role persists for an entire session

until the user logs out. A single user can be a member of multiple effective user

groups. This capability allows members of a course administrator group, for

example, to assume the role of a course student in case they need to help a

student solve a particular problem. However, users can only login into the web

application with a single role in any particular session.

The iLab Service Broker authorization model has an internal system

architecture that defines how authorization policy is enforced and this is

consistent across all Service Broker architectures. The model also has an

external social design that allows administrators to configure policies since these

may differ from one campus to another. Both of these aspects are further

explored in Chapter 4.
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The Experiment Storage API

This API presents a number of methods that allows users to store, retrieve

and delete experiment records. In Service Broker terminology, an "experiment

record" is a log that documents various aspects of an experiment, such as

messages exchanged between the lab server and lab client. Experiment records

will vary from one lab to another, but for most batched experiments they would

consist of three distinct parts: The lab server configuration at the time the

experiment was carried out, an experiment specification submitted to the lab

server, and the experiment results returned by the lab server. The Service

Broker will not understand these experiment record parts, which are stored as

strings, as they are domain dependent. However, since this API is intended to

provide the functionality to search and manipulate experiment records we define

a generic "experiment information" struct that contains fields that are understood

by the Service Broker.

The experiment information struct allows administrative data like "user ID"

and "lab server ID", and other experiment-specific data like "experiment

submission time" and "experiment completion time" to be stored. This

information is fixed for a particular experiment and, as such it cannot be changed

once set. The struct does contain a modifiable string field, "annotation", which is

a placeholder for a caption or a description that the user can set and modify at

any time. Additionally, this type provides two extensible XML-encoded string

fields, similar to the one present in the "User" type of the Administrative API. The

first field pertains to experiment results and the second to binary large objects

(BLOBs), which are explained below. The purpose of having these fields is to lay

out experimental data in name-value pairs such that search rules can be applied

to, and relevant information extracted from them. The fields must conform to a

schema that is set by the lab server administrator using the methods in this API.

The fields of the "experiment information" object simply facilitate the

management of experiment records, and although they contain some

administrative information, there is no referential integrity between Experiment

Storage API objects and Administrative API objects. That is to say that if a
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particular user is deleted from the system, the experiment records that contain

that user's ID are not deleted unless specified by some policy set by an

administrator.

A binary large object (BLOB) is a large file, such as an image or sound file

that must be handled (for example, uploaded, downloaded or stored in a

database) in a special way because of its size [20]. BLOBs can be written to a

database either as binary or character data. BLOBs can be stored in a database

as a single value using the standard 'INSERT' or 'UPDATE' SQL commands, but if

the object is very large, this may consume extensive system memory and reduce

application performance. To prevent this, some implementations store BLOBs as

"chunks" [21]. Because some labs will output experimental results in the form of

BLOBs, the Experiment Storage API provides a number of methods for managing

them. An association between a particular experiment record and BLOB is made

using the "BLOB information" struct, which pairs every BLOB with an experiment.

The Service Broker-to-lab server API (section 2.2.1) defined a number of

structs that can be manipulated by the methods in this API. "Validation report" is

an object returned by the lab server upon validating an experiment specification.

It consists of a number of fields that indicate whether the experiment

specification can be submitted to the lab server for execution, and if not, what

errors are associated with it. "Submission report" is returned when the

experiment specification is submitted. It indicates whether the specification was

accepted by the lab server, and includes a validation report as one of its

members. It also indicates how long the associated experiment record will be

stored on the lab server before it is purged. It is the responsibility of the Service

Broker to retrieve and store the record before the lab server purges it. The last

struct, "result report", is returned by the lab server when an experiment

specification is submitted. This object maintains the status of the experiment, for

example, whether the experiment is currently running or has terminated

normally. It also holds a "lab configuration" string, and an "experiment results"

string for when results are ready.
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The methods that were implemented in the initial prototype provided the

following experiment storage functionality:

1. Setting XML schemas to validate the extensible XML results and BLOB

fields.

2. Manipulate experiment records: Create a new experiment record with a

unique experiment ID; save or retrieve experiment specifications,

reports, and lab configurations; remove experiment records from the

database.

3. Manipulate BLOBs: Save, retrieve and remove BLOB objects associated

with certain experiment records.

The specification given in [22] provides a comprehensive listing of

methods and structs in this API. Chapter 6 will introduce a new experiment

storage model, which has been broken away from the Service Broker, and whose

methods are exposed as web services such they can be accessed directly by

various iLab components.

3.6. Interactions between Different APIs

The internal APIs define a number of types that correspond to different

iLab entities and components, for example, User, Lab Server, Lab Client, etc.

One property of the APIs is that their methods are static and independent of

these types, and are called upon an instance of the API class, which is part of a

Service Broker namespace. By working within a Service Broker context, any

change made to the state of a Service Broker is immediately reflected to all users

working within the same context. For example, the modification of an existing lab

server by an administrator becomes visible to all people logged onto the Service

Broker. It is for this reason that the "Modify Lab Server" method is a member of

the Service Broker's Administrative API class and not a member of the Lab

Server type.

Figure 5 is a rendering of how the various APIs interact with each other.

The arrows point in the direction of APIs from which methods are called. Notice
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how all the internal architecture APIs (Authentication, Authorization,

Administrative, Experiment Storage and Scheduling) invoke methods on an

"Internal Database" API. This API exposes methods that run various stored

procedures on and extract information from the database management system

(DBMS). One example is the "Authenticate" method in the Authentication API

that checks whether the supplied user credentials match the ones in the

database.

Also note that only authorized users can call the methods in the

Administrative, Experiment Storage and Scheduling APIs, and hence calls must

first traverse the Authorization API layer. Thus, calls that happen past this

Authorization layer are executing in trusted code.

Figure 5. Figure showing how the Internal Architecture APIs are layered and

which layer calls methods in other layers
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Chapter 4. The iLab Authorization Model

The iLab Authorization model was briefly introduced in Chapter 3. It uses a

role-based approach that assigns users logging into the Service Broker web

application to different effective-user groups, with each group having a different

set of privileges to perform operations on the Service Broker.

This model draws some concepts from the Open Knowledge Initiative

(OKI) Authorization OSID. The OKI project presents an open and extensible

architecture for general purpose infrastructure, and targets mainly higher

education applications. OKI offers interface definitions, referred to as Open

Service Interface Definitions (OSIDs), and each OSID defines an area of

functionality. The OSIDs describe what is expected from a service, and

implementation details on how the service is to be delivered are left to the

developer to decide [23].

This chapter describes how the OKI Authorization definitions were adapted

to and implemented in the iLab project. It also present a number of Authorization

use-cases.

4.1. Grant: The Basic Authorization Unit

The privileges that a user has upon logging into the Service Broker web

application are represented by instances of another user-defined type called
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"Grant". Each Grant consists of three strings; an "agent", a "function" and a

"qualifier". Semantically, this collection of strings can be thought of as a

grammar where the agent is the subject, the function is the verb, and the

qualifier is the object [24]. For example,

User kyehia uses the lab server "WebLab".

