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Abstract

Gene expression arrays are a technology used to measure quantities of messenger
ribonucleic acid (mRNA). Application of the technology involves a variety of physical
processes beginning with the acquisition of mRNA samples and ending with the
fluorescence imaging of a gene expression array. This thesis examines these physical
processes, develops a mechanistic model, and derives the analysis procedure based on the
model. Chief advantages of this approach are that it accounts for certain previously
unexplained array phenomena and is based in a clear way on physical knowledge
allowing non-arbitrary determination of both the probability that any given gene has
altered expression ratio relative to a control as well as the magnitude of this induction or
repression. We demonstrate its use on simulated and real array data, and show that a
considerable amount of previously unrecognized information concerning gene expression
differences 1s inherent i the array measurements.
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1 Introduction

1.1 Gene Expression

The workers, tools, and engines of life are proteins, long chains of amino acids
folded into unique shapes. Organisms express or build these proteins according to plans
coded in units of deoxyribonucleic acid (DNA) called genes [1-3]. A living cell's gene
expression and thus its production and inventory of proteins can vary widely. It is this
variation in gene expression that allows genetically identical cells to act and appear
entirely different and to change over time [4]. For example, every healthy cell in a human
body carries the same genetic code yet it is readily apparent that the body is built from
many types of cells such as hair cells, skin cells, and blood cells. What makes these cells
different are differences in gene expression and this is why measuring gene expression is

so important to understanding life on Earth.

When a gene is expressed its DNA is first transcribed into ribonucleic acid (RNA)
which is then translated into protein [4]. Since this RNA carries of copy of the gene from
DNA to protein it is called messenger RNA (mRNA) and measuring these intermediate
mRNA molecules measures one aspect of gene expression. Indeed, cellular mRNA
concentration has become the current working definition of gene expression [5]. The two
primary goals of gene expression profiling are to measure a sample's mRNA
concentration and to determine whether these concentrations differ significantly between
samples; if the concentrations differ between two samples, the gene is said to be

differentially expressed or simply “delta-expressed”.



1.2 Microarray Technology

1.2.1 Hybridization and Architecture

One family of profiling technologies, gene expression microarrays, measure
mRNA by using a special property of nucleic acids called hybridization; for each nucleic
acid strand there is a unique complimentary nucleic strand that will bind tightly together
or hybridize to form a double stranded helix [4]. Microarrays employ a dense array of
nucleic acid called “probe” patterned as spots on a substrate such as glass. Each spot
contains nucleic acid specific to a particular gene and the field of glass surrounding the
spots is treated to block unintended binding of sample or “target” nucleic acid. In this
way, the spots become sticky brooms that can sweep through a mixture of target nucleic
acid and collect particular genes onto particular spots. We now summarize these

technologies [5-12].

Hybridization applies to all nucleic acid including DNA and RNA. Therefore an
array can be printed with either DNA to bind mRNA directly or complimentary DNA
(cDNA) to bind DNA reverse transcribed from sample RNA. Furthermore, although
hybridization is strongest between entire strands of nucleic acid, short units of nucleic
acid (oligonucleotides) will also hybridize. The various DNA microarray technologies
differ in the manner of printing spot patterns, the spot size, the number of spots, whether
spots contain cDNA or DNA, and whether they use entire complimentary strands or
shorter oligonucleotides. This thesis applies in whole or in part to any array technology

that utilizes hybridization. Arrays using oligonucleotides particularly ones that are




relatively short such as Affymetrix arrays are likely to experience greater degrees of

cross-hvbridization (target nucleic acid binding to non-complimentary or “incorrect”
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test population (6 x) bound cDNA molecules
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Figure 1.1: Microarray Technology
probe molecules). Thus we suggest that our work should be augmented to include theory
tying together the multiple oligonucleotide spots intended to bind the same gene that are

usually included on short oligonucleotide arrays.

1.2.2 Co-hybridization

Aside from technological differences there are also two ways of running a
microarray. If the array printing technology is tightly controlled and very uniform then
we can be reasonably sure that spots for a particular gene are essentially identical from
array to array. Therefore, we can hybridize different samples on different arrays and later
directly compare these different arrays. One the other hand, if we are unsure that printing
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quality 1s uniform then we cannot reasonably directly compare different array
measurements. In this case, to compare two samples we must co-hybridize both samples
onto the same array thus eliminating the possible variability across different arrays. An
extension of this method is to run different samples on different arrays yet co-hybridized
with a reference sample. The remainder of this thesis focuses on co-hybridized arrays.
However, much of the analysis can be readily extended and in some parts simplified to

handle hybridization across multiple arrays.

1.2.3 Labeling Methods

In order measure hybridized nucleic acid the majority of microarray technologies
utilize fluorescence labeling. That is, dye molecules are incorporated into or attached to
the target nucleic acid. Once hybridized to the array the nucleic acid is fluorescently
imaged to obtain a measure of the amount of bound target. However, there are other
labeling techniques such as radioactive labeling and other detection methods such as
CMOS chips. Our hybridization analysis applies to any of these methods so long as the
expected signal in proportional to the number of bound target molecules. Our background
analysis applies to any of the imaging methods include radioactivity but alternate

detection methods would need to be evaluated on a case-by-case basis.

1.2.4 Sample Preparation

To employ the array, test and control mRNA is harvested and reverse transcribed
back into DNA. During reverse transcription fluorescent molecules are incorporated into

the DNA to allow quantification by fluorescence; one color is used for the test DNA and
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another for the control DNA. The labeled DNA samples are washed, purified, then mixed
together and the mixture is washed across the array allowing the cDNA spots to collect
and hybridize the DNA. Finally the array is washed and dried leaving behind molecules

of DNA bound to spots matching their specific gene.

1.2.5 Array Imaging

Once dried, the array is fluorescently imaged to measure the hybridized DNA. A
light source illuminates the fluorescent molecules attached to the DNA causing them to
excite and emit light of a particular color; one color for test DNA and one color for
control DNA. The light is separated by color and collected into detectors to record signals
for both test and control DNA across the entire array gene-array-imag. The two imaging
systems currently in common use are laser scanners and wide field imagers. Lascr
scanners scan a laser beam across the array to excite the DNA and use a photo multiplier
tube (PMT) to count the photons emitted at each position of the scan. Wide field imagers
excite Jarge blocks of the array simultaneously using a lamp and use a charge coupled
device (CCD) to count photons in a grid across this block. In both systems, the final
result is a grid of photon counts; the grid is imposed in laser scanners by the grid of scan
positions and in wide ficld imagers by the CCD detection grid. As a note, this grid of
photon counts or image is an artifact derived from the underlying presumably continuous
distribution of fluoresence and with each image pixel being an aggregate of the signal
from a small portion of the array. The objective of subsequent array analysis is to process
the red and green fluoresence signals to infer the sample-to-control mRNA ratio for every

gene.
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1.3 Microarray Analysis

Many of the steps described above are physically simple and well understood:;
however, each of them is a source of variability and, when taken as a whole, they form a
complex chain of mechanisms that, as we shall see, has eluded effective analysis for
many years. In fact, during the writing of this thesis a news feature in the journal Nature
[13] reflected upon the need for effective analytical tools. vital-stats Here are a few

quotes from the article:

“How do you separate significant differences in gene expression from background
fluctuation? ... there are no simple answers: interpreting microarray experiments
is taxing the skills of even the most adept number-crunchers... If trying to make
sense of microarray data has left you with spots circling before your eyes, you're
in good company. The problem is perverse ...”

