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ABSTRACT

Statistics show that airline flight delays and cancellations have increased continuously over the
period from 1995 to 2000. During the same period, customer dissatisfaction and complaints have
followed a similar, even more dramatic trend. In 2001, as a consequence of the September 1 1th

terrorist attacks and the resulting airline schedule reductions, delay levels decreased, but only
temporarily. With growing passenger demands and stagnant capacity passenger delays and
disruptions are again on the rise.

Approaches to mitigate schedule disruptions include: 1) re-optimizing the schedule during
operations after a disruption occurs. For example, an airline operations controller might decide to
cancel or postpone some flight legs or to re-route some aircraft to recover the rest of the
schedule; and 2) building robustness into the schedule in the planning stage. By robustness we
mean the ability to absorb flight delays so these effects are minimized on passengers and crews.
In many cases, trying to reduce delays in the planning stage can be less costly for the airlines,
especially if the actions suggested to modify the schedule are not expensive. Pushing back a
flight's departure time only ten minutes might cost the airline little but can potentially reduce the
number of passenger misconnections given the stochastic nature of airline operations. Canceling
a flight during operations for example, can be however very costly.

The primary goal of this research is to propose planning models to re-route aircraft and re-time
flight departures, either separately or simultaneously, in order to distribute slack time in the
network optimally and reduce passenger delays. Using data from a major U.S. airline we observe
that with our model, we can reduce flight and passenger delay levels.
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Chapter 1

Introduction

1.1 Motivation

Airlines typically plan their schedule assuming that everything will be operated as planned. If all

flights in an airline's schedule are operated as planned, all passengers would get to their

destinations on time and there would be no delay. However, plans are rarely implemented as

expected because airlines operate in a stochastic environment. For various reasons, actual flight

departure and arrival times are different from their scheduled values. According to the Bureau of

Transportation Statistics (BTS) [16], 23.1% of all flights arrived late on average in the period

from 1995 to 2002 (Figure 1.1). A flight is classified as late using the FAA criterion when its

arrival delay is larger than 15 minutes.

30

2 - ------ -- - -0 -- - - --

1995 1996 1997 1998 1999 2000 2001 2002

Figure 1. 1: Average annual percentage of late arriving flights in the U.S.

There are several causes of flight leg delay. These include aircraft mechanical problems or

unscheduled maintenance, crew unavailability, longer than expected security check times and

inclement weather. Among these factors, inclement weather is the most significant in that it is

reported to be the cause of 70% of the delays in the U.S. National Airspace System (NAS). U.S.

airlines usually schedule their flights under the assumption that the airport will operate close to

its maximum throughput capacity. Maximum throughput capacity corresponds to the conditions
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when visibility is excellent, cloud ceiling is high and wind direction and speed are favorable.

However, when bad weather prevails, airport capacity drops. During such periods of low

capacity, landing and take off queues form and delays occur.

The above factors are relatively constant from one year to another. The probability that an

aircraft will have mechanical problems is essentially constant. The number of days during a year

when an airport is affected by a thunderstorm will not increase dramatically in 2020 compared to

2002. But a factor that might pose some serious risks to the future growth of global air

transportation is congestion.

Congestion

De Neufville and Odoni (2003) [27] state that during the last 25 years of the twentieth century,

passenger traffic increased an average of about 6 percent each year worldwide. The growth rate

is not equal in different geographical regions, of course, and depends on various factors

including GDP, level of industrialization and market maturity. In the U.S., the recent long-term

growth rate has been an average of 4 percent per year, which implies a doubling of passenger

traffic every 15 to 20 years. The future growth rates are open to debate and small differences in

assumptions will make huge differences in the total passenger traffic forecast for 20 years from

now. But one thing is known for sure: passenger and cargo traffic will continue to grow and

increase substantially over years to come. The majority of the world's population rarely flies and

the market is far from saturation [27]. This can be very promising for air travel, but the growth of

infrastructure capacity cannot keep up with the fast growth of demand. Many aviation experts

believe that the inability to match available runway capacity with air travel demand growth is the

major factor that threatens the future of global air transportation.

Even in recent years, the air traffic system has been operating very close to full capacity,

especially in the U.S. According to De Neufville and Odoni (2003) [27], in 1999, flight delays in

29 of the busiest commercial airports in the U.S. were estimated to be more than 20,000 aircraft-

hours per year, the threshold at which an airport is considered congested by the Federal Aviation

Administration (FAA) standards.
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Actions we can take to alleviate congestion and reduce delay levels include [25]:

" Increasing airport capacity: building second, third... airports, adding more runways

(extremely expensive and in many cases almost impossible), using more sophisticated Air

Traffic Control (ATC) systems, etc.

" Using demand management to charge users for the external congestion costs they

generate.

" Flow management: reducing the cost and impacts of unavoidable delays, like aircraft

sequencing near the terminal area.

* Embedding flight and passenger delay considerations in airline schedules and schedule

recovery models.

We derive our motivation for this thesis from the last method. Being aware that airline delays are

likely to increase in the near future, we propose and test models to create robust airline

schedules, that is, schedules that achieve minimum delay during operations. In section 2.3.1, we

investigate in detail the definitions and different interpretations of robustness in the context of

airline scheduling. In our model, robustness is defined as the ability to absorb local delays and

disruptions and prevent their widespread realization. We place emphasis on passenger delay in

our models, as we believe that minimizing passenger delay (either directly or indirectly) is a

more appropriate objective in building a robust airline schedule than minimizing flight leg delay

(see section 3.2.4 for a comparison between flight leg delay and passenger delay).

1.2 Some Definitions

Before detailing our research, we provide the following glossary of terms used throughout the

thesis.

Flight Leg

A flight leg f (sometimes also referred simply to as flight f ) is a single non-stop flight between

an origin airport and a destination airport.
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Passenger Itinerary

A passenger itinerary is a sequence of flight legs that serve a group of passengers from their

desired origin airport to their desired destination airport. An itinerary may consist of one, two or

in some cases more than two flight legs.

Passenger Types

Passengers are divided into three major types, based on the composition of the flight legs on

which they travel:

" Non-stop passengers or "local passengers": passengers whose itinerary is composed of

only one flight leg. In a typical hub-and-spoke carrier in the U.S., local passengers

constitute about 60% to 65% of the total number of passengers.

* One-stop passengers including:

o "Through passengers": passengers whose itineraries are composed of two flight

legs both assigned to the same aircraft.

o "Connecting passengers": passengers whose itineraries are composed of two

flight legs each assigned to a different aircraft.

" Multi-stop passengers: passengers whose itineraries are composed of more than two

flight legs.

The percentage of multi-stop passengers in hub-and-spoke networks is typically well below one

percent. As a result, these passengers are not considered in our analysis. Moreover, the

percentage of through passengers in a traditional hub-and-spoke network is also very small;

therefore, we do not distinguish between through and connecting passengers.

We consider data from a major U.S. hub-and-spoke airline, and find that the majority of

passengers are local, but most of the itineraries are connecting, as shown in Tables 1.1 and 1.2.

This implies that the average number of passengers traveling on connecting itineraries is less

than the average number of passengers traveling on local itineraries.
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Itinerary type % of passengers

Local 66.54%

Through 1.34%

Connecting 32.12%

Table 1.1: Passenger type percentages

Table 1.2: Itinerary type percentages

Aircraft Route

Aircraft route is the sequence of flight legs operated by an aircraft. Aircraft routes are usually

built so that periodic aircraft maintenance requirements are satisfied. We will discuss the aircraft

maintenance routing problem in detail in section 2.1.3.

Aircraft Swap

Aircraft swapping is the act of changing the planned routes of two physical aircraft in order to

curtail schedule disruptions during operations. As shown in Figure 1.2, aircraft 1 is scheduled to

operate flight legs f, and f3 . Similarly, aircraft 2 is scheduled to operate flight legs f2 and f 4 .

Also assume that during operations, while flight leg f 2 is on time and aircraft 2 is ready to fly,

flight f, has a long arrival delay and aircraft 1 is not available. Maintaining the original

(planned) aircraft routes will delay the departure time of flight f3 until aircraft 1 becomes

available. To avoid this delay, it might be possible to operate flight f3 with aircraft 2 and flight

f 4 with aircraft 1. That is, it might be possible to swap the original aircraft routes to f, -f 4 and

f2 - f 3 and, in so doing, reduce delay.

17

Itinerary type %

Local 10.83

Through 2.49

Connecting 86.68



Figure 1.2: Illustration of aircraft swapping

It's important to note that aircraft swaps are feasible only when they do not cause crew work rule

or aircraft maintenance violations.

Flight Arrival Delay

Flight arrival delay is defined as the positive difference between a flight's actual and scheduled

arrival times.

Passenger Delay

Passenger delay is the positive difference between the actual and scheduled passenger's arrival

time at his/her destination.

Disrupted Passengers

In general, a disrupted passenger is a passenger whose planned itinerary of flight(s) differs from

her/his actual (set of) flight(s). Based on this definition, a local passenger is disrupted only if

her/his flight is canceled, a through passenger is disrupted if one of her/his flight legs is canceled,

and finally, a connecting passenger is disrupted if one of her/his flight legs is canceled and/or if

s/he misses her/his connection. In Table 1.3 we show that about two thirds of all of disrupted

passengers are connecting.

Table 1.3: Categorizing disrupted passengers based on their itinerary type

18
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Through 1.34%
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1.3 Contributions and Thesis Outline

1.3.1 Contributions

The contributions of this thesis are summarized as follows:

1. We provide a review of literature on the general topic of airline scheduling, with

particular emphasis on robust airline scheduling.

2. We develop a combined flight departure re-timing and aircraft re-routing model to

minimize delay propagation. We calibrate and test our model using data from a major

U.S. airline. The results show that our model can reduce flight and passenger delay levels

and reduce the number of disrupted passengers. We quantify the propagated delay

achieved by combining flight departure re-timing and aircraft re-routing models, as

compared to those achieved by aircraft re-routing models only.

3. We present two other robust scheduling models. The first model is a combined flight

departure re-timing and aircraft re-routing model to minimize the expected number of

misconnected passengers. The second model is a flight retiming model to create recovery

options for misconnected passengers.

1.3.2 Thesis Outline

In Chapter 2, we provide a review of literature on airline schedule planning and robust

scheduling. In Chapter 3, we analyze the components of flight delay, paying particular attention

to propagated delay. We quantify propagated delay and measure its impact on passenger delays.

We present a flight departure re-timing and aircraft re-routing model, with the objective to

minimize total expected propagated flight delay. We present the implementation details and

proof-of-concept results using data from a major U.S. airline.
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In Chapter 4, we describe the role of disrupted passengers in affecting total passenger delay, and

present two robust scheduling models. The first model is a flight departure re-timing and aircraft

re-routing model to minimize the total expected number of misconnecting passengers. The

second model is a flight departure re-timing model to minimize the number of connecting

itineraries without a recovery option, again focusing on misconnecting passengers. We support

these modeling ideas with examples.