Agent Function Qualifier

Programmatically, agent is a User or a Group struct, function is a member of an

enumeration of operations that can be performed on the Service Broker, and

qualifier is the entity upon which the operation is performed, and can be any one

of a number of structs, such as User, Group, Lab Server, etc. In the above

example the agent is a User object with ID "kyehia", and the qualifier is a Lab

Server object with ID "WebLab".

These Grant objects allow us to construct very specific authorization rules,

and this is attractive for lab owners because they can customize their

authorization model in whatever way they want.

The term "agent" was first introduced in section 3.2, as a concept that

refers to either a User or a Group object. There is no "agent struct" per se, and

agent ID is simply a placeholder for a User or a Group object ID. Users and

Groups form an implicit "Agent hierarchy", which is a graph structure having

Group objects as root nodes and intermediate nodes, and User objects as leaf

nodes.

Similarly, "qualifier" is a concept that refers to existing iLab structs.

However, it is unlike "agent" in that the Authorization API actually defines a

Qualifier struct. This type consists of three members; a string qualifier ID, a

string qualifier reference ID, and an array of qualifier parents. The qualifier

reference ID is the ID of the struct which the qualifier points to. In the above

example, if "WebLab" is the Lab Server ID, it would also be the qualifier

reference ID. The array of qualifier parents permits us to construct an explicit

qualifier hierarchy, which like the agent hierarchy allows descendant nodes to
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inherit grants. The Qualifier struct also has a fourth member, a string called

"qualifier type", which indicates the type of struct that the Qualifier references.

This member was included only to provide further information on qualifiers and

has no effect on how grants are constructed.

A "function" ties the agent to a qualifier. It specifies the domain of

authorization that the grant applies to, and is a member of an enumeration of

functions that the Service Broker knows about. Functions need not apply to a

particular qualifier object type. That is, the function "read experiment" need not

have an Experiment object for a qualifier. This point will be clarified in the next

section. Currently, the function enumeration includes a special "Super User"

function. A grant that has this function does not need any qualifier associated

with it, because it applies to all qualifiers. An agent that has this grant has all

privileges on the Service Broker.

The Grant and Qualifier structs, and the function enumeration are detailed

in [25].

4.2. Agent and Qualifier Hierarchies

Having discussed the Grant struct, which is the basic unit of authorization,

we move on to describe how authorization policy in the iLab Service Broker is

determined.

A user or subgroup that is a member of another group is referred to as a

descendant of that group. Equivalently, the group is referred to as an ancestor of

a user or a subgroup that belongs to it. Group memberships form an implicit

agent hierarchy, such as the one shown in Figure 6. It is possible for a User to be

a member of more than one group, for example, the User with ID "Mike" is a

member of the "Course 6.012" and "Course 1.00" groups. Users that have

memberships in more than one group, will have all their parent groups listed in

the "Effective Group" page of the iLab web application (refer to Figure 4). Those

users will then select an effective group, and assume the role that comes with

that group for the entire web session. The user "Mike", for instance, will either

choose a "6.012 Students" role or a "Course 1.00" role, and will proceed to the
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"My Clients" page that will list all the clients associated with the role he has

chosen.

AGENT ROOT

NwUsers

John Ali

(rp han e dUser Course 6.012 Course 1.00

6.012 TA 6.l2 Students

Clara Sam Sandra Will Mike Co
1100
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u

Super Users

rse Lee
Isers

Figure 6.

users.

A representative agent hierarchy showing groups, subgroups and

Qualifiers also form a hierarchy, but unlike the agent hierarchy it is

explicitly defined. The Qualifier struct has an array of qualifier parents as one of

its members and these are assigned by administrators using methods of the

Authorization API. The qualifier hierarchy is unlike its agent counterpart in

another sense; its nodes reference not just User and Group objects, but also

other types in the iLab architecture, such as Lab Server, Lab Client and

Experiment objects. Figure 7 is a rendering of a qualifier hierarchy. Here, we

have Experiment qualifiers that are children of User qualifiers, and Lab Client

qualifiers that are children of a Group qualifier. These parent-child relationships

represent some sort of association between the two types, such as "Sandra's

experiment reports" or "lab clients used to teach course 6.012". It's possible to

have these different relationships because Qualifier objects are type-less.

These hierarchies are useful for the authorization model because they

allow descendants to inherit grants that have been applied to their ancestors.

Grants can be applied to nodes at any level of the hierarchy. If a grant is applied
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at some node higher up in the hierarchy, it will span a greater number of

descendant nodes than one that is applied at some lower level. In this manner

we can control how granular a particular authorization should be.

Figure 7. A representative qualifier

experiments and lab clients.

hierarchy showing groups,,

Let's consider how grants can be applied to our example hierarchies.

Assume that the grants in Table 1 have been declared. The first grant authorizes

the "Course 6.012" group to use the lab client having a qualifier ID "2". By

referring to Figure 7, we determine that this is the "WebLab Client 5.0" qualifier.

This first grant is an example of a "coarse" grant, for it gives five different users

(that is, the members of the "6.012 TA" and "6.012 Students" groups) the

permission to use a lab client. The next grant gives the teaching assistants of

course 6.012 permission to read the experiments of the students of course

6.012. The last grant gives Sandra the privilege to use the "WebLab Client 6.0"

client, say because she is a graduate student. This is an example of a "fine"

grant that gives only one person a specific privilege.
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Table 1. Examples of Grant Structs.

Grant ID Agent ID Function Qualifier ID

15 Course 6.012 Use Lab Client 2

16 6.012 TA Read Experiments 4

17 Sandra Use Lab Client 3

The grants in Table 1 are referred to as "explicit" grants because they

have been declared explicitly. Inherited grants, such as Will's privilege to use the

WebLab 5.0 client by virtue of the first grant, are referred to as "implicit" grants.

4.3. Authorization Policy

The Authorization API has a dual purpose; it defines the structs and

mechanism that govern how authorization policy is enforced in the iLab

architecture; it also presents a number of methods that allow authorization policy

to be configured.

When the Service Broker infrastructure is initially installed, its business

logic makes permission checks in accordance with a default authorization table,

which is given in [25]. This table does not list actual grant structs, but rather

pairs each business logic method with a "function designation". These

designations include the members of the function enumeration that typically

make up a grant struct, in addition to a number of other designations as

described below. Table 2 presents a sample of these method-function

designation pairs.

In its initial state, the Service Broker has only two effective user groups,

"lab user" and "super user". Users that log in as super users are presented with

the administrative pages shown in Figure 4, and can perform the most privileged

functions. For example, Table 2 shows that to add a lab server, a user must have

the "super user" designation. The super user designation implies the union of all

other function designations. Other administrator groups will have a more

restricted set of administrative functions.
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Methods that have a "trusted" designation, such as the "authenticate"

method, need not be preceded by an authorization check because these methods

are not called directly from a web service and will actually be executing in

trusted code. On a similar note, the "anyone" designation authorizes any user to

call the associated method, and hence no authorization check is needed. The

"owner" designation simply implies that the relevant method can only be invoked

on the caller's own resources.

Table 2. Sample of Method-Function Designations.

