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Abstract

This thesis considers inference issues in serially correlated multilevel and panel data and
presents a separate essay that examines the impact of 401(k) participation on wealth.

The first chapter examines generalized least squares (GLS) estimation in data with a
grouped structure where the groups may be autocorrelated. The analysis presents compu-
tationally convenient methods for obtaining GLS estimates in large multilevel data sets and
discusses estimation of covariance parameters for use in GLS when the shock follows an
AR(p) process. Standard estimates of the AR coefficients will typically be biased due to
the inclusion of group level fixed effects, so a simple bias correction for the AR coefficients
is offered which will be valid in the presence of fixed effects and group specific time trends.
The chapter concludes with a simulation study that illustrates the usefulness of the derived
methods.

The second chapter further explores inference in serially correlated panel data by consid-
ering the asymptotic properties of a robust covariance matrix estimator which is advocated
for use in panel data. The estimator has good properties when the cross-section dimension,
n, grows large with the time dimension, T, fixed. However, many panel data sets are char-
acterized by a non-negligible time dimension. Chapter 2 extends the usual analysis to cases
where T' -» 0o, showing that ¢t and F tests based on the robust covariance matrix estimator
display their usual limiting behavior as long as n — oo with 7. When T — oo with n
fixed, the results show that t and F statistics can be used for inference despite the fact that
the robust covariance matrix estimator is not consistent but converges to a limiting random
variable. The properties of tests based upon the robust covariance matrix estimator are
examined in a short simulation study.



The final chapter uses instrumental variables quantile regression to examine the effects of
participating in a 401(k) on wealth. The results show the effects of 401(k) participation on
net financial assets are positive and significant over the entire range of the asset distribution
and that the increase in the lower tail appears to translate completely into an increase in
wealth. However, there is evidence of substitution between net financial assets and other
forms of wealth in the upper tail of the distribution. The results demonstrate that estimates
of treatment effects which focus on a single feature of the outcome distribution may fail to
capture the full impact of the treatment and that examining additional features may enhance
our understanding of the economic relationships involved.
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Introduction

In this thesis, I explore inference issues in multilevel and panel data and present a separate
essay that examines the impact of 401(k) participation on wealth and financial assets. The
first two chapters study different inference methods that will be valid in multilevel and panel
data with serially correlated disturbances. The first chapter discusses efficient estimation and
inference when the disturbances follow an AR(p) process, and the second chapter considers
the behavior of a robust covariance matrix estimator for panel data which allows arbitrary
intertemporal correlation within individuals and heterogeneity across individuals. The final
chapter of the thesis presents an empirical analysis of the impact of 401(k) participation on
wealth and financial assets based on instrumental variable quantile regression methods.

The first two chapters of this thesis consider inference in serially correlated multilevel
and panel data. The first chapter explicitly focuses on inference for & time series of multi-
level data, that is, several years of data with variation at both the individual and a more
aggregate level. This data structure is quite common in empirical economics; for example,
in differences-in-differences and policy analysis studies, the outcome often varies at the in-
dividual level while the covariate of interest is a policy that affects all individuals within a
group. One potential complication to inference in this type of data is that the presence of an
unobserved group specific shock may result in severe biases to conventional OLS inference,
and most applied researchers routinely make use of corrections for this “clustering” problem.
However, it is far less common to account for group level autocorrelation which may arise if
the unobserved group level shock is serially correlated, and ignoring this source of correla-
tion may also result in highly misleading inference even after adjusting for “clustering”. In
addition, OLS is not the Gauss Markov estimator under these conditions, and tests based
on OLS estimates may have significantly less power than more efficient alternatives.

In Chapter 1, I offer one potential solution to this problem by providing accurate and
powerful inference methods for data with a grouped structure where the groups may be
autocorrelated. In particular, I consider GLS estimation in this setting and present com-
putationally convenient methods for obtaining the GLS estimates. One complication which
arises is that standard estimates of the components of the variance matrix necessary for
obtaining the GLS estimates will typically be biased and inconsistent due to the inclusion
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of group level fixed effects. Focusing on the case where the group level shock follows an
AR(p) process, [ offer a bias correction for the AR coefficients which will be valid in the
presence of fixed effects and group-specific time trends. 1 develop asymptotic properties of
the FGLS estimator and the bias-corrected AR coefficients in asymptotics where the number
of groups goes to infinity with the time dimension fixed and in asymptotics where the num-
ber of groups and the number of time periods go to infinity jointly. The final section of the
chapter illustrates the usefulness of GLS and the derived bias-correction for the parameters
of the autoregressive process through a simulation study which uses data from the Current
Population Survey Merged Outgoing Rotation Group files. I find that the GLS estimates
have relatively accurate size and much higher power than OLS with standard errors robust
to the presence of a serially-correlated unobserved group level shock.

Chapter 2 examines an alternate OLS-based approach for performing inference in serially
correlated panel models. The chief drawback of the GLS-methods explored in Chapter 1 is
that their implementation requires the imposition of a parametric model on the disturbance
process. An alternative strategy is to use OLS to estimate the model and to then base
inference on estimates of the covariance matrix of the OLS parameters which are robust to

the presence of serial correlation and heteroskedasticity.

I consider the asymptotic properties of a robust covariance matrix estimator which is
commonly advocated for use in panel data. The estimator is a generalization of the conven-
tional heteroskedasticity consistent covariance matrix estimator for panel data which allows
for arbitrary correlation within each individual and heterogeneity across individuals. Under
conventional panel asymptotics where the cross-section dimension, n, grows large with the
time series dimension, T, fixed, this estimator has good properties while allowing an essen-
tially unconstrained time series pattern of correlation because the short time dimension 1s
ignorable. However, many panel data sets are characterized by a non-negligible time dimen-
sion. In these cases, it is not obvious that the robust covariance matrix estimator will even

be consistent.

I extend the usual analysis performed under asymptotics where n — oo with T fixed to
cases where n and T go to infinity jointly, considering both non-mixing and mixing cases, and
show that conventional ¢ and F tests based on the robust covariance matrix estimator are
consistent and have the usual limiting behavior in these cases. In addition, when T — oo with
n fixed and other regularity conditions are satisfied, I show that the usual ¢t and F statistics
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can be used for inference despite the fact that the robust covariance matrix estimator is not
consistent but converges in distribution to a limiting random variable. In addition to its use
in performing inference about regression coefficients, the robust covariance matrix can be
used to test the specification of simple parametric models of the error process, and I also
outline the properties of such a test in asymptotics where n and T go to infinity jointly. The
properties of the robust covariance matrix estimator and tests based upon it are examined
in a short Monte Carlo study in the final section of the chapter. The simulation results
suggest that inference based on the robust covariance matrix is quite accurate regardless of
the relative size of » and T and that it is accurate even for small n if T is moderate and the
dependence between observations decreases as the distance between them increases.

Chapter 3 shifts away from inference issues in panel data models and reports results
from an empirical examination of the impact of 401(k) participation on various measures of
wealth. The analysis makes use of instrumental variables quantile regression methods which
allow estimation of the impact of participating in a 401 (k) on multiple points of the outcome
distribution. Knowing the treatment effect at many points in the outcome distribution
provides a more full characterization of the treatment impact and gives additional insights
into the economic relationships involved.

Specifically, the paper makes use of data from Wave 4 of the 1990 Survey of Income and
Program Participation. The data include measures of financial assets and total wealth as
well as data on 401(k) participation and eligibility for a 401(k), which is used to instrument
for 401(k) participation. The instrumental variables quantile regression estimates indicate
that there is considerable heterogeneity in the effect of 401(k) participation on net financial
assets, with the treatment effect increasing monotonically as one moves from the lower to the
upper tail of the asset distribution. The results are also uniformly positive and significant,
suggesting that 401(k) participation positively impacts net financial assets across the entire
distribution. The effect of participation on total wealth is positive and approximately con-
stant for all quantiles. In addition, it is of the same magnitude as the effect of participation
on net financial assets for low quantiles, but is substantially smaller than the effect of partic-
ipation on the upper quantiles of net financial assets. These results suggest that the increase
in net financial assets observed in the lower tail of the conditional assets distribution can be
interpreted as an increase in wealth, while the increase in the upper tail of the distribution is
mitigated by substitution with some other component of wealth. The effect of participation
on net financial assets excluding 401(k) assets is uniformly insignificant, which suggests there
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is little substitution for 401(k) assets along this dimension of wealth. The heterogeneity of
the treatment effect and substitution patterns are obscured by analyses which focus on a
single point in the outcome distribution and illustrate the usefulness of quantile regression

for examining economic outcomes.
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Chapter 1

Generalized Least Squares Inference
in Multilevel Models with Serial
Correlation and Fixed Effects

1.1 Introduction

Many economic analyses are characterized by regressions involving both aggregate and in-
dividual level data, that is, multilevel data. This is especially prevalent in differences-in-
differences (DD) estimation, and policy analysis more generally, where the dependent vari-
able is often an individual level outcome and the covariate of interest is a policy which applies
to all individuals within a group. For example, in a study of the impact of the minimum
wage on employment, the dependent variable may be the employment in a firm in state
s at time ¢, and the policy would be the minimum wage in state s at time t. While this
sampling design does not pose any serious problems for estimation of the linear model, it
may lead to serious problems for inference. In particular, the sampling design gives rise to
potential sources of correlation between observations, termed here the “clustering problem”
and the “policy autocorrelation problem”, that would be ignored in computing conventional
least squares standard errors. The clustering problem is caused by the presence of a com-
mon unobserved random shock at the group level that will lead to correlation between all
observations within each group. The policy autocorrelation problem arises if the groups (not
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necessarily the individuals within the groups) are followed over time and the group level
shocks are serially correlated, which will result in correlation between individuals from the
same group at different time periods.} In general, ignoring these correlations will bias con-
ventional least squares standard errors and lead to misleading inference. The purpose of this
paper is to provide accurate, powerful, and easily computable inference methods for data
which are potentially affected by both the clustering problem and the policy autocorrelation
problem.

The clustering problem has long been recognized in the econometric literature on panel
data, and has more recently been emphasized in economics in other contexts which involve
multi-stage sampling or multilevel data. There are a number of methods for dealing with this
problem which are available in most statistical packages. The most common approach is to
estimate a linear model with OLS and then correct the standard errors for the intracluster
correlation as in Moulton (1986), Arellano (1987), or Kezdi (2002). Feasible Generalized
Least Squares (FGLS)? estimation may also be performed easily and will asymptotically
result in a more efficient estimator and more powerful tests than OLS.

The policy autocorrelation problem has received considerably less attention from applied
economic researchers. In a survey of DD papers published in six leading applied economics
journals from 1990-2000,% Bertrand, Duflo, and Mullainathan (2003) found that only five
of 65 articles with a potential serial correlation problem explicitly address it; and in sim-
ulations based on individual level Current Population Survey Merged Outgoing Rotation
Group (CPS-MORG) data, they found a 44% rejection rate for a 5% level test using stan-
dard techniques which correct only for the intragroup correlation. To focus on the policy
autocorrelation problem, they also performed a simulation based on data from the CPS-
MORG aggregated to the state-year level. In the aggregate data, they found that using
simple parametric models for the serial correlation did not correct the size distortion, but
that tests based on the OLS estimator which flexibly account for serial correlation, such as

the bootstrap or using a variance matrix robust to arbitrary correlation at the state instead

1For simplicity, I will typically refer to groups as states and time periods as years.
2Throughout, I refer to GLS as the infeasible estimator which assumes that the variance matrix of the
disturbances is known and to FGLS as a feasible estimator which uses estimates of the elements of the

variance matrix.
3The journals are The American Economic Review, Industrial and Labor Relations Review, The Journal

of Labor Economics, The Journal of Political Economy, The Journal of Public Economics, and The Quarterly
Journal of Economics.
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of the state-year level, had approximately correct size. However, while these tests appear to
have correct size, the results of Bertrand, Duflo, and Mullainathan (2003) also suggest that
they have low power against relevant alternatives.

In this paper, I contribute to the existing literature by offering computationally attractive
FGLS-based estimation and inference procedures that deliver accurate and powerful inference
in settings that are subject to both the clustering problem and the policy autocorrelation
problem. In particular, I explicitly consider FGLS estimation in a. general model for grouped
individual and aggregate level data which incorporates standard DD and panel models and
could easily be extended to cases with additional levels of variation. I present a differencing
strategy and an aggregation strategy building upon Amemiya (1978) which recover the FGLS
estimates and are computationally convenient in large data sets. I then focus on estimation
and inference under the assumption that the state-year shock follows a stationary AR(p)
process. FGLS estimation and inference based on parametric time series models for the
error process is complicated by the relatively short time dimension available in many policy
analyses and the inclusion of state-level fixed effects. It is well-known that estimates of
the parameters of time series models in panel data with fixed effects are biased when the
time dimension is short due to the incidental parameters problem. Using a strategy due to
Nickell (1981) and Solon (1984), I derive a bias correction for the coefficients of an AR(p)
model. I then develop asymptotic inference results for the bias-corrected coefficients and the
corresponding FGLS estimator which cover both conventional panel asymptotics where the
number of states goes to infinity with the time dimension fixed and asymptotics where the
number of states and time periods go to infinity jointly as in Phillips and Moon (1999), Hahn
and Kuersteiner (2002), and Hahn and Newey (2002). The usefulness of the bias correction
and the FGLS procedure are then demonstrated through a simulation study based on the
CPS-MORG.

The results from the simulation study strongly support the use of the FGLS procedure
with bias-corrected AR coefficients for performing inference in settings with combined indi-
vidual and grouped data where the groups are potentially autocorrelated. As in Bertrand,
Duflo, and Mullainathan (2003), I find that conventional OLS and, to a lesser extent, conven-
tional FGLS suffer from severe size distortions in the presence of the policy autocorrelation
and clustering problems. This size distortion is essentially removed by QLS with standard
errors clustered by state and the bias-corrected FGLS procedure. However, the FGLS pro-
cedure clearly dominates OLS with standard errors robust to arbitraty correlation within
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states in terms of both power and confidence interval length. For example, in a simulation
performed by resampling directly from the CPS-MORG, I find that conventional OLS has
a rejection rate of 37% for a 5% level test. In contrast, OLS with standard errors clustered
by state rejects 6.6% of the time, and FGLS based on bias-corrected AR(3) coeflicients has
a 6.4% rejection rate. At the same time, the power of the bias-corrected FGLS-based pro-
cedure versus the alternative that the treatment increases the dependent variable by 2% is
0.788 compared to 0.344 from OLS with clustered standard errors. Similarly, the length of
the FGLS confidence interval is 0.028 compared to the OLS interval length of 0.050.

The remainder of this paper is organized as follows. In Section 2, I briefly review GLS
estimation in settings involving both individual and aggregate data and present a computa-
tionally attractive procedure for obtaining the GLS estimates which will be valid as the group
size grows large within each state-year cell. Section 3 presents a bias-correction for fixed ef-
fects estimates of the parameters of a pt" order autoregressive model which will be used in
FGLS estimation. Simulation results comparing the FGLS estimator to other estimators are
presented in Section 4, and Section 5 concludes.

1.2 GLS Estimation and Policy Analysis

1.2.1 Overview of GLS with Correlated Error Components

Estimates in DD and policy analysis studies are often obtained using a linear model defined
by

Yist = WigBo + Cst + Uise (1.1)
and

Cot = Ty + 2405 + Vst (1.2)

wheres =1,...,5,t=1,...,T,i =1,..., Ny foreach s and ¢, C,, are state-year eflects, w;,; are
covariates that vary at the individual level, 2, are covariates that vary at the state-year level
and have constant coefficients, z; are covariates that vary at the state-year level and have
state-specific coefficients?, ;5 is the outcome of interest which varies at the individual level,

4For the theoretical development, z, will be assumed to be nonstochastic and identical across states.
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and v, and u;, are unobservable random variables which are uncorrelated with the observed
explanatory variables and with each other and have zero means. Typical specifications of
zg include zg = 1, the fixed effects model, and z,, = [1,], the fixed effects model with
state-specific time trends. It is also standard in DD models to include time effects in Tg. In
addition, it is often assumed that Elvaver] = 0 for all s # o' Conventionally, estimation
and inference are performed on the model formed by combining (1.1) and ( 1.2) as

Yist = Wi B0 + Toy 01 + 20,05 + €t (1.3)

where €5 = vy +u;5. The clustering problem then results from the fact that E [€:5e€55t] = 02
for all i # j, and the policy autocorrelation problem arises from E [€ist€ise—r)) = (k) # 0if vy
is serially correlated. In most studies, the model is estimated using OLS, and the estimated
standard errors are adjusted to account for the presence of correlation between individuals
within state-year cells. While this approach has a number of appealing features, it will yield
incorrect standard error estimates and tests if there are other sources of correlation, such as
correlation within states over time due to a correlated state-specific shock. In addition, if the
errors are correlated, OLS is not the Gauss-Markov estimator, and more efficient estimates
and more powerful tests may be obtained through GLS.

To facilitate discussion of the GLS estimator, note that equations (1.3) may be stacked
and represented in matrix form as

Y =300 +¢, (1.4)

where & = [W X, Z], Y = (Y{,...,Y4), Y. = (Yo, Yir), Yoo = (W1st, - Un,se)', and W, X,
Z, and ¢ are defined similarly. ¢ may be written as DV + U for V' = (v, w12, ..., vs7), U
defined as ¥, and D = [dy; dys - -+ dgr] with d a dummy variable indicating the observation
belongs to state s at time ¢, so under the assumption that V and U are uncorrelated,
Elec') = £ = DQD’ + A where E[VV'] = Q and E[UU’] = A. Given the parameters of 2
and A, the best linear unbiased estimator of 8 is the GLS estimator

fors = (¥'2719)19/S- 1Y (1.5)

Given 2 and A () and K) implementation of the GLS (FGLS) estimator may proceed
in a straightforward fashion for moderately sized data sets by numerically obtamning X1
( ~1) and computing HGLS (HFGLS) directly. However, for larger scale problems, such as the
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one considered in the simulation section, this procedure is computationally burdensome due
to the size of . Fortunately, there are also numerically convenient approaches available
for compution of §GL5. One approach recognizes that the structure of the problem implies
that §GLS may be computed as a least squares regression on quasi-differenced data. This
method will provide the GLS estimates of all parameters in ¢ and will generally reduce the
computational burden from the more brute force implementation. The second approach, due
to Amemiya (1978), uses the fact that equation (1.3) is equivalent to the model defined by
(1.1) and (1.2),

’
Yist = Wi B0 + Cst -+ Uit

and
’ ’
Cst = xstﬂl + Zst,@S + Ust,

to reduce the dimension of the problem of finding the GLS estimates of 3, and J; from
3, 5, No to ST. In addition, this approach provides intuition for asymptotic results re-
garding the parameters that vary at the state-year level and suggests a simple estimation
method that will be asymptotically equivalent to GLS as Ny — 00,

1.2.2 GLS as OLS on Quasi-Differenced Data

One potentially tractable method which may be used to obtain the GLS estimates of § is
based on the fact that the GLS estimator of model (1.3) is equivalent to OLS regression on
appropriately differenced data. In particular, straightforward regression algebra yields the
following result.

Proposition 1 Let E[VV’'] =Q, E[UU'] = A, and D = (d11 dig -~ dST] with dy a dummy
variable indicating the observation belongs to state s at time t. Define Vg = (I’A™'D)~! +
Q, ¥V = A2y, & = AY29, and D = AV2D. Then the GLS estimator of model

(1.8) is equivalent to QLS regression of Yist — Uit + ym on dist — d)m + ¢m, where Yis
is the ist element of Y, .o 15 the ist element of D(D D)~ DY, ym 15 the ist element of

D(D’ AAT V4 DYDY, and st d)wt, and qﬁm are defined similarly.

While this result suggests that a differencing strategy will be cumbersome for general
A, there is substantial simplification if A is diagonal, as is conventionally assumed in policy
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analysis and DD models. In particular, letting E[u [ul,] = (c%,)?, the previous result implies
that the GLS estimate of & may be obtained through the linear regression of —— (y,st — s +75)
on —— (¢m—¢5t +¢8) where g, is the variance weighted average of the 1nd1v1dual observations

in state s in year t, 75 is the st element of (D'D)"Y2V;'/*V | ¥ is the ST x 1 vector of the
within state-year variance weighted averages of the individual observations, and é,; and o8
are defined similarly. The chief difficulty in implementing this strategy is then computation of
(D D) 1 2V'_l/ ? which will typically be simple given the relatively small s and ¢ dimensions.
Further simplifications are also available. For example, in the simulations reported in Section
4 of this paper, it is assumed that U is homoskedastic and that V is uncorrelated across states,
implying that Q is block diagonal. This results in the variance weighted averages being
replaced by simple averages and reduces the computation of (D’D)~"/ vy 2 o operations

on T-dimensional matrices, which impose little computational burden.

1.2.3 Modeling the State-Year Fixed Effects

Another convenient approach which will provide the GLS estimates of 0By and 33, the coef-
ficients on the covariates that vary at the state-year level, is based on the decomposition of
equation (1.3) into equations (1.1) and (1.2). Amemiya (1978) demonstrated that estimates
of f1 and g5 from the following two-step procedure are numerically identical to the GLS
estimates obtained from estimating model (1.3):

1. Estimate equation (1.1), yis = w80 + Cist + Uiet by GLS to obtain estimates of C,,
Cy.

2. Obtain estimates of 5; and 35 by estimating the equation C,, = Th B+ 2505 + v,
where vy = v, + (C’st — Cy) by GLS.

This approach will typically be computationally easier than directly computing £-1. If, as
is conventionally assumed, A is diagonal, the first step may be computed by weighted least
squares, and the second step only requires inversion of an ST x ST matrix.

In addition to providing a tractable method for obtaining GLS estimates of (3;, this
approach also clearly illustrates that 3, is not consistent as Ng — oo with § and T fixed.
In particular, we see that consistency and asymptotic normality of 3, requires that ST —
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005 The use of Amemiya’s (1978) approach and the inconsistency of estimates of £, in
asymptotics with S and T fixed has recently been emphasized in work of Donald and Lang
(2001) in the context of DD estimation when serial correlation is not present.

Finally, Amemiya’s (1978) results also suggest a simple estimation strategy which will be
equivalent to GLS as Ny — oo for all s and ¢

1’. Estimate equation (1.1), yise = Wiy B0 + Cst + uier by OLS or GLS to obtain estimates
Of Csty 5.%-

2. Obtain estimates of 3, and 3 by estimating the equation C‘st = 20,01 + 25083 + Ust, DY
GLS.

Note that 1’ and 2’ differ from 1 and 2 above in that 1’ does not require the first step
to be estimated by GLS and 2’ ignores the fact that the dependent variable in the second
step, at, was estimated. The equivalence of this approach to GLS for estimating A, and
35 as Ny — oo follows from numeric equivalence of Amemiya’s (1978) two-step approach to
GLS and consistency of @t for C; as Ny — 00.% This result also implies that estimation
of C,, may be ignored and GLS estimates of 3, may be obtained through standard panel
methods when N,; is sufficiently large. This is particularly useful since data used in many
DD problems are characterized by rather large cell sizes, and the approach outlined above
is easy to implement. Throughout most of the simulation section, I focus on this method of

estimating 5.

1.3 Bias Correction for p” Order Autoregressive Co-
efficients in Fixed Effects Models

In order to operationalize GLS estimation and inference in practice, parameters of the co-

variance matrices, Q and A, must be estimated. Estimation of the parameters of A may

S5This is also straightforward to demonstrate using the GLS estimator for all the parameters outlined in

the previous section.
61f the first step is estimated using GLS, it may also be shown that the estimates of 31 converge to the

GLS estimates of 3; as Ny — oo for all s and £.
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generally proceed in a straightforward fashion from equation (1.1) or may be bypassed com-
pletely in asymptotics where N,, — oo by using the aggregation method discussed above, so
I focus on estimation of Q. While there are numerous approaches that one could consider
for estimating the parameters of 0,7 1 adopt the simple strategy of assuming that vy follows
a stationary p*” order autoregressive process:

P
Vst = Z O Us(t—g) + sz
i=1

I also focus on the case where the data have been aggregated to the state-year level using the
approach of Amemiya (1978), though the method outlined below could be easily extended
to treat other cases. In addition, I assume estimation of @t is ignored.® The results here
may also be adapted easily to bias-correct AR coefficients in dynamic panel models without
covariates. Throughout the remainder of the development it is assumed that vg has zero
mean and constant variance which do not depend on X or Z for all s and t.2 Without loss
of generality, the variance of v,, is set equal to 1.

Under the assumptions outlined in the preceding paragraph, an obvious approach to
estimating the process of vy would be to use the residuals from estimation of

.

Cot = T4, 81 + 2405 + vt (1.6)

to estimate the a = (ay, ...,) using least squares. These estimates of a will be consistent as
both § and T approach infinity. However, estimation of « is complicated by the presence of
Zst in equation (1.6) and the fairly short time series dimension available in most applications,
which may result in substantial bias in the estimates of a. Bertrand, Duflo, and Mullainathan
(2003), in a survey of published differences-in-differences papers, find an average time series
length of only 16.5 periods. They also find significant bias in autoregressive parameter
estimates in their simulations.

To address this problem, I use the arguments of Nickell (1981) and Solon (1984) to derive
the bias of o as S — oco. I then use this to form a bias-corrected estimator of o. A simple

"See, for example, Kiefer (1980), Macurdy (1982), Solon (1984), Lancaster (2002), and Hausman and
Kuersteiner (2003).

8In the appendix, I give a modification of the formula presented below which accounts for estimation of
6‘3!.

9These assumptions are formalized below in Assumptions 1 and 2.
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one-step estimator based on this strategy removes the bias from the asymptotic distribution
s

T3
is consistent as S — oo even with T fixed. The basic approach is similar to that of Hahn
and Newey (2002) and Hahn and Kuersteiner (2002). In fact, for the AR(1) model, it is
straightforward to show that the difference between the Hahn and Kuersteiner (2002) bias

reduction and the one-step bias reduction derived here is O (%)

of the estimator of o as long as — 0. In addition, I show that an iterative procedure

1.3.1 The Bias Correction

The least squares estimator of o using the residuals from the estimation of equation (1.6),

’ﬁst i is

N

& = ( T p) Z Z vstvst) ( T P Z =~ 5;5%) (17)

s=1 t=p+1

where 17;' = (Vs(t=p), ---» Ust—1y)- The nature of this estimator as a double sum over s and t
makes it simple to analyze as S — co. Let Euavsg—i)] = Yx(e), and let

Yl{a)  mla) - mpei(e)
Lo ()  yola) Yp—2(c)
Yo-1() Yp-2(@) -+ yo(a)

Then, using calculations similar to those found in Nickell (1981) and Solon (1984) and
assuming regularity condition collected in Assumption 1 below hold, one can show that
as § — oo with T fixed @ & ag(a) = (Tp(a) + 75 Ar(a)) (Al) + F5A4(a)). with
Ala) = (m(a@), ..., {a)), Ar(a) a p x p matrix with

[Ar())py) = trace (Z.T(0) Z,(2,2,) ' 7, ;2,124 Z,) ")
—trace (Z,T_i(a)Z, _;(Z,Z,)"") — trace (Z,T_j(a) Z,-i(Z.2,)7") (1.8)

and Ay(e) a p x 1 vector with

[Aa(@)]iiy = trace (Z,T() Z,(Z,2,)"' Z, _;Z, —o(Z.2,)71)

5,—1

—trace (Z,1 (@) Z, —o(Z,2,)"") — trace (Z.T_o(a) Z, -i(Z.25)7"), (1.9)
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where F(Oz) = E[VSVS'], F_k(a) = E[stsl,—k]v V;,—k = ('Us(p+1~lc)y'Us(p+2—k)7- e :Us(T—k))’ and
Zs—x is defined similarly. Thus, Bias(&) = —a+ar(«). This suggests that the bias of & may
be estimated as —@ + ar(@) and that a bias corrected estimator of o may be constructed as

a" =a - [-@ + ar(@)). (1.10)

In addition, & & ar(a) suggests that a consistent (in S alone) estimate of a may be
obtained by inverting ar(a) to obtain &) = a;'(@). This estimator can be calculated by
iterating @**1) = & — [ap (&%) —a™®)] to convergence, since, denoting &) as the point that
the procedure converges to, @® = ai— [ar(@(*)) -] = ap () = & = &) = a7l (@).
Bhargava, Franzini, and Narendranathan (1982) suggest a similar iterative procedure based
on the Durbin-Watson statistic to remove the bias of autoregressive parameter estimates in
AR(1) models with fixed effects, though no formal asymptotic results are presented and the
extension to models beyond the AR(1) is not clear.

Asymptotic properties of the estimators are collected in the next two sections, which will
make use of the following notation. Let

Cot = Ty, + 20,85 + v, (1.11)
or, in vector notation, C, = X0 + Z,85 + V,, where C, = Ca,...,Cor)isT x1, X, =
(251, xor] I8 T % ky, Zy = |24, . . o Zr] is T X kg, and V, = [ug, ... ,Us] I8 T x 1. Also,
let x,;, be the A" element of Zg s0 that zi, = [rg,... , Tstky ], and define zy, similarly.
Define iy, = v — 25,(Z,Z,) 1 2V, £y = 2, — 2 (Z12)7Z! X, V, = [Us1, ..., Us7], and
X, = [Z51,.. ., Zsr|. Let v be ap x 1 vector with Vgt = [Us(t—p), - - - > Use—1)], and define

similarly.

1.3.2 Asymptotics as S — oo with T Fixed

To establish the asymptotic properties of the least squares estimate of & as § — oo with T
fixed, I impose the following conditions in addition to model ( 1.11).

Assumption 1 (5 — oo, T fixed) Suppose the data are generated by model (1.11) and

N1, vy = v] a4y, where 0, is strictly stationary int for each s, E[n%] = 0,2,, Elnsns] =0
for t # 7, and the roots of 1 — oz — apz? — ... — @p2P = 0 have modulus greater than
1
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N2. {X,, Vi, ns} are iid across s. {Z,} are nonstochastic and identical across s.

N3, (i) Rank(Y L, ElZsd5,]) = Rank(E[X'X,]) = k1. (i) Rank(Z,Z,) = ka V s.

Ny B[V,JX,] = 0, E[V.V/IX.) = I(a).

N5 E[n}) = pa < 00 and E[z},] <A <o Vs, t, h

Remark 1.3.1 The majority of the conditions imposed in Assumption 1 are standard for
fixed effects panel models, with the key difference being the imposition of the AR(p) structure

on the error term. Also, the existence of fourth moments and strict stationarity of ng imply

the existence of first through fourth absolute moments of v, under the stationarity condition

that the roots of 1 — ayz — g2 — ... — a,z? = 0 have modulus greater than 1. (See, for

example, Hamilton (1994) Proposition 7.10.)
Under Assumption 1, Proposition 2 and Proposition 3 are obtained.

Proposition 2 If Assumption 1 is satisfied, & 2 ar(a), where

L Ar() M (A(0) +

T T
ar(e) = B[ Y iy 1Bl D #5iu] = (Tp(e) + 77— T-p

t=p+1 t=p+1

AA(CY)).

Remark 1.3.2 This proposition simply formalizes the bias result of the previous section,

verifying that & is inconsistent as S — oo with T fixed.