Chapter 5 provides concluding remarks and directions for future research.
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Chapter 2

Airline Schedule Planning

2.1 The Planning Process

The airline schedule planning problem is the problem of generating a schedule that maximizes an

airline's profitability and satisfies a set of rules and regulations regarding fleet assignment,

aircraft routing and crew scheduling. During this process, the planner should find exact answers

to the following questions:

* What markets the airline wants to serve?

" What should be the frequency of service for each of the selected markets?

" What should be the departure time of each flight leg?

" What type of aircraft should be assigned to each flight leg?

" How should a single aircraft be routed in the network to guarantee it receives sufficient

maintenance?

* How should crewmembers and flight attendants be assigned to individual flights to

guarantee the satisfaction of numerous rules and regulations that labor unions mandate?

* And most importantly, how should all these decisions be made so that the overall

profitability of the airline is maximized?

In other words, the airline schedule planning process has two dimensions: maximizing

profitability while maintaining feasibility.

For a small network, all these decisions can be made manually or based on a planner's judgment

and experience. However, the size of a major airline network is very large. A major American or

European network carrier operates more than a thousand flights per day with hundreds of

aircraft, with several different aircraft types, serving tens of thousands of markets using hundreds

of airports. Today, almost all airline managers are convinced that considering the quantity and

complexity of the decisions involved in the airline schedule planning process, applying

optimization tools and techniques is inevitable.
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Airline Schedule Planning, a Sequential Process

Traditionally, the airline schedule planning process is composed of four distinct steps that are

dealt with independently and in a sequential manner. The output from each step provides the

input for the next step. As we will see shortly, these four steps are not completely independent

and combining some of these steps fully or partially can produce improved schedules. There's no

doubt that formulating the entire process as one large model is possible and in theory should

generate more profit. With current computer hardware technology and optimization algorithms,

however, solving such a model is intractable. This is the main reason for decomposing the airline

scheduling process into pieces (Barnhart and Talluri (1997) [12]).

Schedule Design

Fleet Assignment

Aircraft Routing

Crew Scheduling

Figure 2.1: A typical sequential airline schedule planning process

2.1.1 Schedule Design

The output of the schedule design step is a complete list of the flight legs the airline wants to

offer, specifying each flight's origin, destination and departure time (which roughly determines

arrival time as well). To build a schedule, the airline has to decide:

" What origin-destination (OD) markets to serve?

* What type of service to offer for each OD market (non-stop vs. connecting)?

" For connecting service, where should the connection location be located?

" What should be the frequency of service offered in each market?

22



0 And finally, what should be the exact departure time of each flight leg?

Due to the complexity and strategic nature of the decisions made in the schedule design process,

operations research has had little impact on this step of airline scheduling. Airlines usually

perform this step manually. The way each airline chooses to construct its schedule depends on

numerous factors, including: the overall network type served by that airline (hub-and-spoke vs.

point-to-point); its long term ambitions (to grow as a big carrier or to remain as a local service

provider); its fleet size and composition (not all city pairs can be served by a Boeing 737, for

example); its competitors in each OD market and the remaining unrestricted demand that can still

be absorbed; and its crew and maintenance base locations. As seen, incorporating all these

considerations in a mathematical model is extremely difficult if not impossible. Barnhart and

Cohn (2003) [6] mention that the difficulty of modeling the schedule design problem as a

mathematical model also arises from the fact that the data needed to formulate such a problem, in

particular unconstrained demands and average fares, are very difficult to estimate accurately.

Nevertheless, especially during recent years, considerable amounts of research have been

performed on using optimization models to improve a given schedule by applying only a limited

number of changes. This class of problems is known as incremental schedule design.

Berge (1994) [14] studies the problem of generating the best sub-timetable within a larger

timetable. He finds a feasible subset of flight legs that maximizes market coverage. He defines

market coverage as the probability that a random passenger finds at least one path in his/her

decision window. The inputs to his model are a list of candidate flight legs (departure and arrival

times), a fleet constraint (total number of airplanes), a list of markets (city pairs) and relative

importance weightings and an exhaustive list of feasible passenger itineraries. He does not

consider supply-demand interactions in his model (the fact that a higher frequency of service in a

market stimulates more demand). He proposes a heuristic method and also an integer linear

programming formulation to find the optimal sub-network within a network containing 24

aircraft. He reports that his heuristic can solve the model fast under some additional

assumptions, but his integer formulation suffers from long runtimes.
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Marsten, Subramanian and Gibbons (1996) [41] propose an incremental schedule design

approach. They use the OAG (Official Airline Guide) to generate a pool of possible paths

(passenger itineraries). They then give a score to each path using a scoring function based on

path characteristics (elapsed time, number of connections, etc). In this way, they eliminate a

large number of unfavorable paths. Using the remaining sets of paths, they compute the market

share for each path using unconstrained passenger demands. After computing the number of

passengers on each flight leg, they solve the fleet assignment problem for different combinations

of flight leg additions and deletions (with respect to the initial schedule), considering the

maximum allowable number of fleet types. Finally, they compare the net profits (the sum of

average passenger fares over the selected markets minus the fleet assignment cost) of different

combinations of addition and deletion sets and then select the profit-maximizing schedule. They

do not consider supply-demand interactions either.

Rexing, et al. (2000) [42] integrate flight schedule design and fleet assignment decisions in their

Fleet Assignment Model with Time Windows (FAMTW). FAMTW is an extended fleet

assignment model, which includes incremental schedule changes. They generate copies for each

flight leg in the initial schedule and incorporate the new set of variables into the basic FAM,

assuming that the changes in flight departure times are small enough that there are no changes in

demand. By generating the flight copies, the set of feasible aircraft connections increases

substantially, leading to better fleet assignment solutions and considerable cost savings. They

also show that by using FAMTW, they can free up aircraft by tightening the schedule and

increasing aircraft utilization.

Lohatepanont and Barnhart (2004) [40] present an Integrated Schedule Design and Fleet

Assignment Model (ISD-FAM). ISD-FAM, in its entirety, is a fleet assignment model with some

optional flight legs. The optional flight legs can be candidates from the initial schedule that may

be deleted or some new flight legs that may be added to the initial schedule. Optional flight legs

can also be flight copies for the initial set of flights. Having said that, FAMTW is a special case

of ISD-FAM with no flight addition or deletion. They also introduce new parameters called

"recapture rates" to modify each itinerary's demand as a result of flight leg addition or deletion.

In the simplified version of the ISD-FAM, they do not consider the change in market share as a
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result of changing the service frequency in each market. In the Extended ISD-FAM, also known

as ESD-FAM, they utilize "demand correction terms" to adjust demands as necessary. Both ISD-

FAM and ESD-FAM are large-scale, requiring long runtimes and large amounts of memory to

solve. Their validity depends on the correct estimation of OD market demands, recapture rates

and demand correction terms. But it is shown that considerable economic benefits are achievable

if these models are used correctly.

Lan, Clarke and Barnhart (2003) [39] propose a flight re-timing model to minimize the expected

number of misconnected passengers. Although their model does not increase the planned

profitability of the schedule, it can reduce realized disruption costs. Their approach can also be

classified as an incremental schedule design model. We will investigate their model in more

detail in section 4.2.1.

2.1.2 Fleet Assignment

After the airline generates its flight schedule, it has to decide what type of aircraft (fleet type) to

assign to each flight leg, given the set of available aircraft types and numbers. The cost of

assigning an aircraft of type k to a flight leg i is the sum of the operational costs of performing

flight leg i with an aircraft of type k (such as fuel cost, gate rental, landing and take off costs,

etc) and the spill cost. The spill cost is the revenue lost due to lack of seat availability. There's

clear trade-off between using a big vs. a small aircraft. Bigger aircraft have high operational

costs and low spill costs. Smaller aircraft have low operational costs but they can incur high spill

costs if assigned to flight legs with high demand. There are also other considerations; for

example, small aircraft cannot be assigned to certain long haul flight legs.

The fleet assignment problem also has to guarantee that each flight leg is covered by exactly one

aircraft type; aircraft flow balance is satisfied; and the total number of aircraft of a given type

assigned to different flight legs does not exceed the total number of available aircraft of that type

in the airline's fleet. Additional constraints can also be added to enhance the model with

maintenance requirements, gate and noise restrictions and crew considerations. The interested
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reader is referred to Barnhart and Talluri (1997) [12] for a more complete discussion about these

additional constraints.

Integer programming methods have been used extensively to solve the airline fleet assignment

problem and the research performed in this area is relatively vast. Historically, the fleet

assignment problem has been cast as a multi-commodity flow problem with side constraints. The

underlying network to solve the fleet assignment is a directed time-line network (see section

3.3.2 for a definition of a time-line network). Each aircraft type can be regarded as a commodity

type and we need to flow each commodity across the network in a way that minimizes total cost,

balances aircraft types and assigns each flight leg to exactly one aircraft type.

Daskin and Panayotopoulos (1989) [26] propose an integer linear programming formulation for

solving the fleet assignment problem in a hub-and-spoke network with a single hub. They

present a Lagrangian Relaxation approach for solving the problem and observe that the solution

to the Lagrangian Relaxation problem provides a useful upper bound for the initial primal

maximization problem. They also propose a heuristic method to first convert the fractional

solution to Lagrangian Relaxation problem into a feasible integer solution for the primal

problem, and then to improve that solution.

Abara (1989) [1] formulates and solves the fleet assignment problem using aircraft connection

arcs (or aircraft-turns) as decision variables. Two disadvantages of his formulation are the large

number of aircraft-turn variables and also the inability of the model to allow different turn times

for different fleet types at various locations. He reports that substantial savings are obtained

when this model is applied to American Airline's network.

Hane et al. (1995) [32] formulate the basic Fleet Assignment Model (basic FAM) as a multi-

commodity network flow problem with side constraints, based on an underlying directed time-

line network. Using the special topology of the fleet assignment network, they present several

techniques to reduce the size of the problem (such as node consolidation, algebraic

preprocessing, islands, etc). They compare different solution approaches (like dual steepest edge

simplex and specialized branching methods) and report improved solution times compared to the
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conventional LP-based branch-and-bound. The authors solve fleet assignment problems for large

U.S. carriers (with 10-14 fleet types and 2000-2500 flight legs) within 10-20 minutes of

computation time on 1995 workstation class computers.

Gu et al. (1994) [31] study the complexity of the basic fleet assignment problem presented by

Hane et al. They study the specific conditions under which the problem is an easy network flow

problem, and when it is NP-complete, NP-hard, etc. They also investigate the behavior of the

solution as a function of the number of fleet types and present analytical expressions for the

minimum number of planes required of each fleet type to cover a schedule.

Clarke et al. (1996) [19] provide modeling techniques to enhance the basic fleet assignment

model with crew and maintenance considerations, while preserving its solvability. They argue

that without any maintenance or crew considerations, the solution of the fleet assignment model

might not be feasible for the maintenance routing and crew scheduling problems.