Method API Method Name Function Designation

Administrative Add lab server Super User

Authentication Authenticate Trusted

Authorization Find Grants Anyone

Administrative Save Client Item Owner

4.4. Authorization Methods and Searches

Agent and qualifier hierarchies are modeled in the database using tables

with rows that correspond to parent-child pairs. That is, each entry in these

tables forms an edge of the agent or qualifier graph. This data model is discussed

in further detail in Chapter 5. In practice, these hierarchies tend to be shallow,

consisting of only a few levels, but are often broad, with each level comprised of

many different nodes. This is especially apparent in groups that consist of many

student users.

The Authorization API contains a number of methods that traverse these

hierarchies to determine whether a particular grant exists or not. Searches are

performed for both implicit and explicit grants, but because these hierarchies are

usually broad, the majority of grants tend to be implicit. Consider the following

use-case pertaining to the grants of Table 1: We are trying to determine whether

the user Clara, who is a course 6.012 TA, has the permission to read Will's

experiment report (refer to Figure 6 and Figure 7) That is, we need to determine

the existence of a grant, implicit or explicit, of the form

{Clara, Read Experiment, 9}
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where "Clara" is the agent ID and "9" is the qualifier ID of Will's experiment

report. A search performed on the explicit grants of Table 1 yields no results.

Now to establish whether an implicit grant exists, we need to check whether an

explicit grant has been specified from which the grant in question can be

implicitly derived. We first create a list of the agent's ancestors, and another list

of the qualifier's ancestors. Then, for every member in each list we determine

whether an explicit grant of the form

{agent ancestor, Read Experiment, qualifier ancestor}

exists. We do, in fact, find an explicit grant that satisfies this condition, and this

is the second grant in Table 1. The group "6.012 TA" is an agent ancestor of the

user "Clara", and the group "6.012 Students", with a qualifier ID of 4, is a

qualifier ancestor of Will's experiment object.

The methods of the Authorization API that were implemented in the initial

prototype allow us to manipulate Grant and Qualifier types, and make

authorization checks as follows:

1. Grants: Add a new explicit grant by specifying an agent, function and

qualifier tuple; Remove an existing explicit grant; List all existing

explicit grants, or find specific ones.

2. Check authorization by specifying an agent, function and grant tuple;

both explicit and implicit grants are checked.

3. Qualifiers: Add a new qualifier by specifying a reference type and

parent qualifiers; Convenience methods to construct and manipulate

the qualifier hierarchy.

The specification given in [25] provides a comprehensive listing of structs

and methods in this API.
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Chapter 5. The Service Broker Data Models

This chapter presents and discusses the structure of the backend database

that supports the initial iLab Service Broker prototype. The database serves a

number of purposes in the iLab architecture. Specifically, it stores: authentication

and authorization data against which user actions are validated; user data to

allow for persistence across multiple web sessions; and experimental results.

The data models given in this chapter have been conditioned by iLab

project's initial focus on the batched experiment mode, and may not meet the

requirements of interactive experiments, which are discussed in Chapter 6.

The data models are presented in terms of a SQL relational model, and

consist of about 20 tables. These tables, or entities, have been divided into three

broad categories: administrative, authorization and experiment storage. Each

category of entities forms a standalone data model in which explicit relationships

between the tables have been defined. Relationships between entities in different

categories do exist, but they are few and are not bound by any referential

integrity rules. One such example, previously mentioned in section 3.5, is the

"experiment information" object that contains some administrative information

pertaining to the person who conducted the experiment. If that person is deleted

from the system, his / her associated experiment records will not be purged.
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To reiterate from section 3.4, the backend database is accessed by a

single fixed and trusted identity, that of the Service Broker. Authorization rules

that govern what end-users can access are enforced at a higher-level tier, as

illustrated in Figure 5, and the Service Broker executes stored procedures on the

database accordingly.

5.1. The Administrative Data Model

The administrative data model encapsulates all information relevant to

User, Group, Lab Server and Lab Client objects, which are acted upon by

methods in the Administrative and Authentication APIs. The administrative data

model has been broken down into smaller groups of entities in the following

discussion for clarity.

5.1.1. Authentication Tables

Methods invocations in the Authentication API will act on or retrieve the

information stored in the three tables shown in Figure 8.

AuthenticatonTypes f Principals Users

PK authn tOype id

description

Legend
I to 0 or many
relationship

-H-4< 1 to 1 or many
relationship

PK princlipal Id
PKFK2 1authn type id

FK1 userjld

PK user Id

first_name
last_name
email
affiliation
password
XMLextensionURL
date_created

Figure 8. Authentication tables in the administrative data model. Fields in

bold must have non-null values; PK = primary key, FK = foreign key

Let's first describe the "Users" table. This table stores a minimal amount of

user-related information to avoid having 'fat' tables that contain many fields,

which some lab owners may find redundant and store null values in them. If lab

owners wish to include additional information about their lab users, they may use

the extensible "XMLextentionURL" field. Going back to a point that was made
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in section 3.2, user-password associations are maintained only in the "Users"

table of the database. That is, User objects in the higher API levels have no

knowledge of passwords to avoid the possibility of passwords being intercepted

during method invocations.

Although the current Service Broker implementation offers only a native

authentication mechanism, it's possible to have other external mechanisms and

each will have an entry in the "Authentication Types" table. Users can have

multiple principal IDs but each identity must correspond to a different

authentication mechanism.

LabServers Lab Server To Client Map LabClients

PK aryrJ d PK,FK1 1abS~n-rJ4 PK r ignt d
PKFK2 clienid

lab_server_name lab_client_name
URL date created URL
description description
contactfirstname contactfirstname
contact_last_name 'Legend contactlastname
contact_email 1 to 0 or many contact_email
incomIngpasskey relationship version
outgoing-passkey info URL
info URL -K--- 1to ny date created
date created relationship

Figure 9. Lab server and lab client tables in the administrative data model.

Fields in bold must have non-null values; PK = primary key, FK = foreign key

5.1.2. Lab Server and Lab Client Tables

Lab server and client tables are shown in Figure 9. Multiple lab clients can

communicate with a lab server. These could be clients at various stages of

development (hence the "version" attribute) or they could be very distinct clients

that interact with a lab server in different ways. Though an uncommon scenario,

the architecture also allows multiple lab servers to talk to a single lab client. This

might be the case, say if a client communicates with a "simulation" server, in

addition to the actual lab server. These client-server associations are modeled

using a "Lab-Server-to-Client" mapping table that effectively splits the many-to-

many relationship into two one-to-many relationships.
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The "URL" field in the "Lab Servers" table refers to the URL that points to

the Service Broker-to-lab server web service that resides on the lab server. The

"URL" field in the "Lab Clients" table refers to the URL that points to the web

page that hosts the lab client. The "infoURL" field is a placeholder for a web

page that provides useful information about the iLab component, such as

frequently asked questions or a user manual.

5.1.3. Data Storage Tables

Users are allowed to store two broad categories of data on the Service

Broker, client items and experiments. The associated tables are shown in Figure

10. Client items can refer to a number of things, from a saved experiment

specification, to a lab client preference that the user has indicated, such as how

plots should be displayed. These items are stored as name-value pairs in the

"Client Items" table. Experiments are a 'special' sort of client item, which are

stored in a different table, and are discussed as part of the experiment storage

data model in section 5.3. The "Stored Item Summary" table is a collection of

attributes relevant to the stored data item, such as the associated user, group,

and lab client. The Service Broker readily understands this information, whereas

client items and experiments are opaque to it.