-- Tilstone, Clair University of Bath

“It's a technical and esoteric topic... There are lots of good statisticians out there,
but not as many of them have been exposed to microarray data as are needed.”

-- Meltzer, Paul, National Human Genome Research Institute

“If the collection, analysis and interpretation of the data are flawed then it may
not only be a waste of a valuable resource, we could draw faulty conclusions and
potentially risk our health and environment.”

-- Fisher, Nick, Statistical Society of Australia
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Meltzer may be correct in pointing out that not many statisticians have been
exposed to microarray data, though there currently about nine hundred papers by more
than a hundred authors concerning gene expression analysis. 1 have personally read more
than three dozen papers regarding microarray image analysis alone. Perhaps a more
accurate assessment is that DNA microarray technologies utilize physics and chemistry
that many statisticians may not be familiar with. Thus, they may lack key insight into the
physical mechanisms at play that would otherwise guide and perhaps ease their analytical
efforts. In addition, biological systems are notorious for high variability, array
experiments are expensive to repeat, and certain experiments may not be repeatable at all.
This high variability and scarcity of repeats breaks common statistical methods and

renders many of a statisticians tools ineffective.

On the other hand, the scientist familiar with physical, chemical, and biological
mechanism are faced with an equally daunting analysis problem. Probability theory
treads a narrow path surrounded by subtle pitfalls. Applying it correctly and effectively
takes training, experience, and time and often the resulting analytical procedures are often
computationally difficult or even impossible with present technology. Add to this the
additional burden of understanding contemporary statistical jargon and the problem does

indeed seem, as Tilstone comments, perverse.

Finally, even when a hybrid statistician-scientist well versed in both gene

expression technology and statistical analysis is available, the simple and yet essential
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experiments needed to gain insight and understanding my not be readily accessible. It is
probably for these reasons rather than a simple lack of exposure that effective array

analysis still remains a challenge.

Over the last several years, microarray use exploded with researches everywhere
attempting to forge ahead with genome wide studies. Yet, the simple experiments needed
to fundamentally understand, analyze, and control the results were never done. The result
is that researchers now find themselves drowning in deep pools of data that at best cannot
be efficiently summarized, communicated, or shared and at worst seem to make no sense
at all. Nick Fisher, in his comment above, points out some of the dangers of proceeding

further without first sorting out the analysis of array data.

This thesis grew in an attempt to help meet these needs, to take steps toward
melding a physically based quantitative analytical approach to this complex life sciences
technology; however, considerable effort is still needed before we will have an approach
that we can consider to truly encompass the majority of physical processes inherent in
arrays experiments. Though we believe we are taking important steps in the right
direction they are only a few steps with many more still needed. What we contribute are
carefully designed experiments to elucidate array mechanisms, a physical model that ties
the mechanisms together and explains several observed array phenomena, and analytical

tools specifically tailored to this physical model.
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1.3.1 The State of the Art

Most would agree that if we could repeat an array experiment many times, then
debate over analytical procedures would dwindle away and we could use common
statistical methods however inefficient to obtain the reasonable estimates of the degree
delta-expression and measurement confidence. However, it is also recognized that with
biological systems such repetition is often prohibitive or even impossible thereby limiting
or eliminating the availability of replicates. To make viable inferences, this lack of
experimental information must be compensated with informative prior knowledge in the

form of physical models.

We surveyed the previous attempts to bridge this knowledge gap and found a
trend toward models of increasing statistical detail but little or no advances in physical
understanding. Probably the first model was that of Chen ef a/ who modeled the
distribution of expression ratios as the ratio of two Gaussian distributions [14]. The only
justification offered for this choice were arguments regarding the nimbleness of gene
expression. The authors focused on modeling ratios which has a subtle but important
drawback. If the choice of what we call “test” or “control” and hence “red” or “green” is
simply a matter of naming then half of the possible ratios fall between zero and one while
the other half lie in the significantly larger interval of one to infinity. This inherent
asymmetry yield a method whose confidence intervals were likewise asymmetric in red
and green; in other words, their methods gives diverse conclusions in the case of a dye-
swap or simply a change in which mRNA sample the experimenter decides to call red or

green. Even if the method were corrected for this asymmetry its chief disadvantage is that
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is makes artificial assumptions about the global distribution of expression ratios which is
in fact the very quantity we are trying to determine. For samples with very few delta-
expressed genes this may not be a significant problem however for general expression

profiles the assumption would be problematic.

Despite its drawbacks, the use of ratio-based statistics persisted for at least a few
years. Newton et al developed a more advanced ratio-based scheme that utilized replicate
data an intensity error with multiplicative and additive errors stating they had arrived at
this model empirically after examining many data sets, and completed the work with a
maximum likelihood estimator [15]. Theilhaber e al used a similar error model to
develop a Bayesian ratio-based estimator and accompanying algorithm complete with a

fantastic acronym, PFOLD [16].

Though the asymmetric ratio model of Chen et a/ remained the only published
error model for a few years after the development of microarrays, some authors were
simultaneously (or at least soon after) using the log ratio metric rather than simple ratio.
Though we cannot trace the exact origin of this log transformation one of the earliest
mentions is in the clustering work of Eisen et al [17]. The logarithm transformation is
perhaps the most natural and intuitive metric other than ratio. For example, it represents
the notion of fold changes (as in two fold, four fold, etc) in a linear scale. Most
importantly from a statistical standpoint, the scaling is symmetric for over-expressed and

under-expressed genes. That is, regardless of which sample is called test or control or red
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or green, any conclusions remain physically unchanged. Within two years of Eisen et al,

a plethora of statistical error models were emerged for the log ratio metric [18-24].

Apart from these general trends there are two notable additions. Many researchers
intuitively recognized that not only ratios but also the magnitude of the total intensity
should contain information relevant to the measurement confidence. Accordingly,
Newton et al modeled average spot intensities in an attempt to capture this information
content in a spirit similar to Ideker ef al. In their lofty yet almost comedic sounding “On
Differential Variability of Expression Ratios: Improving Statistical Inference about Gene
Expression Changes from Microarray Data” [25] they utilized gamma distributions
chosen solely for analytical convenience. It is therefore not surprising that the model does
not agree with real array data, failing to capture the intensity covariance typical of
microarray measurements. We show a plot of their model fit to real data in our resulis
section. On the other hand, in a fascinating and by comparison rather early work, Audic
et al derive a novel significance tested by observing the sampling characteristic of
sequence tag based expression profiling [26]. In fact, our results will prove similar in
some ways to these early results of Audic ef al. Our molecular distribution work could be

viewed as a generalization of the their significance model.