Although basic FAM is a strong formulation and can be solved relatively fast, it has some major

shortcomings. It is very hard to consider the network effects or leg interdependencies when

calculating spill costs. FAM also does not accurately model recapture of spilled passengers on

other itineraries. In light of these facts, Barnhart, Kniker and Lohatepanont (2001) [9] present an

Itinerary based Fleet Assignment Model (IFAM), considering network effects and more

accurately calculating the profitability of fleet assignments. They introduce new sets of variables

and parameters and embed the spill optimization problem within FAM. Although their model

results in improved solutions compared to those of basic FAM, its LP relaxation is often

fractional, resulting in increased solution times. To alleviate some of these tractability issues,

Barnhart, Farahat and Lohatepanont (2002) [7] present an equivalent, yet revised, IFAM, one

based on composite variables that can consider network effects in calculating spill costs. Their

formulation and solution approach yields tighter LP bounds, better solution times and more

opportunities for model integration.
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2.1.3 Aircraft Maintenance Routing

After assigning aircraft types to flight legs, the airline has to assign the physical aircraft (or tail

numbers) to the flight legs. In other words, the airline must determine the sequence of flight legs

(route) each tail number has to fly in its daily operation. The factor that plays a key role in

determining these routes is the aircraft maintenance requirement. Hence, the problem of routing

the aircraft tail numbers in the network is also called the aircraft maintenance routing problem.

Because aircraft maintenance routing is a focus of this thesis, here we study this problem in more

detail.

Airlines are required by law to conduct periodic maintenance checks on each individual aircraft

in their fleet after a certain number of flying hours. These requirements are very strict and the

aircraft will be grounded if the airline violates them [12].

In the U.S., the first major check required by the FAA should occur at least every 60 hours of

flying. This check is called an A-check. Airlines usually perform the A-check after 40-45 hours

of flying, which translates into every 3 to 4 calendar days. An A-check involves a complete

visual inspection of all the major systems of the aircraft and requires 10-20 man-hours. B-checks

are required every 300 to 600 hours of flying and involve a more thorough inspection. C and D-

checks are the most exhaustive series of checks. They happen every one to two years and require

that the aircraft be taken out of service for about one month to go through a complete set of

visual and mechanical inspections. To ensure that A-check requirements are met, airlines have

maintenance facilities at a few airport locations across their network (usually in hubs and also

cities with a high number of daily flight departures, to maximize maintenance opportunities).

Because the number of maintenance bases is limited, airlines try to route individual tail numbers

in a way that each aircraft spends a night at one of these maintenance bases after at most 3 to 4

days of flying. Except for some special circumstances, these checks are scheduled during the

night so that aircraft utilization is not reduced. The airline aircraft maintenance routing problem

is then to find a set of routes that satisfy these A-check requirements, cover all the flights and

guarantee flow feasibility.
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According to Clarke and Smith (2000) [21], airlines have developed efficient solution procedures

(either heuristic or optimization-based) to build feasible maintenance routes.

One of the most powerful formulations to solve the aircraft routing problem is the string-based

aircraft maintenance routing model ([24]) stated as a set partitioning linear integer program. A

string is a sequence of connected flights that starts and ends at a maintenance station, satisfies

flow balance and captures maintenance requirements such as maximum flying time between

stations. The model can consider complicated maintenance requirements that are hard to capture

using leg-based formulations. The basic string-based aircraft routing model is stated as follows:

Decision variables:

x, equals 1 if string s is in the solution; 0 otherwise

equals to the number of aircraft on the ground at a maintenance station between

adjacent events e, and e2

set of maintenance strings

set of flights

set of strings ending with flight i

set of strings starting with flight i

set of ground arcs

Parameters:

Cs

a.s

N

r

pi

maintenance cost of string s

equals 1 if flight i is in string s; 0 otherwise

number of available aircraft

number of times string s crosses the count time

number of times ground arc j crosses the count time
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The objective function, as stated in Equation 2.1 is to minimize the total maintenance costs of

selected strings. Constraints 2.2 guarantee that each flight is assigned to exactly one string.

Constraints 2.3 and 2.4 are flow balance constraints ensuring that the number of aircraft arriving

at each maintenance station at any time is equal to number of aircraft departing that station.

Constraint 2.5 is the aircraft count constraint ensuring that the number of aircraft used does not

exceed the number available. Constraints 2.7 require the string variable values to be binary.

Because ground arc variables can be stated as a summation of strings variables, their integrality

is relaxed in constraints 2.6.
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Some airlines might enforce other requirements on the aircraft routes. For example, airlines like

to route aircraft tail numbers in a way that they experience equal wear and tear across the

network. One way to satisfy this requirement is to force each aircraft to fly all flights assigned to

its fleet. For a more detailed discussion about this additional requirement, interested readers are

referred to Barnhart et al. (1998) [5].

The cost of operating string s can be viewed as the aircraft maintenance cost at the beginning

and at the end of the string. But this cost is more or less similar for different combinations of

aircraft routes. Some researchers use an objective function for this problem that maximizes

through revenue. Through revenue is the incremental revenue passengers are willing to pay for

connections that do not require them to transfer between aircraft. In reality though, many of these

planned through itineraries are broken in the operation phase as a result of aircraft swapping.

Given this, the aircraft maintenance routing problem is most suitably cast as a feasibility

problem. If no feasible solution can be found for the aircraft routing problem, we must

implement changes in the fleet assignment or in the schedule.

The major disadvantage of the string-based aircraft routing formulation is the large number of

integer string variables. The solution of the LP relaxation tends to be fractional providing poor

bounds on the optimal solution. The large number of variables requires that we use column

generation at every node of the branch-and-bound tree. This leads to long solution times and

large memory requirements. Considering these disadvantages, some researches have developed

heuristics for solving the aircraft routing problem.

Feo and Bard (1989) [29] propose models to first find the optimal number and location of the

maintenance stations and then to develop flight schedules that meet the periodic four-day

maintenance routing requirement. They cast the problem as a min-cost multi-commodity network

flow problem with integer variables and solve it with a two-phase heuristic method.

Kabbani and Patty (1992) [34] propose a set partitioning formulation for the three-day aircraft

maintenance routing problem at American Airlines. In their formulation, each column represents

a weeklong route (not necessarily satisfying maintenance requirements) and each row represents
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a flight. They develop pseudo-costs to penalize routings with unfavorable characteristics, like

those that violate aircraft connection times, maintenance requirements, etc.

Clarke et al. (1996) [20] construct a flight-based formulation to solve the aircraft maintenance

routing problem. They select a group of sub-tours that cover all the flights, satisfy maintenance

requirements and maximize through revenue. They use Lagrangian relaxation and subgradient

optimization techniques to solve their model based on data from a major airline.

Gopalan and Talluri [30] present graph-theoretic approaches to solve the aircraft maintenance

routing problem to satisfy the three-day A-check requirement. They model the problem as that of

finding special Euler tours in a directed graph G = (V, E), where V represents the set of stations

where the aircraft overnights and E represents the set of lines of flying (LOF's). A LOF is a

sequence of consecutive daily flights starting and ending at stations where the aircraft overnights.

Barnhart et al. (1997) [5] present a string-based model to solve the combined fleet assignment

and aircraft maintenance routing problem. Because the number of string variables is large, they

use a branch-and-price approach to solve the integer programming formulation. Branch-and-

price is branch-and-bound with linear programming relaxations solved using column generation

at nodes of the branch-and-bound tree. Their approach eliminates the possibility of finding a fleet

assignment solution that is maintenance infeasible. They show how they can extend their model

to include additional constraints to achieve equal wear and tear on aircraft.

Finally, we note that realized routings are usually different from planned routings because airline

operations controllers use aircraft swapping as a mechanism to recover from schedule disruption

(see section 1.2 for a definition of aircraft swapping).

2.1.4 Crew Scheduling

The last step in the airline schedule planning process is to assign crewmembers to individual

flight legs. Pilots are usually certified to operate only certain types of aircraft and therefore, the
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crew-scheduling problem is solved after the solution to the fleet assignment problem is produced.

Traditionally, the crew-scheduling problem is divided into two sequential steps.

Step 1: The Crew Pairing Problem

To understand the definition of a pairing, we need to introduce another concept. A duty period is

a daylong set of consecutive flights that can be assigned to a single crew. Duty periods, or duties

are always followed by a rest period. Any duty, in order to be crew feasible, must satisfy a host

of rules. For example, there is an upper limit on the total number of hours a crewmember can fly

during a day and there is a lower limit on his/her connection time between consecutive flight

legs. A pairing is a sequence of duty periods separated by rest periods that start and end at the

same crew base (domicile) location. The duration of a pairing is usually three to four days, but it

can span from one day to multiple weeks. The crew-pairing problem can be cast as a set-

partitioning problem. The objective is to choose a subset of pairings that cover each flight leg

exactly once with minimum total cost. Although the number of possible pairings is very large (in

the order of billions of pairings for a problem with several hundred flight legs), using the set-

partitioning formulation allows us to capture non-linearities in the cost structure of pairings.

Typically, the cost of each pairing is a non-linear function of the cost of flying, of elapsed time

away from base and of minimum guaranteed pay. Another advantage of the set-partitioning

formulation is the ability to satisfy the complex work rules when generating pairings, and hence,

to eliminate the need to model them in the problem formulation.

Step 2: The Crew Assignment Problem

The objective of the crew assignment problem is to assign individual crewmembers to cost

minimizing schedules. A schedule is a month long sequence of consecutive pairings, separated

by rest periods, vacations, training, etc., that begins and ends at the same crew base.

The focus of crew scheduling research has been on the crew pairing problem, partly because of

the tractability issues associated with the crew assignment problem and partly because major cost

savings (crew costs constitute the airline's second largest operating costs after fuel costs) are
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associated with optimizing the crew pairing problem. The objective of the crew assignment

problem is typically centered around satisfying crew preferences and achieving equitable

assignments ([24]).

Some recent work in the area of crew pairing optimization includes Anbil et al. (1992) [4],
Hoffman and Padberge (1993) [33], Barnhart et al. (1994) [8], Beasley and Cao (1996) [13], Chu

et al. (1997) [18], Desaulniers et al. (1997) [28], Vance et al. (1997) [45], Barnhart et al. (1998)

[11], Klabjan and Schwan (1999) [38] and Klabjan et al. (1999) [36].

2.2 Integrated Models

In recent years, considerable amounts of research have been performed on integrating some of

the sub-problems in the sequential airline schedule planning process. Researchers have realized

that merging steps produces opportunities for improving the schedule. The existing integrated

models in the literature are formed based on one of the following strategies:

" Merging two sub-problems completely to create an integrated larger problem that fully

captures the objectives and constraints of both problems (full integration); and

* Enhancing a sub-problem model by incorporating some of the key elements of another

sub-problem (partial integration).

In Table 2.1, we summarize some of the integrated models developed to date.