Users Lab Clients Groups Stored Item Types

PK user Ld PK client id PK grQuV id PK stored item type id

description description
date -created

Stored Item Summary Client Items

Legend
1 to 0 or many

-H-OC* relationship

I + 1 to 1 or many
relationship

H- O<

Figure 10. Data storage tables in the administrative data model. Fields in bold

must have non-null values. Attributes of the "Users" and "Lab Clients" tables

have been omitted; PK = primary key, FK = foreign key
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5.2. The Authorization Data Model

The authorization data model is shown in Figure 11. At the center of the

model is the "Grants" entity that stores all explicit grants. This table references a

single agent, qualifier and function. The "Functions" table is a validation table

whose entries correspond to the enumeration of functions discussed in the

previous chapter.

AgentTypes Agents Agent_Hierarchy

PK _ t t_ _ H ------ PK agent Id PKFK1 parent crou_ d
PK,FK2 agent id

datecreated FK1 agent-type
date-created date-created

Legend - Grants

1 to 0 or many -rantj d Functions
relationship FK1 agentId PK functipn
1 to 1 or many FK2 function

- - relationship FK3 qualifierId date-created

date_ created

Qualifiers

Figure 11. The authorization data model. Fields in bold must have non-null

values; PK = primary key, FK = foreign key

Agents are references to User and Group objects, and agent ID is a

placeholder for either a user or group ID. Since each agent ID must be unique,

this implies that each member of the set of all user and group IDs must also be

unique. We enforce this uniqueness constraint by inserting newly created user

and group types in the "Agents" table before inputting them into their

corresponding tables. Because there is no referential integrity between the

"Agents" table and the "User" or "Group" tables, we must ensure that the
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creation (or removal) of a user or group record in (from) two separate tables is

handled programmatically.

The "Agent Hierarchy" table provides information on all group

memberships in the system. These memberships are listed in the table in the

form of 'user-group' and 'subgroup-group' pairs. This table is used to bestow

implicit authorizations on 'descendant agents' as described in Chapter 4. The

child-parent ID pairs in this table each form a two-part key.

Fields of Qualifier structs are stored in the "Qualifiers" table. The

"qualifierrefid" is the ID of the resource that the qualifier points to. Valid

qualifier types are lab clients, lab servers, users, groups and experiments. To

repeat a point made in the previous chapter, the "qualifiertype" field is purely

informative - it does not affect how grants are constructed. Like the "Agent

Hierarchy" table, the "Qualifier Hierarchy" table records consist of child-parent

qualifier pairs that form a two-part key. This hierarchy serves the purpose of

allowing agents to inherit privileges to access certain 'descendant resources'.

5.3. The Experiment Storage Data Model

Section 5.1.3 mentioned that users could save two types of data on the

Service Broker, client items and experiments. This section describes the tables

pertaining to the storage of experiment records, and these are given in Figure

12. Experiment records typically consist of three parts that are opaque to the

Service Broker: the lab server configuration at the time the experiment was

conducted, the experiment specification submitted to the lab server, and

experiment results returned by the lab server. We can see from the

"Experiments" table that the field relevant to lab server configuration must be

non-null. However, experiments may or may not require a specification or return

results, and this is indicated by the binary "uses-expt-specification" and

"uses-exptresults" fields. Administrative data like "user ID", "group ID", and

"lab client ID", associated with a particular experiment, is retained in the "Stored

Item Summary" table, which was described as part of the administrative data

model section. The "storeditemid" field of the "Experiments" table (this has
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been circled in Figure 12) maps onto the "storeditemid" field of the "Stored

Item Summary" table. Again, no referential integrity has been enforced between

these two tables because they span different data models.

Experiment_Types

PK exneriment tyne id

description

4-

-H - - -

- K-

ResultMessages

PK messae id

FK1 resultid
FK2 messagetypejid

message-body

Result.Message jypes

PI messace type id

description

Figure 12. The experiment storage data model. Fields in bold must have non-

null values; PK = primary key, FK = foreign key

An experiment record can have a single "Experiment Result" record

associated with it. The fields of the "Experiment Results" entity were discussed in

section 3.5, the Experiment Storage API. An experiment results record can have

zero or more "Result Messages" or "Experiment BLOBs". Result messages can be

either validation warnings and errors, or execution warnings and errors. Error

messages are issued by experiment specifications that cannot be accepted by the

lab server, whereas warning messages are issued by specifications that satisfy

some criteria set by the lab server owner.

5.4. Accessing Data in the Database

The internal database API is a layer that sits between the business logic

APIs and the DBMS, as shown in Figure 5. The methods of this API are called
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only by trusted code. These methods declare parameters that correspond to the

members of the various iLab objects. They then establish an authenticated

connection with the DBMS and ship off these parameters to stored procedures

that act to alter the state of, or retrieve information from, the database.

We chose to use stored procedures to execute SQL commands on the

database rather than embedding SQL statements in our code for a number of

reasons: to take advantage of the performance gains associated with stored

procedures since they are compiled only the first time they are executed, and

this compiled version is stored in memory to process subsequent calls; to

minimize the amount of traffic on the network since less text is sent by the

application to the stored procedures on the database server; and to be able to

access data from the database securely. Additionally, stored procedures provide

a layer of indirection between our application and the database design, which is

useful if the database design needs to be changed. In this case, the application

layer can remain totally unaware of the change as long as the stored procedures

are modified to return the result set that the application expects [26].

Certain stored procedures make use of transaction processing to execute a

batch of SQL commands. In a transaction, changes to the database are not

committed unless all the SQL commands in a batch execute successfully. If any

one of the commands issues an error, then the transaction is rolled back and all

changes are undone.

The iLab's authorization mechanism makes frequent checks against the

information contained in the authorization tables. Since database connections are

expensive we use cached "DataSet" representations of these tables on the

Service Broker to update and retrieve authorization information. The DataSet

class is exposed by the ADO.NET architecture, which provides an object-oriented

view into the database. These DataSet objects are cached on the application

server without requiring a continuous connection to the database server. These

objects will only make a connection when a change is made to them, and that

change needs to be reflected in the database, or if a change is made to the

database and the DataSets need to be updated [10].
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Chapter 6. The iLab Interactive Experiment

This thesis has focused thus far on the batched experiment mode. Our

survey of Internet-accessible labs, however, has shown that they predominantly

involve interactive experiments. A batched experiment typically requires the user

to hand off an experiment specification to a lab server in a "load-and-go"

fashion, and refer back once in a while to check whether the results are ready.

An interactive experiment, on the other hand, requires the user to monitor, and

perhaps respond to changes in the state of the lab server. The experiment often

entails other user activity, such as deciding which results need to be recorded

and performing post-experiment clean up. Interactive experiments are probably

more representative of physical laboratory experiments.

The initial iLab prototype provided much insight into what was required to

help lab owners bring their experiments online. That prototype, however,

presents a number of impediments that might deter interactive lab owners from

integrating their systems within the iLab architecture. What is likely to be of

most concern to them is the prototype's topology in which the Service Broker

acts like a tight coupling between lab server and client. This arrangement forces

messages that are destined for either the lab server or client to traverse the

Service Broker, and become marshaled / unmarshaled into XML along the way.