In a final work, Sorger et al examined microscopically imaged array spots
discovering structure and variability at even smaller scales and believed that, like
intensity magnitude, this pixel information might also be relevant to spot quality and

measurement confidence {27]. They attempted to capture this by modeling pixel
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intensities as independent normal deviates and developed a novel measured of spot ratio
variability. As far as we know, this is the first work attempting to quantify the quality of a
spot based on its microscopic structure. A large portion of our work will be to extend this
effort and provide a firmer footing in physical theory for the pixel-to-pixel variation with

individual spots.

1.3.2 Conclusions

As you can see, even from our partial review, since the advent of microarrays in
1995 the art microarray statistical analysis has grown considerably. However, there is a
crucial point we need to make. With the partial exception of Audic et al, none of the
works we’ve cited offer any real physical basis for their error or significance models.
That is, they propose various models but never provide a mechanistic explanation for
why we should believe their model over any competing models. Therefore, we believe it
is fair to classify the state of the art as ad hoc. To be sure, many of these model do a fair
job of presenting actual data. For example the model of Ideker et al was arrived at after
examining many data sets and from our experience it is empirically pretty good. On the
other hand, the model of Newton et al was arrived at for the sake of convenience and fails
quite spectacularly. This is the limitation of ad hoc models. While we may find models
that fit a given set of data we can have little confidence that they fit a wider range of
conditions. On the other hand, if we derive models from a physical theory that we believe
hold for a wide range of conditions then we will have far greater confidence in our model

to hold under those conditions.
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Accordingly, our aim is to develop the beginnings of a microarray model based on
physical theory. It will certainly be far from complete but it will be physically based, it
will explain some interesting array phenomena, and most importantly it will be testable.
That is, since it will be based on physical hypotheses we will be able to and we shall
physically test those hypotheses. Finally, it will gives us a common physical foundation
upon which scientist can communicate and combine results with confidence or at least
awareness of the underlying physical assumptions rather than a set of ad hoc and abstract

criteria.
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2 Physical Modeling

Finding a mathematical form that describes the behavior of a given physical
system cannot be left to chance. Furthermore, even if we chanced upon a form that
seemed to describe a set of obscrvations, we would have little power to generalize unless
we could explain the form with existing physical theory. Therefore, we believe it is
essential to derive analytical tools or statistics from established physical theory. Doing so
helps guide us to a reasonable form, allows us to evaluate the application of the form to
related experimental conditions, and perhaps most importantly opens the model and its

assumptions to physical testing.

In this chapter we apply a simple mass action theory to discern the equilibrium
behavior of array hybridization, show how to correct for the imaging artifact of
background signal, shown the sufficiency of a simple signal normalization procedure,
apply symmetry arguments to evaluate hybridization variability, and finally use Bayesian
analysis to derive the resulting analytical procedures needed to infer expression ratio and

measurement confidence.

2.1 Mass Action Equilibrium

During co-hybridization red and green target molecules are combined and allowed
to come to equilibrium with the array surface. We can model this equilibrium using
classical equilibrium thermodynamics. Our work extends the equilibrium derivation of

Held et al/ [28] to handle binding of two distinct target species, red and green.
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The fundamental physical unit of observation on the array surface is the pixel.
This is a region of the surface from which the imaging system counts photons and
aggregates a corresponding signal. The pixel surface contains some unknown number of
nucleotide molecules called probes or binding sites, each capable of hybridizing a single
target molecule. At any moment in time there will be s free probe molecules and r and

2 bound red and green molecules occupying » + g of the total binding sites s, within
the pixel. If there are r, and g, total red and green molecules in the system then a mass

balance on the red and green molecules gives

re=F—r
" (1)
g =8r— 8

where #, and g, are the free red and green molecules available to bind the pixel element.

In principle the hybridization reaction is reversible and hence the equilibrium equations
are

K, r=rs

(2)

where K, and K, are the red and green equilibrium constants. Solving these equations

allows us to eliminate the number of free molecules

3)
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to give the number of bound red and green molecules at equilibrium as a function of the
equilibrium constant and the number of free binding sites. The ratio of the bound red and

green molecules is then

e (4)

2.1.1 Saturating Conditions

If the probe saturates the target (s >> K, and s >> K) or K, = K, then the ratio

simplifies to

¥ r,
teL (3)
g &
If instead the target saturates the probe (s ~ 0) then the ratio becomes
r r K
—_—_r s (6)
g gT Kr

Thus, under saturating conditions for either probe or target, or if the both red and green
molecules bind equally then the ratio of red to green bound molecules is simply
proportional to the total number of red and green molecules in the starting hybridization
solution. Recall that this proportion of red to green total molecules is the very quantity we

are trying to assay.

2.1.2 Conclusions

For the remainder of this work we assume that K, = K. This assumption is
reasonable considering that good experimental design aims to insure that fluorophores do

not affect hybridization and we have not yet seen any direct evidence for probe dependent
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hybridization. In this case the numbers of bound red and green are proportional and the
constant of proportionality or slope of their linear relation is simply the ratio of total red
to total green molecules. Though we do not consider the effect that probe dependent
hybridization could have, we believe it would be beneficial to explore such effects. We
also note that a common assumption for spotted arrays is that the probe saturates the
target. That is, there is a vast abundance of possible binding sites. In this case as well
probe dependent hybridization would not affect the measured ratio since nearly all of the
red and green molecules are captured. However, array technologies that use small binding

regions such as Affymetrix arrays can show saturation of the probe by the target [28].

Finally, we wish to point out that since the number of bound molecules in a pixels
element varies with the number of free binding sites and consequently the total number of
binding sites within that pixel, the total brightness can vary from pixel to pixel due to
varying surface properties of the array. Indeed, these total intensity fluctuations can be
high if surface uniformity is low. However, these intensity fluctuations are entirely
expected and importantly they do not change the proportionality between red and green.
Thus, we believe for example that the notion of pin dependent differences in relative red
to green hybridization are not sound [22] and we will show that previously observed

evidence for this can be attributed to problems with background correction.

2.2 Hybridization Variation

When researchers began using array imagers with pixels much smaller than array

spots [27] they expected to see variation in brightness across the spot. After all, DNA
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printing techniques are not perfect and they will deposit variable amounts of DNA
throughout the spot. Some of these variations are quite spectacular such as donuts which
are bright rings surrounding dark cores and dark lines caused by scratching during array
handling. However, once pixel level detail began to arrive not only did researchers see
brightness variation as expected they also saw unexpected variation in color and this

variation in color seemed to increase in proportion to overall brightness.