Proposition 3 Suppose ar(a) is continuously differentiable in o and that H = Dar(a)
is invertible for all o such that N1 is satisfied, where Dar(a) is the derivative matriz of
arp(a) in a. Define @) = az!(@). Then, if Assumption 1 is satisfied, a* —a 20 and
VE(@™ —a) 4 A HY(Tp(@) + 75 Ar(@)) ' N(0,E), where

T T
=E[ Y Y g, dlenitstalan,)

t1=p+1ta=p+1

[

and jig = g — Vg 0r(¥).
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Remark 1.3.3 The condition that ar(a) is continuously differentiable in o and that H —
Dar(a) is invertible for all o such that N1 is satisfied guarantees the existence of the inverse
of ar(a) and seems reasonable in many settings. For example, it is satisfied when Z only
contains fixed effects. However, this is an asymptotic result, and even if all the assumptions
are satisfied, sampling variation in & may result in there not being a solution to ar(a) = &
in any given sample. The effects of this are illustrated in the simulation section.

Proposition 3 verifies that &) is consistent and asymptotically normal as S — oo even
if T is fixed, demonstrating that the inconsistency due to the incidental parameters may be
completely removed through the use of an iterative bias-correction. The result may also be
of considerable interest in the dynamic panel context, where it provides a simple alternative
to GMM methods, although it does rely on strong exogeneity assumptions.

1.3.3 Asymptotics as S, T — oo

To establish the asymptotic properties of the least squares estimate of a as S, T — oo, I
impose the following conditions in addition to model (1.11).

Assumption 2 (S, T — 00) Suppose the data are generated by model (1.11) and

NT1. v, = 'u.;}'a+nst, where 1y, is strictly stationary in t for each s, E[n?] = af’, E[nans] =0
fort £ 7, and the roots of 1 — ayz — a2 — ... — apzP = 0 have modulus greater than
1

NT2. {X,,V;,n:} are iid across s. {Z,} are nonstochastic and identical across s.

NT3. (1) [X, Z], where X = [X],... Xg) and Z = diag(Z,, ..., Zs) has full rank. (it) Z' Z,
ts uniformly positive definite with minimum eigenvalue Ay > X > 0 for all s.

NTY. E[Vs‘Xq] =0, E[VsVs,IXS] = F(a)-

NT5. { X, Vit, et} is a-mizing of size =2, r > 4, and Zin < A < oo, Bz, < A < oo,

T4’

and E[nf[™? < A < 0o for some § > 0 and all i, 1, h.
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Remark 1.3.4 The majority of the conditions imposed in Assumption 2 are standard
for fixed effects panel models, with the key differences being the imposition of the AR(p)
structure and the mixing conditions. Note that existence of absolute moments of order
2(r+6) and strict stationarity of 7 imply the existence of absolute moments of order 2(r+9)

2

for v, under the stationarity condition that the roots of 1 — oz — @p2” — ... — opzP = 0

have modulus greater than 1.

Remark 1.3.5 A simple modification of model (1.11) is necessary for the results to ac-
commodate trends. In particular, by redefining the coefficient on the trend as Bsi = T63
and the trend in each time period ¢ as %, the trend becomes a uniform variable and the
conditions in NT5 apply. It is straightforward to verify that the estimates of 41, a, and
other components of 35 obtained with the transformed data are numerically identical to the
original estimates of 31, ¢, and (3. In addition, standard results for the coefficient on the

trend are obtained by considering B3, — 05, = %("g,{ - 855,
Under Assumption 2, the following result is obtained.

Proposition 4 If Assumption 2 is satisfied, v ST(G—a) N N(pB(a),T,'2l;1) ifE—p>
0, where Z = 711_1};,#_; E}::pﬂ Zg;:pﬂ E[Us_tlﬁstmstﬂ-’;t;]- In addition, if ng are independent

for alls andt, == af]I‘p.

Remark 1.3.6 Proposition 4 provides the limiting distribution of @ when % — p > 0,
confirming that there is bias in the limiting distribution even when S and T grow at the

5
same rate - = — p > 0.

In order to consider the properties of the bias correction as S, T — o0 jointly, the
following additional assumption will be used.

Assumption 3 For B(a,T) defined in Lemma 1.9.5,

NTé6. B(a,T) is continuously differentiable in o with bounded derivetive uniformly in T for
all a satisfying the stationarity condition given in NT1.
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Remark 1.3.7 This assumption imposes that the derivatives of ar(a) are well-behaved
as T — oo. This seems to be a reasonable assumption and is satisfied, for example, in the
model where Z includes only fixed effects.

Proposition 5 If Assumption 2 is satisfied, VST (&M — a) 2, N(0,T,'ZL,") for = defined
n Proposition 4 if% — p 2 0. If Assumption 3 is also satisfied, then /ST(aV) — a) 4
N(O,T'E0Y 4f 2 — 0.

Remark 1.3.8 This result demonstrates that & removes the bias from the asymptotic

distribution of @ as long as S grows more slowly than 72. 7% — 0 may be a good approx-
imation in many sitvations, such as the CPS data examined in the simulation section. It
would also be straightforward to demonstrate that, for a finite number of iterations k, al®

removes the bias from the asymptotic distribution of & as long as S grows more slowly than
T2}c+1_

Proposition 6 If Assumptions 2 and 3 are satisfied and H = Dor(a) is invertible for
all a satisfying the stationarity condition given in NT1 uniformly in T', where Dagp(a) is
the derivative matriz of ar(a) in o, VST(@ — a) A N(0O,T'ETY) for 2 defined in
Proposition 4.

Remark 1.3.9 This confirms the result obtained with T' fixed, verifying that the iterative
bias-correction removes the bias from the limiting distribution of & as S, T — oo for any
S, T sequence. The additional condition imposed in the proposition guarantees that the
inverse of ar(a) exists for all T and seems to be a reasonable assumption. For example, it
is satisfied when Z includes only fixed effects.

Propositions 4 and 5 mirror similar results from Hahn and Kuersteiner (2002) and Hahn
and Newey (2002), demonstrating that bias remains in the limiting distribution of & even
when T grows as fast as S, but that this bias is removed if the one-step bias correction is used
as long as T' grows fast enough relative to S. Hahn and Newey (2002) also suggest iterating
the bias correction in nonlinear models and provide some simulation results, though without
agymptotic theory.

It is important to note that Propositions 4, 5, and 6 ignore the estimation of time effects,
which would further complicate the analysis. The time effects will be VS-, not v/§7-,
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consistent, which will generally add an O (%) bias to the estimator. This will not affect the
stated results as long as % — 00. However, if S and T grow at the same rate, the inclusion of
the time effects will result in bias in the limiting distribution of all the estimators, including
the bias-corrected ones. In many applications, this should not be a large source of bias as S
is typically larger than T. In addition, the neglected term is a sum over states not over time,
5o the additional bias will include only contemporaneous correlations. Overall, it seems that
any bias coming from the time fixed effect is likely to be small, and the simulations in the next

section also suggest that ignoring this source of bias provides a reasonable approximation.

1.3.4 Implications for FGLS Estimation

While the bias-correction results presented above may be interesting for a number of reasons,
the chief motivation for their development in this paper is for use in FGLS estimation as

outlined in Section 1.2.

To develop the properties of the GLS estimator of 01, define X, =(a) 12X, and Z,=
(a)~1/2Z, where I'(a) = E[V,V{]. Then, under standard conditions and using conventional
arguments it follows that the GLS estimator of 3, ﬁl(a) is consistent and that v/S (ﬁl( )—
B) 5 N(0,V(a)™') where V(a) = E[X'X, - X'Z, (Z’Z) 1Z’X] as § — oo with 7'
fixed and that El( ) is consistent and that v/ST( T(Bi(a) — B1) 2 N(0,V(a)?) for V(a) =
hm E[X X, —-X'Z Z(Z'Z) 2 X X,) as S, T — oo. Furthermore the GLS estimator is the
Gauss—Markov estimator and hence is efficient among linear estimators.

Then letting 71(&) denote the FGLS estimate of §; when the covariance matrix is
constructed using & and using standard arguments, it is straightforward to show that
VS (B (@) —Bi(a)) = 0,(1) in asymptotics where § — co and that VST (B)(&) —Bi(a)) =
0p(1) for any o 2, & in asymptotics where S, T — oo. This result indicates that, as S — o0
with T fixed, FGLS based on the iteratively bias-corrected estimator of a will yield efficiency
gains relative to the other estimators of a considered above, but that there is no efficiency
gain from using a bias-corrected estimate of a in asymptotics with §, T — oo.

While these results suggest that there is little motivation to use bias-corrected estimates
of « in performing FGLS estimation and inference in circumstances where S, T — 00 asymp-
totics provide a good approximation there are at least two reasons that it may still be prefer-
able. First, letting V(&) = 2= S5, X\I(@) 1 X, — X{T(&) ' Z,(Z,0(8) ™ 2,) " ZT (@) 7 X,
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it is straightforward to show that v ST(V (&) — Via)) = 37, ﬂ%@ﬁﬁ(&i - o) +
VST (V(a) - V{(a)) where & is an intermediate value between & and a. In other words,
using & to estimate the variance matrix of the FGLS estimator will result in bias in the esti-
mate of the same order as the bias in &, implying that the use of the bias-corrected estimates
will be preferable for performing inference on 3,. Second, it seems likely that there would be
higher order improvements to the FGLS estimator of B1 if a bias-corrected estimate of o is
used. Exploration of this possibility is left to future research, though the hypothesis receives

some support from the simulation results.

As a practical matter, it is important to note that, while unnecessary for estimation of o
and G, knowledge of cr% is necessary for performing inference on ;. A natural estimator can
be constructed as 52 = E(ng)—_kl where 7 are residuals obtained from regressing o, ['(&) /2y
on o,['(&)~"2X and o, '(a@)~Y 27 It is straightforward to demonstrate that this estimator
will be consistent for crf’ if @ = @) in asymptotics where § — oo with T fixed. In
asymptotics where S, T' — oo jointly, E'Fnz will be consistent for any & @, but the estimator

will be biased to the same order as &.

Finally, it should be observed that the validity of the results presented here requires
stringent assumptions about the exact nature of the error process. In practice, a researcher
may be concerned that these assumptions are not satisfied. For example, one may suspect
that there is temporal heteroskedasticity or that the AR process is not constant across states.
In these cases, the FGLS estimates obtained assuming homoskedasticity and constant AR
coeflicients will still generally be consistent and asymptotically normal and may still offer
efficiency gains over OLS, although use of a robust variance matrix will be necessary for
correct inference.!® This approach is examined in the simulation section.

1.4 Monte Carlo Evidence

In order to provide evidence on the performance of the proposed methods, I performed a
Monte Carlo experiment based on data from the CPS-MORG. The data are for women in
their fourth interview month for the years 1979 to 2001, and the sample is restricted to women

19The use of FGLS with a robust variance matrix has also been suggested by Wooldridge (2003) and Liang
and Zeger (1986).
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aged 25 to 50 who report positive weekly earnings.!! With these restrictions imposed, the
total sample size is 600,941 observations in 1173 state-year cells, which generates an average
cell size of approximately 512 observations. The dependent variable, y;s is defined as the log
of the weekly wage, and covariates include a quartic in age, four education dummies, and
state and time fixed effects. Iteratively bias-corrected AR(4) parameter estimates (standard
errors) in the actual data are & = 0.397 (0.032), &» = 0.268 (0.034), 43 = 0.146 (0.034),
and @4 = 0.058 (0.032), where the last coefficient is insignificant at the 95% level.

I consider three different simulation designs. In Design 1, I draw from the actual data by
resampling states and include a randomly generated treatment which varies at the state-year
level, T, as a regressor which enters the model with 8; = 0. In Design 2 and Design 3, I
aggregate the data to state-year cells by estimating equation (1.1) and saving the estimated
fixed effects. I then regress the estimated fixed effects on all regressors which are constant
within state-year cells and treat these coefficient estimates as the “true” parameters. Then
for each simulation iteration, I construct Cy; from model (1.2) using the parameters estimated
in the previous step and a randomly generated treatment, which enters with coeflicient
By = 0. In Design 2, I assume vy follows an AR(1) with oy = 0.8, and in Design 3, vs
follows an AR(2) with a; = 0.43 and oy = 0.30. In both cases, I construct the error term
so that its variance is similar to the empirical variance in the sample, and all estimates are
constructed ignoring estimation of Cy. In all cases, I generate the treatment by randomly
selecting 26 states to be treated and then randomly selecting a start date for the treatment,
which may be any but the first period. The treatment variable is a dummy variable which
equals one in the treatment year and all years following, and I allow the treatment date to be
different in each treated state. When simulating from the actual data with T'= 12 (T’ = 6),
I use the most recent 12 (6) years of data. In the simulated data, the time blocks are drawn

randomly.

UThese are the same sample selection criteria as used in Bertrand, Duflo, and Mullainathan (2002), though
the Bertrand, Duflo, and Mullainathan (2002) study only had data from 1979 to 1999. In addition, the data
are aggregated to state-year cells using different methods in their paper. However, the OLS and clustered
results I report are similar to those in Bertrand, Duflo, and Mullainathan (2002).
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1.4.1 Bias of AR(p) Parameter Estimates

Before turning to inference on the treatment effect, it is useful to consider the bias of uncor-
rected and bias-corrected estimates of the AR parameters. Tables 1 and 2 contain the bias
and MSE (in parentheses) when the model is specified as (1.2) and the model is simulated
using Design 2. The model in Table 1 contains only a fixed effect, while the model in Table
2 contains a fixed effect and state-specific time trend. In the columns corresponding to &>,
the number in brackets represents the number of instances in which az'(a) did not exist. In
these cases, &) was set equal to &V,

The results in Table 1 clearly demonstrate that the uncorrected estimates suffer from
substantial bias, even when T is reasonably large. In addition, the results show that both
the one-step and iterative bias-corrections eliminate a, large portion of the bias in all cases
considered, though a sizable bias remains in the one-step estimator for small T. The results
also illustrate the consistency of the iterative bias-correction as $ — oo with T fixed, though
bias goes away much more slowly in S than in T. The results which include state-specific
trends, Table 2, {ollow essentially the same pattern, though the biases are larger in all cases
with substantial biases remaining in even the iteratively bias-corrected estimator for small S
and T. Overall, the results suggest that both of the derived bias-corrections are effective in
removing a large component of the bias in the AR parameter estimates, though the iterative
procedure dominates in terms of both bias and MSE.

1.4.2 Inference on the Treatment Effect

The results on the bias of estimates of o in the fixed effects model presented above are
encouraging, and results for the use of the bias-correction in performing inference on the
estimated treatment effect also suggest the bias-correction is useful in obtaining tests with
accurate size and good power in clustered samples with autocorrelation.

Results for inference about the treatment parameter are contained in Tables 3to7. In
each table, the first three columns use the full sample of 51 states and 23 years, while the
middle three columns use 12 years of data and the last three use only 6 years of data. Rows
labeled OLS contain test results from the OLS estimates without any adjustment to the
standard errors, and rows labeled cluster use variance matrices that are robust to correlation

33



within groups at the specified levels. E.g. a row labeled with “Cluster by State” uses
4 variance matrix which is robust to arbitrary correlation among all observations within a
state. The use of robust variance matrices in the individual level data allowing for correlation
at the level of the aggregate data (the state-year level in this case) is probably the most
commonly used method for accounting for possible correlations arising due to the use of
aggregate and individual level data. Bertrand, Duflo, and Mullainathan (2003) suggest
using this correction, clustering at the state level instead of the state-year level, and find
that this procedure yields tests with approximately correct size in their simulation study.
The row labeled random effects reports results from the standard random effects estimator
allowing for correlation at the state-year level, and rows labeled “FGLS-U” use the FGLS
approach suggested in Kiefer (1980) which does not constrain the variance matrix over time
within states but assumes the variance matrix is identical across states. The remaining rows
contain test results based on FGLS where the state-year shock is assumed to follow the
specified process; the “bc” subscript indicates the use of the iteratively bias-corrected AR
parameter estimates in the FGLS estimation and inference. The rows designated “AR(p)-
Cluster by state” estimate the model using FGLS based on an AR(p) process and then use
a robust variance matrix clustered at the state level for inference, while the rows labeled
“AR(p)” use the standard GLS formula to estimate the variance matrix. Within each table,
I report results from conventional inference methods in Panel A and results which use the

bias-correction procedure developed in this paper in Panel B.

Table 3 contains results regarding the variance of the estimated treatment parameter,
Bl. The columns labeled 52 report the mean of the estimated variance of Ex; while the cor-
responding asymptotic variance and variance of the simulation estimates of 3; are contained
in the columns labeled 02 and o2, respectively. Simulation results are for data generated

using Design 2 described above. For readability, all results are multiplied by 1000.

The results summarized in Table 3 provide strong evidence supporting the use of FGLS
estimation with bias-corrected estimators of the AR-parameters. While the difference be-
tween the asymptotic variance and the mean of the estimated variance is small for all of the
estimators considered with the exception of “FGLS-U” and the unadjusted OLS estimator,
the variances estimated from FGLS with bias-corrected AR-parameters are always approx-
imately unbiased for the asymptotic variance of the estimator. There is also some weak
evidence that the bias in the estimated variance based on the uncorrected AR-parameter
estimates remains even for moderate T, though the result is not striking. Unsurprisingly, it
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appears that the asymptotic approximation of the FGLS estimator performs substantially
better when the FGLS is based on the bias-corrected AR parameters than when the uncor-
rected estimates are used, and relative to FGLS with conventional AR parameter estimates,
there does appear to be a sizable efficiency gain to using the bias-corrected estimates.

The results for variance estimation presented in Table 3 suggest that the use of FGLS with
bias-corrected AR parameter estimates may result in substantial improvements in inference
over OLS-based methods or FGLS with uncorrected AR parameter estimates. Tables 4 to 7,
which contain results for size and power of hypothesis tests about the treatment parameter
as well as confidence interval lengths, provide further evidence on the potential gains to using
FGLS with bias-corrected AR parameters. In all cases, size and power are for 5% level tests,
and power is versus the alternative that 8, = 0.02'>. The reported interval length is the
confidence interval length divided by two.

Tables 4 and 5 summarize the results for the simulation based on Design 1 outlined above.
Table 4 reports results from estimation in the individual level data, while Table 5 contains
the results from estimation in data aggregated using the aggregation method of Amemiya
(1978) outlined in Section 1.2.3 and ignoring the first stage estimation of C,;.

The results in Table 4 clearly illustrate the potential pitfalls in using individual level data
with aggregate level variables. As expected, the uncorrected QLS estimates have large size
distortions for moderate T, though the size distortion is modest when 7 = 6. The rejection
rates for a 5% level test are 0.594 with 7' = 23, 0.398 with 7' = 12, and 0.072 with T = 6.
Mirroring results from Bertrand, Duflo, and Mullainathan (2003), I also find that, for T = 12
and T' = 23, tests which allow for correlation within state-year cells but not over time suffer
from severe size distortions, but that tests based on OLS with standard errors clustered at
the state level remove much of the distortion, rejecting 7.8% of the time for a 5% level test in
both cases. For T' = 23, the tests based on parametric FGLS with bias-corrected coefficients
also remove much of the size distortion, producing similar rejection rates to tests based on
OLS with clustered standard errors. For T = 12, the FGLS estimates remain more distorted
than the OLS-based test using robust standard errors, though the robust FGLS tests have
similar size to the robust OLS-based test. As would be anticipated, all the FGLS-based tests,

2The dependent variable is the log of the weekly wage, so an impact of .02 represents an approximate 2%
increase in weekly wages. This is the magnitude of the effect considered in Bertrand, Duflo, and Mullainathan
(2003).
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including those which use robust standard errors, do have substantially more power against
an alternative of .02 than the test using OLS and clustering standard errors at the state
level. In addition, the confidence intervals of OLS with standard errors clustered by state
are substantially longer than the FGLS intervals. It is interesting that, with T = 6, serial
correlation does not appear to play much of a role. In this case, none of the size distortions
are large, and the random effects estimator has correct size and good power relative to the

other tests.

The results summarized in Table 5 follow a similar pattern to those in Table 4, though in
most cases the size distortions are smaller.!® In general, tests based on OLS with clustered
standard errors, tests based on bias-corrected FGLS, and tests based on FGLS with robust
standard errors have similar sizes. However, the FGLS tests are more powerful against the
alternative that 8, = .02 and have shorter confidence intervals. In many cases, tests based on
FGLS with bias-corrected AR parameters and robust standard errors are more size distorted
than the corresponding tests without robust standard errors. This distortion seems likely to
be due to the small sample bias of the robust standard errors discussed in Bell and McCafirey
(2002) and illustrated in Table 3. Also, as in Table 4, serial correlation does not seem to
pose a serious problem to inference with T' = 6. In this case, the unadjusted OLS has correct
size as does the OLS test which uses clustered standard errors. Finally, it is interesting that
FGLS estimation using a variance matrix which is unconstrained within states (“FGLS-U”)
does poorly in all cases. While this is unsurprising for moderate T, the poor performance
with 7' = 6 suggests that even with a reasonably short time series dimension the added
variability induced by estimating an unconstrained variance matrix poses a serious problem
for inference. Also, comparing across Tables 4 and 5, it appears that the loss of efficiency due
to aggregating is small and that tests performed in the aggregate data suffer from smaller size
distortions, suggesting that performing inference in the aggregate data may be preferable to
using the individual level data.

Tables 6 and 7 summarize the results from the simulation models based on Design 2 and
Design 3. These data are simulated without taking into account estimation of C'y and so
are representative of standard panel data. The results follow the same general pattern of
those presented in Table 5, though the sizes are generally closer to the actual size of the
test. In particular, the results show a substantial bias in the uncorrected OLS tests which

13Dickens (1990) presents some arguments for why this may be so in a different but related context.
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is largely eliminated by clustering or the use of FGLS with bias-corrected AR coefficients.
A comparison of the power and interval lengths of FGLS and OLS with clustered standard
errors clearly demonstrates the large potential efficiency gain to using FGLS, and the results
also indicate that the use of an unconstrained variance matrix is problematic even for small

T.

Overall, the simulation results support the use of FGLS methods for performing inference
in the type of models examined here. Tests based on bias-corrected FGLS do not appear to be
substantially more size-distorted than the OLS tests with standard errors robust to arbitrary
correlation within states but have much higher power and shorter confidence intervals in the
majority of cases. This improved performance also appears to hold when estimation is
performed with FGLS and robust standard errors are used, though in some cases this does
result in a larger size distortion to the test. It would be interesting to see if performance
in these cases could be further improved using the bias-reduction and degrees of freedom
corrections outlined in Bell and McCaffrey (2002).

1.5 Conclusion

Many policy analyses rely on data which vary at both the individual and aggregate level.
The grouped structure of the data gives rise to many potential sources of correlation between
individual observations. In particular, the presence of group level shocks will result in cor-
relation among all individuals within a group. In addition, if groups are followed over time,
correlation between individuals in the same group at different times may arise due to serial
correlation in the group level shock. While there are numerous solutions to the first source
of correlation, relatively little attention has been paid to the potential problems which may
be caused by the second. Bertrand, Duflo, and Mullainathan (2003) illustrate that serial
correlation in the group level shock may cause conventional tests to be highly misleading,
and offer several OLS-based strategies which yield tests with correct size, but have low power
against relevant alternatives.

In this paper, I explore FGLS estimation in data with a grouped structure where the
groups may be autocorrelated and present a simple method for obtaining the FGLS estimates
which will be valid as the number of individual observations within each aggregate cell
grows large. 1 then focus on the case where the group level shock follows an AR(p) process.
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In this case, standard estimates of the AR coefficients will typically be biased due to the
incidental parameters problem. I offer a simple bias correction for these coefficients which
will be valid in the presence of fixed effects or other variables with coefficients that vary
at the group level. The usefulness of FGLS and the derived bias-correction for the AR
parameters is demonstrated through a simulation study based on data from the CPS-MORG.
The simulation results show that the proposed bias-correction removes a substantial portion
of the bias from the AR parameter estimates. The results also demonstrate that tests based
on FGLS using bias-corrected AR parameter estimates have approximately correct size. In
addition, the simulations confirm that the FGLS-based tests have much higher power and
yield much shorter confidence intervals than their OLS-based counterparts.

The simulation results clearly illustrate the potential usefulness of FGLS procedures
in data which include aggregate and individual level variables. Useful extensions would
include considering more general time series models and allowing for cross-sectional as well
as intertemporal correlation. It also seems that pursuing more flexible methods of estimating
the covariance matrix for use in FGLS, as in Hausman and Kuersteiner (2003), may be
worthwhile. In addition, it would be interesting to extend these results to estimation of

nonlinear models when the data are serially correlated and have a grouped structure.

1.6 Appendix 1. Verification of Proposition 1

Proposition 1 follows from straightforward manipulation of the GLS objective function. Re-
call that & = A + DQD, and let D = A~Y2D. Then

£l = Al-ATID[O' + D'ATID) T DA

— A—1/2[I _ E[Q—l + 5!5]—15/]A—1/2
= A_l/z[] — f)(f)’f))—lf)’ + 5(5’5)—1[(5'15)71 + Q]_l(ﬁlﬁ)_lﬁ']A_l/z
= A_1/2{M5 + 5(5'5)_1173'1(5'5)'15']A'1/2

where Vg = (D’D)™' +Q and Mz =1 — D(D'D) D
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Then the result follows immediately from 8¢ = arg min(Y — ®6)L (Y — ®9) and
2]
(Y = ®0)S Y Y — @6) = (Y — ®0)'A™V2 My + D(D'D) WV {(D'D) ' DA V3(Y — 96)

= (V — ®0)' (M5 + D(D'D)~*V; Y3 (D' D)~ D) x
(Mg + D(D'D)Y V2V Y¥(D'D)y D) (Y — 38).

1.7 Appendix 2. Notation

The following notation will be used throughout Appendix 1.8 and Appendix 1.9.

Suppose the panel has a cross-sectional dimension s =1,...,5 and a time-series dimen-
sion t = 1,...,T with T > 2p where p is the order of the autoregressive process. Let
Cst = z;tﬁl + Z;t/@; + Usey (]‘12)

or, in vector notation, Cs = X,0, + Z,05 + V;, where C; = [Cq,.. ,Cor] s T x 1, X, =

[To1s- -y zsr) 18 T X Ky, Zg = [z51,. .-, 2e7) 18 T X kg, and V, = (v, ..., ver) is T x 1. Also,
let zyn be the h*™" element of xy so that z, = [Tg1,. .., Tak, |, and define zy, similarly.
Let v, be a p x 1 vector with vy, = [vs—p),. .., Vse-1)]

o — ! ’ —1 s R ’ ! =1z VAR 21
Define iy, = vy — 20,(Z,Z) ' 2}V, &y = 20y — 20(Z2.2,) 1 2L X, V, = [Us1, . . ., Us7]’, and
. ) L
Xs = [1751, e ,IST] .

Throughout, let ||A|| = [trace(A’A)]'/? be the Euclidean norm of a matrix A.

1.8 Appendix 3. Proof of Proposition 2 and Proposi-
tion 3

Proposition 2 is then verified by combining Lemmas 1.8.3 and 1.8.4 below, and Proposition
3 follows from Proposition 2 and Lemma 1.8.6.

All results presented below are for asymptotics where S — oo with T fixed.

Proof of Proposition 2. Immediate from Lemma 1.8.3 and Lemma 1.8.4. &
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Proof of Proposition 3. That ar(e) is continuously differentiable in o and that H =
Dar(a) is invertible for all v such that N1 is satisfied imply that ar{e) is invertible for all
a such that N1 is satisfied by the Inverse Function Theorem. (See, e.g. Fitzpatrick (1996)
Theorem 16.9.) @) — o 5 0 then follows immediately from the definition of & and
Proposition 2.

To verify the asymptotic normality, expand & about & = ar(a). This gives

&) = a7'(ar(@) + H™| s (@ = ar(a),

e —

where ar(a) is an intermediate value between & and ar(a). The conclusion then follows
from continuity of H, Proposition 2, and Lemma 1.8.6. B

1.8.1 Lemmas

Lemma 1.8.1 Let El be the ordinary least squares estimate of B1. Then if the conditions
of Assumption 1 are satisfied, B; — /i 2 0 and VS(B — Br) LA N0, M~1QM™Y), where
M =E[X,X,] and Q = E[X!T(0)X,).

Proof. Using ||AB|| < |A||B| and I — Z,(Z,Z,)"' Z, positive semi-definite, E[| X! X,|| <
E||X,||> = E[trace(X X, — XiZ(2,2,)7' 7L X )] < trace(EX/X,) = trace(zg‘rzl Elzazl]) <
oo by N5. Also, [ X;Vi|l < (E|X:[IPE||V4[|1)? < oo from the Cauchy-Schwarz inequality,
N5, and the same argument as above. The Khinchin LLN then yields %ZLX ‘X, B M
and & Zle X'V, B 0, from which 8, — 8; 2 0 follows.

To show asymptotic normality of ﬁl first note that X’V is iid and has mean zero by
N2 and N4. Also, E|XV,V/X,[| € QEIX.IEIV,[[*)¥2 < oo by N5, | AB| < || A]||B], the
Cauchy-Schwarz inequality, and

E||X,||* = E[(trace(X/X,))? ~ 2trace(X!X,)trace( X! Z,(2.Z,) "L 2/ X.)
+ (trace(X.Z,(2:Z,)' Z! X,))?]
< Ef2(trace(X, X;))?| = 2E{ X,||*,

where the inequality follows from XX, X|Z,(Z.2,)~'Z!X,, and I ~ Z(2:Z,)7*Z, pos-
itive semi-definite. It then follows from the Lindeberg-Levy CLT that 71—§Zf=1X;\Z, B
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N(0,Q) since E[X[V,V/X,] = E[X!V,V/X,| = E[X/I'@)X,], from which V/S(B, — G) &
N(0, M~1QM~1) is obtained. W

Lemma 1.8.2 Define Ty, to be the residual from least squares regression of (1.11); i.e. Uy =
Cot= T —25305 = vae =23y (B1=B1) ~ 2 (83— B2) = u—%,,(B1— ), where By and B3 are least

squares estimates of 8, and B;. Let U be a p x 1 vector with v, = [Vsqt—p)y - - -» Vse—1y|’, and

let iy be a p x 1 vector with i, = [Ust-p), - - - y Us(t-1y]". Under the conditions of Assumption
1 8 T ~— 1 ¢S T e ! -1/2 1 S T Yy

1, EES:] Zt:p+1vstvst = §25=1 Et:p+l Ugtlg + 0p(S / ), and §25=1 Zt:pﬂ“stvst =

1 8 T — —-1/2

S Zs:l Et=p+1 Vst Vst + Op(S / )

S T s T
> > T = %Z > (it (Bi—B1)0u =570 (B —B1) +E 5 (Bi—B0) (Br—1) 5,

3 s=1 t=p+1 s=1 t=p+1
where Z; is a p X k; matrix with £, = [Est=p)s-- - Ty-p)). Note
1 5. T N 15T R
vec(g DD (B - Bu)ik) = {3 DD G @i — Br) = 0p(1)0,(S7112)
s=1 t=p+1 s=1 t=p+1

by Lemma 1.8.1, Assumption 1, and the Khinchin LLN. Similarly,

13 & R
vec(‘g Z Z gy (B ~ B1)) = 0p(1)0, (S,

s=1 t=p+1
and .
veC(% Z Z i1 — B1)(By — B1)'Eat) = O,(1)0,(S7Y2)0,(§7112).
s=1 t=p+1

It then follows that £ 3°% | ZLPH Ut = £ 30 ZtT:p+1 U Use+0p(S™12) and, by a similar

1 S T m—~=' _ 1 %8 T = —-1/2
argument, s Zg:]_ Zt=p+1 Ustbst -8 23=1 Et=p+1 Ustvst + OP(S / ) .

Lemma 1.8.3 Under the conditions of Assumption 1,

S T T

1 N ot 1

E Z Z Ust Vst _P) E[ Z Ustv.st} = (T _p)(rp(a) + T _ Ap(a)),
s=1 t=p+1 t=p+1 p
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and

Ala) + T_—‘ISAA(O‘) s a p x 1 vector with it"

Z UstUSt =
T P t=p+1 ] [i,l}

+
I(a) = E[V;V{], Toi(a) = E[V,V] _

1 5 T T
52 D Ul HELD dubl = (T
+ 70

+

1
T-p

—p)(A(a) + Aa(a)),

t=p+1

r(a) is a p X p matriz with 1,7 element

Yi—j1{@) —

trace (Z.0_j(0) Z5 _(Z.Z,)7")

element

Yi(ar) —

1 i i -
7 _ptrace (Z0 (@) Ze-i(Z.2,)7T)
L trace (Z.T(a)Z,(Z,
—-p

ZS)_IZ;,al

k]: 71'(05)

S Usr—ky) and Z, _x is defined similarly.

