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ABSTRACT

Within the past decade, seismic isolation systems have gained rapid popularity in

the earthquake resistant design of bridge structures. This popularity has come in response

to the inadequacy of earlier seismic design and retrofit methodologies. The mechanical

shortcomings and subsequent failure mechanisms associated with the early elastic seismic

design philosophy are first presented, followed by a study of the applicability of seismic

isolation systems in bridge structures. This investigation includes a discussion of the

susceptibility of simple span bridges to seismic failure, an overview of the behavior of

base isolated structures, a detailed description of isolation system components, an

explanation of the mechanics of elastometric isolation bearings, and a presentation of the

linear theory of seismic isolation.

The qualitative investigation of seismic isolation systems is supplemented by a

quantitative nonlinear time-history analysis that illustrates the response of a simple span

bridge to seismic excitation. The analysis examines the effects of the varying stiffness of

a lead-rubber elastometric bearing upon structural response when subjected to the 1940

El Centro earthquake. The results confirm the expected behavior of isolated structures

and emphasize the need for site-specific studies in the design of effective seismic

isolation systems for bridge structures.

Thesis Supervisor: Jerome J. Connor
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CHAPTER 1: INTRODUCTION TO SEISMIC ISOLATION SYSTEMS

1.1 Overview

Bridges and transportation viaducts are ubiquitous in today's built environment,

carrying highways through cities and countries and serving as the transportation lifeline

of modem society. Without bridges, transportation would cease, commerce would

subsequently halt, and the economy of modem society would cease to exist. Thus, the

importance of bridge structures cannot be underestimated, and bridges must be designed

to adequately withstand the forces of catastrophic events, namely devastating

earthquakes. The vitality of transportation networks must be ensured and the safety of

the users of transportation infrastructure must be guaranteed.

The necessity to construct and rehabilitate bridge structures to withstand seismic

forces in earthquake-prone regions is more than a mere philosophy. The fairly recent

1989 Loma Prieta earthquake and 1994 Northridge earthquake in California in addition to

the 1995 Kobe earthquake in Japan have demonstrated the need for further research and

thought in seismic resistant design. These earthquakes, which occurred in densely

populated areas, caused either collapse or severe damage to bridges that were specifically

designed to resist earthquakes of a greater intensity than the actual applied seismic

excitation [1].

1.2 Earthquake Design Background

Part of the problem involving the seismic inadequacy of bridge structures stems

from the seismic design methodology practiced prior to 1970. Near the end of the

millennium, about 60% of all highway bridges in the United States, approximately

350,000, were constructed prior to 1970 [2]. During this time period, insufficient

consideration was given to seismic forces, and bridges designed and constructed during

this era have proven wholly inadequate in the wake of seismic events. Initial seismic

deign methodologies emphasized an elastic approach, where bridge structures were

designed to undergo elastic deformations when subjected to seismic forces. The

structural stiffness resulting from the elastic design methodology resulted in low levels of

ductility and subsequently small amounts of dissipated energy. Stiffness also tends to
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amplify ground motions, resulting in increased structural acceleration. Furthermore, the

increased stiffness results in greater structural mass that increases internal shear forces

within the structure due to the aforementioned amplified accelerations. The

consequences of the initial elastic design approach resulted in severely underestimated

seismic deflections in addition to underestimated and inaccurate moment patterns in

bridge structures [1]. Consequences resulting from elastic design included deck seats and

corbels of insufficient length and inadequate design of major structural components of the

bridge, particularly supporting columns. These design inadequacies resulted in the

collapse and severe damage of bridge structures and the subsequent loss of life.

It is now known that structural ductility is crucial in dissipating seismic energy

within structures. An inelastic seismic design philosophy has been adopted that

incorporates the formation of plastic hinges, allowing inelastic structural deformations to

dissipate energy. Thus, potentially devastating seismic forces are reduced. However, the

critical flaw of this methodology is the necessity for the structure to experience damage.

While the damage is not as severe as in the case of elastic seismic design, it still results in

cost to taxpayers and temporary bridge closure to facilitate repair.

1.3 Introduction to Seismic Isolation

Ideally, a structure should remain elastic during seismic excitation to avoid

damage and should also retain the ability to undergo large deformations to facilitate

energy dissipation. These demands seem paradoxical with the application of traditional

structural materials, but the two extremes can be accomplished via the increasingly

popular philosophy of seismic isolation.

Seismic isolation, or base isolation, has gained design popularity within the last

quarter century and is applicable to bridge structures as well as building structures.

Seismic isolation allows for a decrease in seismic demand via relative structural

displacement rather than an increase in structural stiffness. As mentioned above,

increased structural stiffness increases strength but tends to attract greater seismic forces

through amplified accelerations and increased structural mass. Through the application

of seismic isolation in bridges, not only can appreciable relative deflections be tolerated,

but major structural components can also remain in the elastic deformation range when
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subjected to earthquake loads. Deflections are confined to the isolated superstructure

level, and lateral forces in supporting columns and abutments are significantly reduced.

The basic premise of seismic isolation is the decoupling of the isolated portion of

the structure from horizontal lateral earthquake motion. The decoupling is accomplished

through the implementation of base isolation bearings with very small lateral stiffness in

comparison to the lateral stiffness of the structure. The decoupling results in a shift of the

fundamental period of the isolated structure out of the range of the predominant period of

seismic excitation. This period shift significantly reduces the effective magnitude of

applied seismic loads.

The first dynamic mode involves only the deformation of the isolated structure

rather than the deformation of the entire structure for the case of a non-isolated system.

In the case of bridges, if only the superstructure is isolated, then only the superstructure

will experience deformation in the first dynamic mode, assuming an extremely rigid deck

structure in comparison to the substructure. Furthermore, energy from ground motion has

little effect upon the excitation of higher modes. Higher dynamic modes have a low

participation factor in the response of the structure because these modes are orthogonal to

both the first mode and to ground motion [3]. Hence, in the analysis of seismically

isolated structures, generally only the first dynamic mode is of interest.

1.4 Applicability to Bridge Structures

Seismic isolation is readily applicable to bridge structures, especially simple span

highway bridges, due to both inherent structural inadequacies and adaptive structural

characteristics. Structural inadequacies of these simple span bridge types include two

intrinsic flaws that make them particularly susceptible to earthquake damage and that

warrant the need for increased seismic resistance. These two flaws are the lack of

structural redundancy and the inbuilt natural frequency. Since nearly all simple span

bridges are purely functional, they lack the redundant structural systems inherent in

building structures that prevent complete collapse. Furthermore, simple span bridges

tend to have natural frequencies that coincide with the dominant excitation frequency of

most earthquakes.
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In terms of adaptive structural characteristics, simple span bridges possess

geometries and structural systems that lend themselves to the implementation of base

isolation systems. First, the majority of the mass in bridge structures is concentrated at

the deck level, which is generally the isolated level. Second, most simple span bridge

superstructures are already constructed on expansion bearings, thus base isolation

bearings can simply replace the expansion bearings without imposing additional

structural members. Third, in the case of an extreme seismic event, any structural

damage theoretically is confined only to isolation bearings, and these bearings can be

easily inspected and replaced. Finally, installation of base isolation systems in existing

bridge structures can be accomplished while the bridge is partially open to traffic.
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CHAPTER 2: PAST PROBLEMS AND FAILURES IN BRIDGE STRUCTURES

2.1 Introduction

To fully comprehend the relevance and benefits of seismic isolation systems, the

nature of seismic damage to bridge structures and the various failure mechanisms are first

examined. Widespread seismic damage has occurred to bridge structures during past

earthquakes, namely simply supported highway bridges, and many spans have suffered

complete failure. The destructive power of earthquakes is shown below in Figure 2-1,

where a simply supported highway overpass was completely destroyed in the 1971 San

Fernando earthquake [4]. Seismic damage and failure in highway bridges can be

categorized according to the type of failure mechanism that affects major components of

the bridge, including span displacement, abutment slumping, column failure, cap beam

failure, joint failure, footing failure, and failure of superstructure components. Since

displacement and column failures seem to cause the most significant and costly damage

in bridges, and since seismic isolation systems can remedy displacement failures and

readily reduce internal column forces, the mechanisms causing these failures will be

investigated in detail.

Figure 2-1: Severe seismic damage to highway bridge spans.
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While significant damage has occurred to bridges of both steel and reinforced

concrete construction, failure mechanisms in reinforced concrete members are examined

in greater detail in this chapter for two primary reasons. First, damage occurring to

supporting columns often results in the complete failure of the bridge span, and

supporting columns are more often constructed of reinforced concrete. Second, steel

members tend to exhibit greater levels of ductility and can therefore dissipate energy

when subjected to seismic excitation, avoiding total failure.

2.2 Displacement Failures

Displacements are a major cause of highway bridge span damage and failure

during earthquakes. Displacement failure due to seismic excitation is the result of

concrete bridge design using elastic theory. The underestimated lateral forces and

overestimated gross-section stiffness resulted in the inadequate design of superstructure

seats and lateral clearance between adjacent structures [1]. Two damaging displacement

mechanisms of interest that are prevalent in reinforced concrete bridges are unseating and

pounding. Excessive displacements in the longitudinal direction can result in bridge

failure via the unseating of the superstructure, while displacements in the transverse

direction can result in pounding damage through cyclic contact with an adjacent

structure.

2.2.1 Unseating Failures

Unseating failure is particularly problematic for simply supported highway

bridges when earthquake excitation occurs in the longitudinal direction. If seats or

corbels located at the abutments or on the piers do not possess sufficient length in the

longitudinal direction, then the entire superstructure span can become unseated, resulting

in sudden bridge collapse. This failure mechanism can be enhanced for either tall pier

columns or for adjacent pier frames of unequal height. In the case of tall piers, column

rotation about the base enhances displacements at the location of maximum height of the

superstructure. Adjacent pier frames of varying heights have different fundamental

frequencies, and thus displacements are increased if the frames respond out of phase with
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respect to each other when subjected to seismic excitation. An example of unseating

failure that occurred during the 1999 Chi-Chi earthquake in Taiwan is shown below in

Figure 2-2 [5].

Figure 2-2: Unseating failure.

2.2.2 Pounding Damage

Pounding of bridge structures due to inadequate displacement considerations can

also result in severe bridge damage. If a small clearance envelope exists between the

bridge and adjacent structures, then damage can occur through cyclic pounding as the

earthquake occurs in the transverse direction, creating shear forces and imposing brittle

failure. This damage can be amplified if the adjacent structure is of a different height or

stiffness. The different fundamental frequency of the adjacent structure can result in out

of phase motion with the bridge, amplifying shear forces and corresponding pounding

damage.

2.3 Column Failures

The study of column failure during seismic activity is significant because collapse

of a supporting column within a pier group will likely result in the failure of the entire

bridge structure. The devastating effects of this failure mechanism are shown below in

Figure 2-3, which depicts the complete destruction of an overpass in California due to

column failure during the 1994 Northridge earthquake [2]. The two primary failure
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mechanisms that occur in columns are flexural and inadequate ductility failure and shear

failure. The mechanics of these failures are discussed below.