This was unexpected because the primary source of pixel variation was thought to
be either cDNA printing or background. As we've discussed cDNA printing does produce
brightness variation however there's no physical reason why it should produce color
variation since the amount of probe DNA in a pixel should affect both test and control
hybridization equally as they compete for binding sites again. On the other hand,
background variation is thought to be a fixed process shared throughout the array and
thus should not vary with individual pixel brightness. So from where do these color

variations originate?

We think the source of color variation is hybridization. During hybridization, the
molecules of test and control targets compete with each other to bind probe molecules.
We will show that hybridization can create color variability as seen in arrays and that this

variability is binomial.
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2.2.1 Molecular Distribution

We now introduce a simple formalization of gene expression arrays that relies on
the symmetric hybridization of red and green molecules that is the binding equilibrium
constants are assumed to be equal. This formalization will allow us to derive again the
fundamental result of Equation (5) as well as additional theories regarding the

distribution of red and green bound molecules.

No matter the array surface quality, nor hybridization Kinetics, nor whether
equilibrium is achieved, nor the subsequent handling such as washing or accidental
scratching the end result of array processing is always the same: each pixel contains an
unknown number, », of target molecules sampled from the starting rr and gr red and

green target molecules.

lost CONA starting CDNA DOUF;C' C?NA
molecules molecules rand g, molecules
MNNANy NP AANAAN A
ANAN WV}NVM ANAAN, A
AN WD ARG MW AN

distribute ro (black) and g4 (white) identical molecules into two groups

lost molecules bound molecules
NN A T N NN EEN EEEEEN
' H 0 BN BB N HE B EEE BE B

S B B BB NN RENEE N E NN

all permutations equally likely
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If the various physical processes are color blind in the sense that individual target
molecules are equally likely to bind whether they are red or green then this sampling
process is equivalent to the classic balls in an urn problems and the resulting distribution

of red and green molecules is the hypergeometric distribution

rabeat=oiee() )0 ) ”

A good approximation for this fundamental distribution is the binomial Gaussian
distribution
fzfr:rr/(rr+g.,)
1-f=/ :g,,/(n,. +g7.)

e =D 2S) | plrre]
/1= p{ 2(’+g)f(1—f)LKr+g)f(l~f) ®

(fi-gs) | plr+e]l
200+ )4 S |+ )1 1,

plr.g

p[r.glf]=exp| -

where £, and f; are the fraction of probe molecules that are red and green respectively.
Equation (8) gives the chance that there are r red and g green probe molecules bound
within a pixel given that the fraction of red is £, Notice that in both equation (7) and
equation (8) there is an unspecified probability pir+g=n]. This is the prior probability for
the total number of bound target molecules. Here we will use Jeffrey's prior p[n}=1/n to
express ignorance about the scale of n [29,30]

(rf,g—gf,)2 i
2(r+g)frfg \E-i-g)gfrfg

Since Jeffrey's prior cannot be normalized over an infinite range we have expressed the

p[r.glf ]« exp) - (9)

joint probability as a proportionality rather than an equality.
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This binomial process causes variation that will increase with total number of
bound molecules and thus with increasing brightness. Furthermore, this underlying
variation is amplified by fluorescent labeling and subsequent fluorescent imaging each of
which can generate multiple counts from a single bound DNA molecule. This
amplification allows the binomial color variation to grow in proportion increasing
brightness just as observed. To test whether the probability distribution of equation (9)
correctly describes the variation of our experimental data we compared the empirical
cumulative and P-value to the predicted cumulative and P-value. Is the distribution is

accurate then the predicted and empirical probabilities should follow a 1 to 1 correlation.

2.3 Fluoresence

Since we cannot count bound ¢cDNA molecules directly we count the photons
fluorescently emitted by their attached labels. Fluorescence is a well-understood classic
Poisson process. For every pixel we measure a number of red R and green G signal

counts that are related to the number of bound red » and green g cDNA molecules by

_ e (ru)

P[R|f,,u:| TR
—gp G
p[Gleu]=— ég,#)

()=2r _;;(”3, (10)

=Ru’'=Rq
-3

=G,u =Grn
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where 7 is the brightness parameter representing the expected number of target molecules
per emitted photon. It is affected by a number of optical factors including labeling
efficiency, dye quantum yield, detector efficiency, exposure time, pixel size, etc. Here red
and green share the same brightness factor because background correction and
normalization is presumed to correct for differences between the red and green channels
including any channel bias. However, the constant of proportionality is unique for each
gene in the array. We cannot necessarily assume that it is same for different genes
because DNA molecules can easily incorporate gene specific amounts of fluorescent
probe simply by virtue of having a different sequence and thus a different number of
potential incorporation sites for any given labeled nucleotide. Using these equations we
can transform p[r,g|f] to p[R,G|f] which the probability of a red and green signal pair

from a single pixel

or or,
AR oG
0
- plralr]; q‘ (an
= plrglf 7

which after a substituting equation (9) gives the desired probability of a pixel intensity

pair given the reciprocal brightness
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Having the probability of a single pixel the probability of an entire spot or set of N pixels

o exp

is simply the joint probability of the individual pixels

p{RG}
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The brightness parameter 7 is unknown and not of direct interest. Such parameters are
called nuisance parameters and can be climinated by marginalization that is by

integrating over the possible values of the parameter. This yields

p[{RGYf]= [ p[{RG}|n. f]p[n)dn
. ) (Rf GLY | 5 \ay |
rexp|: {R(}(R'*'G)ff kfr“ ;J ﬂpel_(I(R'i'G)} (14

(r4,-61) Gf)z\ : |
LZ ko)

i (R+G) wa(R+GY
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which is the probability of a spot given f only. Here the product and summation are over

all pixels within a spot.

2.4 Bayesian Analysis

Now we use Bayes thcorem [29,30] to invert the probability distribution to obtain

the probability of f given a spot

(Rp-61)V"

p[/I{RG} ] 2R G) J rl/]
) (Rj;)z—2RGf,j;+(Gf,)2Y§
PLIRGH = 3 ®+0) | o] (1s)

N
« (RRf7 —2RG £, f,+GG f2)* p[/]

In the final form the summation over the data must be computed only once to derive the

statistics

R2
) {%} (R+G)
_ RG
B {R.G} (R + G)

G2
GG =
{sz;} (R+G)

RG (16)

which can then simply reused for new values of /. This distribution is akin to the Student-

T distribution. Since the generally accepted measure of gene expression is log ratio

ol

-7 (17)

eP
1+¢”

/
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we transform this probability distribution to the log ratio domain

( e’ 82;7 \_%
p[Pl{KG}]"CLRR(H ¥ (1+ep)z+GG(1+e/’j} rlrl
(

) (18)
( oI 4 o 9/2)2 e
L "RR-2RG +ePGGJ rle]
where we can approximate the mean and variance by
S o [RR+ RG i\
P= 8 GG+ RG
( a’ \_1
Viwb :L—dpz [P[pI{R,G}] jl J (19)
2

