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Abstract

Chapter 1 introduces the subject of photonic crystals and reviews the basic physical
principles underlying the formation of a band gap and the creation of localized de-
fect modes. Proposed applications, fabrication techniques, and numerical simulation
methods are surveyed.

Chapter 2 demonstrates the construction of 2D-like defect modes in a 3D photonic
crystal with a complete gap. The modes are similar to those in 2D photonic crystals in
terms of polarization, field profile, and projected band structures. The results should
facilitate the implementation of 2D photonic-crystal devices in realistic 3D systems.

Chapter 4 explores the possibility of using photonic-crystal defect modes to design
magnetic metamaterials: structures that exhibit magnetic properties despite the non-
magnetic character of their constituents. A synthetic magnetic moment is provided
by a point-defect mode studied in Chapter 2. Quantitative analysis of the far-field
radiation pattern proves that the mode has a primarily magnetic character: over 98%
of the emitted power goes into magnetic multipole radiation.

Chapter 4 calculates the radiation pressure on the surface of a waveguide formed
by omnidirectionally reflecting mirrors. In the absence of losses, the pressure goes
to infinity as the distance between the mirrors is reduced to the cutoff separation of
the waveguide mode. The divergence results from the reduction of the modal group
velocity to zero, which causes slow-light magnification of the field intensity at constant
power input.

Chapter 5 analyzes slow-light, band-edge waveguides for compact, integrated, tun-
able optical time delays. Slow group velocities at the photonic band edge give rise
to large changes in time delay for small changes in refractive index, shrinking device
size. Figures of merit are defined for tuning sensitivity and signal dispersion. Exact
calculations for a realistic, three-dimensional grating structure are shown to be well
predicted by a simple quadratic-band model, simplifying device design.

Chapter 6 derives a general, coupled-mode theory for disorder-induced scattering
in strongly periodic systems. The analytical results allow the comparison of photonic-
crystal waveguides to similar index-guided waveguides. In the realistic limit of weak
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disorder, reflections are identical while transmission is higher for the photonic-crystal
waveguide. The general results, verified by direct numerical simulations in an example
system, suggest a new mechanism for the design of low-loss waveguides.

Thesis Supervisor: John D. Joannopoulos
Title: Frances Wright Davis Professor of Physics
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Chapter 1

Introduction to Photonic Crystals

The study of photonic crystals began in 1987, when Yablonovitch [1] and John [2] si-
multaneously proposed that a three-dimensionally periodic dielectric structure could
completely prohibit light propagation within a certain range of frequencies known
as the photonic band gap. By analogy with the band gap in electronic systems,
such a structure could provide a “photonic semiconductor,” enabling a new means
for directing the flow of light. Predicting what sort of 3D geometry would have
this property, however, was not simple. In 1990, Ho et ol identified the first struc-
ture with a complete photonic gap: a periodic arrangement of dielectric spheres in
a diamond-like lattice [3]. While the diamond structure did not prove amenable to
fabrication, Yablonovitch and coworkers soon achieved the first experimental demon-
stration of a photonic band gap using a modified geometry. Drilling a precise pattern
of millimeter-sized holes in a dielectric block yielded a photonic band gap in the
microwave frequency range [4].

Since that time, the field of photonic-crystal research has rapidly expanded. New
classes of photonic-crystal structures (also known as photonic band-gap materials, or
PBG’s) have been discovered and fabricated at much smaller, micron length scales,
enabling control over light in the infrared to optical range. The deliberate creation of
“defects” in the periodic structures has been shown to give rise to localized electro-
magnetic ficld modes, in which light is trapped in the defect region by the photonic

band gap. This new means for controlling the propagation of light has led to a variety
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of novel optical phenomena and devices, including ultra-compact, wavelength-scale
microcavities and waveguides. Meanwhile, improvements in computational model-
ing methods and a dramatic increase in computer processing speed have allowed the
detailed study and accurate prediction of PBG propertics. These developments are
part of a general trend toward the development of microstructured materials: by
engineering the microscopic geometry of a structure, novel properties not achievable
with naturally-occurring materials can be obtained.

In Section 1.1, we begin by reviewing the basic concepts relevant to the study of
photonic erystals, including the physical origin of the band gap and the creation of
localized defect modes in photonic-crystal structures. Section 1.2 surveys the range
of optical phenomena unique to photonic crystals and their possible applications. To
establish a context for the theoretical work in this thesis, Section 1.3 summarizes
the current development of photonic-crystal fabrication methods and experimental
progress in observing photonic band gap effects. Section 1.4 describes computational
methods for PBG simulation. Lastly, Section 1.5 provides an overview of the main
themes and results of the thesis: characteristics of 3D defect modes, slow light, and

disorder in photonic crystals.

1.1 Basic Concepts

A comprehensive introduction to the subject of photonic crystals is provided in
Refs. [5,6]. Herc we summarize several basic concepts necessary for understanding
the remainder of this thesis: the origin of the band gap and the creation of localized
defect modes in 1-, 2-, and 3-dimensional structures.

The simplest way to understand the origin of the photonic band gap is to consider
the familiar multilayer film [7], which can be regarded as a “one-dimensional photonic
crystal” [5, Chap. 4,. From standard optics, we know that a sequence of dielectric
layers with alternating indices of refraction n; and ns can be designed to strongly re-
flect light at particular wavelengths. Strong reflection arises from coherent scattering

of light from each of the interlayer interfaces: when the optical thickness of each layer
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is a quarter wavelength, the reflections add in phase to yield a large total value. The
transmission through the film is correspondingly low, and the so-called “quarter-wave

stack” forms the basis for commonly-used dielectric mirrors and thin-film filters.

Now let us consider the same phenomenon in the language of band structures,
adopted from solid-state physics [8]. Any general solution of Maxwell’s equations
can be Fourier decomposed into a sum of modes with harmonic time dependence
et For any periodic structure, including the quarter-wave stack, Bloch’s theorem
(known as Floquet’s theorem in optics) guarantees that each propagating mode can be
characterized by a wave vector k within a restricted range known as the first Brillouin
zone. Plotting all allowable real values of k for each w gives the dispersion diagram,
or band structure, of the multilayer film. For light propagation perpendicular to the
film surface, any finite difference in index between n; and n, results in a range of
frequencics for which no solutions exist: this is the photonic band gap. As a result,
light incident from air onto the stack cannot propagate through it and is instead
reflected, provided the frequency is in the band gap range. As the index contrast
An = n; — ng increases, the frequency range for reflection gets larger. In fact, it is
not necessary that the layer thicknesses satisfy the quarter-wave condition to obtain
a photonic band gap, but this choice yields the largest gap and correspondingly the

strongest reflection for any finite number of layers.

Now imagine selectively altering the thickness of one of the layers in the structure,
leaving all the other layers unchanged. This creates a new solution of Maxwell’s
equations: a so-called defect mode. The defect mode is a localized state with a
frequency within the photonic band gap. Light is trapped near the defect region due to
“band-gap guidance;” on either side of the perturbed layer, the multilayer film blocks
propagation. As a result, the intensity of the localized mode decays exponentially
with distance away from the defect. A finite stack with a defect layer acts as a
filter: for most frequencies within the band gap, transmission is low. However, a
transmission peak appears at the defect mode frequency, at which light incident from

air can tunnel through the film to the defect mode and out the other side.

The basic concepts of the photonic band gap and the creation of defect modes can
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be extended to higher dimensions. 2D photonic crystals, two-dimensionally periodic
structures that are infinite in the third direction, can block all propagation within the
2D plane. For example, lattices of dielectric rods in air tend to have a large gap for
one of two possible light polarizations (labelled “TM”), while lattices of air holes in
dielectric have large gaps for so-called “TE” modes. Perturbing a single rod (or hole),

b

for example by increasing or decreasing its size, creates a “point-defect mode,” which
is localized to the defect region and resembles an optical microcavity. Perturbing a
line of rods (or holes) creates a “linear defect,” which acts like a waveguide. Unlike
traditional dielectric waveguides, which confine light via total internal reflection (or
index-guiding), photonic-crystal waveguides confine light via band-gap guiding. As a
result, it is possible to guide light in regions with either higher or lower refractive index

than their surroundings. This unique feature has a number of practical applications,

which will be further discussed in Section 1.2.

Fortunately, as infinitely tall structures are impractical, the behavior of pure 2D
photonic crystals can be approximated by “photonic-crystal slabs,” 2D periodic struc-
tures with finite height [9]. Photonic-crystal slabs confine light by a combination of
in-plane band-gap guiding and vertical index-guiding, allowing the creation of linear

and point-defect modes (though the latter are intrinsically lossy) [10].

Three-dimensionally periodic structures have the unique property of being able
to forbid propagation in all directions. Though these geometries are more difficult
to visualize, many of the known 3D structures are variants of the originally-proposed
diamond structure. The diamond structure, based on the face-centered-cubic (fcc)
lattice with two “atoms” per unit cell [8], has a nearly-spherical Brillouin zone. As
a result, light traveling in any direction within the crystal reflects after nearly the
same propagation distance. The partial band gaps for propagation in specific direc-
tions thus tend to coincide, vielding a complete gap. Specific 3D photonic crystals
geometries are further discussed below in Sects. 1.3, 1.5 and Chapter 2. The most
important characteristic of defect modes in 3D photonic crystals is that they cannot
radiate; light is completely prevented from escaping the defect modes in all three

dimensions. This “radiation-free infrastructure” is attractive for a number of appli-
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cations, as we discuss in the next section.

1.2 Applications

The ability to design materials to exhibit a photonic band gap, the unusual disper-
sion features that result, and the flexibility to design photonic-crystal defect modes
with different characteristics have led to the discovery of a wide range of optical phe-
nomena. Nonlinear photonic crystals and photonic-crystal fibers further extend the
possibilities for novel behavior. In this section, we survey some of the many proposed
applications of photonic crystals.

The control of light provided by a photonic band gap has a number of applications.
On a fundamental level, the absence of propagating states within the photonic band
gap inhibits spontaneous emission [1]. The resulting modification of atomic radiation
16, 11-14] results in applications such as low- [15] or even zero-threshold lasers. In
photonic-crystal slabs, the partial (in-plane) band gap provides a useful property for
the design of LED’s [16] and lasers [17]: emitted light is preferentially coupled into
vertical radiation. In 1D photonic crystals, the band gap can be designed such that
the crystal acts as a perfect mirror: by using sufliciently high index contrasts, light is
completely reflected from the surface of the mirror at any incident angle [18]. Such
structures are known as “omnidirectional reflectors.”

Photonic crystals also have very different dispersion properties than do uniform
media. At the cdge of the photonic band gap, the slope of the dispersion relationship
goes to zero, enabling propagation at very low group velocities. Slow light enhances
a variety of optical phenomena, discussed in detail in Section 1.5. Photonic crystals
also have unusually-shaped, nonspherical “dispersion surfaces,” or constant-frequency
surfaces in wave vector space. As a result, light behaves quite differently than in a
uniform medium when it refracts from an interface, leading to negative refraction [19-
21], superprism phenomena [22], subwavelength imaging [23,24], and compact spot-
size conversion [25]. Backward-pointing Cerenkov radiation [26] is also a consequence

of the shape of the dispersion surface.
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Defect modes in photonic crystals can be designed to have various desired prop-
erties, including modal profile, symmetry, polarization, and frequency. As a result of
this flexibility, a number of applications can be envisioned, using the building blocks
of point- and linear-defect modes. Applications of single point-defect modes include
high-Q cavities [27,28], filters [29,30], ultra-small modal volume laser cavities [31], and
strong atom-field coupling for cavity QED [32]. Linear-defects, or waveguides, can be
used to route light through the crystal without radiation loss. Unlike in traditional
waveguides, perfect (100%) transmission can be achieved through sharp, 90-degree
bends [33]. Cavities and waveguides can be combined to create a number of useful
devices, such as wide-angle splitters [34], waveguide crossings with zero crosstalk [35],
and channel-drop filters [29,30]. The vision of “superdense” integration is to combine
many such tiny, wavelength-scale devices on a single semiconductor chip, creating
complex “optical circuits” [36,37]. Optical circuits could, for example, eventually
eliminate the need for optical-to-clectronic conversion in fiber optic networks, in-
creasing available bandwidths and replacing bulky systems with compact, integrated

chips.

Nonlinear photonic crystals exhibit a range of rich physical behavior, reviewed in
Refs. [38,39]. An intensity-dependent refractive index, or Kerr nonlinearity, can for
example allow the creation of self-induced point-defect modes, stable, localized states
in completely defect-free structures [40]. In general, photonic crystals can be designed
to either maximize or minimize the effects of optical nonlinearities. By using defect
modes to confine light in high-index regions, material nonlinearities can be enhanced,
increasing the efficiency of nonlinear operations such as switching [41] and wavelength
conversion [42,43], and leading to low-power nonlinear devices [41,44]. Confining light
in air regions of the crystal conversely minimizes (unwanted) nonlinear effects, as well

as material absorption.

Similar considerations apply to microstructured fibers, which are among the most
promising technological applications of photonic band gap research. Hollow-core
fibers, including omnidirectionally-reflecting mirrored (OmniGuide) fibers [45,46] and
photonic-crystal fibers (PCF) [47, 48] confine light within hollow air regions in the
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fiber, reducing material absorption loss, nonlinearities, and birefringence [49-51].
Solid-core holey fibers [52] alternatively confine light in high-index regions, enhancing
nonlinearities. At the same time, the engineered microstructure provides flexibility
in designing modal dispersion, leading to highly-efficient devices for, c.g. super-
continuum generation [53] and femtosecond four-wave mixing [54]. Solid-core holey
fibers can also be designed to be single mode over a very broad wavelength range
(337-1550nm or more) [55], to maintain polarization more efficiently than standard
fibers [56], and to support guided modes with very large arcas, useful for high-power
applications [57]. While solid-core holey fibers technically employ index- rather than
band-gap guiding, they are similar to photonic-crystal fibers in that engineering of

the fiber microstructure is used to obtain useful nonlinear and dispersive properties.

