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Abstract

This study presents the theoretical formulations and applications of simple models
for turbulent wave-current bottom boundary layer flow. Eddy viscosity formulations
are presented for each model in order to analytically solve the governing equations for
the bottom boundary layer. Approximations and procedures for obtaining practical
solutions of the current velocity profile are presented for the two-layer Madsen-Salles
(1998) and three-layer Barreto-Acobe (2001) flow models. Bottom roughness and
ripple geometry models are developed for each model using fixed bed laboratory data
and movable bed laboratory and field data. Wave attenuation measurements and
current profile data are used in order to investigate the bottom roughness length
scale for the cases of pure waves, waves in the presence of a current, and currents
in the presence of waves. Wave and sediment characteristics are used to formulate a
model for wave-generated ripples based on available laboratory and field data. The
two-layer Madsen-Salles (1998) and three-layer Barreto-Acobe (2001) flow models are
applied in conjunction with the ripple geometry and roughness models for the cases
of known and unknown ripple geometry, and an assessment of expected accuracy of
application of the models is presented.
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Chapter 1

Introduction

1.1 Motivation

Coastal scientists and engineers strive to understand the coastal environment and the
processes that directly impact the nearshore region. The effects of combined wave
and current motion govern many nearshore processes and a thorough understanding
of the basic hydrodynamics is critical to these processes. Throughout most of the
water column, potential theory can adequately describe the fluid motion. However,
viscous effects are important near the bottom boundary and potential theory can no
longer be applied. At the bottom boundary, a no-slip velocity condition exists, i.e.
the velocity is equal to zero. The boundary layer is the region where the velocity
transitions from zero to the velocity prescribed by potential theory where viscous
effects are no longer significant. Near-bottom flow significantly affects nearly all
coastal processes, especially sediment transport since the interface and interaction of
fluid and sediment occur in the bottom boundary layer. Hence, in order to better
understand coastal processes, the physics of bottom boundary layer flow must be

adequately characterized.
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1.2 Objective

The main objective of this study was to present the evolution of simple models for tur-
bulent wave-current bottom boundary layer flow, from the original two-layer Grant-
Madsen (1979) model through a three-layer modified model presented by Barreto-
Acobe (2001) and to arrive at a preferred flow model that adequately describes com-

bined wave-current flow.

1.3 Thesis Qutline

The development of hydrodynamic models for turbulent wave-current bottom bound-
ary layer flows is presented in Chapter 2, beginning with the linearized governing
equation for the bottom boundary layer and the introduction of the concept of an
eddy viscosity in order to relate shear stress to the rate of strain. A time-invariant
eddy viscosity is assumed and the time-varying and time-invariant components of
the linearized governing equation are separated into two independent equations, one
equation for the waves and another equation for the current. Eddy viscosity formula-
tions are presented for the two-layered and three-layered wave-current boundary layer
flow models in order to solve the equations analytically. Using each eddy viscosity
formulation and boundary and matching conditions, the governing equation for the
waves and the governing equation for the current are solved in terms of basic param-
eters. A closure hypothesis is presented and the concept of a wave-current friction
factor is introduced in order to solve practical problems.

In Chapter 3, the results of the models are shown in the form of friction factor
diagrams, phase angle diagrams, and wave boundary layer thickness diagrams. For
the two-layer Madsen-Salles flow model, the eddy viscosity is linearly proportional to
the shear velocity based on the maximum combined wave and current shear stress for
the region inside the wave boundary layer. For the region outside the wave boundary

layer, the eddy viscosity is linearly proportional to the shear velocity based on the
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current shear stress. For the three-layer Barreto-Acobe flow model, the eddy profile
1s continuous. The bottom layer is proportional to the shear velocity based on the
maximum combined wave and current shear stress and the top layer is proportional
to the shear velocity based on the current shear stress. The constant intermediate
layer provides a realistic transition from the wave boundary layer to the current
boundary layer. The selection of the wave boundary layer height is discussed for
each flow model type and approximate formulas to represent the results analytically
are presented. Additional approximations for the three-layered Barreto-Acobe (2001)
model are developed and two preferred models are selected and presented based on
physical and mathematical plausibility. A procedure for obtaining predictions of the
current velocity profile using the preferred models is then outlined. Lastly, an example
calculation is given for a possible method of specifying the current motion.

Empirical relationships are developed in order to relate bottom roughness and
ripple geometry in Chapter 4. The two-layer Madsen-Salles (1998) and three-layer
Barreto-Acobe (2001) flow models are then applied to fixed bed laboratory data col-
lected by Bagnold (1946), Sleath (1985), and Mathisen and Madsen (1996, 1999). The
preferred flow models are also applied to movable bed laboratory and field data col-
lected by Carstens et al. (1969), Lofquist (1986), Rosengaus (1987), Mathisen (1989),
and Styles and Glenn (2002). For the Mathisen and Madsen (1996) data set, both
wave attenuation and current profile data are available. Therefore, wave attenuation
measurements were used in order to calculate the bottom roughness for the cases
of pure waves and waves in the presence of a current while current measurements
were used in order to establish the bottom roughness for the case of currents in the
presence of waves.

In Chapter 5, wave and sediment characteristics are used to formulate a model for
wave-generated ripples based on available movable bed laboratory and field data. The
two-layer Madsen-Salles flow model and the three-layer Barreto-Acobe flow model are

then applied in conjunction with the ripple geometry and roughness models devel-
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oped in Chapter 4 for the cases of known and unknown ripple geometry. Pure wave
movable bed data from Carstens et al. (1969), Lofquist (1986), Rosengaus (1987),
and Mathisen (1989) and combined wave-current data collected by Mathisen and
Madsen (1996) and Styles and Glenn (2002) are used in order to assess the predictive
capabilities of the preferred low models. Predicted and observed values for the wave
friction factor and the current shear velocity are graphically depicted using the ripple
geometry and roughness relationships developed for the flow models.

Results are summarized and presented in Chapter 6 along with a conclusion and
recommendations for future study.

All of the laboratory and field data used throughout this thesis are tabulated and
presented in Appendix A through Appendix E.
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Chapter 2

Turbulent Wave-Current Boundary
Layer Flow Models

The development of hydrodynamic models for turbulent wave-current bottom bound-
ary layer flows is presented in this chapter. The chapter begins with the linearized
governing equation for the bottom boundary layer and the concept of an eddy vis-
cosity is used in order to relate shear stress to the rate of strain. A time-invariant
eddy viscosity is assumed and the time-varying and time-invariant components of
the linearized governing equation are separated into two independent equations, one
equation for the waves and another equation for the current. Eddy viscosity formula-
tions are presented for the two-layered and three-layered wave-current boundary layer
flow models in order to solve the equations analytically. Using each eddy viscosity
formulation and boundary and matching conditions, the governing equation for the
waves and the governing equation for the current are solved in terms of basic param-
eters. A closure hypothesis is presented and the concept of a wave-current friction

factor is introduced in order to solve practical problems.
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2.1 Governing Equations

The linearized governing equation for the wave-current boundary layer can be written
as

ot or
— = —Vp+ — 2.1
Pat p (2.1)

where

U = horizontal velocity vector = {u, v}

p = fluid density

V = gradient operator :{a%’ a%}

P = pressure

7 = shear stress vector on horizontal planes

z = height above bottom

This linearized equation assumes uniform flow and thus neglects convective accel-
erations. A relationship between the viscous shear stress and rate of strain can be
defined for turbulent flows based on the stress-strain relationship for Newtonian flu-

ids. This relationship can be defined as

ou

s (2.2)

7'_"
0

where 1, is the eddy viscosity. Using (2.2) in the linearized governing equation for

the wave-current boundary layer yields

ou 1 0 [ 617] (2.3)

- 2 P e (T,

This expression is analogous to the Navier-Stokes equation for laminar flows; however,
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it does not assume a constant eddy viscosity.

For a time-invariant eddy viscosity, each term in (2.3) can be considered as the sum
of an oscillatory component and a time-invariant component. The oscillatory com-
ponent is related to the waves while the time-invariant component is related to the

current.

Oty 1 1 0 o, 0 Oty
= — VD — “VPu + — |2 | + = |y 2.4
pp ppw 82[532 dz |t 2 (2.4)
Assuming that the eddy viscosity, 1, is independent of time, the time-varying com-
ponents are independent of the time-invariant components in (2.4) and can therefore

be separated to form two independent equations. One equation for the waves,

ot 1 0 i
O _ _ 2y L, B _
& o T [”* Bz J (2:5)
and another equation for the current,
1 0 ol
0=—=-Vp.+ =+ |y— 2.
pr —+ az |irUt 63] ( 6)

2.1.1 The Wave Problem

To solve the time-varying wave problem, the governing equation for waves is simpli-
fied by choosing the x-direction to be the same as the direction of propagation of the

wave. In other words, iy, = (uy), = u,, L.e. (2.5) becomes

o por Bz

auw 1 6pw 0 [ 0 Uy }
Jz

(2.7)
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Near the edge of the wave boundary layer, the velocity approaches the free stream
velocity predicted by inviscid theory where viscous shear forces can be neglected.
This occurs at a small distance above the bottom, z = 4. According to continuity,
the governing equation at this location becomes

ou, OU  10dp,

o B pow (28)

where U is the horizontal free stream velocity predicted by linear potential theory at
a location that is just outside of the boundary layer. At this location, the pressure
gradient just inside the boundary layer is independent of depth and is equal to the

pressure gradient just outside the boundary layer. Subtracting (2.8) from (2.7) yields

(2.9)

" 0z

%_aU_i[ Oy
ot Ot 0z

Since the horizontal free stream velocity predicted by linear potential theory at a
location that is just outside of the boundary layer, U, is independent of the distance

above the bottom, it follows that %—Z = 0. Using the quantity
U=, —U (2.10)
where # is the deficit velocity, equation (2.9) can be rewritten

(2.11)

o9u _ 0 [ du
ot 0z | '8z

Since the wave-associated turbulence is restricted to a small height above the bottom,
the wave boundary layer thickness is expected to be much smaller than the local wa-

ter depth, in other words, 6/h << 1. Therefore, U at the edge of the wave boundary
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layer, at a distance z = 4, is equivalent to U at the bottom, z = 0. According to

linear wave theory, the predicted orbital velocity at the bottom is

U="U,coswt (2.12)

where U} is the magnitude of the bottom orbital velocity and w = 27T/T. The solution
to (2.11) is, by virtue of (2.12), expected to be simple harmonic. Therefore, it can be
written in the following form

ug = — = Re {ugexp (wt)} (2.13)

i
Uy
where uy is the normalized deficit velocity, ¢ = +/—1, and the operator Re indi-

cates the real part of the argument. Using (2.13) in (2.11), the governing equation

for the time-varying component of the velocity field within the wave boundary layer is

ut—d] — g =0 (2.14)

One boundary condition for (2.14) is that the velocity must satisfy the no-slip con-
dition at the bottom boundary, u, = 0 or u4 = —1. Another boundary condition
is that the velocity at the edge of the wave boundary layer must match the veloc-

ity of the free stream just outside of the boundary layer, u,, = U or uy = 0 as z — oc.

2.1.2 The Current Problem

Since the eddy viscosity is assumed to be time-invariant, the governing equation for
the current will only depend on the distance above the bottom. Simplifying the gov-

erning equation for the current and denoting the magnitude of the current velocity
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vector as u, = || = u.(2), the governing equation for the time-invariant component

of the current velocity (2.6) becomes

1 a Ou,
0 prc+ 5 [Ut Bz} (2.15)

Integrating both sides of (2.15) and using the definition for the current shear stress at
the bottom, a general equation for the current can be obtained. Using the law of the
wall argument to neglect the pressure gradient term close to the bottom, the solution

reduces to

(2.16)

Although the current boundary layer is expected to extend over the entire water
depth, the preceding solution can be considered valid for the inner region of the cur-
rent boundary layer. In other words, the solution is valid for small distances above the
bottom relative to the total depth yet larger than the wave boundary layer thickness,
. The boundary condition for the current equation (2.16) is the no slip condition at

the bottom boundary, i.e. u, = 0 at the bottom.

2.2 Eddy Viscosity Models

The next step in this analysis is to define an eddy viscosity based on the objectives
stated in Chapter 1. Two types of eddy viscosity models will be examined in this
section: two-layered Grant and Madsen (1979 and 1986) model types and three-
layered model types (Madsen and Wikramanayake (1991), Styles and Glenn (2000),
and Barreto-Acobe (2001)).
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2.2.1 Two-Layered Grant-Madsen Models

The formulation for the eddy viscosity in the two-layered original Grant-Madsen type

models is

Kty (2 + 2, z4z, <0
v, = S ’ (2.17)
Kiw (2 +25) z2+2,>0

where

£ = von Karman’s constant (x 2 0.4)

z = vertical height above bottom

2y = either 0 (Original Grant-Madsen) or z; (Modified Grant-Madsen)
u.m = shear velocity based on maximum combined bottom shear stress

ux. = shear velocity based on current bottom shear stress

For z, = 0, the no slip condition at the bottom boundary is applied at z = 2.
However, for z; = 2, the no slip condition at the bottom boundary is applied at
z = 0 by introduction of the the vertical profile translation distance z, = z;.

This time-invariant eddy viscosity formulation will be used in both the wave problem
and the current problem. For the region inside the wave boundary layer, the eddy
viscosity is linearly proportional to the shear velocity based on the maximum com-
bined wave and current shear stress. For the region outside the wave boundary layer,
the eddy viscosity is linearly proportional to the shear velocity based on the current

shear stress. The model’s definition of the wave boundary layer thickness is

d = al (2.18)

where the term « is the fitting parameter for this model and will be discussed in

depth in Chapter 3. The wave boundary layer length scale, [, is defined as

29



Klsm

(2.19)

where w is the radian frequency of the periodic wave. The shear velocities based on
the maximum combined and current shear stress are ., = \/7m/p and u,.. = \/7./p,
respectively. The maximum combined shear stress is the vector sum of the maximum

wave shear stress and the current shear stress

7:‘m = 7__‘1um + 7_—‘C = (Twm + Te lCOS ¢)wc| » Te SiI’l ¢wc) (220)

where ¢y, is the angle between the direction of the waves and the current. The max-

imum shear stress due to waves acting on the bottom can be determined from

Ouy
Twm = PV Y (2.21)
82 z+zp—0
for the original Grant-Madsen type of eddy viscosity model and
ou
Tum = PV o (2.22)
& z2+2p=20
for the modified Grant-Madsen type of eddy viscosity model where
kn
== 2.23
=30 (2.23)

for rough turbulent flow with %, denoting the equivalent Nikuradse sand grain rough-
ness. The magnitude of the maximum combined shear stress vector is obtained from

(2.20) to be
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T = |Tom] = /T2, + 2TwmTe [COS Py + 72 (2.24)

Wave Solution

In the two-layered Grant-Madsen type models, the wave problem is solved by assum-
ing a linearly increasing eddy viscosity for the entire wave boundary layer. Therefore,
the governing equation for the waves (2.14) becomes

d
— | Klam (2 + 2p) % —wug =0 (2.25)
z

This equation governing the waves can be simplified by introducing a new non-

dimensicnal variable of the form

=2 7 2 (2.26)
where [ is given by (2.19). Using (2.26) in (2.25),
d dud . i

From Hildebrand (1976), the solution of (2.27) is a special form of the Bessel equation
ug = A {ker (2/C) + ikei (2\/2) b+B {ber (2vC) +abei (20) ) (228)

where ker, kei, ber, and bei are Kelvin functions of zeroth order and A and B are com-

plex constants that will be determined by applying the boundary conditions, which
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are for a turbulent flow:
ug=—-latz+z,=2zy0r ( =
ug —0atz+ 2, >0 or{ = o

where the non-dimensional form of zj is

=2 (2.29)

From the boundary condition far away from the bottom uy — 0 at 2z + z, = oo or

¢ — o0, it can be seen that

B=0 (2.30)

since ber and bei become exponentially large when their arguments go toward infinity
(Abramowitz and Stegun, 1972). Applying the no-slip boundary condition at the

bottom, uy = —1 at z + 2, = 2 or { = (p, to (2.28), yields
1=A {ker (2 40) + ikei (2 gg)} (2.31)

Therefore

Y {ker (24/C) + ikei (21/C) }
4 ker (24/Go) + ikei (2v/Go)

(2.32)

Recalling the definition of ug (2.13), the solution for the wave velocity, u,, is

B ker (24/C) + ikei (2\/6) ‘
= Upte { [l ~ ker (2@) + tkei (2 Co)] P (Mt)}
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B  ker (24/C) + ikei (2V/0) y
_3?6“1 ker(2\/C_o)+ikei(2\/C_o)] m} (2.33)
where
Uoo = Up exp (iw?) (2.34)

For small values of ¢, i.e. for distances close to the bottom boundary, (2.33) can
be approximated by a logarithmic velocity profile using the approximations for small

arguments of ker and kei (Abramowitz and Stegun, 1972). Thus, for { — 0,

u, — Re {

1/2

g (2v/Co) + tkei (2v/(p)

(1ng +1.154 + zg)

uoo} (2.35)

Current Solution

In this section, the eddy viscosity formulation (2.17) will be used in the governing
equation for the current (2.16) along with the appropriate boundary conditions. As
stated before, 4, the wave boundary layer thickness is defined by equation (2.18).

For the lower region, z + z; < J, the solution to (2.16) after applying the no-slip

boundary condition is

2
b = e 1n{z+zb] (2.36)

KUym 20

For the upper region, z + z, > 4, the solution to (2.16) is
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te = 2 Iy [Z * z”] +C (2.37)
Iy

where C' is a constant of integration found by requiring that the velocity must be
continuous at z + 2, = 4.
After matching the velocities, the full solution is:

For z+ 2z, < §

U = ¢ e ) ["’ - z"] (2.38)
U s, 20
Forz+2,>6
Uxe Z+ Zh Uye 6
Up = In + In |— (2.39)
K o) U Zp

Wave Friction Factor and Closure Hypothesis

In order to evaluate the equations in the turbulent wave-current bottom boundary
layer models, @ and 2, must be specified. Therefore, a wave friction factor concept in
the definition of the bottom shear stress will be used in order to close the problem.
The shear velocity, w,,,, scales the eddy viscosity in the wave boundary layer and
corresponds fo the maximum combined shear stress due to waves and currents. The

maximum combined shear stress (2.24) can be re-wristen as

2
S Twm\/1 9 (L) €08 G| + ( e ) (2.40)
Twm Twm

Next, a parameter, U, 1s defined
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pt= o = (“)2 (2.41)

TZDTTL U*w

which expresses the relative magnitude of the current shear stress to the maximum
wave shear stress.