RRGG—-RG*( RR+2RG+GG Y
N L(RR + RGYGG + RG)J

=

Since the mean and variance are computed from the uncertain foreground values we
would like to propagate this uncertainty into these estimates. We handle this

computationally using the standard error propagation rules given by

Var( xty ) = Var(x) + Var(y)
Var( xqy ) = Var(x)y? + Var(y)x™
. - (20)
Var( xly ) = Var(x)y? + Var(y) x? y
Var( log[x] ) = Var(x)x”

This error propagation is actually quite easy to implement in C++ by defining a class
representing uncertain quantities that maintains both a mean and variance. Then for
example Equation (19) is implemented using this class rather than the usual floating-point

numbers. Below is our implementation of such a class.
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class Uncertain :

Uncertain exp ( Uncertain ) :
Uncertain log ( Uncertain )} ;

class Uncertain {

friend Uncertain exp ( Uncertain )} ;
friend Uncertain log { Uncertain ) ;

double mean ;
double _vari ;

public
Uncertain ( )} ;
Uncertain
double mean ) :
_mean { mean ) , _vari ( 0.00 ) { }
Uncertain {
double mean , double vwvari )
~mean ( mean ) , _vari ( vari ) { }
double mean { ) const { return mean ; }
double vari { } ceonst { return vari ; }
void mean ( double mean ) { mean = mean ; }
void vari ( double vari ) { _vari = vari ; }
Uncertain & operator+= { Uncertain const & }
Uncertain & operator-= { Uncertain const & ) ;
Uncertain & operator*= ( Uncertain const & ) ;
Uncertain & operator/= ({ Uncertain const & ) ;
Uncertain operator+ ( Uncertain u ) { return u += *this ; 1}
Uncertain operator~ { Uncertain const & u ) { Uncertain
L (*this) ; return t -=u ; }
Uncertain operator* ( Uncertain u ) { return u *= *this ; }
Uncertain operator/ { Uncertain const & u ) { Uncertain
t(*this) ; return t /= u ; }
b
inline Uncertain & Uncertain::operator+= ( Uncertain const & u ) {
_mean += u._mean ;
_vari += u.,_vari ;
return *this ;
}
inline Uncertain & Uncertain::operator—-= ( Uncertain const & u ) {

_mean -= u. mean ;

32




~vari += u._vari ;

return *this ;

inline Uncertain & Uncertain::operator*=

~vari *= u. mean * u._mean ;

~vari += u. vari * mean * mean ;

_mean *= u. mean ;

return *this ;

}

inline Uncertain & Uncertain::operator/=

double umr
double umrs =

* =

_mean umr
_vari *= umrs ;
vari

return *this ;

Uncertain
Uncertain
Uncertain
Uncertain
Uncertain
Uncertain
Uncertain
Unicertain

operator+ (Uncertain
operator- (Uncertain
operator* (Uncertain

operator/ {(Uncertain u,

operator+ (double
operator- (double
operator* (double
operator/ (double

d,
d,
d,
d,

The end result is two measures

hybridization and one representing background uncertainty. There is one additional
variance that must be included at that is the sample preparation variance. The only way
we currently know of to estimate this variance is by spiking in same to same controls.
Since these should have an expected log ratio of zero (after background correction
normalization) their variance serves as an estimate of the variance caused by sample

preparation. Of course, the some of the variance observed in the log ratio is caused by

1.0 / u. mean ;
umr * umr

double
double
double
double
Uncertain
Uncertain
Uncertain
Uncertain

u,
u,
u,

{

{

e — e e e A

+= u,_varl * mean * _mean * umrs ;

return
return
return
return
return
return
return
return

Uncertain const & u )} {

Uncertain const & u ) {

u+=Uncertain(d)
u-=Uncertain{d)
u*=Uncertain (d)
u/=Uncertain(d)
Uncertain(d) +=u

Uncertain(d)-=u
Uncertain (d) *=u
Uncertain(d)/=u

e e e e e

of variance; one representing the uncertainty of
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hybridization and background. Therefore, we must subtract the estimated hybridization
and background variance for each same-to-same control from the total variance for all
same-to-same controls. This quantity divided by the number of samples is then the

estimate for the sample preparation variance v .. The probability density for a gene is
then given by normal distribution p[ pl{R,G}] =N ( PV e t Vi + vm,) and the
probability of differential expression is then given by 8/(1+ &) where

plo=0jna]

[ r[lirGplelde
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3 Background And Normalization

The theory of the previous section indicated that the equilibrium red and green
signals should be proportional. To investigate this we conducted a same-to-same array
experiment replicated four times. In a same-to-same experiment a single mRNA sample
is split to form the test and control samples. Therefore, we would expect not only that the
red and green signals are proportional but also that their proportionality constant is one.
Since array signals typically range over several orders of magnitude it is common to view

them in log transformed space.
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Figure 3.1 : Apparent Non-Linearity of Microarray Data

Figure 2.1 shows the distinct banana shape that is common with raw microarray
data in log-transformed spaces. The curved distributions have vexed many researchers

over the years including us and caused some to believe there is an inherent non-linearity
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of array data. This has led some authors to develop non-linear correction or normalization
schemes such as LOESS [22], rank-invariant [31], and variance stabilization [32].
However, it turns out that the explanation for this apparent curvature is
exceedingly simple even verging on the trivial. The fact is we should not have been
surprised to see curves in these log-transformed spaces because the log transform is itself
non-linear. In fact, a straight will remain a straight line after transformation if and only if
it intersects the origin. This means that if there is any constant offset in either the red or
green channel we will see curves in these transformed spaces. And the key is that
background processes act as an offset from the origin thereby causing the curvature
shown in Figure 2.1. We will explain background in more detail, derive a new corrective

procedure, and demonstrate that the procedure removes the illusory curvature.

3.1 General

Array imagers are intended to measure foreground signal from hybridized DNA
within spots. However, they will measure signal from every spot regardless of whether it
contains hybridized DNA or not and they will even measure signal from the field. To
paraphrase George Orwell, this unwanted and unavoidable background signal falls upon
the foreground like a soft snow blurring the outlines and covering up the details. And in

science, the search for truth, the last thing we want is a snow job.

If we knew the exact value of the background in each pixel we could simply
subtract it from the total signal to recover the foreground. Unfortunately. background and

foreground signals are indistinguishable making their individual values unknown thus
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requiring probabilistic correction. To derive an appropriate correction we first consider

the major sources of background.

3.2 Sources

There are a variety of background sources. The majority of which are physically
unavoidable. There are three broad categories of background signal: radiation, thermal

noise, and material fluorescence.

3.2.1 Radiation

The same properties that allow array imagers to detect photons of light from
fluorescent molecules also cause them to detect other radiation sources. Array imaging
detectors are subject to at least five unwanted sources of radiation including excitation

leakage, thermal radiation, gamma rays, cosmic rays, and nuclear decay.