1.3 Fabrication methods

Thanks to the absence of a fundamental length scale in Maxwell’s equations, pho-
tonic band gap effects can be observed in nearly any wavelength range— given a crystal
of the appropriate dimensions [5, Chap. 2]. More precisely, the wavelength of the
band gap scales directly with the lattice constant for any particular photonic-crystal
structure [58|. For microwave wavelengths {on the order of millimeters to centime-
ters), lattice constants are macroscopic and crystals can be fabricated by standard
machining techniques [59]. In addition to the first experimental demonstration of a
complete, 3D band gap, many photonic-crystal effects have first been demonstrated in
this range. For optical wavelengths, the lattice constant is much smaller, on the order
of a micron or less, making fabrication more difficult. With an eye to setting a context
for the theoretical work in the remainder of this thesis, this section summarizes ex-
perimental progress in fabricating photonic crystals in the optical to infrared regime.
(See also Ref. 58] for a recent review.) While 1- and 2-D periodic photonic crystals
can be made relatively straightforwardly using developed techniques, the fabrication

of 3-D crystals is more challenging and remains an area of active research.
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1-D periodic crystals

1-D periodic photonic crystals, or multilayer films, are relatively casy to fabricate us-
ing the technology of thin-film deposition. However, the unconventionally high index
contrasts necessary for the demonstration of omnidirectional reflection, for example,
required innovation in materials selection and processing. The first demonstration
of omnidirectional reflection was done at infrared wavelengths (A ~ 10-15um) using
alternating tellurium (n ~ 4.6) and polystyrene (n ~ 1.6) layers with a period of
2.45pm [18]. Later work demonstrated omnidirectional reflection at optical wave-
lengths (A ~ 600-800nm) using much thinner tin sulfide/silica (n = 2.6/1.46) layers
with a period of 170nm [60].

Planar 2-D periodic structures

Planar 2-D periodic photonic crystals, or photonic-crystal slabs, can also be fabricated
fairly straightforwardly, leveraging techniques originally developed for the semicon-
ductor electronic circuits. Fabrication methods are reviewed in [37]). Patterns are
lithographically defined on the surface of a semiconductor slab, which is covered with
a sensitive resist layer. In photonic crystal research, e-beam lithography ts commonly
used and can achieve feature sizes of 10-20nm. Following pattern definition, the sermni-
conductor is etched away to yield the final structure. Optimizing the etching process
to obtain straight vertical walls can be a challenge for photonic-crystal researchers,
as typical aspect ratios are often higher than for electronic circuits.

Two major types of photonic-crystal slabs have been developed. In “membrane-
type” slabs, a high-index semiconductor material is either suspended in air (e.g. GaAs
air bridges) or rests on a lower-index substrate (c.g. Si on silica). In “heterostruc-
ture-type” slabs, a higher-index layer is sandwiched by upper and lower substrates
with slightly lower indices (e.g. AlGaAs/GaAs/AlGaAs). In heterostructure-type
slabs, waveguide modes are usually intrinsically lossy due to low vertical index con-
trast. Guiding of light in bulk planar slabs [61] and through line defects in planar

slabs [62] have been achieved at 1.5um, an important wavelength for applications in
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telecommunications systems, leading to the realization of a number of devices includ-
ing microcavities [63,64] and bends [65].

Much taller 2-D periodic structures, which approximate pure 2-D crystals, have
been fabricated by electrochemical etching of silicon, which is capable of yielding very

high-aspect-ratio (10:1) holes [66].

3D layer-by-layer methods

Lithographic methods can be extended to fabricate 3-D periodic structures that are
composed of vertically-stacked, planar layers. Such methods can give fine control
over structural design and defect placement, but are currently at the stage of basic
research: fabricating multiple layers is challenging and time-consuming, and most
published structures have only a few vertical periods. Most research has focussed on
the “woodpile” structure [67], which has a large gap of 17% of the midgap frequency
for Si/air index contrasts. Fach layer consists of parallel rods with square cross
sections, and adjacent layers have perpendicular orientations. In significant early
work, Lin et al used a repetitive deposition and etching process to fabricate five
layers (1.25 vertical periods) of the woodpile structure with a band gap in the infrared
range (10-14.5um) [68]. Noda et ol combined planar lithography with wafer-fusion
techniques to further shrink the size of the woodpile structure, yielding a 12-layer
structure with a band gap near 1.3um [69] that incorporated a waveguide with a
90-degree bend. The first experimental optical characterization of designed defects
in a 3D structure in the 1.3—1.5um wavelength range has very recently been achieved
by Qi et al in 2004 [70], using the 3D structure described in Chapter 2.

Robotic micromanipulation techniques provide another route to layer-by-layer fab-
rication of 31D photonic crystals. Ref. {71] used an SEM tip to pick up and position
individual silica spheres of 0.9um diameter, yielding a five-layer diamond structure.
Although silica spheres in air do not have a high enough index contrast to result in a
complete band gap, backfilling with a high-index material results in a crystal with a
predicted complete gap of 13% for Si/air contrasts [72]. SEM-tip micromanipulation

has also been used to assemble woodpile structures from premade, lithographically-
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fabricated layers [73]. Resonant transmission through a designed planar defect has

been demonstrated in the infrared (~4pm) using this method [74].

3D “large-scale” microfabrication methods

A variety of techniques offer the potential for faster, “large-scale” fabrication of bulk
3D crystals. These include photoinduced solidification, self assembly in colloids and
block copolymers, layer deposition techniques such as glancing angle deposition and
autocloning, and “hole-drilling” methods.

Photo-induced solidification methods have the flexibility to make a wide variety
of 3D structures. Laser light is shone on a transparent photosensitive material, which
chemically solidifies in regions of high intensity. Extra material is dissolved away to
yield a template structurc, which must be backfilled with a higher-index medium to
obtain a photonic crystal. In two-photon photopolymerization [75,76], the probability
of polymerization is proportional to the intensity squared, allowing subwavelength
definition of features. By moving the laser focus through the structure, arbitrary
complex structures can be defined {75]. A woodpile template with log spacing of about
3um is shown in [76]. For bulk periodic structures, the pattern can be written more
quickly by using interference techniques [77-79]. Polymer cross-linking, proportional
to intensity, is induced at the bright spots of an interference pattern produced by
crossed laser beams. Using four beams, any 3D reciprocal lattice structure can be
written, while adjusting beam polarizations and amplitudes changes the shape of the
unit cell.

Colloidal self-assembly capitalizes on the natural tendency of microspheres to sed-
iment into close-packed, face-centered-cubic lattices. Using controlled, fluid-flow as-
sisted deposition, Ref. [80] demonstrated that very high-quality structures free of
unintentional defects can be obtained using silica spheres up to lum in diameter.
Backfilling with high-index material can give the “inverse opal” structure, which has
a complete gap of 10% between the eighth and ninth bands for Si/air contrasts. Al-
though colloidal self-assembly is restricted to this one particular 3D structure, it does

produce thick (up to 20 layer) structures with huge, centimeter-scale areas composed
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of single crystalline domains. Moreover, defects can potentially be defined within
the bulk crystal template using photo-induced polymerization, as demonstrated in

Ref. [81]. (Backfilling of the silica/polymer template has not yet been reported.)

The use of self-assembled block copolymers as photonic crystals is reviewed in
Refs. [82,83]. Block copolymers self-assemble into a variety of one-, two-, and three-
dimensional structures with a periodicity on the order of 10-100nm. Although the
index contrast in these structures is too low to form a complete photonic band gap
(e.g. m ~ 1.59/1.51 for a polystyrene/polyisoprene system [84]), reflectivity can be
achieved in the visible range (350-500nm) [84,85]. The addition of nanoparticles that
are preferentially attracted to one of the copolymer domains may result in higher
index contrasts [86]. One attractive feature of such materials is their mechanical

flexibility, which could be useful for certain applications.

Glancing angle deposition (GLAD) and autocloning are both modified layer-
deposition methods capable of producing particular 3D structures with complete
band gaps. In GLAD, silicon is deposited at an angle onto a pre-patterned sub-
strate [87,88]. Because of “shadowing” effects, the silicon preferentially builds up on
substrate protrusions. By carefully rotating the substrate, arrays of square spirals
can be grown [88]. Process optimization should vield structures with complete band
gaps of 15% in the optical to mid-IR range [87]. In autocloning, alternating layers of
high- and low-index materials are deposited on a pre-patterned, grooved substrate,
resulting in a corrugated-layer structurc. Etching an array of vertical holes through
the entire structure yields a photonic crystal with a predicted complete gap of about

12% [89-92]. Planar waveguides have been fabricated in Ref. [91].

Yablonovite, the first 3D photonic-crystal structure to be fabricated experimen-
tally. is formed by drilling three scts of hole arrays into a high-index substrate. As
a result, a large number of vertical layers can (at least in theory) be fabricated at
once. At optical wavelengths, the “drilling” of micron-sized holes can be achieved by
focused-ion-beam etching. Ref. [93] reports the fabrication of five vertical periods of
a Yablonovite-like structure with a partial band gap in the mid-infrared. An alterna-

tive method uses x-ray sensitive lithography [94,95]. Here, the “holes”™ are made by
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exposing x-ray beams through a patterned mask onto an x-ray sensitive resist. After
dissolving away the exposed regions, the resulting template is backfilled and inverted.
Ref. [95] used a combination of x-ray and e-beam lithography to pattern linear de-
fects within a nickel Yablonovite structure. Such techniques should also be useful for

fabricating the broader class of slanted pore structures proposed in Ref. [96].

Fibers

A variety of microstructured fibers have successfully been fabricated, and both Om-
niGuides and holey fibers are starting to enter the commercial market. OmniGuides
have been fabricated with high transmission for a scalable wavelength between 0.75
and 10.6um [50] and external reflection near 1.55um [97]. A multilayer film with
layer thicknesses on the order of 1(0's of microns is first rolled into a tube and then
processed in a fiber draw tower, resulting in a fiber with submicron layer thickness.
Holey photonic-crystal fibers are also made by drawing down larger preforms, made

of stacked silica capillaries [47,51-53].

1.4 Computational methods

Because Maxwell’s equations are linear, the governing equations for photonic crystals
can be very accurately solved, leading to nearly exact predictions of physical behavior.
A variety of methods have been developed for the efficient computational modeling
of photonic crystals; here we summarize several of the most common. Of these, the
plane-wave expansion and FDTD methods were used for the majority of calculations
in this thesis.

Eigenmode decomposition techniques, also known as “frequency-domain meth-

ods,”

express possible solutions of Maxwell’s equations in terms of a set of time-
harmonic modes at definite frequencies. In plane-wave ezpansion, the electromag-
netic field at a given frequency is expanded in terms of a planc-wave basis with finite
cutoff, yielding a finite, generalized eigenproblem. Direct diagonalization or more

efficient iterative methods can then be used to solve for the desired cigenmodes of the
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system [98]. Frequency-domain methods are particularly useful for the calculation of
photonic-crystal band structures and eigenmodes. Although the use of plane waves
restricts the boundary conditions to be periodic, defect modes of photonic crystals
can also be calculated by using a “supercell,” a computational cell large enough that

the localized field at the defect decays nearly to zcro at the cell boundary.

The finite-difference time-domain (FDTD) method is a general numerical method
for the solution of clectromagnetic problems [99,100]. Maxwell’s equations are writ-
ten in approximate form by discretizing all spatial- and time- derivatives, yielding
update cquations in time for the values of the electric and magnetic fields on a spatial
grid. For photonic crystal applications, the FDTD method is particularly useful for
calculating transmission through structures, estimating cavity Q-factors, and other
problems in which it is useful to visualize time-varying fields, such as the simulation
of propagating pulses. FDTD may also be used to calculate eigenfrequencies/band
structures by exciting the structure with a wide-band current source and Fourier
transforming the fields in time after source turn-off. FDTD is adaptable to prob-
lems including lossy or anisotropic dielectrics, metals, nonlinear materials [101], and
frequency-dependent dielectric functions [99, Chap. 8|, [102]. A variety of boundary
conditions can be implemented, such as periodic boundary conditions (e.g. for band
structure calculations) and perfectly-matched-layers (PML) [103-105]. PML is useful
for transmission problems, as it eliminates spurious reflections from the computational

ccll boundaries by adding adjacent impedance-matched conductive layers.

Transfer-matriz methods solve for the electromagnetic fields at fixed frequency.
Structures are first divided into slices for which the refractive index profile does not
change in the propagation direction {106 111]. The eigenmodes of each slice are ob-
tained by analytical or numerical methods, and the modal expansion coefficients are
found by matching boundary conditions at each interface. (In the simplest case of mul-
tilayer films [112, Chap. 5], for example, the eigenmodes are two oppositely-traveling
plane waves.) The transfer matrix relates ficlds at either end of the computational
cell, yielding transmission and reflection. Real and imaginary wavevectors can be

obtained from the eigenvalues of the transfer matrix. This class of methods is con-
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venient for problems with frequency dependent dielectric functions and for dielectric
functions that are piecewise constant in the propagation direction.

The multiple scattering method [113-115] also finds solutions to Maxwell’s equa-
tions at fixed frequency. The entire structure is regarded as a collection of individual
dielectric or metal scatterers, e.g. rods. For each rod, an individual scattering matrix
is found to relate the local incoming and scattered fields in a truncated multipole
basis. The local incoming field is then alternatively written as a sum of incident
fields and unknown scattering contributions from all other rods. The resulting linear
matrix equation is solved self-consistently to obtain the field as a function of posi-
tion throughout the structure. Transmission, power flux, cavity QQ’s, and resonance
modes of the structure (via poles of the scattering matrix) may also be found. The
multiple scattering method is most advantageous for structures composed of a num-
ber of identical scattering elements, as the individual scattering matrix must only be
calculated once. Once calculated, it may also be reused for problems with different
incident fields. Closely related to the multiple scattering method is the source-current

technique [116].