Figure 2-3: Span collapse resulting from complete column failure.

2.3.1 Column Flexural Failure

Flexural failure within supporting columns tends to result from the obsolete

elastic design philosophy or from deficient reinforcement design and installation.

Common flexural deficiencies include inadequate strength, undependable strength,

inadequate ductility, and premature termination of reinforcement. While these failure

deficiencies will be discussed separately, failure in columns generally results from a

combination of several of the named mechanisms.

2.3.1.1 Inadequate Column Flexural Strength

The first major flexural deficiency in supporting columns and piers that will be

examined is inadequate flexural strength. Before an inelastic design methodology was

utilized that considered plastic deformation and subsequent energy dissipation, equivalent

lateral seismic forces were underestimated, and the corresponding elastic design was

insufficient. The discrepancy between actual column strength and the elastic design level

is illustrated in the column axial force-bending moment interaction diagram shown in

Figure 2-4 [1]. The difference between the elastic design curve and strength design curve

in this diagram seems significant, but actual elastic design levels for columns were

enhanced in practice due to the conservative nature of engineering design.

15



Axial Load
P

Strength Design

lastic Design,
0.3 P'-

0.45 M Moment
M

Figure 2-4: Typical column interaction diagram.

Elastic design was initially based on a linear relationship between axial load and

moment, where a seemingly conservative value of 45% of the ultimate moment and 30%

of the axial load was used, as shown in Figure 2-4. Because highway bridge columns are

typically subjected to relatively low axial loads, the required flexural strength derived

from the elastic interaction curve tended to be insufficient for flexure developed during

seismic loading. However, conservative safety factors employed in elastic design in

addition to unexpected increased material strength, such as strain hardening in steel

reinforcement, led to unanticipated column strength in elastic design. Thus, the actual

discrepancy between points Me and Mu in the figure is smaller than implied by the design

interaction curve. While elastic design has resulted in unforeseen column flexural

strength, inadequacies exist in the fact that the columns lack ductile detailing provisions

required for the satisfactory dissipation of energy [1]. Furthermore, the strength resulting

from elastic design has been unanticipated and thus inconsistent, evident in the failure of

numerous bridge columns and piers during recent earthquakes. Increased elastic design

strength also affects shear failure, which will be described in detail below.

2.3.1.2 Undependable Column Flexural Strength

Not only has the elastic design methodology produced columns that possess

inadequate flexural strength, but column strength is also undependable, due primarily to

the design of longitudinal reinforcement. Failures due to reinforcement inadequacy most

often result from insufficient development length of longitudinal rebar that is lap-spliced
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just above the column footing [1]. The potential for plastic hinge development at this

location warrants an increase in flexural strength, and many existing column designs have

specified lap-splice lengths that are too short. Because the lap-splice lengths have proven

to be insufficient for the necessary ductility levels required for energy dissipation, the

column is unable to develop its full flexural strength. Butt-welds have also resulted in

similar column failure when the splice is located just above the footing where significant

moments tend to develop during seismic events. Since the strength and ductility of welds

are difficult to guarantee, concentric flexural reinforcement welded at the same critical

location within a column is prone to seismic failure.

2.3.1.3 Inadequate Flexural Ductility

Ductility, a controlling parameter in seismic design, can be defined as the ability

of a structural member to experience significant plastic deformations without failing after

the elastic yield point has been exceeded. Ductility is clearly an important consideration

in earthquake design, as either a steel or reinforced concrete member must experience

cyclic deformation and still retain adequate flexural capacity to avoid total collapse [6].

Ductility, p, is measured in terms of multiples of yield displacement, and can be defined

as

A_

where A, is the maximum displacement of the structural member when subjected to

external loading, and Ay is the yield displacement of the member.

Failures due to insufficient ductility tend to be sequential, and failure is generally

instigated at ductility levels of between 2 and 3, when plastic hinges begin to develop [1].

Strains in this region exceed the unconfined compression strength of concrete, and

spalling of the external concrete cover begins to occur. If the column lacks adequate

confinement in the form of hoop or spiral reinforcement, then the concrete column core

will begin to crush as strains exceed the confined strength of the column. Complete

failure of the column and collapse of the bridge structure becomes imminent as the

column can no longer support the axial load from the bridge superstructure.
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Figure 2-5: Flexural plastic hinge development.

Failure due to inadequate flexural ductility is shown above in Figure 2-5 [2]. This

bridge column, subjected to the 1994 Northridge earthquake in California, exhibits

flexural failure at the location of the plastic hinge development at the column base. The

inadequate transverse reinforcement that decreased the confinement capacity and

contributed to the column flexural failure can be noted in the figure.

Figure 2-6: Collapsed Hanshin Expressway.

2.3.1.4 Premature Termination of Column Reinforcement

Premature termination of longitudinal column reinforcement creates a shear-

flexure failure mechanism at mid-column height when the bridge structure is subjected to
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seismic excitation. This failure mechanism can be quite devastating, as it is responsible

for the infamous collapse of Japan's Hanshin Expressway during the 1995 Kobe

earthquake. The collapsed expressway structure is shown above in Figure 2-6 [7]. In

observed failures, flexural reinforcement termination within the column member was

based on the expected location of maximum and minimum bending moments in the

column. However, effects of tension shift due to diagonal cracking can result in a change

of shape of the moment envelope, and maximum moments can then occur at the location

of the terminated reinforcement, resulting in a combined flexural-shear column failure

[1]. In addition, the location of termination of the reinforcement can shift the formation

of the plastic hinge from the base toward the center of the column. Since the column

base is more robustly confined than the column center, strains resulting from the

formation of a plastic hinge at the column center exceed the confinement capacity of the

concrete at this location, and failure ensues as described in the preceding section.

2.3.2 Column Shear Failure

Reinforced concrete columns resist shear through a variety of mechanisms,

including direct cross-sectional effects, aggregate interlock in the cracked section, dowel

action of the flexural reinforcement, and global transfer mechanisms such as the thrust, or

arch mechanism [8]. The various shear mechanisms share a complex relationship, and as

a result, shear failure cannot be controlled in the same manner as flexural failure.

Ductility is utilized to control the flexural failure mechanisms of columns, but shear

failure tends to be brittle and thus shear failure mechanisms are consequently immediate

and explosive.

The simplest and most common shear failure mechanism in columns is

characterized by the failure of transverse shear reinforcement. The failure of the

reinforcement leads to subsequent decreased concrete confinement strength and ensuing

failure under axial loads [1]. Shear failure tends to be most problematic in short columns

since shear values are often greater than moment values in shorter members.

Historically, shear failure resulting from seismic excitation is more prominent in bridges

designed using an elastic philosophy for various reasons. First, shear failure mechanisms

tended to be disregarded in elastic design, as many bridges, particularly in California,

19



were designed with the same shear reinforcement scheme, regardless of column geometry

or anticipated seismic shear force. Second, conservatism in elastic design for flexural

strength, discussed above, resulted in greater than expected elastic yield strengths, and

columns consequently failed in shear as opposed to bending.

Observations following failures during earthquakes based on failure

characteristics and the geometry of columns have resulted in the significant conclusion

that the shear capacity of plastic hinge regions is smaller than that of non-plastic hinge

regions. Flexural ductility causes an increase in the width of flexure-shear cracks, which

in turn decreases the effectiveness of the aggregate interlock shear transfer mechanism

[1]. Thus, it is important for designers to recognize the negative effects of increased

ductility and flexural capacity on the column shear strength.

The typical shear failure mechanism is shown below in Figure 2-7 [9]. The

column in the figure represents another failed bridge column in the 1994 Northridge

earthquake in California. The column design includes a tapered cross-section at the top

to presumably increase shear capacity at the column-superstructure interface. The stiffer

top, however, forced shear failure to occur at the base of the taper where both a

discontinuity in column stiffness and weaker confinement reinforcement exist.

Figure 2-7: Shear failure mechanism.

2.4 The Seismic Isolation Remedy

It is evident from the above discussion that seismic forces cause extensive damage

to simple span bridge structures. Damages from column failures and displacements are
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severe, often resulting in the complete destruction of the structure. While the elastic

design methodology has resulted in the seismic destruction of numerous bridges, inelastic

design still proves to be inadequate, as unexpected failures have occurred during seismic

events within the past decade to bridges specifically designed to resist powerful

earthquakes. Additionally, inelastic design relies on local damage for energy dissipation

to maintain structural integrity and to prevent collapse.

The implementation of seismic isolation systems in bridges can prevent the

extensive damage described above. The decoupling of the deck superstructure from the

supporting column substructure reduces absolute acceleration induced by the seismic

excitation, and column damage is avoided. Relative displacements at the isolated

superstructure level increase, but the elastic properties of the isolation bearings allow for

significant displacements, and the displacement failures described above are avoided. A

detailed description of the bearing mechanics and behavior of the isolated structure is

found in the following chapters.
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CHAPTER 3: STRUCTURAL BEHAVIOR

3.1 Introduction

This chapter examines the general structural behavior of base isolated structures.

First, earthquake response spectra and their relationship to seismic isolation systems are

analyzed. Next, the effects of structural stiffness on acceleration and relative

displacement in response to lateral ground excitation are discussed. This discussion is

then applied to the period shift of isolated structures, and corresponding advantages and

disadvantages of the period shift are examined. Finally, the effectiveness of seismic

isolation is emphasized through an investigation of ductility demand in earthquake

resistant design.

3.2 Response Spectra Analysis

In order to gain an appreciable understanding of the beneficial effects of seismic

isolation, traditional earthquake response spectra will be examined in detail. Studying

spectral displacement and spectral acceleration offers insight into the dominant excitation

frequency of a particular seismic event and consequential relative structural

displacements and absolute accelerations that induce detrimental shear forces within

structural members.

Response spectra illustrate the maximum response of a single degree of freedom

(SDOF) system to a particular earthquake excitation in terms of either the frequency or

natural period of the structural system. Moreover, for a particular seismic excitation, the

absolute acceleration and relative displacements are proportional at any time, as the two

response measures share identical time histories [10]. Response spectra are limited in

that they depict SDOF systems, but bridge piers can be approximated as SDOF systems

with the mass of the superstructure dead load lumped at the top of the supporting pier.

The spectra can be used for approximate structural design, but will be used in this

discussion for conceptual illustration purposes and will also be used in the Chapter 7

analysis of the structural behavior of an isolated structure.

Shown below in Figure 3-2 and Figure 3-3 are the spectral displacement and

spectral acceleration response spectra for the 1994 Northridge, California earthquake
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[11]. The response spectra include damping values of 0%, 2%, and 5% of critical

damping. The earthquake ground acceleration time history, depicted in Figure 3-1, was

obtained from Sylmar County Hospital at an orientation of 90 degrees. For spectral

displacement, it is evident that dominant excitation periods occur at just under 1 s and

again at approximately 2.5 s, while for absolute acceleration, the dominant excitation

period occurs over a one-half second range centered at approximately 0.5 s. Thus,

structures with natural periods below 2.5 s were most likely subjected to extreme

acceleration and relative displacement during this seismic event.