1
ptrace (Z_i(«)Z, - (Z.2)71)

1 ptrace (ZP_i(@)Z,-0(Z2.2,)7")

(1.13)

1
_ptrace (ZX(a)2,(2,2,) 2, _,Z,_(Z.Z,)7"),

(1.14)

Zs,-O(Z;Zs)—l) )

= E[vstvs(t—i)]) Vs,—k = (Us(p+1—k); Us(p+2—k)>

Proof. The proof is given for & 3.0 | S0 iixily > E[S 41 Vnin | = (T ~ p)(Th(a) +
T‘l—_;'JAP(a))? %Efﬂ E;[:pﬂ s = E[Zz;pﬂ Utse] = (T — p)(Ala) + TL_,,AA(O‘)) follows

by a similar argument.

g Zs_l Tp Zt~p+1 stvst is a p X p matrix with [z, 7] element

S Z Z Ustvst

ﬁp+1 [""lj]

Us(t—i) Vs(t~75)

S T
1 / / —_
S Z T _ Z US(t—i)zs(tnj)(ZsZs) IZ;V;

US(t—j)Z;(t—i) (Z:2,)7'ZV.




S T
1 1 7 14 I -
+ EZ_ N (22T 2V Z,(Z,2,) 7

s=1 T —pt:p+l
I 1 &
B EZ?I; D st Uate)
s=1 t=p+1

s
1 1
DI s A AR A

S
1 1
— SN VI ) A,

s=1 T _p
S
+ lz ! =2, (7 Z) 2NV Z( 2.2, 2
S — T—p —J
T
ﬂ) E[T Z Ustvst}[iyj]
p t=p+1

Zs(t—1)

(1.15)

by the Khinchin LLN and repeated application of the triangle and Cauchy-Schwarz inequal-

ities since
() I35 Soimpi Pt Jg I did by N2,
(ii) Elvs(t—z‘)vs(t—j)' < 00 by Nl,
1/2
(i) Elvso—o2y, (2.2 ZVi| < (Bl (Z12) ZVilElu o)

s(t—j)
(iv) Elzy, o (Z,2,) P 2V V] Z(Z2,2,) 240 )]
1/2
(Elzs(t W ZLZ) VPRl J)(Z;Zs)‘lz;\/;lz) . and

(v) by N1 and N5,

Etz;(t_j)(Z;Zs)_IZ;VEIQ

El2ye—5)(2:2:) (2 Z N2, 2.) 2.V, P
I 2ae=1)(Z:25) 7 Z3 BN 2:( 2, 2,) 7 Z V||
trace(z, Zee— ])(Z Z)! Za(t—g)) X

E [trace(V,Z,(Z.2,) 2. Vi)
T
koEltrace(V,V,)] = koE| Z Uat] < 00,

t=p+1

IA

IA
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from which it follows that E| [ Zt_pﬂ Uy Ugz ][ | <oo. W

Lemma 1.8.4 Let & = 23_ S —pt1 RO Y ¢ DN DHl o1 UstUst) be the least squares
estimate of o using the least squares restduals, Uy from estimating 8y, If Assumption 1 is
satisfied,

&)
||

Z Z Ustvst Z Z JatUse) + 0p(S 1/2)-

1 t=p+1 s—l t=p-+1

Proof. By Lemma 1.8.2,

( Z Z Ustvst + M) Z Z UgeUst + Ma),

s=1 t=p+1 s—l t=p+1

where M = 0,(S™V/?) and My = 0,(S~Y/2). After some algebra, it then follows that

1 5 T 1 ) T
a = (A_SV—Z Z stvst) SZ Z UstUSt
s=1 t=p+1 s=1 t=p+1
1 S T
+ (§Z Z "stvst +]Ml) IMQ
s=1 t=p+1
1 Ej ) T 1 S T
-1 -1 A
- SZ Z Ustvst + M) ™ M ( EZ Z stvst (§Z Z g Ust)
5=1 t=p+1 s=1 t=p s=1 t=p+1
T
= Z Z vstvst g z Z Ugtise) + O )OP(S_UQ)+Op(l)op(571/2}0p(1)op(l)
s*l t=p+1 s=1 t=p+1

where the last equality is by Lemma 1.8.3, which yields the conclusion. B

Lemma 1.8.5 Define fiy = Uy — 95 ap(c). If Assumption 1 is satisfied,

Z Z stvu‘st _)N([’?E))

s=1 t=p+1

—_ T T e e
where = = [Zt1=p+1 Zt2=p+l Vst sty ”szvstzl'
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Proof. E:T=p+1 Uy it are iid by N2. Also,

T T
E[ ) it = E[Y (i — i ar(a))]

t=p+1 t=p+1
T T T T
= E[D oaiu] = B{ Y 5t (B[ Y o263 ) B[S igiul)
t=p+1 t=p+1 t=p+1 t=p+1
where the second equality comes from ar(a) = E[Z;";pﬂij;i};]‘lE[Z;‘;pH UgUs) from

Propostion 2. Also

T T
ELY " > atn—syiisns oty stz )]

ti=p+1ta=p+1
T T

= E[ E E l.5s(t1—i)ﬁstlT')'stg’us(ltz—j)]
ti=p+1to=p+1
P T T

—ED DT Y t—iisnombatsgegar(al]

k=1 t1=p+1 to=p+1
P T T

—ERC D0 D i bsmni-par(ak]

k=1 ti=p+1t=p+1
P p T T

+E[ZZ > > Us(ts —a) Us(t k1) Us(ta—ka) Us(ta~ )T () ky 7 (@)

k1=1ky=1t1=p+1 tz=p+1
< 00
since Bt Gst, Uty Usty| < (ElUst, [*Elist, |"E|ise, | *E|ise, |1)1/* < 00 by repeated application of
the Cauchy-Schwarz inequality and
Elwst“4 = Eley(Vi - ZS(Z;ZS)_IZLVS)HZI
< E(llec]*IVill* 1z — Z,(Z,Z,) " Z)1*)
= (T = k2)’E|Va]l* < 00

by N5 and T fixed, where e, is the ¢ unit vector. Then the conclusion follows by the
Lindeberg-Levy CLT since

T T T T
E[ Z Z ﬁ;:,ﬁstlﬂstz'bs_t;][id] = E[ Z Z ﬁs(tl—i)ﬁstlﬂstzvs(tz—j)] <ooV L7 n

t1=p+1ta=p+1 ti=p+1 ta=p+1
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Lemma 1.8.6 Suppose Assumption I holds, then

VB(@ - ar(0)) % m—(Tya) +

Proof. For ji defined in Lemma 1.8.5,

S T i T
B-ar(e) = (53 3 #ix) (5 D0 D daii) +op(S )
S S

s=1t=p+1 s=1 t=p+1

by Lemma 1.8.4. The conclusion is then immediate from Lemmas 1.8.3 and 1.8.5. B

1.9 Appendix 5. Proof of Propositions 4, 5, and 6

The proofs of Propositions 4, 5, and 6 are collected below. All results presented below are
for asymptotics where S, T' — oco.

Proof of Proposition 4. v8T(G —a) = V5T(@ — ar(a) + ar(a) — a) = VST(& —
ar(a)) + \/gB(a,, T} by Lemma 1.9.5, from which the conclusion follows by Lemmas 1.9.5
and 1.98.

Proof of Proposition 5.

VET@EY —a) = VST[G — (& + ar(@)) — ar(a) + er(a) — o
= V8T(a—ar(a)) + \/g(B(a, T) — B(&, T)).

The first conclusion then follows from Lemmas 1.9.5, 1.9.8, 1.9.9, and the Continuous Map-
ping Theorem, and the second conclusion follows from Lemmas 1.9.5, 1.9.8, 1.9.9, and a
Taylor expansion of B(&,T) about & = c. H

Proof of Proposition 6. Recall ) = o7'(d) = ar'(ar(a)) + H_1|L;'('J)(a — ar(a)).

From Lemma 1.9.5, ar(a) = a + T—l_;—,B(a,T) which implies H~' — I as T — oo by NT6.

The conclusion then follows from Lemma 1.9.8. W
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1.9.1 Lemmas

Lemma 1.9.1 Let 51 be the ordinary least squares esttmate of 3,. Then if the conditions of
Assumption 2 are satisfied, 51 — 61 20 and v ST(EI - 51) N N, M~'QM™1), where

M = Myyx —MXZMZ_.%]W)’(Z,
. 1 . 1,
€ = lim B[ZX{T(a)X;] - szMzé(:FangoE[TZSF(a)Xs])

. L, . 14 ¢ 1 g
~(Jim Bl 7. X,T(@) 2 Mzy Mz + Myz Mz3(Jim [ 20 (o) Z.)) Mz My,

with Mxx = lim E[1X!X,], Mxz = Jim E[3X.Z,], and Mzz = Jim (XZ.Z,).

Proof. Let Q, = It — Z,(Z.Z,)71Z!. Then

1 1 1
El| X, sVs 1+ <E sXs 1+
I XQs Vil < E(]l =X

143
77 ﬁQsVsll )

1 1
< (E Xs 2+26E Vs 24-25y1/2
< (Bl X 2Bl =)
144
S k12 Aa

where the first inequality is from ||AB| < ||A||||B||, the second from the Cauchy-Schwarz
inequality and ||@sA| < ||A||, and the third from

1 2424 1 ! 1+4
—X, = E[=trace(X'X,
Bl —=X.| [prace(X,X,)

T
] T K

2 1146

- T1+6E[szi‘h} *

t=1 h=1
. .
< (30 D (Elad, [ s
t=1 h=1

S #(T’ClAL}'_ﬁ)l+6 = k‘%-HSA,

where the first inequality follows from Minkowski’s inequality and the second from NT5, and
E|| J=V,||*** < A by a similar argument. It also follows that E|| $X[QsX,|** < kI T°A by
the same reasoning. So E||1X.Q,X,| and E||zX]Q.V;|| are uniformly integrable in T (See,
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e.g. Billingsley (1995).) Also, under NT3-N'T5,
1 & 1 & 1 « 1<
' ' D ’ !
— ZIst.’Est —_ = Z E[Istxst] —_ O, -_ ZIStZ t T ZE[IStzstl — 0
T t=1 T T t=1 ’ T t=1
1 1<, » 1 & v
T Z 2gZhy — l1m 1 - Z ZstZhps T Z Tuvy, — 0, and T Z zstUhy — 0
t=1 t=1

by a LLN, e.g. White (2001) Corollary 3.48. It then follows from Phillips and Moon (1999)

Corollary 1 that § > _ 1TX Qs Xs 5 M and % Es_ 1X'Q,V, % 0. Hence, B -6 2o

Let K denote a generic constant. To verify asymptotic normality, note that

E 2+ 248 +s zi:b%? 24¢
I \/—X Vil < Elzsw ol 7 [Z(Emtvstl )Z-G] }
< CK < 00 (1 16)

by NT4-NT5 and Doukhan (1994) Theorem 2. Also,

1 1 1 s s 1 1
E|(2X Z)N =2 Z) H{=—=ZV)|*? < (kM) 2(E|(:X.Z)*"E|(—=2.Vs
”(T s )(T s ) (ﬁ K )ll = (2 ) ( “(T 5 )ll ”(\/T_ 1
< CK < oo, (1.17)

][l

where the second inequality follows from ||AB| < ||A|l||B||, the Cauchy-Schwarz inequality,
and NT3, and the third inequality is from NT4-NT5 and Doukhan (1994) Theorem 2. (1.16)
and (1.17) imply E||—}fxgosvg||2+% < 00 since

L X'Z,(Z.Z,) 7 2V, ||Pe) TEE

XIQVAlPE < [(BIl =XV >3 ) 4 (

E| E|l—= + (Ell—=

7 v\ i
by Minkowski’s inequality which yields EH%X 'Q, V|| uniformly integrable in T'. (See, e.g.
Billingsley (1995).) —= FXQsVs N N(0,9) from White (2001) Theorem 5.20, from which

it follows that Qp = 1E[X QI (a)Q: X — L. (E g. Billingsley (1995) Corollary 25.12.)
Then Phillips and Moon (1999) Theorem 3 gives \/ﬁ 23—1 STLXQV, <, N(0,Q) which

implies VST(3 — B1) % N(O,M~'QM"'). B

Lemma 1.9.2 Define U, to be the residual from least squares regression of ( 1.11 ) e Ug =

Cst_xstﬁl_ stIBZ = Ust—T st(/Bl_, 1)— st(ﬁz —f2) = U — st(ﬁl —p1), where )61 and ﬁz are least
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squares estimates of 0 and B5. Let U, be a p x 1 vector with v Uy = [Us(e—p), - - <> Ug(e—1y)’, and

let iy be a p x 1 vector with v, = [Ust—p)s - - -+ Use—1y)’- Under the conditions of Assumption
2,
1 5 T
BT ) 2 O Tali = T Z Z Bl + 0p((ST)77%),
: P) oS p) s=1 t=p+1
and .
1 ~
ST =gy 2 D Vb= S5 bt op((ST) )
S(T - p) s=1 t=p+1 T p) s=1 t=p+1

Proof. Usmg calculatlons similar to those found in the proof of Lemma 1.9.1, it can be shown

that S(T ) Zs—l t—p+1 UstZs(t—j)n = 0p(1) and S(T ) s:l Et=p+1I3tIS(t—j)h = Oy(1) for
J=-p,...,pand h=1,... k. The conclusion then follows by Lemma 1.9.1 and the same
arguments used in proving Lemma 1.8.2. W

Lemma 1.9.3 Under the conditions of Assumption 2,

, —.S ' S
(i) rl_;) et Et_p+1 Uty 5T p(a), and grp— s(T - 2o Et—p+1 Utse = Alc).
(12) S(Tp_) /_43 1 Et—p+1 st'Ust s(T_p Zt._p+1 st'Ust + 0, ( T}, and

S(TI ) 2= 12:_p+1 Ugtist = S(T_p) E =1 E:_p+1 Ust Vst + O ( ).

Proof. The proof is given for

S T .
S(T;_p) D et t—pt1 UnUst = A(a) follows by a similar argument.
T Y . . .o
T%p > teps1 Vatly s 2 p X p matrix with i, 7 element

l:T p Z 'b'st'U J = T p Z Vs(t—i) Vs(t~3)
(.41

t=p+1 t=p+1

- Z VUs(e—i) 2oy ) (Z0Zs) 2LV,
—p+l
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T

1
— Em— Y Ve (ZL2,) 7 2LV,
T_pt=p+1
1 T
Al el D C A AR AR AC AT
—p+1
= Z Us(t—i) Us(t—j)
—p+1
1
N r%’_izs,-j(zgzs)‘lzgm
- W‘G’,_J o~ilZ,25) 7 2,V (1.18)
1 I ,
+ T_pZS,—i(Z.;ZS) IZSV'SV:Z;(Z‘;ZS) 1Z9 -3
where V; i = (Ustpr1-8), Vspr2—k), - - -, Us(r—ky)” and Z, _y is defined similarly.

Consider

EWV.Z(2:2,)7 2 _,Z,_{(Z.2.)" ‘Z’VH”'

—1

T P 1 1,.,...1, 1 _, 5
EII(TV' N 2s )1(—32425.#)(?23%) 1(*\/—“1:25%)””2- (1.19)
Note that
I
||?—_~sz —iZs—ill £ ke < oo (1.20)
by NT5. Also,

E”(_\/—_—Z’ )”2+6 = T_i_E”(Zzstvst ”

t=1

7
< e Cma.x{Z(E|zstvst|2+6+E fjif Z Efzstvsz|2+f)ﬁ]2i2ﬁ}
t=1 t=1

< K<oo (1.21)

by Doukhan (1994) Theorem 2 and NT5. It then follows from the Holder’s inequality, the
Cauchy-Schwarz inequality, ||AB| < |JA]l|IB]l, (1.20), (1.21), and NT3-NT5 that (1.19) is
bounded away from oo, which gives ||V, Z,(Z,Z,)7'Z, ,Z, _{(Z.Z,)"' Z!V,|| uniformly inte-
\Zo(Z,2,)7 Z,V,)| and

H—Ti—p Z;‘F:IH_] Vs(t-i)Us(t—z)|| are uniformly integrable in T

grable in 7. Similarly, it can be shown that ||V,
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Also, as T — o0,

L 7 S VsamiyVst—s) = Mims (@),
2. V] _Ze—i(ZL2)7 2V, S W MZLT,
3. VIZZ.2) "2, 2, (Z.2,)" 2V, S W MM ML,

where Mzz = Tli_{roxo%[Z;Zs], M,; = Tli_rgo%[Z;'_iZs,_-L U~ N(O,T}i_{lgo%[Z;F(a)Zs], U, ~
N(O’Th_IEOT_I-I; (2 _;T(a)Z,-5), T = Elvyv}, ], and E[¥V]] = Frli_?;%[Z;F_i(a)ZS,_j]. (See

White (2001} Corollary 3.48 and Theorem 5.20.) Combining 1., 2., and 3. and (1.18) gives

T
1 . . p
T_o D Z Us(t—i) Use—i) — Ni-41(@)-

t=p+1

It then follows from Phillips and Moon (1999) Corollary 1 that

§ T
1 . . »
S(T — p) Z Z Us(t—2)Us(t-3) = V=31 (),

s=1 t=p+1

which yields the first conclusion. Also, using Phillips and Moon (1999) Corollary 1 and
considering only 2., 3. and (1.18) yields the second conclusion. B

~ 5 T et s T e~

Lemma 1.9.4 Leta = (ﬁ D em1 2vmpt1 VatUst ) l(ﬁ D em1 2otmps1 Ust¥st) be the least
squares estimate of o using the least squares residuals, Vs from estimating 5,. If Assumption
2 is satisfied,

- 1 G, 1 S e
a = (gmz > igin) (mz > digiig) + 0,((ST)7V2)

s=1 t=p+1 s=1 t=p+1

=

1 S I , 1 s T
ST 2 O Vet VT 2 2 et + 0T 4 0p((STY),

s=1 t=p+1 s=1 t=p+1

Proof. Follows immediately from Lemmas 1.9.2 and 1.9.3 using the same argument as
in Lemma 1.8.4.

Lemma 1.9.5 For ar(a) defined in Lemma 2, ar(a) —a = ﬁB(a,T), where B, T) —
B(a) as T — oo, and ar(d) —a = T—l_;B(a,T) if the conditions of Assumption 2 are met.
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Proof. Recall ap(a) = (Fp(a)+TL_pAp(a))'1(A(a)JrTl_—pAA(a)) and that o = I'p(@) " A(a).
Then or(a) — a = fljp(l“p(a) + T—I_EAF(Q))_I(AA(Q) + Ar(a)a) = —;B(a T). That
B(a,T) — B(a) as T — oo follows from the proof of Lemma 1.9.3. ar(@)—a = Tl—I—JB(a T)

follows in the same fashion. W

Lemma 1.9.6 Define jiy = Uy — U ap(c). If Assumption 2 is satisfied,

Proof.

S T PN S T PR R .
\/S(lT—ﬂ,) 2t thp-i-l Ustlbst = m P Zt=p+1(vst/—l’5t — Elti,4jist]) since

E[ Z i}s_t,ufst] = E[ Z Ust t’aT(a))]

t=p+1 t=p+1
T T T T
= E[ Y gl - B{ Y iigig (B] > i) T'E[ Y i}
t=p+1 t=p+1 t=p+1 t=p+1
= 0,

where the second equality comes from ar(a) = E[ZLP 1 ﬁ;i);’]_lE[EipH tige¥se] from
Propostion 2. Also note that jis = s — (Vst — Ust) — v (07(a) — @) = (95 — v Y er(a) and
Vg =Vy — Zg(Z.25) 2.V, where Z, = [zy4-1), - - - » Zs(1—p)] - S0,

Vi — Eligiia] = (v — Z23(2,2,)7' 2.V, x
(Mot — 24(Z.2) 2V, — vy (o () — &) + VIZ,(Z,Z,) 7' 27 ar(a))

_E[('Usz Zst(Z’Z) IZ;Vs) X

(nst = 24(Z025) 2V, — v (ar(e) — o) + V] 2.(Z,2,) 7 25, ar(e))]
= e — (Ve (ZeZs) ' ZVs — Blugzi(Z,Z,) 7 2, V)

—(vzvy — Evzuzg )(er(e) — a)

+HupViZ(2,2,)7 25 — BlogVy Z.(2.2,) 7' 2, Dar(a)

—(Z4(Z:2.) ' Z.Vine — E[(Z5(2,2.) 7' ZVinsi))

HZ (2, 2,)  Z Va2 (24 2.) 1 2,V (1.22)

—E(Z,,(2,2,) ' Z V2o (2. 2:) ' Z, Vi)
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HZ3(Z.Z) 2V - BlZ4(Z.2,)7 2, Vg Dlar(a) — a)
~(Z (2.2 VY, 2. 2,2,) 2,
—E|Z;(Z.2,) 7 ZV V] Z(Z,2,) 7 Z ) or ().

Now consider

Ysr = 2V VIZ(ZZ2) Tz
VS(T p) ;:-;Z-H t

—E[Z4(Z,2,) 2V, V. 2,(2,2:) 7 2, ).

Ys 7 is a p x p matrix with ¢, j element

Ysrliia Z z Zye—0)(Z325) T VIV, Zo( 232 ) " 250
VST —p) 1 t=p+1
—E[zs— @-(ZZ) VZIV V) Z(Z.Z5) 25— p)])

= \/T_pz (VIZ.2.2)7'Z. _.Z, ;(Z.2,) ' Z.V,
~E(V,Z,(Z2,2,)"' 2, _iZs,-{Z,Z;) ' Z,V})),
and
r ]‘ 1 7 ' - !
Ell[YSIT][i7j]||2 = T—_pE“‘/SZS( Z) 1Zs —iZs —j(ZsZS) 1Zs‘/3||2

1 ! n' / 14 — i
—T__p“E[VsZS(Zs ) 1Z.9 1Z —j(Z.sZS) IZsV-S]Hz -0,
where the equality is from independence assumption N'T2, since E||A|? > ||E[A]||? and

L B\, Z(Z,2)7 2,2 (Z12.) 2V, 12
< TREIFVIZN G2, 2:) (7520 -iZs- i) (3 20Zs) 1Bl g ZVi|14)
by the Cauchy-Schwarz inequality.

2. (32:20) 7524 -iZs-) (72,27 £ (kM Pl 20 i Z6,-51%) < (kaM)?k2A by
NT3 and NT5.

3. Bl LZVilI* < T-%C max{ 3", (Elzsve ) 7, [T, (Bl zavee|*+) 752} < K by NT5
and Doukhan (1994) Theorem 2.
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Hence, [Ysr]ji; = 0 by Chebychev’s inequality, and it follows that Ygz — 0p(1). That all
other terms, except m 3 ZLP"'l(US_tUs_t, — Elvgvy; |)(ar(a) — a), are o,(1) follows
similarly.

To show \/5(1::*7 P ZtT:pH(v;vs‘t' ~E[vgv; )(ar(a) —a) = 0,(1), note that (ap(a) —

@) = O(z) from Lemma 1.9.5. Also, vec{\/T— Zt—p+1( vivy — Eugug )} 2 ¥ ~ N(0,Q)
where

Q = ]l'l_llrolo_— Z Z [E Stl Stg st] stg) E(Ustl ® vstl)E(vS_t; ® vs_t;)]
Py =pt1ta=p1
as T' — oo follows from a CLT (e.g. White (2001) Theorem 5.20) and the Cramer-Wold
device, and |Iﬁztzp+1 vec(vyvy, — Elvgvy ) < ||¥|? by the Continuous Mapping
Theorem. In addition,

E|l

mzz vgts = Blogug DI

s=1 t—p+1

—trace{E[— Z Z  ® v) — Blug, ®v3))((vy, ®v7,) — Bvy, ® vz}

t1—p+1 ta=p+1

T
Z Z Sil 3t2 ® Ustl stg) E(’U.i_il ® Us_fl)E(US_t; ® Us_t;)] - trace(ﬂ) = :E”'lI]”2

1=p+1t2=p+1

as T — oo. It follows that || m Zil Zz;pﬂ(v;v;' — E[wgv; DII? is uniformly inte-
grable in T'. (For example, Billingsley (1995) 16.14.) Then, using Phillips and Moon (1999)
Theorem 3,

S T

1 _ _my d
/— Z Z stvst E[Ust'ust ]) - N(O: 9)7
T p) s=1 t=p+1

which implies that

mz S (v — Bl ) = 0,)

s=1 t=p+1

and the conclusion follows immediately. Bl

54



Lemma 1.9.7 If Assumption 2 is satisfied, \/ﬁ__p) Zle z;‘rzpﬂ vne — N(0,E), where

[

- —»ooT p Z Z E[U5t1n5t1nst2 Stz]'

ti=p+1t2=p+1

In addition, if ns are independent for all s and t, = = 01271“.

Proof. As T — o0, A=0  vyme > ¥ ~ N(0,5) by a CLT (eg. White (2001)
Theorem 5.20) and the Cramer-Wold device, and “ﬁZ;pﬂ vanetl? 5 ||¥|2 by the
Continuous Mapping Theorem. Also,

T
EH\/r Z vs_tnstllz = tra‘ce Z Z Evstlnshnstz stg) - tra‘ce( E”\IIHZ

t=p+1 t1 =p+1ta=p+1

which implies that E||ﬁzf=p +1Uanst]? is uniformly integrable in T. (For example,
Billingsley (1995) 16.14.) Then, using Phillips and Moon (1999) Theorem 3,

mz Z vstnstHN )

s=1 t=p+1

Also, if the 7,; are independent for all s and ¢, Ev, ng, Tlstz'Us_:; =0Vt #1t, and Ev;nftv;t' =
072,1". |

Lemma 1.9.8 ST(a& — ar(a)) 4, N(0,T7'ZT"Y) for = defined in Lemma 1.9.7 if As-
sumption 2 is satisfied.

Proof. From Lemma 1.9.4,

a —or(a) = T ) Z Z a5 )N T s Z Z i) — ar(a) + 0p((ST)™V?)

s=1 t—p+1 s=1 t—p+1
Z Z Z Z ifisr) + 0, (ST) V).
T p 3=1 t=p+1 T p s=1 t=p+1

The conclusion then follows immediately from Lemmas 1.9.3, 1.9.6, and 1.9.7. W
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Lemma 1.9.9 Under Assumption 2, & — o = max{O,(T~1), 0,((ST)~1/2)}.