1.5 Overview of thesis

From the discussion of photonic-crystal fabrication methods in Section 1.3, it is appar-
ent that the discovery and characterization of new 3D structures can have a significant
impact on both the ease of experimental realization of photonic band gap effects and
the practical feasibility of proposed applications. Chapter 2 contributes to this effort
by providing a bridge between a large body of theoretical work done in idealized,
2D systems and the real, three-dimensional world. We identify point-defect modes of
3D crystals that resemble those of pure, 2D crystals, allowing for the straightforward
adaptation of 2D optical functionalities in realistic systems.

The variety of proposed applications for photonic crystals points to the wide range
of unique physical phenomena arising from bulk, dispersive, and defect-mode proper-

ties of photonic crystals. In Chapter 3, we identify an interesting physical property
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of point-defect modes introduced in Chapter 2, their resemblance to fluctuating mag-
netic dipoles. This resemblance is quantified by analysis of emission properties of
the defect modes. The results suggest possibilities for the design of a new class of
“synthetic” magnetic materials at optical frequencies. Chapters 4 and 5 identify two
previously unstudied effects of the extremely low group velocities achievable in pho-
tonic crystals: slow-light enhancement of both radiation pressure and tunable time
delays. Results on slow-light enhancement of radiation pressure suggest new methods
for optical manipulation and positioning of objects on the microscale, with possible
application to the scarch for quantum effects in micromechanical systems. Results on
enhanced time-delay sensitivities have direct application to integrated device design,
with applications for optical signal processing and logic.

Lastly, Chapter 6 addresses the both theorctically and practically important prob-
lem of disorder-induced scattering in photonic-crystal waveguides. We provide the
first explicit, analytical treatment of disorder-induced scattering in strongly periodic,
high-index-contrast media. The results not only provide physical insight into the
effect of a photonic band gap on scattering, but also suggest a new mechanism for
the design of low-loss waveguides. In addition, the theoretical formulation provides a
basis for the development of new, efficient, semianalytical methods for the accurate
numerical simulation of realistic disorder in 3D photonic-crystal waveguides, which
has been prohibitively difficult using previous techniques.

In the remainder of this Chapter, we introduce the motivations, results, and im-

plications of this work in greater detail, providing an overview of the thesis.

2D-like defect modes in a 3D photonic crystal

A great deal of previous theoretical work on the design of useful devices in photonic
crystals has been carried out in idealized, purely 2D systems. For example, work in
2D has demonstrated 100% transmission through 90-degree bends in photonic-crystal
wavegnides [33], channel-drop tunneling through localized states [29,30}, elimination
of cross-talk in waveguides [35], and high transmission in wide-angle splitters [34]. 2D

problems not only require less computational time than 3D problems; they also tend
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to be much easier to visualize. In 2D, all electromagnetic modes can be characterized
as either TE-polarized (magnetic field perpendicular to the plane) or TM-polarized
(electric field perpendicular to the plane), reducing the general, full-vectorial problem
to a scalar one. In a 3D crystal the situation is more complex, as the modes can no
longer be divided into TM and TE polarizations [5, Chap. 5.

All of the 2D designs mentioned above rely on symmetry properties of the photonic
crystal in combination with the existence of a complete band gap. As a result, they
can in principle be realized in the real (3D) world as well— given a three-dimensional
crystal with an appropriate geometry. In other words, what is needed to implement
the 2D designs is a 3D crystal which closely resembles 2D photonic crystals in terms
of symmetry and mode polarizations.

Photonic-crystal slab structures [9,10,37,61,62,117-122], discussed earlier in this
chapter, are two-dimensionally periodic structures of finite height that approximate
the behavior of an ideal 2D crystal. However, due to the lack of a complete gap, radi-
ation losses are introduced by any device element that breaks periodic translational
symmetry, such as waveguide bends [65, 123] and optical cavities 63,64, 124, 125].
Only three-dimensional crystals with complete gaps can eliminate intrinsic radiation
loss.

However, none of the 3D photonic crystal structures known prior to 2000 had both
a large, complete gap and cross sections resembling common 2D crystal geometries
(arrays of air holes in dielectric, or dielectric rods in air). “Nonplanar” structures,
including diamond [3], A7 [126], inverse opal [127-129], and Yablonovite [4], all have
fairly complicated cross scctions that vary continuously with height, complicating the
visualization and design of defect modes. Although several “planar” (or layer-by-
layer) structures were known, they lacked in-plane symmetry. For example, because
the woodpile structure [67,130] consists of layers composed of parallel “logs,” making
a symmetric waveguide bend requires jumping up or down one layer in the structure
[69,131]. Similar arguments apply to the structures proposed in [132] and [133]; the
lack of in-plane symmetries prohibit identical waveguides along different directions.

In 2000, Johnson et al proposed a 3D-periodic, planar structure with a large.
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complete band gap that had cross sections resembling 2D photonic crystals [134]. In
Chapter 2, we establish that the defect modes of this structure strongly resemble those
of the corresponding 2D photonic crystals in terms of the dispersion relations, field
profiles, and polarizations. By working alternately within “hole” and “rod” layers of
the 3D crystal, modes with TE-like and TM-like polarizations can be designed, similar
to the TE and TM modes of 2D photonic crystals of holes and rods. In particular, it
is shown that calculated linear- and point-defect modes of the 3D crystal have nearly
identical mocle profiles to 2D crystals on the midplane of the defect. This resemblance
is quantified by numerical calculation of appropriately defined overlap integrals.

Our results were the first demonstration of 2D-like modal patterns in a full, 3D
photonic crystal. As a result, a number of 2D structures can now be straightforwardly
implemented in realistic, 3D systems without intrinsic loss. Already Ref. [135], for
example, has theoretically demonstrated high, polarization-independent transmission
around sharp bends in the 3D crystal. Moreover, the very recent fabrication of the
bulk crystal with designed point-defect modes in the near infrared by Qi et al [70]
marks exciting progress towards the experimental realization of such structures.

The design of 2D-like defect modes in 3D structures has been extended by Roundy
et al in Ref. [136], which demonstrated a planar, 3D structure with an omnidirectional
band gap and square (rather than triangular) symmetry within each layer. This
structure allows, for example, the design of identical waveguides at 90 degrees (rather
than at 60 and 120 degrees). Chutinan et al [137] have further suggested the use of
hybrid structures to achieve 2D-in-3D properties: a photonic crystal slab is capped
above and below by a 3D photonic crystal with a complete gap. Because the geometry
of the 3D crystal may be quite different from the slab layer, this approach could offer
advantages for fabrication, e.g. using combined lithographic and layer-deposition

(GLAD) processes.

Using defect modes to construct metamaterials

Chapter 3 examines in detail an unusual property of a point defect mode introduced

in Chapter 2: its magnetic dipole-like character. Focusing on a defect made by en-
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larging a single hole of the 3D crystal, it is seen that the electromagnetic field pattern
resembles that of a magnetic dipole in polarization and profile. Unlike the static
magnetic dipoles found in bar magnets, however, this “synthetic” dipole oscillates
with the harmonic time-dependence of the field, suggesting comparison to a magnetic

dipole source.

A quantitative assessment of the magnetic character of the mode is obtained by
decomposing the radiated field into a series of multipole radiation terms, both mag-
netic and electric. The dominant terms are found to be low-order magnetic moments:
=1 (dipole), 3 and 5 terms. Overall, nearly all (up to 98%) of the radiated power
has magnetic {rather than electric) character. This property stems from the 2D-like
polarization of the defect mode, as characterized in Chapter 2. In two dimensions,
the emission from a TE mode would be purely magnetic. In the 3D crystal, the ap-
proximate TE-like character of the mode leads to predominantly magnetic multipole

emission.

Intuitively, magnetic multipole emission arises from the displacement currents in
the crystal, which circulate the hole defect to create a current loop. A simple wire
current loop emits magnetic dipole radiation; due to its morc complicated geometry,
the photonic crystal emits a combination of magnetic multipole terms. Unlike in a
wire loop, however, the digplacement currents can oscillate at optical frequencies, at

which AC currents in metals would be swamped by dissipation.

An optical-frequency “current loop” could be useful for the design of metamate-
rials [138-140], composite materials designed to have unique emergent properties of
interest such as negative refraction [19,20,24,141-147]. Negative refraction “reverses”
Snell’s law such that light beams are bent backwards by the interface, allowing for
an entirely new class of optical devices [138,148] and the possibility of subwavelength
imaging [23,24,149,150]. It has been shown that for metallic [138], dielectric [140], and
polaritonic [151] materials, the excitation of localized modes resembling displacement-
current loops leads to an cffective negative magnetic permeability (ues) in arrays of
nonmagnetic elements. The results of Chapter 3 thus suggest that magnetic point

defects in photonic crystals might provide building blocks for the design of tuture
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optical-frequency metamaterials.

Slow light

The next section of the thesis (Chapters 4 and 5) concerns slow-light phenomena in
photonic crystals. Low group velocities are a consequence of the complex dispersion
characteristics of photonic crystals, which result from coherent scattering in the pe-
riodic medium. In a multilayer film, for example, the group velocity goes to zero
for frequencies near the band edge, corresponding to wave vectors near the edge of
the Brillouin zone. Zero group velocities are also found at zero wave vector for sec-
ond and higher bands. These features follow from the analyticity of the dispersion
relation, and occur quite generally in 2D- and 3D-periodic bulk structures and linear-
defect waveguides [5]. Coupled-cavity waveguides (CCW’s) [152] further exhibit low
(nonzero) group velocities at a point of zero dispersion in the center of the Brillouin
zone.

Experimentally, extremely slow group velocities have been observed in photonic
crystals. Group velocities of less than 0.01¢ [153] have been demonstrated in the
microwave range. At optical frequencies, propagation speeds 5-90 times slower than
that in air have been measured for line defects in photonic-crystal slabs [154]. In
CCW’s, group velocity reduction by a factor of four has been observed, as compared
to a standard reference waveguide [155].

Low group velocities are known to enhance a variety of optical phenomena in-
cluding nonlinearities, phase-shift sensitivity [156], lasing [157, 158], and band-edge
absorption in metallic photonic crystals [159]. Here we propose that slow light can
magnify radiation pressure and time-delay sensitivity, leading on the one hand to the

prediction of new physical phenomena and on the other to useful device designs.

Slow-light enhancement of radiation pressure

Radiation pressure refers to the pressure exerted on a mechanical object by light

impinging on its surface. Radiation pressurc cffects in Fabry-Perot cavities, optical
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cavities formed by parallel mirrors [160, Section 9.1], have been extensively studied.
Because the ficld intensity inside the cavity can be much higher than that of the
input field, the radiation pressure is relatively large. A number of interesting optical
effects result, from classical optical bistability [161] to proposed quantum effects such
as ponderomotive squeezing [162], gencration of nonclassical states of light [163], and
the entanglement of macroscopic objects through optomechanical cooling [164].
Using high-index-contrast materials such as Si/SiO,, it is possible to shrink the
cavity size to dimensions comparable to the wavelength of light, on the order of
a micron [18]. The tight modal confinement and small mass of such tiny structures
suggest the exploration of radiation pressurc as a means of moving, manipulating, and
positioning objects on the microscale, for example within integrated optical devices.
In Chapter 4, we consider a gencralization of the Fabry-Perot cavity well-suited
to implementation on the microscale. We consider radiation pressure on the walls of
a waveguide formed by planar, omnidirectionally-reflecting mirrors [18] separated by
an air gap. As the width of the air gap is varied, the propagating modes localized
in the air gap are changed. In particular, the modal group velocity can be reduced
to zero by bringing the mirrors closer together. For constant input power, the elec-
tromagnetic field energy builds up, exerting a radiation pressure force on the mirrors
and pushing them apart. In the absence of losses, the force diverges to infinity. Our
structure provides an alternative system to study the variety of classical and quan-
tum effects associated with Fabry-Perot cavities. Slow-light enhancement of quantum
effects in particular could prove useful in the ongoing search for quantum effects in

micromechanical systems {165, 166].

Slow-light enhancement of tunable time delays

We turn next to slow-light enhancement of tunable time delays, analyzed in Chapter
5. Introducing a delay on an optical signal is useful for a number of applications,
including optical signal processing and optical logic; a standard method is the use
of fiber-optic delay lines [167]. The use of optical resonances in atomic gases [168-

172] has received much attention due to interest in the fundamental physics, but is

36




currently far from practical device application. The ability to engineer the dispersion
of photonic crystals suggests another route to optical delays, one that could result in
compact, “on-chip” time-delay devices.

Previous work has examined devices based either on switched waveguides or all-
pass filters [173,174], which allow only discrete delay increments. Devices based on
coupled-cavity waveguides [152] in photonic crystals [155,175 177] allow continuously
tunable time delays, but are intrinsically lossy unless implemented in a 3D photonic
crystal. In Chapter 5, we propose a continuously tunable, integrated-optical time
delay scheme that can be implemented in a planar geometry without intrinsic losses,
using slow light at the photonic band edge.

Changing the refractive index of a waveguide, for example by thermal tuning,
modifies the group velocity, an effect that can be used for tunable time delays. We
show that for frequencies near the band edge of a photonic-crystal waveguide, low
group velocities lead to enhancement of time-delay sensitivity: the change in delay
for a given change in index. An increased sensitivity shrinks the required device
length, resulting in lower operating powers. While signal dispersion also increases
near the band edge, we show that strong gratings (corresponding to large band gaps)
optimize the device length for a given dispersion. By direct numerical simulations of
a realistic structure, we show that appropriate figures of merit for this class of devices
are well approximated by a simple, quadratic-band model. The results should thus

greatly simplify design optimization.

Disorder in photonic-crystal waveguides

Disorder is an incvitable feature of real photonic crystals. In lithographic methods, for
example, roughness on vertical surfaces results from the etching process. Inaccuracies
in position, layer thickness, and so on provide additional disorder. The effect on
the propertics of bulk photonic crystals is well known [178-180], and fortunately
not severe; disorder results in a slight reduction in the size of the band gap. Less
well understood is the effect of disorder on propagation through photonic-crystal

waveguides. The problem is of both theoretical and practical importance, for disorder-
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induced losses ultimately limit the achievement of slow-light propagation speeds, the
achievable integration density in optical circuits, and other applications of photonic
crystals.