While each earthquake is unique, the data from the Northridge earthquake shown

below represents the general expected structural response to earthquakes in addition to

the typical fundamental periods at which peak relative displacement and acceleration

occur. This excitation period can prove troublesome for simple span bridges, and the

applicability of these figures to the mechanics of seismic isolation will be discussed in

detail below.
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Figure 3-4: Infinitely rigid structure subjected to ground motion.
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Figure 3-5: Negligibly rigid structure subjected to ground motion.

3.3 Effects of Stiffness on Fundamental Frequency

It was established in the previous section that structures possessing relatively low

natural periods, such as simple span bridge structures, are in the dominant range of the

earthquake excitation frequency. The behavior of the structure in response to seismic

loads is a direct function of the fundamental frequency, which is in turn dependent upon

the stiffness of the structure. The effect of structural stiffness on the fundamental

frequency of the structure and corresponding response to lateral ground excitation are

discussed in this section.

The effect of ground excitation upon structural behavior is illustrated above in

Figure 3-4 and Figure 3-5. In Figure 3-4, an infinitely rigid structure is subjected to

lateral ground excitation. Because of the infinite stiffness of the structure, the absolute

acceleration of the mass at the top of the structure is equal to the acceleration of the

ground. While no relative displacement occurs, the acceleration in the structure and the

corresponding shear force in the column may exceed design limitations. Conversely, a
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structure with negligible lateral stiffness subjected to horizontal support excitation is

illustrated in Figure 3-5. In this scenario, the displacement of the mass relative to the

ground is equal to the maximum ground displacement. Because the mass remains

stationary relative to the ground, no acceleration in the mass is induced, and the absolute

acceleration is zero. Thus, no shear force is developed in the column. The relative

displacement of the mass, however, may exceed design limitations.

It is evident that for a conventionally designed structure, either large relative

displacements, in the case of extremely low lateral stiffness, or large absolute

accelerations, in the case extremely high lateral stiffness, will result from horizontal

support excitation. The consequences of design stiffness and corresponding natural

period have been explored above in the examination of the displacement and acceleration

response spectra, where the fundamental frequency of the structure can potentially be in

the range of the seismic excitation, amplifying either absolute acceleration or relative

displacement.
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Figure 3-6: Illustration of the effect of natural period shift of isolated structures.

3.4 Period Shift

Clearly, it is most advantageous to limit absolute accelerations while reducing

undesirable relative displacement. Both goals cannot be accomplished through
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conventional structural design or through traditional construction materials, but the use of

seismic isolation can greatly reduce absolute acceleration while limiting relative

displacement to the isolated level. The reduction in absolute acceleration for a seismic

isolated structure is effectively accomplished through a shift in the fundamental period of

the structure. While this period shift is largely advantageous, several disadvantages are

also inherent in the application of the shift in period. Specific advantages and

disadvantages are discussed below.

3.4.1 Advantages

The effect of the shift of fundamental period of an isolated structure with respect

to the acceleration response spectrum is shown above in Figure 3-6 [1]. The inclusion of

a base isolation system in a structure decreases the effective stiffness of the structure and

lengthens the corresponding natural period. The greatest advantage of the increase in

period from Tm to TB is a reduction in the absolute acceleration of the system, assuming

the structure is founded on hard soil or rock and that there is no effect of soil conditions

on seismic wave propagation. It is clear from the figure that the structural period is

shifted away from the resonant acceleration location at point A to a location of lower

acceleration at point B. This reduction in acceleration is particularly advantageous for

bridge structures, where the majority of the mass is located at the superstructure level. If

the superstructure is isolated, then the mass is no longer subjected to high levels of

acceleration and subsequent shear forces in supporting columns and abutments are not

developed.

3.4.2 Disadvantages

Several disadvantages also exist as a result of the shift in natural period of the

structure that must be considered by the engineer in the implementation of seismic

isolation. The first, most inconsequential disadvantage involves the actual necessity of

seismic isolation in bridge structures. Most simple span highway bridges have natural

frequencies in the range of seismic excitation, but bridge structures with long spans or

with tall supporting piers may possess inherently long fundamental periods that are out of

the range of earthquake excitation. In this case, seismic isolation is inapplicable, and the
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only major consequence is a structure that could have been designed more efficiently and

economically.

A second disadvantage of the period shift is the potential to increase absolute

acceleration in the structure given the soil conditions at the site. The advantageous

period shift discussed above assumes ground excitations that were not amplified by soil

conditions at the site of the structure. It was assumed that the structure was founded on

either rock or firm soil and that the acceleration response spectrum was unmodified from

the initial earthquake excitation. If soft soil conditions exist at a particular site,

earthquake waves are lengthened, and the peak period at which the maximum

acceleration response is expected to occur increases. This is evident in Figure 3-6, where

the peak response acceleration increases from point A to point D. If the period at which

peak acceleration occurs for a given earthquake increases due to soil conditions, then it is

clearly disadvantageous to increase the fundamental period of a structure that is already

outside of the range of dominant seismic excitation, as absolute acceleration of the

structure will increase. Thus, in the consideration of isolation systems for bridge

structures, soil conditions and seismic excitation data at the bridge site must be carefully

investigated, although bridges are usually not founded on soft soil.

A third disadvantage of the period shift is related to the relationship between

increased relative displacements and the modified dynamic shape of the first mode. As

illustrated above in the simplified stick model of Figure 3-5, a decrease in absolute

acceleration, which occurs when the natural period of the structure increases, is

accompanied by an increase in relative displacement. While this displacement is

confined to the isolated level of the structure, it can be disadvantageous if supporting

bridge columns or the column-bearing-superstructure interface are improperly designed.

Only the first mode of vibration of the structure contributes to the overall behavior of the

isolated structure, and the first mode is characterized by the deflection of only the

isolated portion of the structure. Excessive deflections of the superstructure during

seismic response shift the center of mass of the superstructure away from the center of

the pier, resulting in an eccentric axial load. This eccentric load induces bending

moments in the columns that can cause significant damage to members incapable of

resisting flexural stress, leading to the possible collapse of the structure.
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3.5 Ductility Demand and Seismic Isolation

The advantages of period shift discussed above are made even clearer when

applied to a design spectrum, shown below in Figure 3-7 [12]. While acceleration

response spectra show peak pseudo-accelerations for a given structural period, design

spectra account for uncertainties associated with the estimation of fundamental structural

period and the characteristics of earthquake excitation. These uncertainties are addressed

by adding the standard deviation of multiple response spectra accelerations to the mean

acceleration to produce a strength demand curve [13].

The design spectrum of Figure 3-7 illustrates the strength demand curve for a

non-isolated bridge structure, the probable design strength of the non-isolated structure,

and the ductility demand for the structure. Additionally, the reduced lateral force on an

isolated bridge structure and corresponding fundamental period are depicted in the plot.

In this figure, equivalent lateral force, rather than response acceleration, is plotted against

structural period, essentially creating the same envelope as an acceleration response

spectrum.

Curve 1 represents the elastic demand of the non-isolated structure, or the

recommended elastic design force for the worst probable earthquake. Curve 4 represents

the recommended maximum elastic design force, which allows for a statistically

determined amount of inelastic deformation. Curve 3 represents the probable structural

strength under the assumption that the structure has been conservatively designed to a

certain extent. The difference between curve 1 and curve 3 represents the amount of

force that causes inelastic deformation and that must be absorbed by the ductility of the

structure. As discussed in Chapter 1, elastic bridge design results in severe damage due

to increased structural stiffness and mass that increases lateral seismic forces and column

shear. Thus, the strength design curve is located well below the capacity curve. After the

strength capacity of the structure has been exhausted, earthquake energy must be

dissipated through the ductility of the structure. This energy dissipation occurs through

inelastic structural deformation and yielding of structural members, causing plastic

deformation and permanent damage. While complete collapse of the bridge structure can

be avoided, the structure must be taken out of service for costly repair.
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The beneficial effects of seismic isolation and the increase in fundamental

structural period are evident in the figure. Curve 2 represents the force on the isolated

bridge structure, namely shear forces developed in the columns and abutments. This

curve was developed assuming a significant amount of damping from the isolation

system to facilitate the dissipation of energy. It is apparent in the figure that the isolated

structure theoretically experiences no inelastic deformation since the force imposed on

the isolated structure, represented by curve 2, is located below the probable strength

curve, represented by curve 3. Thus, properly designed seismic isolation systems either

significantly reduce or altogether eliminate the ductility demand of the structure. This

situation is valid only for structures with an increased natural period that is out of the

range of maximum ground acceleration.
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Figure 3-7: Effect of period shift with respect to conventional design spectrum.
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CHAPTER 4: COMPONENTS OF ISOLATION SYSTEMS

4.1 Introduction

Because the concept of seismic isolation has been in practical use and

development for the last three decades, the technology is mature and numerous isolation

schemes exist. The most common isolation schemes used in bridge structures are

elastometric systems and sliding systems. Both systems are essentially comprised of

isolator bearings used in combination with initiating and limiting devices, if required.

Both isolation systems also have inherent damping properties and are employed to shift

the fundamental frequency of the structure out of the range of harmful seismic excitation,

thus reducing acceleration and corresponding column shear. Unique characteristics are

exhibited by the different isolation schemes within the two respective categories. Such

defining characteristics include initial stiffness and subsequent deformation under service

loads, yield force and total displacement under extreme earthquake loads, the re-centering

ability of the system, and vertical stiffness [14]. The most prevalent features of each

isolation system will be addressed in this section.

4.2 Elastometric Systems

Elastometric systems are characterized by their name, as their effectiveness is

derived from their composition of elastometric material. Commonly employed

elastometric systems include natural rubber bearings, lead-rubber bearings, and high-

damping natural rubber bearings. The specifics of these systems are discussed in detail

below.

4.2.1 Natural Rubber Bearings

Natural rubber bearings, also known as laminated rubber bearings, can be

manufactured using either natural rubber or neoprene, a synthetic rubber material utilized

for its toughness and durability that behaves in a similar manner to natural rubber [15].

As shown below in Figure 4-1 [14], the bearings are manufactured in alternating layers of

rubber and thin steel shims. The shim and rubber layers are vulcanized in a mold under

heat and pressure in a single process to produce the composite bearing. The shims
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provide stiffness in the vertical direction and prevent the bulging of the elastometric

material when significant axial loads are applied to the bearings. This vertical stiffness is

also required to prevent a rocking response when the structure is subjected to seismic

excitation. The steel shims have no effect upon lateral stiffness, which is controlled by

the shear modulus of the elastometric material and the allowable shear deformation of the

structure. The entire system is mounted between thick steel endplates to facilitate the

connection between the isolated and non-isolated portion of the structure.

The primary disadvantage of natural rubber bearings is the necessity for auxiliary

damping devices. Natural rubber bearings are considered low-damping devices because

they exhibit relatively small damping values of approximately 2-3% of critical damping.

Damping can be controlled to a limited extent by enhancing the material properties of the

elastomer, but usually supplementary external damping devices, such as viscous dampers

and hysteretic dampers, must be used in parallel with the bearings to aid in the control of

motion under both low level service loads and extreme seismic loads.