Proof. Lemma 1.9.4 gives

= (5o MEZZZ%%) Sy 2o O ) 0, 4 (57

s=1 t—p+1 3=1 t—p+1
>3 ) Zthw
S(T p) s=1 t=p+1 T p 5=1 t=p+1 b

+ Op(T™Y) + 0,((ST)~1/?),

Then Lemma 1.9.8 yields

ST p)Z Z vt = Op((ST)™V?),

5=1 t=p+1

and
T p) Z Z stvst = O (1)
s=1 t=p+1

follows immediately from a LLN, e.g. White (2001) Corollary 3.48. W

1.10 Appendix 6. Bias Correction when @t is Esti-
mated

An additional complication will arise if estimation of Cy is considered. In this case, the error
in equation (1.6) is vy + Cst Cst, not vy, and implementation of the FGLS estimator will
require estimation of E[(V, + &, — C,)(V, + €, — C .)] = a2l(a) + E[(C, — C,)(C, - C, )]
The presence of Cy; — C,, adds an additional O (%) bias to the OLS estimates of o, where
for simplicity I have assumed N, = N for all s and ¢. For moderate or large NV, this bias
will likely be a small concern, and ignoring it may be preferable.!* However, if NV is small,
the researcher may wish to account for this bias. To this end, note that if the groups are
distinct then the only correlation between € st ACross states comes from the fact that 3, is

“For a discussion in a different but related context, see Dickens (1990).
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estimated rather than known, and the covariance between C. and Cyv will be zero if a
separate estimate of 3, is calculated within each group. Let Cs denote the vector of time

—~

effects for state s obtained in this manner, and define V{(C) as a p x p matrix with [z, j|

element
. 1 s L ~ .
Vipa(C) = S(T_p);t_%lcov(os(t—i)vcsu—j))

L rnce (20, @ (227))

T 1_ ptrace ([Z;VS,_J-(C')ZS,—i(Z;ZS)_l])

trace([Z;Vs(é)zs(zézs)flzl Z ‘j(Z;Z’)ilD

5,—1<'8,

-r
and Va(C) as a p x 1 vector with #** element

1 8 T

‘/Z[i,l](é) = S(T——p)z Z Cov(@st,as(t_i))

s=1 t=p+1

trace ([Z'Vs’_i(é)zs,—O(Z;Zs)_l])

s

1
T-p

7 race ([Z;u,_o(é)zs,_i(zgzs)-l])

+ trace ([Z;Vg(@)ZS(Z;ZS)_IZ;’_z‘Zs,;U(Z;ZS)_l]) )

where Cov(@'st, C*Srtr) estimates the covariance between Cy; and 6'5,3,, Vs(a) estimates E[(éS -
C(Cs — C)'], Va_x(C) estimates E[(Cs — C,)(Cs -k — Cs—xY], and

-~

@sﬁk = (Cspr1-k)s Csipra—k), - - - ,és(T,k))’. It is then straightforward to demonstrate that

~ 1 s T L _ -1 1 s T s R
x = (Em Z UgpUsp — VI(C)) (S(T——p) Z Z UstUst — VZ(C))

s=1 t=p+1 s=1 t=p+1

5 ar(a)

as S — oo with T fixed as long as a law of large numbers applies and Cov(ast, C’S,t,) is an
unbiased estimate of the covariance between ést and aw- The use of a consistent estimate

instead of an unbiased estimate will remove the O (%) bias.
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o2 also needs to be estimated in this case. A natural choice to estimate o2 is

~ 1 -~
> E(Cy — Cu)? + ftrace(zgvs((z)zs(zgzs)—l
t=1

LA %trace(Z;F(a)Zs(Z;ZS)_l)

WE
2’.@1
fl
|
7] -
i

from which a consistent estimator may easily be recovered.
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TABLE 1. Bias and MSE of & and &g with Fixed Effects

AR(1) Model AR(2) Model
a;p =0.8 a; =080, a; =0

S T a & &) & @y alt all al™ a)
51 23 -0.099 -0.013 -0.003 -0.061  -0.058 -0.009 -0.008 -0.002 -0.002
(0.010) (0.0008) (0.0007)  (0.005) (0.004) (0.0012) (0.0011) (0.0012) (0.0011)

o 0}
204 23 -0.098 -0.011 -0.001 -0.060  -0.056 -0.008 -0.007 -0.001  -0.00003
(0.010) (0.0003) (0.0002)  (0.004) (0.003) (0.0003) (0.0003) (0.0003) (0.0003)

0 o}

1020 23 -0.096 -0.010 -0.0001 -0.059  -0.056 -0.007 -0.007 0.0001 -0.0001
(0.009) (0.0001) (0.00003)  (0.004) (0.003) (0.0001) (0.0001) (0.0001) (0.0001)

0 o)

51 12 -0.216 -0.052 -0.010 -0.149  -0.129 -0.045 -0.033 -0.009 -0.002
(0.048) (0.005)  (0.003)  (0.025) (0.018) (0.005)  (0.003)  (0.003)  (0.003)

(0] [0]

204 12 -0.210 -0.044 -0.002 -0.142  -0.127 -0.039 -0.031 -0.002 -0.0003
(0.044) (0.002)  (0.001)  (0.021) (0.017) (0.002) (0.002)  (0.001)  (0.001)

[0] [0]

1020 12 -0.208 -0.043 -0.0003 -0.141  -0.127 -0.037 -0.031 -0.0002  -0.0001
(0.044) (0.002) (0.0001)  (0.020) (0.016) (0.002)  (0.001) (0.0001) (0.0001)

(0] [0]

51 6 -0.491 -0.201 -0.023 -0.424  -0.325 -0.246 -0.164 -0.036 -0.020
(0.244)  (0.046)  (0.010)  (0.187) (0.109) (0.068) (0.033) (0.012)  (0.009)

0] 67

204 6 -0.484 -0.192 -0.005 -0.418  -0.321 -0.238 -0.158 -0.005 0.0007
(0.235)  (0.038)  (0.003)  (0.176) (0.104) (0.058)  (0.027)  (0.003)  (0.003)

] )

1020 6 -0.481 -0.189 -0.0007 -0.415  -0.322 -0.234 -0.159 -0.0006 0.0001
(0.232) (0.036)  (0.0006)  (0.172) (0.104) (0.055) (0.026) (0.0005) (0.0005)

] 0}

Monte Carlo results for simulation modecl based on aggregate CPS-MORG data with fixed effects. Data are
manufactured so that variances match those in the CPS data. S is the number of aggregate cross-sectional
obscrvations, and T' denotes the number of time series obscrvations. S = 51 and T = 23 were chosen to
match CPS data, and remaining sample sizes were chosen to explore behavior for small T and large S. &,
&), and @(*) are, respectively, least squares, one-stcp bias-corrected least squares, and iteratively
bias-corrected least squares estimates of the autocorrelation coefficients. MSE is given in parentheses, and
the number of times c:p' (&) failed to exist is given in brackets. The number of simulations is 1000.
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TABLE 2. Bias and MSE of & and &g with Fixed Effects and State-Specific Trends

AR(1) Model AR(2) Model
a; = 0.8 a, =080,a;=0
S T & &) (=) & &» alt al! al> &™)
51 23 -0.219  -0.054 -0.005 -0.147  -0.119  -0.047 -0.029 -0.004 -0.0005
(0.049) (0.004)  (0.002) (0.023) (0.015) (0.004) (0.002) (0.002)  (0.001)
[0] (3]
204 23 -0.215  -0.050 0.0003 -0.142 -0.119  -0.042 -0.029 0.0006 -0.0004
(0.046) (0.003) (0.0004)  (0.021) (0.014) (0.002) (0.001) (0.0004) (0.0003)
o] o]
1020 23 -0.215 -0.050 -0.0005 -0.143  -0.119  -0.043 -0.029  -0.0004 -0.0002
(0.046) (0.003) (0.0001)  (0.021) (0.014) (0.002) (0.001) (0.0001) (0.0001)
0] ]
51 12 -0.467  -0.200 -0.030 -0.369  -0.248 -0.203 -0.109 -0.054 -0.025
(0.219) (0.043)  (0.009) (0.139) (0.063) (0.045) (0.014) (0.012)  (0.004)
87) (173]
204 12 -0.460 -0.192 0.002 -0.361 -0.247  -0.195  -0.108 -0.007 -0.006
(0.212) (0.038)  (0.003) (0.131) (0.061) (0.039) (0.012) (0.004)  (0.001)
) j45)
1020 12 -0.460 -0.192  -0.0001 -0.360 -0.247 -0.194 -0.108 0.001 -0.001
(0.212) (0.037) (0.001) (0.130) (0.061) (0.038) (0.012) (0.001) (G.0002)
o] o]
51 6 -0.955  -0.660 -0.262 -0.919 -0493 -0.803 -0.369 -0.403 -0.162
(0.914) (0.441) (0.126) (0.850) (0.246) (0.653) (0.141) (0.253)  (0.046)
[270] (318
204 6 -0.950 -0.653 -0.135 -0.914 -0.492  -0.795 -0.366 -0.268 -0.106
(0.903) (0.428)  (0.068) (0.836) (0.242) (0.634) (0.135) (0.162)  (0.029)
[152) 230
1020 6 -0.949  -0.652 -0.020 -0914 -0492 -0.796  -0.366 -0.083 -0.023
(0.902) (0.426)  (0.009) (0.835) (0.242) (0.634) (0.134) (0.028)  (0.005)
8] 28

Monte Carlo results for simulation model based on aggregate CPS-MORG data with fixed effects. Data are
manufactured so that variances match those in the CPS data. S is the number of aggregate cross-sectional
observations, and 7" denotes the number of time series observations. S = 51 and T = 23 were chosen to
match CPS data, and remaining sample sizes were chosen to explore behavior for small T and large §. &,
&M and (™) are, respectively, least squares, onc-step bias-corrected least squares, and iteratively
bias-corrected least squares estimates of the autocorrelation coefficients. MSE is given in parentheses, and
the number of times ar.'(&) failed to exist is given in brackets. The number of simulations is 1000.
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TABLE 3. Estimated Variance of Treatment Parameter in Simulated AR(1) Model with o = .8.

§=51,T=23 §=51,T=12 §=51,T=6
a2 al a? 72 o2 a? G2 o2 a?

A. Conventional Inference Methods

OLS 0.024 0.108 0.107 0.035 0.101 0.109 0.046 0.078 0.081
OLS - Cluster by state 0.102 0.108 0.107 0.096 0.101 0.109 0.075 0.078 0.081
FGLS-U 0.020 0.037 0.062 0.030 0.040 0.049 0.038 0.044 0.051
AR(1) 0.034 0.037 0.039 0.038 0.040 0.046 0.045 0.044 0.060
AR(1) - Cluster by state 0.037 0.037 0.039 0.044 0.040 0.046 0.054 0.044 0.060
AR(2) 0.034 0.037 0.040 0.038 0.040 0.046 0.045 0.044 0.060
AR(2) - Cluster by state 0.038 0.037 0.040 0.045 0.040 0.046 0.065 0.044 0.060

B. FGLS with Bias-Corrected AR Coefficients

AR 0.037 0.037 0.037 0.040 0.040 0.038 0.044 0.044 0.046
AR(1)p. - Cluster by state 0.035 0.037 0.037 0.039 0.040 0.038 0.041 0.044 0.046
AR(2)pe 0.037 0.037 0.037 0.040 0.040 0.038 0.044 0.044 0.046

AR(2)pe - Cluster by state  0.035 0.037 0.037 0.038 0.040 0.038 0.041 0.044 0.046

Monte Carlo results for simulation model based on aggregate CPS-MORG data. Data are manufactured so
that variances correspond to thosc in the CPS data, and the error process is assumed to follow an AR(1)
with o = .8. § is the number of aggregate cross-scctional observations, and T denotes the number of time
series observations. § =51 and T = 23 correspond to the full sample of CPS data, and remaining sample
sizes were chosen to explore behavior for small T'. Results are for the variance of the treatment parameter,
531, only. 32 is 1000 times the mean of the estimated variances, o2 is 1000 times the asymptotic variance,

and o2 is 1000 times the variance of the 3;’s estimated in the simulation. The number of simulations is
1000
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TABLE 4. Monte Carlo Results from CPS-MORG Microdata

§=51,T=23 §5=51,T=12 §=51,T=6
Size  Power Length Sizc  Power Length Size  Power Length

A, Conventional Inference Methods

OLS 0.594 0.860 0.006 0.398 0.866  0.009 0.072 0.850 0.012
(0.022) (0.016) (0.022) (0.015) (0.012) (0.016)
OLS - Cluster 0.078 0.354 0.024 0.078 0.548 0.019 0.064 0.798 0.013
by state (0.012) (0.021) (0.012) (0.022) (0.011) (0.018)
Random Effects - 0.392 0.778 0.010 0.222 0.870 0.011 0050 0808 0.013
state x year (0.022) (0.019) (0.019) (0.015) {0.009) (0.018)
OLS - Cluster by 0.398 0.766 0.011 0.280 0.804 0.011 0.076 0.844 0.012
state x year (0.022) (0.019) (0.020) (0.018) (0.012) (0.016)
B. FGLS with Bias-Corrected AR Coefficients
AR(2)p, 0.078 0714 0.015 0.152 0.880 0.012 0.050 0.804 0.014
(0.012) (0.020) (0.016) (0.015) (0.010) (0.018)
AR(2)p. - Cluster ~ 0.078 0.728 0.016  0.070 0.880 0.015  0.058 0.792 0.014
by state (0.012) (0.020) (0.011) (0.015) (0.010) (0.018)
AR(3)be 0076 0.738 0.015 0.142 0.888 0.012
(0.012) (0.020) (0.016) (0.014)
AR(3)ps - Cluster 0.076 0.744 0.015 0.072 0.774 0.015
by state (0.012) (0.020) (©0.012) (0.019)

Monte Carlo results for simulation model using individual CPS-MORG data. Data are manufactured by
resampling states from actual CPS-MORG data. S is the number of aggregate cross-sectional observations,
and T denotes the numbecr of time series observations. § = 51 and T = 23 correspond to the full sample of
CPS data, and remaining sample sizes were chosen to explore behavior for small T'. Results are for the
treatment parameter which enters the model with a true coefficient of 4, = 0. Size and powcr are for 5%
level tests, and power is versus the altcrnative that 87 = .02. Length is the 95% confidence interval length
divided by two. Interval lengths are based on a tsp for tests with standard errors clustered at the state
level, a tgp_ for tests with standard errors clustered at the state x year level, and a N(0,1) for the
remaining tests. Simulation standard errors are reported in parentheses. (For interval length, the
simulation standard error is negligible, so it is not reported.) The number of simulations is 500.
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TABLE 5. Monte Carlo Results from Aggregate CPS-MORG Data

§=51,T=23 S=51,T=12 S=51,T=6
Size  Power Length Size  Power Length Size  Power Length

A. Conventional Inference Methods

OLS 0.374 0.762 0.011 0.158 0.846 0.012 0.052 0.730 0.015
(0.022) (0.019) (0.016) (0.016) (0.010) (0.020)
OLS - Cluster 0.066 0.344 0.025 0.062 0.656 0.017 0.052 0.744 0.015
by state (0.011) (0.021) (0.011) (0.021) (0.010) (0.020}
FGLS-U 0.362 0962 0.007 0.112 0932 0.010 0.086 0.804 0.013
(0.021) (0.000) (0.014) (0.011) (0.013) (0.018)
AR(2) 0.104 0.772 0.014 0.116 0.844 0.014 0.080 0.774 0.014
(0.014) (0.019) (0.014) (0.016) {0.012) (0.019)
AR(2) - Cluster 0.064 0662 0.016 0.062 0.726 0.016 0.048 0.716 0.015
by state (0.011) (0.021) (0.011) (0.020) (0.010) (0.020)
AR(3) 0.106 0.770 0.014 0.132 0834 0.013
(0.014) (0.019) (0.015) (0.017)
AR(3) - Cluster 0.072 0.688 0.016 0.068 0.708 0.016
by state (0.012) (0.021) (0.011) (0.020)
B. FGLS with Bias-Corrected AR Coefficients
AR(2)p, 0.080 0.750 0.015 0.064 0.814 0.014 0.042 0.720 0.015
(0.012) (0.019) (0.011) {0.017) (0.009) (0.020)
AR(2)p, - Cluster 0.062 0.754 0.015 0.062 0.800 0.014 0.060 0734 0.015
by state (0.011) (0.019) (0.011) {0.018) (0.011) (0.020)
AR(3)pc 0.064 0.766 0.014 0.066 0.810 0.014
(0.011) (0.019) (0.011) (0.018)
AR(3)pc - Cluster 0.076 0.788 0.014 0.060 0.808 0.014
by state (0.012) (0.018) (0.011) (0.018)

Monte Carlo results for simulation model using aggregate CPS-MORG data. Data are manufactured by
resampling states from actnal CPS-MORG data and aggregating data to the state-year level using the
method of Amemiya (1978) outlined in the text. S is the number of aggregate cross-sectional observations,
and T denotes the number of time series observations. S = 51 and T = 23 correspond to the full sample of
CPS data, and remaining sample sizes were chosen to explore behavior for small T. Results are for the
treatment parameter which cnters the model with a true coefficient of 3; = 0. Size and power are for 5%
level tests, and power is versus the alternative that 8, = .02. Length is the 95% confidence interval length
divided by two. Interval lengths are based on a t5q for tests with standard errors clustered at the state level
and a tgr-g—r for the remaining tests. Simulation standard errors are reported in parentheses. (For
interval length, the simulation standard error is negligible, so it is not reported.) The number of
simnulations is 500.
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TABLE 6. Monte Carlo Results from Simulated AR(1) Model with o = .8.

S=51,T=23 S=51,T=12 S=51,T=6
Size  Power Length Size  Power Length Size  Power Length

A. Conventional Inference Methods

OLS 0.356  0.842  0.010 0.285 0.794 0.012 0.141  0.730 0.013
(0.015) (0.011) (0.014) {0.013) (0.011) (0.014)
OLS - Cluster 0.056 0490 0.020 0.065 0.520 0.020 0.058 0.574  0.017
by state (0.007) (0.016) (0.008) (0.016) (0.007) (0.016)
FGLS-U 0.269 0915 0.009 0.121 0900 0.011 0.091 0834 0.012
(0.014) (0.008) (0.011) (0.000) (0.009) (0.012)
AR(1) 0.078 0914 0.011 0.077 0.878 0.012 0.083 0.786 0.013
(0.008) (0.009) (0.008) (0.011) (0.008) (0.013)
AR(1) - Cluster 0.057 0.884 0.012 0.059 0.830 0.013 0.064 0728 0.015
by state (0.007) (0.010) (0.008) (0.012) (0.008) (0.014)
AR(2) 0.080 0912 0.011 0.081 0.874 0.012 0.093 0.778 0.013
(0.008) (0.009) (0.008) (0.011) (0.009) (0.013)
AR(2) - Cluster 0.062 0.882 0.012 0.060 0.828 0.013 0.064 0.724 0.015
by state (0.008) (0.010) (0.008) (0.012) (0.008) (0.014)

B. FGLS with Bias-Corrected AR Coefficients

AR(1)pe 0.056 0908 0.012  0.044 0880 0012 0062 0818 0.013

(0.007) (0.009) (0.006) (0.011) (0.008) (0.012)
AR(L)p - Cluster ~ 0.061 0.904 0012  0.050 0.874 0.012 0069 0822 0.013
by state (0.008) (0.009) (0.007) (0.011) (0.008) (0.012)
AR(2)pe 0.057 0.904 0012  0.044 0882 0012 0066 0822 0013

(0.007) (0.009) (0.006) (0.010) (0.008) (0.012)
AR(2)p - Cluster ~ 0.065 0900 0.012 0049 0880 0012 0070 0824 0013
by state (0.008) (0.009) (0.007) (0.011) (0.008) (0.012)

Monte Carlo results for simulation model based on aggregate CPS-MORG data. Data are manufactured so
that variances correspond to those in the CPS data, and the error process is assumed to follow an AR(1)
with a = .8, § is the number of aggregate cross-sectional observations, and T denotes the number of time
series observations. § = 51 and T = 23 correspond to the full sample of CPS data, and remaining sample
sizes were choscn to explore behavior for small T. Results are for the treatment parameter which enters the
model with a true coefficient of 81 = 0. Size and power are for 5% level tests, and power is versus the
alternative that 8; = .02. Length is the 95% confidence interval length divided by two. Interval lengths are
based on a t5o for tests with standard errors clustered at the state level and a tg7_g—7 for the remaining
tests. Simulation standard errors are reported in parentheses. (For interval length, the simulation standard
crror is negligible, so it is not reported.) The number of simulations is 1000.
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TABLE 7. Monte Carlo Results from Simulated AR(2) Model with a7 = .43 and o, = .30.

S=51,T=23 S=51,7=12 S=5,T=6
Size  Power Length Sizec  Power Length Size  Power Length

A. Conventional Inference Methods

OLS 0.324 0.856 0.010 0.210 0.764 0.012 0.091 0702 0.015
(0.015) (0.011) (0.013) (0.013) (0.009) (0.014)

OLS - Cluster 0.054 0.536 0.019 0.063 0508 0.019 0.058 0612 0.017

by state (0.007) (0.016) (0.008) (0.016) (0.007) (0.016)

FGLS-U 0.233 0.8%0 0.010 0.132 0.813 0.013 0.078 0.746 0.015
(0.013) (0.010) (0.011) (0.012) (0.008) (0.013)

AR(1) 0.101 0.816 0.013 0.120 0744 0.014 0.095 0.708 0.015
(0.009) (0.012) (0.011) (0.014) (0.009) (0.014)

AR(1) - Cluster 0.054 0.744 0015 0065 0658 0.016 0.058 0614 0017

by state (0.007) (0.014) (0.008) (0.015) (0.007) (0.016)

AR(2) 0.065 0.850 0.013 0.115 0.750 0.014 0.106 0.698 0.015
(0.008) (0.011) (0.010) (0.013) (0.010) (0.015)

AR(2) - Cluster 0.051 0.806 0.014 0.065 0.680 0.016 0.059 0.582 0.018

by state (0.007) (0.013) (0.008) (0.015) (0.008) (0.016)

B. FGLS with Bias-Corrected AR Coefficients

AR(1)pc 0.070 0816 0.013 0077 0.708 0.015 0.061 0.686 0.016
(0.008) (0.012) (0.008) (0.014) (0.008) (0.015)

AR(1)s - Cluster 0.05¢ 0.766 0.015 0070 0704 0.015 0.054 0.676 0.016

by state (0.008) (0.013) (0.008) (0.014) (0.007) (0.015)

AR(2)pe 0.043 0.838 0.013 0053 0.746 0.014 0.055 0.706 0.016
(0.006) (0.011) (0.007) (0.013) (0.007) (0.014)

AR(2)s - Cluster 0.060 0.828 0.013 0070 0746 0.014 0.058 0.700 0.016

by state (0.008) (0.012) (0.008) (0.013) (0.007) (0.014)

Monte Carlo results for simulation model based on aggregate CPS-MORG data. Data arc manufactured so
that variances correspond to those in the CPS data, and the error process is assumed to follow an AR(2)
with a3 = 43 and a2 = .3. S is the number of aggregate cross-sectional observations, and T' denotes the
number of time series observations. § = 51 and T = 23 correspond to the full sample of CPS data, and
remaining sample sizes were chosen to explore behavior for small 7'. Results are for the treatment
parameter which enters the model with a truc coefficient of 3; = 0. Size and power are for 5% level tests,
and power is versus the alternative that 3, = .02. Length is the 95% confidence interval length divided by
two. Interval lengths are based on a ts9 for tests with standard errors clustered at the state level and a
tsT-s—r for the remaining tests. Simulation standard errors are reported in parentheses. (For interval
length, the simulation standard error is negligible, so it is not reported.) The number of simulations is 1000.
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Chapter 2

Asymptotic Properties of a Robust
Variance Matrix Estimator for Panel

Data when T is Large

2.1 Introduction

The use of heteroskedasticity robust covariance matrix estimators, cf. White (1980), in cross-
sectional settings and of heteroskedasticity and autocorrelation consistent (HAC) covariance
matrix estimators, cf. Andrews (1991), in time series contexts is extremely common in
applied econometrics. The popularity of these robust covariance matrix estimators is due
to their consistency under weak functional form assumptions. In particular, their use allows
the researcher to form valid confidence regions about a set of parameters from a model of

interest without specifying an exact process for the disturbances in the model.

With the increasing use of panel data methods and the increasing availability of panel
data, it is natural that extensions of existing robust covariance matrix estimators for panel
data settings that allow for arbitrary within individual correlation are becoming more com-
mon. A recent paper by Bertrand, Duflo, and Mullainathan (2003) illustrated the pitfalls of
ignoring serial correlation in panel data, finding through a simulation study that inference
procedures which fail to account for the potential within individual serial correlation may
be severely size distorted. As a potential resolution of this problem, Bertrand, Duflo, and
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Mullainathan (2003) suggest the use of a robust covariance matrix estimator proposed by
Arellano (1987) and explored in Kezdi (2002) which allows arbitrary within individual cor-
relation and find in a simulation study that tests based on this estimator of the covariance
parameters have correct size.

One drawback of the estimator of Arellano (1987), hereafter referred to as the “clustered”
covariance matrix (CCM) estimator, is that its properties are only known in conventional
panel asymptotics as the cross section dimension, n, increases with the time dimension, T,
fixed. While many panel data sets are indeed characterized by large n and relatively small
T, this is not necessarily the case. For example, in many differences-in-differences and policy
evaluation studies, the cross-section is composed of states and the time dimension of yearly
or quarterly {or occasionally monthly) observations on each state. In this case, it is not

uncommon to have 20 or more annual observations, in which case n ~ T.

In this paper, I address this issue by exploring the theoretical properties of the CCM
estimator in asymptotics that allow n and T to go to infinity jointly and in asymptotics
where T goes to infinity with n fixed. Perhaps surprisingly, I find that the CCM estimator,
appropriately normalized, is consistent without imposing any conditions on the rate of growth
of T relative to n even when the time series dependence between the observations within
each individual is left unrestricted. In this case, both the OLS estimator and the CCM
estimator converge at only the \/n-rate, essentially because the only information is coming
from cross-sectional variation. If the time series process is restricted to be strongly mixing,
I show that the OLS estimator is vnT-consistent but that, because high lags are not down
weighted, the robust covariance matrix estimator still converges at only the \/n—rate. This
behavior suggests, as indicated in the simulations found in Kezdi (2002), that it is the n
dimension and not the size of n relative to T that matters for determining the properties of
the CCM estimator.

It is interesting to note that the limiting behavior of B changes “discontinuously” as the
amount of dependence is limited. In particular, the rate of convergence of E changes from /n
in the “no-mixing case” to vnT when mixing is imposed. However, despite the difference
in the limiting behavior of E, there is no difference in the behavior of standard inference
procedures based on the CCM estimator between the two cases. In particular, the same ¢
and F statistics will be valid in either case (and in the n — oo with T fixed case) without
reference to the asymptotics or degree of dependence in the data.

70




I also derive the behavior of the CCM estimator as T — oo with n fixed, where I find the
estimator is not consistent but does have a limiting distribution. This result corresponds to
asymptotic results for HAC estimators without truncation found in recent work by Kiefer and
Vogelsang (2002), Kiefer and Vogelsang (2003), Phillips, Sun, and Jin (2003), and Vogelsang
(2002). While the limiting distribution is not proportional to the true covariance matrix in
general, it is proportional to the covariance matrix in the important special case of iid data
across individuals,! allowing construction of asymptotically pivotal statistics in this case.
In fact, in this case, the standard t-statistic is not asymptotically normal but converges in
distribution to a random variable which is exactly proportional to a t,—, distribution. This
behavior suggests the use of the t,_; for constructing confidence intervals and tests when the
CCM estimartor is used as a general rule, as this will provide asymptotically correct critical

values under any asymptotic sequence.

I then explore the finite sample behavior of the CCM estimator and tests based upon it
through a short simulation study. The simulation results indicate that tests based on the
robust standard error estimates generally have approximately correct size in serially corre-
lated panel data even in small samples. However, the standard error estimates themselves
are considerably more variable than their counterparts based on simple parametric models.
The bias of the simple parametric estimators is also typically smaller in the cases where the
parametric model is correct, suggesting that these standard error estimates are likely prefer-
able when the researcher is confident in the form of the error process. In the simulation, I
also explore the behavior of an analog of White’s (1980) direct test for heteroskedasticity
proposed by Kezdi (2002).2 The results indicate the performance of the test is fairly good
for moderate n, though it is quite poor when n is small. This simulation behavior suggests
that this test may be useful for choosing between the use of robust standard error estimates

and standard errors estimated from a more parsimonious model when n is reasonably large.

The remainder of this paper is organized as follows. In Section 2, I present the basic
framework and the estimator and test statistics that will be considered. The asymptotic
properties of these estimators are collected in Section 3, and Section 4 contains a discussion

of a Monte Carlo study assessing the finite sample performance of the estimators in simple

INote that this still allows arbitrary correlation and heteroskedasticity within individuals, but restricts

that the pattern is the same across individuals.
2Solon and Inouc (2004) offers a different testing procedure for detecting serial correlation in fixed effects
panel models.
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models. Section 5 concludes.

2.2 A Heteroskedasticity-Autocorrelation Consistent Co-

variance Matrix Estimator for Panel Data

Consider a regression model defined by
yit = T, + € (2.1)

where i = 1,...,n indexes individuals, t = 1,...,T indexes time, T; is a k x 1 vector of
observable covariates, and ¢; is an unobservable error component. Note that this formulation
incorporates the standard fixed effects model as well as models that include other covariates
which enter the model with individual specific coefficients, such as individual specific time
trends, where these covariates have been partialed out. In these cases, the variables z;, vy,
and €; should be interpreted as residuals from regressions of z},, ¥}, and €, on an auxiliary
set of covariates z7, from the underlying model ¥}, = 23,8 + 2,7 + €},. For example, in the
fixed effects model, Z* is a matrix of dummy variables for each individual and 7 is a vector
of individual specific fixed effects. In this case, z; = zj, — %ZL Ty, and y;; and € are
defined similarly. Alternatively, i, yi, and €; could be interpreted as variables resulting
from other transformations which remove the nuisance parameters from the equation, such
as first-differencing to remove the fixed effects. In what follows, all properties are given
in terms of the transformed vanables for convenience. Alternatively, conditions could be
imposed on the underlying variables and the properties derived as T — oo as in Hansen
(2004).

Within each individual, the equations defined by (2.1) may be stacked and represented
in matrix form as
vi=zB+e (2.2)
where %; is a T x 1 vector of individual outcomes, z; is a T x k vector of observed covariates,
and ¢ is a T' x 1 vector of unobservables affecting the ontcomes y; with Ele;e}|z;] = €;. The
OLS estimator of 3 from equation (2.2) may then be defined as 8 = (3.1, z}a;) ™ SO0, #lus.
The properties of B as n — oo with T fixed are well known. In particular, under regularity
conditions, /n(8 — B) is asymptotically normal with covariance matrix MW M~ where
M =1lim, 1 3% | Elzjz;] and W = lim,, = >°7 | E[ziQa:).
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The problem of robust covariance matrix estimation is then estimating W without im-
posing a parametric structure on the ();. In this paper, I consider the estimator suggested
by Arellano (1987) which may be defined as

W=— Z TiEi€,T, (2.3)

where € = y;, — 3313 are OLS residuals from equation (2.2). This estimator is an appealing
generalization of White's (1980) heteroskedasticity consistent covariance matrix estimator
that allows for arbitrary intertemporal correlation patterns and heteroskedasticity across
individuals.® The estimator is also appealing in that, unlike HAC estimators for time series
data, its implementation does not require the selection of a kernel or bandwidth parameter.
The properties of W under conventional panel asymptotics where n — oo with T fixed are
well-established. In the remainder of this paper, I extend this analysis by considering the
properties of W under asymptotic sequences where T — oo as well.

The chief reason for interest in the CCM estimator is for performing inference about ,5
Suppose \/d—T;(a -3) AN (0, B) and define an estimator of the asymptotic variance of 5
as Ei7§ where B % B. The following estimator of the asymptotic variance of 3 based on

W is used throughout the remainder of the paper:

Avar(B Z:c )~ nTW)(zn: zhx;) ™!
= (Zm Ty)” ZI €ie.T;) ZI 1) 7" (2.4)

In addition, for testing the hypothesis R3 = r for a ¢ x k matrix R with rank g, the usual ¢
(for R a1 x k vector) and Wald statistics can be defined as

vnT(RB — )

tr= (2.5)
\RQ-'WQ-LR
and
F* =nT(RB - rY[RQ'WQ 'R Y(RB ~ r) (2.6)

31t does, however, ignore the possibility of cross-sectional correlation, and it will be assumed that there
is no cross-sectional correlation for the remainder of the paper.

73



respectively, where W is defined above and Q = 430 iz In Section 2.3, T verify that,
despite differences in the limiting behavior of B, t* 4N (0,1), F™* 4 x2, and @(E) is valid
for estimating the asymptotic variance of E as n — oo regardless of the behavior of T T also
consider the behavior of ¢* and F* as T — oo with n fixed. In this case, W is not consistent
for W but does have a limiting distribution; and when the data are iid across 7,* I show that
3 (ﬁ)l/ztn_l and that F* is asymptotically pivotal and so can be used to construct

valid tests. This behavior suggests that inference using ﬁw and forming critical values

using a t,_; distribution will be valid regardless of the asymptotic sequence considered.

It is worth noting that the estimator W has also been used extensively in multilevel
models to account for the presence of correlation between individuals within cells; cf. Liang
and Zeger (1986) and Bell and McCafirey (2002). For example, in a schooling study, one
might have data on individual outcomes where the individuals are grouped into classes. In
this case, the cross-sectional unit of observation could be defined as the class, and arbitrary
correlation between all individuals within each class could be allowed. In this case, one would
expect the presence of a classroom specific random effect resulting in equicorrelation between
all individuals within a class. While this would clearly violate the mixing assumptions
imposed in obtaining the asymptotic behavior as T — oo with n fixed, it would not invalidate
the use of W for inference about £ in cases where n and T go to infinity jointly.

In addition to being useful for performing inference about E, 1% may also be used to
test the specification of simple parametric models of the error process.®> Such a test may
be useful for a number of reasons. If a parametric model is correct, the estimates of the
variance of E based on this model will tend to behave better than the estimates obtained
from W. In particular, parametric estimates of the variance of B will often be considerably
less variable and will typically converge faster than estimates made using ’W; and if the
parametric model is deemed to be adequate, this model may be used to perform FGLS
estimation. The FGLS estimator is asymptotically more efficient than the OLS estimator,
and simulation evidence in Hansen (2004) suggests that the efficiency gain to using FGLS
over OLS in serially correlated panel data may be substantial.