The fluorescent molecules attached to the sample DNA will only emit light if they
are excited by an energy source. In array imagers the energy source is light provided by a
laser beam or powerful lamp. Of course, this light can generate signal just as easily as the
fluorescent DNA. To prevent the excitation light from generating signal, array imagers
employ filters, beam splitters, dichroic mirrors, or other such light handling devices.
However, these devices are not perfect and some excitation light leaks into the detector

and generates signal.
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Thermal radiation is the light emitted by all materials at temperatures above
absolute zero. A clear demonstration is the red glow of a hot iron or other metal from
whence the saying red hot originates. As the temperature increases the spectrum and
intensity of light changes following Plank's Law. At temperatures typical of laboratories
the effect is of course not visible. None the less, black body photons from any material

surrounding an imaging detector can produce signal however negligible it might be.

High energy photons and particles abound in space and the earth is daily
bombarded by them. Both the photon, gamma rays, and particles, cosmic rays, can
interact directly with photon detector. The cosmic rays can also interact with particles in
the atmosphete to produce additional gamma rays. Both gamma rays and cosmic rays
possess far more than enough energy to generate large signals often in array detectors

often saturating the detector and in the case of CCDs spill or bloom into adjacent pixels.

Apart from outer space, there are local sources of high energy photons and
particles. Many elements surrounding us occur as isotopes that undergo nuclear decay
producing high energy radiation. For example, Potassium isotope 40 undergoes nuclear
decay and is present in many common materials including our own bodies so detectors
can easily pick up charge from this source. Some optical lenses even contain as much as

twelve weight percent potassium and will readily add to background signal.
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3.2.2 Thermal Energy

Thermal energy can produce signal directly in the detectors by knocking electrons
off the semiconductor atoms thereby generating charge. These thermal electrons or
thermions are identical to electrons knocked off by photons and so are recorded as signal.
As with black body radiation the effect is reduced as the detector is cooled. CCDs for
example are almost always cooled to temperatures below room temperature to help

reduce background.

3.2.3 Material Fluorescence

For gene expression arrays the dominant source of background is most likely
material fluorescence. After hybridization the array is washed in an effort to remove
unbound cDNA, free dye, oils, dust, or any other stray material leaving behind only the
array surface and hybridized cDNA. Of course the process is imperfect and leaves behind
material that will fluorescence and produce signal. Furthermore, nucleic acids are

themselves weakly fluorescent and can generate additional signal

3.3 Estimation

Despite knowing the many sources of background, we have yet to find a
satisfactory background model. This is understandable considering the variety and
complexity of background sources particularly material fluorescence. Attempting to
theoretically model material fluorescence is like trying modeling a dusty coffee stain

partially wiped by a moist sponge.
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Though we can not theoretically model background nor experimentally separate

background and foreground signals we can attempt to experimentally ensure that some

parts of the array generate only background signal. For example, we can print spots with

no DNA or DNA entirely different from any sample DNA thereby creating spots that will

not be complimentary to any sample genes and hence should not hybridize. These

negative control spots undergo the same array processing as spots containing

complimentary DNA and except for lacking specific hybridization they should undergo

the same physical processes that cause background in spots elsewhere in the array. Thus,

these negative control pixel serve as samples of the array background.
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Figure 3.2 : Background Sampling and Correction

The top four panels of Figure 3.2 show the frequency distribution of background

counts from negative control spots shown for four different arrays. The distribution is
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fairly centralized and shows dependence between red and green signals. However, it is
not symmetric enough to be modeled well by a bivariate Gaussian and we have yet to
find a suitable model. The middle four pancls show the frequency distribution of the
sample pixels from the array. Interesting, you can see a faint “after- image” of the
background distribution which we have highlighted by overlaying contours for the
background frequency distribution. This after-image is a good sign. Because it falls
nicely on the origin of the sample pixels it means that the background processes in the
sample spots are similar to the background processes of the negative control spots.
Therefore, using negatives controls to estimate background signals in the sample spots is
at least feasible. The bottom four panels show background corrected data which is pulled
nicely back to mathematical origin (0,0). We will discuss this corrective procedure in a

following section.

In passing, we need to make an important point. Despite it's widespread use, the
array field does not serve as a good sample of spot background. The most vivid proof of
this are the commonly observed black holes [27]. These are spots whose pixel intensities
fall below the surrounding field intensity. Far from rare they appear frequently in arrays
that have moderate or even low average field intensity. We believe this clearly
demonstrates that treatment differences between spots and field substrate affect
background signal mostly likely through differences in material fluorescence such as
non-specific binding of free dye. Thus, we should not expect surrounding field to serve

directly as a good estimate for spot background and using as such is an error. There may
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well be a relationship between field and spot background but that is as yet undetermined

and it is unlikely to be a simple relation and certainly it is not one of equivalence.

Once we have the background pixel samples from negative controls, what shall
we do with them? Since we do not have a prior background model for which we could
derive parameters we simply use the background pixel frequency distribution as an
empirical background probability distribution. Thus, it is in essence a very 1gnorant

empirical free-form model with as many parameters as there are unique pixel values.

3.4 Subtraction

As mentioned before, if we knew the exact value of the background signal we
could subtract it from the total signal to recover the foreground signal. A slight
modification of this procedure is to subtract the mean of the background probability
distribution from the total signal. The justification for this procedure is the linearity of

expectation. The expected value of the foreground intensities R and G is given by

<R>=(RM _RB)
(G) = (GM - GB)
(R)= R, ~(R,) Y
<G>=GM *(GB)

where R, and G, are the measured intensities and are Rp and Gp the background
intensities. It is precisely this procedure that is widely used and widely referred to as
background subtraction. Unfortunately, it is wrong. Stark evidence for the error of

background subtraction is the fact that the resulting foreground signals are often negative,
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which is certainly physically meaningless. Indeed, some authors have even stopped
attempting any manner of background correction at all recognizing that background

subtraction produces errors and believing there is no alternative.