This extra hop introduces additional latency between the client and lab server.
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Interactive lab owners want a mechanism that allows our Service Broker

to establish a secure connection between the lab client and server, and then to

move out of the way, while the two components communicate independently.

This chapter discusses the Remote Polymer Crystallization interactive lab and

how the iLab infrastructure was modified to allow the lab client and server

components to communicate directly and securely via some domain-specific

protocol.

6.1. The Remote Polymer Crystallization Lab

The online remote polymer crystallization experiment involves the heating

of a polymer sample past its melting point, then allowing it to cool under

controlled temperature conditions. This results in the formation of a number of

crystal nuclei, which grow in diameter with the passage of time. By observing

these nuclei through a polarized light microscope, and analyzing them, students

can learn about the crystallization kinetics of the polymer sample.

The student interacts with a Java applet lab client that communicates

directly with the remote microscope lab server over TCP/IP sockets. The applet

provides a number of controls that allow the student to view images of the

sample and to manipulate various hardware settings, such as the temperature

and position of the stage upon which the sample is heated. Additionally, the user

can tell the applet when to start recording images of the sample and when to

stop. Experiments, therefore, can consist of multiple runs in a single session,

with each run generating its own result set [27].

The remote microscope lab server, which interfaces to the various

hardware components, is written in Python. The hardware consists of an imaging

microscope, a digital camera, and a movable heating stage. The lab server

accepts messages from the applet on an open socket connection, and converts

them into a form that can be understood by, and used to control these

components. The server also interfaces to a database where experiment

information is stored and to a file system where images from the microscope are

saved [27].
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The Java applet and Python server together can be thought of as "the

remote microscope". As Talavera has pointed out in his Master's thesis, the

remote microscope is a two-tier architecture, with one user in control of the

server in any single session [27].

Multiple users can, however, interact simultaneously with this online lab

via another component, the "framework server". The framework server allows

users to manage their accounts, reserve a time slot on the remote microscope

and review and analyze past experiments. It is a three-tier architecture, with a

web-based interface, business logic, and database. This component writes to,

and reads from the same database that is accessed by the microscope server.

This allows the microscope server to verify certain parameters, like those

pertaining to a reservation that have been set by the framework server and

passed to it via the client [27].

iterface to
- .- framework

server Lab end-

Microscope 
ue

c client (
Lab

client

------- IIA ServiceSInternet LANI
Lab Broker I

- ----- Mic rosco peV
servsr

Framework server
microscope

Figure 13. The remote polymer crystallization lab topology.

Corresponding iLab components are given in dashed boxes.
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It is clear that if the remote polymer crystallization lab were to adopt the

iLab architecture, then the Service Broker would assume the role of the

framework server, and perform many of its functions. Refer to Figure 13. Aside

from an authenticated client-to-lab server connection, this Internet-accessible

lab would also require a stand-alone experiment storage service that the lab

server could write results to directly.

6.2. General Ticketing and Process Agents

One aspect of the remote polymer crystallization lab that was of particular

interest to us was how the lab client was able to authenticate itself to the lab

server, and convince it that it has a reservation to run an experiment. The

framework server exposes a user interface that allows users to make a

reservation on the lab server; this reservation information is stored in the

database. Once it's time for a client to run an experiment, the framework server

passes it a "reservation token" that also includes the user's GUID. This token is

then presented to the lab server, which checks the information contained in it

against the database. If the information is valid, the lab server opens up a socket

connection for the client, and the experiment can proceed.

This mechanism motivated us to devise a "general ticketing" scheme on

the Service Broker that would allow it to write out tickets and dispense them to

clients. These tickets would be used by clients to access the different resources

(or entities) advertised by the Service Broker, with lab servers being one type of

resource. Various types of information can be included in a ticket, including

authentication, authorization, and scheduling information. The entity which

redeems the ticket will use it to learn this information about its client, the ticket

holder. The concepts underlying general ticketing are discussed in section 6.4. In

addition to tickets, there are two other requirements to allow the lab client to

establish a direct connection with the lab server. These are (1) a service to which

the lab server can write experimental results and from which clients can retrieve,

and (2) a service to schedule time on the lab server. These two entities are the
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"Experiment Storage Service" and the "Scheduling Service" respectively, the

subjects of section 6.3.

The ideas that were raised in the preceding paragraph illustrate some of

the requirements of interactive experiments. These requirements force us to

depart from the initial iLab architecture paradigm, where all services required by

an online lab are hosted on the Service Broker, to one where the services are

broken out as stand-alone entities. Our ticketing scheme is "general" in that

tickets are issued not only to clients who want to use a lab server, but also to

clients who want to use an Experiment Storage Service or any other service

advertised by the Service Broker. These stand-alone entities, with each entity

providing a specific service, may be regarded as the Service Broker's process

agents because they run on different systems.

One difference between the remote polymer crystallography lab's topology

and that of the iLab architecture is that in the former case, the component

responsible for writing reservation tokens (the framework server) shares a

common database with the lab Server. This makes it easy for the lab server to

determine the authenticity of any tokens it sees. In the case of the iLab

architecture, the Service Broker stores the tickets it writes in its own "ticket

store" database which the lab server has no direct connection to, since it is a

separate process agent. The way a lab server will go about verifying the validity

of tickets in the iLab architecture is by calling the Service Broker who wrote it via

web services. This idea will be further expanded in section 6.4.

6.3. iLab Stand-Alone Services

The concept of "process agents" running on distinct systems enables

clients to bypass the Service Broker on nearly all method calls. With a valid

Service Broker-issued ticket, clients and other entities can establish a direct

connection with a process agent offering a particular service. This section

discusses two such agents, the "Experiment Storage Service" and the

"Scheduling Service".
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6.3.1. The Experiment Storage Service

The experiment storage service (ESS) provides much of the functionality

that was catered for by the Experiment Storage API (section 3.5). However, that

API treated experiment objects as atomic units, a notion that cannot be applied

to experiments like the remote polymer crystallography lab, where a single client

session may consist of multiple experiment runs. For this reason, an ESS

experiment object is defined as an ordered set (or sequence) of experiment

records and each record consists of a single payload. Payload types may vary

from one record to another, that is, a payload can hold control information, error

messages or string results. Once an experiment is "closed" by the user or

process agent, or if an experiment timeout occurs, then records can no longer be

added to it. Individual experiment records cannot be deleted or modified, since

that would amount to altering the state of a previous experiment. Only whole

experiments can be deleted [28].

The ESS provides a generic mechanism for storing large, binary

experimental results, such as images. Rather than transferring the binary data to

the ESS as an attachment in a synchronous web service call, the data is

streamed asynchronously. However, prior to streaming the actual binary data,

the producer of the data (which is another process agent) will create a BLOB

record on the ESS that holds a byte count of, and a checksum for the binary

data. The producer will use this information to determine the state of the data

that has been downloaded on the ESS. Once the producer is convinced that the

download is successful, it may choose to associate that binary data with an

experiment record, in which case the BLOB becomes a permanent part of the

experiment. For further information on the ESS, the reader is referred to [28].