Experimentally, photonic-crystal waveguides appear to suffer relatively high losses.
The lowest reported loss measurements for single-line-defect, photonic-crystal slab
waveguides, for example, is in the range of 1-3dB/mm for optical wavelengths [181
183]. Heterostructure-type slabs, which operate above the light line and are thus
intrinsically lossy even in the absence of disorder [184-188|, have loss values several
orders of magnitude higher. (Measurements of disorder-limited losses for waveguides
in 3D-periodic crystals have not yet becn reported.) For conventional, index-guided
waveguides, much lower losses of 0.8dB/mm have been achieved for single-mode,
silicon-on-insulator strip waveguides [189]. Will improvements in fabrication methods
allow photonic-crystal waveguides to catch up, or are low losses somehow fundamen-

tally unachievable?

Attempts to answer this question have been frustrated by the lack of a general
understanding of the effect of disorder on reflection and transmission in photonic-
crystal waveguides. It is not even clear how to compare photonic-crystal waveguides
to standard, index-guided ones; even if we can imagine that both have the “same
amount” of disorder, important characteristics such as mode profile, polarization,
and effective index can differ greatly, obscuring meaningful comparison.

Previous work on the effect of disorder on photonic-crystal waveguides has pro-
vided only limited study of specific cases, including theoretical analysis of coupled-
cavity waveguides [190], and numerical study of photonic-crystal slabs [191] and pure
2D crystals [192,193]. Although a variety of techniques have been developed to model
roughness losses in conventional index-guide waveguides [194-197], none is valid in
the limit of high-index-contrast and strong periodicity applicable to photonic crystals.

To fill this gap, Chapter 6 develops a genecral, analytical theory for modeling
the effects of disorder in strongly-periodic, high-index-contrast waveguides, with or
without a complete band gap. In brief, by working with a basis of Bloch modes of the

unperturbed crystal and recasting Maxwell’s equations in operator form, it is possible
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to derive a set of differential equations for the mode coefficients as a function of length
along the propagation direction. The result is a modification of standard coupled-
mode theory [194] valid for photonic crystals. We obtain an explicit expression for
the reflection coefficient as a function of the relevant parameters, allowing “apples-
to-apples” comparison of photonic-crystal and index-guided waveguides and insight
into the physical effect of a band gap on disorder-induced loss.

In an ordinary, index-guided waveguide, light traveling along the waveguide scat-
ters from a disorder site and is directed into radiation and reflection losses (as well as
in the forward direction, changing the phase of propagation). In a photonic-crystal
waveguide, scattered light cannot escape into radiation modes, for the existence of
such modes is prohibited by the band gap. The theory shows that the effect of the
band gap is to suppress scattering from disorder: the total amount of radiated power
is in fact lower for a photonic-crystal waveguide than in the comparable, index-guided
case. All other things being equal, the amount of power reflected from disorder is the
same in the two cases, while the total transmission is higher for the photonic-crystal
waveguide.

Practically, our results offer a new mechanism for the design of low-loss waveg-
uides. By surrounding an index-guided waveguide with a photonic crystal with either
full or partial band gap, radiation loss can be reduced without increasing reflections,
decrcasing the total loss. The coupled-mode theory should also allow the develop-
ment of improved, semi-analytical methods for the modeling of realistic amounts of
disorder, which are actually too small to be treated by “brute-force” methods such as
FDTD, for which required computational resources drastically increase with decreas-
ing feature sizes. Such methods should shed light on the design of optimal, low-loss

waveguides for applications such as slow-light devices and integrated optical circuits.

Parts of this thesis have previously been published in article format. See Refs. [198-

202].
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Chapter 2

2D-like Defect Modes in a 3D
Photonic Crystal

Thas chapter has previously been published as Ref. [198].

Introduction

Photonic crystals, periodic dielectric structures that can prohibit light propagation
in a range of wavelengths [1,2,5], have been the subject of intense research in the
last decade [203]. One particularly interesting aspect of these systems is the possi-
bility of creating crystal defects that confine light in localized modes. Advances in
understanding of these defect modes have stimulated the design of photonic-crystal
waveguides, resonant cavities, filters, and other practical optical components, leading
towards the possibility of integrated optical circuits [36].

Much of the theoretical investigation of photonic crystals has been carried out
in two-dimensional systems, due to thc inherent simplicity of calculation, visual-
ization, and understanding in 2D. Many interesting and potentially useful physical
phenomena have been discovered in 2D, including high transmission through sharp
bends in photonic-crystal waveguides [33], channel-drop tunneling through localized

states [29, 30/, high localization in microcavities [204], elimination of cross-talk in

41



waveguides [35], and high transmission in wide-angle splitters [34]. Fortunately these
phenomena are based on general principles that are not restricted to two dimensions,

for experimental realization requires the use of three-dimensional structures.

In order to achieve three-dimensional confinement, two general types of three-
dimensional photonic-crystal systems have been proposed. One type is photonic-
crystal slabs, two-dimensionally periodic structures of finite height. In these struc-
tures, light is confined by a combination of an in-plane photonic band gap and
out-of-plane index guiding [9,27]. While it is possible to create localized linear-
[10,62,65,120-123] and point- [125,205,206] defect modes in slab systems, the lack
of a complete band gap is an inherent limitation that results in radiation losses in
all cases where the translational symmetry of the crystal is destroyed, for example
in waveguide bends [10]. A second type of system, three-dimensionally periodic pho-
tonic crystals with a complete band gap, has no such theoretical limitation. The
complex geometry of most three-dimensional crystals, however, makes the study and
understanding of defects in these systems more difficult; the modes typically cannot

be approximated by their simpler, well understood, two-dimensional analogues.

Recently, a structure and method of fabrication were proposed for a new 3D
photonic crystal with a large, complete band gap [134]. This structure is composed of
alternating layers of triangular lattices of air rods in dielectric and dielectric rods in
air; cross sections thus correspond to 2D photonic-crystal geometries. In this chapter,
we discuss how this feature, in combination with the large band gap, greatly simplifies
the understanding of defect modes. We show that line- and point-defect modes of the
full, 3D photonic crystal have a close correspondence in band structure, field profile,

and polarization to the modes of the respective 2D photonic-crystal geometries.

Moreover, the 3D photonic crystal structure that we study here allows the combi-
nation of line- and point-defect modes in a similar manner to that which is possible
in 2D photonic crystals [207,208]. Thus, these results promise that two-dimensional
analyses and phenomena, even in complex integrated optical devices, may be directly
applicable to a three-dimensional crystal with an omnidirectional band gap, with only

slight changes in parameters and the resulting mode characters.
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Crystal structure

The 3D photonic-crystal structure of interest is shown in Fig. 2-1(a). The arrows in-
dicate the two different types of layer which make up the structure. Fig. 2-1(b) shows
horizontal cross sections through these layers. Layer I has the form of a triangular
lattice of dielectric rods in air; we refer to it as a rod layer. Layer 11 has the form
of a triangular lattice of air holes in dielectric; we refer to it as a hole layer. (The
shape of the rods is a result of a proposed fabrication method, and is not essential for
the properties of the crystal [134].) The underlying lattice of the photonic crystal is
face-centered cubic (fce). Centers of the holes are placed at fcc lattice sites, and hole

and rod layers are stacked along the 111 direction.

It was shown in Ref. [134] that this structure has a large, complete band gap of
around 20% of the midgap frequency for Si/air structures with suitable choices for the
structural parameters. Lengths may be specified in terms of a, the nearest neighbor
spacing within either a hole or rod layer. The nearest neighbor spacing is related to
the fec lattice constant, a, by @ = a/v/2. For the calculations presented here, the
hole radius is taken to be r, = 0.414a. The radius of a cylindrical rod with the same
area as a rod in the structure is r, = 0.175a. The thickness of a hole layer is 0.318a,
and the thickness of a rod layer is 0.500a. These values correspond to an optimal
parameter set which maximizes the gap size [134], where the dielectric constant of

the high-index material is taken to be € = 12.

It is particularly significant for the present work that cross-sections of hole and
rod layers have the same geometry as the two widely-studied, canonical 2D photonic-
crystal structures: an array of air holes in dielectric, which supports a TE gap and TE
defect modes, and an array of dielectric cylinders in air, which supports a TM gap and
TM defect modes. We will show here that this geometrical feature, in combination
with the presence of a 3D photonic band gap, allows us to construct 2D-like defect

modes in the 3D structurc.
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Figure 2-1: (a) Computer rendering of the 3D photonic crystal structure studied in
this work. The structure consists of two alternating types of layers, indicated by the
arrows. We refer to the type of layer labelled 1 as a rod layer, and that labelled II
as a hole layer. (b) Cross sections of rod and hole layers. These cross sections have
the same geometry as the two types of widely-studied 2D photonic crystals: arrays
of dielectric rods in air and arrays of air holes in dielectric.
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Computational methods

The computational methods used to calculate photonic band structures and electro-
magnetic field modes employ preconditioned conjugate-gradient minimization of the
Rayleigh quotient in a plane-wave basis and are described in detail elsewhere [98,209).
A supercell method was used for defect calculations: the defect was surrounded by
several periods of the unperturbed crystal within a “supercell,” and periodic boundary
conditions were applied. The supercell dimensions were chosen to be large enough for
adjacent waveguides/cavities to have minimal effect on mode frequencies and fields.
Projected bands corresponding to bulk modes were computed using a defect-free su-

percell.

Linear-defect modes

It 1s well known that linear defects in photonic crystals can act as waveguides [5].
These defects can be created by either adding or removing high-index material, alter-
ing the effective index of the waveguide in comparison to its surroundings. However,
it is the reduced-index case that is unigque to photonic crystals. Traditional dielec-
tric waveguicles, which operate on the principle of index-guiding, necessarily confine
light to regions of higher index. In contrast, photonic-crystal waveguides can guide
light in regions of lower index, even primarily in air. We focus here on reduced-index

linear-defect modes.

We first consider the case where a single hole layer of the 3D photonic crystal is
modifted to create a linear defect. As we will show, this has the effect of introducing a
TE-like mode into the hole layer. To create a reduced-index linear defect, we increased
the radii of a line of nearest-neighbor holes from r;, = 0.414a to r, = 0.500a. At this
value, the holes just touch. A horizontal cross section of the structure, through the
center of the defect, is shown in the inset to Fig. 2-2(a). Notice that the geometry of
this cross section is identical to that of a 2D line-defect in a 2D structure of air holes

in dielectric, as shown in the inset to Fig. 2-2(b).
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Figure 2-2: (a) Projected band structure for the 3D crystal with a linear defect
created by altering a single hole layer. Shown in the inset is a horizontal cross section
through the mid-plane of the defect (parallel to the z-y plane). The radius of the
defect holes is 7, = 0.500a, as compared to 7, = 0.414a in the bulk, where a is the
in-planc distance between nearest-neighbor holes. (b) Projected band structure for
the TE modes of the 2D erystal with identical geometry to the cross section of the
3D crystal shown in Fig. 2-2(a).

The projected band structure, or dispersion diagram, for the 3D line-defect struc-
ture is shown in Fig. 2-2(a) and compared with that for the 2D line-defect structure
in Fig. 2-2(b). Shaded regions indicate extended states in the perfect crystal. The
frequencies of these states are plotted as a function of kg, the component of the
wavevector along the the direction of the linear defect, which takes on values between
0 and 7/a. For the 3D structure, all modes are projected onto the band diagram and
the structure has a large, complete band gap. For the 2D structure, only TE modes
are shown, since it is for the TE polarization that a large gap is present. Moreover,
only modes with wavevectors corresponding to in-plane propagation are considered
in calculating the 2D dispersion relation. In both Figs. 2-2(a) and 2-2(b), the line
within the gap region shows the dispersion relation of the single-mode defect band.
The states within this band are confined to the region of the defect. For the 3D case,
the band extends from a lower frequency of 0.37 ¢/a to an upper frequency of 0.44 ¢/a.
In the 2D case, the band extends from 0.25¢/a to 0.37 ¢/a. The similarities between

the 3D and 2D projected band structures are notable. In both cases, a single defect
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Figure 2-3: Mode profiles for the increased-hole linear-defect states from Fig. 2-2 at
the Brillouin zone edge. Overlaid cross hatches indicate regions of high dielectric
material. (a-b) The field for the 3D linear-defect structure corresponding to Fig. 2-
2(a). H, is plotted for horizontal and vertical cross sections of the 3D crystal. The
cross sections intersect along the green lines on the figures. (¢) H, for the 2D lincar-
defect structure shown in the inset to Fig. 2-2(b).

band extends across the entire Brillouin zone, inside the band gap. The shapes of the
defect bands are also similar, since both bands must exhibit vanishing group velocity
at both the center and edge of the Brillouin zone.

In addition to the resemblance between the projected band structures, there is a
strong, quantifiable similarity between the defect modes in the 3D and 2D crystals.
Figs. 2-3(a) and 2-3(b) show the field profiles for the 3D defect state at the edge
of the Brillouin zone for horizontal and vertical cross sections through the center of
the linear defect. (The horizontal cross section is parallel to the x-y plane, and the
vertical is cross section is parallel to the y-z plane.) In both cases, the z-component
of the H-field is shown. The green lines on the figures indicate the intersection of
these cross sections. The 3D defect mode is, clearly, strongly localized near the defect
in all three dimensions. Fig. 2-3(c) shows the magnetic field for the 2D defect state
at the same k& point.

Comparing the horizontal cross section of the 3D defect mode to the 2D defect
mode, we see that the two are nearly identical in polarization and profile; we quan-

tify this observation in the following. In the 2D crystal, the continuous translational
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invariance of the crystal in the z direction allows a separation of the electromagnetic-
field modes into TE and TM polarizations. The defect mode in Fig. 2-3(c) is purely
TE-polarized; the H-field is entirely in the z direction. In the 3D crystal, the horizon-
tal plane through the center of the defect is not a mirror plane of the 3D structure.
Thus symmetry considerations do not require the defect mode to be purely TE or
TM-polarized there. However, we observe that the 3D mode is nearly TE-polarized

in this plane;
[ & | HP (wir)|”

25 f 2 [ HIP(w;r)?

where the integral is taken over the horizontal plane. The similarity of the mode

RHE

~ 0.98, (2.1)

profiles may also be quantified, by computing an overlap between the horizontal cross

section of the 3D state and the 2D state. For the states shown in Fig. 2-3,

2

A2r H3P(w. . fj20
JEr B 1) w1) ~ 0.94. (2.2)

OH =
\/fd2r|ﬁ3D(w,r)\2fd2T |]E‘f2]:’(c.u,r)|'2

The similarity between the mode profiles is a consequence of the localization of the 3D
defect mode to a 2D-like environment, and relies on the presence of a large, complete

band gap in a 3D structure with 2D-like cross scctions.