There are, however, numerous advantages of natural rubber bearings. First, the

bearings are easily manufactured and installed, especially in the seismic rehabilitation of

bridge structures. Second, the bearings can be easily modeled and analyzed, and

consequently easily designed. Finally, the effects of temperature, aging, loading rate, and

creep upon the elastometric material are negligible, resulting in long term stability of the

shear modulus and subsequent predictable behavior over time [3].

Top cover plate

Steel

Bottom cover
plate

Figure 4-1: Natural rubber bearing schematic.
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4.2.2 Lead-Rubber Bearings

The lead-rubber bearing, shown below in Figure 4-2 [14], was developed in

response to the inadequate damping characteristics of the natural rubber bearing. The

bearing is essentially identical to the natural rubber bearing except for the addition of a

cylindrical lead "plug" located at the center of the bearing. The lead plug induces a

bilinear response to high levels of lateral excitation, where the stiffness of the system

decreases after the plug deforms inelastically in shear. Under service loads, the system

gains its rigidity from the stiffness of the plug, and after the lead yields under seismic

loads, the stiffness of the system is considerably reduced. The deformation of the plug

after yielding results in the hysteretic dissipation of energy, and the amount of dissipated

energy is a function of the allowable displacement of the bearing [3]. Lead rubber

bearings share the same advantages of natural rubber bearings in terms of manufacturing,

modeling and analysis, and implementation.

Top cover plate

Lead Steel

Rubber
Bottom cover

plate

Figure 4-2: Lead-rubber bearing schematic.

4.2.3 High Damping Natural Rubber Bearings

High damping natural rubber bearing isolation systems were developed to

eliminate the need for the extraneous supplementary damping devices required for natural

rubber bearings while avoiding the discontinuous bilinear behavior of lead-rubber

bearings. The bearings are similar in geometry to natural rubber bearings, and the only

major difference between the two bearing types lies within the characteristics of the
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natural rubber elastomer. Damping in the natural rubber is augmented through the

addition of fillers such as carbon, oils, or resins. The addition of these fillers increases

the isolator damping from 2-3% of critical damping to the range of 10-20% of critical

damping.

At low shear strains of less than 20%, the high damping natural rubber bearing

exhibits nonlinear behavior and is characterized by high stiffness and high damping,

which limit deflections when the structure is subjected to service loads. As shear strains

increase from 20% to 120%, the damping characteristics of the elastomer decrease, but

the shear modulus remains constant. At strains greater than 120%, the shear modulus

increases and is accompanied by an increase in damping. This behavior results in an

advantageous system that exhibits adequate stiffness under service loads and that also

limits displacements while dissipating energy under extreme earthquake loads.

In addition to ideal behavior under both lateral service loads and extreme loads,

high damping natural rubber bearings also exhibit advantages related to implementation

and vibration absorption. First, high damping natural rubber bearings can be

manufactured using the same vulcanization process as natural rubber bearings and lead-

rubber bearings, and can also be installed in the same manner as the aforementioned

bearings. Second, the high damping natural rubber systems filter ambient vibrations from

superstructure traffic or from adjacent spans, thus limiting vertical vibrations in the

bridge deck [3].

4.3 Sliding Systems

Sliding isolation systems, like elastometric systems, effectively remove the

structure from the dominant excitation period of the earthquake and possess several

advantages over elastometric systems. First, sliding systems are less sensitive to the

dominant excitation period of the earthquake, and energy is effectively dissipated over a

range of earthquake excitations. Second, because the frictional force mobilized in sliding

systems is both proportional to the mass of the structure and is developed beneath the

isolated portion of the structure, the center of mass of the structure coincides with the

center of resistance of the sliding system. Thus, torsional effects in structures that are

asymmetric in either geometry or stiffness are avoided [14]. Commonly employed
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sliding systems include pure friction systems, resilient-friction base isolation systems,

and friction pendulum systems. The specifics of each isolator scheme are examined in

detail below.

4.3.1 Pure Friction Systems

The pure friction system is the earliest and simplest sliding isolation scheme and

best represents the principles of sliding isolation systems. The system utilizes a sliding

joint to decouple the superstructure from the substructure and operates under the principle

of sliding friction [14]. At low lateral service loads, the entire structure acts as a fixed-

base system since lateral forces are too insignificant to overcome the static frictional

force and induce horizontal displacement. When the system is subjected to significant

lateral seismic forces, the frictional force is overwhelmed and sliding is mobilized.

Accelerations in the structure are reduced through the dissipation of energy through

friction in the form of Coulomb damping. The lateral force required to overcome the

static frictional force is a function of the coefficient of static friction and can be

controlled through the selection of material to be employed at the bearing surface. Clear

disadvantages of the system include continuous maintenance of the bearings to ensure a

constant coefficient of friction and the inability of the system to re-center after an

extreme event.

4.3.2 Resilient-Friction Base Isolation Systems

The resilient-friction base isolation system is depicted below in Figure 4-3 [14].

The behavior of the system is largely frictional in nature, but the bearings make partial

use of the properties of elastometric bearings. Resilient friction base isolation bearings

are comprised of thin sliding plates surrounding an elastometric core and mounted

between two end plates. The multiple sliding plates, coated in Teflon or stainless steel,

help to ensure a relatively low frictional coefficient and the avoidance of large

accelerations under relatively significant lateral forces. The frictional force that develops

between plates is large enough so that motion is not induced under the application of

lateral service loads. The concentric layers of plates surround a central rubber core, and

often times smaller peripheral rubber cores are also inserted in the isolation bearing.
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These elastometric plugs store strain energy during seismic excitation and provide an

elastic restoring force to re-center the bearings when the lateral seismic forces have

subsided. As in the case of the pure friction system, energy is consistently dissipated

through Coulomb damping [3].

op cover plate

I op bott hole

- Top connecti ng plate

Rubber cover

Centra BtocveBotorm connecting r rotom cover
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Sing rings cores

Figure 4-3: Resilient-friction base isolation system bearing schematic.

4.3.3 Friction Pendulum Systems

The friction pendulum system, illustrated below in Figure 4-4 [14], combines the

concept of sliding isolation systems with the action of a pendulum. The superstructure is

isolated form the substructure via a bearing that is comprised of an articulated slider

resting on top of a convex bearing surface with a low coefficient of friction, usually made

of chrome [14] or stainless steel [3]. When lateral seismic forces overcome static

friction, the articulated slider is displaced along the convex spherical bearing surface. If

friction between the articulator and the bearing surface is neglected, then the system

behaves as a simple pendulum. The restoring force that re-centers the friction pendulum

system is provided by the change in direction of the frictional and normal forces as the

articulator slides up the wall of the curved bearing surface. Coulomb damping generated

through sliding friction provides constant energy dissipation in the bearing. The effective

stiffness and subsequent shifted period of the isolated system, based on the dynamics of a

pendulum, is dependent upon the radius of curvature of the convex bearing surface [14].
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Figure 4-4: Friction pendulum system isolator bearing schematic.

4.4 Initiating and Limiting Devices

Induced deformations in the isolation devices described above are initiated by

significant seismic forces, and maximum relative displacements are controlled to an

extent through the design and inherent material characteristics of the bearings. However,

supplementary initiation and limiting devices are sometimes required to further control

the relative displacements of the isolated structure [14].

Systems that are too flexible under lateral service loads often require an initiating

device, such as a shear key, to provide increased stiffness and to also act as a fuse when

the structure is subjected to considerable seismic excitation. Major problems that exist

with initiating devices include local damage and the creation of a significant stiffness

discontinuity in the isolation system. Localized damage must be addressed through

inspection and repair after a seismic event and could eventually offset the cost

effectiveness of the isolation system. The creation of a major discontinuity in the

stiffness of the structure can lead to the excitation of higher modes during an earthquake,

resulting in increased relative displacements and accelerations.

During improbable extreme seismic events, limiting devices may be required to

control the deflection of the isolated superstructure. Elastometric bearings are
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particularly prone to problems with excessive deformation, as they may become unstable

under significant strains. Additionally, pounding against adjacent structures could occur

with excessive displacements, resulting in increased column shear forces and the

potential for localized damage, especially in the case of reinforced concrete structures.

Either rigid or deformable devices can be used to limit deflection, but once deflection is

constrained, accelerations in the structure may increase, or local damage to the limiting

device may occur. The implementation of a system that optimally reduces acceleration,

relative displacement, and local damage is ultimately in the hands of the designer.
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CHAPTER 5: MECHANICS OF ELASTOMETRIC BEARINGS

5.1 Introduction

The concept of seismic isolation is relatively straightforward, but the realization

of isolation lies within the sophisticated mechanics of the isolation devices. The systems

must possess both vertical and lateral stiffness tailored to the applied loads and geometry

of the structure, where the isolators are sufficiently stiff to resist service loads but flexible

enough to significantly deform under seismic excitation. Isolators must also have

sufficient energy dissipation mechanisms.

Isolation bearings must be significantly stiff in the vertical direction in order to

reduce the potential for structural rocking under eccentric vertical loads. In simply

supported bridge structures, eccentric traffic loads can induce oscillations about the

longitudinal axis of the bridge if isolators do not possess sufficient vertical stiffness.

Isolators must also be sufficiently rigid when subjected to lateral service loads. Such

loads include horizontal wind forces that can induce cyclic vibration if vortex shedding

about the superstructure occurs and longitudinal forces from vehicle braking and

acceleration. The isolators, of course, must also possess adequate flexibility in the lateral

direction in order to allow for significant relative displacement when subjected to seismic

excitation. This relative displacement permits the shift in fundamental frequency that

effectively removes the structure from the range of the dominant earthquake excitation

frequency.

Efficient isolation systems must dissipate energy as well as possess sufficient

stiffness. The ideal isolation system can continuously dissipate energy under both service

loads and intense seismic loads, and this energy is arguably most efficiently dissipated

through viscous and hysteretic damping mechanisms. Viscous damping allows for

continuous energy dissipation under lateral service loads and both minor and severe

seismic excitations. Viscous damping alone cannot provide sufficient energy dissipation

for severe impulsive excitations, and additional dissipation is required, ideally in the form

of hysteretic damping. Hysteretic damping, provided through the inelastic deformation

of a low-yielding metal, provides high stiffness under service loads and high damping

under severe excitation. While the damping mechanism provided by hysteretic dampers
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is beneficial under extreme lateral loads, it creates a discontinuity in the stiffness of the

isolation system. This sudden change in stiffness has the potential to increase the

absolute acceleration of the isolated structure in the transition from minor to severe

lateral excitation.

5.2 Modeling of Bearings

Since elastometric bearings are most commonly implemented in the seismic

isolation of bridge structures, they will be discussed in detail in this section. The most

common types of bearings used are natural rubber bearings and lead-rubber bearings,

both of which were discussed in the previous chapter. Lead-rubber bearings are more

commonly used than natural rubber bearings, but an overview of the modeling of natural

rubber bearings will first be presented to illustrate both the advantageous properties of

rubber and the necessity for the inclusion of the hysteretic lead element. The more

common lead-rubber bearing will then be presented to illustrate the effectiveness of the

bilinear system that incorporates hysteretic energy dissipation.