Integration Level Area of Integration (
Full Partial 1 2 3 4

Clarke et al. (1996) [19]
Barnhart et al. (1998) [5]
Barnhart, Lu and Shenoi (1998) [10]
Cordeau et al. (2000) [23]
Rexing et al. (2000) [42]
Cohn and Barnhart (2002) [22]
Klabjan et al. (2002) [37]
(* ) 1: Schedule Design, 2: Fleet Assignment, 3: Aircraft Routing, 4: Crew Scheduling

Table 2.1: Some Integrated Airline Scheduling Models
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2.3 Robust Airline Scheduling

2.3.1 Robustness Definition

The concept of robust airline scheduling is based on a very simple fact: schedules are affected by

irregularities in operations, making it impossible to operate them as planned. The goal of robust

airline scheduling then is to identify irregularities that occur in the operations phase (like bad

weather, aircraft mechanical problems, passenger and crew disruptions, etc) and model them in

the planning phase. As Ageeva and Clarke state [2], using 'optimal' schedules that are not robust

to disruptions is like driving a Porsche in a street with un-synchronized traffic lights.

Two methods for achieving schedule robustness are:

" Re-optimizing the schedule after a disruption occurs during operations. This is also

known as schedule recovery; and

" Incorporating robustness into the schedule in the planning phase, before disruptions

happen.

Literature on airline recovery models is relatively rich, with a growing amount of research

performed in this area. Building robustness into the schedule in the planning stage, however, is a

subject that has little share among published research.

Lan, Clarke and Barnhart's (2003) [39] definition of a robust airline schedule is one that

possesses at least one of the following characteristics:

* It minimizes some realized cost. For example, it can minimize the expected cost or the

cost under the worse case scenario, among all possible realizations of the planned

schedule.

" It minimizes aircraft or passenger delays and disruptions.

" It is easy to recover aircraft, crews and/or passengers once disrupted.

* It isolates disruptions in the sense that it prevents system-wide propagation of

disruptions.
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2.3.2 Literature Review on Robust Airline Scheduling

Ageeva (2000) [2] proposes a method to incorporate operational considerations into the aircraft

routing problem in order to achieve robust schedules. In her model, Ageeva maximizes the

number of aircraft swap opportunities by identifying and selecting aircraft routes that meet more

than once (two aircraft routes meet if they have a common station at the same time). Once two

planes are swapped at the first meeting point, they can be swapped back to their original routes at

the second point. By making swap opportunities, Ageeva provides flexibility for planners during

schedule recovery.

Rosenberger, Johnson and Nemhauser (2001) [43] develop a robust fleet assignment and aircraft

routing model that embeds many short cancellation cycles and isolates hubs. Airline controllers

have to cancel a cycle of flights to maintain balance. Hence, it is very favorable for them if the

cycle contains the minimum possible number of flights. This is what Rosenberger et al. call a

short cycle. They also show that decreasing hub connectivity can increase the number of short

cycles in the schedule.

Schaefer et al. (2001) [44] present a heuristic approach for finding robust crew schedules. They

first find an approximate expected cost for each crew pairing, making some assumptions on the

underlying crew recovery procedure and using a simulation tool called SimAir. Using these

approximate costs, they solve the deterministic crew pairing problem. Because operational crew

costs can be as much as eight to ten times as the planned costs, they argue it is essential that crew

solutions identified in the planning stage perform well in practice.

Yen and Birge (2001) [46] develop a two stage stochastic integer-programming model to solve

the crew pairing problem. They devise a methodology to integrate disruptions into the evaluation

of crew pairings. They also present a branching algorithm using the structure of the problem that

branches on several variables at the same time.

Chebalov and Klabjan (2002) [17] present a planning model and a solution methodology to

produce more robust crew pairings. Besides the objective of minimizing usual crew costs, they
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introduce the objective of maximizing the number of move-up crews, that is, the number of

crews that can potentially be swapped in operations. They use a Lagrangian decomposition

technique to solve their model, but they do not present a method to evaluate the robustness of the

new crew pairing solution.

Kang and Clarke (2003) [35] develop a methodology to create airline schedules that are easier to

recover when disruptions occur. They partition the airline's flights into distinct groups or layers.

Each layer is isolated from the other layers in the sense that delay produced and propagated in

each layer will not impact other layers. They claim that airlines can use this idea to prioritize

their flights based on the layer to which they belong and simplify recovery operations. When

resources become limited due to weather problems for example, the airline will recover layers in

sequence, first recovering the layer with highest priority.

Lan, Clarke and Barnhart (2003) [39] develop a robust aircraft routing model to minimize the

expected delay propagated along aircraft routes. Column generation and a specialized branch-

and-bound technique are used to solve their mixed integer programming formulation. They also

propose a flight departure retiming model with the objective of minimizing the expected number

of passenger misconnections. They use data from a U.S. major airline to calibrate and evaluate

their models.
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Chapter 3

Robust Aircraft Routing with Time Windows to Minimize

Total Expected Propagated Delay

3.1 Flight Delay and its Components

Flight delay can be broken into two components:

* Propagated delay (PD): Propagated delay is the component of flight delay caused by

waiting for incoming aircraft. In other words, propagated delay is a function of aircraft

routing.

* Independent delay (ID): Independent delay is caused by any reason except previous

operations and is not a function of routing. Several factors can cause independent delays

including bad weather, aircraft mechanical problems and Ground Delay Programs (GDP).

For example, when airlines schedule more arrivals than an airport's capacity, FAA's Air

Traffic Control System Command Center (ATCSCC) will issue Controlled Times of

Arrival (CTA's) to each flight, causing some flights to have arrival delays. This kind of

flight delay is independent of the history of previous operations and is referred to as

independent delay. In section 3.2.3, we will discuss a method to calculate the value of

independent delay for each flight.

In the next section, we will study propagated delay in detail. This component of flight

delay is a major element of our first model.
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3.2 Propagated Delay

3.2.1 The Resources Involved in Flight Delay Propagation

An airline schedule is an interwoven schedule of aircraft, crews and passengers. The rules

governing an aircraft's routing schedule are different from the rules governing a crewmember's

monthly schedule. An aircraft tail number must overnight in a maintenance station after a certain

number of flying hours, and airline schedulers tend to route aircraft to guarantee equal wear and

tear across the fleet. The time it takes for a specific tail number to visit a city again can exceed a

month in some cases. On the other hand, crew and flight attendants return to their home city

(crew base) after a limited amount of time, and strict work rules and regulations for pilots and

flight attendants must be satisfied by every crew schedule. For example, every crewmember

needs a minimum amount of rest period after a certain amount of flying time.

For the reasons mentioned above, airlines don't typically keep aircraft and crew together at all

times, and hence a late arriving flight can affect many other flights that use the aircraft and crew

or transport connecting passengers of the late arriving flight. In other words, aircraft, crew and

passengers are three major elements that can cause and/or escalate flight delay propagation.

3.2.2 The Domino Effect

It is typical that flight delays exhibit a "domino effect"; once they begin (particularly if they

occur early in the day), they propagate to other parts of the network.

Figure 3.1 shows the domino effect of flight delay propagation. Arrival delays for flights in our

airline's data set are averaged for each one-hour time window on August 3 1st, 2000. Airline

operations controllers, well familiar with this propagation effect, try to curtail its effects as early

as possible to limit the number of disrupted passengers and crews, and control the number of

flight cancellations. There are not many recovery choices for passengers disrupted late in the
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day, causing them to overnight at the disruption location. This translates into additional

passenger recovery costs and loss of passenger goodwill.
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Figure 3.1: Average flight delay increases by time of day

3.2.3 Quantifying the Propagated Delay

Any non-stop flight leg f is identified by its flight number, origin and destination airport,

planned departure time (PDT) and planned arrival time (PAT). Actual flight departure and arrival

times are almost always different from their scheduled times. Hence, ADT and AAT denote the

actual departure and arrival times, respectively. Total arrival delay (TAD) is then calculated as

follows:

TAD = max((AAT - PAT),O) (3.1)

According to our definition, negative delay is regarded as zero. Also note that TAD is composed

of two parts: propagated delay (PD) and independent delay (ID).
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TAD = PD+ ID

We define the planned turn time (PTT) as the difference between the incoming flight's PAT and

the outgoing flight's PDT.

PTTu = PDT - PAT (3.3)

Minimum turn time (MTT) is the minimum time required to turn the aircraft. Slack time is the

difference between PTT and MTT.

Assume that in Figure 3.2, flights i and j are performed with the same aircraft. There's a delay

transferred (propagated) from flight i to flight j only if the arrival delay of flight i is greater

than the slack time between i and j. Hence:

Slack. = PTT -MTT

TAD. < Slack, .=PDY = 0

TAD > Slack, -> PDU = (TAD - Slack,)

and,

PDU = max(TAD, - Slack. , 0)

(3.4)

(3.5)

Therefore, if we are given the arrival delay of the incoming flight (i) and the slack time between

flights i and j, we can calculate the propagated delay from flight i to j. The arrival delay of

flight i in turn is a combination of the propagated delay transferred to flight i from its

predecessor flight in the route of the aircraft assigned to i and the independent delay of flight i

(ID).
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Figure 3.2: Illustrating the propagated delay

From Equation 3.5, increasing slack time between flights can absorb delay. Airlines, however,

are not willing to put large amounts of slack in their schedules because it results in decreased

aircraft utilization. A schedule with tightly scheduled flights, although achieving high aircraft

utilization, is, however, vulnerable to delay propagation and schedule disruptions. Many

optimization models are formulated to maximize the planned throughput or productivity of a

system, but in doing so, they make the system less robust to disruptions. In operations, the

system has to pay the extra cost incurred as a result of being less robust, and this extra cost might

outweigh the anticipated savings of an optimized plan.

The above argument is summarized in Figures 3.3-a and 3.3-b. In any system, increasing

redundancy will increase robustness. In an airline schedule, we can increase redundancy by

increasing slack times, scheduling more reserve crews, maintaining more spare aircraft in the

network, etc. For the purpose of the model we develop in this chapter, redundancy is equated

with slack time.
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Figure 3.3-b: Redundancy vs. cost

Direct costs increase and indirect costs decrease with increasing redundancy. For an airline, the

direct costs incurred as a result of increasing slack times are the cost of lower aircraft utilization

and the indirect costs are primarily passenger and crew recovery costs. The challenge is to

provide the system with enough redundancy (or enough robustness) to minimize total realized

costs.
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3.2.4 Flight Delay vs. Passenger Delay

Bratu and Barnhart (2004) [15] perform an intensive study on airline passenger delays and

conclude that there is a major difference between flight delay and passenger delay, and with

flight delays underestimating passenger delays in most cases. Using a Passenger Delay

Calculator algorithm (PDC), they observe for a major U.S. airline in August 2000 that average

flight delay is 15.4 minutes, while average passenger delay is 25.6 minutes. This difference is

explained by passenger disruptions. Recall that a passenger is disrupted if at least one of his/her

flight legs is cancelled or if he/she does not have enough time to connect between his/her

scheduled flights (that is, they misconnect). For the majority of airline passengers who are not

disrupted, average passenger delays are about equal to average flight delays. But the small

fraction of passengers who are disrupted, experience long delays, accounting for 39% of all

passenger delay minutes (Table 3.1).