Previous work has studied linear defect modes in photonic-crystal slabs [10], which
can also have a strong resemblance to the defect modes of two-dimensional pho-
tonic crystals. However, it is important to stress that the projected band structures
of photonic-crystal slabs and two-dimensional photonic crystals are very different.
Fig. 2-4 shows the projected band structure for a slab with the same cross section as
the 3D and 2D structures considered above. The thickness of the slab was taken to be
0.71a, which approximately optimizes the gap size [9]. The light-grey region indicates
the light cone, a continuum of all possible frequencies of the bulk background, in this
case air. The dark-grey regions indicate the even-symmetry bulk modes of the slab.
The region of k space covered by neither the bulk modes nor the light cone is only
a fraction of the Brillouin zone, sharply limiting the bandwidth of the guided mode.

This is in sharp contrast to the projected band structures for the 3D and 2D photonic
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Figure 2-4: Projected band structure for a photonic-crystal slab, with a linear defect
as in Fig. 2-2. A cross section of the slab is shown mn the inset; the thickness of the
slab is 0.71a. The light-grey region indicates the light cone; dark-grey regions indicate
even-symmetry modes of the bulk structure.

crystals shown in Fig. 2-2, where the gap extends across the entire Brillouin zone.

We have shown that a TE-like defect mode can be introduced into the 3D photonic
crystal by altering a hole layer. A TM-like defect mode can similarly be created by
modifying a rod layer of the structure. This was done by replacing a row of nearest-
neighbor rods with smaller, cylindrical rods of radius r. = (0.071a. The projected
band structure for the 3D photonic crystal is shown in Fig. 2-5(a), and a cross section
through the linear defect is shown in the inset. Fig. 2-5(b) shows the projected
band structure for the TM modes of the 2D photonic crystal with the corresponding
geometry. Again the band structures are quite similar, with a single-mode defect

band extending across the entire Brillouin zone.

Mode profiles for 3D and 2D defect states at the Brillouin zone edge are shown
in Fig. 2-6. Figs. 2-6(a) and 2-6(b) show the z component of the F-field for the 3D
defect mode. The 2D defect mode is shown in Fig. 2-6(c) and is T M-polarized (the
E-ficld is entirely in the z-direction). The 3D defect mode is nearly TM polarized,
with:

[ d%r |E, (w: r)|?

= 2 (3.99. 2.
e = S @ B o < 0% (23)
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Figure 2-5: (a) Projected band structure for the 3D crystal with a linear defect created
by altering a single rod layer. A row of nearest-neighbor rods has been replaced with
cylindrical rods of radius v/ = 0.07a. Shown in the inset is a horizontal cross section
through the mid-planc of the defect. (b) Projected band structure for the TM modes
of the corresponding 2D photonic crystal.

The mode profiles are again very similar; in order to define a suitable overlap function,
it is necessary to consider the orthonormality properties of the E-field. Suppose that
Ei(w,r) and E,(w,r) are the clectric fields corresponding to two eigenmodes of a
fixed 2D dielectric structure specified by e(r). It follows from Maxwell’s equations

that although F,; and E, are not orthonormal under the usual metric, it is true that:

/dQT e(r) Ey(w, )" - Ea(w,r) =0 (2.4)

It is thus sensible to compute an overlap of the 3D and 2D defect modes by

2
[ d?*re(r) r) E3P(w,r)* - E®(w, 1)

‘\/f d2r e E3D )2 [ d2re(r) |E2D(w,r)|2

the value was found to be approximately 0.95.

A reduced-index linear defect can also be created by completely removing a line of
rods. The resulting 3D and 2D band structures are shown in Fig. 2-7. The single-mode
defect band in the 3D structure approaches the bulk states at the edge of the Brillouin
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Figure 2-6: Mode profiles for the reduced-rod linear-defect states from Fig. 2-5 at the
Brillouin zone edge. (a-b) The field for the 3D linear-defect structure corresponding
to Fig. 2-5(a). E, is plotted for horizontal and vertical cross sections of the 3D
structure. (c) The field for the 2D structure shown in Fig. 2-5(b).

zone. The perpendicular F-field for &, = 0.265(27/a) is shown in Fig. 2-& As in
the case of the reduced-radius rods, the 2D mode is completely TM-polarized and
the 3D defect mode is nearly-TM polarized, with Rg = 0.99; the overlap Og = 0.98.
We note that the possibility of creating a guided mode by completely removing rods
in a photonic-crystal slab is much more limited, since the necessity of vertical index-
guiding does not allow truly guided modes that reside mainly in air [10]. This is
illustrated in Fig. 2-9, which shows the projected band structure for a rod slab of
thickness 2a. Therc is at most a very weakly confined defect mode very close to the

edge of the band gap.

For all three cases of reduced-index waveguides in the 3D crystal, a single-mode,
defect-state band is obtained within the complete, three-dimensional band gap. The
waveguide modes are strongly localized within the altered layer, and both the pro-
Jected band structures and mid-plane field profiles of the three-dimensional structures

are very similar to those of the corresponding two-dimensional photonic crystals.



(a) 0 3D Photonic Crystal
5

0.4

o

~—

L3

N

(@]

C

802

O

0

b - L d

0.1 e o
*. of
* %

O —
0 o1 Q.2 0.3 0.4

wavevector ky (2r/Q)

Figure 2-7: (a) Projected band structure for the 3D crystal with a linear defect created
by removing a row of nearest-neighbor rods in a single rod layer. Shown in the inset
is a cross section through the mid-plane of the defect. (b) Projected band structure
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Figure 2-8: Mode profiles for the removed-rod linear-defect state at k, = 0.265 (27 /a).
(a-b) The field for the 3D linear-defect structure corresponding to Fig. 2-7(a). E. is
plotted for horizontal and vertical cross sections of the 3D structure. (c) The field for

the 2D structure shown in Fig. 2-7(b).
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Figure 2-9: Projected band structure for a photonic-crystal slab, with a linear defect
as in Fig. 2-8. A cross section of the slab is shown in the inset; the thickness of the
slab is 2a. The light-grey region indicates the light cone; dark-grey regions indicate
odd-symmetry modes of the bulk structure. In contrast to Fig. 2-4, there is at most
a very weakly guided defect mode very near the edge of the band gap.
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Point-defect modes

In the previous section, reduced-index linear defects were created in the 3D photonic
crystal structure by altering either the hole or rod layer. Reduced-index point defects
can be created in a similar manner. In Figs. 2-10, 2-11, and 2-12, we compare the
point-defect modes in the 3D structure with those in the corresponding 2D structure.
As for linear defects, the mode profile and polarization are very similar in the two
structures.

Fig. 2-10 shows the perpendicular H-field for a hole defect, where the defect radius
was taken to be 7}, = 0.500a. The 3D mode has a frequency of 0.40c/a, which falls
near the middle of the band gap, (0.36 — 0.44)c/a. It is strongly localized in all three
dimensions to the vicinity of the point defect. Moreover, it is ncarly TE-polarized in
the mid-plane, with Ry = 0.98. The 2D mode has a frequency of 0.28¢/a, where the
band gap runs over the frequency range (0.26 — 0.43)c/a. The overlap of the 3D and
2D point-defect modes is Oy ~ 0.92.

Rod defects arc shown in Figs. 2-11 and 2-12. In Fig. 2-11, a single rod is re-
placed with a reduced-radius rod with 7, = .071a. The 3D defect mode, which has
a frequency of 0.40¢/a, falls in the middle of the band gap (0.36 — 0.44)c/a. The
9D defect mode a frequency of 0.37¢/a, with a band gap range of (0.30 — 0.48)c/a.
In Fig. 2-12, a rod is completely removed. The defect mode {requencies are 0.41c/a
as compared to a gap range of (0.36 — 0.44)c/a for the 3D structurc and 0.41c/a as
compared to a gap range of (0.30 — 0.48)¢/a for the 2D structure. In both cases, the
3D defect modes are nearly TM polarized (Rg = 0.99) while the 2D defect modes
are completely TM polarized. The overlaps between the 3D and corresponding 2D

modes are again high, with O ~= 0.97 for both cases.

Conclusion

We have studied linear- and point-defect modes in a recently proposed 3D photonic

crystal with a complete band gap. The cross sections of the 3D crystal have the
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Figure 2-10: (a—b) Defect-mode profile for a point-defect in the 3D crystal created by
increasing the radius of a hole in a single hole layer to v, = 0.500a. H, is plotted for
horizontal and vertical cross sections of the 3D crystal. (¢) Defect-mode profile for
the corresponding 2D crystal.
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Figure 2-11: (a-b) Defect-mode profile for a point-defect in the 3D crystal created
by reducing the radius of a rod in a single rod layer to v, = 0.071a. E. is plotted for
horizontal and vertical cross sections of the 3D crystal. (¢) Defect-mode profile for
the corresponding 2D crystal.
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Figure 2-12: (a-b) Defect-mode profile for a point-defect in the 3D crystal created by
removing a rod in a single rod layer. E, is plotted for horizontal and vertical cross
sections of the 3D crystal. (c¢) Defect-mode profile for the corresponding 2D crystal.

geometry of a 2D photonic crystal, allowing comparison between the two systems.
The mode polarization, mode profile, and projected band structures of defect modes

in the 3D crystal are very similar to those for the corresponding 2D crystal.

Promising directions for future work include the study of physical phenomena pre-
viously observed only in two-dimensional photonic crystals, and the design of com-
ponents for integrated optical circuits within this realistic, three-dimensional system.
Building upon the work in this chapter, it has recently been shown that polarization-
independent waveguides can be designed in the 3D crystal, and that high (~95%)
polarization-independent transmission around waveguide bends can be achieved in a
certain frequency range [135]. The ability to emulate modes of a 2D photonic crystal
in a 3D crystal with an omnidirectional band gap should also be useful in such applica-
tions as designing lossless coupled-cavity waveguides for optical time delays [174,177]

and nonlinear optical devices that exhibit optical bistability [41).

Subsequent to the work in this chapter in Ref. [198], a similar 3D layer-by-layer
structure has been identified with square (rather than triangular) symmetry in the

plane [136]. The square-symmetric crystal should also be useful for adapting 2D
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designs and functionalities to realistic, 3D systems; Square symmetry is particularly
advantageous for the design of 90 bends and waveguide splitters. It has further been
suggested in Ref. [137] that inserting a 2D-periodic slab structure in the middle of a
3D-periodic photonic crystal provides an alternate method of working with 2D-like
modes in a system with a full, omnidirectional band gap, providing a radiation-
free infrastructure for integrated optical circuit design. This approach has practical
advantages for fabrication if the bulk 3] crystal can be made by relatively “casy”

methods, such as controlled deposition or self-assembly, and later aligned to and

bonded with the 2D slab.
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Chapter 3

Toward Photonic-Crystal
Metamaterials: Creating Magnetic

Emitters in Photonic Crystals

This chapter has previously been published as Ref. [199].

The concept of designing electromagnetic “metamaterials,” synthetic structures
that exhibit effective properties different from those of their constituent materials, has
sparked interest as a means of achieving physical behaviors not found in naturally
occurring materials or composites. The realization of negative refraction, for example,
may allow for a new class of optical effects and devices [138,139,141]. Here we consider
how metamaterials can be constructed within a photonic-crystal system. Previous
work in 2D systems has developed an effective medium theory to show that magnetic
resonances can lead to a negative effective magnetic permeability, or u [140]. Here,
we use point-defect modes to create magnetic resonances in a 3D photonic crystal.
Photonic crystals are periodic dielectric structures with a forbidden frequency range,
the band gap, in which light cannot propagate. For frequencies in the gap, light is
confined near defects in the structure, which can be designed to have desired frequency
and polarization characteristics. We suggest that these defects might be used as

building blocks for a new type of metamaterial: photonic crystals with combinations
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of point defects chosen to give rise to various, desired properties. In this chapter, we
identify building blocks for obtaining magnetic behavior in a non-magnetic dielectric
system, quantitatively demonstrating that point-defect modes can be designed to

have a magnetic character.

We use the three-dimensional photonic-crystal structure of Chapter 2, which is
composed of a stack of alternating layers that mimic 2D TE- and TM-polarized
photonic crystals. By creating defects in these layers, the local field pattern and
symmetry of the state can be made to resemble either an oscillating magnetic or
electric moment, corresponding to the TM and TE polarizations, respectively. In this
chapter, we focus on a TE-like point defect that resembles a magnetic moment. We
show that such a defect can be incorporated into a finite crystal so that the structure
becomes a magnetic emitter: nearly all of the radiated power goes into magnetic,
rather than electric, multipole terms, as determined by a multipole decomposition
of the far field. This magnetic emitter, unlike an oscillating current loop (a familiar
magnetic dipole source), can be designed to operate even at optical frequencies, where
naturally-occurring materials have an insignificant or very lossy magnetic response.
We believe that such defects are promising building blocks for constructing a new type
of metamaterial that exhibits magnetic behavior in a previously inaccessible frequency
range. Moreover, because the 3D crystal that we study also supports defect states
that resemble electric moments, it could provide a useful infrastructure for designing

metamaterials with ferroelectric-like properties.