6.3.2. The Scheduling Service

Labs such as the remote polymer crystallography lab require users to

make prior reservations on the lab server. This was not the case with the

WebLab batched experiment where experiment specifications were submitted to

a queue and processed in a first-in first-out (FIFO) manner. For most labs,
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however, there exists an obvious need for scheduling to allocate time fairly

among end-users.

The concept of "scheduling" is not consistent across all labs, and each lab

owners tends to view the problem of scheduling differently. For example, lab

owners may want to distribute their lab server time using a first come, first

served basis, or they may want to use another allocation system, such as

auctioning. Lab owners will also want to attach rules on how reservations are

made, such as an upper limit on the length of time for a reservation. To further

add another dimension to the problem of scheduling, lab owners are not the only

party involved in setting scheduling policies on a lab server. For instance, Service

Broker administrators may also want to attach rules on how users can sign-up

for time that is allocated by a particular lab server. For additional information on

the mechanics of the Scheduling Service, the reader is referred to [29].

6.4. General Ticketing Concepts

This section describes the general ticket object definition, and the two

broad categories of tickets, "temporary tickets" and "permanent tickets". It also

gives a discussion of the data model and web services used in a prototype that

demonstrates general ticketing.

6.4.1. The Ticket Object

"Ticket" objects are a representation of tickets issued by the Service

Broker. Every issued ticket has a unique ticket ID, and a randomly generated

passkey, as well as some other fields. The ticket ID and passkey constitute the

"ticket stub". A number of Ticket object fields hold the IDs of the various parties

involved with the ticket. These are the entity that wrote the ticket (the "issuer"),

the entity where the ticket is to be redeemed (the "redeemer"), and the entity

that requested the ticket to be written (the "sponsor"). The issuer is always a

Service Broker entity, whereas the redeemer and sponsor are usually process

agents. These ticket instances are immutable, and the ticket "master" copy

resides on the issuer, or Service Broker entity. Only ticket stubs are exchanged

between clients and process agents.

67



When a client submits a ticket stub to a redeemer process agent, the

redeemer will ask the Service Broker to verify whether the ticket stub is valid.

This is accomplished through a web service call. If the stub is valid, the issuer

will retrieve the associated ticket and hand it over to the process agent. For

example, suppose a lab client shows up at a lab server with the stub of ticket X.

The lab server will then call a "verify ticket" method on a web service exposed by

the issuer of the ticket before granting its client a direct connection. The ticket ID

and passkey are passed as arguments to the web method in a SOAP-request

message. The issuer will look in its ticket store, and if it finds a matching ticket,
instantiate a ticket object, set its fields to those of ticket X and ship it off to the

lab server in a SOAP-response envelope. In this manner, the lab server will have

an updated copy of ticket X that contains all relevant information about its client.

If the issuer does not find a matching ticket in its ticket store, it will return a

"null" value, and the lab server will not to grant its client a direct connection.

Tickets that have been issued by a Service Broker may be modified or

cancelled at some point in the future. However, since ticket instances are

immutable, the issuing Service Broker needs to (1) destroy the old ticket, and

(2) inform the redeemer process agent of the modification or cancellation if the

ticket was already redeemed. In the event of a ticket modification, the issuing

Service Broker will additionally create a new ticket, with updated information,

and put it in its ticket store.

Ticket objects also contain an XML field called "payload", which holds

information that is understood by the redeemer process agent. For example, the

payload field may contain "start-time" and "end-time" tags which a lab server

interprets, respectively, as the time it should grant its client a connection, and

the time to terminate it. A payload field may be specific to a particular process

agent type, and might not be understood by another. As such, a lab server ticket

payload may be quite different from an experiment storage service ticket

payload. Service Brokers might need to understand part of a payload because

this field may state certain conditions that need to be met before the associated

ticket is given to its client. For example, a Service Broker that issues a ticket with

a payload that contains a "start-time" tag might need to wait until that time
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before it passes the ticket to its client. We opted to include an XML payload field

in our ticket object over having a base-class ticket type from which specific

tickets are derived. This is so that process agents can take advantage of the

flexibility to extend their payload definition, as long as the issuer knows how to

write it.

Payloads may contain tags that correspond to temporal fields. In order to

avoid discrepancies due to localization, any temporal field is made in reference to

the time on the redeemer process agent. Going back to our previous example,

the client should be aware that their connection's "start-time" and "end-time"

correspond to the time in the lab server's locality.

We need to distinguish between two types of tickets, "temporary tickets"

and "permanent tickets". The tickets described thus far were examples of

"temporary tickets" that are redeemed only once by a client at a redeemer

process agent. After a temporary ticket has been redeemed, it can no longer be

used again. In contrast, a permanent ticket, which is also referred to as a

"Service Broker ticket", is a contract between process agents and the Service

Broker. Permanent tickets serve two purposes. They are used by process agents

to (1) authenticate themselves to the Service Broker and (2) to state who can

sponsor their tickets. Recall that a ticket's sponsor is the entity that has

requested the creation of the ticket. A ticket's issuer, on the other hand, is the

entity that writes and stores the ticket, and is always a Service Broker entity. For

example, a lab server may give a scheduling service entity the privilege to

sponsor its tickets. Then, when clients show up at the scheduling service to

request time-slots on the lab server, the scheduling service can ask the Service

Broker to write and store tickets for them.

We developed a prototype that illustrates some of the concepts outlined

above, and tests their use in the context of the remote polymer crystallography

lab. Screenshots are given in Appendix B-I.

6.4.2. The General Ticketing Data Model

The data model pertaining to general ticketing is shown in Figure 14. This

model resides on the Service Broker. The first table of interest here is the "iLab
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Entities" table. This table lists all process agents, or entities that the Service

Broker knows of. The types of entities listed in this table may be, but are not

limited to, lab servers, experiment storage services, and scheduling services.

Each one of these entities needs to host a web service or web application that

clients can use to present tickets.
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Figure 14. The general ticketing data model. Fields in bold must have

non-null values.

The "Tickets" table holds all temporary tickets written by the Service

Broker. Note that the "sponsor-entityjid" and "redeemer-entityjid" fields

reference records in the "iLab Entities" table. Since the ticket issuer is always the

Service Broker, that field was not included. The ticket "holder" can either be a

user or a process agent entity, but the former case is the more common one.

Although, we did not implement the following aspect in our prototype, tickets

must typically reference a particular "payload type" as discussed earlier. The

"isverified" field is a binary field whose value is set to "true" if a process agent

verifies a particular ticket. This allows the Service Broker to decide whether to
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inform a process agent that a ticket was cancelled or modified. The "expiration"

field gives the date and time a particular ticket becomes invalid. This is useful for

housekeeping tasks on the Service Broker, such as purging invalid tickets.

Permanent, or Service Broker tickets, are stored in the "SB Tickets" table.

Each iLab entity has a single Service Broker ticket. This table does not include a

"payload" field since the Service Broker needs to extract information from these

tickets and it would not make sense to have to always decode that information

from XML. Instead, this information is stored in the "Role Sets" table. Each role

set consists of a "role type" and "entity ID" pair. The available role types are

"Create", "Create and Give", and "Cancel". For example, suppose lab server Y

wants to grant scheduling service X the privilege to create and cancel tickets on

its behalf. It would ask the Service Broker to reference the role sets {"Create",

Y} and {"Cancel", Y} to lab server X's permanent ticket.