Table 3.1: Delay of disrupted and non-disrupted passengers

Not only do flight and passenger delays not equal, there is not even a clear correlation between

them. In other words, higher levels of flight delays and cancellations do not always translate into

higher levels of passenger delays. Bratu and Barnhart (2004) [15] compare two days during

August 2000 for a major U.S. airline (August 1st and August 2 nd) and show that although day 2

has a higher average flight delay and cancellation rate than day 1, it has shorter average delays

for disrupted passengers (Table 3.2).
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Passenger type Average delay % Passengers % Total passenger delays

Disrupted 303 minutes 3.2% 39

Non-disrupted 16 minutes 96.8% 61



Table 3.2: Disrupted passenger delays vs. flight delays

To illustrate why flight delays and passenger delays are not always correlated, consider the

example in Figure 3.4. Suppose we have two aircraft, one on route 1 and one on route 2. Also

assume that both of these aircraft routes have a large amount of propagated delay. As a result,

flights f and g both experience a relatively long total arrival delay (TAD). Passengers

scheduled to connect from flight f to flight g can still make their connection, with relatively

little delay. Now compare this scenario with another scenario where only aircraft route 1 is

delayed and all flights on route 2 are on time. In this case, passengers connecting from flight f
to flight g misconnect and experience relatively long delays.

Scheduled & Aircr aft route 1

Actual Aircraft route 2 TAD2

TAD 1

Figure 3.4: Passengers miss their connection because of a difference in relative flight delay

The above discussion highlights that flight and passenger delays are not always positively

correlated. Hence, minimizing flight delays does not always result in minimized passenger

delays. We use this objective, however, as a proxy for achieving minimized passenger delays.

Although not an exact representative of passenger delay, high levels of average flight delay

generally correspond to high levels of average passenger delay and high numbers of disrupted
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Day Average flight Cancellation rate Average delay of disrupted

delay (minutes) passengers (minutes)

1 9.5 1.0% 495

2 40.4 8.1% 334



passengers (Figure 3.5). The values of passenger delay and disrupted passenger percentages are

calculated using PDC (Appendix I) for our airline during August 2000. We evaluate the

effectiveness of this proxy by measuring the actual change in passenger delay we achieve using

the solution to our model.
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Figure 3.5: In most cases, flight and passenger delays track one another

3.3 Methodology

3.3.1 Retiming Flight Departures and Changing Routes

One way to reduce propagated delay is to increase slack time between selected pairs of

consecutive flights and to reduce it elsewhere. Assume that flights f, and f 2 are consecutive

flights in aircraft routing s and flights f 3 and f 4 are two different consecutive flights in the

same routing. Also assume that historical delay data shows that flight f, is on average late (f')

and its average arrival delay is larger than the current slack time between f, and f 2 . Flight f 3 ,

however, is on-time on average and the slack between flight f3 and flight f 4 is seldom needed.

In this case, reducing slack time elapsed between flights f3 and f 4 and increasing it by an equal
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amount between flights f, and f 2 can reduce delays and improve robustness without increasing

the time length of aircraft route s. To achieve this, we push earlier the planned departure of

flight f, and push later the planned departure of flight f 3 , as shown in Figure 3.6.

MTTr

Figure 3.6: Illustration of the re-timing idea

Changing aircraft routings is another approach for improving schedule robustness. To illustrate

the idea, consider Figure 3.7. Assume that flights f, and f2 are consecutive flights in aircraft

routing si and flights f3 and f4 are consecutive flights in aircraft routing s2 . Historically, f,
arrives late and delays the downstream flight, f 2 , while f3 historically arrives on time on the

average. By re-routing aircraft to include flights f, and f 4 in the same route, and flights f 3 and

f 2 in another route, we can create new, more robust routings in terms of flight delay

propagation.
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Figure 3.7: Illustration of the re-routing idea

We use these ideas in our model,

more robust routing solutions.

described in Section 3.4, to distribute slack times and generate

3.3.2 Time-Space Network

Underlying our model is a directed time-line network. The arc set in this network corresponds to

the set of flights and the set of ground arcs allowing aircraft to wait at airports between flights.

The node set corresponds to either a departure or an arrival of a flight. The time corresponding to

a departure node is Planned Departure Time (PDT) and for arrival nodes is the Planned Arrival

Time plus the minimum aircraft turn time (PAT + MTT). Ground arcs connect two consecutive

nodes at a single location and include the wrap-around (or overnight) arc that connects the last

node to the first node in any location. In our implementation, the duration of the time-line

network is three days and wrap-around arcs connect the last node of day three to the first node of

day one. We select a point in time, called the count time, to count the total number of aircraft of

each type in the system (either on the ground or in the air). To minimize computation efforts, the

count time is usually chosen to coincide with the time at which the maximum number of aircraft

is on the ground (Barnhart et al. (1997) [5]). In Figure 3.8, we illustrate a schematic time-line

network.
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Figure 3.8: Illustration of the time-line network

Flight copies

To model flight departure re-timing in our formulation, we use theflight copy concept. A copy of

a flight arc is a new flight arc in the time-space network parallel to the original flight arc,

indicating a different departure time for that flight. Flight copies are generated in a short time

window so that flight leg demands remain unchanged. In our formulation, we consider 5 copies

of each flight leg in 5-minute intervals, as shown in Figure 3.9. We then add a constraint to

ensure that among different copies of the same flight leg, exactly one is selected in the optimal

solution.

t -1 0 t4-5 ti tl+ 5 t +10

NN t1 :PDT

N ~ t2 :P.AT

t2 -- 10 t2-5 t2 t2 + 5 t2 +10

Figure 3.9: Illustration of flight copies
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3.3.3 String-Based Formulation

We use a string-based formulation to solve our model. According to Barnhart et al. (1997) [5], a

maintenance string, or more succinctly a string, is defined as a sequence of connected flights

such that:

" It starts and ends at one of the airline's maintenance bases

" It satisfies flow balance, that is, the origin of the (j+ 1)'h flight in the string is always the

destination of the jth flight for any j>1.

* It is maintenance feasible, that is, it satisfies all FAA and airline requirements such as

limits on the total or daily flying times, limits on the maximum number of days between

maintenance, etc.

3.3.4 Calculating the propagated delay for a given string

We generate a large number of feasible strings and then solve our robust aircraft routing and

flight departure re-timing model as a set partitioning problem with side constraints. The

attractiveness of a given string is measured by it total expected propagated delay.

In section 3.1 we introduced the two components of flight delay, namely independent delay and

propagated delay. According to our definition, independent delay refers to that part of flight

delay that is independent of aircraft routing. In light of this property, we use the following

algorithm to calculate the total expected propagated delay of a given string.

Algorithm 1: Calculating independent and propagated flight delays

1. For each day j in a selected period of time:

a) Construct the planned aircraft routings.

b) For each routing on day j, calculate the propagated delay for each flight in the

routing:
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PD/_11 = max(TAD_,J§ - slack/ 1,0) Vi e {2,...,m} (m

flights in the route).

c) For each routing, calculate the independent arrival delay for each flight in the

routing. Let:

IAD|= TAD/,

IAD, = TAD, - PD,_, Vi e {2,...,m}.

In
2. Let E[IAD,]-I IAD| , in which n is the number of days flight i

n j=1
is operated during

the time period.

3. For a given string, calculate the total arrival delays and propagated delays as follows:

for the first flight of the string, let: E[TAD,] = E[IAD1 ], and

for all other flights, let: E[PD,_ ] = max(E[TAD,_] - slack,_ ,0), and

E[TAD,] = E[TID,] + E[PD 1, ], Vi e {2,..., m}.

4. Finally, the expected total propagated delay of string s is equal to
m
Z E[PDAL].

3.4 Problem formulation

3.4.1 Notation

Before presenting our model to determine flight departure times and aircraft routings that

minimize delay propagation, we define relevant decision variables, sets and parameters.

Decision variables:

f nequals 1 if copy n of flight i is in the solution; 0 otherwise

zS equals 1 if string s is chosen; 0 otherwise

yk number of aircraft of type k on the ground before time t at maintenance station

m
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ym~ .number of aircraft of type k on the ground after time t at maintenance station m

Ygk number of aircraft of type k on ground arc g

Sets:

Sk set of strings for fleet type k

F set of flights

I set of connecting itineraries (composed of flight leg i followed by flight leg j)

G set of ground arcs

I(m, k, t) set of strings of aircraft type k terminating at maintenance station m at time t

O(m, k, t) set of strings of aircraft type k commencing at maintenance station m at time t

C set of copies of flight leg i

M set of maintenance stations

K set of fleet types

T set of string departure or arrival times at maintenance stations, indexed by order

of increasing time

Parameters:

E[PDJ] the expected amount of delay propagated from flight i to flight j in string s

as, equals 1 if flight i copy n is in string s; 0 otherwise

Nk number of available aircraft of type k

Pg number of times ground arc g crosses the count time

r, number of times string s crosses the count time

PDT, planned departure time of flight i copy n

PATn planned arrival time of flight j copy n

MCT Minimum (passenger) Connection Time
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3.4.2 The Model

min E EE[PD ]z,
sES (i,j)Es

Subject to

Vi e F,Vn e C,

- z, + Z S Ym,k,t + Ym,kt+ = 0

seI(m,k,t) sEO(m,k,t)

rSzS + IPgYgk Nk
SESk gEG

nEC,

I fjnPDTn - JfnPAT_ > MCT
neC1  neC

zS e {0,1}

0 <i 1

Yg,k 0

Vm e M,Vk e K,Vt e T

VkeK

Vi eF

V(ij) e I

Vs e S

Vi e F,n c C

Vge G, Vk e K

The objective function (Equation 3.6) is to minimize the total expected propagated delay of the

selected strings. Constraints 3.7 guarantee that a string is selected if and only if all the flight

copies in that string are selected. Constraints 3.8 are aircraft flow balance constraints, ensuring

that the number of aircraft of type k flowing into and out of every maintenance station m at each
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time t is the same. Constraints 3.9 are aircraft count constraints that guarantee the number of

aircraft of type k used at the count time does not exceed the total number of type k aircraft

available. Constraints 3.10 are flight coverage constraints. They ensure that for any given flight,

exactly one flight copy is chosen. Constraints 3.11 prevent choosing flight copies that do not

include sufficient connection times in passenger itineraries. Constraints 3.12 require string

variables to be binary. Note that because all f variables can be written as the sum of binary z

variables, their integrality is ensured by integrality of z. Hence, constraints 3.13 bound f

variables between 0 and 1. Finally, constraints 3.14 guarantee that the number of aircraft of type

k on the ground is non-negative for each fleet type. Again, integrality of these variables is

guaranteed by integrality of the z variables.

3.5 Implementation

Data

We generate string variables using the domestic flights included in our airline's schedule for

August 31s, 2000. Each string's expected propagated delay is calculated based on the airline's

schedule performance during July 2000, as extracted from the Airline Service Quality

Performance (ASQP) database. Because some of the flight legs operated on August 31s', 2000

were not operated on all days in July 2000, we calculate average delays based on the number of

days each flight is operated.

Assumptions

We made the following assumptions in order to build and implement our model:

1) In constructing flight strings, minimum and maximum aircraft turn times are assumed to

be 20 minutes and 1 hour, respectively.

2) Aircraft maintenance checks are carried out during the night. Hence, to limit the

generation of inefficient strings, all strings start before noon and end after 4pm.