To define the specification test, called hereafter the heteroskedasticy-autocorrelation

4Note that this still allows arbitrary correlation and heteroskedasticity within individuals but restricts

that the pattern is the same across individuals.
5The test considered is a straightforward generalization of the test proposed by White (1980) for het-

eroskedasticity and was suggested in the panel context by Kezdi (2002).
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(HA) test, let ’W\(t’i’\) = >0 T0%(0)'z; where § are estimates of a finite set of parameters
describing the disturbance process and Qz(g) is the implied covariance matrix for individual
i.% Define a test statistic

5" = (nT)[vec(W — W(8))' D~ vec(W — W (8))] (2.7)

where D is a positive semi-definite weighting matrix that estimates the variance of vec(w -
W@)) and A~ is the generalized inverse of a matrix A.7 In the following section, it will be
shown that $* % Xi(k+1)/2 for D defined below,

A natural choice for D is

D= % ;[(vec(mgaz;z,- — 20(8)z,)) (vee(z&eiT; — 2i0%(0)z:))]. (2.8)

Under asymptotics where {n, T} — oo jointly, another potential choice for D is

1 & —

V= 3 l(vec(e@im, — W) (vee(zl&ea; — W)Y (29)

i=1

That V provides an estimator of the variance of vee(W — ’W(a‘)) follows from the fact that

—

as {n, T} — oo, vec(W) is \/n-consistent while vec(W(g)) will be v'nT—consistent in many
cases, 50 vec( W(a)) may be taken as a constant relative to vec( W) The difference in rates of
convergence would arise, for example, in a fixed effects panel model where the errors follow

an AR process with common AR coefficients across individuals. However, it is important

5Consistency and asymptotic normality of W(@) will generally follow from consistency and asymptotic
normality of §. In particular, defining W,(#) as the derivative of W with respect to #; and letting @ bea px 1
vector, a Taylor series expansion of W () yiclds W) = W) +30_ Wi(B)(6- 0) where @ is an intermediate
value. As long as a uniform law of large numbers applies to W;(8), W(ﬁ) — W(8) will inherit the properties
of 8 - 9. The problem is then reduced to finding an estimator of 8 that is consistent and asymptotically
normal with a mean zero asymptotic distribution. Finding such an estimator in fixed effects pancl models
with serial correlation and/or heteroskedasticity when n — oo and T/n — p where p < 00 is complicated,
though there are estimators which exist. For example, Hansen (2004) provides an estimator of parameters of
an AR(p) model which will have these properties under any asymptotic sequence, and Hahn and Kuersteiner
(2002) and Hahn and Newey (2002) provide estimators that will be consistent, asymptotically normal, and
asymptotically unbiased as long as n/T? — 0. See also Nickell (1981), Macurdy (1982), Solon (1984), and
Lancaster (2002).

"The test could alternatively be defined by only considering the 5—(%"'11 unique elements of W — W(@) and
using the inverse of the implied covariance matrix. This test will be equivalent to the test outlined above.
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to note that this will not always be the case. In particular, in random effects models, the
estimator of the variance of the individual specific shock will converge at only a /n rate,
implying the same rate of convergence for both the robust and parametric estimators of the
variance. In the following section, I outline the asymptotic properties of B, W, and V from
which the behavior of t*, F*, and S* will follow. The properties of f), though not discussed,
will generally be the same as those of V under the different asymptotic sequences considered.

2.3 Asymptotic Properties of the Robust Covariance

Matrix Estimator

To develop the asymptotic inference results, I impose the following conditions.
Assumption 4 {z;,¢;} are independent across i, and Eleej|z;] = Q.

Assumption 5 @, =E [ELI %] is uniformly positive definite with constant limit Q).
Assumption 6 Fither (a) Ele;|z;] =0 or (b) E[ziei] = 0.

Assumptions 4-6 are quite standard for panel data models. Assumption 4 imposes inde-
pendence across individuals, ruling out cross-sectional correlation, but leaves the time series
correlation unconstrained and allows general heterogeneity across individuals. Assumption
5 is a standard full rank condition, and the restriction that M,r has a constant limit could
be relaxed at the cost of more complicated notation. Assumption 6 imposes that one of
two orthogonality conditions is satisfied. Assumption 6.b imposes that z;; and €;; are un-
correlated and is weaker than the strict exogeneity imposed in Assumption 6.a. Assumption
6.a is stronger than necessary, but it simplifies the proof of asymptotic normality of W and
consistency of V. In addition, Assumption 6.a would typically be imposed in fixed effects
models.

The first theorem, which is stated here for completeness, collects the properties of E and

W in asymptotics where n — co with T fixed.
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Theorem 1 Suppose the data are generated by model (2.1), that Assumptions 4 and 5 are
satisfied, and that n — oo with T fized.

i. If Assumption 6.b holds and E|z|*"0 < A < 00 and Ele,[**® < A < oo for some
§ >0, then

— 1 —
VT (8- 8) S QIN(O,W = lim —— ;E[I;Qixi]),

and
WaAw

i. In addition, if Assumption 6.a holds and E|z:,|%7% < A < 0o and E|e;|3*° < A < o
for some 6 > 0, then

VnT[vec(W — W) 5

N,V = liTxln % ; E[(vec(z;e;e;m; — W))(vec(zicel; —~ WHY)),

and
Vav

Remark 2.3.1 It follows from Theorem 1.i that the asymptotic variance of E can be esti-
mated using (2.4) since

n n n
Avar(B) = (3 2z ™Y wleead S alw) ™!
=1 i=1 i=1
11 ron1iy 1 . rooy-1 I 5 14—

T T ;m‘) (nT;”) e Ve
where O-1WQ-! & Q-'WQ-L. It also follows immediately from the definitions of ¢* and F*
in equations (2.5} and (2.6) and Theorem 1. that, under the null hypothesis, t* % N (0,1)
and F* 5 ><r§- Similarly, using Theorem 1.ii and assuming W(@) has properties similar
to those of ﬁ7, it will follow that the HA test statistic, S*, formed using D defined above
converges in distribution to a Xi(k +1)72 under the null hypothesis.
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Theorem 1 verifies that B and W are consistent and asymptotically normal as n — oo
with T fixed without imposing any restrictions on the time series dimension. In the following
results, I consider alternate asymptotic approximations under the assumption that both n
and T are going to infinity. In these cases, consistency and asymptotic normality of suitably
normalized versions of W are established under weak conditions.

Theorem 2 Suppose the data are generated by model (2.1), that Assumptions 4 and 5 are
satisfied, and that {n, T} — oc jointly.

i. If Assumption 6.b holds and E|zp|*™ < A < 0o and Eles|**® < A < oo for some
8 >0, then

. ol =
vn(B—B) > QIN(O,W = Er¥ T Zl E[ziQ:z]),

and

WiT 5w

#. In addition, if Assumption 6.a holds and E|zys|*+ < A < 0o and Ele[*** < A < o0
for some 6 > 0, then

ﬁ[vec(W/T—W)] 4,
1

= lim —— L€, — le.eho — ’
MOV =l 3 Blvestalecs = W) se(zieeir = WY,

and

V/T? V.

Remark 2.3.2 Theorem 2 verifies consistency and asymptotic normality of both E and W
while imposing essentially no constraints on the time series dependence in the data. The
large cross-section effectively allows the time series dimension to be ignored even when T
is large. However, without constraints on the time series, E is y/n-consistent, not VaT-
consistent. Intuitively, the slower rate of convergence is due to the fact that there may be
little information contained in the time series since it is allowed to be arbitrarily dependent.
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Remark 2.3.3 The fact that E and W are not vnT —consistent will not affect practical
implementation of inference about, E In particular, the estimate of the asymptotic variance
of 3 based on equation (2.4) is

Avar(B) = O aia)™ D sl wir)
; i i=1
_ Ln l‘—l_lh—l/\ -1
= (= Zz z) " (W/T)( ;ximz) =-Q7(W/T)Q

where @'1(ﬁ7/T)@‘1 2 Q- 'WQ~!. The t-statistic defined in equation (2.5) above may also
be expressed as

VnT(RB - )
A /R@_IVV\@_IR’
VA(RE — )
\/RQ WW/T)G R

which converges in distribution to a N(0,1) random variable under the null hypothesis,
RB = r, by Theorem 2.i. Similarly, it follows that F™ 2 Xg under the null. Finally, the HA
test statistic, S*, defined above also satisfies

=

5* = (nT)[vec(W — W(8))' D~ vec(W — W(8))]
= nlvec(W/T = W(®)/T)(D/T°) vec(W/T ~ W(8)/T),
which converges in distribution to a X/, under the conditions of the theorem and the

additional assumption that W(B) behaves similarly to V.

Remark 2.3.4 It is important to note that the results presented in Theorem 2 are not
interesting in the setting where the {7, k} element of ©; becomes small when |j — k| is large
since in these circumstances 1z Y . ; E[zi{4z;] — 0. Theorem 3 below presents results
which are relevant in this case.

The previous theorem establishes the properties of 3 and the robust variance matrix
estimator as n and 7' go to infinity jointly without imposing restrictions on the time series
dependence. While the result is interesting, there are many cases in which one might expect
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the time series dependence to diminish over time. In the following theorem, the properties
of # and W are established under the assumption that the data are strong mixing in the

time series dimension.

Theorem 3 Suppose the data are generated by model (2.1), that Assumptions 4 and 5 are
satisfied, and that {n, T} — co jointly.

(i) If Assumption 6.b is satisfied, E|lzim|™™ < A and E|ex|™™® < A for some § > 0, and
{Zis, €} is a strong miring sequence in t with o of size —3r/(r — 4) forr > 4,

—~ 1 n
VaT(3 - 8) 4 Q! = lim — 'Oy
T(B-0) % QNOW = lip S Bl

and
w-wo.

(ii) In addition, if Assumption 6.a is satisfied, E|Tun|™ < A and Elex|"™*® < A for some
0 > 0, and {zy, €} is o strong mizing sequence in t with o of size —Tr/(r — 8) for
r> 8§,

vn[vec(W — W)] 5

: 1 g ’ 7 / / i
N,V = 1;3’11’1] ~ Z E[(vec(z;eie;zi — W))(vec(zie;e;z; — W)Y]),

=1

and

v/T2 V.

Remark 2.3.5 Theorem 3 verifies consistency and asymptotic normality of both ,E and
W under fairly conventional conditions on the time series dependence of the variables. The
added restriction on the time series dependence allows estimation of 8 at the VnT-rate,
which differs from the case above where E is only y/n-consistent. Intuitively, the increase in
the rate of convergence is due to the fact that under the mixing conditions, the time series

is more informative than in the case analyzed in Theorem 2.

Remark 2.3.6 It follows immediately from the conclusions of Theorem 3 and the definitions
of M(ﬁ), t*, and F* in equations (2.4), (2.5), and (2.6) that Avar(B) is valid for estimating
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the asymptotic variance of B and that t* 5 N (0,1) and £ 4 xg under the null hypothesis.
The HA test statistic, S*, also satisfies

S§* = (nT)[vec( (W~ W(6)) D~ vec(W — W ()]
= n[vec(W — W(B))'(D/T) vec(W — W(8))],
which converges in distribution to a xk(k +1)/2 under the conditions of the theorem and the
assumption that D behaves similarly to . In this case, ¥ could also typ1cally be used

as the weighting matrix in forming S* since it will often be the case that W( ) will be
VT -consistent while W is \/n-consistent.

Theorems 1-3 establish that conventional estimators of the asymptotic variance of E and
t and F statistics formed using W have their usual properties as long as n — oo regardless
of the behavior of T. In addition, the results indicate that it is essentially only the size
of n that matters for the asymptotic behavior of the estimators under these sequences. To
complete the theoretical analysis, I present the asymptotic properties of W as T — oo with
n fixed below.

Theorem 4 Suppose the data are generated by model (2.1), that Assumptions 4, 5, and 6.b
are satisfied, and that T — oo with n fived. If E|zi|™° < A, Elex|™ < A, and {24, €x} is
a strong mizing sequence in t with a of size —3r/{r —4) for r > 4, then

VAT(B - B) % Q7IN(O,W), zizi/nT — Qi/n 20, ze/VnT 5 NO,Wi/n),

and
WwiU= —Z A:B;BIA; — AiBy( ZB' -)(in)-lQi
i=1
- Qi(z Qj)_l(z A;Bj) Bl
j=1 j=1
+QiQ_ QNI ABYY BN Q)70
ji=1 i=1 =1 i=1

where W; = limy %E[zgﬂizi], W = limr ﬁ > ElziQuz;], B; ~ N(0,I}) s a k—dimensional
normal vector with E[B;Bj] = 0 and A; = w2,
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Remark 2.3.7 Theorem 4 verifies that W is not consistent but does have a limiting distri-
bution as T" — co with n fixed. Unfortunately, the result here differs from results obtained
in Phillips, Sun, and Jin (2003), Kiefer and Vogelsang (2002}, Kiefer and Vogelsang (2003),
and Vogelsang (2002) who consider HAC estimation in time series data without truncation
in that how to construct asymptotically pivotal statistics from U is not immediately obvi-
ous. However, 1n one important special case, U is proportional to the true covariance matrix

allowing construction of asymptotically pivotal tests.

Corollary 4.1 Suppose the conditions of Theorem 4 are satisfied and that Q; = @ and
W; =W for alli. Then

I

— g 1 m ) 1 k23 n ,
4 y=2AS BB -=-5"BY B)A
WSU =~ (; Bi — ~ ; ; 9
for B; defined in Theorem 4 and A = W2 Then, for testing the null hypothesis Ho : R3 =1
against the alternative Hy : R3 # r for a g x k matriz R with rank g, the limiting distributions

of the conventional Wald (F*) and i-type (t*) tests under Hy are

F* = (nT)(RB — r)[RG'WQ 'R (RB — 1))

-1

d 75 1 Y] 5y o 2
S B, E(Z ByiB,; — BynBl,)|  Bym (2.10)
and
o VAT(RG 1)
\ RQ-TWQ 'R
i Bl,n e tn—l, (211)

Vi, -B,) Vot
where B, ; ~ N(0, I), Eq,n = % Sory Bgi, and t,_y 1s a t distribution with n — 1 degrees of

freedom.

Corollary 4.1 gives the limiting distribution of W as T — oo under the additional re-
striction that Q; = @ and W; = W for all .. These restrictions would be satisfied when
the data vectors for each individual {z;,y;} are iid across i. While this is more restrictive
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than the condition imposed in Assumption 4, it still allows for quite general forms of condi-
tional heteroskedasticity and does not impose any structure on the time series process within

individuals.

The most interesting feature about the result in Corollary 4.1 is that under the conditions
imposed, the limiting distribution of W is proportional to the actual covariance matrix in
the data. This allows construction of asymptotically pivotal statistics based on standard ¢
and Wald tests as in Phillips, Sun, and Jin (2003), Kiefer and Vogelsang (2002), Kiefer and
Vogelsang (2003), and Vogelsang (2002). This is particularly convenient in the panel case
since the limiting distribution of the t-statistic is exactly ,/-%5t,_1 where t,_; denotes the
t distribution with » — 1 degrees of freedom.® It is also interesting that EU = (1 — LYW,
This suggests normalizing the estimator W by -5 will result in an asymptotically unbiased
estimator in asymptotics where T — oo with n fixed and will likely reduce the finite-sample
bias under asymptotics where n — co. In addition, the t-statistic constructed based on the
estimator defined by nL_;W will be asymptotically distributed as a t,_; for which critical
values are readily available.®

The conclusions of Corollary 4.1 suggest a simple procedure for testing hypotheses re-
garding regression coefficients which will be valid under any of the asymptotics considered.
Using ﬁw and obtaining critical values from a ¢,,_; distribution will yield tests which are
asymptotically valid regardless of the asymptotic sequence since the ¢,_; — N(0,1) and

T

—5 — 1 asn — oo. Thus, this approach will yield valid tests under any of the asymptotics

n—1

considered in the presence of quite general heteroskedasticity and serial correlation.'?

Finally, it is worth noting that the maximum rank of W will generally be n — 1, which
suggests that W will be rank deficient when &k > n — 1. Since W is supposed to estimate
a full rank matrix, it seems likely that inference based on W will perform poorly in these
cases. Also, the above development ignores time effects, which will often be included in panel
data models. Under T fixed, n — oc asymptotics, the time effects can be included in the

8ltn=1, Wis identically equal to 0. In this case, it is easy to verify that U equals 0, though the results
of Theorem 4 and Corollary 4.1 are obviously uninteresting in this case.

9This is essentially the normalization used in Stata’s cluster command, which normalizes w by % 2
where the normalization is motivated as a finite-sample adjustment under the usual n — oo, T fixed asymp-

totics; sce Stata User’s Guide Release 8 p. 275.
10This argument also applics to testing multiple parameters using F'*, though in that casc, the n fixed
asymptotic approximation is less convenient to work with.
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covariate vector T; and pose no additional complications. However, as T" — oo, they also
need to be considered separately from = and partialed out with the individual fixed effects.
This partialing out will generally result in the presence of an O(1/n) correlation between
individuals. When n is large, this correlation should not matter, but in the fixed n, ' — oo
case, it will invalidate the results. The effect of the presence of time effects was explored in a
simulation study with the same design as that reported in the following section where each
model was estimated including a full set of time fixed effects. The results, which are not
reported below but are available upon request, show that tests based on W are somewhat
more size distorted than when no time effects are included for small n, but that this size

distortion diminishes quickly as n increases.

2.4 Monte Carlo Evidence

The asymptotic results presented above suggest that tests based on the robust standard
error estimates should have good properties regardless of the relative sizes of n and T'. 1
report results from a simple simulation study used to assess the finite sample effectiveness
of the robust covariance matrix estimator and tests based upon it below. Specifically, the
simulation focuses on t-tests for regression coefficients and the HA test discussed above.

The Monte Carlo simulations are based on two different specifications: a “fixed effect”
specification and a random effects specification. The fixed effect specification is

7
Vit = Ty + oy + €44,

where x;; is a scalar and o, is an individual specific effect. The data generating process for the
fixed effect specification allows for serial correlation in both z; and &;; and heteroskedasticity:

Ty = BTy + v, va~ N(0,.75),

it = pEir—1 + \/ @0 + @1T5Us,  we ~ N(0,1 — ),

y ~ N(O, 5)

Data are simulated using four different values of p, p € {0, .3, .6, .9}, in both the homoskedas-
tic (ap = 1,a; = 0) and heteroskedastic (ap = a1 = .5) cases, resulting in a total of eight
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distinct parameter settings. The models are estimated including x;; and a full set of indi-
vidual specific fixed effects.!!

The random effects specifications is
Yir = Tiy3 + €at

where 2, is a normally distributed scalar with E[z2] = 1 and E[z;, zi,] = .8 for all ¢, # t,.
€; contains an individual specific random component and a random error term:

€ = o; + Uy
Q; ~ N(Ol P)
up ~ N(O,1-p)

Note that the random effects data generating process implies that Eley, €:1,] = p for ¢ # £5.
Three values of p are employed for the random effects specification: .3, .6, and .9. The model
is estimated by regressing y;; on z; and a constant.

The fixed effects model is commonly used in empirical work when panel data are avail-
able. The random effects specification is also widely used in the policy evaluation literature.
In many policy evaluation studies, the covariate of interest is a policy variable that is highly
correlated within aggregate cells, often with a correlation of one, which has led to the domi-
nance of the random effects estimator in this context. For example, a researcher may desire
to estimate the effect of classroom level policies on student-level micro data containing obser-
vations from multiple classrooms. In this setting, T indexes the number of students within
each class, n indexes the number of classrooms, and «; is a classroom specific random ef-
fect. The CCM estimator has been widely utilized in such situations in order to consistently
estimate standard errors.?

The simulations are performed for various values of the cross-sectional (n) and time (T')

dimensions. For example, to explore the properties of the tests and estimators for large

Since ; is uncorrelated with x;, this model could be estimated using random effects. I chose to consider a
different specification for the random effects estimates where the z;; were generated to more closely resemble
covariates which appear in policy analysis studies.

2This is, in fact, one of the original motivations for the development of the CCM estimator, cf. Liang
and Zeger (1986).
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n and small T, n = 200 and T = 10 is used. To mimic a typical situation in state-level
data from the CPS, n = 50, T = 20 is used. In total, nine combinations of n and T are
simulated. For each of these nine combinations the eleven parameter settings (eight for the
fixed effects specification and three for the random effects specification) are used for a total
of 99 distinct ‘cells’. 1,000 Monte Carlo simulations are performed for each cell. Each
simulation estimates three types of standard errors for 5: unadjusted QLS standard errors,
$ors, CCM standard errors, §crys, and standard errors consistent with an AR(1) process,
SAR(1) 13 For the random effects specification, standard errors consistent with random effects,
8pr, are substituted for § AR(l)-M Scrus is consistent for all parameter settings. 8ppg is
consistent only in the iid case (the homoskedastic data generating process with p = 0).
84r(1) is consistent in all homoscedastic data generating processes, and Sgg is consistent in
all models for which it is reported. In all cases, the CCM estimator is computed using the
normalization implied by T' — oo with n fixed asymptotics; that is, the CCM estimator is
computed as ﬁw for W defined in equation (2.3).

Tables 1 - 9 present the results of the Monte Carlo study, where each table corresponds
to a different {n, 7'} combination.!® In each table, Panel A presents the fixed effects results
for the homoskedastic and heteroskedastic cases, while Panel B presents the random effects
results. Column (1) presents t-test rejection rates for 5% level tests based on OLS, CCM,
and AR(1) standard errors. The critical values for tests based on OLS and AR(1) errors
are taken from a f,r_,_; distribution, and the critical values for tests based on clustered
standard errors are taken from a ¢,_; distribution. Columns (2) and (3) present the mean
and standard deviation of the estimated standard errors respectively. Column (4) presents
the standard deviation of the #’s. The difference between columns (2) and (4) is therefore
the bias of the estimated standard errors. Finally, column (5) presents the rejection rates for
the HA test described above which tests the null hypothesis that both the CCM estimator

I R(1y imposes the parametric structure implied by an AR(1) process. The p parameter is estimated from
the OLS residuals using the procedure described in Hansen (2004) which consistently estimates AR param-
eters in fixed effects panel models. The standard errors are then computed as (X'X)~1X’ Q(p) X (X'X)™!

where () is the covariance matrix implied by an AR(1) process.
1450 is estimated in a manner analogous to § 4 R(1) where the covariance parameters are estimated in the

usual manner from the OLS and within residuals.

15 Tables 1-9 correspond to {n, T} = {10,10}, {n, T} = {10,50}, {n, T} = {10,200}, {n, T} = {50, 10},
{n, T} = {50,20}, {n, T} = {50,50}, {n, T} = {50,200}, {n, T} = {200,10}, and {n, T} = {200,50}
respectively.
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and the parametric estimator are consistent.

As expected, tests based on §prs and §4p(;) perform well in the cases where the assumed
model is consistent with the data across the full range of n and T combinations. The results
are also consistent with the asymptotic theory, clearly illustrating the v/nT-consistency of
5 and W with the bias of W and the variance of both E and W decreasing as either n or
T increases. Of course, when the assumed parametric model is inconsistent with the data,
tests based on parametric standard errors suffer from size distortions and the standard error
estimates are biased. The RE tests have the correct size for moderate and large n, but
not for small n (i.e. n = 10); and as indicated by the asymptotic theory, the T" dimension
has no apparent impact on the size of RE based tests or the overall performance of the RE
estimates.

Tests based on the CCM estimator have approximately correct size across all combina-
tions of n and T and all models of the disturbances considered in the fixed effect specification.
The estimator does, however, display a moderate bias in the small n case; this bias does not
translate into a large size distortion due to the use of the ¢,_; distribution to obtain the
critical values. While the clustered standard errors perform well in terms of size of tests
and reasonably well in terms of bias, the simulaticns reveal that a potential weakness of the
clustered estimator is a relatively high variance. The CCM estimates have a substantially
higher standard deviation than the other estimators and this difference, in percentage terms,
increases with 7. This behavior is consistent with the \/n-consistency of the estimator and
does suggest that if a parametric estimator is available, it may have better properties for
estimating the variance of E

The clustered estimator performs less well in the random effects specification. For small
n, tests based on the CCM estimator suffer from a substantial size distortion for all values
of . For moderate to large values of n, the tests have the correct size, and the overall
performance does not appear to depend on T'. In addition, the variance of E does not appear
to decrease as 7" increases. These results are consistent with the lack of \/rﬁ-consistency in

this case.l®

The performance of the HA test is much less robust than that of t-tests based on clustered
standard errors. For small n, the tests are badly size distorted and have essentially no power

16The inconsistency of E when T increases with 7 fixed in differences-in-differences and policy cvaluation
studics has also been discussed in Donald and Lang (2001).
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against any alternative hypotheses. As n and T grow, the test performance improves. With
n = 50, the test remains size distorted, but it does have some power against, alternatives that
increases as T increases. Table 9, which displays results for n = 200 and T = 50 suggests the
test has good properties in cases of both large n and 7. The HA test also performs poorly
for the random effects specification for small n. However, for moderate or large n, the test

has both the correct size and good power.

Overall, the simulation results support the use of clustered standard errors for performing
inference on regression coefficient estimates in serially correlated panel data, though they also
suggest care should be taken if n is small and one suspects a “random effects” structure. The
poor performance of W in “random effects” models with small n is already well-known; see
for example Bell and McCaffrey (2002) who also suggest a bias reduction for W in this case.
However, that the estimator does quite well even for small 7 in the serially correlated case
where the errors are mixing is somewhat surprising and is a new result which is suggested
by the asymptotic analysis of the previous section. The simulation results confirm the
asymptotic results, suggesting that the clustered standard errors are consistent as long as
n — oo and that they are not sensitive to the size of n relative to T. The chief drawback
of the CCM estimates is that the robustness comes at the cost of increasing the variance
of the standard error estimate relative to that of standard errors estimated through more

parsimonious models.

The HA test offers one simple information based criterion for choosing between the CCM
estimator and a simple parametric model of the error process. However, the simulation
evidence regarding its usefulness is mixed. In particular, the properties of the test are poor
in small sample settings where there is likely to be the largest gain to using a parsimonious
model. However, in moderate sized samples, the test performs reasonably well, and there

still may be gains to using a simple parametric model in these cases.

2.5 Conclusion

This paper explores the asymptotic behavior of the robust covariance matrix estimator of
Arellano (1987). It extends the usual analysis performed under asymptotics where n — oo
with T fixed to cases where n and T go to infinity jointly, considering both non-mixing
and mixing cases, and to the case where T — oo with n fixed. The limiting behavior
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of the QLS estimator, E, in each case is different. However, the analysis shows that the
conventional estimator of the asymptotic variance and the usual ¢ and F statistics have the
same properties regardless of the behavior of the time series as long as n — co. In addition,
when T — co with n fixed and the data satisfy mixing conditions and an iid assumption
across individuals, the usual ¢ and F statistics can be used for inference despite the fact
that the robust covariance matrix estimator is not consistent but converges in distribution
to a limiting random variable. In this case, it is shown that the ¢ statistic constructed using
— times the estimator of Arellano (1987) is asymptotically t,_;, suggesting the use of L
times the estimator of Arellano (1987) and critical values obtained from a ¢,_; in all cases.
The use of this procedure is also supported in a short simulation experiment, which verifies
that it produces tests with approximately correct size regardless of the relative size of n and
T in cases where the time series correlation between observations diminishes as the distance
between observations increases. The simulations also verify that tests based on the robust
standard errors are consistent as m increases regardless of the relative size of n and T even

in cases when the data are equicorrelated.

2.6 Appendix 1. Preliminaries

Throughout the appendix, let ||A|| = [trace(A’A)]'/? be the Euclidean norm of a matrix
Aandlet 30, =57, 3, =57 and 3, = Y.r_,. Repeated use will be made of the
following simple results, which are stated here for convenience.

Lemma 2.6.1 For matrices A and B, E||A® B|" < (E| A||*E||B||*)Y/>.

Proof. E|A® B||" = E{[trace(44’ ® BB')]"/?} = E{[trace(AA")]"/*[trace(BB")]"/?} =
E(|| A" B]I")

< (E||A||"E||B||*)'/? where the equalities follow from the definition of ||A|| and properties
of the Kronecker product and the inequality results from the Cauchy-Schwarz inequality. H

Lemma 2.6.2 Suppose {Z;r} are independent across i for all T with E[Z; 7] = pir and
E|Z;7|'* < A < oo for some & > 0 and all s, T. Then 157 (Zir — pir) 20 as
{n, T} — oo jointly.
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Proof. The proof follows from standard arguments, c¢f. Chung (2001) Chapter 5. Details
are given in Appendix 2.12. B

Lemma 2.6.3 For k x 1 vectors Z;r, suppose {Z;r} are independent across i for all T
with E[Zl'f] = O, E[Z'E,TZLT] = Qi,T: and E”Z,‘,T”Z_Hs < A< fOT' some & > 0. As-
sume Q@ = lim, 2 37" | Q7 is positwe definite with minimum eigenvalue Amin > 0. Then
% S Zir 4, N{O,W) as {n, T} — oo jointly.

Proof. The result follows from verifying the Lindeberg condition of Theorem 2 in Phillips
and Moon (1999) using an argument similar to that used in the proof of Theorem 3 in Phillips
and Moon (1999). Details are given in Appendix 2.12. B

The final lemma simply restates Doukhan (1994) Theorem 2 with a slight change of
notation. Its proof may be found in Doukhan (1994) p. 25-30.

Lemma 2.6.4 Let {2} be a strong mizing sequence with E[z;] = 0, E||z:]|"" < A < oo, and
mizing coefficient a(m) of size % where ¢ € 2N, ¢ > 7, and v > ¢. Then there is a con-
stant C depending only on 7 and a(m) such that E| 231:1 w|” < CD(t,¢e,T) with D(1,¢,T)
defined in Doukhan (1994) and satisfying D(7,¢,T) = O(T) if 7 < 2 and D(r,¢,T) =

oT ) ifr > 2.

Finally note

o~ 1 tmd
W = ﬁ E L6565
i

- 3 aieca (01)
- n(B - ez, (02)
- =Y dald - Bz, (03)
+ 3 alm(B - 6)(B - 9wl (0.4)
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and

o~

= Y l(vec(wleiEiz: — W) (vec(al@iEims - W)Y
nl &<

P

= Y (vec(aifn) (veclwlEE )Y — == Z(V‘”(W”i 2_(vecW)y

nT -
where
1 P
T Z(VEC(IQa'afCi))(VeC(IQGia—’Cz))'
= ;L-li; i (vec(xle;eix;) ) (vee(zieelx;)Y
1 —~
- LS (veelalee) (vec(zle B - Batw))

- % Z(vec(a::eie;x,-))(vec(:n;.ri(ﬁ ~ B)eixz;)Y

* % E(V“(féfiéwz—))(vec(x;xxﬁ ~ B)(A — B)xiz:))
1 ! 3 ;o Voo /

-7 ‘;(vec(xmﬁ ~ BY aa:))(vee(sieieiz:))

+ % Z(VBC(JE;Q(E — BYzim;)) (vec(ziei(B — B) zjz;))

+ ;;7: ;(vec(a:;q(ﬁ— ﬁ)’mgzi))(vec(r;mi(ﬁ — B)eixy))

- % _ (vec(ziei(B — B) z.z:))(vec(ziz:(B — B)(B — B) z\z.))

~ o7 ,- (vec(z;zi(B — Bleizi)) (vec(zieie;;))
1 ) / n ) '

+ T ;(vec(xizi(ﬁ — B)e;x:))(vec(z;6:(8 — B) z;x:))

+ % Z(vec(;zgzi(a - ,B)eizi))(vec(z;:ci(ﬁ - B)e,z;))

- % ;(vec(:c;mi(ﬁ - ﬁ)e;;r,-))(vec(xgri(ﬁ - ﬁ)(ﬁ— B)'xx;))y

+ % Z(Vec(fﬁ;xi(ﬁ“ B)(8 — B)'zx;)) (vec(zle€,z;))'
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- % S (vee(ziziB — B)(B —~ B) mim:))(veo(ziei(B — B)'ziz:))  (V.14)

— = Y (veclziz(F - B)(B - BY e (veclalaB - H)ew))  (V.15)

+ % S (vec(zizi(B = B)(B — B) 7)) (vee(zix:(B — B)(B — B)zz:)) .

i

(V.16)

Theorems 1-4 then follow by examining the properties of equations (0.1)-(0.4) and (V.1)-
(V.16).