Equation (2.40) can now be re-written

T = Tum /1 + 242 |08 @] + (2.42)

Another parameter, C',, can be introduced for further simplification

Cyp = 1+ 242 |cos duy| + p* (2.43)

Equation (2.43) can be used with (2.42) in order to obtain a direct relationship be-

tween the maximum combined shear velocity and the wave shear velocity
Usm, = Ui/ C)y (2.44)

Jonsson (1966) defined a wave friction factor for pure wave motion, f,. By analogy,

we introduce a generalized wave friction factor for wave and current motion.
1 2
Twm = §pfchb (245)

Re-arranging (2.45)

fwc Tw U Ul
= = - 2.4
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where A, is the wave excursion amplitude and is given by
Ap= = (2.47)

Equations (2.44) and (2.46) can be used in the definition of (; (2.29)

20 ka/30  kJ30 V2 Rk, |G,
l mu*m/w_K,u*w,/Cﬂ/w—SOEC;ﬁAb fuwe

(2.48)

The definition of the maximum bottom wave shear stress is used to close the problem.
The maximum shear stress associated with the wave for the original Grant-Madsen

type model is

vm _ nax { [uta“—”] } (2.49)
p Bz z+2zp—0

Introducing (2.35) into (2.50) and taking the limit, the magnitude of the maximum

wave shear velocity squared at the bottom for the original Grant-Madsen model is

Pl KJ’U,*m Ub

T e (VG ke ()

(2.50)

For the modified Grant-Madsen type model,

Twm — max [ut%} (2.51)
P az Z+2zp— 20

Using the definition of u4 in (2.13), (2.51) can be re-written as

Oua
o

} (2.52)
z+2p—r2g
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Using the definition of v; in (2.17) yields

6ud

ul, = KUy [g — ] (2.53)
aC Z4zZp—2Q
Considering {2.32), (2.53) can be re-written as
u?, = fiu*mUb\/C—o ‘A {ker' (2 Cg) + tkei (2 Cg) }‘ (2.54)

where the primes denote differentiation with respect to the argument of the function
and A is given by (2.31). If ¢y, and u.. are given and using (2.24) and ., = \/7m/p,
(2.54) is an implicit equation for t,,.

Using (2.46) in (2.54), a relationship can be obtained for the friction factor, fy., and

the parameter (g

.f’ll] C
Cy

= K/ 200

A (ker' (2 \/c—o) + ke (2 go)) ‘ (2.55)

A relationship between the friction factor, fy., and the relative roughness parameter,

Ap/kn , can be obtained using (2.48)

A, V2 [C,

“Tn  30KCo \ Fue

(2.56)

Equations (2.55) and (2.56) can be used in order to develop a modified wave fric-
tion factor diagram which shows the dependency of the friction factor to the relative
roughness.

The phase angle between the shear stress and the near bottom velocity is given by
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B —kei (2/3p)
f; = arctan (m) (2.57)

for the original Grant-Madsen model and

(2.58)

6, — arctan ( S A (ker' (2v/G) + ke’ (2V5)) J)

Re |A (ker’ (2v/G) + ikei (21/3))]

for the modified Grant-Madsen model.

Note that the primary difference between the original and modified Grant-Madsen
type models is in the evaluation of the shear stress, i.e. the original Grant-Madsen
model evaluates the shear stress at the limit of » + 25 — 0 while the modified Grant-
Madsen model evaluates the shear stress at z -+ zpy = 2. 2z, = 0 for the original
Grant-Madsen model while z, = zg for the modified Grant-Madsen model. Another
modification of the original Grant-Madsen model is associated with the choice of Q
in the definition of the wave boundary layer thickness, (2.18). This modification wiil

be discussed in Chapter 3.

2.2.2 Three-Layered Models

The formulation for the three-layered modified Grant-Madsen (Madsen and Wikra-

manayake, 1991) and Barreto-Acobe (2001) eddy viscosity models is:

Kilym (2 + 25) 2+ 25 < &l
Vi = Kol al <z 4z, < alfe (2.39)

Kuse (2 +2)  alfe < 2+ 2z

where
2y = either 2z (Barreto-Acobe, 2001) or 0

! = scale of wave boundary layer thickness, given by (2.19)
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o = fraction of the wave boundary layer thickness over which the eddy viscosity varies
linearly and
€ is a parameter that expresses the relative magnitude of the current and combined

wave-current turbulence intensities (¢ < 1).

U

£= (2.60)

Usrn

The three-layered models have a continuous eddy viscosity profile, unlike the original
and modified Grant-Madsen models presented in section (2.2.1), and will therefore
yield a smooth velocity profile. The intermediate layer, al < z < «l/e, provides
a realistic transition from the wave boundary layer to the current boundary layer.
While the two-layered Grant-Madsen type models utilized different eddy viscosity
formulations for the wave and current problems, the same eddy viscosity formulation
will be used for both the wave problem and current problem with the three-layered

eddy viscosity models.

Wave Solution

Since the vertical variation of the eddy viscosity has been defined (2.59), it can be
used in the governing equation for the waves and solved for the three regions of im-
portance. In the lower region, z4 z, < al, the governing equation for the waves (2.14)
is

d du _
7, | K (z + z) d_zd —dwug =0 (2.61)

In the intermediate region, al < z + z, < al/e, where the eddy viscosity is constant,

the governing equation for the waves (2.14) is
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d du :
o [nu*mald—:] —iwug =0 (2.62)

Finally, for the upper region, z + 2z, > «l/e, the governing equation for the waves

(2.14) is

d dud .
- [&u*c (2 + 2zp) E] — twug =0 (2.63)

Using (2.26) in (2.61) for the lower region, { < «

d dud . _
% {(_jd—g] —iug =10 (2.64)

Using Hildebrand (1976), the general solution of (2.64) is
g = A {ker (2\/5) + ke (2\/5)} +B {ber (2\/2) + ibei (z\fg)} (2.65)

where ker, ket, ber, and bei are Kelvin functions of zeroth order and A and B are
complex constants.
For the intermediate region, a < { < a/z, (2.62) becomes

dQUd 1
2 "o 0 (2.66)

The general solution of (2.66) is
ug = Cexp (\/i/ag) + Dexp (—\/i/ag) (2.67)

where v/i = (1+14)/v/2 and C and D are complex constants.
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For the upper region, { > a/e, (2.63) becomes

d d ‘

The solution for (2.68) is

ua=E {ker (2v/C/e) +ikei (2/C/2) } + F {ber (24/C7z ) + ibei (2v/C/)}

(2.69)

where £ and F are complex constants.

In order to determine A, B, C, D, E, and F, boundary and matching conditions
must be invoked. The boundary and matching conditions for the preceding equations
governing the waves are:

ug = —lat {=¢

Uy = ugy at { =

ae (wa-] = g [uar] at ( =

Ug— = Ugs at ( = afe

o [ua-] = % [uas] at ¢ = o/e

ug = 0as { — oo

Applying the no-slip boundary condition at the bottom,us = —1 at ¢ = (, to (2.65),
yields

1= 4 {ker (2 &) + ke (2 &)} +B {ber (2/G) + ibei (2 go)} (2.70)

Matching the velocity and velocity gradients (shear stress) using (2.65) and (2.67) at

¢ = a from above and below gives

A {ker (2v/@) + ikei (2v/@) } + B {ber (2v/a) + ibei (2v/a)} =
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C exp (\/@E) + Dexp (—\/5) (2.71)

A {ker' (2v/a) + ikei’ (2V/@) } + B {ber' (2y/a) + ibei’ (2y/a)} =
CViexp (\/E) — DViexp (—\/5) (2.72)

From the boundary condition far away from the bottom ug — 0 at z = oo or { — oo,

it can be seen that

F=0 (2.73)

since ber and bei become exponentially large when their arguments go toward infinity
(Abramowitz and Stegun, 1972).

Matching the velocity and velocity gradients (shear stress) using (2.67) and (2.69)
with ' =0 at ( = /e yields

C exp (\/E/E) + Dexp (—\/E/E) = E {ker (2v/a/e) + ikei (24/a/e)} (2.74)

CViexp (\/E) — DViexp (—\/ﬂ) = E {ker' (2v/a/e) + ikei' (2v/a/e)} (2.75)

In the previous equations (2.72) and (2.75), the prime notation implies differentiation
with respect to the argument of the function. At this point, there are five equations
(2.70), (2.71), (2.72), (2.74), and (2.75) and five unknown constants, 4, B, C, D, and
E. These equations can be solved analytically in terms of «, (,, and €.

For the original Grant-Madsen type model, « is the only variable and must be fitted
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from experimental data. Later, the modified Grant-Madsen type model developed
a relationship for o as a function of the relative roughness. For the three-layered
Barreto-Acobe model, a is pre-determined based on boundary layer studies and is

discussed in Section (3.1.3).

Current Solution

The current problem is governed by equation (2.16) with the eddy viscosity specified
by (2.59). Invoking boundary and matching conditions, the governing equation for
the lower region, z + 2, < &, is

du, 9

KU em (Z + Zb) E = Uye (276)

Invoking the no-slip condition at z + 2z, = 2z, the solution to (2.76) is

(2.77)

Usxm K Z(

Use Une [z + zbJ

U, = In
For the intermediate region, al < z 4 z, < al/e, the eddy viscosity is constant and
the governing equation for the current problem is
du 9

¢
mu*mala = U,

(2.78)

Considering the condition of matching current velocities at z + z, = o, the solution

to (2.78) is

U = e e (z+z”—1+1n {a—lD (2.79)

Uem K al 2o
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For the upper region, 2+ 2 > al/e, the eddy viscosity is linear yielding a logarithmic

Une Z+ zp
. —— C '0
Up = ﬁKln( l/€>+ } (28)

Invoking the matching condition at z + 2 = al /e, the constant C is determined and

velocity profile

can be substituted into (2.80) to yield

U, = 22 (m (Z - Zb) b1 [m (a_z) - 1]) (2.81)
K alfe U 20

Wave Friction Factor and Closure Hypothesis

In order to evaluate the equations in the three-layered turbulent wave-current bottom
boundary layer model, o, €, and (o must be specified. ¢ = 2 /1 is a term that trans-
lates the velocity profile in the vertical direction by an amount Z. The solution is 1
terms of ¢ = (z + z)/l and is therefore independent of 2. However, z is the vertical
distance above the bottom S0 2p must be specified in order to plot the velocity profile,
u (). Therefore, gimilar to the closure hypothesis for the two-layered models, a wave
friction factor concept in the definition of the bottom shear stress will be utilized in
order to close the three-layered model problem.

C, can be written in terms of the previously defined parameters, p and €.

mzum_wﬂ)——& (282)

.
e (Une/Unm) €

The definition of the wave shear stress for the three-layered model type is
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U, 244

Tvm _ lim
N Oz

p z4zp— 20

} (2.83)

Equation (2.83) can be evaluated at z = z , i.e. 2, = 0.

Introducing the appropriate expressions for 14, and u, into (2.83),

|

. Oug
= Kttauy/CulUs clglg]o H\/Z(')(—Q\/_C_)H

Oug

Hu*mgUb ag

2 .
U, = Im
Y =0 {

= it /CUs Jim /G { ‘A [ker' (2\/2) + iked’ (2\/5)] B [ber' (Qfg) + ibei’ (2\/5)} {}

(2.84)

Using (2.46) in (2.84), a relationship can be obtained for the friction factor, f,., and

the parameter (

L — [ i (305) o e (1G] + 5 o (25) 0 ()]

(2.85)

A relationship between the friction factor, f,., and the relative roughness parameter,

Ap/kn, can be obtained using (2.48).

A V2 C,

“Fn  30KCo N Fue

(2.86)

Equations (2.85) and (2.86) can be used in order to develop a modified wave fric-

tion factor diagram which shows the dependency of the friction factor to the relative
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roughness.

The phase angle between the shear stress and the near bottom velocity is given by

=t (T VB) (V) 4 B o () (245 |)

Re | A [ker’ (2/Co) + ikel’ (2v/Go) | + B [ber' (24/Gg) + ibei’ (2v/Go) ] |
(2.87)
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Chapter 3

Model Results and

Approximations for Applications

In the present chapter, the results of the models are shown in the form of friction fac-
tor diagrams, phase angle diagrams, and «, diagrams. The selection of « is discussed
for each flow model type and approximate formulas to represent the results analyti-
cally are presented. Additional approximations for the three-layered Barreto-Acobe
model are developed and two preferred models are selected and presented based on
physical and mathematical plausibility. A procedure for obtaining predictions of the
current velocity profile using the preferred models is then outlined. Lastly, an example

calculation is given for a possible method of specifying the current motion.

3.1 Selection of o and Boundary Layer Thickness

A model’s velocity profile should contain the information needed in order to define
boundary layer thickness with reasonable accuracy. The selection of «, the fraction
over which the eddy viscosity varies linearly in the wave boundary layer, is critical
for the application of each flow model presented in Chapter 2. The original and

modified two-layer Grant-Madsen (1979 and 1986) models treat « as a fitting param-
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eter that must be determined using available laboratory and field data. Madsen and
Salles (1998) later suggested treating « as a function of relative roughness with their
two-layer model. Madsen and Wikramanayake (1991) and Styles and Glenn (2000
and 2002) treat « as a fitting parameter with their three-layer models but Barreto-
Acobe (2001) suggested that o does not have to be a fitting parameter when used in

conjunction with her three-layer flow model.

3.1.1 Constant «

The fitting parameter, o, defines the height of the wave boundary layer for the Grant-
Madsen models. The wave boundary layer thickness is obtained by requiring the
orbital velocity to approach the free stream velocity to within a small fraction of the
free stream velocity. Grant (1977) and Grant and Madsen (1979) originally suggested
a value of 2. Later, Grant and Madsen (1986) updated the value of this fitting
parameter and suggested that the value of « is a scaling constant between 1 and 2,
depending on the data available. The selection of the a-value involves a compromise
made by comparison of predictions and observations. For their three-layer model,
Madsen and Wikramanayake (1991) proposed that a value of 0.5 be selected as the
value of the free parameter c.. Styles and Glenn (2002) used o = 0.15, 0.3, and 0.5 for
field data collected off the southern coast of New Jersey in 1994 — 1995 in conjunction

with their three-layer model.

3.1.2 « as a Function of Roughness

Madsen and Salles (1998) suggested that the value of « is a function of the relative
roughness and should not be treated as a single constant. They defined the wave
boundary layer thickness as the value of z for which the velocity magnitude is within

5% of the free stream velocity. They expressed « as
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O 4,700
a = yexp (2.96‘ {Z—b] —1.45 (3.1)

n

regarding v as a fitting parameter to be based on comparison with data available.
Using v = 1, Madsen and Mathisen (1996) obtained good agreement for large rough-
ness values. However, they used v = 1/3 in order to obtain good agreement with
the numerical results of Davies et al. (1998) for intermediate roughness values. For
CuAs/kn, =100 and v = 1, (3.1) yields @ = 2.0, which is in agreement with the
original value suggested by Grant and Madsen (1979).

3.1.3 « as a Function of Boundary Layer Thickness

Barreto-Acobe (2001) suggested that o in a three-layer model does not have to be
a fitting parameter determined from wave-current flow data as it is in the original
Grant-Madsen and modified Grant-Madsen two-layer models. A transition height
was adopted for the eddy viscosity based on an explanation supporting experimental
data obtained for the region where z/§ < 0.15 by Daily and Harleman (1966). The
wave boundary layer height, z,,, was selected as the location where the maximum
velocity is predicted. The location, z,, where the eddy viscosity transitions from lin-
early increasing to constant is defined as 15% of the wave boundary layer height. The
subscript r i3 used to indicate the location where the eddy viscosity changes from
linearly increasing to constant and represents the real physical distance above the
bottom boundary. In non-dimensional terms,

Zm+ 2z
Cm = Tb (3.2)

and
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a, = ZT - 0.15%’“ = 0.15 (Cm — G) (3.3)

where «; is the normalized distance above the bottom where the eddy viscosity tran-
sition occurs.

In terms of the parameter «

a=m=ar+§b (3.4)

where

G = (3.5)

3.2 Approximate Equations

Approximate equations for the modified two-layered Grant-Madsen model type as
well as the three-layered Barreto-Acobe model are presented below. Additional ap-
proximations for the three-layered Barreto-Acobe model are developed in Section

3.2.2.

3.2.1 Approximations to the Grant-Madsen Models

Approximations to the modified two-layered Grant-Madsen model and the modified

Madsen-Salles (1998) model are presented in the following sections.

50



Modified Grant-Madsen Model

The friction factor for the modified Grant-Madsen model may be approximated by

fwe =C, exp {A (CZ_Ab>‘ —C’} (3.6)

the following

n

where C), and p are defined in Chapter 2 and the constants A, B, and C are given in
Table 3.1 for the applicable ranges of relative roughness. These values were used by
Madsen (1994) in application with his two-layered modified low model with constant

.

Table 3.1: Parameters for the friction factor equation for the modified Grant-Madsen

model (3.6)

Range of Application | A B C

0.2 < Sfe <107 7.02 | 0.078 | 8.82

102 < &% <10t |5.61 | 0.109 | 7.30

The phase angle (in degrees) between the shear stress and the near bottom veloc-

ity may be approximated by the explicit relationship

n n

C,A C,A
9t=33—6[10g10( Z b)] for 0.2 < Z_ b <10° (3.7)

For Ekn“ﬁ > 10%, the following explicit formula may be used

2 C,A
f; = arcsin 7/ for =% 5 103 (3.8)
In (2.7 Fuelate) b
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Madsen-Salles Model

The friction factor for the Madsen-Salles model may also he approximated by the
expression given by (3.6) with the constants 4, B, and ¢ given in Table 3.2 for the
applicable ranges of relative roughness.

The phase angle (in degrees) between the shear stress and the near bottom velocity

may be approximated by the explicit relationship

38.1 — 8.3 [log (ELAE)] for 0.2 < Gede _ 142
g, = A n (3.9)

30.6 — 4.7 [log, (%2)] for 102 < St o gt

These expressions were obtained by Salles (1997) from application of his two-layered

modified flow model with ¢ given by (3.1) and v = 1,

Table 3.2: Parameters for the friction factor equation for the Madsen-Salles model

(3.6)
Range of Application n
0.2 < %l 40 0.059

107 <52 <10' 5630106 733

<&

3.2.2 Barreto-Acobe Model Approximations

The equations necessary for the application of the Barreto-Acohe (2001) model are
given below. The friction factor for the Barreto-Acobe model i1s equivalent to the fric-
tion factor approximation presented for the Grant-Madsen model in (3.6) and Table
3.1 with the upper limit of relative roughness extended to 108,

An approximate analytical formula for the determination of &, was given by Barreto-

Acobe (2001)



—-0.2 —0.3
a, = Y exp {1.2 (C—Zé) — 2.12} —0.02 (O;Ab) (3.10)

where Y is a factor that depends on e.

Se+ 1 for Se+1<1
Y = (3.11)
1 for Se+71>1

where

2
Ab” +0.284 {mgw ( CZA”)J +0.942 (3.12)

() n

S =-0.026 [logw ( CZ

and

T

A
[=-0.013 [loglo (CZ ”H +0.712 (3.13)

Note that & = @, + ¢, where ¢, is defined in equation (3.5).

Additional Approximations for the Barreto-Acobe Model

Additional approximations for the Barreto-Acobe model have been developed and are
presented below. The friction factor for the Barreto-Acobe model is again defined by
(3.6) where C, and p are defined in Chapter 2 and the constants A, B, and C are
given in Table 3.3 for the applicable ranges of relative roughness.

An approximation for the determination of a, 18

a, = exp {A (C—Z?)Bﬁc} (3.14)

where the constants A, B, and C are given in Table 3.4 for the applicable ranges of

relative roughness. For ¢ < 0.2, the effect of the current is negligible when compared
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to the waves. Hence, € < 0.2 is considered pure wave motion. Therefore, when using
Table 3.4, £ = 0.2 must be used for values of ¢ less than 0.2 in order to obtain accurate
results.