5.2.1 Natural Rubber Bearings

Rubber is a viscoelastic material and is capable of dissipating moderate amounts

of energy without the inclusion of additional damping devices. Thus, the natural rubber

bearing can perform satisfactorily as an isolation device. A detailed geometry and

configuration of the natural rubber bearing has been described in the previous chapter.

The following discussion highlights the mechanical behavior of the natural rubber

bearing and relies upon that developed by Jerome Connor [16].

F

U

h

Figure 5-1: Natural rubber bearing in initial condition and deformed condition.
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Given the aforementioned geometry, the natural rubber bearing can be

rudimentarily modeled as a simple shear element, although nonlinearities exist in the

system. The initial configuration and deformed configuration of the element is illustrated

above in Figure 5-1 [16].

The shear strain, y, of the bearing is defined as

y = U- (5-1)
h

and the applied shear force, F, is defined as

F = rA (5-2)

where z is the shear stress and A is the cross-sectional area of the bearing. Assuming

harmonic shear strain, the viscoelastic constitutive equations are

y = ^ sin Qt (5-3)

and

Z = Gf sin ft +7Gfcos t (5-4)

where G, is the storage modulus of the rubber material, q is the loss factor of the rubber,

and 0 is the forcing frequency. The storage modulus and loss factor are a function of the

forcing frequency and temperature and can be determined from empirical material

properties. For rubber material exhibiting high damping characteristics and subsequent

nonlinear viscoelastic behavior, the storage modulus and loss factor are also dependent

upon strain amplitude.

The stiffness and damping characteristics of the bearing can be derived from the

linearized force-displacement relationship, defined by

F=kqU+Ceqld (5-5)

where keq and Ceq are the equivalent linear stiffness and viscous damping of the system.

These two quantities can be obtained from the material properties of the elastomer by
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using a least squares methodology [16]. The desired behavior of the isolation system can

then be controlled through the geometric design of the isolation bearings.

5.2.2 Lead-Rubber Bearings

The necessity for additional energy dissipation in seismic isolation systems led to

the development of the hysteretic damping mechanism in the lead-rubber bearing. The

lead-rubber bearing provides all of the advantages of the natural rubber bearing,

including vertical stiffness, horizontal flexibility to allow for the fundamental structural

period shift, and inherent damping in the rubber. However, the addition of the lead plug

provides additional initial stiffness under lateral service loads. More importantly, the

lead plug provides hysteretic damping and subsequent energy dissipation under extreme

seismic lateral loading, reducing both relative displacements and absolute acceleration in

the isolated superstructure. Because of the added rigidity of the isolator, the rubber used

in the lead-rubber bearing generally has both lower values of stiffness and inherent

damping characteristics.

The physical properties of lead significantly affect the behavior of the isolation

system and the subsequent overall behavior of the isolated structure. Because lead is a

crystalline material, it changes structure temporarily when subjected to loads greater than

its yield strength. Since the rubber that envelops the lead core remains elastic under

significantly greater shear strains than lead, the original lead structural matrix is re-

established once the applied lateral force is removed. The restoring force from the stored

strain in the rubber re-centers the bearing into its initial equilibrium position [13].

Once the yield stress of the lead plug has been achieved, energy is dissipated

hysteretically in the form of heat. The yield strength of lead in shear is approximately 10

MPa (1.5 ksi) [14], which is quite small in comparison to the yield strength in shear of

structural steel, which is about 145 MPa (21 ksi). Thus, the isolators will deform

inelastically and begin to dissipate energy long before structural members, such as

supporting piers, begin to yield. The yield point of individual bearings and the lateral

stiffness of the overall isolation system can be controlled through the dimensions of the

lead plug. If the bridge is of irregular geometry, such that the torsional deformation

mode is easily excited, then individual isolators within the system can be designed with
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varying stiffness to ensure uniform displacement of the superstructure in either the

longitudinal or transverse direction. The effects of torsional vibration will be explored

further in the analysis in Chapter 7. Finally, lead generally resists fatigue, so extensive

cyclic loading over the life of the bridge will not significantly reduce either the yield

strength of the lead or its hysteretic dissipation properties.

The mechanical behavior of the lead-rubber bearing can be approximated with a

bilinear stiffness model. The development of this bilinear model is illustrated below in

Figure 5-2 [13]. In the figure, the simplified linearized force versus displacement

relationship for each of the components of the lead-rubber bearing is plotted. The

combined effective bilinear stiffness of the bearing system is also plotted. Figure 5-2 (a)

represents the elastic stiffness of the rubber, assuming the applied force is below the yield

point of rubber and that the rubber behaves linearly. The nonlinear nature of rubber was

discussed above, but a linear approximation is qualified because the comparatively high

stiffness of the lead plug controls the behavior of the bearing, with a stiffness nearly ten

times that of rubber. The effective stiffness of the rubber can be approximated in the

same manner as the natural rubber bearing, described in the previous section. The

simplified elastic-plastic nature of the lead plug is shown in Figure 5-2 (b), where it is

assumed that lead exhibits perfectly plastic behavior after the applied force has exceeded

the yield strength of the lead plug. Finally, the combined stiffness of the lead plug and

rubber bearing are shown in Figure 5-2 (c). It is evident that the elastic stiffness of the

composite system is equal to the combined stiffness of the lead and rubber under low

lateral loads, while the post-yield stiffness of the system is equal to only the stiffness of

the rubber.

kpast-yield = krubber

o o_ kplastic
LL LL LL

keiastc= krubbe, keiastc = klead kelastic = klead ± keubbe,

Displacement Displacement Displacement

(a) Rubber (b) Lead (c) Lead-Rubber

Figure 5-2: Bilinear stiffness development of the lead-rubber bearing model.
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In Figure 5-3 [17], shown below, the effect of bilinear stiffness on the hysteretic

characteristics of the isolator is illustrated. The solid lines signify the bilinear elastic and

post-yield stiffness, described above, while the dashed parallelogram corresponds to the

hysteresis loop. The area of the hysteresis loop represents the work done by the isolation

device and is equivalent to the amount of energy dissipated. As explained above, the

stiffness of the rubber material in the isolator is small in comparison to the stiffness of the

lead plug. Thus, the dissipative properties of the isolator are primarily dictated by the

characteristics of the lead plug, namely the yield force, Fy, and the corresponding yield

displacement, uy. Since the yield strength of lead is generally constant, the amount of

energy dissipated and subsequent reductions in acceleration and relative displacement of

the isolated structure depend upon the maximum allowable displacement of the isolation

device, Umax. Umax is therefore an important design parameter and is a function of the

permissible deflection of the isolated superstructure relative to adjacent fixed structures,

such as bridge abutments and neighboring spans.

F

kpost-yieldFy

V -- isiion ketatic *

Uy Umax

Figure 5-3: Force-displacement relationship and corresponding hysteresis loop for lead-rubber
isolation bearings.

Fragiacomo et al., have studied the effect of the ratio of post-yield stiffness to

elastic stiffness, defined as the bilinear stiffness ratio, upon structural behavior [17].

Their findings show that the optimal bilinear stiffness ratio is dependent upon both the

characteristics of the earthquake excitation and the ratio of the isolated mass to the
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structural mass. According to the study, for some earthquake excitations, isolation

systems with comparatively low values of stiffness and high yield strength perform best,

while for other excitations, systems exhibiting relatively high values of stiffness and low

yield strength perform optimally. Because each earthquake excitation is unique, no trend

can be developed. However, earthquakes occurring in a similar geographic region

generally exhibit similar characteristics and comparable excitation frequencies. The

study emphasizes the importance of consulting local data in the design of seismic

isolation systems. Earthquake time-histories, in addition to the effects of soil conditions

on seismic accelerations for the desired location of the seismic isolation system, must be

utilized for effective base isolation system design.
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CHAPTER 6: LINEAR THEORY

6.1 Introduction

It has been emphasized earlier that the predominant advantage of seismic isolation

systems is a shift in the fundamental period of the structure away from the dominant

period of earthquake excitation. Additionally, it has been previously discussed that the

first dynamic mode of vibration of the structure consists of only the deformed shape of

the isolated portion of the structure, and that only the first dynamic mode contributes to

the development of internal structural forces. These considerations have been discussed

in a qualitative sense, and the linear theory that describes the mathematic and physical

behavior of seismic isolation systems will be examined in this section. The linear theory

for the general case is outlined and is then simplified for the case of simple span bridges.

The material presented in this chapter has been developed in detail by James Kelly [18].

m
Sus

k,, c,

Mb

kb, Cb

Ug

Figure 6-1: Parameters and assumed displacements of two DOF system.

6.2 General Case

The model presented above in Figure 6-1 [18] consists of a two degree of freedom

(DOF) system with linear stiffness and linear viscous damping, and the ensuing

discussion is developed based on this model. Although most isolation systems behave

nonlinearly, the conclusions developed from the linear model in this discussion

satisfactorily explain the general behavior of seismic isolation systems. In this model, the

mass of the isolated portion of the structure is denoted by m and the mass at the level of

the isolators is denoted by mb. The stiffness and damping of the isolated structure are
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denoted by k, and cs, respectively, while the stiffness and damping of the isolated level

are denoted by kb and Cb.

The absolute equations of motion derived from the above model are

mu, = -CS,(b, -a)-k(Us -Ub) (6-1)

and

mu, + mbub = -Cb(u -u,)-k (Ub -U,) (6-2)

These equations can be expressed more conveniently in terms of absolute displacements,

defined as

V, = U -- ub (6-3)

and

(6-4)V = Ub -U 

The equations of motion are rewritten as

myb+ ms + cs, + kv, = -mug

and

(m+ mb )b + Ms, + c'b + kbvb -(M + mb)ug

These equations can be expressed in matrix form as

MV + Cv +Kv = -Mruig

where

M = m+Mb

[M m]M c=[ 0]
0 C,

k=[ 0]
0 k,

(6-5)

(6-6)

(6-7)
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To simplify the analysis, several assumptions are applied. First, it is assumed that

mb < m, but the masses are of the same order of magnitude. Second, in terms of the

frequencies of the two portions of the structure, it is assumed that Ws >> cb, and E =

(COs/Cob) 2 is of the order of magnitude of 10-2. Finally, the system damping factors, 4, and

4b, are also of the order of magnitude of 10-2.

The undamped natural modes of the system are denoted as

np = #," ]," n = 1,2

These modes are implicitly defined as

(-, 2 +Cobf#"+(-)c, " =0 (6-8)

and

2- n #+(-= +co )#"=0 (6-9)

where con is the mode frequency and y = m/M is the mass ratio.