3.5 Correction

The error in the derivation of (21) is that it fails to account for the fact that
possible background values are logically dependent on the total signal since the
background signal cannot be greater than the total signal; a part is never greater than the
whole. Therefore the expected value of the background is actually a function of the
measured signal. Since background cannot be higher than the total number of counts, the
background expectation must be taken only over values up to the total count yielding

<R> = <RM - RH)
(G> = (GM - GB)
(R) =R, - (RB{RM’GM>
<G> =Gy, - <G8|RM’GM>

Ry Gy

(RY=Ry,— 2. D> Ryp[R,.G,|R,.G,,]

Ry=00ig =0

(22)

Ry Gy
(G): Gy - Z Z GHP[RBSGB|RM=GM:]
Ry=0Gy=0
which compute expected foreground or corrected signal. This simple result ensures that
corrected signals are logically consistent; one side effect is that negative foreground
values never occur. The next four two figures show the background corrected pixels for
same-to-same arrays. Though a seemingly small and simple correction to the erroneous

background subtraction, coming chapters will show that background correction has an

essential impact on the accurate interpretation of array data.
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3.6 Uncertainty

In addition to correcting for the background by computing the expected

forcground signal, we wish to quantify the uncertainty we have in this corrected

foreground signal. In other words, since we know only the background probability

distribution and not the exact value of the background our quantification of the

foreground is also a probability distribution and we would like to quantify the spread of

this distribution. This is easily done by computing the variance of the foreground

(23)

intensities
Ry Uy
Vigr ™ Z z (RM - R, _<R))Z pI:RH7GH|RM7GM]
Ry =0 iy =0
Ry Gy
ng,(; = Z Z (GM - GB 7(G>)2 pl:RﬂﬂGB|RM’GM:]

Rp=00iy=0

Later this uncertainty will be propagated using the usual error propagation rules (Sivia)

into our computed statistics.
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Figure 3.3: Linearity Revealed
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Figure 3.4: Linearity of M vs A

When the simple background correction is applied to the same-to-same data shown

previously the effect is quite striking. Log space distributions that previously appeared

curved are now straight and the banana shaped M vs A curve has also fallen flat. We
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believe this supports the proportionality of red and green signals derived from mass
action.

Often we are asked about the appatent increase in variability in M vs A space at
especially at low values of A. Many believe that this is in some way a disadvantage of
background correction. Such beliefs are understandable though they are in fact
misconceptions. The beliefs derive from the entirely correct belief that decreasing
experimental variability is a good thing. That is, if we replicate an experimental setup we
expect that it will produce the nearly the same measurements; this is the heart of
repeatability which is after all a core component of science. Of course, there will be small
variations among our experiments no matter how precisely we attempt to control the
conditions. Therefore, if we can reduce this variability then we are demonstrating greater
control and understanding of the experiment. The critical point here is that we are
describing reduction in experimental variability not mathematically transformed

variability.

For example, T could arbitrarily add the value 1,000,000 to all the measured
intensities and in doing so 1 would drastically decrease the variability of the resulting
computations of M. Obviously, this is not in any sense an improvement since it in no way
leads us closer to any truth. This is precisely the same affect, though to a much lesser
degree, that background has on data. It adds an unwanted quantity to the data thereby
obscuring the variability of the true underlying signal. Correcting for this background
does nothing more than reveal this hidden variation. In other words, it melts the snow job,

it pulls back the curtain to reveal the features of the true data. This is a good thing.

46




3.7 Normalization

The M vs A plots of background corrected data shown in the previous chapter
reveal a second array phenomena. Since this data is from a same-to-same arrays we
would expect that the pixel distribution would be centered around M = 0 in the M vs A
plot. However, it is evident that the entire distribution is shifted well below M = 0. This

phenomenon is channel bias and must be corrected by a normalization procedure.

Array protocols attempt to minimize experimental variation and bias by treating
target samples as similarly as possible. However, there are inevitable differences of
treatment between different target samples. The clearest example is that target samples
hybridized to the same array must be labeled with different fluorophores otherwise they
would be indistinguishable. These fluorophores will certainly have different optical
properties leading to different quantum yields, detection efficiencies, and other optical
properties. Furthermore, if the target nucleotides are labeled directly by incorporating
fluorophores during reverse transcription, the fluorophores may incorporate at different
rates. Another example is that different nucleotides samples must be kept separate until
labeling and therefore will undergo separate reverse transcription reactions and reaction
rates can vary from batch to batch. Normalization is the meant to correct for the biases

caused by differing treatment of target samples.

The simple fact is, we do not have sufficient understanding of these sources of
bias to theoretically correct for them. Therefore, the only general way to normalize arrays

is by empirical calibration. Calibration controls are known targets included or spiked
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equally or as a dilution series into the test and control samples. The calibration controls
undergo the same treatment as their host sample and then hybridize to matching control
spots printed on the array. After hybridization, imaging, and background correction the
signals from these calibration spots are used to determine the relative bias between the

test and control treatments.

From the M vs A and consideration of the physical processes we believe this bias
acts simply to scale the counts of one channel with respect to another and thus appears as
an offset on the M axis. This general approach is in fact quite common and we believe
wel} justified. To correct for this we simply total the red and green background corrected
signals, Ry and Gr, of the control spot pixel counts, and compute a normalization factor
R//Gy used to scale the red and green pixel counts for the entire array. However, the
correction must be computed from controls not from samples genes that have potentially
unknown proportions. Thus, we believe methods such as the so-called “global”
normalization is flawed. They rely on assumptions about the distribution of gene
expressions that are generally not justified. Another example is rank invariant
normalization for which the authors provide no physical justification and we cannot think

of any ourselves.

We note that some authors have proposed the need for non-linear calibrations that
depend on signal intensity a canonic example being the LOESS method [22]. However,
we find no physical basis for such a proposal. For example the authors propose that

differences in print quality from spot to spot may require such non-linear corrections. We
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do not agree. As seen from equations (3) and (5) a spots quality can affect total binding
but not the relative amounts of red and green. Another possibility often proposed is
detector saturation. However, if such saturation were occurring as a result of poor
experimental design the needed correction would be more intricate than a simple
empirical calibration either linear or non-linear. It is best to experimentally avoid
saturating conditions. Finally, we have shown the same evidence used to Justify non-
linear corrections are in fact artifacts resulting from background artifacts that can be

eliminated by background correction.
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4 Results

From the model we can make three key predictions. The first is the linear
dependence of red signal on green signal. The second is the linear dependence of signal
on mRNA concentration. The third is binomial variability of pixel intensities within a
spot. We will verify these predictions using two types of experiments. The first type of
experiment is a same-to-same experiment. In this experiment a single mRNA sample i3
split into two samples serving as both test and control. This experiment will verify the
linearity of red signal on green signal and the binomial variability of pixels. The second
type of experiment is a dilution series in which different genes are prepared at known
mRNA concentrations in test and control samples. This will be used to verify the linear

dependence of signal on mRNA concentration.