The phase angle (in degrees) between the shear stress and the near bottom velocity

Table 3.3: Parameters for the friction factor equation for the modified Barreto-Acobe

model (3.6)

Range of Application | A k B C
0.1 < —F— < 103 6.19 | 0.087 | 8.05
103 < Zee < 108 5.77 | 0.086 | 7.83

may be approximated by the explicit relationship

10-5 [1ogm (C Ab) (1 +e)] 1071 < S < 107

aresin (2-4/fue) (1.1 — 0.5¢)

0, = (3.15)

10° < Gt < 108

Also note that if 8, > 45 degrees , then 8; = 45 degrees and again note that ife < 0.2,
then € = 0.2 must be used with (3.15).

Table 3.4: Parameters for the o, equation for the modified Barreto-Acobe model

(3.14). Note that if £ < 0.2, then £ = 0.2 must be used.
0.1 < —E— < 10°

Range of Application 108 < L < 108

A 1.07exp[-0.681 (¢ — 0.2)] | 1.02exp [-—0.715 (e —0.2)]

B

0.214exp[—0.168 (¢ — 0.2)]

0.17exp [—1.53 (¢ — 0.2)]

C

2.07 exp [—0.757 (¢ — 0.2)]

2.13 exp [ 0.47 (¢ — 0.2)]




3.3 Model Results

The results of the two-layer original and modified Grant-Madsen (1979, 1986) mod-
els, two-layer Madsen-Salles (1998) model, and the three-layer Barreto-Acobe (2001)
model are shown in the form of a friction factor diagram (Figure 3-1), phase angle
diagrams (Figures 3-2, 3-3, and 3-4), and an ¢, diagram (Figure 3-5).

The approximate formulas for the friction factor, f,., are in agreement for two-layer
modified Grant-Madsen model and Madsen-Salles model presented in Chapter 2. Note
that the primary difference between the original and modified Grant-Madsen type
models is in the evaluation of the shear stress, i.e. the original Grant-Madsen model
evaluates the shear stress at the limit of z + 2z, — 0 while the modified Grant-Madsen
model evaluates the shear stress at z+ z, = z;. The friction factor is fairly insensitive
to these differences in shear stress evaluation for small roughness values. However,
there is an appreciable difference in friction factors when dealing with large roughness
values. Figures 3-2, 3-3, and 3-4 depict the phase angle between the shear stress and
near-bottom velocity. A physical inconsistency of the original Grant-Madsen model
is clearly shown in Figure 3-2 where the phase grows unrealistically large for large
roughness values. The phase difference for the modified Grant-Madsen model, which
evaluates the shear stress at z 4 2, = z, produces realistic results, as depicted in Fig-
ure 3-2. Notice that for small roughness values, the phase difference for the original

and modified Grant-Madsen models are in agreement.

3.4 Selection of Preferred Flow Models

In the original two-layer Grant-Madsen (1979, 1986) model, there is an inconsistency
in the model based on the definition of the eddy viscosity used in the wave problem
and the current problem. Also, it is known that the wave-associated turbulence at the
upper edge of the wave boundary layer should approach zero. Therefore, the increas-

ing eddy viscosity defined in (2.17) for all heights above the bottom boundary that
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Figure 3-1: Comparison of friction factor equations (3.6) for the two-layer modified
Grant-Madsen (1994) model (Table 3.1), the two-layer Salles-Madsen (1998) model
(Table 3.2), and the three-layer Barreto-Acobe {2001) model (Table 3.3)
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Figure 3-2: Phase angle diagram for the original two-layer Grant-Madsen model (2.57)

and the modified two-layer Grant-Madsen model (2.58)
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Figure 3-3: Phase angle diagram for waves and currents for the three-layer Barreto-

Acobe (2001) model for various € values (2.87)
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is used for the solution of the wave problem is physically unrealistic. Furthermore,
since the eddy viscosity is discontinuous, the resulting velocity profile is not smooth.
The original Grant-Madsen model works well for small distances above the bottom
(i.e. the wave-dominated region) and for heights within the current boundary layer
that are not influenced by the wave boundary layer. However, it does not accurately
predict the current velocity for the transition region in between the wave-dominated
region and the current-dominated region. In addition, the model performs poorly
for large roughnesses because it inherently evaluates the bottom boundary condition
(no-slip) at z = z; and there can be a large gap in the velocity profile for 0 < z < 20
when dealing with large roughness elements.

Madsen and Salles (1998) developed a two-layer eddy viscosity model specially de-
signed for very rough bottoms. They discovered that the wave boundary layer thick-
ness is not simply proportional to the boundary layer length scale, i.e. « is not a
constant. Instead, they found « to be a function of the relative roughness, as given in
(3.1). Even though « is no longer a free parameter in their model, it is a function of a
fitting parameter, v in (3.1). A significant improvement of this model when compared
to previous model developments is that the bottom boundary, no-slip condition can
be applied at z = 0 by introducing the translation distance z, = z;. The result is
a velocity profile that is identical to that of the classical Grant-Madsen model, but
shifted downward so that the no-slip condition is applied at z = 0. Therefore, this
model prevents the prediction of negative velocities for small values of z. A short-
coming of their model is that a fitting parameter is still involved and no single value
of v in (3.1) works well for all data sets as discussed in Section 3.1.2.

Madsen and Wikramanayake (1991) developed a three-layer eddy viscosity model re-
moving some of the shortcomings of the original Grant-Madsen model. Two major
improvements in their model include the use of the same eddy viscosity definition for
both the wave and current problems and the use of a continuous eddy viscosity which

results in a velocity profile that is smooth. However, there is still a model-specific
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fitting parameter, o, that must be determined for each application of the model. No
single value of the fitting parameter works well for all data sets and a compromise
must always be made depending on the data available. Since the model evaluates the
bottom boundary, no-slip condition at z = z,, there can be a large gap in the velocity
profile for 0 < z < z; when dealing with large roughness elements as is the case with
the original Grant-Madsen model. Hence, the improved model also performs well for
small roughnesses but does not perform very well for large roughnesses.
Barreto-Acobe (2001) developed a three-layer model that could apply the bottom
boundary, no-slip condition at either z = 0 or z = z;. Her eddy viscosity model pro-
vides a continuous transition between the region where the turbulence is dominated
by wave motion and the region where the turbulence is dominated by the current.
The three-layered Barreto-Acobe model provides a transition point between the wave
and current dominated regions that is a pre-set fraction of the boundary layer height
as determined by previous boundary layer laboratory experiments. This means that
the model is entirely predictive and the dependence on application-specific fitting
pararmieters is eliminated.

Based on the above discussion, the two preferred models that will be used throughout
the remainder of this text are the Madsen and Salles (1998) two-layer model and the
Barreto-Acobe (2001) three-layer model. These models are the most physically real-
istic since they allow the bottom boundary no-slip condition to be applied at z = 0.
It 1s also highly desirable that « is not simply a constant in each of these models.
« 1s not a fitting parameter in the three-layer Barreto-Acobe flow model, whereas o
is a function of the relative roughness and v, a fitting parameter, for the two-layer

Madsen-Salles flow model.

62



3.5 Solution Procedure for Practical Applications

In this section, practical problems will be solved using the approximate formulas

presented in Section 3.2 for the preferred models.

3.5.1 Specifications

The wave motion is specified in terms of its period, T, and the near-bottom orbital
velocity predicted by potential theory, U,. There are two ways to specily the current:
(1) by a current shear stress, 7., and its direction relative to the wave motion, gy,
or (2) by its magnitude at a certain height above the bottom, u, at z = Zref, and
its direction relative to the wave motion, ¢,.. The bottom roughness must also be
specified as an equivalent Nikuradse sand grain roughness, k,. The relative roughness
parameter, Ay/ky,, is determined using wave and roughness characteristics. In other
words,
-
kp =30z, w= T
3.5.2 Current Specified by Current Shear Stress

The following solution procedures are applicable for the two-layered modified Grant-
Madsen model and the three-layered Barreto-Acobe model if the current is specified

by its current shear stress, 7, , and its direction relative to the wave motion, ¢y,

Two-layer Solution Procedure

1. With the current shear stress and fluid density known, determine the current shear
velocity

Upe = 4| = 3.16
; (3.16)

2. Then, for the first iteration, assume u =~ 0 and C,=1.

3. Determine the friction factor, f,., from (3.6) and Table 3.2 paying special attention
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to the relative roughness parameter and range of application.

4. Calculate the wave shear velocity, ., from

/1
Uy = §fchb (317)

5. Find the new value of u, using

= e (3.18)
Usy
6. Determine the new value of C,, from
Cu = /1 + 242 [0S | + p (3.19)

7. Repeat Steps 3 through 5 until C,, converges. Three significant figures is sufficient
precision.

8. Calculate u,,, and [ from

Usm = sy /C,  and [ = 22 (3.20)

W

9. Calculate o from (3.1) paying special attention to the relative roughness parameter
and range of application and using v = 1. Later, the value for the fitting parameter,
v, can be adjusted based on available data.

10. For applications with the two-layer modified Grant-Madsen model with z, = z;,

20
b=0=— (3.21)
11. The current profile can now be determined using the equations outlined in Section

2.2.1.

Three-layer Solution Procedure

1. With the current shear stress and fluid density known, determine the current shear

velocity
TC

Uee = = 3.22
=1/ (3.22)
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2. Then, for the first iteration, assume 4 ~ 0 and C, = 1.
3. Determine the friction factor, fy., from (3.6) and Table 3.3 paying special attention
to the relative roughness parameter and range of application.

4. Calculate the wave shear velocity, ., from

/1
U = §fchb (323)

5. Find the new value of p, using
Use

p= (3.24)
Usap
6. Determine the new value of C}, from
C, = 1+ 212 |cos G| + it (3.25)

7. Repeat Steps 3 through 5 until C, converges. Three significant figures is sufficient
precision.

8. Calculate g, £, and [ from

Une
U = Usy\/Cpy €= , and [=
Usrn W

Kty

(3.26)

9. Calculate o, from (3.14) and Table 3.4 paying special attention to the relative
roughness parameter and range of application.

10. For applications with the three-layer Barreto-Acobe model with z, = z,

G=Co = ? and = q, + G (3.27)

11. The current profile can now be determined using the equations outlined in Section

2.2.2.

3.5.3 Current Specified by Current Velocity at Reference
Height

The following solution procedures are valid for a current that is specified by its mag-

nitude at a certain height above the bottom, u. at z = z,. 7, and its direction relative
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to the wave motion, ¢,, when using the preferred models presented in Section 3.4.
For this procedure, we assume that the reference height is in the upper layer, i.e.
Zrey + 2y > ad for the two-layer Grant-Madsen model and z..; + 2, > al/e for the
three-layer Barreto-Acobe model. For most cases, this assumption is valid because

most of the water depth is within this layer.

Two-layer Solution Procedure

1. Solve wave-current interaction (Steps 3-10 of Section 3.5.2) assuming u,, = 0 for
the first iteration and obtain .y, [, and a.
2. Use these values of u.,, {, and « in the equation governing the current in the

upper region (2.39) in order to solve for u,.. After rearrangement, this equation is

S I Y| I
K ol U 2

3. With the new estimate of u.. obtained in Step 2, repeat Steps 1 and 2 until the

value of u,. converges.

4. Verify the assumption 2.y + 2z, > al.

Three-layer Solution Procedure

1. Solve wave-current interaction (Steps 3-10 of Section 3.5.2) assuming u.. = 0 for
the first iteration and obtain 4., [, and a.

2. For the first approximation of u,,. , assume that [ln (z—;{ﬁﬁ)} is small (no estimate
of € is available). Then, the equation governing the current in the upper region (2.81)

2T *C l
0="2 [1 + 4 [m (O‘—> - 1” — (3.29)
K Usm 20

3. Solve (3.29) for u,. using the values of u,,,, [, and « obtained in Step 1.

simplifies to

4. Solve wave-current interaction (Steps 3-10 of Section 3.5.2) with this u,. in order
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to obtain new values for u,,,, [, and « and to obtain an initial estimate of ¢.

5. Use this estimate of € in the [ln (ﬁ)] term of the equation governing the current

in the upper region (2.81). After rearrangement, this equation is

) *C l
0= 2 [ln (———Z”f i zb) 14— [ln (a_> - 1” o (330
K Ofl/Ef Usm 0

6. Solve (3.30) for u,, using the values of ., [, @, and € obtained in Step 4.

7. With the new estimate of u,. obtained in Step 6, repeat Steps 4 and 6 until the
value of u,, converges.

8. Verify the assumption z..; + 2z, > al/e.

3.6 Example

The conditions specified in the following example correspond to measurements ob-
tained at the LEO-15 site off the coast of southern New Jersey and used by Styles
and Glenn (2002). The results of the full preferred models for this data set are shown
in Chapters 4 and 5.

3.6.1 Example of Current Specified by Current Velocity at a
Reference Height, Roughness Unknown

Four current meters were deployed at 45, 80, 165, and 250 ¢cm above the bottom.
Horizontal resultant velocities and angles were calculated for each location and a
best fit law-of-the-wall logarithmic velocity profile was used in order to determine the
current velocity at a reference elevation.

The wave parameters are
Uy = 21.65 cm/sec and A4, =35.05 cm
For this problem, the current velocity is specified at a reference height as follows:

u, =84 cm/sec at zr =250 cm
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The angle between waves and current is
e = 20.8 deg

This is a difficult problem to solve because the equivalent roughness is not known. In
order to solve this problem with a bottom boundary layer, wave-current interaction
flow model, an initial value of k, is assumed (k, = 1 cm, for example). Next, an initial
value of C, is assumed (C,, = 1, corresponding to a case of pure waves, is a good first
approximation). From the initial estimate of C, and k,, the relative roughness ratio
is calculated. This ratio is used in order to determine f,. (using (3.6) and Table 3.2
for the two-layer model and Table 3.3 for the three-layer model), and subsequently
Twms Uew, and p?. C,, is calculated using p® and compared with the initial C,, guess.
If the two results are not in agreement, then the procedure is repeated with the latter
value of €', used as the new initial estimate for the procedure. Once the C, values
converge, < is calculated. Following the determination of &, ., I, 29, and 2, are cal-
culated. Finally, c is determined (using (3.1) for the two-layer preferred model and
(3.14) and Table 3.4 for the three-layer model) and a theoretical velocity is calculated
at a pre-selected reference height and compared with the measured velocity at said
reference height. If the two velocities are not equivalent, then a new £k, is chosen and
the entire procedure is repeated until the measured and calculated velocities converge

(i-e. for every value of k,, a new C, must be determined).

Model Results

The results obtained with the two-layer Madsen-Salles model with variable a are
shown in Table 3.5. The results obtained with the three-layer Barreto-Acobe model
with a not a fitting parameter are shown in Table 3.6. Resulting velocity profiles
for the three-layer Barreto-Acobe model and the two-layer Madsen-Salles model with

v =1/4 and v = 1 are shown in Figures 3-6 and 3-7.
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Table 3.5: Results of two-layer Madsen-Salles model with variable o for range of

v=1/4,1/3,1/2,1

y=1/4|v=1/3|v=1/2 | v=1
ky (cm) 37 24 14 6

zp (cm) 1.24 0.81 0.45 0.19
Usm (cm/sec) | 6.57 5.91 5.16 4.24
Uy (€M /seC) 6.53 5.85 5.10 4.16
! (cm) 4.26 3.83 3.34 2.74
2% 1.12 1.36 1.82 3.06

Table 3.6: Results of three-layer Barreto-Acobe model with a not a fitting parameter
kn 19 ¢m

20 0.63 cm

Usm | 5.39 cm/sec

Usy | 5.33 cmm/sec

C, | 1.145

{ 3.49 cm
Q 0.48

a, |03

£ 0.152

The selection of a particular bottom boundary layer flow model is of critical impor-
tance when evaluating data. Application results may vary greatly depending on the
model selected and the adopted value of the fitting parameter within a particular
model (if applicable). Since v is not known a priori, the range v = 1/4, 1/3, 1/2,
and 1 was applied with the two-layer Madsen-Salles model for this example. The

69



Nikuradse sand grain roughness can vary by more than a factor of 6 depending on
the value of - selected (as shown in Table 3.3). It is expected that as 7 increases,
the value for the Nikuradse sand grain roughness decreases. A smaller v-value corre-
sponds to a smaller c-value and therefore a steeper slope for the eddy viscosity within
the wave boundary layer, z+2z;, < al. A larger %, is therefore required in order for the
velocity profile to go through the designated velocity at z = z,.;. The resulting veloc-
ity profiles for the three-layer Barreto- Acobe model and the two-layer Madsen-Salles
model with + = 1/4 and v = 1 are shown in Figure 3-6. Notice that for z > 10 cm
from the boundary, the profiles are identical. However, near the bottom boundary,
the profiles are very different, as seen in Figure 3-7. Near-bottom characteristics are
important for sediment transport since the highest sediment concentration is found
near the boundary. Therefore, sediment transport calculations are very sensitive to
the selection and application of a particular bottom boundary flow model. Two- and
three-layer flow model applications will be discussed in greater detail in Chapters 4

and 5.
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Figure 3-6: Velocity profiles for the two-layer Madsen-Salles model with v = 1/4 and
v =1 and the three-layer Barreto-Acobe model
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Figure 3-7: Velocity profiles near the bottom boundary for the two-layer Madsen-

Salles model with v = 1/4 and 4 = 1 and the three-layer Barreto-Acobe model
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Chapter 4

Ripple Geometry and Equivalent
Bed Roughness

In this chapter, empirical relationships are developed in order to relate bottom rough-
ness and ripple geometry. The two-layer Madsen-Salles and three-layer Barreto-Acobe
flow models are then applied to fixed bed laboratory data collected by Bagnold (1946),
Sleath (1985), and Mathisen and Madsen (1996, 1999). The preferred flow models
are also applied to movable bed laboratory and field data collected by Carstens et al.
(1969), Lofquist (1986), Rosengaus (1987), Mathisen (1989), and Styles and Glenn
(2002). For the Mathisen and Madsen (1996) data set, both wave attenuation and
current profile data are available. Therefore, wave attenuation measurements were
used in order to calculate the bottom roughness for the cases of pure waves and waves
in the presence of a current while current measurements were used in order to estab-
lish the bottom roughness for the case of currents in the presence of waves. Ripple
geometry and roughness models based on the fixed and movable bed laboratory and
field data are presented and will be used to evaluate the preferred flow models in

Chapter 5.
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4.1 Empirical Relationships

The formation of sediment bedforms under the influence of oscillatory waves is a con-
sequence of fluid/sediment interaction. Bedforms will result if the near-bed velocity
exceeds the critical velocity required for initiation of sediment motion. Bedforms are
of practical importance because sediment transport, wave attenuation, and near-bed
currents are all affected by bedform geometry.

Bottom roughness has been considered to be proportional to ripple geometry as

ky, = agm (4.1)

where 7 is the ripple height.
Bottom roughness can also be considered proportional to ripple steepness, i.e. the

ratio of ripple height over ripple length as
ky = ﬁnng (4.2)

where ) is the ripple length.

In application with their flow model, Grant and Madsen (1982) suggest 3, = 27.7
when using (4.2) for steep ripples.

In the following sections, the preferred flow models are used in conjunction with fixed
and movable bed data in order to establish the associated values for an, and 3, in
equations (4.1) and (4.2). All of the laboratory and field data used in this text are
tabulated and reported in Appendix A through Appendix E.
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4.2 Fixed Bed Data

4.2.1 Monochromatic Pure Wave Experiments

Bagnold (1946) and Sleath (1985) measured energy dissipation over beds with fixed
artificial ripples using an oscillatory bed apparatus. Mathisen and Madsen (1996)
used a programmable piston-type wavemaker in a 28-meter long wave flume with
glass sidewalls and placed triangular bars along the bottom of the flume. Wave gages
were used in order to measure wave attenuation by relating voltage output to surface
displacement. Tables 4.1 and 4.2 show the mean and standard deviation values for
an, and 3, using the preferred flow models in application with monochromatic pure

wave experiments.