3) All maintenance strings are one, two or three days long.

4) Independent flight delays are the same for different copies of the same flight leg.

5) Passenger itinerary demands are constant for different copies of the same flight leg.
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Computational Environment

All data preprocessing was performed in the Java object oriented programming environment. We

created a Java class called NetworkModel, which is responsible for first reading ASQP data and

then instantiating the necessary Node, Flight and Arc objects that constitute the topology of the

underlying time-line network. An instance of this NetworkModel is then passed to another class

called StringModel, which generates a specified number of different MaintenanceString objects

in a random fashion. A final Main class is responsible for communicating between these classes

and constructing the necessary vectors and matrices to run the optimization model.

The model is implemented in OPL Studio as a Mixed Integer Program (MIP). The input file is

constructed to take advantage of the sparse nature of the constraint matrix.

Problem Size

The network, composed of 1075 flights, is operated by at least four different major fleet types.

Considering the large number of flight copies and string variables in our model, we decompose

the problem by fleet type. In doing so, we relax minimum connection times (constraints 3.11). In

our analysis, we consider the Boeing 757 fleet because of its manageable network size. After

solving the model and obtaining the flight departure times, all passenger itineraries are evaluated

to determine if any passenger connection times are less than the minimum allowed time. If so,

for any itinerary with violated connection time, a new constraint is added to the model (in the

form of constraints 3.11), the model is re-solved, and the process is repeated until all passenger

connection times are legal.

Because the number of feasible maintenance string variables is very large (in the order of

hundreds of millions) even for the single fleet type sub-network that we consider, it is

computationally intractable to generate all of these strings and cast them into the model. Column

generation can be used, starting with only a subset of the strings and generating strings as needed

by solving pricing sub-problems successively. We have avoided such an approach in this thesis.

Instead, we generate about 10,000 string variables and solve the resulting model. Hence, we do

not guarantee that we generate optimal solutions to our model. Our goal, in fact, is to compare

the behavior of the schedule we generate to that of the original airline's schedule.
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The size of the problem we consider is summarized in Table 3.3.

Table 3.3: Problem size

Generating Strings

We generate strings of length one day, two days and three days. Before describing the algorithm

to generate strings, we provide the following definitions:

Predecessor Node

Node i is said to be node j's predecessor if there is an arc connecting node i to node j. In

Figure 3.10, nodes i1, i2 and i3 are predecessors of node j.

Figure 3.10: Illustration of a node's predecessors

Source and Sink Nodes

Every node (n) in the time-line network is defined by three properties: location (n,), day

(nad) and time of day (n,). A node n is defined to be a source node, the starting node of a

string, if n, e M ,nd=1 and n,<12:00, in which Mis the set of maintenance stations.
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Network size Model size

Daily flights 98 String variables 10,000

Flight copies 1,470 Flight copy variables 1,470

Nodes 2,940 Ground arc variables 2,939

Arcs 33,518 Constraints 2,373



Similarly, a node n is defined to be a sink node if n, e M and n,>16:00 (nd can be 1,2 or

3). The algorithm to generate strings is thus as follows:

Algorithm 2: Generating strings

Let n =0.

Set string = 0.

Select a random sink node s, set current = s.

Add current to the string.

No Does s have a
predecessor node?

Yes

Select one of the predecessor nodes of current, say node i, randomly.

Add current to the string. Set current = i.

Is current a source No
node?

4Yes
Is string generated Yes

before?

No

Store string and let n = n+1

Is n=10,000?

Yes

End
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Every string is stored with its associated unique key number. This prevents storing duplicate

strings in the set of maintenance strings. The above algorithm, tested in Java, created hundreds of

thousands of strings in less than five seconds.

3.6 Results

Impact on Flight Delay

Using July 2000 data, we compute the model's parameters and solve the model to generate flight

departure times and aircraft routings. We then generate the actual departure and arrival times of

all Boeing 757 flight legs during August 2000, based on the new aircraft routings and flight

departure times. Our model's parameters are determined using July 2000 delay information

because in practice a model must be calibrated using historical data and then be applied to future

operations. Algorithm 3 details this procedure.

Algorithm 3: Re-generating actual departure and arrival times

1) Determine the independent departure delay (IDD) and independent arrival delay (IAD)

for each August 2000 flight leg based on delay data for July 2000.

2) Determine the new total departure delay (TDD) and total arrival delay (TAD) for each

flight leg according to the new routings and flight departure times generated by our

model, as follows:

a) For the first flight j in any string, TDDj = IDDJ and TADj = IADJ.

b) For all other flights in the string, TDDj = IDDJ + PDy and TADj = IADj + PDij,

where flight i is the flight immediately before flight j in the string and PDY is

the new propagated delay associated with our new routings and planned flight

departure and arrival times.

3) Determine the new actual departure and arrival times for each flight leg j as follows:

" ADTj = PDT+TDDj

" AATj=PAT+TADj
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With the new actual departure and arrival times, we calculate the total propagated delay of our

new strings. We then compare the total monthly propagated delay of our new aircraft routings for

August 2000 with that of the planned August 2000 aircraft routings used by the airline. The

results are summarized in Table 3.4. Column Old PD indicates the total monthly propagated

delay based on the original August 2000 routings. Column New PD without flight copies

indicates the total monthly propagated delay of the August 2000 routing solution suggested by

our revised model in which flight departure retiming is not allowed (that is, we do not include

more than one copy of any flight leg in our model). Column New PD with flight copies indicates

the total monthly propagated delay of the August 2000 routing solution for the case in which we

allowed flight departure re-timing.

Old PD New PD without % of PD New PD with % of PD

flight copies reduced flight copies reduced

14,690 8,279 43.64% 7,816 46.79%

Table 3.4: Propagated delays for August 2000, Boeing 757 fleet type

Using flight copies in the model reduces flight delays only 3.15% compared to the case where no

flight copies are considered as illustrated in Table 3.4. This suggests that adding the flight copies

to the model might not be worthwhile given the small decrease in total propagated delay and the

relatively large computational complexity introduced with the additional flight copies.

Because we do not use column generation, the routing solution we obtain is not guaranteed to be

optimal. To produce improved solutions, we ran the model 5 times; each time using 10,000

randomly generated strings. We then selected the best solution. This resulted in obtaining

solutions that reduced the August 2000 propagated delay for both re-routing-and-re-timing and

re-routing-only scenarios by about 3-5%.
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Impact on Passenger Delay

We investigate the effects of our new aircraft routings and departure times on passenger delays

and disruptions. After calculating the new actual flight departure and arrival times using

algorithm 3, we use PDC (Appendix I) to estimate the values of passenger delay for the old and

new plans. We summarize the results for the entire month of August 2000 in Table 3.5. We

believe that applying our model to all fleet types instead of only one single fleet will result in

larger reductions in passenger delays and disruptions.

Old New % reduction

Total passenger delay minutes 68,578,419 66,795,380 2.6%

Total number of disrupted passengers 91,489 90,391 1.2%

Table 3.5: Old and new passenger delays and disruptions

It is important to note that the total passenger delay minutes and total number of disrupted

passengers are likely overestimated for the new routing and flight departure time solution. In our

analysis, we assume that if a flight is cancelled in actual operations, it is cancelled in our new

simulated operations as well. We expect, however, the cancellation rate to decrease as a result of

the flight delay reductions achieved by the new plan.
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Chapter 4

Designing Robust Airline Schedules that Minimize Expected

Passenger Delay

In this chapter we present two robust airline scheduling models to decrease expected passenger

delays. The model presented in section 4.2 is an integrated flight departure re-timing and aircraft

routing model that minimizes the expected number of misconnecting passengers. Like the model

presented in the previous chapter, this model extends the model proposed by Lan, Clarke and

Barnhart (2003) [39]. The model presented in section 4.3 is a flight departure re-timing model,

based on the idea of providing potential misconnecting passengers with alternative recovery

options. In this chapter, we introduce our ideas and models and illustrate the underlying concepts

with examples.

4.1 Misconnecting Passengers

In both models presented in this chapter, we focus on misconnecting passengers. In this section,

we argue the importance of paying attention to disrupted passengers and then we perform

analysis related to the proportion of disrupted passengers represented by misconnecting

passengers.

In section 1.2, we observed that passengers are disrupted either because one (or more) of their

flight legs is cancelled or because they have insufficient time to connect between their scheduled

flights. As we stated, although disrupted passengers constitute a tiny fraction of the total

passengers (less than 5%), they account for more than one third of the total passenger delay

minutes for our airline (Bratu and Barnhart (2004) [15]). Not only do disrupted passengers suffer

from delays, they inflict costs on the airline. The airline has to re-book them on other flights and

in some cases, must pay for their hotel and meal voucher expenses. A second cost associated

with passenger disruption is the loss of "passenger good will". A business passenger, who paid a

63



premium ticket price and missed a business meeting as a result of disruption, might choose

another airline the next time he/she flies.

Disrupted passengers suffer relatively long delays, incur extra costs and might not come back.

Hence, minimizing the number of disrupted passengers can be a good objective function choice

in trying to build robust airline schedules.

During August 2000 for our airline, only 34.3% of the disrupted passengers misconnected (type

D2), and the rest 65.7% were disrupted as a result of fight cancellation (type Dl), as shown in

Table 4.1. This follows because passengers disrupted by flight cancellation are disrupted in bulk

numbers, while the number of passengers traveling on a specific disrupted connecting itinerary is

typically small. According to Bratu and Barnhart (2004) [15], "when a flight cancellation occurs,

an average of 81.0 passengers get disrupted, while only 3.4 passengers are disrupted per missed

connection". The result is that the delays of type DI and type D2 passengers represent 59.7%

and 40.3%, respectively, of the total disrupted passenger delay (Table 4.2).

Disrupted passenger type Disruption cause Percentage

DI Flight cancellation 65.7%

D2 Misconnection 34.3%

Table 4.1: Flight cancellation causes the majority of passenger disruptions

Disrupted Disruption cause % of the total disrupted

passenger type passenger delay minutes

DI Flight cancellation 59.7%

D2 Misconnection 40.3%

Table 4.2: The largest source of passenger delay is flight cancellation
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Given that more than two thirds of the disrupted passengers are of type Dl, a valid question is

why don't we try to minimize their number instead of number of D2 passengers? Or, why don't

we try to minimize the potential number of flight cancellations? The answer is that minimizing

flight cancellations does not result in a policy that minimizes passenger delay. In Fact, flight

cancellations can be an effective mechanism for reducing passenger delay, when the appropriate

flight legs are cancelled. Rosenberger, Johnson and Nemhauser (2001) [43] provide a short cycle

algorithm to facilitate cancellations and mitigate their impacts on passengers.

Another issue with trying to minimize the number of flight cancellations in planning is that in

many cases, canceling a flight is unavoidable due to the presence of inclement weather, aircraft

mechanical problems or crew unavailability.