The crystal structure that we study, described in detail in Ref. [134] and in the
previous chapter, has a large, complete, band gap of around 20% of the mid-gap
frequency for Si/air structures, and is comprised of two types of alternating layers,
rod layers and hole layers. Rod layers are formed by triangular lattices of dielectric
rods in air, while hole layers are formed by triangular lattices of air holes in dielectric.
It has been shown in Chapter 2 that defects can be designed to be almost completely
TM- or TE-polarized in the mid-plane of the layer by working within a single rod
or hole layer, respectively. In order to create a defect with magnetic character, we

select the TE-polarization (magnetic field perpendicular to the mid-plane of the layer)
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Figure 3-1: Electromagnetic mode profiles for a magnetic-moment-like point defect in
a 3D photonic erystal structure. The top and bottom pictures show, respectively, the
clectric and magnetic field components perpendicular to the plane. Red represents
negative values and blue represents positive values; white corresponds to zero. The
color map has been exaggerated. Yellow shading indicates dielectric material.

and increase the radius of a single hole from its bulk value of 0.414a to 0.5a, where
a is the nearest-neighbor spacing in ecither a hole or rod layer. Cross sections of
the electromagnetic field mode for this defect in the bulk crystal, computed in the
standard mauner [98], are shown in Figure 3-1. The defect mode resembles the field
of an oscillating magnetic moment in several respects. The magnetic field in the
midplane is almost completely (99%) polarized perpendicular to the plane 2, and
the parity of the state is odd under inversion (the electric field is odd, while the
pseudo-vector magnetic ficld is even). Moreover, the local field pattern of the mode
resembles that of an ideal dipole, with some additional structure induced by the

photonic crystal.

To determine the degree of magnetic character of the mode, we studied the prop-
erties of radiation from such a defect in a finite crystal. The coupling of light into

radiation modes will depend on the mode profile at the crystal boundary. In order
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to preserve the dominant TE-like polarization of the mode, the crystal was cleaved
close to the defect layer, resulting in a crystal that was three hole layers and two rod
layers high, with the defect contained in the central hole layer. The radiation fields
were calculated using 3D, full-vectorial, finite-difference time-domain (FDTD) sim-
ulations of Maxwell’s equations [99] with perfectly-matched-layer (PML) boundary
regions at the edges of the computational cell [104]. The defect mode was excited
using a magnetic-dipole source at the center of the defect. The frequency, amplitude,
and quality factor (@) of the mode were extracted from the field decay after source
turn-off, using a low-storage filter-diagonalization method [210]. Figure 3-2 shows
snapshots of the radiated fields for three different crystal radii: r = 3.5@, 4.5a, and
5.5a; the corresponding () values are shown in Table 3.1. Notice that while the mode
in the vicinity of the defect looks very similar for all three cases, the structure of
the radiated fields changes, with the field amplitudes decreasing in the plane of the

crystal for increasing crystal radius.

The magnetic character of the radiation mode was quantitatively determined by
performing a multipole decomposition of the far field. For a generalized localized
source distribution, the magnetic field in the radiation zone (r > A) can be written

[211, Chap. 9):

kT —iwt

kr

H(r > ) = S (=) [ap(lm) Xim + an (L, m)F x Xi]

Im
where the X,,,’s are the vector spherical harmonics, given by

. 1 .
Xim(0, ) = —=——==LYin(0. ¢),
1m{8, @) T m(0. )
and I is the angular-momentum operator, +(7'x 6) apr and ay are the magnetic and

electric multipole moments, respectively, and each multipole radiates a time-averaged

power of gk?/ “ja(l,m)|?. Using the orthogonality relations for the vector spherical

harmonics,

/ X5+ X dQ = 806y
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r=35a|r=4.>5a|r=>55a

Q 174 299 320
lan(1,0)]? 5% 30% 37%
lan(3,0)]? 50% 50% 50%
lan(5,0) 8% 10% 8%

any other |aa; (I, m)|? < 3% < 1% | < 0.5%
any |ag(l, m)|? <4% | <0.5% | <0.5%
Mpr 79% 96% 98%

Table 3.1: Quality factor ) and dominant multipole coefficients for the radiating
point-defect states shown in Figure 3-2. The radius of the photonic crystal is given
by r; @ is the in-planc lattice constant of the erystal. M, denotes the percentage of
the total radiated power due to magnetic multipole terms.

and

/ X (7 x X)) dQ =0,

we obtained the multipole coefficients ay; and ag by numerical integration over a

sphere near the boundary of the computational ecell.

The results are shown in Table 3.1. The absolute value of the multipole moments
squared, |a(l,m)|?, is expressed as a percentage of the total power radiated. For all
three crystal structures, the largest multipole moments were magnetic with m=0 and
[=1.3 or 5. As the crystal diameter increases, the strength of the (1,0} magnetic
dipole term increases, while the strength of the (3,0) and (5,0) terms remain ap-
proximately fixed. This trend can be understood from the fact that the crystal must
block radiation in the lateral direction, as seen in Figure 3-2. As the { = 1 component
increases, it cancels the [ = 3 component to reduce the amplitude of the fields in
the plane of the crystal. The percentage of the power that is emitted in magnetic
multipole terms, My, is also given in the table. The power is mostly magnetic for
all three crystals, with M, increasing to a maximum of 98% for the largest crystal
radius studied. Moreover, the crystal height was found to be an important parameter
in determining the percentage of power that goes into magnetic radiation; increasing
the height of the r = 4.5@ crystal so that it included nine hole layers significantly

reduced Mpy,, from 96% to 60%.
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Figurc 3-2: Radiating point defect modes for three different cuts of the photonic crys-
tal. The left- and right-hand columns show the electric and magnetic field components
perpendicular to the plane, respectively. The colormap has been exaggerated to make
the far-field radiation more visible. Yellow shading indicates dielectric material.
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The key to the magnetic nature of the radiation, we believe, is the primarily
TE character of the mode in the mid-plane— in two dimensions, this would lead to
purely magnetic radiation, and the only electric multipole components in 3D are due
to the deviations from this TE character. Away from the mid-plane, the deviations
take the form of 2 components of E; these components can induce electric radiation,
but that radiation is primarily in the lateral directions. Therefore, by increasing
the lateral crystal size, we can substantially eliminate this radiation and increase
the magnetic character, as observed in Table 3.1. Conversely, as the vertical size is
increased, deviations from TE character become more pronounced and consequently,
the percentage of magnetic radiation is decreased.

Starting with a point defect in a bulk photonic crystal whose local field pattern
resembles an oscillating magnetic moment, we have shown that the crystal boundary
can be cut so that the radiation from the defect mode is almost completely magnetic.
Unlike traditional magnetic sources, this magnetic emitter can be designed to operate
cven at optical frequencies. (In a practical implementation, the defect mode would be
excited by shining light onto the crystal from an optical source. This process could be
enhanced by incorporating a fluorescent dye within the crystal to absorb outside the
band gap and emit at the frequency of the point-defect mode.) Using the point-defect
mode that we study here as a building block, it may now be possible to design arrays of
defects that yield magnetic bulk properties in photonic crystals; “Ferromagnetic” and
“anti-ferromagnetic” arrays, for example, can be created by operating at frequencies
corresponding to wave vectors at the edge of the Brillouin zone, where adjacent defect
states will have phase shifts of ~ 0 or ~ 7. Creating defects within the rod layer of
the 3D photonic crystal, which behave like electric multipoles, could similarly allow
the design of ferroelectric and antiferroelectric arrays. Investigation of the properties

of these defect complexes is a promising direction for future work.
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Chapter 4

Slow-light Enhancement of
Radiation Pressure in an
Omnidirectional-Reflector

Waveguide

This chapter has been submitted for publication; see Ref. [201].

The group velocity of light can be dramatically slowed in photonic crystals. Slow
light enhances a variety of optical phenomena, including nonlinear effects, phase-
shift sensitivity [156], and low-threshold laser action due to DFB gain enhance-
ment [157, 158]. Here we demonstrate that slow light can also enhance radiation
pressure. Using numerical calculations, we show how a slow-light, photonic-crystal
structure incorporating omnidirectionally-reflecting mirrors can be used to maximize
the radiation pressure between two surfaces.

For Fabry-Perot cavities, the effect of radiation pressure on the motion of the mir-
ror surfaces has been extensively studied. The magnification of field intensity inside
the cavity results in strong optomechanical coupling, leading to interesting classical
effects such as optical bistability [161] and quantum optical effects such as pondero-

motive squeezing [162], the generation of nonclassical states of light {163], and the
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potential entanglement of macroscopic objects through optomechanical cooling [164].
In the Fabry-Perot system, the direction of light propagation is fixed perpendicular to
the mirror surfaces, and the reflectivity of at least one mirror is necessarily less than
one to allow light to couple into the cavity. We introduce a generalized system that
lifts both restrictions and is particularly well-suited for embodiment in microscale

devices.

The omnidirectional-reflector waveguide structure we consider is formed by two
omnidirectional mirrors [18) separated by a distance comparable to the wavelength.
Light traveling in the waveguide gives rise to a radiation pressure between the mirror
surfaces that depends on the intensity and the mode characteristics. We first optimize
the mirror structure to maximize the radiation pressure for fixed electromagnetic
energy in the field. We then calculate the radiation pressure as a function of distance
as the mirrors are pushed together. As the distance decreases, intensity buildup
results from the reduction of the group velocity of the waveguide mode. We show
that in the absence of losses, the force diverges at waveguide cutofl for constant input

power.

The systemn is shown in Figure 4-1(a). Two semi-infinite multilayer films are
separated by an air region of thickness d. Each of the films consists of a stack of
alternating high- and low-dielectric layers with period a. For definiteness, we take
the refractive indices to be ny; = 3.45 and n), = 1.45, corresponding to Si and SiO; at
1.55um. The relative layer thicknesses are determined by the quarter-wave condition
nnidp; = Todio, Which we later show to be an optimal case, along with the constraint
that dy; + di, = a, vielding dy; = 0.296a and dj, = 0.704a. Waveguide modes can
be supported in the air region between the films. Superimposed on Figure 4-1 is the
fundamental guided mode, propagating in the direction shown.

It is sufficient to consider solutions of Maxwell’s equations that are uniform in
the y direction. The electric field can then be written in the form E(a:,y,z, t) =
Re [E‘k,w(z)eik‘”*i‘“*}, where we have made use of the translational symmetry in the
z direction. The solutions can be divided into TE modes (£ || § and H1g), and
TM modes (ﬁ | ¥ and Eiy) The TE dispersion relation is shown in Figure 4-
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Figure 4-1: fa) Omnidirectional-reflector waveguide structure: two multilayer films
of period a are separated by a distance d; each film is composed of alternating layers
with refractive indices my,; and n),. Guided modes propagate in the air region be-
tween the filims in the direction indicated by the wave vector k. The field profile of
the fundamental mode is superimposed on the figure. (b) Dispersion relation for the
structure shown in (a) for modes with & | 4. The high- and low-index layer thick-
nesses were taken to satisfy the quarter-wave condition for ny; = 3.45 and n;, = 1.45.
Shaded grey regions indicate bulk modes of the multilayer film, and colored symbols
indicate the dispersion relation for the fundamental mode of the waveguide for several
different values of a/d.
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I(b), where the dimensionless quantity wa/27c is plotted as a function of ka/2n.
Modes were computed by planewave expansion [98]. Shown in grey arc the modes
of an infinite multilayer film system, or bulk modes. Colored symbols indicate the
dispersion relation for the fundamental waveguide mode for scveral values of ¢ fa. A
frequency and wave vector within the band gap of the bulk system indicates the maode
is guided in the air region between the films. For each value of d/a, the group velocity
of the guided mode goes to zero at ka/2m = 0. As a/d decreases, the mode shifts
down in frequency, and higher-order modes will enter the band gap. We focus on the
force on the multilayer films produced by light traveling in the tundamental guided

mode.

The force was calculated using a Maxwell stress-tensor formalism [212, Sect. 6.8],

[213]. The time-averaged force is given by
F, =j£daZ—I—Re CETEy— L VB +uH I, — 1§ wlH2 n (4.1)
(31 < 5 87T atf 2 gt fa ,@ 2 af 8- .

where the integral is taken over a surface § enclosing a volume V', which we take
to be a box with parallel faces of area A at z = 0 and 2 = Z; i the outward
surface normal. For guided modes, the contribution from the face at Z goes to zero
as Z — oo. The contribution from the sides of the box is also Zero, since terms from
parallel faces cancel, and the total force is given by the midplane integral. It can
easily be seen that F, and £, arce identically 7ero; as a result of the mirror symmetry
of the structure with respect to the z = 0 plane, modes can always be chosen such
that either {F, H,, Hy,} or {H, E,, Ey} is zero there. The time-averaged force per

area A in the z direction on the upper film reduces to

1 * * * * * *
F/A = *1—6-7—1:118 (EZEZ - E.T,EI _EUEU + HZHZ - HTHJT - HyHy) :

To determine the optimal multilayer structure, we first consider the ruaximum
achievable optical force for a fixed separation between the multilayer films and s, fized

amount of energy in the electromagnetic field (as contrasted to fixed input power),
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Figure 4-2: (a) Force between the multilayer films resulting from light traveling
through the waveguide. Plotted is the dimensionless quantity Fd/Ugqq as a func-
tion of the dimensionless quantity wa/2mc, where F' is the force due to area A, Ugey
is the electromagnetic ficld energy contained in a slice of the waveguide that intersects
the z axis in area A, and w is the waveguide mode frequency. (b) Maximum force
from (a) as a function of a/d. The peak in the curve gives the maximum attain-
able force for fixed scparation of the films d and energy in the fields Ugeq, where the
maximization is over the period of the films a and the frequency w.
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The electromagnetic fields at a given frequency were calculated using planewave ex-
pansion [98]. Figure 4-2(a) illustrates the dependence of the force on the frequency
w and the period a. We plot the dimensionless quantity Fd/Ugqq as a function of
wa/2me for several values of a/d, where I is the force due to area A, and Ugggq is
equal to the integral of the electromagnetic energy density over A and z. The value
of Fd/Useq is always positive: the effect of the light in the guided modc is to push the
two films apart. For each value of a/d, the force increases with decreasing frequency
until it reaches the cutoff frequency of the mode, w(k = 0) (see also Fig. 4-1(a)). We
note that the maximum value of the force Fiax is independent of polarization, since

TE and TM modes are degenerate at & = 0.