Table 4.1: Mean and standard deviation values for o, and 3, using the two-layer

Madsen-Salles model in application with monochromatic pure wave experiments

Data Source Number of oy, B,

Data Points

Bagnold (1946) 59 12.1 £4.02 | 80.69 +26.79
Sleath (1985) 61 4.95 £2.38 | 21.27 £10.22
Mathisen and Madsen (1996) 9 11.99 +£6.52 | 89.16 £32.02

Table 4.2: Mean and standard deviation values for ¢, and (3, using the three-layer

Barreto-Acobe model in application with monochromatic pure wave experiments

Data Source Number of Cin G

Data Points

Bagnold 59 15.00 £4.72 | 100.05 £31.43
Sleath 61 6.21 £3.14 | 26.66 £13.47
Mathisen and Madsen (1996) 9 13.69 +£6.50 | 103.68 £28.20




4.2.2 Spectral Pure Wave Experiments

Mathisen and Madsen (1996) also performed spectral pure wave experiments. Spec-
tral waves problems are simplified with the introduction of a representative monochro-
matic wave. The representative periodic wave is defined by its near-bottom orbital
velocity, Uy, radian frequency, w,, and direction of propagation, ¢,. Given the di-
rectional near-bottom orbital velocity spectrum, Sus(w, 8), the representative wave

orbital velocity amplitude proposed by Madsen (1994) is defined as

U - \/ [ oty oo 13)

The representative wave radian frequency is defined as

[ wSuw(w, 8) dwde
B I Sus(w, 9) dw db

(4.4)

wy

Finally, the direction of propagation of the representative periodic wave is defined as

van &, — 44 Sulw, 0)sinfdu dg
] Sus(w, 8) cos O dw df

(4.5)

The representative wave near-bottom orbital excursion amplitude, A,,, is calculated
as
U
A, = = (4.6)

W

Tables 4.3 and 4.4 show the mean and standard deviation values for o, and 3, using
the preferred flow models in application with the spectral pure wave experiments of

Mathisen and Madsen (1996).
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Table 4.3: Mean and standard deviation values for «;, and [, using the two-layer

Madsen-Salles model in application with spectral pure wave experiments

Data Source Number of Oy Bn

Data Points

Mathisen and Madsen (1996) 3 15.46 +£6.81 | 103.07 £45.40

Table 4.4: Mean and standard deviation values for ¢, and 3, using the three-layer

Barreto-Acobe model in application with spectral pure wave experiments

Data Source Number of O Bn,

Data Points

Mathisen and Madsen (1996) 3 16.31 £5.33 | 108.75 £35.51

4.2.3 Combined Wave-Current Experiments

Mathisen and Madsen (1996) simulated wave and current boundary layer flows with a
wave flume equipped with a current generation system consisting of a 1200 gpm pump
and associated recirculation piping. Even though Mathisen and Madsen used 1.5 cm
high triangular bars spaced at 10 cm and 20 c¢m intervals, only those experiments
with 10 cm spacing were used for the analysis in this text because they were found to
realistically represent the drag force experienced by equilibrium bedforms. Tables 4.5,
4.6, 4.7, and 4.8 show the mean and standard deviation values for a;,, and 3, using the
preferred flow models in application with the combined wave-current flow experiments
of Mathisen and Madsen (1996). Since both wave attenuation data and current profile
data are available, there are two roughness length scales to consider, namely waves
in the presence of currents, k,., and currents in the presence of waves, k.,. Only the

wave attenuation data provided by Mathisen and Madsen (1996) were used in order
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to obtain the a, and 3, values reported in Tables 4.5 and 4.6. Tables 4.7 and 4.8
show o, and 3, values when only the current profile measurements were used with
the two-layer Madsen-Salles model (with v = 1) and the three-layer Barreto-Acobe

flow model.

Table 4.5: Mean and standard deviation values for «, and {3, using the two-
layer Madsen-Salles model with wave attenuation data in application with combined

wave/current experiments

Data Source Number of ay, B

Data Points

Mathisen and Madsen (1996) 9 17.43 +6.91 | 145.46 £34.00

Table 4.6: Mean and standard deviation values for o, and (3, using the three-
layer Barreto-Acobe model with wave attenuation data in application with combined

wave/current experiments

Data Source Number of O Bn

Data Points

Mathisen and Madsen (1996) 9 19.02 +£6.71 | 160.77 £35.16

Table 4.7: Mean and standard deviation values for a,, and 3, using the two-layer

Madsen-Salles model with v = 1 and current profile data in application with combined

wave/current, experiments

Data Source Number of Qp Bn

Data Points

Mathisen and Madsen (1996) 7 19.48 £7.48 | 129.89 +49.87
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Table 4.8: Mean and standard deviation values for «, and £, using the three-
layer Barreto-Acobe model and current profile data in application with combined

wave/current experiments

Data Source Number of o, Bn

Data Points

Mathisen and Madsen (1996) 7 27.77 £8.29 | 185.11 £55.24

4.2.4 Spectral Wave-Current Experiments

Mathisen and Madsen (1996) also performed combined spectral wave/current exper-
iments. Again, there are two roughness length scales to consider since both wave
attenuation data and current profile data are available, namely waves in the presence
of currents, k., and currents in the presence of waves, k.,. Only the wave attenua-
tion data provided by Mathisen and Madsen (1996) were used in order to obtain the
ay, and 3, values reported in Tables 4.9 and 4.10. Tables 4.11 and 4.12 show «,, and
Bn values when only the current profile measurements were used with the two-layer

Madsen-Salles model (with v = 1) and the three-layer Barreto-Acobe flow model.

Table 4.9: Mean and standard deviation values for @, and 3, using the two-layer
Madsen-Salles model with wave attenuation data in application with combined spec-

tral wave/current experiments

Data Source Number of , Bn

Data Points

Mathisen and Madsen (1996) 2 14.17 £2.12 | 94.49 +14.14

79



Table 4.10: Mean and standard deviation values for «, and 5, using the three-
layer Barreto-Acobe model with wave attenuation data in application with combined

spectral wave/current experiments

Data Source Number of fa On

Data Points

Mathisen and Madsen (1996) 2 16.43 £0.32 | 109.50 +2.12

Table 4.11: Mean and standard deviation values for @, and g, using the two-layer
Madsen-Salles model with v = 1 and current profile data in application with combined

spectral wave/current experiments

Data Source Number of Qi By

Data Points

Mathisen and Madsen (1996) 2 14.17 £2.12 | 94.49 +14.14

Table 4.12: Mean and standard deviation values for a, and 3, using the three-layer
Barreto-Acobe model and current profile data in application with combined spectral

wave/current experiments

Data Source Number of Q, B

Data Points

Mathisen and Madsen (1996) 2 19.46 =3.66 | 129.71 +24.72

4.2.5 Estimates for o, and 3, Using Fixed Bed Data

Based on the fixed bed laboratory data presented in this section, empirical relation-
ships were developed using the two-layer Madsen-Salles and three-layer Barreto-Acobe
flow models.

Using wave attenuation data and the two-layer Madsen-Salles model,
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ks,

(10£6)n

and

kn = (65 + 47)

> |3

(4.7)

(4.8)

Using current measurements and the two-layer Madsen-Salles model with v =1,

kn=(17+7)7

and

k= (115 + 44) ng

Using wave attenuation data and the three-layer Barreto-Acobe model,

kn= (122 7)1

and

k= (77 £ 52) ”72

Using current measurements and the three-layer Barreto-Acobe model,

kn = (25+8)n
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(4.12)
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and

kn = (167 £ 51) ng (4.14)

The average and standard deviation values for «,, and (3, were calculated by equally

weighting the number of data points used.

4.3 Movable Bed Data

4.3.1 Monochromatic Pure Wave Experiments

Carstens et al. (1969) measured the energy dissipation over a movable bed by moni-
toring the air pressure and the water level in the risers above their water tunnel. All
of the tests were conducted at approximately the same period with varying orbital
amplitude. Lofquist (1986) measured the energy dissipation in a wave tunnel with the
use of pressure taps at either end. Rosengaus (1987) and Mathisen (1989) performed
experiments in a wave flume and the energy dissipation was measured by recording
the change in wave height along the flume. Tables 4.13 and 4.14 show the mean and
standard deviation values for v, and 3, using the preferred flow models in application

with monochromatic pure wave experiments.
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Table 4.13: Mean and standard deviation values for «,, and 3, using the two-layer

Madsen-Salles model in application with monochromatic pure wave experiments

Data Source Number of ay, B

Data Points
Carstens et al. (1969) 35 14.81 +6.45 | 120.94 £161.61
Lofquist (1986) 82 12.30 £5.61 | 72.41 £33.24
Rosengaus (1987) 18 7.03 £2.33 | 42.65 +£14.52
Mathisen (1989) 18 3.40 £1.80 24.12 £10.85
Rosengaus (1987) and Mathisen (1989) 26 8.09 £3.61 | 50.45 £21.58

4.3.2 Field Data

The field data used in this thesis were obtained at the LEO-15 site off the coast of
southern New Jersey and used by Styles and Glenn (2002). Four current meters were
deployed at 45, 80, 165, and 250 cm above the bottom. Horizontal resultant velocities
and angles were calculated for each location and a best fit law-of-the-wall logarithmic
velocity profile was used in order to determine the current velocity at a reference

elevation, z.5, a current specification similar to the one used in Section 3.5.3.

Determination of Current Shear Velocity and Apparent Roughness

Indirect estimates of the current shear velocity and apparent hydraulic roughness were
obtained by fitting logarithmic profiles to the BASS current measurements. The cur-
rent velocity equation, based on the classic law-of-the-wall for combined wave-current

flow is

V, = =1n (i) (4.15)

Z0a
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Table 4.14: Mean and standard deviation values for a,, and 8, using the three-layer

Barreto-Acobe model in application with monochromatic pure wave experiments

Data Source Number of o, B

Data Points
Carstens et al. (1969) 35 18.18 £8.35 | 149.64 +206.32
Lofquist (1986) 82 14.34 £5.22 | 86.05 +38.32
Rosengaus (1987) 18 8.56 £3.57 | 51.91 £21.22
Mathisen (1989) 18 450 £2.46 | 31.40 £14.84
Rosengaus (1987) and Mathisen (1989) 26 10.00 +4.17 | 62.45 £25.21

where V, is the current velocity and zy, is the apparent hydraulic roughness.
A horizontal resultant velocity and resultant angle was calculated for each current
meter location. Shear velocities and apparent roughness values were calculated for

those bursts that satisfied the following criteria:

1. Current meter measurements indicated a current greater than 5 cm/sec at the

80 ¢m level and

2. The maximum veering angle, i.e. the difference in direction, between the current

sensors is less than 10 degrees.

Regression analysis was applied using the law-of-the-wall fit in (4.15) to the data
points that satisfied the above criteria and those bursts with R? values greater than
0.95 were considered for further analysis. The results of these calculations produced

47 bursts in total and are tabulated and reported in Appendix E.
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Application of Preferred Models

For each data burst, the two preferred wave-current interaction models were run in
order to produce an estimate of the bottom roughness length scale, &,. Because v is
a fitting parameter of the Madsen-Salles model and not known a priori, each run was
repeated with the following range: v = 1/3,1/2, and 1. Mean and standard deviation
values for a, and 3, using the preferred flow models in application with field data

are shown in Tables 4.15, 4.16, 4.17, and 4.18.

Table 4.15: Mean and standard deviation values for ¢, and £, using the two-layer

Madsen-Salles model with v = 1/3 in application with combined flow field data

Data Source Number of an, Bn

Data Points

Styles and Glenn (2002) A7 9.11 £9.74 | 54.77 +£64.40

Table 4.16: Mean and standard deviation values for «,, and 5, using the two-layer

Madsen-Salles model with v = 1/2 in application with combined flow field data

Data Source Number of an, B

Data Points

Styles and Glenn (2002) 47 5.34 £5.37 | 32.05 £35.70

Table 4.17: Mean and standard deviation values for «,, and 3, using the two-layer

Madsen-Salles model with v = 1 in application with combined flow field data

Data Source Number of Qp, Bn

Data Points

Styles and Glenn {2002) 47 2.41 +2.19 | 14.44 +14.71
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Table 4.18: Mean and standard deviation values for o, and §, using the three-layer

Barreto-Acobe model in application with combined flow field data

Data Source Number of Oy, B

Data Points

Styles and Glenn (2002) 47 5.25 £3.43 | 30.99 £23.54

4.3.3 Estimates for «, and (3, Using Movable Bed Data

Based on the movable bed laboratory and field data presented in this section, empir-
ical relationships were developed using the two-layer Madsen-Salles and three-layer
Barreto-Acobe flow models.

Using wave attenuation data and the two-layer Madsen-Salles model,

k, = (11 £ 6) 7 (4.16)

and

ki = (71 £ 79) n% (4.17)

Using current measurements and the two-layer Madsen-Salles model with v = 1,

kn={(2.5+ 2)n (4.18)
and
. n
kn = (14 = 15) nx (4.19)

Using wave attenuation data and the three-layer Barreto-Acobe model, the following
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values were obtained:

k,=(13+7)n (4.20)
and
kn = (86 £ 101) ng (4.21)
Using current measurements and the three-layer Barreto-Acobe model,
kn=(b+3)n (4.22)
and
_ 7
kn = (31 4+ 24) U5y (4.23)

The average and standard deviation values for ¢, and £, were calculated by equally

weighting the number of data points used.

4.4 Summary and Conclusions

Two ripple geometry and equivalent bed roughness models were developed in this
chapter, of the forms presented in equations (4.1) and (4.2). Values for «, and 3,
were calculated using fixed and movable laboratory and field data. For the Mathisen
and Madsen {1996) fixed bed laboratory data set, both wave attenuation and current

profile data are available. Therefore, wave attenuation measurements were used in
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order to calculate the bottom roughness for the cases of pure waves and waves in the
presence of a current while current measurements were used in order to establish the
bottom roughness for the case of currents in the presence of waves. For the two-layer
Madsen-Salles model with v = 1, the ripple geometry and equivalent bed roughness
models are statistically consistent for both movable and fixed laboratory data, re-
gardless of whether wave attenuation data or current profile data were used in order
to calculate the bottom roughness length scale, as seen in (4.7), (4.8), (4.9), (4.10),
(4.16), and (4.17). However, for the three-layer Barreto-Acobe flow model, the ripple
geometry and equivalent bed roughness models using laboratory wave attenuation
and current profile data are statistically different, as seen in (4.11), (4.12), (4.13),
(4.14), (4.20), and (4.21).

All the models presented in this thesis assume that the bottom roughness may
be described by a single roughness length scale, k,. However, differences between
roughness values for waves and currents can arise from bedform geometry and/or
near-bottom flow characteristics. The experimental results of Mathisen and Madsen
(1996) were used to check the single roughness assumption. While the three-layer
Barreto-Acobe model yields smaller standard deviation values for the roughness, the
two-layer Madsen-Salles model appears to be more robust in that one length scale,
kn, may be justifiably used for the cases of pure waves, waves in the presence of a
current, and currents in the presence of waves. When using the three-layer Barreto-
Acobe model with combined wave-current flow, one must use a roughness value that
1s application-specific, i.e. a different roughness value must be used depending on
whether wave attenuation or current profile predictions are desired. In cases where
current profiles are to be predicted, the roughness model that must be used with
the three-layer Barreto-Acobe model is significantly larger when compared to the
roughness model that must be be applied when wave attenuation is to be predicted.

Even though two ripple geometry and equivalent bed roughness models were pre-

sented in this chapter, the model of the form (4.1) involving the empirical constant
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a, generally has smaller standard deviation values and therefore provides a better fit
than the model involving 3, presented in (4.2), as seen in Tables 4.1 - 4.18. Therefore,
the recommended conceptual model for practical applications involving movable bed
data is of the form k, = a,n.

The ripple geometry and roughness model that is statistically consistent with both
the two-layer Madsen-Salles and the three-layer Barreto-Acobe flow models for the
prediction of wave associated bottom shear stress using both movable and fixed bed

wave attenuation data from the laboratory is:

kn = (11 £ 6)n (4.24)

The average and standard deviation values for o, were calculated by equally weighting
all laboratory data (movable and fixed bed) for the two-layer Madsen-Salles model
and the three-layer Barreto-Acobe model.

Since the field is the natural environment for the application of the flow models
presented in this thesis, the following ripple geometry and equivalent bed roughness
model is statistically consistent with the field data presented in this chapter and is

recommended for practical applications:

kn = (2.5 £ 2)p (4.25)

Notice that (4.25) is considerably smaller than the three-layer Barreto-Acobe field
data results (4.22). This discrepancy is in accordance with the observation that a
single roughress scale is not applicable when using the three-layer Barreto-Acobe flow
model. Just as the results of the three-layer Barreto-Acobe model are larger when us-
Ing current measurements when compared to wave attenuation measurements in the
laboratory, the same argument can be applied with field data. Since all of the labora-

tory wave attenuation measurements are statistically consistent, regardless of which
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flow model was used, and since one roughness length scale can be justifiably used for
the two-layer Madsen-Salles model, one could reasonably expect that the Madsen-
Salles field data results would be consistent with wave attenuation data (suppos-
ing that wave attenuation could be available for field data applications). Therefore,
the significantly larger roughness values obtained with the three-layer Barreto-Acobe
model from field data (4.22) are to be expected as a consequence of the roughness
scale for currents in the presence of waves being larger than that for waves in the
presence of currents.

It is not known at this time why the model recommended for field applications
in (4.25) is much different from the model (4.24) that is consistent with the all of
the laboratory data presented in this chapter. Since laboratory experiments usually
involve superior accuracy of measurements, one may attribute the differences to scale
effects since laboratory data also involve shorter wave periods. In addition, fixed bed
laboratory data also involve sharper roughnesses and therefore the associated drag
forces are different than drag forces typically encountered in the field. However, since
the results of both fixed and movable bed laboratory data presented in this text are

statistically consistent, this effect can be considered negligible in the present context.
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Chapter 5

Ripple Model and Application of
the Preferred Flow Models

In the present chapter, a model for wave-generated ripples is developed based on
available movable bed laboratory and field data. The two-layer Madsen-Salles flow
model and the three-layer Barreto-Acobe flow model are then applied in conjunction
with the ripple geometry and roughness models for the cases of known and unknown
ripple geometry. Pure wave movable bed data from Carstens et al. (1969), Lofquist
(1986), Rosengaus (1987), and Mathisen (1989) and combined wave-current data
collected by Mathisen and Madsen (1996) and Styles and Glenn (2002) are used in
order to assess the predictive capabilities of the preferred flow models. Predicted and
observed values for £, and u., are graphically depicted using the ripple geometry and

roughness relationships developed for the flow models.

5.1 Model of Wave-Generated Ripples

In the absence of direct measurements, ripple height estimates are often needed for
applications of wave-current interaction flow models.

Wikramanayake and Madsen (1991) found that the ratio of the mobility number,
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defined as

(Apw)”
= 5.1
= - Dgd 51)
to the nondimensional sediment parameter, defined as
d 1/2 .
So= 2 (s - 1) gd] (5.2)

4y

was well correlated with ripple data where A, is the bottom excursion amplitude, w is
the wave frequency, d is the sediment diameter, v is the kinematic viscosity of water,
s is the ratio of the sediment density to the fluid density, and g is the acceleration
due to gravity.