The characteristic equation for con is defined as

(1-y)C 4 2 -(co + co co +co =0 (6-10)

Solving the characteristic equation while considering the fact that Cos >> cob and utilizing

binomial series expansion to obtain a solution of the same order as E results in the

following solution for co, and co2, the first two modal frequencies

C012 *2 W2 y,b (6-11)9 O h Cy2)
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and

C 2 2 - CO+S y(9 (6-12)

It can be noted that o)*b is the lower of the two roots and represents the shifted

isolation frequency while o*, is the greater of the two roots and represents the modified

frequency of the structure. Because the change in isolation frequency of the structure is

of order E and the frequency of the structure is considerably increased by the base mass,

(O*b and o*, can be approximated as

ot' = Cob (6-13)

and

CO* = VI (6-14)

The two mode shapes, #1 and #2, can be obtained from equations 6-8 and 6-9 by retaining

terms of order c and by setting 4bl equal to 1.

0 = (6-15)

and

_2 = _1 __0 y) (6-16)

These two mode shapes are plotted below in Figure 6-2 [18]. In the first mode

shape, the isolated portion of the structure is nearly rigid, considering that , is small

compared to one and even smaller compared to the isolated structure height. In the

second mode shape, it can be observed that the two masses, m, and mb, vibrate nearly
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freely about the center of mass of the structural system. This vibration shape implies that

negligible base shear is developed due to large accelerations in the second mode.

I-(I -y)

F Y

1 #2

Figure 6-2: First and second mode shapes of the isolated system.

The relative displacements, Vb and vs, defined by equations 6-3 and 6-4, can be written in

terms of ' and #2 as

v 1 = i 2 (6-17)

and

v, = i, 2 (6-18)

The equation of motion, written above in matrix form in equation 6-7, becomes

41 +2ob* 3*q + cob2q, = -Lliig (6-19)

and

42 + 2co,*(* q2 + co2 2 q2 = -L2iig (6-20)

In this formulation, the damping in the structural system is assumed to be small

enough to retain orthogonality of the modes with respect to each other and the ground

motion. L 1 and L2, the participation factors, are defined as
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L = Mr (6-21)

These participation factors are determined by using the modal masses, M, and M2, where

Mn = onT" Mo" (6-22)

Considering only terms to the order E results in

L, =1- ye (6-23)

and

L2 = ye (6-24)

The two participation factors define the effectiveness of the seismic isolation

system. If the two system frequencies, o, and cob, are well separated, implying that co >>

cob, then L2 is negligible and the corresponding structural deformation in the second mode

is also negligible. The isolated structure is then effectively removed from the range of

earthquake excitation when the frequency of the second mode shifts to a higher value

than the frequency of the original non-isolated structure.

Furthermore, the negligibility of the second mode results in orthogonality with the

seismic excitation. By the principle of orthogonality,

On" M# 1 = 0 for n # I

Given the assumption that

r ~ #

seismic input is orthogonal to modes higher than the first, implying that

o" TMr ~ 0
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This development results in the significant implication that the structure will be

unaffected by the ground excitation even if the earthquake excitation frequency is in the

same range as the frequency of the second mode. Thus, the seismic isolation deflects

rather than absorbs input energy through orthogonality [18].

6.3 Damping and Energy Absorption

While seismic energy is essentially deflected by the isolation system to reduce

absolute acceleration in the isolated mass, energy dissipation occurs locally within the

isolators, reducing relative displacements. In the subsequent discussion, the effect of

modal damping on the structure in terms of the modal damping factors will be

determined. These factors are denoted as 4*b for the isolator and 4*s for the structure.

The development assumes that elastometric isolation bearings are utilized, common in

isolated bridge structures. It is also assumes that energy is dissipated through linear

viscous damping. Similar to the preceding section, a more detailed discussion has been

developed by Kelly [18].

In order to treat the modal damping factors separately, the equations of motion

must remain uncoupled. To retain this decoupling, an approximate form of the damping

factors, 4*b and 4*s, will be considered. The damping factor for the first mode, 4*1, is

synonymous with 4*b, and the damping factor for the second mode, 4*2, is synonymous

with 4*s. The approximation must be used because of the large difference in magnitude

between the damping factors. Elastometric bearings are capable of exhibiting nearly 20%

damping in the case of high damping natural rubber bearings, while the structure exhibits

significantly less damping than the usually assumed value of 5% in earthquake analyses.

This assumed value of 5% is based on hysteretic damping that occurs through earthquake

damage resulting in plastic deformation in structural members. Since the seismic

isolation system ideally protects the structure from inelastic deformations, a smaller

damping value must be assumed.

To retain the decoupling of the equations of motion, the damping factors

mentioned above, 4*1 and 4*2, are defined approximately as
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202* * =o C*b (6-25)nc~ n 0 n TM*On

Using the previously defined mode shapes and modal masses, it can be determined that

Ib = 'b1 yEK (6-26)

and

* = ,+gI (6-27)
(1-7y)

The above relationships show the significance of the damping in the elastometric

bearing and its effect on the overall damping of the structure. Structural damping is

increased to the order of c'/ 2, which can be significant considering that tb is an order of

magnitude greater than 4s. Thus, the high damping inherent in the rubber bearings

contributes significantly to the overall energy dissipation in the structure, and

displacements at the isolated level can be controlled primarily through damping in the

isolation devices [18].

Mb
Ub

kb, Cb

m, U,

k,, c,

Ug

Figure 6-3: Refined two DOF model for bridge structure.

6.4 Simplified Application to Bridge Structures

The above discussion has been developed for the general case of seismic

isolation, applicable to all structures, and illustrates the capability of isolation systems to

deflect destructive earthquake energy. The phenomenon is essentially the same for
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bridge structures, but the structural model differs slightly. In the case of bridge

structures, isolation devices are generally located at the tops of supporting columns,

isolating only the mass of thd bridge superstructure. The refined model is shown above

in Figure 6-3.

In this model, the isolated mass, mb, represents the lumped mass of the deck

superstructure. The isolator, having stiffness kb and damping cb, is located on top of the

bridge pier. The stiffness and damping of the simplified pier structure are denoted by k,

and c, respectively. The primary differences between the model shown above and the

model discussed in Figure 6-1 are that the locations of the masses are inverted, and the

isolated mass is large in comparison to the structural mass.

The equations of motion for this system are defined as follows

mbub = -Cb ( u )-kb (UbU s) (6-28)

and

mbub + msi, = -c,(t - g)-k(us - ug) (6-29)

Assuming that ub is greater than us, the analysis is simplified by defining the relative

displacements, vb and Vb, as

Vb -Ub -us (6-30)

and

v, =u, -ug (6-31)

The equations of motion then become

mb b +mbv. +Cb-b +kbVb = -mbig (6-32)

and

(M+b ±m,)i + Mbcb + ,,+ksvs =-(mb +m,)ii (6-33)
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These equations can be rewritten in matrix form as

F ++mS bi =1 ±rcM -lrv1rmb9m (6-34)
L b b _0 b_ _b 0 kb _b b b _0_ gM I Vb I +LCS 0  kh1vj flii (6+I'S34)I

As a rudimentary approximation, the above two DOF model can be

approximated as a SDOF model, illustrated below in Figure 6-4 [13]. In this model, the

mass of the isolated deck superstructure, ms, and the mass of the bridge piers, mb, are

combined as one lumped mass at the top of the pier. Keq denotes the combined

equivalent lateral stiffness of the isolation devices and bridge piers, and Ceq denotes the

combined damping contribution of the bridge piers and isolation devices.

U
m,+ mb

Keq Ceq

Ug

Figure 6-4: Simplified SDOF bridge model.

The equivalent lateral stiffness of the combined pier and isolator system for a single pier

in terms of the isolator stiffness, kb, and the pier stiffness, ks, is denoted as

K E kb (6-35)
+ Ekb

k,

where

kb = the combined stiffness of identical isolators located at a single pier.
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If a bilinear elastometric isolation scheme is employed in the bridge structure, which is

quite common in the seismic isolation of bridge structures, then the stiffness for a single

isolator can be approximated as

F, (I _ a + kgumax
F kj

kb _max - jk(6-36)

max Umax

where kei is the elastic stiffness of the isolation device, kp1 is the plastic stiffness of the

isolation device, Umax is the maximum displacement of the isolator, and Fy is the yield

strength of the hysteretic core of the isolator [13].

Because the model has been simplified to a single DOF system, the shifted period

of the structure is dependent only upon the equivalent stiffness and combined deck and

pier masses. The equivalent shifted period in the longitudinal direction of excitation, Teq,

is denoted by

T =2z (MS +mb) (6-37)
eq sKeq

The structural behavior discussed in this chapter is only an approximation of the

mechanics of isolated structures and is used to illustrate the effectiveness of seismic

isolation systems. A more accurate analysis is required in the actual design of isolation

systems that incorporates three-dimensional geometries, the effects soil-structure

interaction, and the effects of the transverse excitation of bridge structures.
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CHAPTER 7: ANALYTICAL INVESTIGATION

7.1 Introduction

In order to gain a better understanding of the behavior of seismically isolated

bridge structures, a comprehensive time history analysis was performed on a continuous

multiple-span highway bridge using SAP2000 nonlinear finite element software [19].

The analyzed bridge was chosen as a representative example of typical simply supported

highway bridges that often have fundamental periods in the range of the dominant

excitation period of earthquakes and are consequently subjected to the greatest absolute

acceleration and corresponding structural damage. The primary objectives of the study

are to examine the effects of varying isolator stiffness on the relative displacement of the

bridge superstructure at various joint locations, and to also observe the absolute

accelerations and corresponding internal column shear forces in the different supporting

columns.

7.2 Model Geometry

The dimensions of the model geometry were developed for reasons related to

analytic accuracy. First, it was intended for the natural period of the bridge to correlate to

the fundamental period of most simple span highway bridges of approximately 0.2 s to

1.2 s [14]. The calculated period of the non-isolated bridge is approximately 1.1 s,

validating the accuracy of the model. Second, it was desired that the fundamental

frequency of the structure be closely related to the dominant input seismic excitation

frequency in order to exploit the seismic response of the structure. The results presented

later in this section illustrate the achievement of this goal.

The model bridge consists of a 450 ft continuous span formed by three 150 ft

segments supported by two piers of varying height. The piers have heights of 100 ft and

50 ft. The abutments are assumed to be infinitely stiff and thus do not contribute to the

structural response. It is assumed that expansion joints are located at the abutments, and

the superstructure is allowed to freely displace both laterally and longitudinally at the

abutment locations. Pier footings were modeled using a fixed connection, assuming that

the bridge is founded in bedrock and that the pier bases can neither translate in any
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direction nor rotate about any axis. At the column-isolator interface, the column end joint

is free to both translate and rotate. However, at the adjacent isolator-superstructure

interface, the deck is restrained from translating in the vertical direction and can rotate

only about the vertical axis. The conceptual geometry of the bridge is illustrated below in

Figure 7-1, and the simplified model formulated for the SAP analysis is depicted in

Figure 7-2.

Z

<c 450 ft

< 150 ft - - 150 ft - 150 ft )

50 ft 100 ft

z

y

Sx

A

Figure 7-1: Conceptual geometry of analyzed model.

i 100 kip-mass

100 kip-mass

Roller support T
L

Isolators/

-i

Roller support

Fixed supports

Figure 7-2: Simplified SAP2000 input geometry.
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The two major structural components used in the bridge model are columns and

deck sections. The geometric properties of these components, modified slightly to adhere

to the assumed bridge geometry, are based upon an analysis performed by Priestly, et al.