4.2 Robust Aircraft Maintenance Routing with Time Windows:

Minimizing the Total Expected Number of Misconnected

Passengers

4.2.1 Basic Idea

Lan, Clarke and Barnhart (2003) [39] present a flight departure re-timing model to minimize the

total expected number of misconnecting passengers. They ensure that the solution of their re-

timing model does not violate the aircraft routing plan. We present a formulation that combines

their model with a string based aircraft routing model allowing aircraft routes to be changed

simultaneously with the flight departure times. Our goal is to generate a schedule resulting in

lower expected numbers of misconnected passengers.

The basic idea of Lan, Clarke and Barnhart's model is illustrated in Figure 4.1. Suppose there are

100 passengers connecting from flight f, to flight f 2 . The head of the arcs in this figure

correspond to the flight arrival time plus the 30-minute aircraft minimum turn time (MTT). For

simplicity, we assume that the minimum passenger connection time (MCT) is also 30 minutes.
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Assume that 70% of the time the arrival time of flight f1 plus MTT is between t4 and t2 . Hence,

because we have assumed MTT = MCT, 70% of the time passengers make their connection on

this itinerary, and with probability 0.3 passengers miss their connection. Also assume that 20%

of the time, the arrival time of flight f, plus MTT is larger than t3 = t2 ±10 minutes. Hence, if in

the planning stage, we postpone the departure of flight f2 from t2 to t 3 we can decrease the

misconnection probability by 10%. In other words, the expected number of misconnected

passengers decreases from 30 to 20.

-f2  -2o
tt

t2 t2

Figure 4.1: Adding slack can decrease misconnection probability

Another way to decrease the misconnection probability is to move earlier the departure time of

flight f, . Although adding slack to every passenger connection can be effective in decreasing the

number of misconnected passengers, it results in reduced aircraft productivity. The challenge

then is to add slack to passenger connections where the misconnection probability is high and to

remove it where the misconnection probability is low. The goal is to determine a revised

schedule that can be operated with the same number of aircraft, but allows fewer expected

numbers of misconnected passengers.

Combining aircraft routing decisions with flight re-timing decisions gives us more flexibility to

move slack in the network. This fact is illustrated in Figure 4.2. Assume that passengers connect

from flight f3 to flight f4 . Also assume that according to historical data, flight f3 has relatively

long average delay, causing a high misconnection probability for passengers connecting from f 3

to f 4 .
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Figure 4.2 Combined re-routing and re-timing can be more effective

One approach to decrease the expected number of misconnecting passengers is to re-time flight

legs f3 and f4 . If , however, there are limitations on moving the departure times of flights f3

and f4 , so that retiming alone does not sufficiently increase passenger connection time, it is

advisable to also adjust the up-stream routing of flight f3 . If we change the routing of flight leg

f 3 from f2 - f 3 to f, - f 3 , we can decrease the misconnection probability for passenger itinerary

f3 - f4, if routing f, - f 3 has less propagated delay than routing f 2 - f 3 .

To calculate the expected number of misconnected passengers for each passenger itinerary, we

begin by generating flight copies, to create new passenger connection opportunities. Let X ;" be

a binary variable equal to 1 if the passenger connection consisting of flight i copy n and flight

j copy m is in the solution and zero otherwise (Figure 4.3). Also, let ny be the number of

passengers connecting from flight i to flight j. Then, we represent number of passengers who

miss their connection on this itinerary copy, denoted dp;", as:

n, with probability p

dp;"'= (4.1)

0 with probability 1-p

The probability p can be determined as follows:
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p = prob(ADTIm - AA Ti < MCT), (4.2)

where ADTm is the actual departure time of flight j copy m and AA I, is the actual arrival

time of flight i copy n.

i~

Figure 4.3: Generating flight leg copies creates passenger connection opportunities

Once the aircraft routes are known, ADT and AA T of each flight can be calculated using the

approach introduced in algorithm 3 of chapter 3. For example, if for 5 days out of 30 days during

July 2000, ADT,m - AA i is less than the minimum passenger connection time, we let p equal

to 5/30 for the itinerary composed of flight copies fi,n and fjm. In our model, however, aircraft

routes are not known in advance. To calculate the probability p, we propose approximate

procedures. The probability that passengers miss their connection is a function of the passenger

planned connection time (PCT) and also the delays of incoming and outgoing flights, which in

turn are a function of preceding operations. Using historical operations data, we compute the

probability of misconnection as a function of the PCT in a specific location. In Figure 4.4, we

illustrate the misconnection probability at one of our airline's hubs in August 2000.
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Figure 4.4: Misconnection probability as a function of PCT

For the purpose of our model, we compute misconnection probabilities for each bank during the

day at each hub, using historical data (if enough data is available), or based on simulation.

Typically, the misconnection probability is greater for later banks, even with similar passenger

planned connection times. This is due to delay propagation, as illustrated in Figure 4.5.

SI- Bank 1, a.m.
- - -Bank 2, midday

Bank 3, p.m.

0 mt

Planned Connection Time (PCT)

Figure 4.5: Misconnection probability as a function of PCT for banks at different times in the
day
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Using these estimated probabilities, the misconnection probability p of an itinerary X"M can be

readily calculated, and the expected number of disrupted passengers for the itinerary composed

of flight copies f, and fj,, can be calculated as:

E[dp' ]= px n. (4.3)

4.2.2 Notation

The notation used in this model is very similar to the notation used for our previous model in

chapter 3. We introduce new sets, parameters and passenger connection decision variables to

allow us in formulating our new model.

Decision variables:

f nequals 1 if copy n of flight i is in the solution; 0 otherwise

zS equals 1 if string s is in the solution; 0 otherwise

ymkt number of aircraft of type k on the ground before time t at maintenance station

m

y +

Yg,k

yi n
x."'

number of aircraft of type k on the ground after time t at maintenance station m

number of aircraft of type k on ground arc g

equals 1 if copy n of flight i and copy m of flight j are in the solution; 0

otherwise

Sets:

set of strings of fleet type k

set of flights

set of flights from which passengers connect
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F0  set of flights to which passengers connect

I set of connecting itineraries

G set of ground arcs

I(m, k, t) set of strings of aircraft type k ending at maintenance station m at time t

O(m, k,t) set of strings of aircraft type k starting in maintenance station m at time t

C, set of copies of flight i

M set of maintenance stations

K set of fleet types

T set of string departure or arrival times at maintenance stations, indexed by order

of increasing time

Parameters:

E[dp/'] expected number of disrupted passengers on the connecting itinerary consisting of

flight i copy n and flight j copy m

a~n equals 1 if flight i copy n is in string s ; 0 otherwise

Nk number of available aircraft of type k

Pg number of times ground arc g crosses the count time

r, number of times string s crosses the count time

PDI, planned departure time of flight i copy n

PA Tj, planned arrival time of flight j copy n

MCT Minimum (passenger) connection time

4.2.3 The Model

min E[dp;m ]x|;" (4.4)
iEF" nEC, jEF'mEC
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Vi e F,Vn e C,

- IZs + Zs - ymk, + Ymkt = 0
seI(m,k,t) seO(m,k,t)

r, z
SESk

+Z Pgygk Nk
geG

f,nPDT ,n
neC

I fZnPATn MCT
neC,

Ijn =1
neC,

V(i, j) e I, Vn e C,fI,n = x;'
meC1

fm = x
neC

Os f,n < 1

0 x< 1

V(i, j) I, Vm E C

Vi e F,nE CC

V(i, j) EiI,VncE C, Vm E C

Vs E S

Vg e G,Vk E K
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Subject to

f an I (4.5)

Vm e M,Vk e K,Vt (4.6)

VkeK (4.7)

V(i,j) e I (4.8)

VieF (4.9)

(4.10)

(4.11)

(4.12)

zs E {0,1}

Yg,k > 0

(4.13)

(4.14)

(4.15)



The objective function of this model (Equation 4.4) is to minimize the total expected number of

disrupted passengers. Constraints 4.5, 4.6, 4.7, 4.8 and 4.9 are the same as the corresponding

constraints in our model in chapter 3, ensuring compatibility of flights and strings, flow balance,

aircraft count, passenger connection feasibility and flight coverage respectively (refer to section

3.4.2 for more discussion). Constraints 4.10 and 4.11 guarantee that a passenger connection is

selected if and only if both of its constituent incoming and outgoing flight copies are selected.

Constraints 4.12 to 4.15 are non-negativity and integrality constraints. Again, by enforcing

integrality requirements on the maintenance string variables (z 's), integrality of the remaining

decision variables is guaranteed.

A passenger who is disrupted at the beginning of the day is easier to recover than a passenger

who is disrupted at the end of the day. The amount of delay a disrupted passenger experiences

depends on the quality and availability of recovery options for that passenger. Nonetheless,

although disrupted passengers are not equal in the sense that they experience different levels of

passenger delay, the objective of minimizing the number of misconnected passengers is a good

proxy for minimizing the overall passenger delay, and it translates to a model with reduced

computational complexity and enhanced tractability.

4.3 Robust Flight Departure Re-Timing Model: Minimizing Expected

Passenger Delay

4.3.1 Basic Idea

In spite of all the actions taken in the scheduling phase to reduce expected flight and passenger

delays, passengers still get disrupted. In this section, we present an idea that might be effective to

reduce overall passenger delay once a passenger is disrupted.

As mentioned in Chapter 1, passenger delay is the positive difference between the actual and

scheduled passenger arrival times. When passengers get disrupted for any reason, the airline tries

to re-assign them on a recovery itinerary. A recovery itinerary is defined as a set of consecutive
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flights (usually one to three), starting from the point of disruption and ending at the passenger's

desired destination. At the point of disruption then, the airline agent will try to build a list of

recovery options for the disrupted passenger and assign him/her to the best recovery itinerary.

We define the best recovery itinerary as the one with at least one available seat and with earliest

arrival time at the final destination.

Sometimes, such a recovery itinerary does not exist because the arrival time is too late at the

destination. In this case, the passenger must either overnight or be recovered by another airline.

Both of these cases translate into direct and indirect costs for the airline and long delays for the

passengers themselves.

A feasible recovery itinerary does not exist if either of the following conditions is met:

1. No recovery itinerary exists for the rest of the day; or

2. Recovery itineraries exist but none has extra capacity to accommodate a disrupted passenger.

In the model we present in this section, we try to decrease the probability of the first case, that is,

that no recovery itinerary exists for the remainder of the day. We restrict our attention to

disrupted passengers who miss their connections only, and we allow only flight leg re-timings

within defined time windows. We do not allow the original aircraft routings to be changed.

f f'
H2

S2

H1

Si

12'

Figure 4.6: Postponing flight f creates a new recovery option for connecting itinerary i

To illustrate the idea, consider Figure 4.6. Assume that passengers are traveling on connecting

itinerary i from spoke city SI to spoke city S2 through hub Hi. Also assume that flight leg 11
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(the incoming flight) has a long arrival delay and passengers on itinerary 11 -12 miss their

connection at Hi. The disrupted passengers either have to wait for another direct flight from HI

to S2, or travel to S2 through another hub, say H2. The first option (waiting for a direct flight

from H1 to S2) is not always available (for example when passengers are connecting on the last

bank of the day). The availability of the second option depends on the availability of a flight f

departing HI after the departure time of 12, and on another appropriately scheduled flight g

from H2 to S2. If flight f is scheduled to depart HI just before the departure time of 12'

postponing it (in the scheduling phase) five to ten minutes can create a new recovery itinerary for

disrupted passengers, and potentially eliminate overnight delays for them.