An empirical ripple model was calibrated by plotting the relative ripple height, n /Ay
and the relative ripple length, /A, as a function of this ratio using the laboratory
and field data presented in Chapter 4 in addition to the data of Boyd et al. (1988),
Dingler (1974), Inman (1957), Inman and Bowen (1963), Kennedy and Falcon (1965),
Lambie (1984), Lofquist (1978), Miller and Komar (1980), Mogridge and Kamphuis
(1972), Nielsen (1979, 1984) and Sato (1988). All of the data used in this text are
tabulated and presented in Appendix A through Appendix E. The following model

was produced:

n 0.24X %% for X <3 (53)

Ay 0.25X93 for X >3 '
and

A 1.42X79% for X <3 (5.4)

Ay 152X 02 for X >3 '

where X, the nondimensional wave and sediment parameter, is defined by
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O 4v (Apw)?

= T 1"

(5.5)

The results of the calibration are given in Figure 5-1 and Figure 5-2.
A measure of the model’s performance can be seen in the average and standard

deviation values of the variables ¢; and e, where

(n/Ab> observed
T /A 5.6
“ (n/Ab) predicted ( )
and
()‘/Ab) observed _
€= 5.7
: ()‘/Ab) predicted ( )

For X < 3, the average and standard deviation values of ¢ from (5.6) are 1.00
and 0.29, respectively. For X > 3, the average and standard deviation values of ¢;
from (5.6) are 1.00 and 0.72, respectively. For X < 3, the average and standard
deviation values of ¢z from (5.7) are 1.00 and 0.27, respectively. For X > 3, the
average and standard deviation values of ¢; from (5.7) are 1.00 and 0.50, respectively.
At the present time it is unknown why some data sets do not behave as “expected”
and hence contribute to large values of standard deviation for ; and e, for X > 3.
Therefore, further investigation is needed.

Notice that for X > 3, n decays at a faster rate than for X < 3. This is physically
plausible since ripple steepness is likely to decrease with increasing flow intensity and
an intense storm may even cause ripples to washout. The models presented in (5.3)
and (5.4) are not perfectly continuous at X = 3, however, the discontinuity may be

considered insignificant for the present applications.
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Figure 5-1: Relative ripple height as a function of the nondimensional wave and
sediment parameter, X. The solid line denotes the best fit curve, presented in (3.3).
For X « 3, the average and standard deviation values of ¢; from (5.6) are 1.00 and
0.29, respectively. For X > 3, the average and standard deviation values of €; from

(5.6) are 1.00 and 0.72, respectively.

94



10 S . ——r ———r—ry —_—

107

A

—_—a

Figure 5-2: Relative ripple length as a function of the nondimensional wave and
sediment parameter, X. The solid line denotes the best fit curve, presented in (5.4).
For X < 3, the average and standard deviation values of ¢; from (5.7) are 1.00 and
0.27, respectively. For X > 3, the average and standard deviation values of ¢, from

(5.7) are 1.00 and 0.50, respectively.



5.2 Evaluation of the Combined Ripple Geometry
and Roughness Models

The predictive capabilities of the preferred flow models were assessed using pure
wave data collected by Carstens et al. (1969), Lofquist (1986), Rosengaus (1987),
and Mathisen (1989), fixed bed laboratory data collected by Mathisen and Madsen
(1996), and field data used by Styles and Glenn (2002). Based on the ripple geometry
and roughness model presented in Chapter 4, k,, = 115 was used in conjunction with
the preferred flow models for the cases where the ripple geometry is assumed known
prior to the application of the flow models. k, = 117 is statistically consistent with
the laboratory data presented in Chapter 4 and was applied with both the two-layer
Madsen-Salles model and the three-layer Barreto-Acobe model.

For the movable bed, pure wave data, a measure of each model’s performance can be

seen in the average and standard deviation values of the variable ¥, where

’gb — fw, observed (58)
fw, predicted

For the combined wave-current flow data, a measure of each model’s performance can

be seen in the average and standard deviation values of the variable ¢, where

¢ — Uxe, observed (59)

u*c, predicted

3.2.1 Movable Bed Laboratory Data

Predicted and observed f, values were obtained from the movable bed laboratory

data of Carstens et al. (1969), Lofquist (1986), Rosengaus (1987), and Mathisen
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(1989) in the presence and absence of known ripple geometry.

Ripple Geometry Known

Assuming the ripple geometry is known, the two-layer Madsen-Salles and three-layer
Barreto-Acobe flow models can be applied using k, = 117 from (4.24) where 7 is a
measured or observed value. The two-layer Madsen-Salles model slightly underpre-
dicts the friction factor as shown in Figure 5-3 and the average and standard deviation
values of ¢ from (5.8) are 1.06 and 0.30, respectively. The two-layer model appears to
underpredict f,, considerably for large roughnesses. Similarly, as shown in Figure 5-4,
the three-layer Barreto-Acobe model also underpredicts the friction factor, especially
for large roughnesses. The average and standard deviation values of 1 from (5.8)
are 1.19 and 0.32, respectively. However, due to the presence of a wide variety of
movable laboratory and field data, one would be hard-pressed to find a more suitable
roughness relationship in the form of &, = a@,n where «, is a known and generally

valid constant.
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Figure 5-3: Comparison of observed and predicted f, using the two-layer Madsen-
Salles model and %, = 119 with measured values of 1 and movable bed laboratory
data. The average and standard deviation values of ) from (5.8) are 1.06 and 0.30,

respectively.
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Figure 5-4: Comparison of observed and predicted f, using the three-layer Barreto-
Acobe model and k, = 11n with measured values of 7 and movable bed laboratory
data. The average and standard deviation values of ¢ from (5.8) are 1.19 and 0.32,

respectively.

99



Ripple Geometry Unknown

For the practical case where ripple geometry is not known or measured directly, the
model developed for wave-generated ripples in Section 5.1 can be applied in conjunc-
tion with the ripple geometry and roughness model presented in Chapter 4, namely
kn = 117 where 7 is computed from (5.3). 152 experiments were used in total; 88 ex-
periments with X < 3 and 64 experiments with X > 3. For X < 3, where X is given
in (5.5), the two-layer Madsen-Salles model underpredicts the friction factor as shown
in Figure 3-5 and the average and standard deviation values of 3 from (5.8) are 1.21
and 0.26, respectively. For X > 3, given in (5.5), the two-layer Madsen-Salles model
overpredicts the friction factor as shown in Figure 5-5 and the average and standard
deviation values of ¢ from (5.8) are 0.91 and 0.25, respectively. Again, the two-layer
model underpredicts f,, considerably for large roughnesses. As shown in Figure 5-6,
the three-layer Barreto-Acobe model underpredicts the friction factor for all values
of X, where X is given in (3.3). For X < 3 and using the three-layer Barreto-Acobe
flow model, the average and standard deviation values of ¢ from (5.8) are 1.35 and
0.29, respectively. For X > 3, the average and standard deviation values of ¢ from
(5.8) are 1.06 and 0.28, respectively. Again, as is the case with the two-layer model,
the three-layer model also underpredicts f, considerably for large roughnesses. For
the case of unknown ripple geometry, two ripple geometry and roughness models are
applied in conjunction with a flow model. Considering that the results presented in
Figures 5-5 and 5-6 involve the application of three models in total, each model with
its own variability, the performance of the two-layer Madsen-Salles and three-layer

Barreto-Acobe flow models are well within reason.
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Figure 5-5: Comparison of observed and predicted f, using the two-layer Madsen-
Salles model and &, = 117 where 7 is determined from (5.3). For X < 3, the average
and standard deviation values of ¢ from (5.8) are 1.21 and 0.26, respectively. For
X > 3, the average and standard deviation values of ) from (5.8) are 0.91 and 0.25,

respectively.
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Figure 5-6: Comparison of observed and predicted f, using the three-layer Barreto-
Acobe model and k,, = 117 where 7 is determined from (5.3). For X < 3, the average
and standard deviation values of ¢ from (5.8) are 1.35 and 0.29, respectively. For
X > 3, the average and standard deviation values of ¢ from (5.8) are 1.06 and 0.28,

respectively.
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9.2.2 Combined Flow Laboratory Data of Mathisen and Mad-
sen (1996)

Predicted and observed Uxc Values were obtained from the preferred flow models and
logarithmic profile fits to current meter data collected by Mathisen and Madsen (1996)
for artificial roughness elements. The results of the combined ripple geometry and
roughness model are shown in Figures 5-7, 5-8, 5-9, and 5-10. In F igure 5-7, the two-
layer Madsen-Salles model with v = 1 was used with &, = 11n. The model clearly
underpredicts w,. as a result of kn being too small and the average and standard
deviation values of ¢ from (5.9) are 1.09 and 0.08, respectively. Based on Table 4.5,
the average a,-value for this particular data set is 17, Therefore, as evident in F 1gure
0-8, the fit is greatly improved when k&, — 175 is used in conjunction with the two-
layer Madsen-Salles model. For the improved fit, the average and standard deviation
values of ¢ from (5.9) are 1.00 and 0.08, respectively. Even though the average value
of ¢ improved when using k, = 177, the standard deviation remained identical to the

value obtained when kn = 117 was applied with the two-layer Madsen-Salles model.
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Figure 5-7: Comparison of observed and predicted u.. using the two-layer Madsen-
Salles model with v = 1 and &, = 11% with laboratory data used by Mathisen and

Madsen (1996). The average and standard deviation values of ¢ from (5.9) are 1.09
and 0.08, respectively.
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Figure 5-8: Comparison of observed and predicted u,, using the two-layer Madsen-
Salles model with v = 1 and k&, = 17n with laboratory data used by Mathisen and

Madsen (1996). The average and standard deviation values of ¢ from (5.9) are 1.00
and 0.08, respectively.
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In Figure 5-9, the three-layer Barreto-Acobe model was used with &, = 117. The
model also clearly underpredicts .. as a result of &, being too small and the average
and standard deviation values of ¢ from (5.9) are 1.31 and 0.09, respectively. Based on
Table 4.8, the average «,-value for this particular data set is 19. Therefore, as evident
in Figure 5-10, the fit is greatly improved when &, = 197 is used in conjunction with
the three-layer Barreto-Acobe model.

Even after applying &, = 197, the three-layer Barreto-Acobe model still underpredicts
us. and the average and standard deviation values of ¢ from (5.9) are 1.16 and 0.08,
respectively. Recall that the values obtained in Table 4.6 were determined for the
condition of waves in the presence of currents, i.e. wave attenuation data was used
in order to determine the o and § values reported in Chapter 4. Since kywe < kg, for
the three-layer Barreto-Acobe model as discussed in Chapter 4, the model expectedly
underpredicts w... This feature is not apparent when using the two-layer Madsen-
Salles model because a single roughness value, %, can be used, i.e. ky. = k., as

discussed in Chapter 4.
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Figure 5-9; Comparison of observed and predicted u,. using the three-layer Barreto-
Acobe model and &, = 11n with laboratory data used by Mathisen and Madsen
(1996). The average and standard deviation values of ¢ from (5.9) are 1.31 and 0.09,

respectively.
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Figure 5-10: Comparison of observed and predicted u,, using the three-layer Barreto-
Acobe model and k, = 197 with laboratory data used by Mathisen and Madsen
(1996). The average and standard deviation values of ¢ from (5.9) are 1.16 and 0.08,

respectively.
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5.2.3 Field Data of Styles and Glenn (2002)

Predicted and observed u,, values were obtained from the field data of Styles and

Glenn (2002) in the presence and absence of known ripple geometry.

Ripple Geometry Known

Assuming the ripple geometry is known, the two-layer Madsen-Salles and three-layer
Barreto-Acobe flow models can be applied using k, = 2.57 from (4.25) where 7 is a
measured or observed value. Predicted and observed u,, values were obtained from
the preferred flow models and logarithmic profile fits to current meter data used by
Styles and Glenn (2002). The results of the combined ripple geometry and roughness
model are shown in Figures 5-11, 5-12, and 5-13.

In Figure 5-11, the two-layer Madsen-Salles model with v = 1 was used with k, =
2.57, the recommended ripple geometry and roughness model for application with
field data (4.25). The model clearly predicts u,. well since the ripple geometry and
roughness model was developed with this data set (Table 4.17) and the average and
standard deviation values of ¢ from (5.9) are 0.98 and 0.20, respectively.

In Figure 5-12, the three-layer Barreto-Acobe model was used with kn = 2.51n. The
model underpredicts u,. as a result of k,, being too small and the average and standard
deviation values of ¢ from (5.9) are 1.24 and 0.25, respectively. Based on the analysis
presented in Chapter 4, a single roughness length scale cannot be applied universally
when using the three-layer Barreto-Acobe flow model. One must use an increased
value for k, with current measurements, i.e. k, = o7 should be applied with field
data and the three-layer Barreto-Acobe flow model (4.22). Therefore, as evident in
Figure 5-13, the fit is greatly improved when k, = 57 1s used in conjunction with
the three-layer Barreto-Acobe model. For the improved fit, the average and standard

deviation values of ¢ from (5.9) are 1.04 and 0.21, respectively.
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Figure 5-11: Comparison of observed and predicted u,, using the two-layer Madsen-
Salles model with v = 1 and %, = 2.57 with field data used by Styles and Glenn
(2002) and measured values of 7. The average and standard deviation values of ¢

from (5.9) are 0.98 and 0.20, respectively.
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Figure 5-12: Comparison of observed and predicted u,. using the three-layer Barreto-
Acobe model and k, = 2.57 with field data used by Styles and Glenn (2002) and

measured values of . The average and standard deviation values of ¢ from (5.9) are

1.24 and 0.25, respectively.
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Figure 5-13: Comparison of observed and predicted w,, using the three-layer Barreto-
Acobe model and k, = 57 with field data used by Styles and Glenn (2002) and

measured values of 7. The average and standard deviation values of ¢ from (5.9) are

1.04 and 0.21, respectively.
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Ripple Geometry Unknown

For the practical case where ripple geometry is not known or measured directly, the
model developed for wave-generated ripples in Section 5.1 can be applied in conjunc-
tion with the ripple geometry and roughness model presented in Chapter 4, namely
k., = 2.5 where 7 is computed from (5.3). Predicted and observed u,. values were
obtained from the preferred flow models and logarithmic profile fits to current meter
data used by Styles and Glenn (2002). The results of the combined ripple geometry
and roughness model are shown in Figures 5-14, 5-15, and 5-16.

In Figure 5-14, the two-layer Madsen-Salles model with v = 1 was used with k, =
2.57, the recommended ripple geometry and roughness model for application with
field data (4.25). 47 experiments were used in total; all 47 experiments with X < 3.
The model clearly predicts u.,,. well since the ripple geometry and roughness model
was developed with this data set (Table 4.17) and the average and standard deviation
values of ¢ from (5.9) are 1.03 and 0.17, respectively.

In Figure 5-15, the three-layer Barreto-Acobe model was used with k, = 2.5n. The
model underpredicts u,. as a result of &, being too small and the average and stan-
dard deviation values of ¢ from (5.9) are 1.29 and 0.21, respectively. Based on the
analysis presented in Chapter 4, a single roughness length scale cannot be applied
universally when using the three-layer Barreto-Acobe flow model. One must use an
increased value for k, with current measurements, i.e. k, = 57 should be applied with
field data and the three-layer Barreto-Acobe flow model (4.22). Therefore, as evident
in Figure 5-16, the fit is greatly improved when k, = 57 is used in conjunction with
the three-layer Barreto-Acobe model. For the improved fit, the average and standard

deviation values of ¢ from (5.9) are 1.09 and 0.16, respectively.
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Figure 5-14: Comparison of observed and predicted u,. using the two-layer Madsen-
Salles model with v = 1 and k, = 2.5n with field data used by Styles and Glenn
(2002) where 7 is determined from (5.3). The average and standard deviation values
of ¢ from (5.9) are 1.03 and 0.17, respectively. Note: 47 experiments were used in

total; all 47 experiments with X < 3.
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Figure 3-15: Comparison of observed and predicted u,,. using the three-layer Barreto-
Acobe model and &, = 2.5n with field data used by Styles and Glenn (2002) where 5
is determined from (5.3). The average and standard deviation values of ¢ from (5.9)

are 1.29 and 0.21, respectively. 47 experiments were used in total; all 47 experiments

with X <« 3.



3 —T T T T -
C Styles and Glenn {2002) data
—— Best fit line
2.5} n
2+ 4
e
2
o
el
e
a
D.Q
15F n
1k i
05 . ) 1 1 | 1
05 1 1.5 2 25 3

W, Observed

Figure 5-16: Comparison of observed and predicted w.. using the three-layer Barreto-
Acobe model and k, = 57 with field data used by Styles and Glenn (2002) where 5
is determined from (5.3). The average and standard deviation values of ¢ from (5.9)

are 1.09 and 0.16, respectively. 47 experiments were used in total; all 47 experiments

with X < 3.

116



5.3 Alternative Model of Wave-Generated Ripples

An alternative model for wave-generated ripples was considered for application with
the ripple roughness and preferred flow models. Wikramanayake and Madsen (1990)
applied the concept of the skin friction Shields parameter to the geometry of wave-
generated ripples, where the skin friction Shields parameter is given by

7!

wl = m (5.10)

where

1
o §fw/pszS (5.11)

and f,/ is defined as the wave friction factor (3.6) where C,, = 1 (pure wave motion)
and the roughness, k,, is replaced by d, the sediment grain diameter. For irregular
wave experiments and (5.11), the significant values for the near-bottom orbital ve-
locity and excursion amplitude were used, i.e. U, = v2U, and Ay, = Uy, /w where
Uy is given by (4.3). Notice in Figure 3-1 that the friction factor approximations are
nearly identical for the two-layer Madsen-Salles and the three-layer Barreto-Acobe
flow models. With that being said, one can adopt either the friction factor aApprox-
imation given by (3.6) and Table 3.2 corresponding to the two-layer Madsen-Salles
model or (3.6) and Table 3.3 corresponding to the three-layer Barreto-Acobe model
for application with (5.11). For the present context, the friction factor approximation
given by (3.6) and Table 3.2 was adopted.

The empirical relationships for wave-generated ripples suggested by Wikramanayake

and Madsen (1990) are given by
T —0.276 — 0.33/%1 (5.12)

Ay
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and

g =0.16 — 0.36 (1) (5.13)

These relationships are valid for ¥/ < ¥r < 0.7, where 1),/ is the critical Shields
parameter required for initiation of motion of the sediment. Note that for ¢7 > 0.7,
sheet flow conditions exist and the sediment-fluid interface is a plane.

The relationships for n/A, and A/A, are shown graphically for regular and irregular
wave experiments in Figures 5-17, 5-18, 5-19, and 5-20. This model used the same
data as the model developed in Section 5.1 and all data are tabulated and reported
in Appendix A through Appendix E.