6.4.3. The General Ticketing Web Service Methods

This section describes the web service methods that were implemented to

put our general ticketing mechanism in effect. The first category of methods

resides on a web service exposed by the Service Broker. They are:

1. Register: This method is called by a process agent that wants to

become a member of the iLab architecture. It is typically called by

entities such as lab servers, experiment storage services and

scheduling services. By calling this method, the process agent is

requesting a Service Broker ticket. If the Service Broker administrator

is satisfied with the information provided by the calling entity, it will

create a new entry in the "iLab Entities" table and write a new Service

Broker ticket for that entity. Any entity is authorized to call this

method.

2. Get registered entities: This method is invoked by a process agent that

wants to learn about other entities registered with a Service Broker.

The process agent must have a valid Service Broker ticket to call this

method.
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3. Grant / remove ticketing permission: A process agent will invoke these

methods to manipulate the "role sets" associated with its Service

Broker ticket. It will use the "Get registered entities" method to

determine the various services available. The process agent must have

a valid Service Broker ticket to call this method.

4. Create / cancel ticket: These methods are invoked by a process agent

to create a new temporary ticket or invalidate an existing one. All

relevant tickets parameters are passed as arguments to this method.

The process agent is authorized to call this method only if it has a valid

Service Broker ticket.

5. Verify ticket: This method is called by a process agent that wants to

determine the validity of a temporary ticket ID / passkey associated

with a particular client. The method returns a ticket object instance

accordingly. As before, the process agent is authorized to call this

method only if it has a valid Service Broker ticket.

The second category of methods resides on a web service exposed by the

process agent. In our prototype the methods below were part of the lab server

web service:

1. Install Service Broker ticket: A Service Broker will call this method in

response to a registration request made by a process agent. It will pass

the process agent its Service Broker ticket which will contain an ID and

passkey. These two parameters represent that agent's authorization to

call methods on Service Broker web service.

2. Get current time: This is an important method because it returns the

current time on a process agent, which should be used in reference to

any temporal field in the payload of a ticket to be redeemed on that

agent.

3. Connect: Clients will call this method to request a direct connection to

the process agent. In calling this method, a client will include a

temporary ticket ID / passkey combination (ticket stub) in the header
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of the method call. If the combination is valid this method will return a

domain-specific string. If not, it returns a null value. In our prototype,

this string is a password that is set by the lab server. The client will

then transmit the password to the Python server on an open socket

connection that is continuously listening to the client. A correct

password will allow the client to transmit other commands on the

socket connection, such as commands to control the lab hardware.

4. Cancel ticket: This method is called by a Service Broker to inform a

process agent that a particular ticket has been modified or cancelled.

Recall that tickets are immutable, and as such, any modifications to

what a ticket entitles a client to do will result in the cancellation of the

old ticket and the creation of a new one.
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Client calls "Connect" method
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Ticket ID / passkey

Process agent retrieves its own
SB Ticket ID / SB passkey
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parameters
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Figure 15. Process flow diagram showing processes and decisions involved in

resolving a client request for a process agent connection.

With general ticketing, we have eliminated the need for a lab client-to-

Service Broker API. This mechanism uses web services to set up a direct client-

to-server communication link, and all subsequent communication will occur using

some domain-specific remote procedural call (RPC) or messaging middleware.
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Figure 15 is a process flow diagram that depicts the sequence of events that

occur when a client requests a direct connection to a process agent.

Appendix B-II provides a listing of method signatures and object

definitions pertaining to the general ticketing mechanism.

6.5. General Ticketing on the Experiment Storage Service

Our general ticketing mechanism may be used to administer access to the

ESS. An ESS ticket payload will consist of one or more "roles", where each role is

a level of access that the holder of the ticket has on the ESS. Examples of roles

are "create experiment", "write experiment", and "read experiment". These roles

may apply to specific experiments, or they may apply to all experiments in

general. Since a Service Broker will issue the ESS tickets, it will need to

understand how to write these roles. Again, the ESS may want to grant another

process agent the privilege to create tickets on its behalf by manipulating that

process agent's permanent ticket.

6.6. Unresolved General Ticketing Issues

Our interactive lab prototype answered only the most basic questions of

general ticketing. However, there are a number of issues surrounding general

ticketing that still need to be resolved. For instance, it's not clear as to what

portions of the ticket payload the Service Broker is expected to understand, or

how those portions are defined such that they can be applicable to particular

process agent types. Another issue is whether the mechanics of the "connect"

method implementation are applicable to all lab servers. These questions can be

answered with the implementation of the experiment storage service, scheduling

service, and other interactive labs.
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Chapter 7. Future Directions and Limitations

The iLab project has undergone a number of development cycles since its

inception, with each round tackling new facets of Internet-accessible labs.

Starting off with the WebLab batched experiment, we explored what common

services Internet-accessible lab users sought. We identified these as

authentication, authorization, lab administration, experiment storage and

scheduling, and grouped them together in a single entity, the Service Broker. Lab

administrators and users consumed these services through a number of web

interfaces exposed by the Service Broker. Certain web pages permitted

administrators to configure policies concerning the operation of their labs, while

other pages allowed lab users to manage their accounts and launch lab clients.

The initial prototype also shed some light on the mechanics of web

services, and their relevance to this project. The WebLab client, a Java applet,

invoked a .NET web service on the Service Broker in order to communicate with

the lab server. This attested to and convinced us of the interoperability of web

services, which was an important consideration for the iLab architecture since its

components were unlikely to all be running identical operating systems.

The next phase of the project deals with interactive experiments. A careful

study of the Remote Polymer Crystallography lab revealed that the iLab

architecture, as designed for the batched experiment model, was not well-suited

75



for interactive experiments. This was largely due to the fact that the common

services were part of the Service Broker business logic, and as a result all client-

to-server communication was routed through the Service Broker. By breaking out

services like data storage and scheduling, and using tickets to transmit

authentication and authorization information, we reduced the number of

messages passed through Service Broker during the course of an experiment to

a minimum.

The iLab Service Broker is steadily approaching a state where it can be

deployed in multiple campuses. Currently, the architecture is being reviewed by

a number of offshore universities, including Chalmers University of Technology in

Sweden and the American University of Beirut in Lebanon. One issue that

requires further investigation is how the underlying communications

infrastructure supporting these institutions will affect the online laboratory

experience for their end-users. Our prototypes assumed the availability of a

broadband connection, but many potential end-users are still connected to the

Internet via some lower bandwidth medium, such as phone lines.

The iLab architecture has yet to address sensor lab experiments. Online

sensor labs are important because they allow for the remote observation of real-

world engineering systems, such as physical infrastructure, that cannot easily be

studied in a traditional lab setting [3]. Chapter 1 briefly talked about sensors as

devices that produce continuous data streams. The execution of queries over

these data streams, to extract meaningful information from them, is not an easy

task. This is because streaming sensor data tends to be noise-ridden,

unprocessed and sometimes delivered at unreliable rates. As such, sensor data

sources are fundamentally different from highly-engineered sources that most

DBMS systems are used to. Additionally, sensors are push-based devices,

whereas regular DBMS systems perform pull querying [11].