In Chapter 3 we verified the linearity of red and green signals after background
correction. We have vet to verify that the constant of proportionality corresponds to the

concentration of red to green total molecules

4.1 Linearity of Signal and Concentration

Finally the model predicts a linear dependence of signal on mRNA concentration
ot equivalently that the slope of red versus green is given by the ratio of red to green
labeled mRNA. To verify this we printed an array having eight different genes gach

printed in many replicate spots. Then samples of each of the eight mRNAs were prepared
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in two solutions at different concentrations shown in Table 4.1 As Figure 4.1-4.3 clearly

shows the data fall nicely on a set of lines. Again in logarithmic space these lines appear

gene number sample A mass {ng] | sample B mass [ng] ratio A:B
1 0.02 1.00 1:50
2 0.10 1.00 1:10
3 0.50 1.00 1:2
4 1.00 1.00 1:1
5 1.00 1.00 1:1
6 1.00 0.50 2:1
7 1.00 0.10 10:1
8 1.00 0.02 50:1

Table 4.1: Dilution Ratios

as curves emanating from a common background offset. By fitting lines to these data we
can recover estimates of the slope and compare this to the ratio of mRNA concentrations.
As Figure 4.4 shows, the calibration curve is nicely linear. We also show what happens if
the simple ratio without background correction is used. The simple ratio becomes
increasingly inaccurate as the concentration and thus the signal lowers further into the

background region.
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4.2 Binomial Variation

The model predicts a binomial variation for the pixels counts within a spot. To
verify the presence of binomial variability in the data we compare the predicted
cumulative distribution to the empirical cumulative distribution and the predicted p-value
to the empirical p-value. If the predicted distribution is consistent with the data then these
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Figure 4.1 : Dilution Series 21

comparisons will match and form a straight line. Figure 4.5 shows the results for the four
same-to-same arrays. The binomial form seems highly consistent with the data. By
contrast a simple Gaussian does not accommodate the data as we show an example for

one of the data sets.
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4.3 Array Simulation

We have derived a physical model and corroborated its key predictions. Having
validated the model our final step is to examine the performance of a simulator and an
analysis engine based on the model. The simulator allows us to generate synthetic data
sets useful in checking that the model reproduces observed data. The analysis engine
allows us to verify that the model is capable of fitting empirical data and more important
to compute the results that fulfill the goals of gene expression profiling namely the degree

and probability of delta-expression.

We implemented a Monte-Carlo simulator of the mechanisms described in the
physical model. In this work we provide only a brief synopsis of the simulator; it is

described in full detail in the masters thesis of Yan Li [33] who worked under the
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direction of myself and Doug Lauffenburger and the code is available on this thesis web
site [34] . To summarize, a simulation assigns red to green ratios to each simulated spot
and a total number of bound molecules to each pixel. A binomial deviate is chosen to
determine the number of red and green molecules within each pixel. Each of these
molecules then emits a Poisson number of photons based on specified red and green
Poisson means. Finally a background deviate is added to form the final red and green
counts for each pixel. The pixels are then output as a synthetic array which can then be

fed into the analysis tools.

Our typical approach was to simulate datasets and verify that they recapitulated
statistical features shown in literature for empirical data. Figure 4.6 shows the results of
simulating a same-to-same yeast array compared empirical array from which the

simulation parameters were derived.

4.4 Model Fitting

Another common technique for comparing a model to observed data is to check
whether the model fits the data. In our case, the model describes a probability distribution
for pixel counts given a red to green ratio and a cascade mean or molecule brightness.
Thus there are two unknown parameters for each spot which we can fit from observed
data. The set of these parameters for all spots is then a fit for an entire array. Using this fit
we can compute an array wide pixel distribution and compare this to the observed
distribution. Figure 4.7 shows that our model appears to fit empirical data well while as

we mentioned earlier the model of Newton et af fails to fit.
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This is one advantage of deriving a model from physical theory is that it helps to guide
the model to at least a reasonable form. Without the crutch of physical theory it is easy to
blindly fall upon a mathematical form that does not match reai data. For example, we fit a
recently proposed model for spot intensities that was chosen merely for its analytical

convenience shows rather vividly that the model fails to fit actual data.

4.5 Array Analysis

The two primary goals of gene expression profiling are to measure the cellular
mRNA concentrations and to determine whether these concentrations differ significantly
between samples; if the concentrations differ between two samples, the gene is said to be

delta-expressed. Thus for a co-hybridized gene expression array experiment the two goals
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amount to determining, for each gene, a probability of delta-expression and the degree of

delta-expression or the ratio of sample to control mRNA.

4.5.1 Array Summarization
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We can efficiently summarize the results from an array analysis as a simple plot
of the degree of delta-expression versus the probability of differential expression. Figues
4.8 shows the summary results from the four same to same arrays 57, 58, 59, and 60. The
general shape of the curve is in these arrays dominated by the sample preparation
variability. Overlaid on this variability is the hybridization and background variability.
Every existing gene expression algorithm yields a curve that is a function of degree of
delta-expression alone; there is no additional quantification of hybridization or
background variability. Thus, this scatter of points upon a general bell shaped curve is

unique to our analysis or that of Brown et al [27]

For same-to-same arrays the majority of spots intuitively should have low
probabilities of delta-expression. In the best case all spots would have probability of
differential expression less than 0.5 which intuitively means a greater chance of not being
delta-expressed than being delta-expressed. Nonetheless, experimental variation causes
some spots to appear differentially expressed. However, approximately 95% of the spots
fall below a delta-expression probability of 0.5. Thus our algorithm does an excellent job
of screening same-to-same spots. Compare this to p-value based methods where to
achieve 95% rejection of same-to-same spots you would need to specify a confidence of
95%. Our method produces probabilities of differential expression that correspond to an

intuitive notion of confidence far more closely.
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4.5.2 Array Spot Quality

It is interesting to note that our method captures the fact that array experiments

can vary widely in quality.
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Figure 4.9: High (a) and Low (b,e) Quality Arrays with Spot Detail (¢,C,d,D)
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This agrees with our experience that differences between protocols and technologies and
even human differences between lab technicians can significantly affect the quality of an
array and that this quality affects sensitivity and confidence. examine-spots shows two
arrays with very different quality levels as well as a simulated array possessing only

hybridization and background variability.

The relatively high quality array (a) does contain a few spots deemed to have
lower quality (c,d). Upon closer examination we see that these spots generally have
greater color variation and fewer pixels indicating greater hybridization variability and
fewer effective samples when compared to spots of similar color but higher quality
(C,D). When we examined the spots of the lower quality array we found nearly all of

them showed similar degradation of quality as the examples (c) and (d).

4.5.3 Quality-Sensitivity-Confidence Curves

Finally our model allows us to compute a set of quality-sensitivity-confidence
curves that serve as a guide either for determining the potential sensitivity of an array or
for setting quality goals to achieve a desired sensitivity. These curves serve as a guide for
either evaluating the performance capability of an array or for setting array quality goals

for achieving the desired sensitivity.
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For example, if you had an array with a total log standard deviation of 0.5 bits then you
would be able to detect degrees of delta-expression slightly more than two fold. Or if you
wanted to be able to detect changes of about 2.8 fold at a confidence of 99% you would

need arrays with a total standard deviation about 0.3 bits.

4.6 Conclusions

In this thesis we started from thermodynamic principles and simple symmetry
arguments and derived a physical model for the hybridization of labeled nucleotides to a
gene expression microarray. Together with a simple model for fluorescence imaging, a

simple empirical background correction, and a simple empirical normalization procedure
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derived from the physical model, we were able to remove the apparent non-linearity even
in non-linear transformed spaces. This explained away the previously vexing
phenomenon that encouraged many previous non-linear correction schemes. We were
then able to analyze the corrected and normalized data to recover a estimate for the

probability of delta-expression as well as the most likely degree of delta-expression.
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