For the 338 regular wave experiments, the model performs well with the mean and
standard deviation values of ¢; from (5.6) 1.17 and 0.37, respectively. The mean and
standard deviation values of €5 from (5.7) are 1.10 and 0.23, respectively. For the 205
irregular wave experiments, the mean and standard deviation values of €; from (5.6)
are 1.16 and 0.84, respectively. The mean and standard deviation values of ¢ from
(5.7) are 1.10 and 0.61, respectively. Even though this model was originally developed
with monochromatic laboratory experimental data, the predicted values for both reg-
ular and irregular waves perform well on average. However, the performance of the
model is compromised when one considers the relatively large standard deviation val-
ues, especially for irregular wave experiments. Therefore, the wave-generated ripple

model developed in Section 5.1 was selected for the analyses presented in Section 5.2.
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Figure 5-17: Relative ripple height as a function of the skin friction Shields parameter,
¥!. The solid line denotes the best fit curve, presented in (5.12). For regular waves, the

average and standard deviation values of ¢; from (5.6) are 1.17 and 0.37, respectively.
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Figure 5-18: Relative ripple height as a function of the skin friction Shields parameter,
1. The solid line denotes the best fit curve, presented in (5.13). For regular waves, the

average and standard deviation values of ¢; from (5.7) are 1.10 and 0.23, respectively.

120



10

n/F\b

1

| x_Spectral Waves |

v

Figure 5-19: Relative ripple length as a function of the skin friction Shields parameter,

Y. The solid line denotes the best fit curve, presented in (5.12).

For irregular

waves, the average and standard deviation values of ¢; from (5.6) are 1.16 and 0.84,

respectively.
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Figure 5-20: Relative ripple height as a function of the skin friction Shields parameter,
¢1. The solid line denotes the best fit curve, presented in (5.13). For irregular
waves, the average and standard deviation values of ¢; from (5.7) are 1.10 and 0.61,

respectively.
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Chapter 6

Conclusions

The main objective of this study was to present the evolution of simple models for tur-
bulent wave-current bottom boundary layer flow, from the original two-layer Grant-
Madsen (1979) model through a three-layer modified model presented by Barreto-
Acobe (2001) and to arrive at a preferred flow model that adequately describes com-
bined wave-current flow.

In the original two-layer Grant-Madsen (1979, 1986) model, there is an inconsis-
tency in the model based on the definition of the eddy viscosity used in the wave
problem and the current problem. Also, it is known that the wave-associated tur-
bulence at the upper edge of the wave boundary layer should approach zero. There-
fore, the increasing eddy viscosity defined in (2.17) for all heights above the bottom
boundary that is used for the solution of the wave problem is physically unrealistic.
Furthermore, since the eddy viscosity is discontinuous, the resulting current velocity
profile is not smooth. The original Grant-Madsen model works well for small dis-
tances above the bottom (i.e. the wave-dominated region) and for heights within the
current boundary layer that are not influenced by the wave boundary layer. How-
ever, it does not accurately predict the current velocity for the transition region
between the wave-dominated region and the current-dominated region. In addition,

the model performs poorly for large roughnesses because it inherently evaluates the
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bottom boundary condition (no-slip) at z = z; and there can be a large gap in the
velocity profile for 0 < z < 2, when dealing with large roughness elements.

Madsen and Salles (1998) developed a two-layer eddy viscosity model specially
designed for very rough bottoms. They discovered that the wave boundary layer
thickness is not simply proportional to the boundary layer length scale, i.e. « is not a
constant. Instead, they found « to be a function of the relative roughness, as given in
(3.1). Even though « is no longer a free parameter in their model, it is a function of a
fitting parameter, v in (3.1). A significant improvement of this model when compared
to previous model developments is that the bottom boundary, no-slip condition can
be applied at z = 0 by introducing the translation distance z, = z;. The result
is a velocity profile that is identical to that of the classical Grant-Madsen model,
but shifted downward so that the no-slip condition is applied at z = 0. Therefore,
this model prevents the prediction of negative velocities for small values of z. A
shortcoming of their model is that a fitting parameter is still involved and no single
value of v in (3.1) works well for all data sets as discussed in Section 3.1.2.

Madsen and Wikramanayake (1991) developed a three-layer eddy viscosity model
removing some of the shortcomings of the original Grant-Madsen model. Two major
improvements in their model include the use of the same eddy viscosity definition for
both the wave and current problems and the use of a continuous eddy viscosity which
results in a velocity profile that is smooth. However, there is still a model-specific
fitting parameter, o, that must be determined for each application of the model. No
single value of the fitting parameter works well for all data sets and a compromise
must always be made depending on the data available. Since the model evaluates the
bottom boundary, no-slip condition at z = 2, there can be a large gap in the velocity
profile for 0 < z < 25 when dealing with large roughness elements as is the case with
the original Grant-Madsen model. Hence, the improved model also performs well for
small roughnesses but does not perform very well for large roughnesses.

Barreto-Acobe (2001) developed a three-layer model that could apply the bottom
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boundary, no-slip condition at either z = 0 or z = z. Her eddy viscosity model pro-
vides a continuous transition between the region where the turbulence is dominated
by wave motion and the region where the turbulence is dominated by the current.
Most importantly, however, the three-layered Barreto-Acobe model removes the ne-
cessity of fitting a to experimental data, by requiring this transition point between
the wave and current dominated regions to be a pre-set fraction of the boundary layer
thickness predicted by the model. This means that the model is entirely predictive
and the dependence on application-specific fitting parameters is eliminated.

Based on the above discussion, the two preferred models that were selected for
use throughout Chapters 4 and 5 of this text are the Madsen and Salles (1998) two-
layer model and the Barreto-Acobe (2001) three-layer model. These models are the
most physically realistic since they allow the bottom boundary no-slip condition to
be applied at z = 0. It is also highly desirable that « is not simply a constant in each
of these models. « is not a fitting parameter in the three-layer Barreto-Acobe flow
model and « is a function of the relative roughness for the two-layer Madsen-Salles
flow model.

Two ripple geometry and equivalent bed roughness models were developed in
Chapter 4, of the forms presented in equations (4.1) and (4.2). Values for o, and 5,
were calculated using fixed and movable laboratory and field data. For the Mathisen
and Madsen (1996) fixed bed laboratory data set, both wave attenuation and current
profile data are available. Therefore, wave attenuation measurements were used in
order to calculate the bottom roughness for the cases of pure waves and waves in the
presence of a current while current measurements were used in order to establish the
bottom roughness for the case of currents in the presence of waves. For the two-layer
Madsen-Salles model with v = 1, the ripple geometry and equivalent bed roughness
models are statistically consistent for both movable and fixed laboratory data, re-
gardless of whether wave attenuation data or current profile data were used in order
to calculate the bottom roughness length scale, as seen in (4.7), (4.8), (4.9), (4.10)

?
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(4.16), and (4.17). However, for the three-layer Barreto-Acobe flow model, the ripple
geometry and equivalent bed roughness models using laboratory wave attenuation
and current profile data are statistically different, as seen in (4.11), (4.12), (4.13),
(4.14), (4.20), and (4.21).

All the models presented in this thesis assume that the bottom roughness may
be described by a single roughness length scale, &,. However, differences between
roughness values for waves and currents can arise from bedform geometry and/or
near-bottom flow characteristics. The experimental results of Mathisen and Madsen
(1996) werce used to check the single roughness assumption. While the three-layer
Barreto-Acobe model yields smaller standard deviation values for the roughness, the
two-layer Madsen-Salles model appears to be more robust in that one length scale,
kn, may be justifiably used for the cases of pure waves, waves in the presence of a
current, and currents in the presence of waves. When using the three-layer Barreto-
Acobe model with combined wave-current flow, one must use a roughness value that
is application-specific, i.e. a different roughness value must be used depending on
whether wave attenuation or current profile predictions are desired. In cases where
current profiles are to be predicted, the roughness model that must be used with
the three-layer Barreto-Acobe model is significantly larger when compared to the
roughness model that must be be applied when wave attenuation is to be predicted.

Even though two ripple geometry and equivalent bed roughness models were pre-
sented in Chapter 4, the model of the form (4.1) involving the empirical constant
@, generally has smaller standard deviation values and therefore provides a better fit
than the model involving /3, presented in (4.2), as seen in Tables 4.1 - 4.18. Therefore,
the recommended conceptual model for practical applications involving movable bed
data is of the form k, = a,n.

The ripple geometry and roughness model that is statistically consistent with both
the two-layer Madsen-Salles and the three-layer Barreto-Acobe flow models for the

prediction of wave associated bottom shear stress using both movable and fixed bed
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wave attenuation data from the laboratory is:

kn = (114 6)p (6.1)

The average and standard deviation values for ., were calculated by equally weight-
ing all laboratory data (movable and fixed bed) for the two-layer Madsen-Salles model
and the three-layer Barreto- Acobe model.

Since the field is the natural environment for the application of the flow models pre-
sented in this thesis, the following ripple geometry and equivalent bed roughness
model is statistically consistent with the field data presented in this chapter and is

recommended for practical applications:

kn = (2.5 £ 2)n (6.2)

It should be noted that X < 3 for all 47 combined flow field experiments. Therefore,
the models can reliably be applied only for the range in which they were developed,
Le. for X < 3. We can expect that for X > 3, ripples start to be washed out,
becoming three-dimensional with rounded crests. Most likely, these bedforms would
have an ag-value less than 2.5. At this point, we basically have no information from
which to chose «, for conditions when X > 3. However, based on the observation
that laboratory data supports a single roughness model (6.1) regardless of whether
X <3 or X > 3, one can expect (with optimism) that a single roughness model
would apply for all X-values with field data as well.

Notice that (6.2) is considerably smaller than the three-layer Barreto-Acobe field
data results (4.22). This discrepancy is in accordance with the observation that a
single roughness scale is not applicable when using the three-layer Barreto-Acobe flow
model. Just as the results of the three-layer Barreto-Acobe model are larger when

using current measurements when compared to wave attenuation measurements in
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the laboratory, the same argument can be applied with field data. Since all of the
laboratory wave attenuation measurements are statistically consistent, regardless of
which flow model was used, and since one roughness length scale can be justifiably
used for the two-layer Madsen-Salles model, one would expect that the Madsen-
Salles field data results would be consistent with wave attenuation data (supposing
that wave attenuation could be available for field data applications). Therefore, the
significantly larger results obtained with the three-layer Barreto-Acobe model (4.22)
are to be expected as a consequence of the roughness scale for currents in the presence
of waves being larger than that for waves in the presence of currents.

It is not known at this time why the model recommended for field applications
in (6.2) is much different from the model (6.1) that is consistent with the all of
the laboratory data presented in this chapter. Since laboratory experiments usually
involve superior accuracy of measurements, one may attribute the differences to scale
effects since laboratory data also involves shorter wave periods. In addition, fixed bed
laboratory data also involves sharper roughnesses and therefore the associated drag
forces are different than drag forces typically encountered in the field. However, since
the resuits of both fixed and movable bed laboratory data presented in this text are
statistically consistent, this effect can be considered negligible in the present context.

In Chapter 5, wave and sediment characteristics were used to formulate a model
for wave-generated ripples based on available laboratory and field data for movable
and fixed beds. The two-layer Madsen-Salles flow model and the three-layer Barreto-
Acobe flow model were then applied in conjunction with the ripple geometry and
roughness models developed in Chapter 4 for the cases of known and unknown ripple
geometry. Pure wave movable bed data from Carstens et al. (1969), Lofquist (1986),
Rosengaus (1987), and Mathisen (1989) and combined wave-current data collected by
Mathisen and Madsen (1996) and Styles and Glenn (2002) were used in order to assess
the predictive capabilities of the preferred flow models. Predicted and observed values

for f, and u,. were graphically depicted using the ripple geometry and roughness
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relationships developed for the flow models.

Both the two-layer Madsen-Salles and three-layer Barreto-Acobe flow models per-
formed reasonably well when applied in conjunction with the ripple geometry and
roughness models developed in this thesis for the cases of known and unknown ripple
geometry. For the case of movable bed laboratory data with known ripple geometry,
the predicted values of f,, were on average approximately 6% less than the observed
fuw values with a standard deviation of 30% with the two-layer Madsen-Salles model,
and the predicted values of f,, were on average approximately 19% less than the ob-
served f,, values with a standard deviation of 32% with the three-layer Barreto-Acobe
model. For the case of movable bed laboratory data with unknown ripple geometry,
152 experiments were used in total; 88 experiments with X < 3 and 64 experiments
with X' > 3. The predicted values of f, were on average approximately 21% less
than the observed f,, values with a standard deviation of 26% for X < 3 and the pre-
dicted values of f,, were on average approximately 9% greater than the observed f,
values with a standard deviation of 25% for X > 3 with the two-layer Madsen-Salles
model. For the case of movable bed laboratory data with unknown ripple geometry,
the predicted values of f,, were on average approximately 35% less than the observed
fw values with a standard deviation of 29% for X < 3 and the predicted values of
Jw were on average approximately 6% greater than the observed f, values with a
standard deviation of 28% for X > 3 with the three-layer Barreto-Acobe model.

For the case of combined flow fixed bed laboratory data, the predicted values
of u,. were on average approximately 9% less than the observed wu,. values with a
standard deviation of 8% with the two-layer Madsen-Salles model with v = 1, and
the predicted values of u,, were on average approximately 31% less than the observed
U, values with a standard deviation of 9% with the three-layer Barreto-Acobe model.
However, based on the fact that the three-layer Barreto-Acobe flow model requires
multiple roughness length scales, i.e. k., > ky, for the three-layer Barreto-Acobe

model, a larger a,-value should be used in conjunction with this model to improve
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the performance for the prediction of the current shear velocity (Figure 5-10).

For the case of combined flow field data with known ripple geometry, the predicted
values of u,, were on average approximately 2% greater than the observed u,, values
with a standard deviation of 20% for the two-layer Madsen-Salles model with v =1,
and the predicted values of u,, were on average approximately 24% less than the
observed wu.. values with a standard deviation of 25% for the three-layer Barreto-
Acobe model. Again, based on the fact that the three-layer Barreto- Acobe flow model
requires multiple roughness length scales, i.e. k., > ky. for the three-layer Barreto-
Acobe model, a larger «,-value should be used in conjunction with this model to
improve the performance for the prediction of the current shear velocity (Figure 5-
13). For the case of combined flow field data with unknown ripple geometry, 47
experiments were used in total; all 47 experiments with X < 3. The predicted values
of u,. were on average approximately 3% less than the observed u,, values with a
standard deviation of 17% for the two-layer Madsen-Salles model with v = 1, and
the predicted values of u,. were on average approximately 29% less than the observed
u4 values with a standard deviation of 21% for the three-layer Barreto-Acobe model.
Again, based on the fact that the three-layer Barreto-Acobe flow model requires
multiple roughness length scales, i.e. k., > k,. for the three-layer Barreto-Acobe
model, a larger a,-value should be used in conjunction with this model to improve
the performance for the prediction of the current shear velocity (Figure 5-16).

Since one universal roughness length scale is applicable for the two-layer Madsen-
Salles flow model with v = 1, i.e. &k, = ky. =~ k., the two-layer Madsen-Salles
model with v =1 is chosen as the preferred model for future applications. However,
if a theoretical justification for different roughness scales to account for the effects of
waves and currents over ripples could be formed, then the three-layer Barreto-Acobe
model would be selected as the preferred flow model.

For future research, it is recommended to further investigate the roughness length

scales with movable bed data, especially field data with values of X > 3. Particularly,
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we have found from field data, all of which had X < 3, that (6.2) applies. Based on the
observation that laboratory data supports a single roughness model (6.1) regardless
of whether X < 3or X > 3, one can expect (with optimism) that a single roughness
model would apply for all X-values with field data as well, Field data with values of
X > 3 could be used to check this assumption. Additionally, it is recommended to

explore improved models for wave-generated ripples.
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Appendix A

Monochromatic Pure Wave

Experiments
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Table A.1: Fixed Bed Attenuation Results for Monochromatic Pure Wave Experi-

ments from Madsen and Mathisen (1996)

Ay (em) | w (1/s) | A (em) | {cm) | [
6.09 2.80 10 15 | 0.3
7.9 2.39 10 1.5 |0.22
8.84 2.17 10 15 [0.18
4.2 2.80 10 L5 |0.36
5.72 2.39 10 1.5 | 0.29
6.21 2.17 10 1.5 | 0.27
5.96 2.80 20 15 1015
7.97 2.39 20 L5 |0.13
9.15 2.17 20 15 | 01
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Table A.2: Fixed Bed Oscillatory Data on Energy Dissipation over Fixed Ripples
with Regular Waves from Bagnold (1946), A = 10 cm

Ap (em) | w (1/s) | A (em) | 7 (em) | [,
) 3.13 10 1.5 0.206
5 3.88 10 1.5 0.254
) 0.86 10 1.5 0.3
3 8.2 10 1.5 0.265
5 9.66 10 1.5 0.245
10 1.24 10 1.5 0.233
10 1.38 10 1.5 0.246
10 1.79 10 1.5 0.224
10 1.94 10 1.5 0.223
10 2.64 10 1.5 0.237
10 2.66 10 1.5 0.196
10 3.76 10 1.5 0.237
10 5.72 10 1.5 0.208

15.25 1.23 10 1.5 0.139
15.25 1.61 10 1.5 0.146
15.25 1.64 10 1.5 0.154
15.25 2.57 10 1.5 0.138
15.25 2.59 10 1.5 0.15
15.25 2.86 10 1.5 0.164
15.25 3.2 10 1.5 0.144
15.25 3.55 10 1.5 0.155
15.25 4.21 10 1.5 0.137
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Table A.3: Fixed Bed Oscillatory Data on Energy Dissipation over Fixed Ripples
with Regular Waves from Bagnold (1946), A = 10 cm; continued

Ap (em) | w (1/s) | A (em) | 5 (em) | fe
20.3 0.814 10 1.5 0.115
20.3 1.12 10 1.5 0.126
20.3 1.67 10 1.5 0.134
20.3 2.48 10 1.5 0.132
20.3 2.58 10 1.5 0.152
30.5 0.671 10 1.5 0.096
30.5 1.07 10 1.5 0.088
30.5 1.35 10 1.5 0.091
30.5 1.65 10 1.5 0.083
30.5 1.78 10 1.5 0.092
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Table A.4: Fixed Bed Oscillatory Data on Energy Dissipation over Fixed Ripples
with Regular Waves from Bagnold (1946), A = 20 c¢m

Ay (em) | w (1/5) | A (em) | (em) | fe
) 2.38 20 3 0.294
5 3.51 20 3 0.244
5 5.73 20 3 0.232
5} 7.62 20 3 0.257
9 8.48 20 3 0.283
10 1.34 20 3 0.231
10 2.2 20 3 0.251
10 3.41 20 3 0.219
10 3.64 20 3 0.217
10 4.01 20 3 0.255
10 5.17 20 3 0.196

15.25 0.762 20 3 0.262
15.25 1.17 20 3 0.223
15.25 1.67 20 3 0.229
15.25 2.15 20 3 0.247
15.25 2.77 20 3 0.189
15.25 3.07 20 3 0.199
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Table A.5: Fixed Bed Oscillatory Data on Energy Dissipation over Fixed Ripples
with Regular Waves from Bagnold (1946), A = 20 cm; continued

Ay (em) | w (1/s) | A (em) | 7 (em) | [,
20.3 1.16 20 3 |0.199
20.3 1.49 20 3 | 0224
20.3 1.73 20 3 |0.214
20.3 1.9 20 3 | 0.211
20.3 2.3 20 3 0178
30.5 0.561 20 3 | 013
30.5 0.759 20 3 |0.139
30.5 0.919 20 3 |0.146
30.5 1.07 20 3 |0.143
30.5 1.2 20 3 |0.153
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Table A.6: Fixed Bed Oscillatory Data on Energy Dissipation over Fixed Ripples
with Regular Waves from Sleath (1985)