The MIT Flagpole Project consists of a number of sensors and data

acquisition systems that stream different types of data to an acquisition server,

where the data is published for subscribers to listen to. A parallel database

server is responsible for archiving this data [3]. This project is a simple sensor
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lab model that involves the processing and monitoring of a number of data

streams. Sensor experiments become increasingly more complicated when they

allow queries to be performed over many sensors. The California Bay Area

freeway is a test bed consisting of hundreds of sensors deployed by the Berkeley

Highway Lab (BHL). Lab users will query these sensors to extract information like

the average speed of traffic over one segment of the freeway [11].

Madden and Franklin proposed an architecture for querying multiple sensor

data streams in [11]. Their architecture consists of several "sensor proxy"

servers, which are intermediate workstations that serve as interfaces between

deployed sensors and a "query processor" server. These sensor proxies bundle

data from multiple sensors into tuples, which are routed to queries as needed.

The user issues a query to a query processor that executes a plan by locating

appropriate sensor proxies. It then starts the flow of tuples back to the user.

Because data streams never terminate, these queries run continuously and are

only removed from the system when the user explicitly ends the query [11].

General ticketing is one aspect of the project that needs to be revisited.

Our general ticketing mechanism attempted to formalize the notion of secure

web service invocations by placing ticket ID / passkey parameters in the headers

of SOAP messages that are checked against a ticket store database. This

mechanism protects various iLab entities from being accessed by clients that lack

proper credentials. However, it does not protect against the possibility of a SOAP

message body being intercepted and modified. WS-Security is a specification put

together by a number of researchers at Microsoft, IBM and VeriSign. This

specification describes a number of enhancements to SOAP messaging that

enable the secure communication and integrity of SOAP messages. It specifically

addresses the issue of encrypting and digitally signing the body, header and any

attachments of SOAP messages [30]. The one issue with web services

enhancements is that, unlike the basic web service protocols, such as XML,
SOAP, and WSDL, there are few toolkits that implement them. These toolkits,

such as Microsoft's WSE, when used to author web services, may actually restrict

their interoperability [31]. Nevertheless, given that security is becoming a crucial
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requirement of web services, we expect WS-Security to become a more

integrated part of the next generation web services protocols.

The next wave of design and implementation will help bring about a better

understanding of interactive and sensor online labs, and the mechanisms that

make it easier for these labs to integrate the iLab architecture. By tackling issues

such as WS-Security, and refining the common services, the architecture will also

offer a more suitable administrative and management system for online labs.
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Appendix A. Initial Prototype Screenshots
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Appendix B. The iLab Interactive Experiment



Appendix B-I. Interactive Experiment Screenshots
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With a valid ticket, the "Launch" button becomes enabled, and the
user can start the Polymer Crystallography Java applet which takes the
ticket parameters and passes them to the lab server to initiate a direct
connection.
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Appendix B-IL. Prototype Structs and Web Services

Object Definitions:

// Represents a "user" registered with the Service Broker.

public struct User

public string userID;

public string firstName;

public string lastName;
public string email;
public string affiliation;
public string password;
public DateTime registrationDate;

}

// Represents a "service provider" registered with the Service Broker.
public struct iLabEntity

{
public string entityID;
public string entityType;
public string entityName;
public string description;

public string webServiceURL;
public string contactEmail;
public string infoURL;
public string webApplicationURL;

}

// Represents a generalized ticket
public class Ticket

public int ticketID;

public string passkey;
public string issuerID;
public string sponsorID;
public string redeemerID;
public string payload;
public DateTime expiration;

}

// Represents a role held by a Service Provider to administer tickets for
itself and other Service Providers.
public struct RoleSet

{
public string roleEntityID;

public string roleType;

//Role Types
public const string createType = "Create";

public const string createAndGiveType = "CreateAndGive";

public const string cancelType = "Cancel";

}
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Service Broker Web Service:

" fWebMethod (Description="Method used to register with the Service
Broker.")]

[SoapHeader ("sbHeader", Direction=SoapHeaderDirection.In)]

public bool Register(string entityID, string entityName,
string webServiceURL, string contactEmail,
string description, string webApplicationURL,
string infoURL, string entityType)

* EWebMethod (Description="Method used to retrieve all entities / Service
Providers registered with the Service Broker.")]

[SoapHeader ("sbHeader", Direction=SoapHeaderDirection. In)]

public iLabEntity[] GetRegisteredEntities()

" [WebMethod (Description="Method used to grant the entity indicated by
entityID the privilege to create and / or cancel tickets on the caller
Service Provider.")]

[SoapHeader ("sbHeader", Direction=SoapHeaderDirection. In)]

public bool GrantTicketingPermission(string role, string entityID)

" [WebMethod (Description="Method used to remove the privilege that the
entity indicated by entityID has to create and / or cancel tickets on
the caller Service Provider.")]

[SoapHeader ("sbHeader", Direction=SoapHeaderDirection. In)]

public bool RemoveTicketingPermission(string role, string entityID)

* [WebMethod (Description="Method used to create tickets for redeemer some
entity. The entity could be the caller of the method or it could be some
other entity that the caller has been given the privilege to create
tickets for.")]

[SoapHeader ("sbHeader", Direction=SoapHeaderDirection. In)]

public Ticket CreateTicket(string redeemerID, DateTime expiration,
string payload, string holderID, string holderType)

* [WebMethod (Description="Method used to create tickets for some redeemer
entity. The ticket is first generated, and is then installed at the
entity indicated by redeemer entity ID.")]

[SoapHeader ("sbHeader", Direction=SoapHeaderDirection. In)]

public int CreateAndGiveTicket(string redeemerID, DateTime expiration,
string payload, string holderID, string holderType)
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" [WebMethod (Description="Method used to cancel the ticket indicated by
ticket ID. A CancelTicket method on the sponsor of the ticket is
invoked. If the ticket has previously been verified , a CancelTicket
method on the redeemer is also invoked.")j

fSoapHeader ("sbHeader", Direction=SoapHeaderDirection.In)]

public bool CancelTicket(int ticketID)

* [WebMethod (Description="Method returns ticket struct pertaining to
ticketID if the (ticketID, passkey) combo are valid. If not valid, it
returns and empty ticket.")]

[SoapHeader ("sbHeader", Direction=SoapHeaderDirection.In)]

public Ticket VerifyTicket(int ticketID, string passkey)

Lab Server Web Service:

* [WebMethod (Description="Returns the current time on the Lab Server")]

public DateTime GetCurrentTime()

* [WebMethod (Description="CancelTicket can be invoked by a Service Broker
to tell the Lab Server that the Ticket with id ticketid has been
cancelled. Returns true if operation completes.")]

[SoapHeader("gtHeader", Direction=SoapHeaderDirection. In)]

public bool CancelTicket(int ticketid)

" [WebMethod (Description="Use this method to install a Service Broker
ticket.,")]

[SoapHeader("gtHeader", Direction=SoapHeaderDirection. In)]

public void InstallTicket(ServiceBrokerService.Ticket t)

" [WebMethod (Description="Method is called by lab client that inserts
ticketID / passkey in header. Returns a string password, which applet
will transmit to Python server on open socket.")]

[SoapHeader("gtHeader", Direction=SoapHeaderDirection. In)]

public string Connect()
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