2.7 Appendix 2. Proof of Theorem 1

(i) B-8 2 0and VaT(8-73) < Q7IN(0,W =lim, == >_, B[z{Qz;]) follow immediately
under the conditions of Theorem 1 from the Markov LLN and the Liapounov CLT.

We also have that E|zlx;/T|**% (%) E|z;/VT|*+% (2 [EtZ"(E'I?"%Z:ZZ)II(ZHJ)]ZHJ (é)
(’“LT);:::A, where (a) is by the Cauchy-Schwarz inequality, (b) follows from the definition of
|| A|| and Minkowski’s inequality, and (c) is by E|zi|**® < A. Making use of Ele;|*t < A,
E|lzie;/T)|*** < k***A follows similarly. Noting that E[zjz; & €;z;] = 0 by Assumption
6.2, it follows that terms (0.2)-(0.4) of W are 0,(n"/?) by the Markov LLN.!7 The Markov
LLN also yields 1= 3=, zle;ei; = W, which implies WEw.

ii) In addition, under E|z;4[8* < A and E|eg|*H < A, E||2te:/T]|*4 < k*T# A and
2

E||zz;/T||**% < k*t* A follow by an argument similar to that used to show Ellz]z:/T[|*** <
k2 A Then, using that (0.2)-(0.4) of W are op(n~1/?), it follows that

VnT[vec(W — W)] = \/ﬁ[vec(n—lT— Z ziecixi — W + 0p(1) <, N(0,V)

where V = lim,, &= "7 | E[(vec(zje;e;z; — W))(vec(zieie;z: — W))'] by the Liapounov CLT.

It is also straightforward to show that 8 — 8 & 0, E||zie/T|*** < k**+%A, and
E|lziz;/T||*** < k*** A imply that terms (V.2)-(V.16) of V are 0,(1) and that Eljzle;/T||*+

17Under Assumption 6.b, (0.2)-(0.4) will be 0,(1) and consistency of W follows.
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< KA implies

% Z[(vec(zieiegsci))(vec(xf‘-eiegxi))' — E[(vec(zieciz:)) (vee(rie;ein;))]] 2 0.

We then have V -V 5 0. B

2.8 Appendix 3. Proof of Theorem 2

(2) {b) 2

(i) E||:c§:ri/T||2+2'5 < E||xi/\/T||4+4‘5 < [ Zh(E’Iil#;:z;)l/(2+za)]2+26 (é) (k?zz::;A, where (a) is
by the Cauchy-Schwarz inequality, (b) follows from the definition of || A}l and Minkowski’s
inequality, and (c) is by E|z;s[*"® < A. Making use of Elegs|*t < A, E||zle;/T|*+* <
k**# A follows similarly. Then Lemma 2.6.2 gives 1 5", ziz;/T 5 Q and 1 5, #/e/T 5 0
as {n, T} — oo jointly, so 4 — 8 5 0. In addition, since E||zle;/T||**% < k**¥ A, we have
that ﬁ > xie/T A N(O,W =lim, nlﬁ S, ElziQa;]) by Lemma 2.6.3, so \/ﬁ(ﬁ—ﬁ) LN
Q7IN(0, W).

Now consider term (O.2) of /1/17/ T:

1 ~— , ,= 11 ) , N 1

Vec(ﬁ >T‘ T;z:(8 — B)ejri) = ﬁ(m Zi:%fi ® ziz;)v/n(8 — B) = ﬁOP(I)Op(l)
by Lemma 2.6.2 since E|lz}e;/T @ zjz;/T||"*° < (E||zle:/ T #E|zix,/T||*+#)/? < C by
Lemma 2.6.1 and the argument in the preceding paragraph. That (0.3) is O,(1/y/n) and
(0.4) is Op(1/n) follow similarly. Finally, E||zie;elz:/T?** < E|zie;/T||*** < C where
the first inequality follows from the Cauchy-Schwarz inequality and the second inequality is
proven above. Hence, by Lemma 2.6.2 —15 3", vec(zje;ejz; — Elrleeizi]) = o,(1). It follows
immediately that W/T — W 5 0.

(ii) Under Assumption 6.a, we also have that

1,1 , , ~ 1 B 1
Noe ;wiei ® 2z V(0 — ) = —=0,(1)05(1) = op( =)

since E[zje; ® xix;] = 0. Similarly, %(# 2T Q €x;) = op(%). It follows from Lemma
2.6.3 that /A(W /T — W) = V(7= 3, vee(zieiciz; — E[2ieeiry))) + 0,(1) < N(o, V') where

n»,T T},T4 -

1 n
V =lim — Z E[(vec(zie;eix, — W))(vec(zleieiz; — W)Y
1=1
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since El|zieiciz:/ T?|*** < Ellzjes/ T|**? < C by an argument similar to that used to show
Ellates/ T ™% < K2+%A as long es Elz/*** < A and Elanl*" < A.

To show V /T3 — V £ 0, consider
E||vec(ze;e,x:/T?)vec(zieiez: /T | 144 < B|zle/T|* < C

where the first inequality is by repeated application of the Cauchy-Schwarz inequality and
the second is by an argument similar to that used to show E|zj€;/ T|**% < k*** A which
holds if E|zy |3 < A and Eleqn®® < A. It then follows by Lemma 2.6.2 that

1

i Z[vec(m;eiegmi)vec(mgeie;zi)' — Elvec(z}e;e.z; ) vee(zieieiz:)']] 0.

1

Turning to (V.2), we have

vec|(vec(zieie,; /T?)) (vec(zie, (B — B) zzi/T*))]
— [(#lee/ T ® Tjes/T) ® ()i /T @ €/ T)vec(B — ).

Bl (2l T ® 7l6:/ T) ® (2,/ T ® g/ T < [(Ellcies/ T Rjiad *]/4 < C where
the first inequality is by repeated application of Lemma 2.6.1 and the second inequality is
by the moment conditions. It then follows from Lemma 2.6.2 that 1 3 (2le;/T ® 7i6:/T) @
(z3,/T @ eiz:/T) = Op(1), s0 (V.2) is 0p(1). Using similar arguments, it is also straightfor-
ward to show that terms (V.3)-(V.16) are 0,(1), and the conclusion follows. W

2.9 Appendix 4. Proof of Theorem 3

@) E||:E§$,-/T||2+25 (2 E“mi/ﬁ“HM (2 2. Zf.(Eixi’t,&[Z:z’;)‘/(2+25)]2+2'5 (2 (k’.’]"n)::::A, where (a) is
by the Cauchy-Schwarz inequality, (b) by definition of || A]] and Minkowski’s inequality, and
(c) by E|zun|™™ < A. Also, E|jzle;/VT||**¥ < C by Lemma 2.6.4, Ele,[""" < A, and the
mixing condition that « is of size —3r/(r —4) for r > 4. It follows by Lemmas 2.6.2 and
2.6.3 that VaT(3 — 8) 2 Q IN(0,W = limn 1 = >ir, ElziSizi)) as {n, T} — oo.

Now consider term (0.2) of W
1 S~ 1 L, - 1
vec(ﬁ XZ: rxi (3 — Bex) = (W 2%61 ® :ci:ci)\/ﬁf(ﬁ -0)= ﬁop(l)Op(l)
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by Lemma 2.6.2 since E[z/¢; ® ziz;] = 0 by Assumption 6.a and E||zle;/vT ® zjz;/T||'*® <
(B||zie; /VT |2 E||zz;/T||***)Y2 < C by Lemma 2.6.1 and the argument in the preced-
ing paragraph. That (0.3) is 0,(1/4/n) and (0.4) is Oy(1/n) follow similarly.”® Finally,
Eljzieeiz; /T||M|| < Ellzte;/vVT||**? < C by the Cauchy-Schwarz inequality and the pre-
ceding argument. It then follows that wW-w 5o by Lemma 2.6.2.

(ii) In addition, under the mixing condition that o is of size ~7r/(r—8) for r > 8, Elzun|™’ <
A, and Eley,|™ < A, E||zte;/VT||*** < C follows by an argument similar to that used to
show E|zle;/VT||*** < C. Then, since E||z}¢;e\z;/T)|*** < El|zle;/VT||*+* < C and using
that (0.2)-(0.4) of W are 0,(n~12), the second conclusion follows from Lemma 2.6.3 since

\/r_l[vec(w -W)] = \/ﬁ[vec(% Zxﬁeie;xi — W) + o,(1) < N, V)

where
. 1 - ? ’ 7 ! I4
V =lim— E E[(vec(zie;e;x; — W)} (vee(ziee;x, — W)Y

i=1
To show V /T —V % 0, consider
E|vec(x,e;€ix; ) T)vee(zieciz; /T |+ < Bllale /VT||**¥ < C

where the first inequality is by repeated application of the Cauchy-Schwarz inequality and
the second is by an argument similar to that used above which holds if E|e;|*+* < A < oo,
E|z:n[8t? < A < 00, and the strong mixing coefficient « is of size —7r/(r — 8) for r > 8. It
then follows from Lemma 2.6.2 that

s Z[vec(a:éeie;xi)vec(z'ieic'i:c,-)’ — Elvec(zieelx; ) vec(zieel;)]] = 0.
Turning to (V.2), we have

1 ~
—75 > veel(vec(zleiezi/T)) (vec(ale, (VAT (B - B))'wla:/T*%)

= # Z[(z;ei/ﬁ ® 216/ VT) @ (22:/T ® €23 /VT)vec(VaT (8 — B)).

18Under Assumption 6.b, (0.2)-(0.4) will be 0,(1) and consistency of W follows.
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By Lemma. 2.6.2, we have that 13" (zle;/VT ® zje:/VT) ® (zizi/T ® €ix; /VT) = 0,(1)

since
Ell(zje:/ VT ® e /VT) @ (z,3:/T @ €} /VT)I*® < [(Ellzies/ VT E |z, ||V < C

where the first inequality is by repeated application of Lemma 2.6.1 and the second inequality
is by the moment and mixing conditions. It then follows that (V.2) is Op(1/y/n). It can
similarly be shown that terms (V.3)-(V.16) are O,(1/4/n), and the conclusion follows. Wl

2.10 Appendix 5. Proof of Theorem 4

Under the hypotheses of the theorem, /n(8 — B) LA QIN(O,W), ziz;/T — Q; = 0, and
ziei/VT 4N (0, W;) are immediate from a LLN and CLT for mixing sequences, cf. White
(2001) Theorems 3.47 and 5.20. The conclusion then follows from the definition of W and

€.

2.11 Appendix 6. Proof of Corollary 4.1

Consider t* = —‘/'TT(@L. Under the null hypothesis, RG = r, so the numerator of ¢x
4 HRQ—leﬁlﬂf

is VRTR(B - B) = R(%Y; Igmi)_l(# DA < RQA >, Bi/v/n. From Theorem
4 and the hypotheses of the Corollary, the denominator of t* converges in distribution to
\/RQ—I%A(ELI BB, - 3" By B)AQ 'R 1t follows from the Continuous Map-
ping Theorem that

t* d RQ—IA Zi B"»/\/H
d .
VERQTA(SL, BiB - 150, Bi S, B)AQTR

Define § = (RQ™'AAQ'R)'/2, so

. d 63, Bii/vn

tr—>U = - .

VE(TL BB, — LY B Y B
El,n

VS Bl - B)
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It is straightforward to show that By, ~ N(0,1), that 3, B?, — E’fn ~ x2_,, and that
> B - Efn and El‘n are independent, from which it follows that

n \/? 1n n \?
o (i5) JE. B, - Ba-1) (+51)

The result for F* is obtained through a similar argument. W

2.12 Appendix 7. Proof of Lemma 2.6.2 and Lemma
2.6.3

Proof of Lemma 2.6.2 Instead of proving Lemma 2.6.2 directly, we prove the following:
If {Z; 7} are independent across i for all T with E[Z; 7] = 0 and E|Z; 7]'*® < A < oo for
some 6 >0 and all 4, T, 15 Z; r £ 0 as {n,T} — oo jointly. Lemma 2.6.2 then follows
immediately from an argument similar to that used to prove White (2001} Corollary 3.9.

Define Y7 = Z;71(|Zi7| € n). Then Var(>.,Yir/n) = >, Var(Y;r/n) by indepen-
dence of Z;r across i. Now 3=, Var(Yir/n) < E(Yir/n)? = ¥, [ ;<,(2%/n*)dFi7(Z) where
F, r is the distribution function of Z; 7. Z2/n® < Z'*0/n!*? for | Z| < n implies

Xi:/lzgn(zz/nz)dﬂj(z) < ;/Z (Z1+5/n1+6)dFi,T(Z)

|Z2]<n

< Z / (2" I MOYdF, +(Z) < AJn®

where the last inequality results from E|Z; p|'*% < A. It follows that

Var(d_ Yir/n) < A/n® =0 (2.12)

as {n, T} — oo jointly.

Now consider

F > Vil

I3 [, niraz)
= |Z/(Z/n YdF;r(Z) — Z/ (Z/n)dF;r(2)

Z|>n
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=13 /IZ|>H(Z/n)dﬂ.T(Z)|
<3 f|2|>n(12|/n)dﬂ,T(Z)

by the Triangle inequality and Jensen’s inequality. For |Z| > n, |Z]/n < |Z|**® /n!* ) so

|1+:5

2 |Z\1+5 12+ s
Zle dF,TZ)<Z 4P Z —rrdFa(2) < A — @.13)

which yields
1
\EEZYM - 0. (2.14)
By Chebyshev’s inequality and (2.12),
hmP |Z - E{Y.r]) /n|>e)<11rnVaT ZY;T/TL =0,

so LS Vip — L5 E[Yir] © 0, which implies, using (2.14), that 1 3", Vi+ 5 0.

Finally, consider

PU=S 2= 23 Yial 29

il

P2 320 =17l < m)Zerl 2 €
< B (- Wizl <m)Zial/e

i

by the Markov inequality. E|$ > .(1 - 1(|Z;7| € n))Zir| < £ 3, E|(1 - 1(|Zi7] € n))Z;x|
by the Triangle inequality, and

T—llzijEKl— | Zir| <n))Zix| = %;[/|Z|dFi,T(Z)—/ZlSH|Z|dF,-,T(Z)
125 ooy
Zz:/lbn n Fix(2) =0

by (2.13). It then follows that 1 3, Z; 7 — 13, ¥; r & 0 which, with 1 37, ¥; 7 5 0, implies
1S~ Zir50 1
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Proof of Lemma 2.6.3 Define & ,r = QnT ;7 where Q7 = > ;7. By the Cramer-

Wold device, >, &nr 4, N(0,I;) as {n, T} — oo jointly if ¥ ¢ € RF with ||| =

¢S binr = N(0,1) as {n, T} — oo jointly. Then, by @ = lim,7 3%, %r > 0,
i Zir 2 N(0,Q) as {n, T} — oo jointly.

To establish ¢ Y. & 7 A N(0,1), it is sufficient to verify
hmZE[gznTl |£12nT > 6)] 0. (215)
For a given € > 0 and ¢ € R* with ||c| =1,
4 Z E[fi,ﬂ‘Tg;,n,Tl(lclgi,n,T&L{,n,Tc’ > E)]C

—CQ:T/zZE (Zir Z, e 1| 2 2 ZL 0 o] > )], e

Considering first the indicator function, we have

LI 2 Zir ZL U el > €)

(A

el 22 Z, 0720 > ©)
1 Ama (P Zir |1 > €)
11 Z:7l® > Amin(Qnr))

IA

Il

Then

S B2 2l (0 2 2 e > )Y

nTC
i

SHNWQ‘”E:EWnZ%MkQI”ZrZ’ 05 el > )R
< Amax ()l ZE[Z,-,TZ;,TI( 1Zi.211% > Amin ()]l

1
L — 12 112 .
- )\min(Qn,T) Z,L: E[”Z'L'T” 1(”ZLT|| > EAmm(Q"yT))]

1 E|Z;7|**
<
- )\min(Qn T) Z (EAmm(Qn,T))J

nA A
= —
el [n)‘mm(% Zi Qz‘,T)]H'J Ond\L+e

min

as {n, T'} — oo jointly, and it follows that (2.15) — 0 as {n, T} — oo jointly.
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Table 1

N=10,T=10
t Test HA Test
Rejection Rate Mean(s.c.) Std(s.e.) Std(p) Rejection Rate
Data Generating Process (1) 2) 3) (4) 5
A. Fixed Effects

homoskedastic, r =0

OLS 0.038 0.1180 0.0133 0.1152 0.152

Cluster 0.043 0.1149 0.0330 0.1152

ARI1 0.041 0.1170 0.0141 0.1152 0.135
homoskedastic, r =.3

OLS 0.082 0.1130 0.0136 0.1269 0.095

Cluster 0.054 0.1212 0.0357 0.1269

AR! 0.055 0.1240 D.0161 0.1269 0.133
homoskedastic, r = .6

OLS 0.093 0.1005 0.0133 0.1231 0.074

Cluster 0.060 0.1167 0.0352 0.1231

AR1 0.051 0.1219 0.0181 0.1231 0.123
homoskedastic, r = .9

OLS 0.145 0.0609 0.0090 0.0818 0.038

Cluster 0.053 0.0772 0.0249 0.0818

AR1 0.054 0.0795 0.0136 0.0818 0.085
heteroskedastic, r = 0

OLS 0.126 0.1150 0.0126 0.1502 0.051

Cluster 0.057 0.1410 0.0458 0.1502

AR1 0.126 0.1140 0.0137 0.1502 0.042
heteroskedastic, r = .3

OLS 0.171 0.1165 0.0137 0.1708 0.036

Cluster 0.068 0.1538 0.0500 0.1708

AR1 0.143 0.1284 0.0172 0.1708 0.044
heteroskedastic, r = .6

OLS 0.187 0.1238 0.0153 0.1853 0.027

Cluster 0.074 0.1717 0.0572 0.1853

AR1 0.117 0.1503 0.0219 0.1853 0.049
heteroskedastic, r = .9

OLS 0.198 0.1406 0.0209 0.2181 0.031

Cluster 0.087 0.1872 0.0641 0.2181

AR1 0.097 0.1830 0.0336 0.2181 0.074

B. Random Effects

p=.3

OLS 0.295 0.1063 0.0231 0.1926 0.017

Cluster 0.115 0.1561 0.0609 0.1926

RE 0.097 0.1693 0.0460 0.1926 0.027
p=.6

OLS 0.399 0.1030 0.0248 0.2438 0.054

Cluster 0.118 0.2024 0.0788 0.2438

RE 0.094 0.2180 0.0600 0.2438 0.023
p=.9

OLS 0.482 0.0987 0.0293 0.2925 0.093

Cluster 0.108 0.2346 0.0909 0.2925

RE 0.095 0.2546 0.0723 0.2925 0.018
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Table 2

N=10,T =50
t Test HA Test
Rejection Rate  Mean(s.e.) Std(s.e.) Std(p) Rejection Rate
Data Generating Process (1) (2) {3) {4) (5)
A. Fixed Effects

homoskedastic, r=0

OLS 0.054 0.0462 0.0024 0.0472 0.184

Cluster 0.050 0.0449 0.0117 0.0472

AR1 0.057 0.0460 0.0026 0.0472 0.185
homoskedastic, r =.3

OLS 0.088 0.0459 0.0024 0.0519 0.077

Cluster 0.043 0.0520 0.0133 0.0519

AR1 0.050 0.0529 0.0031 0.0519 0.159
homoskedastic, r = .6

OLS 0.155 0.0447 0.0028 0.0590 0.049

Cluster 0.042 0.0574 0.0150 0.0590

ARI1 0.047 (.0598 0.0044 0.0590 0.184
homoskedastic, r=.9

OLS 0.225 0.0372 0.0034 0.0600 0.046

Cluster 0.046 0.0562 0.0159 0.0600

AR1 0.049 0.0583 0.0072 0.0600 0.150
heteroskedastic, r =0

OLS 0.158 0.0459 0.0021 0.0637 0.052

Cluster 0.051 0.0606 0.0169 0.0637

ARI1 0.162 0.0458 0.0023 0.0637 0.057
heteroskedastic, r =.3

OLS 0.199 0.0479 0.0022 0.0724 0.046

Cluster 0.041 0.0735 0.0198 0.0724

ARI1 0.142 0.0553 0.0032 0.0724 0.047
heteroskedastic, r = .6

OLS 0.229 0.0558 0.0031 0.0934 0.067

Cluster 0.043 0.0928 0.0260 0.0934

ARI1 0.112 0.0748 0.0054 0.0934 0.059
heteroskedastic, r = .9

OLS 0.239 0.0857 0.0079 0.1490 0.059

Cluster 0.046 0.1428 0.0451 0.1490

AR1 0.076 0.1338 0.0163 0.1490 0.099

B. Random Effects

p=213

OLS 0.568 0.0471 0.0092 0.1636 0.147

Cluster 0.104 0.1356 0.0547 0.1636

RE 0.097 0.1475 0.0413 0.1626 0.014
p=.6

OLS 0.703 0.0466 0.0105 0.2331 0.212

Cluster 0.104 0.1897 0.0727 0.2331

RE 0.095 0.2079 0.0567 0.2331 0.007
p=.9

OLS 0.744 0.0450 0.0130 0.2785 0.245

Cluster 0.106 0.2310 0.0920 0.2785

RE 0.103 0.2539 0.0701 0.2785 0.014
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Table 3

N=10,T =200
t Test HA Test
Rejection Rate  Mean(s.e.) Std(s.e.) Std(p) Rejection Rate
Data Generating Process (48] (2) (3) (4) (5)
A. Fixed Effects

homoskedastic, r=0

OLS 0.050 0.0226 0.0006 0.0223 0.177

Cluster 0.048 0.0219 0.0052 0.0223

AR1 0.049 0.0226 0.0006 0.0223 0.175
homoskedastic, r =.3

OLS 0.077 0.0225 0.0006 0.0256 0.098

Cluster 0.039 0.0255 0.0066 0.0256

ARl 0.043 0.0261 0.0008 0.0256 0.186
homoskedastic, r =.6

OLS 0.163 0.0224 0.0007 0.0314 0.044

Cluster 0.051 0.0297 0.0077 0.0314

ARI1 0.054 0.0304 0.0011 0.0314 0.169
homoskedastic, r =.9

OLS 0.252 0.0214 0.0011 0.0353 0.075

Cluster 0.057 0.0339 0.0091 0.0353

AR1 0.054 0.0345 0.0025 0.0353 0.163
heteroskedastic, r =0

OLS 0.139 0.0225 0.0005 0.0309 0.048

Cluster 0.053 0.0308 0.0081 0.0309

AR1 0.141 0.0225 0.0006 0.0309 0.052
heteroskedastic, r=.3

OLS 0.217 0.0236 0.0006 0.0380 0.065

Cluster 0.056 0.0367 0.0096 0.0380

AR1 0.158 0.0274 0.0008 0.0380 0.049
heteroskedastic, r = .6

OLS 0.279 0.0279 0.0008 0.0497 0.100

Cluster 0.040 0.0479 0.0122 0.0497

AR1 0.086 0.0379 0.0014 0.0497 0.046
heteroskedastic, r = .9

OLS 0.270 0.0490 0.0025 0.0861 0.089

Cluster 0.045 0.0837 0.0224 0.0861

AR1 0.056 0.0751 0.0056 0.0861 0.124

B. Random Effects

p=-3

oLs 0.773 0.0236 0.0047 0.1593 0.222

Cluster 0.115 0.1333 0.0523 0.1593

RE 0.093 0.1447 0.0392 0.1593 0.014
p=.6

OLS 0.837 0.0227 0.0050 0.2230 0.269

Cluster 0.116 0.1808 0.0704 0.2230

RE 0.093 0.2007 0.0533 0.2230 0.016
p=.9

OLS 0.874 0.0222 0.0066 0.2900 0.290

Cluster 0.110 0.2310 0.0933 0.2900

RE 0.104 0.2497 0.0710 0.2900 0.022
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Table 4

N=50,T=10
t Test HA Test
Rejection Rate  Mean(s.e.) Std(s.e.) Std(p) Rejection Rate
Data Generating Process 1) 2) 3) 4) (5)
A. Fixed Effects

homoskedastic,r =0

OLS 0.049 0.0522 0.0026 0.0526 0.106

Cluster 0.057 0.0515 0.0062 0.0526

AR1 0.047 0.0522 0.0028 0.0526 0.099
homoskedastic, r =.3

OLS 0.080 0.0500 0.0027 0.0569 0.053

Cluster 0.059 0.0552 0.0072 0.0569

AR1 0.055 0.0556 0.0033 0.0569 0.092
homoskedastic, r= .6

OLS 0.102 0.0447 0.0026 0.0539 0.132

Cluster 0.048 0.0549 0.0071 0.0539

ARI1 0.049 0.0553 .0037 0.0539 0.072
homoskedasti¢, r = .9

OLS 0.156 0.0273 0.0273 0.0387 0.220

Cluster 0.075 0.0364 0.0367 0.0387

ARI1 0.067 0.0367 0.0367 0.0387 0.078
heteroskedastic, r =0

OLS 0.119 0.0517 0.0025 0.0659 0.213

Cluster 0.047 0.0673 0.0093 0.0659

AR1 0.116 0.0516 0.0028 0.0659 0.210
heteroskedastic, r=.3

OLS 0.197 0.0521 0.0026 0.0768 0.369

Cluster 0.062 0.0741 0.0114 0.0768

AR1 0.139 0.0581 0.0033 0.0768 0.140
heteroskedastic, r = .6

OLS 0.214 0.0558 0.0031 0.0840 0.451

Cluster 0.048 0.0820 0.0126 0.0840

AR1 0.108 0.0688 0.0045 0.0840 0.056
heteroskedastic, r = .9

OLS 0.152 0.0623 0.0043 0.0883 0.324

Cluster 0.038 0.0899 0.0144 0.0883

ARI1 0.057 0.0834 0.0070 0.0883 0.023

B. Random Effects

p=.3

OLS 0.291 0.0451 0.0041 0.0822 0.673

Cluster 0.062 0.0776 0.0135 0.0822

RE 0.059 0.0788 0.0091 0.0822 0.058
p=.6

OLS 0.357 0.0452 0.0049 0.1034 0.892

Cluster 0.073 0.1004 0.0183 0.1034

RE 0.068 0.1028 0.0127 0.1034 0.054
p=.9

OLS 0.497 0.0447 0.0056 0.1246 0.943

Cluster 0.062 0.1192 0.0212 0.1246

RE 0.063 0.1210 0.0147 0.1246 0.048
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Table 5§

N=50,T=20
t Test HA Test
Rejection Rate Mean(s.e.) Std(s.e.) Sed(p) Rejection Rate
Data Generating Process (1) (2) (3) 4) (3)
A. Fixed Effects

homoskedastic, r = 0

OLS 0.050 0.0342 0.0013 0.0341 0.097

Cluster 0.490 0.0341 0.0040 0.0341

AR1 0.052 0.0342 0.0014 0.0341 0.088
homoskedastic, r=.3

OLS 0.094 0.0334 0.0013 0.0393 0.077

Cluster 0.051 0.0379 0.0045 0.0393

ARI1 0.056 0.0382 0.0016 0.0393 0.086
homoskedastic, r = .6

OLS 0.120 0.0315 0.0014 0.0414 0.300

Cluster 0.059 0.0407 0.0052 0.0414

ARI1 0.050 0.0412 0.0021 0.0414 0.092
homoskedastic, r =.9

OLS 0.200 0.0222 0.0013 0.0336 0.580

Cluster 0.059 0.0327 0.0047 0.0336

ARI1 0.060 0.0329 0.0024 0.0336 0.094
heteroskedastic, r =0

OLS 0.168 0.0340 0.0011 0.0479 0.408

Cluster 0.063 0.0458 0.0056 0.0479

AR1 0.171 0.0340 0.0012 0.0479 0.406
heteroskedastic, r = .3

OLS 0.209 0.0350 0.0012 0.0536 0.675

Cluster 0.051 0.0527 0.0068 0.0536

AR1 0.145 0.0399 0.0016 0.0536 0.294
heteroskedastic, r = .6

OLS 0.228 0.0394 0.0017 0.0653 0.802

Cluster 0.050 0.0636 0.0084 0.0653

ARI1 0.119 0.0514 0.0027 0.0653 0.123
heteroskedastic, r = .9

OLS 0.196 0.0507 0.0028 0.0775 0.681

Cluster 0.036 0.0809 0.0131 0.0775

AR1 0.058 0.0751 0.0056 0.0775 0.034

B. Random Effects

p=.3

OLS 0.405 0.0320 0.0029 0.0756 0.915

Cluster 0.069 0.0726 0.0131 0.0756

RE 0.063 0.0738 0.0085 0.0756 0.064
p=.6

OLS 0.515 0.0318 0.0033 0.1012 0.944

Cluster 0.066 0.0976 0.0169 0.1012

RE 0.055 0.0996 0.0118 0.1012 0.055
p=.9

OLS 0.614 0.0314 0.0038 0.1203 0.948

Cluster 0.054 0.1166 0.0204 0.1203

RE 0.051 0.1194 0.0140 0.1203 0.053
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Table 6

N=50,T=50
t Test HA Test
Rejection Rate Mean(s.e.) Std(s.e.) Std(p) Rejection Rate
Data Generating Process (1) (2) Q) (4) 5)
A. Fixed Effects

homoskedastic, r =0

OLS 0.057 0.0206 0.0005 0.0212 0.112

Cluster 0.058 0.0205 0.0022 0.0212

AR1 0.053 0.0206 0.0005 0.0212 0.104
homoskedastic, r = .3

OLS 0.079 0.0205 0.0005 0.0232 0.114

Cluster 0.043 00236 0.0027 0.0232

AR1 0.051 0.0237 0.0007 0.0232 0.094
homoskedastic, r = .6

OLS 0.128 0.0200 0.0006 0.0254 0.529

Cluster 0.051 0.0267 0.0030 0.0254

AR1 0.050 0.0269 0.0009 0.0254 0.089
homoskedastic, r = .9

OLS 0.220 0.0168 0.0007 0.0270 0.834

Cluster 0.055 0.0264 0.0033 0.0270

AR1 0.059 0.0265 0.0015 0.0270 0.082
heteroskedastic, r =0

OLS 0.158 0.0206 0.0004 0.0279 0.610

Cluster 0.044 0.0285 0.0031 0.0279

AR1 0.162 0.0206 0.0005 0.0279 0.617
heteroskedastic, r =.3

OLS 0.225 0.0214 0.0005 0.0346 0.865

Cluster 0.053 0.0333 0.0040 0.0346

AR1 0.153 0.0247 0.0006 0.0346 0.515
heteroskedastic, r=.6

OLS 0.256 0.0249 0.0006 0.0429 0.942

Cluster 0.051 0.0425 0.0050 0.0429

AR1 0.122 0.0335 0.0011 0.0429 0.287
heteroskedastie, r = .9

OLS 0.275 0.0384 0.0016 0.0670 0.902

Cluster 0.048 0.0662 0.0090 0.0670

ARI1 0.062 0.0605 0.0034 0.0670 0.042

B. Random Effects

p=.3

OLS 0.582 0.0202 0.0018 0.0719 0.949

Cluster 0.061 0.0685 0.0126 0.0719

RE 0.058 0.0704 0.0084 0.0719 0.062
p=.6

OLS 0.693 0.0202 0.0021 0.1001 0.961

Cluster 0.063 0.0957 0.0170 0.1001

RE 0.051 0.0982 0.0116 0.1001 0.047
p=29

OLS 0.763 0.0199 0.0024 0.1242 0.959

Cluster 0.078 0.1162 0.0200 0.1242

RE 0.070 0.1188 0.0141 0.1242 0.055
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Table 7