To have a better understanding of how using this idea can reduce passenger delay, consider the

example from our airline's schedule in August 2000, shown in Figure 4.7. Connecting BOS-

DFW itinerary i consists of two flights, with a planned connection in CLE of 1605 - 1509 = 56

minutes. There is no other direct flight leaving CLE to DFW after 1605. Hence, disrupted

itinerary i passengers must overnight in CLE. There is, however, another flight leaving CLE at

1605 to IAH. By postponing the departure time of this flight ten minutes from 1605 to 1615 we

can create a recovery itinerary for i and reduce the expected value of passenger delay. Figure 4.8

illustrates the initial and recovery itineraries for this example on a map.

1808 1818 1900
IAH

DFW
1509 1605 ', 2110

CLE

BOS
1320

Figure 4.7: creating a new recovery option
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Initial itinei-ryI~ntaliCLE BOS
Recovery itineruy

TDFW

LAH

Figure 4.8: Initial and recovery itineraries for BOS-CLE-DFW itinerary

Analyzing our airline's data during August 2000 using PDC, we find that if we decrease the

value of the minimum passenger connection time from 30 minutes to 20 minutes, the expected

total number of misconnected passengers for August 2000 decreases from 76,387 to 56,671, a

25% decrease. Hence, we believe that even small changes (± 10 minutes) in the planned

departure times can have significant impact on passenger delays.

4.3.2 Notation

Decision variable:

qj equals 1 if at least one recovery option exists for itinerary i; 0 otherwise

x. equals 1 if recovery option r for itinerary i is in the solution; 0 otherwise

f ,, equals 1 if copy n of flight j is in the solution; 0 otherwise
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Sets:

I set of itineraries

R' set of recovery itineraries for itinerary i, with each recovery itinerary specified by the

flight copies it contains

F set of flights

F' set of flight copies (j,n), j e F, n e C1 , belonging to recovery option r

C1  set of copies of flight j

Parameters:

planned departure time of flight i copy n

planned arrival time of flight j copy n

Minimum (passenger) connection time

4.3.3 The Recovery Options Model

Min (1 - qj)
iel

Subject to

Vie E I

(4.16)

(4.17)

Vi e I;Vr e R';V(j,n) e F, j e F,nE C

Vj e F

(4.18)

(4.19)
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I f flPDTJfl - >Uf PAIt, > MCT V(i, j) e I (4.20)
neC nEC,

x e {0,1} Vi e I,Vr e R' (4.21)

f , e {0,1} Vj e F, n e C (4.22)

q, e {0,1} Vi e I (4.23)

The objective function (Equation 4.16) is to minimize the number of connecting itineraries

without a recovery option. Constraints 4.17 state that any itinerary i has a recovery option only

when at least one x[ variable is in the solution. If Z x[ is strictly greater than 1 for some
reR'

itinerary i, the corresponding binary variable q, will equal one. Constraints 4.18 guarantee that a

recovery option is in the solution only if all of its constituent flight copies are in the solution.

Constraints 4.19 ensure that exactly one copy of each flight leg in our initial set of legs is

included in the solution. Constraints 4.20 ensure that flight copies are selected that allow

adequate connection time for each passenger itinerary. Finally, constraints 4.21, 4.22 and 4.23

ensure integrality of the solution.

We do not have to consider all itineraries in this model. Instead, we can focus on a subset of

"important" itineraries. For example, we can try to ensure that itineraries late in the day have at

least one recovery option, and high-demand itineraries have several alternate recovery options.

This would require only minor modifications to the model. Itineraries with several recovery

options, however, need not be considered.

Although we did not differentiate among different recovery options, it is rather straightforward to

do so. We simply assign weights to recovery options depending on the option's associated

passenger delay.
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Chapter 5

Conclusion and Directions for Future Research

5.1 Conclusion

The objective of this thesis is to propose methods to develop an airline's schedule in the planning

stage so that it is robust during operations. A robust plan, although not necessarily optimal in

planning, performs best in operations, as measured by overall flight and passenger delay.

Because it is difficult to determine how much airlines are willing to pay to make their schedules

more robust, we developed models and algorithms that generate solutions without significantly

increasing operating costs. Our approaches are:

1) Flight departure retiming in a small time window, and

2) Aircraft re-routing.

We developed an integrated flight departure re-timing and aircraft re-routing model in Chapter 3.

Considering the large number of flight copies and string variables in our model, we decomposed

the problem by fleet type and only considered the Boeing 757 fleet because of its manageable

network size. We used historical data (July 2000) from a major U.S. airline to calculate the

parameters of our model. We then solved our model to select aircraft routings for the future

schedule (August 2000) and evaluated the robustness of the new schedule by comparing the

actual August 2000 disruptions with disruptions resulting from our new schedule. We observed

that our model reduces total August 2000 propagated delay by more than 46%, and decreases the

total passenger delay minutes and numbers of disrupted passengers.

We observed that using flight copies in the model reduces flight delays 3.15% compared to the

case where no flight copies are considered. We concluded that adding flight copies to the model

might not be worthwhile given the small decrease in total propagated delay and the

corresponding increase in computational complexity of adding flight copies to our model.
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In Chapter 4, we proposed two additional robust scheduling models to decrease expected

passenger delays. The first model is an integrated flight departure re-timing and aircraft routing

model that minimizes the expected number of misconnecting passengers. The second model is a

flight departure re-timing model, based on the idea of providing potential misconnecting

passengers with alternative recovery options. We illustrate the underlying concepts of each

model with examples.

5.2 Directions for Future Research

The following list provides some potential future research directions:

1) Implement "Flight departure re-timing and aircraft re-routing to minimize

propagated flight delay" (Model) 1 for all fleet types

To reduce computational efforts, we implemented Model 1 for a single fleet type. Hence,

we were not able to measure the total potential of this model to reduce passenger delays

and disruptions. To minimize passenger delays and reduce the number of disrupted

passengers, a network-wide minimization of propagated flight delays is necessary.

2) Implement "Flight departure re-timing and aircraft re-routing to minimize number

of passenger misconnections" (Model 2) and "Flight departure re-timing to provide

alternative passenger recovery options for selected connecting itineraries" (Model

3).

Although we illustrated these models with examples, we did not provide implementation

results. Model 2 can be implemented using a similar framework to that used for Model 1

in Chapter 3. The problem size might create some tractability issues, however, because

we need to consider all fleet types in the model simultaneously. Limiting the number of

connecting itineraries for which we seek additional recovery options can decrease the size

of Model 3.
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3) Consider itinerary demands and aircraft seat capacities in Model 3

In Model 3, we assumed any combination of flight legs that begins at the disruption

location of a passenger and ends at his/her destination is regarded as a recovery option.

We did not, however, consider the possibility that these flight legs might have no

available seats to accommodate disrupted passengers. Enhancing the model with itinerary

demand-aircraft capacity interactions can result in obtaining more accurate results.
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Appendix I: Passenger Delay Calculator (PDC)

What is the Passenger Delay Calculator?

Unfortunately, airlines do not record or compute their passenger delay statistics. They only

publish their flight leg performance data. The Passenger Delay Calculator, or PDC, is an

algorithm developed by Bratu and Barnhart (2004) [15], to estimate the amount of passenger

delay on each itinerary, given actual disruptions occurring during operations.

The PDC algorithm first identifies disrupted passengers on local and connecting itineraries, then

sorts them (usually they are sorted according to their time of disruption, that is, passengers who

are disrupted first are recovered first), and finally searches for the "best recovery option" for

each group of disrupted passengers. A recovery option is a feasible set of flights originating from

the point of disruption and ending at the passenger's desired destination. The best recovery

option then, allows the disrupted passenger to arrive at his/her desired destination as early as

possible.

PDC Inputs/Outputs

The PDC algorithm uses the following data as input:

1. Flight data: Containing information about each flight's number, origin airport, destination

airport, planned origin time, actual origin time, planned destination time, actual

destination time, aircraft capacity, flight cancellation index and aircraft tail number.

Values of actual origin and destination times as well as each flight's cancellation index

can be read from a file (such as the ASQP data base) or can be generated inside the

program's body by a random procedure.

2. Itinerary (passenger type) information: Containing information about each itinerary's

number, origin, final destination, demand (booked passengers), first leg flight number
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and second leg flight number. A second flight leg number, equal to zero indicates a local

passenger.

3. Minimum Connection Times: Containing the minimum connection times at each airport

location.

The algorithm then uses the above data to calculate the amount of passenger delay for each

passenger type, the number of disrupted passengers recovered the same day, the number of

overnight passengers, the average delay of local, through and connecting passengers, etc.

PDC Assumptions

The PDC algorithm is based on a set of assumptions, including:

" Instantaneous information: We assume that a disrupted passenger is recovered

instantaneously on the best recovery itinerary as long as the time interval between the first

flight leg in the recovery itinerary and the disruption time is greater than or equal to the

minimum connection time (it takes at least MCT time units for a disrupted passenger to walk

from the gate of arrival to the departure check-in point). It is assumed that passengers never

miss this recovery option. This is not always the case in practice due to lack of information

about all possible recovery options or because of poor judgment or carelessness of customer

service representatives.

" Perfect information: We assume that when the airline recovers disrupted passengers, it has

complete information about the remaining operations in that day. That is, it knows with

certainty delays and cancellations that will be encountered that day. No disrupted passenger

will therefore be disrupted again. Hence the values of passenger delay are underestimated in

PDC.

" Constant aircraft turn time: We assume that aircraft turn time does not increase with load

factor to reflect longer passenger embarking and disembarking times.
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* Complete knowledge of seat availability: We assume that at the time of recovery, the airline

has complete knowledge of the available empty seats on each flight. This is again not always

the case in practice. The number of people who show up for a flight is stochastic.

" Single airline: We assume that disrupted passengers can only be recovered by the airline on

which they are originally booked. If we have the bookings and seat availability data of other

airlines, however, PDC has the capability to consider inter-airline passenger re-

accommodations. Nonetheless, the single airline assumption is realistic in that it is typically

costly for an airline to send disrupted passengers to another airline for recovery, and,

moreover, if the capacity of an airport drops because of bad weather and airlines are forced to

cancel some of their flights, other airlines will also face a lack of seat availability.

" Service priority: We assume that non-disrupted passengers have priority over disrupted

passengers. Even if a disrupted passenger has to wait a long time in the airport until he/she

can be recovered, we assume that the disrupted passenger is not assigned to a seat booked by

a non-disrupted passenger.

* Rebooking priority: We assume that disrupted passengers will be recovered according to

their time of disruption, that is, on a First-Come-First-Served (FCFS) basis. This rebooking

policy does not necessarily minimize total passenger delay in the network or maximize the

airline's revenue. It is, however, easy to implement and is sensible. We can easily change the

PDC algorithm's rebooking policy to match other practices, such as protecting passengers by

fare paid or frequent flyer status and processing passengers from highest-to-lowest priority

order.
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