It can be shown by either quantum mechanical or classical arguments [214] that,
for a dielectric or metallic structure characterized by parameter shift £, supporting
a single mode at frequency w and wave vector !: the time-averaged force on the
dielectric is given by

1 0w

TSl Uked (4.2)

where it is assumed that the modal field decays to zero perpendicular to the propa-
gation direction. It can be seen from Fig. 4-1(b) that for a given pair of multilayer
films (fixed o), the frequency of the guided mode at fixed wave vector changes most
quickly with displacement d at k = 0 (i.e. the lines labelled by a /d are furthest apart
at k = 0), consistent with Fig. 4-2(a).

In Fig. 4-2(b), we plot Firaxd/Ugea as a function of a/d. The value increases
and then decreases with a/d, peaking near a/d = 0.45. Referring to Fig. 4-1(b},
we see that the largest force is obtained for values of a/d for which the frequency
of the waveguide mode at k& = 0 is near the center of the band gap. In this range,
the confinement of the electromagnetic field to the air region between the films is
highest, and the valucs of the electromagnetic fields on the midplane are maximized,
leading to the largest force; F = 0.68Ugeq/d. For similar reasons, the quarter-wave
stack is an optimal structure: choosing the relative layer thicknesses to satisfy the

quarter-wave condition maximizes the £ = 0 band gap, allowing the greatest modal
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Figure 4-3: (a) Force as a function of separation between the films, for fixed operating
frequency and electromagnetic field energy. As d is decreased to d,, the group velocity
of the waveguide mode decreases to zero, shown as the dimensionless quantity vg/c.
(b) Force as a function of separation between the plates, for fixed operating frequency
and waveguide input power. As d is decreased to d,, the force goes to infinity. {c) A
possible geometry for achieving constant input power over a range of separations.

confinement and hence the largest force. We have verified this statement explicitly
by fixing a/d = 0.45 and varying dy; and d,..

We next consider the distance dependence of the force. Suppose we choose the
operating frequency w and the period a so as to maximize the force at distance
d, for fixed electromagnetic field energy Usaq. That is, we choose a = 0.45d, and
w=w(k =10,a/d, = 0.45). As the separation is decreased from some initial value to
d,, the force increases, as shown in Fig. 4-3(a). The group velocity of the waveguide

mode at w simultaneously decreases to zero.

Now consider what happens at fized input power, a more rclevant constraint for
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any experimental realization of such a device. The energy in the field can be written as
as Ugeq = P L/vg, where L is the length in the propagation direction of the volume
V with cross-sectional area A. In Fig. 4-3(b), we plot the dimensionless quantity
fld/d,) = TF(‘;”/—C) As can be seen from the graph, f — oo as d/d, — 1. At fixed
frequency and input power, the force between the films is given by

-Pin(L/C)

T (4.3)

F(d) = f(d/d,)

and the force becomes infinile as the separation between the plates approaches d,.
Physically, as the distance between the plates decreases, the group velocity of the
waveguide mode decreases to zero. For a fixed power input, the light takes longer and
longer to travel down the waveguide, and the magnitude of the ficld builds up, leading
to a divergence in the force. For separations smaller than d,, the operating frequency
is below the cutoff frequency of the mode, and the fields will decay evanescently along

the waveguide, reducing the force.

In practice, the divergence at d, will be removed by loss mechanisms, including
losses due to finite mirror thickness, material absorption, input coupling, and scatter-
ing from disorder. An accurate numerical estimate of the achievable force will thus

depend on a detailed analysis of these mechanisms.

Figure 4-3(c) shows one means of achieving a nearly constant power input for a
range of separations. Here, a cylinder coated with a multilayer film forms the top
surface of the waveguide. This geometry not only eases the alignment requirements
between the two surfaces, but also forms an adiabatic input taper for coupling, e.g. a
tightly-focussed laser mode, to the guided mode of the waveguide. Due to the taper,
a change in the minimum film separation will correspond to a much smaller fractional
change in the film separation at the input, yielding a nearly constant input power.
Moreover, any reflections from the output taper back into the waveguide will in fact

increase the total force, as they increase the total amount of power in the waveguide.

For larger separations between the multilayer films, the central air waveguide will

be multimode. The total force between the films is given by the sum over the force
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contributions due to the individual modes. As a result, the force as a function of
distance will exhibit peaks at the cutoff distances of each of the higher-order modes.
Unlike the casc of radiation pressure in mirrored Fabry-Perot cavities [161], these
peaks are assymetric around the cutoff length.

Since the key condition for a force divergence is a zero group-velocity mode at
non-zero frequency, a divergence is also expected for metallic waveguides. In the
absence of loss, the time-averaged force on the metallic waveguide walls is calculated
to be

Fd mne 1

Pa(L/c) 2w g2 (Lm)z

w

for either TE or TM modes. (F = 0 for the TEM mode, since its frequency is
independent of waveguide width.) The force at constant input power thus diverges
as d — mnc/w and the mode reaches cut off. However, to maximize the force, the
distance between the plates (and consequently the operating wavelength) should be
made as small as possible. Due to the high losscs in metals at optical wavelengths,
the force divergence should be far easicr to observe in dielectric systems.

A number of applications of this work should follow from the ability to modify
the mechanical oscillation of the structure by optical means, such as sensitive control
and positioning on the microscale. Operating the structure in reverse, by using an
applied force to modify the waveguide group velocity, results in a tunable time-delay
device. Moreover, since our omnidirectional-reflector waveguide may be viewed as a
Fabry-Perot cavity operated via a novel sidewise-coupling scheme, it should provide
an interesting alternate systcm in which to explore the rich collection of classical
and quantum effects resulting from strong optomechanical coupling in Fabry-Perot

systems.
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Chapter 5

Slow-Light, Band-Edge Waveguides
for Tunable Time Delays

This chapter has been submitted for publication; see Ref. [202].

Delaying an optical signal is useful for a number of applications, including signal
processing, logic, radio-frequency (RF) photonics, and enhanced nonlinearities [173].
Scveral recent research efforts have focussed on replacing relatively bulky fiber-optic
delay-line systems [167] with compact integrated devices. Approaches have included
the use of all-pass filters, which can be implemented either in microring resonators
[173] or in photonic crystal microcavities [174], and coupled-cavity wavegnides [152]
in photonic crystals [155,175-177]. However, both types of time-delay devices are
intrinsically lossy (even in the absence of fabrication disorder) unless implemented in
3D photomic crystals [5], which remain difficult to fabricate at optical length scales.

Here, we cxamine another approach to integrated optical time delays: slow-light,
band-edge photonic-crystal waveguides. Work on multilayer films has previously sug-
gested that, near a photonic band edge, a large delay tunability can be achieved for
a small change in refractive index [215]. While realistic three-dimensional implemen-
tations of such structures tend to suffer radiative input-coupling loss, it has recently
becn shown [216] that apodization can in principle reduce that loss to zero. This

result makes slow-light structures attractive candidates for highly-tunable, low-loss
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Figure 5-1: (a) 3-D perspective view of a slow-light grating structure. (b) Top view.

optical time delays. We first define appropriate figures of merit for the comparison of
tunable time-delay structures. We then show that values for a realistic sample struc-
ture are well approximated by a simple quadratic-band model, greatly simplifying

design and optimization of such devices.

A sample slow-light structure is shown in Figure 5-1. The structure is formed by
a silicon strip waveguide with grated sidewalls (allowing ease of apodization [217])
resting on a silicon dioxide substrate. Silicon has low absorption near 1.55um, high
refractive index, and large change in index with temperature; the index varies by

>1% from 100 to 300 C [218].

A small shift in a refractive index of the structure will slightly shift the dispersion
relation. For a given operating frequency, the group velocity of light traveling through
the the structure will change from v, to vy (see Fig. 5-2). At the edge of the Brillouin
zone, the group velocity goes to zero (as is typical of a variety of 1-, 2-, and 3-D

periodic, dielectric structures [5]). As a result, a small shift in index can result in a
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Figure 5-2: Illustration showing how a small shift in refractive index can lead to a
large shift in group velocity for operating frequencies near a photonic band edge.

large change in group velocity, and consequently in time delay.

To quantify the effect, we define the sensitivity, a dimensionless figure of merit

given by the fractional change in time delay over the fractional change in index:

At/t A1/ vg)a, 1
An/n— 1jv, An/n’

5 (5.1)

where 7 is the time delay, v, is the wavegnide group velocity, and A (1/v,),, =
1/v, — 1/u, is the change in group velocity due to a shift from n to ' = n + An. s
indicates the advantage of the slow-light waveguide structure as compared to a bulk

material, for which w = ¢k/n and s=1.

For a fixed fractional index shift An/n and a desired tunable delay A7, the re-

quired length is given by

AT

L= q A(l/vg).ﬁn

(5.2)

| ATy
C|An/n s |

Waveguides with low group velocity and high sensitivity allow a shorter tuning region,
leading to lower power and easier integration.

Sensitivity is high near the band edge because of group-velocity dispersion (d%w/dk? +
0), but dispersion can also limit the performance of the device. It is useful to define

a dispersion figure of merit to measure the amount of pulse spreading relative to the
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typical size 1/Aw of temporal features (c.g. pulses or chirp autocorrelations [219])
where Aw is the bandwidth.

Tl = Tlo—aw  LA(/vg)aw

d= = 5.3
1/Aw 1/Aw (5:3)
where A (1/vg),, = i e i e is the change in inverse group velocity across the

bandwidth. Making use of Eq. 5.2, d may alternatively be written as

A(l/vg)A
= |AT|Aw 2 :
d=1a7] |A (1/”9)An| >4

We first analyze the figures of merit within an approximate quadratic model, and

then perform exact calculations for the structure of Fig. 5-1. Near the band edge wh.,

w(k) can be approximated by a quadratic curve,

w(k) = wpe — alw/a — k),
where a = —3 d*w/dk?|, . Similarly, the shifted band can be written as

W' (k) = wpe + 6w — (o + da)(wfa — k)?

Let Awpe = wpe — w. Then

1 1
5 ~An/n (1 - V(1 + 6w/ Auwpe)(1 +(5a/a)) ' (55)

As the operating frequency approaches the band edge, |s| increases until it reaches

a limiting value of |n/An|; unlike in a bulk medium, s diverges as An/n — 0. The
length is given by

QAT 0 AWhe
1—[(1 4 dw/Awee)(1 + Sofa)]M?

~
~

. (5.6)

L decreases to zero near the band edge, scaling as L = 2| A7{aAwpe)*/?| for |Awy| <

&0




|0w|. The dispersion figure of merit is approximated by

N LAw 1 B 1
T ova | VAW VAo AW

(5.7)

Because L scales as v/ (up to small corrections that are first order in do/a o< An/n),
d is nearly independent of o within the quadratic band model. Approaching the band
cdge, dispersion increases to a limiting value of |A7|Aw. Strong gratings/large band
gaps (corresponding to small curvature a) thus tend to decrease the required length

for fixed dispersion.

Sensitivity, length, and dispersion figures of merit were calculated from the dis-
persion relation of the structure, which was obtained from fully-vectorial solutions of
Maxwell’s equations in a plane-wave basis [98]. The structural parameters were taken
to be A=0.26pm, w;=0.15pm, a=0.35um, d'=0.15um, d=0.20pm, and w=1.0224xm,
such that the minimum feature size was not below 0.15um. For ng=3.4845 and
nsio,=1.45, the first band gap was 23.5% of the mid-gap frequency for odd modes
with respect to the mirror plane of the structure (E mostly parallel to the substrate).
For ng;=3.4845, the band edge frequency was calculated to be wy,e = 0.22718 27¢/a for
the lowest band, or wy/27=190THz (A=1.54pm). For ng=3.45 (An/n=-0.01), the
band edge shifted to wpe = 0.2288027¢/a, or wpe/27=200THz (A=1.53um). Figure

5-2 shows the lowest band near the band edge.

Figs. 5-3 and 5-4 show the results of the exact numerical calculation (symbols)
overlayed on the expressions for s, L, and d obtained from the quadratic band model of
Equations 5.5, 5.6, and 5.7 (solid lines). As can be seen from the figure, the quadratic
band model is an excellent predictor of the results within at least 1% from the band
edge. Values of §w (0.0016227¢/a) and « (1.550 ca/27), and da (0.025 ca/27) were
obtained from a fit to the data of Fig. 5-2 at £ = 7/a. In general, we expect the range

of validity of the quadratic band model to decrease as the band gap is decreased.

Optimization, fabrication, and optical characterization of slow-light structures are
ongoing [220". Analogous to fiber-optic systems [167], gratings with alternating dis-

persion signs (e.g. designed to operate below or above the first band gap) may be
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Figure 5-3: (a) Sensitivity figure of merit for the structure of Fig. 5-1 as a function of
fractional frequency from the band edge. (b) Required length for different amounts
of tunable time delay. Symbols/solid lines are exact/quadratic-approximation calcu-
lations.

used for dispersion control, allowing larger delays. A crucial question to be answered
by experiment is how close to the band edge a grating device can be operated in prac-
tice. While it has been suggested that band-edge devices should be extraordinarily
sensitive to disorder [155], disorder is a problem for any slow-light device, including
those based on coupled-cavity waveguides [190]. It can be shown from the coupled-
mode theory of Chapter 6 that reflection loss typically scales as 1/ vg, while other loss
scales as 1/v,. Further understanding of disorder effects and detailed comparisons
of implementation schemes will be important for a variety of slow-wave devices and
phenomena, e.g. magnification of nonlinear phase shifts [156], gain [158], and radia-
tion pressure (as studied in Chapter 4) in addition to the class of optical time-delay

structures introduced here.
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Chapter 6

Effect of a Photonic-band Gap on
Scattering from Waveguide

Disorder

This chapter will also be published as Ref. [200].