N=50,T=200
t Test HA Test
Rejection Rate  Mean(s.c.) Std(s.e.) Sed(B) Rejection Rate
Data Generating Process [V 2) 3) “ 5)
A. Fixed Effects

homoskedastic, r =0

OLS 0.037 0.0101 0.0001 0.0100 0.104

Cluster 0.047 0.0100 0.0011 0.0100

AR1 0.038 0.0101 0.0001 0.0100 0.105
homoskedastic, r = .3

OLS 0.083 0.0101 0.0001 0.0113 0.141

Cluster 0.044 0.0116 0.0012 0.0113

AR1 0.042 0.0117 0.0002 0.0113 0.094
homoskedastic, r = .6

OLS 0.151 0.0100 0.0001 0.0136 0.608

Cluster 0.055 0.0134 0.0014 0.0136

AR1 0.050 0.0136 0.0002 0.0136 0.108
homoskedastic, r =.9

OLS 0.243 0.0096 0.0002 0.0161 0.934

Cluster 0.055 0.0155 0.0017 0.0161

AR1 0.059 0.0154 0.6005 0.0161 0.072
heteroskedastic, r =0

OLS 0.156 0.0101 0.0001 0.0139 0.720

Cluster 0.042 0.0141 0.0015 0.0139

AR1 0.156 0.0101 0.0001 0.0139 0.723
heteroskedastic, r = .3

OLS 0.244 0.0105 0.0001 0.0174 0.943

Cluster 0.057 0.0169 0.0018 0.0174

AR1 0.185 0.0122 0.0002 0.0174 0.651
heteroskedastic, r = .6

OLS 0.259 0.0125 0.0002 0.0219 0.982

Cluster 0.047 0.0220 0.0024 0.0219

AR1 0.120 0.0170 0.0003 0.0219 0.432
heteroskedastic, r = .9

OLS 0.276 0.0219 0.0005 0.0397 0.977

Cluster 0.049 0.0389 0.0044 0.0397

AR1 0.080 0.0353 0.0011 0.0397 0.065

B. Random Effects

p=.3

OLS 0.791 0.0101 0.0009 0.0692 0.969

Cluster 0.059 0.0674 0.0120 0.0692

RE 0.055 0.0686 0.0086 0.0692 0.063
p=.6

OLS 0.855 0.0100 0.0010 0.0974 0.972

Cluster 0.052 0.0951 0.0170 0.0974

RE 0.051 0.0969 0.0114 0.0974 0.049
p=.9

OLS 0.870 0.0100 0.0012 0.1184 0.972

Cluster 0.065 0.1166 0.0206 0.1184

RE 0.058 0.1184 0.0143 0.1184 0.056
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Table 8

N=200,T=10
t Test HA Test
Rejection Rate  Mean(s.e.) Std(s.e.) Std(p) Rejection Rate
Data Generating Process 1) 2) 3 [C)) (5)
A. Fixed Effects

homoscedastic, p =0

OLS 0.061 0.0261 0.0007 0.0263 0.050

Cluster 0.063 0.0261 0.0015 0.0263

AR1 0.061 0.0261 0.0007 0.0263 0.042
homoscedastic, p=.3

OLSs 0.061 0.0250 0.0007 0.0266 0.300

Cluster 0.026 0.0278 0.0018 0.0266

ARI 0.028 0.0279 0.0008 0.0266 0.062
homoscedastic, p = .6

OLS 0.104 0.0224 0.0007 0.0275 0.860

Cluster 0.050 0.0277 0.0018 0.0275

AR1 0.046 0.0278 0.0009 0.0275 0.041
homescedastic, p=.9

OLS 0.131 0.0136 0.0005 0.0181 0.981

Cluster 0.043 0.0182 0.0013 0.0181

AR1 0.051 0.0183 0.0007 0.0181 0.044
heteroscedastic, p =0

OLS 0.136 0.0258 0.0006 0.0339 0.961

Cluster 0.055 0.0341 0.0025 0.0339

AR1 0.136 0.0258 0.0007 0.0339 0.960
heteroscedastic, p=.3

OLS 0.159 0.0261 0.0007 0.0369 0.994

Cluster 0.047 0.0377 0.0029 0.0369

AR1 0.124 0.0292 0.0009 0.0369 0.921
heteroscedastic, p =.6

OLS 0.188 0.0279 0.0008 0.0426 0.997

Cluster 0.058 0.0420 0.0033 0.0426

AR1 0.120 0.0345 0.0012 0.0426 0.616
heteroscedastic, p=.9

OLS 0.176 0.0313 0.0011 0.0454 0.983

Cluster 0.050 0.0459 0.0040 0.0454

AR1 0.069 0.0421 0.0018 0.0454 0.048

B. Random Effects

p=.3

OLS 0.264 0.0224 0.0011 0.0393 1.000

Cluster 0.052 0.0395 0.0037 0.0393

RE 0.053 0.0396 0.0024 0.0393 0.038
p=.6

OLS 0.430 0.0223 0.0012 0.0533 1.000

Cluster 0.061 0.0511 0.0048 0.0533

RE 0.060 0.0513 0.0031 0.0533 0.045
p=.9

OLS 0.456 0.0224 0.0014 0.0617 1.000

Cluster 0.064 0.0610 0.0056 0.0617

RE 0.060 0.0612 0.0037 0.0617 0.046
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Table 9

N=200, T =50
t Test HA Test
Rejection Rate  Mean(s.e.) Std(s.e.) Std(p) Rejection Rate
Data Generating Process (1) (2) (3) ) (5)
A. Fixed Effects

homoskedastic, r =0

OLS 0.050 0.0103 0.0001 0.0101 0.074

Cluster 0.047 0.0103 0.0005 0.0101

ARI1 0.050 0.0103 0.0001 0.0101 0.073
homoskedastic, r =.3

OLS 0.095 0.0102 0.0001 0.0121 0.677

Cluster 0.055 0.0117 0.0006 0.0121

AR1 0.054 0.0118 0.0002 0.0121 0.065
homoskedastic, r = .6

OLS 0.138 0.0100 0.0001 00131 1.000

Cluster 0.050 0.0134 ¢.0007 0.0134

AR1 0.052 0.0134 0.0002 0.0134 0.061
homoskedastic, r= 9

OLS 0.201 0.0084 0.0002 0.0130 1.000

Cluster 0.047 0.0131 0.0008 0.0130

AR1 0.048 0.0132 0.0004 0.0130 0.058
heteroskedastic, r = 0

OLS 0.148 0.0103 0.0001 0.0139 1.000

Cluster 0.045 0.0143 0.0008 0.0139

AR1 0.146 0.0103 0.0001 0.0139 1.000
heteroskedastic, r=.3

OLS 0.210 0.0107 0.0001 0.0168 1.000

Cluster 0.051 0.0168 0.0010 0.0168

AR1 0.148 0.0124 0.0002 0.0168 0.999
heteroskedastic, r = .6

OLS 0.264 0.0125 0.0002 0.0220 1.000

Cluster 0.061 0.0216 0.0013 0.0220

AR1 0.138 0.0168 0.0003 0.0220 0.976
heteroskedastic, r =.9

OLS 0.261 0.0192 0.0004 0.0333 1.000

Cluster 0.050 0.0333 0.0023 0.0333

AR1 0.078 0.0303 0.0009 0.0333 0.181

B. Random Effects

p=.3

OLS 0.593 0.0100 0.0004 0.0353 1.000

Cluster 0.052 0.0354 0.0032 0.0353

RE 0.048 0.0356 0.0020 0.0353 0.041
p=.6

OLS 0.703 0.0100 0.0005 0.0497 1.000

Cluster 0.057 0.0491 0.0045 0.0497

RE 0.049 0.0495 0.0030 0.0497 0.045
p=.9

OLS 0.741 0.0100 0.0006 0.0584 1.000

Cluster 0.053 0.0596 0.0054 0.0584

RE 0.051 0.0601 0.0035 0.0584 0.036
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Chapter 3

The Impact of 401(k) Participation on
the Wealth Distribution: An
Instrumental Quantile Regression

Analysis

Co-Authored with Victor Chernozhukov (MIT)

3.1 Introduction

In the early 1980s, the United States introduced several tax deferred savings options in an
effort to increase individual saving for retirement. The two options which have generated the
most interest are Individual Retirement Accounts (IRAs) and 401(k) plans. Tax deferred
IRAs and 401 (k) plans are similar in that both allow the individual to deduct contributions
from taxable income and allow tax-free accrnal of interest on assets held within the plan.
The key differences between the two savings options are that employers provide 401(k) plans,
and employers may also match a certain percentage of an employee’s contribution. Since

401(k) plans are provided by employers, only workers in firms offering plans are eligible for
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participation, while participation in IRAs is open to everyone.!

While it is clear that 401(k) plans and, to a lesser extent, IRAs are widely used as vehicles
for retirement saving, their impact on assets is less clear. The key problem in determining the
effect of participation in IRA and 401(k) plans on accumulated assets is saver heterogeneity
coupled with non-random selection into participation states. In particular, it is generally
recognized that some people have a higher preference for saving than others. Thus, it seems
likely that those individuals with the highest unobserved preference for saving would be most
likely to choose to participate in tax-advantaged retirement savings plans and would also have
higher savings in other assets than individuals with lower unobserved saving propensity. This
implies that conventional estimates that do not account for saver heterogeneity and selection
of the participation state will be biased upward, tending to overstate the actual savings effects
of 401(k) and IRA participation.

This problem has long been recognized in the savings literature and has led to numerous
important studies which attempt to overcome this problem. In a series of articles, Poterba,
Venti, and Wise (1994, 1995, 1996) use comparisons between groups based on eligibility
for 401(k) participation. They argue that 401(k) eligibility can be taken as exogenous given
income. The argument is motivated by the fact that eligibility is determined by the employer,
and so may be taken as exogenous conditional on covariates. Poterba, Venti, and Wise
(1996) contains an overview of suggestive evidence based on pre-program savings used to
substantiate this claim and reports mean and median regression estimates of the impact of
401(k) eligibility on household net financial assets. The results show that 401(k) eligibility
has significant and positive effects on net financial assets. Based on the assumed exogeneity
of 401(k) eligibility, they attribute this difference to the causal effect of 401(k) eligibility
on savings.? Recent work by Benjamin (2003) examines the effects of eligibility on savings
using matching based on the propensity score and finds positive, although much more modest,
effects of 401(k) eligibility on assets.?

A similar approach, which we follow in this paper, is that of Abadie (2003). Abadie,

1A detailed description of regulations regarding retirement programs can be found in a recent publication

of the Employee Benefit Research Institute (1997).
2For a differing viewpoint, see Engen, Gale, and Scholz (1996), which contends that eligibility should not

be treated as exogenous.
3Benjamin uscs a more inclusive definition of assets and makes adjustments to account for replacement

or substitution of an existing defined contribution or defined benefit plan by a 401 (k).

112




assuming that eligibility for a 401(k) is exogenous given income (and other covariates), uses
401(k) eligibility as an instrument for 401(k) participation in order to estimate the effect of
401(k) participation, not eligibility, on net financial assets. Abadie uses a novel semipara-
metric estimator which estimates the average effect for compliers.! Since only individuals
eligible for a 401(k) can participate, the average effect for compliers also corresponds to the
average effect for the treated. Abadie’s results suggest that the average effect for the treated
of 401(k) participation is significant and positive.

One drawback of all of these studies is that they focus the analysis on measures of
central tendency: the mean or the median. While the mean and median impacts are inter-
esting and important measures in determining a program’s impact, they are not sufficient
to fully characterize the impact of the treatment except under very restrictive conditions.
In particular, they are uninformative about the impact of the treatment on other, perhaps
more interesting, points in the outcome distribution when the treatment effect is heteroge-
neous. Understanding the distributional impact of 401(k) plans is especially interesting from
a policy perspective since policy makers may be particularly concerned about the impact
of 401(k) plans on the lower part of the wealth distribution. In addition, knowledge of the
distributional impact of a program provides a clearer picture of what is driving the mean
results.

As with estimates of the mean effect, the analysis of the distributional effect is compli-
cated by the possibility that individuals choose whether or not to participate in a 401(k)
based on their unobserved preferences for saving. One estimator which would allow a more
full characterization of the effect of a heterogeneous treatment given treatment exogeneity is
the quantile regression estimator of Koenker and Bassett (1978). However, the self-selection
of the participation state makes the conventional quantile regression estimator inappropri-

ate.®

In this paper, we contribute to the extensive set of existing literature of the impact of
401(k) plans on wealth by analyzing the impact of 401(k) participation on the entire wealth

“In the context of 401(k) participation, the group of compliers is the group of individuals who would
participate in a 401 (k) if eligible but would not if ineligible. Non-compliers in this example are people who
would not participate in the 401(k) regardless of their eligibility status.

SAlso, treatment heterogeneity renders the two stage lcast absolute deviation estimator of Amemiya

(1982) and its extension to quantile regression by Chen and Portnoy (1996) inconsistent. The inconsistency
was first demonstrated in Chernozhukov and Hansen (2001).
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distribution. Using the reasoning of Poterba, Venti, and Wise (1994, 1995, 1996) and Abadie
(2003) outlined above, we use 401(k) eligibility as an instrument for 401(k) participation in
order to estimate the effect of participating in a 401(k) on various measures of wealth. To do
this, we employ a model and an estimator developed in Chernozhukov and Hansen (2001).
The model provides a set of assumptions under which the conditional quantiles of the out-
come distribution may be recovered from a set of statistical moment equations through the
use of instrumental variables. The estimator we use is computationally convenient for lin-
ear quantile models and can be computed through a series of conventional linear quantile
regressions. Chernozhukov and Hansen (2001) demonstrate that the estimator is consistent
under endogeneity and treatment effect heterogeneity. Thus, this paper provides an impor-
tant complement to the work discussed above which focuses on estimating the impact of
401(k) plans on the center of the outcome distribution. Also, due to the binary nature of
both the participation decision and the eligibility instrument, the approach developed by
Abadie, Angrist, and Imbens (2002) to estimate quantile effects for binary treatments under
endogeneity also applies. We present estimates obtained through both procedures to provide
both a robustness check and a comparison of the two approaches. We find that the results

are very similar using either estimation procedure.

The instrumental quantile regression estimates indicate that there is considerable het-
erogeneity in the effect of 401(k) participation on net financial assets, with the treatment
effect increasing monotonically as one moves from the lower to the upper tail of the asset
distribution. The results are also uniformly positive and significant, suggesting that 401(k)
participation positively impacts net financial assets across the entire distribution. The eftect
of participation on total wealth is positive and approximately constant for all quantiles. In
addition, it is of the same magnitude as the effect of participation on net financial assets
for low quantiles, but is substantially smaller than the effect of participation on the upper
quantiles of net financial assets. These results suggest that the increase in net financial
assets observed in the lower tail of the conditional assets distribution can be interpreted as
an increase in wealth, while the increase in the upper tail of the distribution is mitigated by
substitution with some other component of wealth. The effect of participation on net non-
401(k) financial assets is uniformly insignificant, which suggests there is little substitution
for 401(k) assets along this dimension of wealth.®

SNet non-401(k) financial assets are net financial assets minus 401 (k) balances. More details about the
wealth measures are found in the description of the data in Section 3.
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The remainder of the paper is organized as follows. Section 2 reviews the model of
quantile treatment effects of Chernozhukov and Hansen (2001) and demonstrates how an
empirical model for assets may be embedded in the model. In Section 3, the data used in
the empirical analysis are described. Section 4 presents the empirical results and compares
the results from the estimator of Chernozhukov and Hansen (2001) to those obtained with
the estimator of Abadie, Angrist, and Imbens (2002), and Section 5 concludes.

3.2 An Instrumental Variable Model for Quantile Treat-

ment Effects

In the following, we briefly present the assumptions and main implications of the instru-
mental variables model of quantile treatment effects developed in Chernozhukov and Hansen
(2001). We then show how an empirical model of savings decisions may be embedded in
this framework. This discussion helps illustrate the interpretation of the estimates of the
model, especially the interpretation of the quantile index 7, and isolates the key identifying

assumptions.

3.2.1 Potential Outcomes and the QTE

The model is developed within the conventional potential (latent) outcome framework. Po-
tential real-valued outcomes are indexed against treatment d and denoted Y;. For example,
Yy is an individual’s outcome when DD = d. Treatments d take values in a subset D of R!. The
potential outcomes {Y;} are latent because, given the selected treatment D, the observed
outcome for each individual or state of the world is Y = ¥,,. That is, only one component of
potential outcomes vector {Yy} is observed for each observational unit.

While there are many features of the distributions of potential outcomes that may be
interesting, we focus on the quantiles of potential outcomes conditional on covariates X7

{de(ﬂw), re (o, 1)},

"We use Qv (T|z) and £, (y]z) to denote the conditional 7-quantile and density of Y given X = z. Capitals
such as Y denote random variables, and lower case letters such as y denote the values they take.
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and the quantile treatment effects (QTE) that summarize the difference between the quantiles
under different treatments (e.g. Doksum (1974)):

Qv,(Tlx) — Qy, (7lx) or, if defined, %de(ﬂf)-

Quantile treatment effects represent a useful way of describing the effect of treatment d on

different points of the marginal distribution of potential outcomes.

Typically D is selected in relation to {Y3} inducing endogeneity, so that the conditional
quantile of Y given the selected treatment D = d, denoted Q. (7|d, ), is generally not equal
to the quantile of potential or latent outcome @ (7|x). This makes the conventional quantile
regression inappropriate for the estimation of @y, (7|z). The model of Chernozhukov and
Hansen (2001), briefly presented below, states the conditions under which we can recover
the quantiles of latent outcomes through a set of conditional moment restrictions.

3.2.2 The Instrumental Quantile Treatment Model.

We build the model from the basic Skorohod representation of latent outcomes Yy, which
yields for each d given X =z

Yy = q(d, 7, Us), where Uy & U(0,1), (3.1)

and ¢(d, z, 7) = Qv,(7|z) is the conditional T-quantile of latent outcome Y. This represen-
tation is essential to the rest of the analysis.

The variable Uy is responsible for heterogeneity of outcomes for individuals with the
same observed characteristics z and treatment d. It also determines their relative ranking
in terms of potential outcomes. Hence we will call Uy the rank variable, and may think
of it as representing some innate ability or level of preference. This allows interpretation
of the quantile treatment effect as the treatment effect for people with a given rank in the
distribution of U/;, making quantile analysis an interesting tool for describing and learning

the structure of heterogeneous treatment effects.

8The basic Skorohod representation states that, given a collection of variables {¢;}, cach variable ¢; can

be represented as, a.s.
¢; = Q,;(Uj), for some Uj £ U(0,1).

Recall that Q,(7) denotes the 7-quantile of variable ¢;.
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The model consists of five main conditions (some are representations) that hold jointly.

The IVQT Model: Given a common probability space (2, F, P}, for P-almost every value
of X, Z, where X represents covariates and Z represents excluded instruments, the following
conditions A1-A5 hold jointly:

Al POTENTIAL OUuTCOMES. Given X = z, for each d, for some U, U(0,1),
Yd = Q(d, z, Ud)7

where ¢(d, z, 7) is strictly increasing and left-continuous in 7.
A2 INDEPENDENCE. Given X =z, {Ud} is independent of Z.

A3 SELECTION. Given X =z, Z = z, for unknown function & and random vector V/,
D =6(zz,V).
A4 RANK SIMILARITY. For each d and &', given (V, X, Z)
U, is equal in distribution to Uy.
A5 OBSERVED variables consist of (for Up =Y., ., (D =d)-Uy)
Y =q(D, X, Up),
D=2, X,V),

X, 7.

Chernozhukov and Hansen (2001) demonstrate that the following result is an implication of
the IVQT model.

Theorem 5 (Main Statistical Implication) Suppose conditions A1-A5 hold. Then, for
any T € (0,1), a.s.

PlY <q(D,X,7)|X,Z] =7 and P[Y < q(D, X,7)|X,Z] = 1. (3.2)
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This result provides an important link of the parameters of the IVQT model to a set of
conditional moment equations which are used in Chernozhukov and Hansen (2001) to develop
identification conditions for the IVQT model as well as for estimation and inference. In
addition, Chernozhukov and Hansen (2001) give an extensive discussion of the IVQT model,
its assumptions, and its identification. While this discussion will not be repeated here, 1t is
important to note that the assumptions of the IVQT model differ from those in other models
with endogeneity and heterogeneous treatment effects in two key respects ® First, the IVQT
model imposes a different set of independence conditions; in particular, it does not require
that the instruments, Z, are independent of the errors in the selection equation V. The
independence of Z and V may be violated when Z is measured with error or related to V in
other ways. Second, the IVQT model imposes rank similarity, Assumption A4, which will

be discussed in the context of saving decisions below.

3.2.3 The Instrumental Quantile Regression Model and Saving

Decisions

Assumptions Al-A5 represent a plausible framework within which to analyze the effects of
participating in a 401(k) plan on an individuals accumulated wealth. First, wealth, Yy, in
the participation state d € {0,1} can be represented as

Yy = q(d, X, Us), Us~U(0,1)

by the Skorchod representation of random variables, where 7 — g(d, X, 7) is the conditional
quantile function of Y3 and Uy is an unobserved random variable. Following the discussion
in Section 2.2, we will refer to Uy as the preference for saving and thus interpret the quantile

index 7 as indexing rank in the preference for saving distribution.!® The individual selects

9Gee, for example, Amemiya (1982), Heckman and Robb (1986), Imbens and Angrist (1994), and Vytlacil
(2000).

10gince the outcomes of interest are all measures of accumulated wealth, perhaps more appropriate, but
more cumbersome, terminology would be preference for accumulated assets. In addition, if there are unob-
servable factors besides preferences then this interpretation of Uy and 7 is incorrect, and 7 should be only
interpreted as indexing rank in the conditional distribution of Yy given z. For simplicity and clarity, we will
refer to Uy and 7 as relating to preference for saving throughout the rest of the paper.
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the 401(k) participation state to maximize expected utility:
D = argmax E [ W{Y,, d}[X, z, V] = argmax E [ W{q(d,z, Ud),d}‘X, z, V] ,(33)

where W{y,d} is the unobserved Bernoulli utility function. As a result, the participation
decision is represented by

D =62 X,V)

where Z and X are observed, V' is an unobserved information component that depends on
rank Uy, and includes other unobserved variables that affect the participation state, and
function 4 is unknown. Thus this model is a special case of the IVQT model. In this model,
the independence condition A2 only requires that Uy is independent of Z, conditional on X.

The simplest form of rank similarity is rank invariance, under which the preference for

saving vector Uy may be collapsed to a single random variable:
U = UO == U1.

In this case, a single preference for saving is responsible for an individual’s ranking across
all treatment states. It is important to note that U is defined relative to observationally
identical people (individuals with the same X and Z). Rank invariance has been used
in many interesting models without endogeneity,’! and traditional simultaneous equations
models are built assuming rank invariance. However, as noted in Heckman and Smith (1997),
rank invariance may be implausible on logical grounds since it implies that the potential
outcomes Yy are not truly multivariate, but have a jointly degenerate distribution.

The similarity condition A4 is a more general form of rank invariance — it relaxes the
exact invariance of ranks Uy across d by allowing noisy, unsystematic variations of U across
d, conditional on (V,X,Z). This relaxation allows for variation in the ranks across the
treatment states, requiring only a “rank invariance in expectation”. Therefore, similarity
accommodates general multivariate models of outcomes. It states that given the information
in (V, X, Z) employed to make the selection of treatment D, the expectations of any function
of rank Uy does not vary across the treatment states. That is, ex-ante, conditional on
(V, X, Z), the ranks may be considered to be the same across potential treatments, but the
realized, ex-post, rank may be different across treatment states.

Y'For example, Doksum (1974) and Heckman and Smith (1997).
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From an econometric perspective, the similarity assumption is nothing but a restriction
on the evolution on the unobserved heterogeneity component which precludes systematic
variation of U, across the treatment states. Similarity allows interpretation of the quantile
treatment effect as the treatment effect holding the level of unobserved heterogeneity constant
across the treatment states:

Q(d,myT) —Q(dlﬂfﬁ) = Q(dal'a Ud) —Q(dl,x, Ud’) -
d=Ud’ =T
Since changes in Uy across d are assumed to be asystematic, the quantile treatment effect
not only summarizes the distributional impact but also the actual likely treatment effect.

To be more concrete, consider the following simple example where
Ug = FV+17¢(V + nd)»

where Fy-y,(-) is the distribution function of V' + 74 and {n4} are mutually iid conditional
on V, X, and Z. The variable V represents an individual’s “mean” saving preference, while
14 18 & noisy adjustment.'? This more general assumption leaves the individual optimization
problem (3.3) unaffected, while allowing variation in an individual’s rank across different

potential outcomes.

While we feel that similarity may be a reasonable assumption in many contexts, impos-
ing similarity is not innocuous. In the context of 401(k) participation, matching practices of
employers could jeopardize the validity of the similarity assumption. This is because indi-
viduals in firms with high match rates may be expected to have a higher rank in the asset
distribution than workers in firms with less generous match rates. This suggests that the
distribution of U may be different across the treatment states.

Similarity may still hold in the presence of the employer match if the rank, Uy, in the
asset distribution is insensitive to the match rate. The rank may be insensitive if, for
example, individuals follow simple rules of thumb such as target saving when they make
their savings decisions. Also, if the variation of match rates is small relative to the variation
of individual heterogeneity or if the covariates capture most of the variation in match rates,
then similarity will be satisfied approximately. Since the model is just-identified in our
data, specification tests based on the implications of Theorem 1 may not be used to perform

12Clearly similarity holds in this case, Uy 4 Uy given V, X, and Z.
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overidentifying tests. However, the quantile treatment effects model and estimator of Abadie,
Angrist, and Imbens (2002), which apply only to binary treatment variables, provide a
useful robustness check. While the approach of Abadie, Angrist, and Imbens (2002) and the
approach presented in this paper generally identify and estimate different quantities, they
will estimate the same thing when the assumptions of both models, including similarity, are
satisfied and the set of compliers is representative of the population. If these conditions are
not met, then the two estimators will in general have different probability limits, suggesting
that a comparison of results based on the two models will provide evidence on the plausibility
of these assumptions. Comparisons between the two estimators are presented with the
empirical results in Section 4. The results from the two estimators are very similar, suggesting

that employer matching does not result in a serious violation of rank similarity.

3.3 The Data

To estimate the QTE, we use data on a sample of households from Wave 4 of the 1990
Survey of Income and Program Participation (SIPP).!® The sample is limited to households
in which the reference person is 25-64 years old, in which at least one person is employed,
and in which no one is self-employed.!* The sample consists of 9,915 households and all
dollar amounts are in 1991 dollars.

The 1991 SIPP reports household financial data across a range of asset categories. These
data include a variable for whether a person works for a firm that offers a 401(k) plan.
Households in which a member works for such a firm are classified as eligible for a 401(k).
In addition, the survey also records the amount of 401(k) assets. Households with a positive
401(k) balance are classified as participants, while eligible households with a zero balance
are considered non-participants.

13This sample has been used extensively to study the effect of 401(k) plans on wealth. See, for example,
Benjamin (2003), Abadie (2003), Engen and Gale (2000), Engen, Gale, and Scholz (1996), and Poterba,
Venti, and Wise (1994, 1995, 1996). The sample is often referred to as the 1991 SIPP because data were
collected between February and May of 1991.

4 Analyses are restricted to this sample because the SIPP only asks 401(k) questions to people 25 and
older, because retirement and saving behavior of people over 65 would complicate the analysis, and because
the seclf-employed and unemployed do not have access to 401(k)s. The household reference person is the
person in whose name the family’s home is owned or rented.
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While there are several potential measures of wealth in the 1991 SIPP, we choose to
focus our analysis on total wealth, net financial assets, and net non-401(k) financial assets.
Net non-401(k) assets are defined as the sum of checking accounts, U.S. saving bonds, other
interest-earning accounts in banks and other financial institutions, other interest-earning
assets (such as bonds held personally), stocks and mutual funds less nonmortgage debt, and
IRA balances. Net financial assets are net non-401(k) financial assets plus 401(k) balances,
and total wealth is net financial assets plus housing equity and the value of business, property,
and motor vehicles.!®

We use the same set of covariates as Benjamin (2003). Specifically, we use age, income,
family size, education, marital status, two-earner status, defined benefit (DB) pension status,
IRA participation status, and home ownership status. Marital status, two-earner status, DB
pension status, IRA participation status, and home ownership status are binary variables,
where two-earner status indicates whether both household heads, where present, contribute
to household income and DB pension status indicates whether the household’s employer
offers a DB pension plan. The education variable measures the number of years of school
completed by the household reference person, and for the analysis we have categorized this
variable into four groups: less than 12 years of education, 12 years of education, 13-15 years of
education, and 16 or more years of education. Households are classified as IRA participants
if they have positive IRA asset balances, and households are classified as home owners if
the household has a positive home value. In addition, in the estimates reported below, we
control for age using categorical variables: less than 30 years old, 30-35 years old, 36-44 years
old, 45-54 years old, and 55 years old or older. Following Poterba, Venti, and Wise (1995),
we control for income through the use of seven categorical variables. The income intervals
are as follows: <$10K, $10-20K, $20-30K, $30-40K, $40-50K, $50-75K, and $THK+.

Table 1 contains descriptive statistics for the full sample as well as by eligibility and
participation status. 37% of the sample is eligible for a 401(k) plan while 26% choose to
participate. Among those eligible for a 401(k) account, the participation rate is 70%. The
descriptive statistics indicate that participants have larger holdings of all measures of wealth
that we consider. As expected, the means of all of the wealth variables are substantially
larger than their medians, indicating the high degree of skewness in wealth. The means also
show that 401(k) participants have more income, are more likely to be married, are more

L5Housing equity is defined as housing value less mortgage.
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likely to have IRAs and defined benefit pensions, are more likely to be home-owners, and are
more educated than non-participants. Average age and family size are similar between the

two groups. Descriptive statistics for the dependent variables by income category are also
provided in Table 2.

3.4 Empirical Results

3.4.1 Estimation and Inference Procedures

To capture the effects of 401(k) participation on net financial assets, we estimate linear
quantile models of the form

Qvyx(7) = da(r) + X'8(1)

where d indicates 401(k) participation status and is instrumented for by 401(k) eligibility,
following Abadie (2003) and Poterba, Venti, and Wise (1994, 1995, 1996).'® The outcomes Y
are the three previously mentioned measures of wealth (total wealth, net financial assets, and
net non-401(k) financial assets), and X consists of dummies for income category, dummies
for age category, dummies for education category, a marital status indicator, family size,
two-earner status, DB pension status, IRA participation status, home ownership status, and
a constant.’” To more fully control for income, we also consider estimates obtained within
each income category. In these cases, the income category dummies are omitted and a linear
term in income is included to account for any remaining variation within income category.