[1]. The geometric properties of the column and deck, namely cross-sectional area and

area moment of inertia, are summarized below in Table 7-1 and Table 7-2, respectively.

Table 7-1: Column geometric cross-sectional properties.

-Area (ft2) 14.5
jxx (ft4) 865
I yy (ft4) 865

-Weight (k/ft) 2.175

Table 7-2: Deck geometric cross-sectional properties.

-Area (ft2) 28
1,, (ft4) 10,221

I X, (ft4) 616
Weight (k/ft) 21.5

The linear weight of each component is also listed in the tables above. The linear

weight of the deck section includes the dead load from the superstructure and the

estimated live load due to traffic. This weight is lumped at the tops of the columns,

illustrated in Figure 7-2, and used in the dynamic time history analysis. The value of the

lumped mass at the top of each column is assumed to be 100 kip-mass, or 100,000 slugs.

This mass is somewhat greater than that of a bridge of similar proportions, but the

increased mass was utilized to obtain pronounced structural response to the applied

excitation and to establish trends in the analysis.

7.3 Isolator Properties

The bridge bearings are modeled using bilinear hysteretic isolation bearings. The

Nllink element in SAP2000, used to model local nonlinearities through effective linear

and nonlinear properties, is utilized in the formulation of the bridge model. In particular,

the Isolatorl element is used, which is recommended for the modeling of isolation

devices. The element is adapted to bilinear hysteretic isolators that possess an elastic

stiffness for linear analyses and an inelastic stiffness for nonlinear analyses [20].
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As mentioned above, it is assumed that lead-rubber bearings are the isolation

devices implemented in the bridge structure. One equivalent isolator is applied at the top

of each column having the properties listed below in Table 7-3. The parameters listed in

the table are depicted below in Figure 7-3 and Figure 7-4. In developing the model

parameters, it is assumed that the diameter of the lead plug is 25% of the diameter of the

entire isolation bearing and the maximum allowable shear strain in the elastometric

material is 150%.

Table 7-3: Isolator properties used in nonlinear analysis.

Heft (ft) Diso (ft) Dpug (if) Apiug (in 2) Fy (k) uy (ft) kei (k/ft) kpi (k/ft) umax (ft) keff (k/ft)

0.250 0.50 0.125 1.8 3 0.0072 356 36 0.3750 42
0.500 1.00 0.250 7.1 10 0.0036 2,847 285 0.7500 297

0.625 1.25 0.313 11.0 16 0.0029 5,561 556 0.9375 571
0.750 1.50 0.375 15.9 23 0.0024 9,609 961 1.1250 979
1.000 2.00 0.500 28.3 41 0.0018 22,777 2,278 1.5000 2,302
1.250 2.50 0.625 44.2 64 0.0014 44,485 4,449 1.8750 4,479
1.375 2.75 0.688 53.5 78 0.0013 59,210 5,921 2.0625 5,955
1.500 3.00 0.750 63.6 92 0.0012 76,871 7,687 2.2500 7,724
1.625 3.25 0.813 74.7 108 0.0011 97,735 9,773 2.4375 9,813
1.750 3.50 0.875 86.6 126 0.0010 122,068 12,207 2.6250 12,250
2.000 4.00 1.000 113.1 164 0.0009 182,212 18,221 3.0000 18,270
2.250 4.50 1.125 143.1 208 0.0008 259,439 25,944 3.3750 25,999
2.500 5.00 1.250 176.7 256 0.0007 355,884 35,588 3.7500 35,650
3.000 6.00 1.500 254.5 369 0.0006 614,967 61,497 4.5000 61,570
3.500 7.00 1.750 346.4 502 0.0005 976,544 97,654 5.2500 97,741
4.000 8.00 2.000 452.4 656 0.0005 1,457,699 145,770 6.0000 145,868
4.500 9.00 2.250 572.6 830 0.0004 2,075,513 207,551 6.7500 207,662
5.000 10.00 2.500 706.9 1025 0.0004 2,847,068 284,707 7.5000 284,830
5.500 11.00 2.750 855.3 1240 0.0003 3,789,448 378,945 8.2500 379,080
6.000 12.00 3.000 1017.9 1476 0.0003 4,919,734 491,973 9.0000 492,121

Umax

Heft

Dplug

Fiso

Figure 7-3: Parameters of isolator geometry.
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Figure 7-4: Parameters of isolator stiffness.

In the analysis of the model, it was assumed that the bearing properties at the top

of each column are identical, even though the columns do not share the same geometry.

Implementing bearings of identical stiffness for a bridge of unequal column heights

would not be common in practice because the varying height and corresponding stiffness

of each column group could induce a torsional response in the isolated bridge

superstructure under transverse excitation. In general, isolation bearings are designed

such that the center of mass of the structure coincides with the center of stiffness.

However, identical bearing properties at each column top were assumed for

several reasons. First, the significance of equal bearing stiffness and the subsequent

effects of the torsional response on the columns and relative joint displacements were

desired. Second, isolation bearings of different stiffness designed to limit torsional

effects from lateral excitation are generally designed assuming that ground motions are

consistent at the footing of each supporting pier, which is not necessarily true [22].

Given the anisotropic and non-homogeneous nature of soil, the characteristics of seismic

waves tend to change over the distance of propagation. This change can be particularly

pronounced for bridge structures, where significant distances exist between supports and

where geology and soil conditions are more apt to vary when the span crosses a water

formation or irregular geologic formation. Thus, if consistent ground excitation at each

support is assumed in the design of seismic isolation systems and actual ground

excitation varies, then torsional vibration of the bridge superstructure may be induced.

61



This effect, however, is more problematic in long span bridges than in shorter simply

supported bridge structures.

7.4 Earthquake Excitation

The north-south component of the 1940 El Centro earthquake in California, also

known as the Imperial Valley earthquake, was chosen as the input excitation for the

nonlinear time history analysis [22]. The earthquake magnitude measured 7.1 on the

Richter Scale. The accelerogram for this earthquake is shown below in Figure 7-5.

Spectral displacement, pseudo spectral velocity, and spectral acceleration graphs

corresponding to 0%, 2%, and 5% of critical damping are illustrated in Figure 7-6, Figure

7-7, and Figure 7-8, respectively [11]. It is evident from these figures that the

fundamental period of the modeled structure of 1.1 s lies in the range of the dominant

excitation period of the El Centro earthquake.
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Figure 7-5: El Centro accelerogram.
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Figure 7-6: Spectral displacement - 1940 El Centro earthquake.
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Figure 7-7: Pseudo spectral velocity - 1940 El Centro earthquake.

63



LL -

102

N 101

10-

O 10 001

-I - -' - - - ---- - - -

Period (s)

Figure 7-8: Spectral acceleration - 1940 El Centro earthquake.

7.5 Procedure

Multiple time-history analyses were performed to gage the effects of isolator

stiffness upon the response of the structure. A trial was performed for each of the isolator

properties listed in Table 7-3 using the same bridge geometry described above. The same

earthquake excitation was applied to the bridge for each of the consecutive trials, and the

earthquake excitation was applied in both the longitudinal and transverse directions. As a

basis for comparison, an analysis was also performed for the same bridge structure

without the application of isolation devices. Effective isolator stiffness was

incrementally increased until the response of the structure mimicked that of the non-

isolated structure. All relevant results are addressed later in this section.

7.6 Results

The aforementioned analyses were performed using SAP2000 finite element

software, and the relevant findings are presented in the following discussion. The

response of the structure to the earthquake excitation as dictated by the isolator properties

is analyzed. This response includes the effects of isolator stiffness on fundamental period
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shift, the maximum absolute acceleration induced in the supporting columns, and the

maximum relative displacement of the superstructure. All graphs presented below

include the stiffness ratio, represented as the normalized effective bearing height,

Heff/Heff,ax, on the abscissa, where Heffmax is taken as 6 ft. This is done for the sake of

clarity convenience to illustrate trends that develop from increasing isolator stiffness. It

should be reiterated that the effective height of the isolator used in this analysis represents

the combined stiffness of multiple isolators located at the top of particular column group.

Modal Period versus Stiffness
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Figure 7-9: Modal period versus stiffness for isolated modes of vibration.

7.6.1 Period Shift

The effects of increasing isolator stiffness upon modal period are presented above

in Figure 7-9. This figure shows the shifted periods of the first three modes of vibration

of the bridge structure plotted against increasing values of effective isolator stiffness.

Qualitative observations of the deflected mode shapes output by SAP2000 reveal that the
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first three modes of vibration of the structure are the displacements of the isolated

superstructure. The first mode is the torsional vibration of the bridge superstructure

while the second and third modes of vibration are the lateral and longitudinal

displacement of the isolated superstructure, respectively. It is evident in the figure that

any stiffness increase beyond a fundamental period of approximately 2 s has a negligible

effect on the period shift of the entire structure. It is also evident in the figure that the

shifted period of the fundamental torsional mode remains consistently well-separated

from the similar second and third modes as the effective stiffness of the isolators are

increased. The implications of this separation will be discussed in a subsequent section.

Short Column: Maximum Shear versus Isolator Stiffness
El Centro Earthquake
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Figure 7-10: Maximum shear in short column.
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Long Column: Maximum Shear versus Isolator Stiffness
El Centro Earthquake
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Figure 7-11: Maximum shear in long column.

7.6.2 Column Shear

The internal shear that develops in the supporting columns is an effect of the

absolute acceleration experienced by the isolated superstructure. The maximum column

shear that develops in the short and long columns in response to both the transverse and

longitudinal directions of earthquake excitation are plotted above in Figure 7-10 and

Figure 7-11, respectively. In the figures, the column shear is plotted as a function of the

stiffness ratio of the isolator. The maximum shear experienced by the column for the

complete earthquake time history for a particular isolator stiffness is plotted in each

figure. Additionally, the maximum shear values of the non-isolated structures in the

transverse and longitudinal directions are represented by the horizontal lines in the

figures. Several notable characteristics within each figure can be observed, which will be

discussed below.

First, it is evident from the general trend in shear values in both the short and long

column that isolators having an equivalent effective stiffness ratio of less than
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approximately 0.25, corresponding to a natural period of 2.25 s, are effective in isolating

the structure from the damaging range of earthquake excitation. For isolators with

implausible values of effective stiffness near zero, the corresponding column shear is also

close to zero. As the effective stiffness of the isolators increases toward the maximum

analyzed values, it can be seen that the values of column shear begin to approach shear

values in the non-isolated structure, which is expected. This behavior is enforced by

qualitative observations of the deformed shape of the model. As isolator stiffness was

increased in the analysis, it was observed that the superstructure became progressively

more coupled with the column substructure. With the increase in isolator stiffness, the

first three deformation modes of the isolated superstructure were accompanied by

significant deformation of the columns, indicating that the isolation system was no longer

effective. This is evident in the column shear graphs in Figure 7-10 and Figure 7-11 and

the modal period graph in Figure 7-9.