Ay (em) |w (1/5) | A (em) | (em) | [
3.21 1.64 7.3 1.7 0.0486
3.21 2.2 7.3 1.7 0.0699
3.21 3.08 7.3 1.7 0.124
3.21 3.05 7.3 1.7 0.179
0.18 0.86 7.3 1.7 0.063
5.18 1.18 7.3 1.7 0.143
5.18 1.64 7.3 1.7 0.166
5.18 2.14 7.3 1.7 0.172
0.18 2.14 7.3 1.7 0.187
5.18 3.86 7.3 1.7 0.195
5.18 2.3 7.3 1.7 0.185
6.42 0.72 7.3 1.7 0.07
6.42 0.98 7.3 1.7 0.104
6.42 1.96 7.3 1.7 0.197
6.42 2.25 7.3 1.7 0.205
6.42 3.76 7.3 1.7 0.176
6.42 4.36 7.3 1.7 0.186
6.42 4.79 7.3 1.7 0.188
6.42 5 7.3 1.7 0.178
6.42 5.93 7.3 1.7 0.186
7.66 1.58 7.3 1.7 0.157
7.66 2.49 7.3 1.7 0.191
7.66 4.9 7.3 1.7 0.178
7.66 3.71 7.3 1.7 0.172
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Table A.7: Fixed Bed Oscillatory Data on Energy Dissipation over Fixed Ripples
with Regular Waves from Sleath (1985); continued

Ay (em) | w (1/s) | A (cm) | n (cm) fe
10.3 0.565 7.3 1.7 0.0246
10.3 0.91 7.3 1.7 0.118
10.3 0.99 7.3 1.7 0.133
10.3 1.73 7.3 1.7 0.151
10.3 2.74 7.3 1.7 0.151
10.3 3.07 7.3 1.7 0.158
10.3 3.8 7.3 1.7 0.153
10.3 4.57 7.3 1.7 0.146
10.3 4.98 7.3 1.7 0.143
10.3 4.99 7.3 1.7 0.149
154 0.438 7.3 1.7 0.0369
15.4 0.452 7.3 1.7 0.0649
15.4 0.644 7.3 1.7 0.0634
15.4 0.616 7.3 1.7 0.0679
15.4 0.473 7.3 1.7 0.0752
154 0.851 7.3 1.7 0.1
154 1.1 7.3 1.7 0.103
15.4 1.73 7.3 1.7 0.113
15.4 2.08 7.3 1.7 0.118
15.4 2.7 7.3 1.7 0.125
15.4 2.7 7.3 1.7 0.118
15.4 3.31 7.3 1.7 0.115
15.4 3.83 7.3 1.7 0.112
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Table A.8: Fixed Bed Oscillatory Data on Energy Dissipation over Fixed Ripples
with Regular Waves from Sleath (1985); continued

Ay (em) | w (1/s) | A (em) | n (em) | fe
20.5 0.346 7.3 1.7 0.04
20.5 0.513 7.3 1.7 0.0561
20.5 0.745 7.3 1.7 0.083
20.5 1.18 7.3 1.7 0.0917
20.5 1.5 7.3 1.7 0.0932
20.5 1.91 7.3 1.7 0.103
20.5 2.43 7.3 1.7 0.105
20.5 2.81 7.3 1.7 0.103
30.8 0.37 7.3 1.7 0.0465
30.8 0.727 7.3 1.7 0.0624
30.8 0.922 7.3 1.7 0.0676
30.8 1.23 7.3 1.7 0.0747
30.8 1.75 7.3 1.7 0.0736
30.8 2.19 7.3 1.7 0.0823
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Table A.9: Movable Bed Wave Tunnel Data on Ripple Geometry and Energy Dissi-

pation under Regular Waves from Carstens et al. (1969)

Ay (em) | w (1/s) | A (em) |7 (em) | fe
8.92 1.77 10.6 1.8 0.265
11.99 1.77 12.7 2.2 0.198
13.66 1.77 14.5 2.6 0.18
15.37 1.77 14.5 2.6 0.183
20.85 177 19.4 3.3 0.142
23.39 1.77 22.1 3.6 0.155
26.11 1.78 24.5 3.23 0.155
32.39 1.77 27 3.1 0.115
35.6 1.78 20.1 2.1 0.106
44.5 1.78 19.1 0.5 0.077
39.05 1.78 22 14 0.0717
28.08 1.77 24.5 3.2 0.134

8 1.76 104 1.9 0.385
18.16 1.77 10.9 1.5 0.112
23.7 1.78 10.6 1.3 0.0914
31.33 1.78 10 0.5 0.0849
8.18 1.77 10.4 2.1 0.202
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Table A.10: Movable Bed Wave Tunnel Data on Ripple Geometry and Energy Dissi-

pation under Regular Waves from Carstens et al. (1969); continued

Ay (em) | w (1/5) | A (em) |7 (em) | [
10.11 1.76 14.6 2.8 0.254
12.01 1.77 16.7 3.3 0.279
13.77 1.77 18.1 3.4 0.34
16.07 L.77 204 3.9 0.321
18.54 1.78 23.9 4.5 0.211
19.65 1.761 25.2 5.2 0.326
22.35 L.77 29 5.8 0.293
24.19 1.77 25.7 4.8 0.277
24.77 1.78 26.4 4.9 0.27
26.64 1.78 30 0.6 0.254
29.08 1.77 26.2 ) 0.256
30.8 1.76 30.4 6 0.257
32.68 1.77 39.1 5.6 0.244
35.18 1.78 37.8 6.8 0.225
37.43 1.77 35.7 6.2 0.226
39.22 1.81 46.3 6.9 0.202
42.35 1.77 44.11 6.9 0.199
12.45 1.78 17.4 3.1 0.517
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Table A.11: Movable Bed Wave Flume Data on Ripple Geometry and Energy Dissi-
pation under Irregular Waves from Mathisen (1989) and Rosengaus (1987)

Ay (em) | w (1/8) | A (em) | 7 (cm) fe
6.43 2.51 8.2 1.1 0.0981
2.5 2.01 7.9 1.1 0.084
6.86 2.51 94 1.1 0.0772
6.93 2.51 9.1 1.1 0.095
2.76 2.01 7.7 1.2 0.116
6.48 251 8.3 1 0.122
6.46 2.51 8.7 1.1 0.159
5.42 2.51 7.6 1.2 0.271
6.95 2.51 8.2 1 0.166
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Table A.12: Movable Bed Wave Flume Data on Ripple Geometry and Energy Dissi-
pation under Regular Waves from Mathisen (1989) and Rosengaus (1987)

Ap (cm) | w (1/s) | A (cm) | 5 (em) | f.
9.08 2.39 9.9 1.6 0.173
5.55 2.39 74 1.3 0.243
7.23 2.39 8.9 1.5 0.223
12.05 2.39 10.6 1.6 0.18
6.07 29 8.6 1.3 0.165
9.16 2.03 10.2 1.6 0.113
6.43 2.62 8.7 1.4 0.187
9.27 2.39 10.9 1.7 0.177
9.01 2.39 10.1 1.6 0.156
1.61 2.39 6.5 1.2 0.193
6.44 2.39 8.1 1.3 0.19

8 2.39 8.8 1.2 0.107
9.39 2.39 9.2 1.3 0.094
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Table A.13: Movable Bed Wave Flume Data on Ripple Geometry and Energy Dissi-

pation under Regular Waves from Mathisen (1989) and Rosengaus (1987); continued

Ay (cm) |w (1/s) | A (cm) |9 (em) | fe
10.3 2.39 9 12 0.084
7.16 2.39 8.9 1.3 0.178
4.75 251 7.7 1.1 0.195
8.1 2.51 8.6 1 0.0557
5.24 2.51 8.5 1.2 0.205
5.53 2.51 8.2 1.5 0.165
2.28 2.51 8 1.4 0.214
2.53 2.51 8.2 1.4 0.174
9.59 2.39 8.7 Lo 0.272
2.31 2.39 9.1 1.5 0.225
3.73 2.39 9.1 1.5 0.144
6.07 2.39 8.5 14 0.238
3.49 2.39 8.6 1.5 0.19
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Table A.14: Movable Bed Wave Tunnel Data on Energy Dissipation over Equilibrium
Ripples with Regular Waves from Lofquist (1986)

Ay (em) |w (1/s) | A (em) [y (em) | [
26.9 0.86 31.8 3.8 0.126
30.7 0.75 36.4 4.1 0.13
29.9 0.63 36.4 4 0.13
29.3 0.53 36.4 4.2 0.15
30.7 0.75 36.4 1 0.124
33.5 0.89 36 3.3 0.159
36.7 0.63 42 .4 4.8 0.11
34.7 0.54 42.4 4.9 0.128
39.3 0.76 42.2 3.1 0.126
44.3 0.52 20.9 6.3 0.14
42.7 0.44 50.9 6.7 0.171
48.3 0.62 50.9 4.9 0.15
26.9 0.86 31.8 4 0.127
25.9 0.73 31.8 3.9 0.167
29.5 1.01 31 2.6 0.168
19.6 1.18 23.1 3.2 0.189
19 1 23.1 3.4 0.183
14.4 1.61 17 2.4 0.211
14 1.35 17 2.6 0.223
99.3 0.42 65.3 7 0.139
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Table A.15: Movable Bed Wave Tunnel Data on Energy Dissipation over Equilibrium
Ripples with Regular Waves from Lofquist (1986); continued

Ay (em) | w (1/8) [ A (em) | n (cm) | f.
23.9 1.13 31.8 7.1 0.285
23.9 1.69 31.8 6.8 0.218
23.9 1.38 31.8 7.1 0.248
31.9 1.04 42.4 8.9 0.255
25.5 1.3 31.8 6.7 0.247
22 1.51 31.8 6.1 0.258
20.6 1.6 31.8 0.4 0.211
27.7 1.2 34 6.9 0.264
17.4 1.56 23.1 4.6 0.218
17.4 1.9 23.1 4.5 0.269
17.4 2.33 23.1 4.4 0.283
17.4 2.33 23.1 4.3 0.277
31.9 1.04 42.4 8.8 0.289
31.9 0.849 42.4 8.2 0.315
23.9 1.69 31.8 6.5 0.184
25.9 2.01 31.8 5.2 0.181
28.9 2.21 31.8 4.8 0.163
23.3 1.42 31.8 6.6 0.212
23.3 1.16 31.8 6.7 0.271
23.7 1.7 31.8 6.3 0.183
25.5 2.04 31.8 5.4 0.186

147



Table A.16: Movable Bed Wave Tunnel Data on Energy Dissipation over Equilibrium
Ripples with Regular Waves from Lofquist (1986); continued

Ap (em) | w (1/5) | A (cm) | (em) | f.
28.9 2.21 31.8 5.1 0.142
17.2 1.93 23.1 4.6 0.275
17.2 1.57 23.1 4.8 0.224
17.6 2.31 23.1 4.5 0.257
24.1 1.68 31.8 6.4 0.182
25.5 1.39 31.8 6.4 0.175
22 1.84 31.8 3.7 0.164
20.8 1.95 31.8 2.1 0.184
27.5 1.47 31.8 6.3 0.177
31.9 1.27 43.5 8.2 0.283
31.9 1.63 39.5 7.9 0.24
38.3 0.71 52.2 10.1 0.348
38.3 0.87 o8 11.5 0.351
38.3 1.06 o8 12 0.314
31.1 1.68 37.3 6.9 0.236
33.9 1.88 37.3 6.2 0.199
28.33 1.43 37.3 7.3 0.22
27.9 1.18 37.3 7.2 0.277
27.5 0.98 37.3 7.1 0.273
33.92 1.54 43.5 8.4 0.215
35.1 1.49 43.5 8.2 0.247
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Table A.17: Movable Bed Wave Tunnel Data on Energy Dissipation over Equilibrium
Ripples with Regular Waves from Lofquist (1986); continued

Ay (em) | w (1/s) | A (em) | (em) | [
38.7 1.65 43.5 7.7 0.184
32.3 1.25 43.5 8.6 0.253
31.9 1.03 43.5 8.6 0.317
31.9 0.85 43.5 7.8 0.345
38.3 0.86 52.2 10.3 | 0.309
38.3 0.7 52.2 10.2 0.395
38.7 1.05 02.2 10.5 | 0.281
41.9 1.25 32.2 9.8 0.229
46.3 1.38 52.2 8.9 0.238
47.9 0.69 65.3 12,6 0.33
47.9 0.56 65.3 13.5 | 0.415
48.3 0.84 65.3 12.9 | 0.329
21.9 1.01 65.3 12.2 | 0.248
24.3 1.65 28.1 5.8 0.178
24.3 1.35 28.9 3.9 0.198
24.3 1.11 30.3 2.8 0.236
26.7 1.95 30.2 3.5 0.15
29.5 2.17 31.2 4.7 0.128
24.3 1.63 28.8 5.6 0.191
24.3 1.63 29 5.9 0.209
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Table A.18: Movable Bed Wave Flume Data on Ripple Geometry under Regular

Waves from Inman and Bowen (1963); d = 0.2 mm and s = 2.65

4y (em) | w (1/s) | A (cm) | 7 (cm)
4.9 4.49 6.5 1.1
9.6 3.14 10.8 1.5
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Table A.19: Movable Bed Wave Flume Data on Ripple Geometry under Regular
Waves from Kennedy and Falcon (1965); d = 0.095 mm and s = 2.65

4, (em) | w (1/5) | A (em) | 7 (em)
2.08 5.87 3.0 0.51
3.88 3.22 4.9 0.82
9.39 3.22 5.6 1.1
5.78 2.69 5.5 1.0
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Table A.20: Movable Bed Wave Flume Data on Ripple Geometry under Regular
Waves from Kennedy and Falcon (1965); d = 0.32 mm and s = 2.65

Ay (em) | w (1/5) | A (cm) | 7 (cm)
4.99 4.52 6.3 1.0
5.33 4.00 7.2 1.2
6.47 4.00 8.6 1.6
4.79 4.52 6.2 1.2
4.26 4.00 5.9 1.3
3.24 4.52 4.6 0.7
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Table A.21: Movable Bed Wave Tunnel Data on Ripple Geometry under Regular
Waves from Lambie (1984); d = 0.09 mm and s = 2.65

Ay (cm) | w (1/s) | A (cm) | 7 (cm)
11.0 1.09 11.6 1.45
39.0 1.09 55.0 3.5
14.5 1.05 12.4 1.8
8.0 2.73 7.6 14
20.25 1.14 21.2 1.8
21.0 1.14 15.6 21
13.0 1.40 14.0 2.0
10.5 2.00 10.5 1.5
8.5 2.17 11.0 2.1
10.5 2.17 10.6 1.3
19.5 2.17 6.5 2.0
7.75 2.73 6.6 1.2
11.25 2.73 8.0 1.2
9.0 2.73 7.9 1.2
17.5 1.40 18.0 2.7
14.5 2.00 8.3 2.3
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Table A.22: Movable Bed Wave Tunnel Data on Ripple Geometry under Regular
Waves from Lambie (1984); d = 0.15 mm and s = 2.65

Ay (em) | w (1/8) | A (cm) | n (cm)
19.75 1.34 18.2 2.9
19.75 1.34 23.0 3.3
6.75 2.24 11.5 2.1
10.25 2.24 12.5 2.3
11.75 2.31 13.2 2.2
21.75 1.63 25.3 3.2
19.25 1.64 20.3 4.0
16.75 1.64 18.5 3.3
13.90 1.64 16.3 2.8
10.15 1.63 11.5 1.8
15.5 1.06 17.2 2.8
25.5 1.63 22.2 4.1
24.0 1.62 20.4 4.0
39.4 1.19 33.0 3.9
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Table A.23: Movable Bed Wave Tunnel Data on Ripple Geometry under Regular
Waves from Lambie (1984); d = 0.15 mm and s = 2.65; continued

Ay (em) | w (1/8) | A (em) | 7 (cm)
36.0 119 | 305 4.4
28.0 119 | 27.0 3.8
26.3 119 | 240 4.8
17.7 119 | 202 3.4
9.75 1.19 18.8 3.1
9.15 1.19 9.4 1.4
12.6 1.19 9.3 1.7
11.5 1.19 13.8 2.6
37.75 | 087 | 29.7 4.0
21.0 137 | 17.3 2.8
40.5 1.3¢ | 330 3.7
15.0 2.24 17.0 2.5
18.75 | 224 | 200 1.9
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Table A.24: Movable Bed Wave Tunnel Data on Ripple Geometry under Regular
Waves from Lofquist (1978); d = 0.18 mm and s = 2.65

4, (cm) | w (1/5) | A (em) | 7 (cm)
114 2.11 14.0 2.0
11.4 1.92 14.0 1.7
11.4 2.32 13.3 1.8
9.27 2.29 11.4 1.6
18.3 1.14 21.0 2.8
27.5 0.83 26.8 3.3
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Table A.25: Movable Bed Wave Tunnel Data on Ripple Geometry under Regular
Waves from Lofquist (1978); d = 0.55 mm and s = 2.65

Ay (em) | w (1/s) | A (em) | 7 (em)
45.8 0.76 72.7 15.5
45.9 0.78 08.4 124
49.7 0.56 95.1 10.9
36.7 0.96 95.3 10.1
36.7 1.18 42.8 8.9
36.7 1.48 40.1 7.6
23.0 1.51 27.9 5.4
30.1 1.20 32.7 6.5
36.7 0.78 50.1 10.6
19.3 1.84 24.9 4.3
13.9 2.23 23.9 3.5
15.1 2.05 22.9 3.50
13.8 2.32 20.8 3.2
14.3 2.27 19.0 3.4
24.5 1.41 31.9 6.0
11.9 2.77 10.9 2.8
23.8 1.45 25.4 3.5
18.3 1.83 27.4 4.1
27.6 1.41 33.7 6.8
27.6 2.79 26.2 4.5
13.7 2.32 21.8 3.4
13.8 1.90 16.0 2.2
13.7 1.35 16.0 2.0
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Table A.26: Movable Bed Wave Flume Data on Ripple Geometry under Regular
Waves from Miller and Komar (1980); d = 0.178 mm and s = 2.65

Ay (em) | w (1/8) | A (cm) | 7 (cm)
7.59 2.09 6.0 1.0
8.37 2.09 7.5 1.0
15.40 1.57 13.5 1.0
26.80 1.26 10.6 1.0
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Table A.27: Movable Bed Wave Tunnel Data on Ripple Geometry under Regular

Waves from Mogridge and Kamphuis (1972); d = 0.36 mm and s = 2.65
Ay (em) | w (1/s) | A (cm) | 7 (cm)

77.6 0.78 42.7 7.0
9.4 2.50 12.9 2.1
15.7 1.56 19.7 3.3
15.6 1.56 20.0 3.4
25.8 1.56 28.1 4.8
21.8 1.11 28.4 4.8
294 1.11 37.7 5.8
32.0 1.56 33.8 5.1
36.0 0.781 44.3 6.8
42.8 0.781 50.0 8.8

51.9 0.781 54.8 9.5
53.7 0.625 60.1 10.1
60.9 0.521 65.0 10.4
66.8 0.521 73.5 11.5
75.4 0.447 81.2 13.6
93.0 0.447 101.7 18.4

13.5 1.56 17.2 3.0
21.1 1.56 25 3.8
29.7 1.56 33.0 4.6
38.0 1.56 27.8 4.9
43.9 1.56 22.7 3.9
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Table A.28: Movable Bed Wave Flume Data on Ripple Geometry under Regular
Waves from Mogridge and Kamphuis (1972); d = 0.36 mm and s = 2.65