The main results reported below are for the standard quantile regression (QR) estima-
tor and the instrumental quantile regression (IQR) estimator of Chernozhukov and Hansen
(2001) which corrects for the endogeneity of 401(k) participation under the assumptions of
the model presented in Section 2 of this paper. The IQR estimator may be viewed as a

16The OLS and 2SLS estimates are based on analogous specifications.

1"We also considered alternate specifications of the covariate vector. However, the estimate of the treatment
effect was found to be largely insensitive to the specification. The most substantial difference is that when
the home ownership dummy was excluded the results for total wealth closely tracked those of net financial
assets across the cntire distribution, indicating little or no substitution between 401(k) assets and other
forms of wealth. All other results were very similar.
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convenient method of approximately solving the sample analog of moment equations (3.2):'®

1w ~ - , 1
$ 2004 £ DE+ X =X Z) = o (%) (34
When there is only one endogenous regressor and the model is just identified, the IQR

estimator for a given quantile may be computed as follows:

1. Run a series of standard quantile regressions of Y’ —Da; on covariates X and instrument
Z where {c;} is a grid over «.

2. Take the o; that minimizes the absolute value of the coefficient on Z as the estimate
of o, & Estimates of 3, 3, are then the corresponding coefficients on X.

In Chernozhukov and Hansen (2001), we show that, under regularity conditions and for
0 =a, 57,
V(@ - 6) 5 N(0, J1Q(J7Y),

where, for ¥ = [Z, X' and e =Y — Da — X',
Q=7(1—7)EVY and J = E[f.(0|D, X, Z)¥[D, X'].

Chernozhukov and Hansen (2001) also provides further details covering estimation and
asymptotic theory in the general, potentially overidentified model.

Estimates of the QTE, a(7), for many different points 7 also provide an estimate of
the QTE process af-) which treats a as a function of 7.19 Knowledge of the QTE process
allows formal testing of a number of interesting hypotheses. These include the constant effect
hypothesis (a(-) = a), of which the hypothesis of no effect (a(-) = 0) is a special case, and
the hypothesis of no endogeneity (a(-) = agr(-) where agr denotes the ordinary quantile
regression estimate). If the constant effect hypothesis is not rejected, the distributional
impact of the treatment may be captured by a single statistic, such as the mean or the
median treatment effect. Also, failure to reject the hypothesis of no endogeneity suggests
that the endogeneity bias is not statistically important and that standard QR estimates

18Estimation using a similar set of moment equations was considered by Abadie (1997) who noted the
computational difficulty in obtaining their solution.
19The following discussion also applies to the coefficients of the covariates, 3(7).
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may be used. Chernozhukov and Hansen (2002) provides asymptotic theory for the IQR
process and suggests a computationally attractive method for performing inference on the
IQR process.

3.4.2 QLS and 2SLS Results

Table 3 provides OLS and 2SLS results of the participation effect. These estimates serve
as a benchmark for the quantile and instrumental quantile regression estimates presented
later. In addition, they are interesting in their own right. Indeed, in the case of a constant
treatment effect, these estimates would be sufficient to fully characterize the distributional
impact of the treatment.?

The first stage estimates, reported in the third column of Table 3, confirm that eligibility
for a 401(k) is highly correlated with participation. In the full sample and within each income
category, the first stage estimate is large, positive, and highly significant. Indeed, conditional
on eligibility, the rest of the covariates have very small effects on 401(k) participation.

In the full sample, the 2SLS estimates are uniformly smaller than the OLS estimates,
confirming the intuition that the OLS estimates should be upward biased. However, the
biases appear to be modest, especially when compared to the standard errors of the estimates.
After accounting for endogeneity, the impact of 401(k) participation on both total wealth and
net financial assets remains large and significant. Relative to the means, 401(k) participation
increases net financial assets by approximately 70% and total wealth by approximately 14%.
The magnitude of both effects is also quite similar, though slightly larger for net financial
assets, suggesting little substitution between 401(k) assets and other forms of wealth. On
the other hand, 401(k) participation has relatively little impact on net non-401(k) financial
assets. Neither the OLS nor the 2SLS estimate of the effect of participation on net non-401(k)
financial assets is significantly different from zero, and both are quite small in magnitude.
Overall, these results suggest that the majority of the increase in net financial assets may
be attributed to new saving due to 401(k) plans and not to substitution from other forms of
wealth.

The results by income category provide additional evidence on substitution patterns.

20The process tests reported below suggest that this is the case when the dependent variable is total wealth
or net non-401(k) financial asscts.
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The loss of precision resulting from estimating the treatment effect within income categories
makes drawing any firm conclusion difficult, but the patterns of the estimates are still quite
interesting.?! The impact of 401(k) participation on net financial assets is uniformly positive
and significant and tends to increase as one moves from lower to higher income categories.
This result appears to be consistent with the resource constraints of the different income
groups. The results for net non-401(k) financial assets are never significantly different from
zero. However, in all cases but one, the point estimate is negative and non-negligible, which
provides weak evidence that there is financial asset substitution that was obscured in the
results obtained in the full sample. While the results for total wealth show much less of a
pattern as one looks across income categories, it can be seen that in no case is the effect
significantly different from zero. The point estimates are uniformly positive and, in the
majority of cases, are reasonably large. This again provides weak evidence that 401(k)
participation increases total wealth by a modest amount, but that this increase is smaller
than the increase to net financial assets, indicating substitution between 401(k) and other
assets.

3.4.3 Quantile Regression and Instrumental Quantile Regression
Results: Full Sample

While the QLS and 2SLS results presented above provide a summary statistic for the impact
of the treatment, they fail to capture the distributional impact of 401(k) participation on
wealth. To further explore the effect of 401(k) participation on wealth, we report results
obtained from both standard quantile regression and the instrumental quantile regression of
Chernozhukov and Hansen (2001) in Figure 1.

The left column of Figure 1 contains QR estimates of the effect of 401(k} participation
on the wealth measures, and the right column of Figure 1 presents the IQR estimates of
the QTE. The shaded region in the first six panels represents the 95% confidence interval.??

The last two panels plot the estimated effects for each of the dependent variables together

21]p the following, we ignore estimates in the lowest income category which are greatly influenced by
outliers in the upper tail of the distribution and the small sample size. The influence of the upper tail is

seen clearly in the quantile regression results presented below.
22Gtandard errors were estimated using heteroskedasticity consistent standard errors as in Powell (1984,
1986) and Buchinsky (1995) using the methods outlined in Chernozhukov and Hansen (2001).
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to provide a comparison of the magnitudes and to facilitate the discussion of substitution

between the different wealth measures.

The results exhibit a number of striking features. First, the difference between the QR
and IQR estimators is not dramatic. Both exhibit the same pattern of results, though there
is some upward bias evident in the QR estimates. This bias is most evident in the estimates
for net financial assets and net non-401(k) financial assets, but is hardly noticeable in the
total wealth results.

Another interesting feature of the results is that the effect of participation on net financial
assets is highly non-constant, appearing to increase monotonically in the quantile index. This
result suggests that, conditional on income and other observables, people who rank higher
in the conditional wealth distribution are impacted far more than those ranking lower in
the conditional distribution. In addition, the effect is strongly positive across the entire
distribution. While these results correspond to our intuition, there is actually no other a
priori reason to believe that net financial assets must react in this way. In particular, if
people were simply substituting financial assets held in 401(k)s for other forms of financial
assets, the effect of 401(k) participation on net financial assets would be zero. These results
provide strong evidence against this hypothesis at all quantiles.

The impact of 401(k) participation on total wealth relative to its impact on net financial
assets also provides interesting insights. As with net non-401(k) financial assets, the effect
of participating in a 401(k) on total wealth is roughly constant, though in this case it is
uniformly positive. The most interesting feature of the effect on total wealth is that for
low quantiles it is of almost the same magnitude as the effect on net financial assets, while
1t is substantially smaller than the effect on net financial assets in the upper tail of the
distribution. Taken together, these findings suggest that the increase in net financial assets
observed in the lower tail of the conditional assets distribution can be interpreted as an
increase in wealth, while the increase in the upper tail of the distribution is being mitigated
by substitution with some other (non-financial) component of wealth. However, even for the
highest quantiles, the substitution does not appear to be complete.

A final outstanding feature of the results is the indication that 2SLS estimates substan-
tially overstate the treatment effect across a large range of the net financial asset distribution.
In fact, the 25LS estimates of the treatment effect on net financial assets correspond much
more closely to the treatment effect at the 75" percentile of the distribution than to that of
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the median.

In order to strengthen and further develop our conclusions, we present test results based
on the empirical instrumental quantile regression process computed using the methods of
Chernozhukov and Hansen (2002). Kolmogorov-Smirnov (KS) test statistics and 95% critical
values are given in Table 4. The test results lend further support to the conclusions already
drawn. The tests strongly reject the hypothesis that the impact of 401(k) participation on
net financial assets is constant and confirm that the impact is significantly different from
zero. In addition, we see that the hypothesis of exogeneity of treatment is rejected for net
financial assets. However, the tests fail to reject both the hypothesis of a constant treatment
effect (equal to the median effect) and the hypothesis of exogeneity for total wealth and
net non-401(k) financial assets. That the treatment effect for both total wealth and net
non-401(k) financial assets is statistically constant adds further credibility to the conclusion
that there is little substitution between 401(k) assets and other forms of wealth in the low
tail of the assets distribution but that there is substantial substitution in the upper tail. In
addition, the results of the exogeneity tests provide some evidence that there is endogeneity
bias in the conventional QR estimates of the treatment effects.

3.4.4 Quantile Regression and Instrumental Quantile Regression

Results: By Income Interval

As with analysis of the mean effect presented above, additional insights about the QTE may
be gained by examining the effect of 401(k) participation on our chosen wealth measures
within income interval. The independence assumption, A2, may also be more plausible
within income categories due to the finer conditioning on income, since the arguments of
Poterba, Venti, and Wise (1995) suggest that 401(k) eligibility is as good as randomly
assigned once income is conditioned upon. Of course, the estimates within income category
do suffer from a loss of precision relative to estimates obtained with a coarser income control,

which makes drawing firm inferences more difficult.

IQR estimation results by income category are reported in Figures 2-5.23 The figures are
arranged by dependent variable, with Figure 2 corresponding to net financial assets, Figure 3
to net non-401(k) financial assets, and Figure 4 to total wealth. In all cases, the shaded region

23()R results are not reported but are quite similar to the IQR results.
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represents the 95% confidence interval.?* Figure 5 contains plots of the estimated effects for
each of the dependent variables together to facilitate comparison of the magnitudes. Table
O reports process test results.

Within income categories, the results for net financial assets follow roughly the same
pattern as the results in the full sample. In all categories, the results are generally increasing
in the quantile index; and in all but the first income category, the process tests reveal that
the treatment effect is different from zero. In addition, the hypothesis of a constant effect is
rejected in all but the first and last income categories. As would be expected, the magnitudes
of the results increases as income increases. The point estimates in the first category are
close to zero across the majority of the quantiles, suggesting that participation in a 401(k)
has little effect on those with incomes of less than $10,000. Also, in each income interval, the
results are fairly constant and quite modest for quantiles below the median. Overall, these
results indicate that 401(k) participation increases accumulated net financial assets in all,
excepting possibly the first, income categories, but that these effects may be quite modest
through much of the distribution.

As with the results in the full sample, the estimated treatment effect of 401(k) partici-
pation on net non-401(k) financial assets is not significantly different from zero in any case.
The point estimates are also generally quite small, though they do exhibit some tendency
to be negative more often than positive. This negative tendency provides weak evidence for
some substitution between financial assets held in 401(k)s and other forms of financial assets.
That this negative tendency appears to be most pronounced for low quantiles also suggests
that those with low preferences for saving, who probably have relatively little in the form
of financial assets, are choosing to accumulate assets within 401(k)s instead of elsewhere,

whereas those with higher preferences for saving are saving in both locations.

The results for the effect of 401(k) participation on total wealth are the most varied across
income categories, though the lack of precision makes comparison difficult. One result which
1s quite interesting is that, within the lowest income category, there appear to be extreme
outliers in the upper tail of the distribution. Examining the quantile results within the
first income category suggests there is little effect of 401(k) participation on wealth across
the majority of the wealth distribution. However, at approximately the 60* percentile, the

24Standard errors were estimated using heteroskedasticity consistent standard errors as in Powell (1984,
1986) and Buchinsky (1995) using the methods outlined in Chernozhukov and Hansen (2001).
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effects increase dramatically. These large effects in the upper tail also explain the anomalous
OLS and 2SLS results within the first income category illustrated in Table 2. The process
test of no effect does not reject within the first income category, which seems to be a plausible
conclusion given the small effect for most quantiles. It is also interesting that in the highest
income category the estimated participation effect on total wealth is close to zero in the
upper quantiles of the wealth distribution while the estimated effect on net financial assets
is quite large, suggesting a large amount of substitution in these quantiles. Overall, it is
difficult to draw any firm conclusions due to large estimated standard errors of the effects.
However, one robust finding seems to be that the estimated effect of participation on total
wealth and the estimated effect of participation on net financial assets are quite similar in
the lower tail of the wealth distribution, which suggests that participation in 401(k) plans

stimulates asset accumulation of those with low preferences for saving.

A final interesting note is that, within income categories, the hypothesis of the exogeneity
of 401(k) participation is never rejected. This could be because, conditional on income and
other covariates, 401(k) participation is as good as randomly assigned, or it could be driven
by small sample size and the lack of precision of the estimates. We choose to focus on the
IQR estimates because they are robust to endogeneity, but there is no statistical evidence
that endogeneity is present.

3.4.5 Comparison with Abadie, Angrist, and Imbens (2002)

One key criticism of the approach pursued thus far in this paper is that employer matching
practices may invalidate the similarity assumption required in the model in Section 2. How-
ever, since both the instrument and endogenous variable are binary, the model and approach
of Abadie, Angrist, and Imbens (2002) apply. A comparison between the results from the
two approaches then provides a specification check of the developed results.

The estimator of Abadie, Angrist, and Imbens (2002) is developed within the LATE
framework of Imbens and Angrist (1994). In particular, Abadie, Angrist, and Imbens (2002)
show that if

1. the instrument Z is independent of the outcome error, Uy in our notation, and the

error in the selection equation, V' in our notation,

130




2. monotonicity, P(D; > Dp{X) = 1 where D, is the treatment state of an individual
when Z =1 and Dy is defined similarly, holds,

3. and other standard conditions are met,

then the QTE for compliers, those individuals with D; > Dy, is identified and develop
an estimator for the QTE for compliers. Since only individuals eligible for a 401(k) can
participate, monotonicity holds trivially, and the QTE for compliers corresponds to the
QTE for the treated, which will correspond to the quantity identified by the IVQT model
of Section 2 if the treated are representative of the population and the assumptions of the
IVQT model are satisfied.

Given that the two models are mutually compatible under the conditions outlined above
and the monotonicity assumption of Abadie, Angrist, and Imbens (2002) holds in the case
of 401(k) participation, a comparison of the previous results obtained via IQR and results
obtained via the estimator of Abadie, Angrist, and Imbens (2002) provides a useful robust-
ness check of the previous results and the assumptions that underlie their interpretation.
Figure 6 reports results from the estimator of Abadie, Angrist, and Imbens (2002) in the
full sample and comparisons with corresponding IQR estimates.?® From this exercise, we
see that the pattern of results obtained from the two estimators are quite similar, with the
major differences being that the Abadie, Angrist, and Imbens (2002) estimates of the effects
of 401(k) participation on total wealth and on net non-401(k) financial assets appear to be
even more constant than those obtained through IQR.?6

It appears that the difference in the estimates is small relative to sampling variation and
that one would not draw substantively different conclusions from either set of estimates.
The striking similarity between the estimates provides further support for the IQR results
discussed above and strongly suggests that employer matching of 401(k) contributions does
not result in failure of rank similarity.

%The Abadie, Angrist, and Imbens (2002) estimator may be computed by running weighted quantile
regression, where the wcights are nonparametrically estimated. In our analysis, we used series methods to
cstimate the weights. The exact parameterization used to estimate the weights is available upon rcquest. We

also found that the overall results were not sensitive to the exact specification used to estimate the weights.
Z6Estimates using the estimator of Abadie, Angrist, and Imbens (2002) within income categories were also

very similar to the IQR estimates previously reported.
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3.4.6 Overall Conclusions and Cautions.

Overall, the results indicate that 401(k) participation has a positive impact on the accumu-
lation of net financial assets. The results suggest that the effect on net financial assets is
increasing as one approaches the upper tail of the net financial asset distribution. Estimates
for the effect of 401(k) participation on total wealth and net non-401(k) financial assets
are approximately constant and indicate that 401(k) participation generally increases total
wealth but has little effect on net non-401(k) financial assets. We interpret these results as
indicating that participation in 401(k)s increases total wealth and that there is little substi-
tution between financial assets in 401(k)s and other financial assets. In addition, the results
suggest that there is substitution between assets held in 401(k)s and other components of
wealth in the upper tail of the wealth distribution, but that most financial assets held in
401(k)s in the lower tail of the distribution represent new savings. This has important policy
implications, as the people in the low tail of the net financial asset distribution are also likely
to be the people with the lowest retirement savings.

The estimates also clearly indicate the inability of a single summary statistic, such as the
2SLS regression estimate of the treatment impact, to provide a clear picture of the impact of
a program on the distribution of the outcomes of interest. The 25LS estimate for the effect of
401(k) participation on net financial assets appears to overstate the actual treatment across
much of the distribution, corresponding most closely to the estimates for the upper tail of
the asset distribution. In addition, the single summary statistic provided by 2SLS or OLS
obscures the regions where divergences between the effect of 401(k) participation on the
different wealth measures occur and thus do not provide as full a description of the program
impact as the quantile-based methods.

While we feel that this paper provides insight into the effect of 401(k) participation on
wealth, it does suffer from limitations. First, all of the dependent variables used in this
analysis represent stocks of assets rather than the flow of savings. The accumulated level of
assets is interesting because it provides a summary of a person’s wealth and the resources
that are available to the individual. However, they are not sufficient to capture the effect
of the program on savings. In particular, given employer matching and the tax-advantaged
nature of 401(k) saving, it may be possible to have a large increase in accumulated assets with
little change in the individual’s flow of savings. Second, the data available in the SIPP do not
report all sources of pension wealth. In particular, the SIPP does not contain information
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on assets held in DB plans or defined contribution plans other than IRAs and 401(k)s. The
lack of these data could potentially bias the results upward if 401(k) assets are substituting
for these other forms of assets. While evidence from Poterba, Venti, and Wise (2001) and
Papke, Peterson, and Poterba (1996) is consistent with the view that 401(k)s rarely cause
DB termination, it does not preclude substantial substitution between the different forms of
pensions.

3.5 Conclusion

In this paper, we apply the instrumental quantile regression model and estimators developed
in Chernozhukov and Hansen (2001) and Chernozhukov and Hansen (2002) to data from the
SIPP, which has previously been used by Poterba, Venti, and Wise (1996), Abadie (2003),
Benjamin (2003), and Engen, Gale, and Scholz (1996), to examine the effects of 401(k) plans
on savings. Following Poterba, Venti, and Wise (1996), Abadie (2003), and Benjamin (2003),
we use 401(k) eligibility as an instrument for 401(k) participation to estimate the QTE of
participation in a 401(k} plan on various wealth measures. The QTE provide a more full
characterization of the effect of 401(k) participation on savings than do conventional IV
methods and supplement these methods by providing a more detailed description of the
distributional impact of 401(k) program participation.

The IQR estimates suggest that the effect of 401(k) participation on net financial assets
is quite heterogeneous, with the largest returns accruing to those who are in the upper tail
of the assets distribution. The results also indicate that the effect of 401(k) participation on
net financial assets is positive and significant over the entire range of the asset distribution
and that the effect is monotonically increasing in the quantile index. Effects on total wealth
and net non-401(k) financial assets, on the other hand, appear to be constant, and the effect
on net non-401(k) financial assets is not significantly different from zero while the effect
on total wealth is positive and significant. Overall, the results suggest that participation
in 401(k)s increases net financial assets across the asset distribution, but that this effect is
mitigated by substitution with other forms of wealth in the upper tail of the distribution.
They also demonstrate that estimates of treatment effects which focus on a single feature
of the outcome distribution may fail to capture the full impact of the treatment and that
examining additional features may enhance our understanding of the economic relationships
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involved.
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TABLE 1. MEANS, STANDARD DEVIATIONS, AND MEDIANS

By 401(k) Participation

By 401(k) Eligibility

Entire Non- Non-
Sample Participants Participants Eligibles  Eligibles
Treatment:
Participation in 401(k) 0.26 0.70 0.00
(0.44) (0.46) (0.00)
Instrument:
Eligibility for 401(k) 0.37 1.00 0.15
(0.48) (0.00) (0.36)
Outcome Variables:
Net Financial Assets 18,051 38,262 10,890 30,347 10,788
(63,523) (79,088) (55,257) (74,800) (54,518)
[1,499] [15,249] [200] [9.122] [145]
Net Non-401(k) Asscts 13,877 22,775 10,724 19,396 10,617
(59,605) (70,415) (54,930) (67,439) (54,192)
[542] (3,830 (200] [2,711] [130]
Total Wealth 63,817 96,920 52,088 86,240 50,571
(111,530) (127,790) (102,646) (124,006) (101,155)
[25,100] [63,441] [16,645] [45,356] [14,640]
Covariates:
Income 37,201 49,367 32,890 46,862 31,494
(24,774) (27,208) (22,316) (25,958) (22,151)
Age 41.06 41.51 40.90 41.48 40.81
{10.34) (9.66) (10.57) (9.61} (10.75)
Family Size 2.87 2.92 2.85 2.90 2.84
(1.54) (1.47) (1.56) (1.48) (1.57)
Married 0.60 0.69 0.57 0.67 0.56
(0.49) (0.46) (0.49) (0.47) {0.50)
Participation in TRA 0.24 0.36 0.20 0.32 0.20
(0.43) (0.48) {0.40) (0.47) (0.40)
Defined Benefit Pension 0.27 0.39 0.23 0.42 0.19
(0.44) (0.49) (0.42) (0.49) {0.39)
Home Owner 0.64 0.77 0.59 0.74 0.57
(0.48) (0.42) (0.49) (0.44) (0.49)
Years Education:
<12 0.13 0.07 0.15 0.07 0.16
(0.33) (0.25) (0.36) (0.26) (0.37)
12 0.38 0.35 0.39 0.35 0.39
(0.48) (0.48) (0.49) (0.48) (0.49)
> 12 and < 16 0.24 0.26 0.24 0.26 0.24
{0.43) (0.44) (0.43) (0.44) (0.42)
> 16 0.25 0.33 0.22 0.32 0.21
(0.43) (0.47) {0.42) (0.47) (0.41)

medians arc in brackets.
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TABLE 2. MEANS, STANDARD DEVIATIONS, AND MEDIANS OF ASSET MEASURES BY INCOME INTERVAL

Income

<$10K  $10-20K  $20-30K $30-40K $40-50K  $50-75K $75K+

Net Financial Assets 735 2,308 6,311 11,938 19,348 33,708 83,709
(10,827) (15,498) (30,615) (43,519) (54,773) (66,894) (157,168)

[0] 10] (400] [2,053] [5,761] (14,500] 143,779

Net Non-401(k) 431 1,543 4,979 8,775 14,942 25,179 66,999
Financial Assets (9,143)  (14,699) (29,525) (40,991) (52,718) (62,438) (151,627)
[0] [0] [110] [651] [3,437] (8,676] [29,800]

Total Wealth 16,235 21,620 36,730 55,119 74,006 105,285 202,240

(40,772) (43,631) (67,659) (83,203) (97,913) (119,531) (226,077)
(1,258]  [4,225) [12,500) [29,224] [44,197]  [71,025]  [152,500]

N 638 1,948 2,074 1,712 1,204 1,572 767

Note: The sample is drawn from the 1991 SIPP and consists of 9,915 obscrvations. The observational units
are houschold reference persons aged 25-64 and spouse if present. Households are included in the sample if
at least one person is employed and no one is self-employed. Standard deviations are in parentheses, and

medians are in brackets.
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FIGURE 1.
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Note: The sample size is 9,915. The left column contains standard quantile regression estimates, and the
right column contains instrumental quantile regression. Each panel is labeled with the dependent variable
used in estimation of the presented results. The bottom panel in each column compares the point estimates
for each wealth measure. The solid line corresponds to net financial assets, the dashed linc to net
non-401(k) financial assets, and the dash-dot line to total wealth. The vertical axis measures the dollar
increase in the wealth measure due to 401(k) participation. The quantile of the conditional wealth
distribution is on the horizontal axis. Covariates are as described in the main text. The shaded region is
the 95% confidence band using robust standard errors. Estimatcs are reported for 7 € [.10,.90] at .01 unit

intervals.
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TABLE 4. TESTS ON THE INSTRUMENTAL QUANTILE REGRESSION PROCESS IN THE FULL SAMPLE

Net Net Non-401(k)
Financial Assets Financial Assets Total Wealth
Null Hypothesis Statistic  c.gs Statistic  c.g5 Statistic  cgs5
No Effect 12.875  3.009 0.921 2.882 4.538 3.003
Constant Effect 9.093 3.321 0.843 3.452 1.850 3.213
Exogeneity 3.851 3.209 2.287 3.056 1.899 3.086

Note: The table report infercnce results on the inverse quantile regression process. Reported are
Kolmogorov-Smirnov statistics and 95% critical values. The statistics and critical values are computed
using the methods in Chernozhukov and Hansen (2002). The null hypotheses tested are as follows: no
effect - a(') = 0, constant effect - a(-) = a(.5), exogeneity - a(.) = agr(-), where a(-) denotes the

instrumental quantile regression process and agg(-) denotes the quantile regression process.
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FIGURE 2. EFFECT OF 401(K) PARTICIPATION ON NET FINANCIAL ASSETS BY INCOME INTERVAL
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Note: The figure reports the effect of 401(k) participation on net financial assets by income interval. Each
panel is labeled with the income interval to which it corresponds. The vertical axis measures the dollar
increase in net financial assets due to 401(k) participation. The quantile of the conditional net financial
assets distribution is on the horizontal axis. Covariates are as described in the main text. The shaded
region is the 95% confidence band using robust standard errors. Estimates are reported for 7 € [.20, .80] at
.01 unit intervals.
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Ficurk 3. EFFECT OF 401(K) PARTICIPATION ON NON-401(K) FINANCIAL ASSETS BY INCOME
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Note: The figure reports the effect of 401(k) participation on net non-401(k) financial assets by income
interval. Each panel is labeled with the income interval to which it corresponds. The vertical axis measures
the dollar increase in net non-401(k) financial assets due to 401(k) participation. The quantile of the
conditional net non-401(k) financial assets distribution is on the horizontal axis. Covariates are as
described in the main text. The shaded region is the 95% confidence band using robust standard errors.
Estimates are reported for 7 € [.20,.80] at .01 unit intervals.
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FIGURE 4. EFFECT OF 401(K) PARTICIPATION ON TOTAL WEALTH BY INCOME INTERVAL
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Note: The figure reports the effect of 401(k) participation on total wealth by income interval. Each panel is
labeled with the income interval to which it corresponds. The vertical axis measures the dollar increase in
total weaith due to 401(k) participation. The quantile of the conditional total wealth distribution is on the
horizontal axis. Covariates are as described in the main text. The shaded region is the 95% confidence
band using robust standard errors. Estimates are reported for 7 € .20, .80] at .01 unit intervals.
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FIGURE 5. EFFECT OF 401(x) PARTICIPATION ON WEALTH MEASURES BY INCOME INTERVAL
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Note: The figure compares the effect of 401(k) participation on net financial asscts, net non-401(k)
financial assets, and total wealth by income interval. Each panel is labeled with the income interval to
which it corresponds. The vertical axis measures the dollar increase in the wealth measures due to 401(k)
participation. The horizontal axis corresponds to the quantiles of the conditional distributions. Covariates
are as described in the main text. The solid line corresponds to net financial assets, the dashed line to net
non-401(k) financial assets, and the dash-dot line to total wealth. Estimates are reported for 7 € [.20, .80)
at .01 unit intervals.
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TABLE 5. TESTS ON THE INSTRUMENTAL QUANTILE REGRESSION PROCESS
BY INCOME INTERVAL

Net
Net Non-401(k)
Financial Assets Financial Asscts Total Wealth
Null Hypothesis Statistic  cos Statistic  cgs Statistic  c.g5
A. <$10K
No Effect 2.231 2.909 0.982 3.209 1.744 2.955
Constant Effect 2.021 3.786 0.982 3.947 1.636 3.894
Exogeneity 1.981 3.801 1.469 4.032 1.243 3.722
B. $10-20K
No Effect 4.811 2.754 1.177 2.725 2.723 2.758
Constant Effect 4.649 3.169 1.633 3.361 2.114 3.455
Exogeneity 1.927 3.012 1.756 3.073 0.783 3.058
C. $20-30K
No Effect 6.133 2.603 1.217 2.817 1.204 2.786
Constant Effect 4.418 3.140 1.260 3.262 0.807 3.145
Exogeneity 1.367 2.930 1.292 2.909 2.472 3.132
D. $30-40K
No Effect 6.746 2.895 0.550 2.738 2.5638 3.001
Constant Effect 4.243 3.186 0.707 3.127 1.367 3.340
Exogeneity 1.451 2.967 0.964 3.087 1.863 2.831
E. $40-50K
No Effect 5.678 2.760 0.673 3.000 2.648 2.724
Constant Effect 3.139 3.124 0.937 3.208 2.286 3.349
Exogeneity 0.980 2972 1.127 2.959 1.909 3.134
F. $50-75K
No Effect 6.475 2.817 1.253 2.612 3.402 2.831
Constant. Effect 3.410 3.202 1.820 3.135 2.112 3.109
Exogeneity 1.009 2.880 0.947 2.878 1.674 2.859
G. §75K+
No Effect 4.396 2.829 0.990 2.803 2.112 2.964
Constant Effect 2.721 3.266 1.017 3.339 1.827 3.410
Exogeneity 1.359 3.321 0.823 2.945 1.098 3.089

Note: The table report inference results on the inverse quantile regression process computed by income
intcrval. Reported are Kolmogorov-Smirnov statistics and 95% critical values. The statistics and critical
values are computed using the methods in Chernozhukov and Hansen (2002). The null hypotheses tested
are as follows: no effect - a(-) = 0, constant effect - a(:) = a(.5), exogeneity - a(-) = agr(-), where a(-)

denotes the instrumental quantile regression process and agg(-) denotes the quantile regression process.
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FIGURE 6. COMPARISON OF AA] AND IQR
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Note: The sample size is 9,915. The left column contains estimates obtained using the estimator of
Abadie, Angrist, and Imbens (2002) (AAI), and the right column compares them with the corresponding
estimates obtained through the IQR estimator of Chernozhukov and Hansen (2001). The solid line
corresponds to the IQR estimator, and the dashed line corresponds to the AAI estimator. Each panel is
labeled with the dependent variable used in estimation of the presented results. The bottom panel in the
left column compares the AAI point estimates for each wealth mecasure. The solid line corresponds to net
financial assets, the dashed line to net non-401(k) financial assets, and the dash-dot line to total wealth.
The vertical axis measures the dollar increase in the wealth measure due to 401(k) participation. The
quantile of the conditional wealth distribution is on the horizontal axis. Covariates are as described in the
main text. The shaded region is the 95% confidence band using robust standard errors. Estimates are
reported for 7 € [.10,.90] at .01 unit intervals.
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