A second trend in the shear output reveals the achievement of resonance in the

longitudinal direction at a stiffness ratio of 0.5, corresponding to a fundamental period of

1.8 s, in both the short and long columns. The value of shear at resonance in the

longitudinal excitation direction the short column is much higher than in the long column

due to the fact that the longer column is inherently less stiff and thus attracts smaller

values of absolute acceleration. It can be accurately postulated that at the resonant

stiffness ratio in the longitudinal direction, the structure is synchronized with a dominant

excitation frequency of the earthquake and is not sufficiently isolated to appreciably

reduce absolute acceleration. The structure's fundamental period of 1.8 s at which this

behavior occurs corresponds to a local maximum in the spectral acceleration response

spectrum of Figure 7-8. Thus, the structural response increases and shear values in the

columns exceed even the values that are exhibited in the non-isolated structure.

Resonance in the longitudinal direction is accompanied by distinct local minima

in the transverse direction of excitation for both columns. The occurrence of the local

minima in the transverse direction raises several questions about the behavior of the

structure. It can be postulated that the overall stiffness of the structure in a particular

direction affects the response of the structure when subjected to excitation in a specified

direction. However, in order to explain the achievement of a relative minimum value of
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shear in the transverse direction as a simultaneous maximum value occurs in the

longitudinal direction, it is necessary to conduct a more in depth analysis, such as

examining the correlation between the maximum shear value and time of occurrence

during the earthquake time history.

The achievement of shear values at resonance that are greater than shear values in

the non-isolated structure emphasizes a crucial consideration in the design and

implementation of isolated structures. The designer must pay careful attention to

earthquake records in a specific location and must also consider the effects of local soil

conditions upon wave propagation. It can be seen in the above graphs that even a small

change in isolator stiffness can shift the fundamental frequency of the structure from a

safely isolated range to directly within the dominant range of earthquake excitation.

Thus, it is possible to increase structural damage in a deficiently designed seismic

isolation system.

A final trend evident in the graphs is the occurrence of local maxima and minima

in the range of effective stiffness just before resonance has been achieved. The possible

causes of these local extremes can be explained by several suppositions. First, because

the earthquake does not have a single specific dominant excitation frequency, it is

possible that the bridge structure is being excited by frequencies outside the range of

dominant excitation, which can be verified through a careful analysis of the acceleration

response spectrum. Again, in order to more accurately explain this behavior, it is

necessary to examine the time of occurrence of the extrema during the earthquake time

history. A second possible cause is based upon the excitation of the higher isolated

modes of the structure. In the analysis of seismic isolated structures, a single degree of

freedom (SDOF) model is commonly used. In the SDOF model, only the first mode of

vibration contributes to the structural response, which is the vibration of the isolated

portion of the structure. In the bridge model used in this analysis, however, the geometry

and structural stiffness result in the first three modes of vibration characterized by the

deformation of the isolated structure. As mentioned above, the first mode of vibration is

the torsional mode, which is well-separated from the second and third modes of

longitudinal and transverse vibration. Thus, the possibility exists that the structure is

excited by earthquake excitation periods that correspond to the periods of the second and

69



third isolated modes of vibration, resulting in local maxima and minima in column shear

as isolator stiffness is gradually increased. Again, to verify this explanation, a more

detailed analysis must be conducted.

7.6.3 Relative Joint Displacements

A second consequence of seismic isolation, relative joint displacement, is also

examined in the analysis of the bridge model. In this discussion, the relative

displacement of the superstructure in both the longitudinal and transverse directions with

respect to the column base at observation points located immediately above the two

supporting columns is studied as a function of isolator stiffness. In addition, the relative

displacement between the superstructure and the column tops is examined, which is

synonymous with the shear deformation of the isolators at the top of each column.

7.6.3.1 Superstructure Displacement Relative to Column Base

The maximum relative displacements of the superstructure during the entire

earthquake time history for a particular isolator stiffness in both the longitudinal and

transverse directions of excitation at two specified locations are plotted below in Figure

7-12 and Figure 7-13. Figure 7-12 illustrates the relative displacement of the deck

superstructure at a location immediately above the shorter column while Figure 7-13

illustrates the relative displacement of the deck superstructure at a location immediately

above the longer column. The maximum superstructure displacement of the non-isolated

structure at the two aforementioned locations is also plotted in the graphs.

Several trends can be observed in the examination of the relative displacements of

the deck shown in Figure 7-12 and Figure 7-13. The first trend exhibits the effectiveness

and expected behavior of the isolated structure. For a highly flexible isolation system,

the initial displacement is relatively significant and as isolator stiffness increases, the

joint displacements approach the relative displacement values of the non-isolated

structure. As the isolators become stiffer, the superstructure becomes increasingly

coupled with the substructure, and the relative displacement of the isolated superstructure

approaches the relative displacement of the non-isolated superstructure. The relative

displacement behavior of the deck at the locations of the two column tops is nearly
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identical in magnitude for the isolated structure. The relative displacement of the deck of

the non-isolated structure is expectedly greater atop the more flexible long column than

atop the short column.

A second noticeable trend is the abrupt development of maximum relative

displacement corresponding to a stiffness ratio of 0.125. For an isolated structure, it is

generally expected that relative displacement of the isolated superstructure will be

greatest for lower isolator stiffness and will subsequently decrease for higher isolator

stiffness values. The seemingly anomalous peak displacement, however, can be

explained in terms of isolator properties and earthquake spectral displacement. If the

spectral displacement graph of Figure 7-6 is examined, then it can be observed that local

maxima occur at structural periods of approximately 5 s and 6 s. The effective stiffness

values of the isolated bridge structure that relate to the resonant range exhibited in Figure

7-12 and Figure 7-13 have corresponding periods in the range of 5 s to 6 s, thus

explaining the peaks in the graphs. This behavior would likely be more discernable with

a more in depth analysis where the effective stiffness of the isolator is selected such that

the resulting structural period corresponds to peak periods in the spectral displacement

plot. It can be noticed in the spectral displacement plot, however, that even greater

spectral displacements exist at lower periods. When the structure possesses these

periods, the isolators are significantly stiffer, and the superstructure is more coupled with

the substructure. Thus, significant relative displacements are no longer achieved.

The third noteworthy trend involves the above discussion concerning the internal

shear behavior in the columns. A local maximum for displacement in the longitudinal

direction and a local minimum for displacement in the transverse direction can be

observed at a stiffness ratio of approximately 0.5, which corresponds to the well-defined

maxima and minima in the shear versus stiffness graphs in Figure 7-10 and Figure 7-11.

Possible reasons for this behavior were addressed in the previous section. Other local

maxima and minima are also evident in the figures. Postulated reasons for this behavior,

such as the excitation of higher isolated modes and response to varying excitation

frequencies, are also addressed in the above explanation of column shear behavior.

Ultimately, a more detailed analysis is required to accurately explain this behavior.
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Relative Superstructure Displacement: Short Column
El Centro Earthquake
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Figure 7-12: Longitudinal and transverse relative displacement of the superstructure above the short
column.

Relative Superstructure Displacement: Long Column
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Figure 7-13: Longitudinal and transverse relative displacement of the superstructure above the long
column.
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7.6.3.2 Isolator Shear Deformation

The relative displacement between the superstructure and column tops, which

represents the shear deformation of the isolators, is plotted below in Figure 7-14 through

Figure 7-17. Figure 7-14 illustrates the shear deformation of the isolator at the top of the

short column in the transverse direction, and Figure 7-15 illustrates the same relationship

in the longitudinal direction. Similarly, Figure 7-16 shows the isolator shear deformation

at the top of the long column in the transverse direction, while Figure 7-17 depicts the

same relationship in the longitudinal direction.

In general, the relative displacement relationship between the stated components

is similar. As expected, the difference between the displacement of the superstructure

and substructure decreases as the isolator stiffness increases. Eventually, the shear

deformation between components becomes negligible, at which point the superstructure

is fully coupled with the substructure. Additionally, the displacement behavior regarding

the existence of local maxima and minima addressed in the previous section is evident in

each of the below figures.

Isolator Shear Deformation in Transverse Direction:
Short Column
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Figure 7-14: Relative joint displacement at top of short column - transverse excitation direction.
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Isolator Shear Deformation in Longitudinal Direction:
Short Column
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Figure 7-15: Relative joint displacement at top of short column - longitudinal excitation direction.

Isolator Shear Deformation in Transverse Direction:
Long Column
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Figure 7-16: Relative joint displacement at top of long column - transverse excitation direction.
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Isolator Shear Deformation in Longitudinal Direction:
Long Column

El Centro Earthquake
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Figure 7-17: Relative joint displacement at top of long column - longitudinal excitation direction
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CHAPTER 8: CONCLUSION

It was stated by Dr. Charles F. Richter that "Only fools, charlatans, and liars

predict earthquakes" [23]. Given the unpredictable nature of seismic events, society must

safely and effectively protect public infrastructure from earthquake damage to prevent

destruction and loss of life. Bridges warrant special attention in earthquake resistant

design as they are a primary component of the industrialized world's highway system and

are particularly vulnerable to earthquake damage. Seismic isolation has proven to be

both an attractive and effective means to reduce destructive seismic forces in bridge

structures, and the technology continues to gain popularity in both the retrofit of existing

structures and the design of new structures.

The effectiveness of seismic isolation is particularly noticeable when compared to

failures resulting from bridges designed using an elastic design philosophy and even

bridges that were retrofitted with non-isolation strategies. Earthquakes that have

occurred within the past decade have caused significant damage to many of these bridges,

emphasizing the need for a more effective method to resist seismic forces. Major damage

has occurred to the supporting columns of simple span bridges as columns lack the

capacity to resist increased shear and flexure induced during seismic excitation.

Induced forces within the supporting bridge columns can be avoided through the

implementation of seismic isolation systems. These isolation systems effectively

decouple the deck superstructure from the supporting column substructure, lengthening

the fundamental period of the structure. The shifted period removes the structure from

the range of dominant earthquake excitation, and absolute acceleration experienced by

the structure is consequently reduced.

The behavior of seismic isolation systems applied to bridge structures has been

investigated through a non-linear time history analysis conducted using a continuous span

bridge and elastometric lead-rubber isolation bearings. The effect of isolator stiffness on

column shear and superstructure displacement was examined in response to the 1940 El

Centro earthquake, and results are consistent with the expected behavior of isolated

structures.
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While seismic isolation is clearly an effective means to reduce destructive seismic

forces in structures, it should be reiterated that sufficient care must be taken in the design

of isolation systems to avoid shifting the structural period into the dominant range of

earthquake excitation, as demonstrated in the analytical investigation. In order to achieve

the most efficient isolation system design, earthquake time histories for the specific site

and orientation of a structure must be examined in addition to the effects of soil

conditions on seismic wave propagation at the site.

Seismic isolation systems are a remarkable and well-established innovation that

has saved countless lives and public dollars. Their future implementation in developing

countries, in addition to their effectiveness and structural applicability, ultimately lies

with the education and resolve of the engineer.
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