Ay (cm) | w (1/s) | A (em) | 7 (cm)
2.50 5.77 3.3 0.57
2.69 5.81 3.6 0.50
3.00 5.82 3.7 0.53
3.22 5.82 4.0 0.64
3.40 5.81 4.2 0.65
3.66 5.81 4.8 0.66
3.13 5.79 4.4 0.61
2.91 5.82 3.6 0.51
327 | 5780 | 4.3 0.61
293 | 5800 | 3.8 0.53
274 | 5.820 | 34 0.44
330 | 5800 | 43 0.62
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Table A.29: Movable Bed Wave Flume Data on Ripple Geometry under Regular
Waves from Mogridge and Kamphuis (1972); d = 0.36 mm and s = 2.65

Ay (cm) | w (1/8) | A (cm) | 1 (cm)
3.00 5.810 3.6 0.54
3.98 5.900 4.9 0.69
4.03 5.770 5.36 0.75
4.17 5.780 0.0 0.69
3.01 5.80 4.5 0.61
4.28 5.78 5) 0.67
3.90 0.78 5.0 0.65
2.62 6.27 3.2 0.48
2.25 6.28 3 0.44
2.83 6.26 4.0 0.54
3.61 6.28 4.5 0.62
3.14 6.23 4.0 0.56
3.30 6.27 4.1 0.56
2.89 6.24 3.7 0.54
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Table A.30: Movable Bed Wave Flume Data on Ripple Geometry under Regular
Waves from Mogridge and Kamphuis (1972); d = 0.36 mm and s = 2.65; continued

Ap (em) | w (1/8) | A (em) | 7 (cm)
3.24 6.26 4.2 0.57
3.66 6.28 4.6 0.62
3.07 4.99 4.5 0.67
4.00 5.01 5.2 0.70
3.57 4.99 4.8 0.69
3.81 5.00 0.1 0.80
2.92 4.98 3.5 0.53
3.05 5.00 4.2 0.59
2.97 5.00 4.1 0.59
5.57 2.50 6.6 1.15
8.78 2.50 7.7 1.13
5.88 2.50 7.0 1.31
5.8 2.50 6.6 1.00
5.47 3.10 6.4 0.95
4.91 3.11 6.1 0.85
3.19 5.78 3.8 0.58
2.80 5.77 3.4 0.52
3.76 9.77 4.6 0.70
3.88 2.77 5.0 0.75
3.48 5.79 4.3 0.65
4.04 2.80 4.9 0.72
3.11 5.77 3.7 0.58
2.69 5.77 3.5 0.49
3.89 5.77 4.8 0.67
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Table A.31: Movable Bed Wave Flume Data on Ripple Geometry under Regular
Waves from Nielsen (1979); d = 0.082 mm and s = 2.65

Ap (em) | w (1/s) | A (em) |  (cm)
1.19 6.28 2.9 0.6
1.39 6.28 2.9 0.5
1.45 6.28 2.0 0.5
1.59 6.28 2.9 0.5
1.78 6.28 2.9 0.4
2.09 6.28 3.0 0.5
2.52 6.28 3.0 0.5
2.89 6.28 3.0 0.45
3.17 6.28 3.4 0.6
3.48 6.28 3.6 0.6
2.68 3.70 4.3 0.7
2.98 3.70 4.4 0.80
3.38 3.70 4.7 0.8
3.93 3.70 5.0 0.8
4.60 3.70 5.6 0.8
5.21 3.70 2.9 0.9
5.92 3.70 5.27 0.7
6.60 3.70 6.0 0.75
7.16 3.70 2.6 0.6
8.25 3.70 3.7 0.8
8.82 3.70 5.6 0.6
9.45 3.70 5.3 0.5
10.25 3.70 5.2 0.55
11.03 3.70 4.9 0.35
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Table A.32: Movable Bed Wave Flume Data on Ripple Geometry under Regular
Waves from Nielsen (1979); d = 0.17 mm and s = 2.65

Ay (em) | w (1/8) | A (em) | 5 (cm)
3.13 3.70 4.5 0.8
4.64 3.70 2.6 0.9
5.97 3.70 6.7 1.15
6.92 3.70 7.5 1.25
7.90 3.70 8.7 1.3
8.66 3.70 8.5 1.2
9.36 3.70 7.4 1.2
10.47 3.70 7.4 1.0
12.75 3.70 8.8 1.2
13.10 3.70 9.4 1.3
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Table A.33: Movable Bed Wave Flume Data on Ripple Geometry under Regular
Waves from Nielsen (1979); d = 0.36 mm and s = 2.65

Ay (em) | w (1/s) | A (em) | 7 (cm)
4.05 3.70 2.7 0.95
4.47 3.70 6.3 1.0
5.00 3.70 7.1 1.0
6.40 3.70 8.6 1.4
7.52 3.70 9.6 1.55
9.22 3.70 11.9 1.8
10.50 3.70 12.8 1.9
11.29 3.70 13.4 2.2
12.40 3.70 13.8 1.9
14.00 3.70 13.3 1.9
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Table A.34: Movable Bed Wave Tunnel Data on Ripple Geometry under Regular
Waves from Sato (1988); d = 0.18 mm and s = 2.65

4, (em) | w (1/5) | A (cm) | 7 (em)
6.37 6.28 6.6 0.7
7.96 6.28 7.3 0.8
19.1 2.09 8.8 1.2
23.9 2.09 12.2 1.34
287 2.09 9.8 1.0
31.8 1.26 9.1 1.5
39.8 1.26 12.9 1.9
44.5 0.90 10.6 1.5
55.7 0.90 19.5 3.1
66.8 0.90 12.8 1.4

166



Table A.35: Movable Bed Wave Tunnel Data on Ripple Geometry under Regular
Waves from Sato (1988); d = 0.56 mm and s = 2.65

Ay (em) | w (1/s) | A (cm) | n (em)
19.1 419 | 185 2.5
38.2 200 | 314 5.6
47.8 209 | 355 5.7
52.5 209 | 293 2.9
63.7 1.26 | 338 4.7
79.6 1.26 | 265 2.2
87.5 1.26 | 43.6 5.3
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Appendix B

Spectral Pure Wave Experiments
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Table B.1: Fixed Bed Attenuation Results for Spectral Pure Wave Experiments from
Madsen and Mathisen (1996)

Ay (em) | w (1/s) | A (em) | (em) | [
3.81 2.89 10 1.5 | 0.42
4.52 2.88 10 1.5 | 0.287
6.09 2.84 10 L5 | 0.215
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Table B.2: Movable Bed Wave Tunnel Data on Ripple Geometry under Irregular
Waves from Sato (1988); d = 0.18 mm and s = 2.65

Ay (em) | w (1/8) | A (em) | n (cm)
13.8 2.094 9.1 1.1
17.5 2.094 10.0 0.7
20.7 2.094 9.8 0.7
24.9 2.094 3.4 0.5
13.1 2.094 9.7 1.2
17.7 2.094 10.9 1.1
19.8 2.094 8.1 0.5
23.2 2.094 8.1 0.4
6.8 2.094 8.8 1.4
8.7 2.094 10.7 1.5
10.0 2.094 9.6 0.7
23.2 1.257 9.9 0.9
28.8 1.257 7.3 0.4
22.6 1.257 8.4 1.0
28.0 1.257 7.8 0.5
10.4 1.257 7.7 0.6
13.2 1.257 7.4 0.4
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Table B.3: Movable Bed Wave Tunnel Data on Ripple Geometry under Irregular

Waves from Sato (1988); d = 0.56 mm and s = 2.65
Ay (em) | w (1/8) | A (em) | 7 (cm)

14.7 4.189 16.8 1.6
18.4 4.189 16.1 1.1
7.2 4.189 17.5 1.8
9.0 4.189 18.6 2.2
28.2 2.094 27.5 3.3

35.1 2.094 35.0 2.7
14.7 2.094 32.6 4.9
17.6 2.094 31.4 3.1

18.5 2.094 26.4 2.5
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Appendix C

Combined Wave-Current Flow

Experiments
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Table C.1: Fixed Bed Attenuation Results for Combined Wave-Current Flow Exper-
iments from Madsen and Mathisen (1996)

4y (em) | w (1/5) | 4 (cm/s) | e (cm/s) | A (em) | 7 (em) | /o
6.45 2.80 6.76 3.44 10 1.5 0.25
&.08 2.39 6.36 3.15 10 1.5 0.19
8.8 2.17 6.33 3.5 10 1.5 0.2
6.37 2.80 6.76 2.46 10 1.5 0.25
8 2.39 6.17 2.09 10 1.5 0.18
2.84 2.17 7.09 2.95 10 1.5 0.24
4.31 2.80 5.27 2.46 10 1.5 0.33
561 2.39 5.12 2.08 10 1.5 0.26
6.12 217 5.46 2.95 10 1.5 0.29
6.61 2.80 5.9 3.2 20 1.5 0.17
8.22 2.39 5.36 2.8 20 1.5 0.14
9.11 217 5.58 3.2 20 1.5 0.15
6.55 2.80 5.36 2.6 20 1.5 0.15
8.2 2.39 5.88 2.15 20 1.5 0.15
9.18 2.17 6.44 2.6 20 1.5 0.18
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Appendix D

Spectral Wave-Current Flow

Experiments
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ments from Madsen and Mathisen (1996)

Table D.1: Fixed Bed Attenuation Results for Spectral Wave-Current Flow Experi-

Ay (em) | w (1/8) | tsw (em/s) | tu (em/s) | XA (em) |  (cm) | f.
3.59 2.92 5.02 2.71 10 1.5 0.37
4.48 2.89 3.74 2.3 10 1.5 0.317
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Appendix E

Wave-Current Field Data

176



Table E.1: Wave-Current Field Data used by Styles and Glenn (2002)

Ap (em) | w (1/8) | du. (deg) | u. (cm/s) | 200 (cm) | A (cm) | n (cm)
20.77 0.67 4.78 1.02 5.21 19.84 7.70
22.87 0.60 21.54 0.84 5.53 19.72 7.76
21.67 0.72 74.80 0.67 1.03 26.26 8.18
28.39 0.84 54.64 0.96 3.53 36.61 8.36
27.78 0.86 83.41 0.99 3.08 43.65 8.54
32.09 0.84 45.50 1.34 5.80 42.15 8.66
30.41 0.88 69.18 1.39 3.71 43.99 8.72
31.36 0.82 68.53 1.72 5.47 46.85 8.78
29.30 0.87 62.50 1.66 3.05 47.08 8.84
31.49 0.88 87.07 1.53 2.70 47.62 8.90
31.64 0.80 63.54 1.67 12.75 53.09 9.38
30.95 0.82 71.89 1.44 15.60 53.80 9.43
33.15 0.79 78.00 1.26 11.06 53.53 9.47
32.48 0.59 75.19 1.39 15.43 65.30 9.54
28.13 0.61 65.59 1.20 1.51 64.34 9.53
29.96 0.69 65.62 2.04 2.85 60.30 9.52
29.75 0.77 53.89 2.19 2.40 28.29 9.52
30.12 0.77 38.80 1.79 1.88 57.30 9.52
28.64 0.79 33.39 2.28 1.92 06.54 9.52
29.19 0.74 39.39 2.22 3.19 92.21 9.52
27.97 0.76 40.37 1.86 6.26 46.64 9.52
31.01 0.74 47.74 2.26 3.86 42.93 9.53
28.31 0.75 59.22 1.79 5.14 42.94 9.54

177




Table E.2: Wave-Current Field Data used by Styles and Glenn (2002); continued

Ay (em) | w (1/8) | du. (deg) | us (cm/s) | 25, (cm) | A (cm) | n (cm)
25.91 0.77 61.38 1.33 4.64 44.26 9.54
21.84 0.74 16.27 1.34 14.06 26.80 9.61
33.26 0.62 73.99 1.48 4.14 95.76 10.31
30.59 0.63 79.26 1.50 5.36 61.45 10.40
34.58 0.9 70.46 1.71 4.14 61.16 10.43
33.01 0.59 68.66 1.76 3.44 61.22 10.45
32.46 0.62 66.65 1.99 3.29 63.19 10.48
30.92 0.61 65.56 1.53 4.24 63.74 10.51
40.68 0.60 72.85 1.51 9.08 63.81 10.53
31.01 0.60 80.89 1.39 12.77 62.86 10.56
37.77 0.63 82.99 0.93 9.76 67.56 10.81
38.02 0.63 89.13 1.08 12.25 67.12 10.81
28.82 0.64 76.93 1.26 11.23 71.87 10.72
32.64 0.64 83.21 1.51 12.85 71.15 10.71
30.81 0.63 78.97 1.93 7.43 71.50 10.70
37.15 0.56 87.55 1.65 21.91 73.35 10.55
35.74 0.57 87.03 1.76 5.93 66.66 10.52
34.88 0.55 88.90 1.97 6.06 65.55 10.52
38.86 0.54 81.92 1.83 3.29 65.58 10.53
34.34 0.56 83.44 1.43 4.14 67.71 10.53
33.60 0.53 77.12 1.32 9.53 67.82 10.54
38.05 0.54 48.51 1.42 13.79 73.85 10.60
45.49 0.53 42.23 1.42 12.62 77.64 12.27
35.05 0.62 20.81 0.82 4.17 96.42 13.77
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Table E.3: Field Data on Wave-Formed Ripple Geometry from Dingler (1974)

Ap (em) | w (1/s) | A (em) | n (cm) | d (cm)
56.5 0.722 8 0.29 0.0172
82.5 0.452 65.0 9.20 0.0555
50.5 0.628 8.8 0.36 0.0177
38.5 0.911 8.4 0.38 0.0158
59.5 0.576 7.9 0.47 0.0176
54.0 0.748 8.0 0.44 0.0151
39.0 0.766 7.7 0.49 0.0132
62.5 0.576 7.9 0.46 0.0128
92.5 0.524 7.2 0.52 0.0131
67.5 0.576 8.2 0.50 0.0131
64.5 0.571 7.9 0.48 0.0170
50.5 0.571 8.0 0.63 0.0170
45.0 0.546 7.5 0.57 0.0170
66.0 0.507 7.5 0.48 0.0155
a7.0 0.519 7.4 0.46 0.0155
35.0 0.648 7.6 0.62 0.0176
50.5 0.648 8.9 0.60 0.0206
26.0 0.951 20.6 3.40 0.0179
73.0 0.483 8.1 0.48 0.0159
98.5 0.495 8.3 0.25 0.0159
62.5 0.576 64.0 10.70 0.0582
59.0 0.587 79.0 13.50 0.0616
94.0 0.871 13.7 0.56 0.0412
98.0 0.546 14.0 0.49 0.0409
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Table E.4: Field Data on Waved-Formed Ripple Geometry from Inman (1957)

4y (em) | w (1/s) | A (em) | 4 (em) | d (em)
55.0 0.628 5.8 0.46 0.0118
29.1 0.898 7.3 1.0 0.0153
20.5 0.785 8.8 1.2 0.0145
43.1 0.849 7.0 0.6 0.0150
22.6 0.628 7.9 1.2 0.0152
39.9 0.542 7.9 0.6 0.0151
959.3 0.628 6.4 0.6 0.0147
61.4 0.571 7.9 0.6 0.0157
44.1 (0.628 7.6 0.6 0.0137
33.4 0.683 7.3 0.9 0.0124
20.5 0.785 8.5 1.2 0.0117
20.5 1.047 9.1 1.5 0.0120
11.9 1.013 11.9 1.8 0.0117
44.2 0.731 6.7 0.6 0.0118
23.7 0.648 9.1 0.9 0.0124
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Table E.5: Field Data on Waved-Formed Ripple Geometry from Inman (1957); con-

tinued
Ay (em) | w (1/s) | A (em) | 17 (cm) | d (cm)
21.6 0.628 8.8 1.4 0.0129
31.3 0.622 7.6 0.8 0.0126
26.9 0.661 7.0 0.6 0.0118
55.0 0.571 7.6 0.6 0.0114
63.6 0.483 7.0 0.6 0.0117
10.8 0.785 18.6 2.3 0.0135
6.6 1.237 9.4 1.2 0.0127
10.8 0.785 18.9 2.4 0.0115
7.5 0.966 11.9 1.5 0.0106
4.3 1.047 10.0 1.8 0.0107
35.6 0.604 7.6 0.5 0.0102
25.9 0.739 7.9 0.7 0.0102
41.0 0.483 7.9 0.9 0.0102
14.0 0.661 16.1 1.5 0.0106
4.3 1.257 11.3 1.8 0.0103
10.8 0.483 11.9 1.8 0.0109
32.3 0.483 7.9 1.4 0.0106
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Table E.6: Field Data on Waved-Formed Ripple Geometry from Inman (1957); con-

tinued

Ay, (em) | w (1/8) | A (em) | n (cm) | d (cin)

24.8 0.628 14.9 1.5 0.0106
16.2 0.524 12.5 1.8 0.0109
22,6 0.524 11.6 1.5 0.0113
2.4 0.698 10.0 1.7 0.0081
44.2 0.698 57.3 9.1 0.0555
26.9 0.698 23.9 9.1 0.0483
97.0 0.419 85.3 15.2 0.0635
44.2 0.648 36.6 4.6 0.0266
25.9 0.610 45.3 6.7 0.0302

30.2 0.628 71.0 11.2 0.0418
31.3 0.483 70.7 10.7 0.0408
37.7 0.524 81.4 12.5 0.0412

32.3 0.571 7.7 13.4 0.0406
32.3 0.571 80.5 12.8 0.0406
28.0 0.524 80.8 13.7 0.0466
33.4 0.571 79.2 12.2 0.0345

31.3 0.648 91.4 14.6 0.0448
23.7 0.610 91.4 14.6 0.0462
24.8 0.571 77.1 11.9 0.0423
34.5 0.524 82.9 13.4 0.0430

23.7 0.628 53.3 7.6 0.0457

182



Table E.7: Field Data on Waved-Formed Ripple Geometry from Nielsen (1984)

Ay (em) | w (1/8) | A (cm) | n (cm) | d (cm)
20.7 0.748 20.0 5) 0.049
47.0 0.885 50.0 15.0 0.050
50.4 0.838 50.0 15.0 0.050
50.3 0.827 50.0 15.0 0.050
39.8 0.885 2.0 0.5 0.011
58.6 0.806 70.0 7.5 0.033
59.9 0.706 70.0 7.5 0.033
47.7 0.766 65.0 7.5 0.030
64.1 0.698 65.0 7.5 0.030
58.6 0.766 80.0 10.0 0.040
70.9 0.748 60.0 8.0 0.040
60.8 0.806 60.0 8.0 0.040
58.1 0.628 25.0 0.7 0.044
137.5 0.524 55.0 5.7 0.062
94.6 0.598 48.0 4.3 0.051
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Table E.8: Field Data on Waved-Formed Ripple Geometry from Nielsen (1984); con-

tinued
Ap (cm) | w (1/s) | A (cm) | n (cm) | d (cm)
63.9 0.668 48.0 4.3 0.045
116.1 0.487 50.0 8.0 0.038
101.4 0.499 20.0 9.0 0.038
88.8 0.561 35.0 7.0 0.045
61.5 1.102 50.0 8.0 0.044
69.2 0.885 60.0 3.0 0.048
70.7 0.816 60.0 8.0 0.049
93.3 0.655 60.0 8.0 0.047
113.6 0.616 60.0 8.0 0.047
70.9 0.683 50.0 7.5 0.047
49.9 0.873 50.0 7.5 0.047
43.6 1.103 55.0 10.0 0.045
45.2 1.030 35.0 10.0 0.045
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