A photonic crystal blocks the propagation of fields within a certain frequency
range, or photonic band gap, thereby confining light to the vicinity of defects in its
periodic structure [5]. Linear defects, which act as waveguides, arc promising building
blocks for the design of optical integrated circuits in the infrastructure provided by
the photonic crystal [37]. Understanding the effects of disorder in these systems
(arising, for example, from imperfect fabrication) is thus a topic of both fundamental
and practical importance. However, while the effect of disorder on the bulk band gap
of the crystal is well understood [179,180], the effect of disorder on transport through
photonic-crystal waveguides has seen only limited study for specific cases [190-193].

In this chapter, we derive the general principles that govern reflection and scat-
tering due to arbitrary disorder in photonic-crystal waveguides. By working with
a basis of Bloch states, we develop an extension of traditional coupled-mode the-
ory [194] that is valid even for strongly-periodic, high-index-contrast systems. Unlike

previous work, our approach is not limited to slowly-varying perturbations [221], it
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develops the coupled-mode equations in space rather than in time [222], and it uscs a
fixed basis [216]. From our theory, an explicit formula for the reflection is obtained,
yielding physical insight into the effect of the band gap on scattering. We find that, in
the experimentally-relevant limit of weak disorder,! the photonic band gap suppresses
radiation loss without redirecting light into reflection. As a result, reflection losses are
the same as in a comparable index-guided waveguide, and the overall transmission is
higher. These general results are verified by direct numerical simulations of Maxwell’s

equations in an example system.

We begin by writing the dielectric constant of the waveguide as e(x, y, z)+As(z, v, ),
corresponding to a z-periodic, unperturbed waveguide € of period a plus a perturba-
tion A= due to disorder, where z is the propagation direction. For a definite frequency

w, the fully-vectorial source-free Maxwell’s equations can be rewritten [216]:

A+ AW = i—Blu
(A+ AAY) i5 [¥),

where |/} is a four-component column vector containing the transverse (zy) fields E,
and Ht,
) Et(m’ Y Z) —iwt
) = e,
Ht (fL'} Yy Z)
and the operators are defined by
. we £y, x LV, x 0
A= ¢ w7ttt : (6.1)
0 E Ve Vi
. wAe/c 0
AA = ,
0 —=V xA(3) Vex

ITypical experimental magnitudes of roughness due to lithography [37,223] will be even lower
than those we study here.
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where A(1/¢g) = —Qe/le(e + Ae)], and
B= ,

where V, denotes the transverse (zy) components of V. Iy contrast to quantum
mechanics, A and 5 are Hermitian (for real/lossless ¢ and /1) but are not positive

definite, permitting complex elgenvalues.

From Bloch’s theorem, the eigenstates of the unperturbed system can he Written
6152![3), where the real part of § € (~7/q, 7/a}, and [3) is a periodic function of z

with period a that satisfies the generalized Hermitian eigenproblem
P 0 ) ]
A+ zaB 18) = BB|3). (6.2)

These states satisfy the orthogonality relationship {(B*]B[ﬁ’) = 0 for 8 # &, where
|*) is the eigenstate with conjugated eigenvalue 3*, and the implicit integral is over
one unit cell. (Modes with complex 3 are evanescent). While g complete basis at
constant w requires the inclusion of g continuum of nonguided states, this continunm
can be thought of as the infinite-volume limit of & set of discrete states of a finite
volume with conducting boundary conditions. We can thus consider only modes |n)
that have discrete eigenvalyes P and can be normalized such that (m*|B|n) = Ormn T,

with |7, = 1; moreover, (m,*jl;’e(‘z'"”/"')ézjn) =0for 3, # 3, + (27 /a)¢.

Because the orthonormality condition involves an integral over the unit cell, it ig
useful to adopt an algebraic trick [216] that introduces & new integration parameter

Z, a shift of the original, unperturbed waveguide. The full problem ig then

(A2 + 2k, = L iy, (63

where A(2 + 3) ig obtained by sending €(2,y,2) — e(z,y, 5+ Z) in equation 6.1. The
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solution of Eq. 6.3 can be expanded in terms of the shifted, unperturbed eigenstates:

W(Z’))g = ch )’n(’ -+ )>eiﬁnz- (6'4)
Since A(z + % +a) = A(z + %), the ¢,’s can be chosen to be periodic in Z and their 3

dependence expressed as a Fourier series:

a2, 2) = Z Cna(z)e M a, (6.5)

After substituting Eq. 6.4 into Eq. 6.3 and applying a 3-shifted orthonormality
condition, the physical solution is obtained by setting z to zero in Eq. 6.5. After
integration by parts and a change of variables, we obtain the final result in terms of

the original fields:?

an che ;371 ﬂ771+2"’|’ £— k)/a).:, —/dxi e*Qﬂi(f—k}Z’/a%X (66)

Cm
d~
“ ko k

{As(x;, DEM (X)) - EMX) - A ( 1 ) D (x’)*D;"(x’)J ,

e(x}, 2)

where E; = ei'[’"'zEz". Note that the integral is over a primed coordinate x' — (x},2")
that ranges over the unit cell, whereas z is the fixed point along the waveguide axis
at which de,,/dz is evaluated. From Eq. 6.7, it can be seen that the mode coupling
depends on the strength of the perturbation at a given z and the weighted average of
the squared mode profile over the entire unit cell, not just at the disorder location.
Assuming for simplicity that the unperturbed waveguide is single-modc, the coupled-

mode equations can be integrated to first order to yield the coefficient of the reflected

*The result must be modified using techniques discussed in [224] for boundary perturbations with
non-TM modes.
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mode;

, ~ in /> i(23;—2rk/a)z d Iﬁ??rikz'/agx 6.7
e (2) = in; Ek ./d e / x'e . (6.7)
LAY LYy 1 Tl IV * Y !

(et B0 Bi) - A (= ) D61 D260) ) ),

where ¢ and r label the incident and reflected modes. (Note that a factor of \/1/v,

is implicit in the mode normalization [216]).

Eq. 6.8 demonstrates that in the weak-disorder limit, the presence of a photonic
band gap in the region surrounding the waveguide has no effect on reflection. To
first order, only the profile of the guided mode enters the formula for the reflection
coefficient, along with the dispersion relation G(w), the group velocity vy, and the
perturbation Ae. As a result, a photonic-crystal waveguide with weak disorder will
have the same reflection losses as an index-guided waveguide that shares these charac-
teristics, regardless of the guiding mechanism. Moreover, the total transmission will
be higher for the photonic-crystal waveguide, since the index-guided waveguide also
suffers radiative losses.” It is perhaps natural to suppose that reflection losses should
be higher for a photonic-crystal waveguide than for an index-guided waveguide, for
one could imagine that the suppression of radiative scattering losses by the photonic
crystal would redirect light into reflection (as well as in the forward direction). How-
ever, our results show that to first order, such redirection does not occur. Because
the photonic crystal modifies the local density of states at the scattering site, the
total scattered power is lower, and the total reflected power is in fact the same as in

a comparable index-guided waveguide.

As a specific illustration of these general results, consider the waveguides shown in
Figure 6-1(a). On the left side of the figure is a 2D photonic-crystal (PC) waveguide
made by introducing a high-index strip of width w into the center of a missing row

of rods [10,225]. The bulk crystal is composed of a two-dimensional square array of

3The lowest order correction to the power transmission is given by T(z) = 1 — |ep(2)]? —
Zm#”, lem(2)]%, where the sum over m includes radiative terms calculated in a similar manner
to Eq. 6.8
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Pigure 6-1: (a) Waveguide geometries and corresponding mode profiles for w =
0.31(2rc/a). Mode profiles show the clectric field component perpendicular to the
page; red and blue indicate negative and positive values respectively. (b) Band dia-
gram for modes of the two waveguides shown in (a). Shaded regions indicate extended
TM states of the bulk 2D photonic crystal.

high-index rods in air. On the right side of the figure is an index-guided waveguide
composed of the high-index strip alone. A comparison of these two systems pro-
vides a clear demonstration of the effect of a photonic band gap on disorder-induced
scattering, because the only difference between the two is the presence of the band
gap.

Figure 6-1(b) shows the dispersion relations of both structures computed by
planewave expansion [98] for rod radius r = 0.20, w = 0.3¢ and € = 12. The

shaded regions indicate extended TM states of the bulk 2D photonic crystal. Filled,
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Figure 6-2: Closeup of central waveguide region, showing how identical surface rough-
ness was adced to the photonic-crystal and index-guided waveguides.

blue circles show the photonic-crystal waveguide mode (defect mode), which traverses
the band gap. Open, red squares show the fundamental mode of the index-guided
waveguide. The dispersion relations of both modes coincide for wave vectors greater
than ~ 0.65(27/a). In this range, the electric field profile is nearly identical for the
two waveguides; Figure 6-1(a) shows the electric ficld perpendicular to the page for
w = 0.31(2nc/a). Quantitatively, the unit-cell average of |E;|? at the waveguide sur-
face is the same to an accuracy of 0.1%. From Eq. 6.8, it is expected that the two

waveguides will have nearly identical reflections in the weak-disorder limit.

Surface roughness was added to both the PC and index-guided wavegnides, and the
resulting reflection and transmission were calculated using 2D, full-vectorial, finite-
difference time domain simulations of Maxwell’s equations [99]. The computational
resolution was 20 grid points/a. Perfectly-matched-layer (PML) boundary regions
were used at the edges of the computational cell [104]. Figure 6-2 shows the central
waveguide region. For each realization of disorder, the same perturbation was made
to both the PC and index-guided waveguides. Along each side of the strip, a random
perturbation was made at each grid point, with a probability p of a pixel being added
and a probability p of a pixel being removed. No perturbation was made to the rod
surfaces. Aside from a slight narrowing of the band gap [179, 180], the effect of such

a perturbation should be negligible for weak disorder.?

4Because the mode is strongly localized in the central strip region, scattering is dominated by
roughness along the strip surfaces. The effect of roughness in the bulk can be estimated from the
ratio of the average mode intensity at the edge of the nearest rod to that at the side of the strip,
which is roughly 0.01. The suppression of the local density of states inside the bulk photonic crystal
and the result of averaging over different realizations of bulk disorder should further reduce the
strength of the effect.
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Figure 6-3: Transmission and reflection for a disordered region of length 10a, averaged
over 20 realizations of the disorder.

Figure 6-3 shows reflection and transmission as a function of frequency, where
the results are averaged over 20 realizations of the disorder and the length L of the
disordered segment of the waveguide is 10a. For the frequency range shown, the
dispersion relations for the PC and index-guided waveguides overlap (see Fig. 6-1).
The results are plotted for three values of the disorder probability, p. At the highest
value, p = 0.1, the reflection in the PC waveguide is higher than that in the strip
waveguide by 2-6% due to second-order scattering. As p is decreased, the difference
in reflection decreases and is unobservable for p = 0.025. For all three values of p, the
transmission through the PC waveguide is higher than that through the index-guided

waveguide. The oscillations in the frequency spectrum that are visible in both the
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average reflection and transmission are due to Fabry-Perot effects arising from the
finite length of the disordercd region. The period of oscillation corresponds to a length
of ~ 10a and was found to scale linearly with L; the magnitude of the oscillations
decreases linearly with p.

The average transmission through the PC waveguide decreases more slowly with
length than for the index-guided waveguide. For p = 0.05, the calculated loss was
~ 0.04dB/a for the photonic-crystal and ~ 0.07dB/a for the index-gnided waveguide.

While the numerical results we present are for a specific, 2D system, we empha-
size that the coupled-mode theory developed here provides a general, semi-analytical
framework that can now be used to study the effects of arbitrary disorder in a variety
of 3D photonic crystals. Moreover, the physical insight that it provides is applicable
for general photonic-crystal waveguides: in the limit of weak disorder, the photonic
crystal suppresses radiation loss without redirecting light into reflection. The results
should thus be of great interest for the development of low-loss waveguides in high
to medium-index contrast systems using photonic crystals with full or partial band
gaps. Several avenues present themselves for future study, such as the direct semi-
analytical prediction of disorder losses in realistic systems and the development of
a generalized coupled-power theory [194] based on Eq. 6.7. The latter can be used
to illuminate the effects of long-correlation-length (3> a) disorder, which may cause
additional scattering/reflection due to quasi-phase matching, as well as to allow the
comparison of photonic-crystal waveguides that do not directly correspond to con-

ventional waveguides.
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Chapter 7

Conclusions

Since the initial proposal of photonic band-gap materials in 1987, the field has under-
gone a rapid cxpansion, with the prediction and fabrication of 3D crystal structures,
the discovery of novel phenomena arising from unique properties of photonic crystals,
and the proposal of a number of interesting, practical applications. Experimentally,
the area of 2D-periodic, photonic-crystal slab structures is developing rapidly and
progress toward functioning, integrated optical devices is well underway. Meanwhile,
the fabrication and optical characterization of fully 3D structures continues to chal-
lenge existing fabrication techniques and inspire innovations.

Where will the field go next? A number of areas present themselves in which the
theorist, in particular, can contribute. The first of these is the continuing identifi-
cation and prediction of 3D photonic band gap structures and their properties. By
working with experimentalists knowledgeable in various fabrication techniques, new
structures and methods may be identified to facilitate the design and fabrication of
3D crystals. The work in Chapter 2 on the design of 2D-like defects in 3D crystals fits
in with this general theme, for our results simplify the design of optical components
in 3D lithographic structures.

Another major theme is the identification of novel phenomena arising in photonic
crystals as a result of the high index contrast and strong periodicity of such Sys-
tems. Photonic crystals provide great flexibility to tailor bulk properties, dispersion

relations, and characteristics of defect modes. This flexibility may be exploited to
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discover a number of interesting new effects. The work in Chapter 3, which suggests
the use of point-defect modes for “meta”-materials properties, the study of slow-light
enhancement effects in Chapters 4 and 5, and the reduction of disorder-induced scat-
tering through density-of-states suppression studied in Chapter 6 represent efforts
towards this end.

Lastly, the embodiment of practical photonic-crystal devices will require the fur-
ther development of techniques for design optimization and modeling. We hope that
the discussion of figures of merit for tunable time-delay devices in Chapter 5 and the
development of a semi-analytical theory for the simulation of arbitrary disorder in

photonic crystal waveguides in Chapter 6 will contribute to these goals.
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