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EXECUTIVE SUMMARY

THE GENESIS OF THE REPORT

During two past two years, a group of researchers at the MIT Center

for Energy Policy Research has been conducting a study of the medium

term prospects for international trade in natural gas in various regions

of the world. This report, focussing on Western Europe, is the third

and final region study for this research project, the first two having

covered trade between the U.S. and Canada and LNG trade in the Eastern

Pacific. All three studies have shared a common focus and utilized a

similar methodology.

Specifically, each study has explored the cost side of natural gas

production and exporting, separating "real" or economic costs from

taxation which is treated as a transfer payment, and differentiating

between different cost reserves in various regions and countries. The

common question which was asked was how rapidly would costs rise at

different levels of demand growth over a 20-30 year period. On the

demand side, a range of plausible future levels was derived by looking

at prospects for gas capturing a greater share within specific using

sectors of the different countries, considering whether or not new gas

utilization technologies would play an important role in expanding gas

demand, and integrating the effects of high or low oil price scenarios

on total energy demand and natural gas's competitiveness. Long term

contracts for the advance purchase of natural gas and LNG are an

important component of producer-consumer relations and play a

significant role in determining the pattern of international trade in

gas. For this reason, each study has included research on contracting

issues, including some modelling of how contracts might be improved to
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bring about greater efficiency. Finally, dynamic trade models were

developed in each regional study to integrate the separate components

dealing with supply costs and demand levels. The models were used to

test for data consistency, to help calculate long run marginal costs, to

determine the relative costs of alternative trading patterns, and to

measure the economic costs of different policy distortions. At all

stages, careful attention was paid to the role government polices--

pricing, quantitative restrictions, bargaining--have played and what

effects these have had on efficiency.

This study of the prospects for natural gas trade in Western Europe

has followed this pattern, and this report has chapters dealing with

each of the above elements. The purpose of this introductory chapter is

to provide a brief summary and explanations of the main conclusions. In

addition, short summaries are included of the separate chapters of the

report.

BACKGROUND

Five years ago, the Western European energy market appeared on the

verge of a second natural gas revolution. The second oil price shock,

coupled with concern about security of energy supplies, appeared to

provide new opportunities for market penetration by gas, while at the

same time new supplies were becoming available, especially from Algeria,

Norway, and the Soviet Union. All indications were that natural gas

consumption would grow rapidly, mainly at the expense of oil's market

share. Because of optimistic expectations about future demand and

pessimistic expectations about future domestic supply and world oil

prices, consumers signed import contracts for large quantities of

additional natural gas, agreed to contracts with rigid take-or-pay
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clauses and rather high built-in prices. Producers, extrapolating long-

term market trends from short-term market conditions, insisted on such

contracts as a means for insuring maximization of their rents.

Instead, as world oil prices began to fall and the Western European

economies continued to show weak growth, events unfolded very

differently to what had been expected. The apparent cost advantages of

natural gas largely evaporated. Natural gas demand stagnated, resulting

in excess supply in the short run. The importers found themselves

burdened with supplies that were clearly overpriced and saddled with

inflexible contracts that did not allow for any adjustments to reflect

the new environment. Slowly, and painfully, exporters have had to

recognize that natural gas was neither as scarce nor as valuable as they

had believed. The result has been that many contracts had to be

adjusted or rewritten. Relations between consumers and producers became

increasingly antagonistic, and until the signing of the Troll contract

this spring, it appeared that no major new natural gas supplies would be

developed, at least during the remainder of the 1980s.

Certainly, externalities have played a major role in the failure of

the gas market to perform as expected, including the drop in oil prices

(and their failure to continue rising) as well as the sluggishness of

Western European economic growth. However, it has been a contention of

this study that past analyses of natural gas markets relied excessively

on assumptions and paid too little attention to the attendant

consequences should those assumptions not prove out.
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PRINCIPAL CONCLUSIONS

The main findings of this study can be briefly summarized in the

following propositions:

-- Natural gas is likely to remain an under-exploited fuel

from the strict perspective of economic efficiency

-- Natural gas consumption is likely to grow rather slowly, in
the range of 1.5% to 2.5% annually, through the year 2010.

-- Low oil prices would reduce the potential for market share
gains by natural gas, while high oil prices would hinder
economic activity and demand for energy in general even if
gas became more competitive with oil.

-- New utilization technologies will not have a major impact
on demand without significant changes in prices and
policies.

-- At these projected consumption levels, the long run
marginal costs of producing and exporting natural gas to
Western Europe will rise very little, and be in the range
of $1.00 to $1.50 per thousand cubic foot.

Existing capacity can be operated economically even at
extremely low oil prices (e.g. $7-$10 per barrel) and gas
supplies can still be expanded at low oil prices (e.g.,
$10-$15 per barrel).

-- Little, if any, new large-diameter pipeline capacity will
be required through 2000, beyond the Troll project.

Lower oil prices and slow energy demand growth will
contribute to some reduction in government interference and
policy obstacles to gas use, but not to a degree necessary
to create fully competitive markets.

-- The relative importance of spot sales is likely to increase
due to the current surplus and the ability of some
producers to add small increments to supply without
undertaking major investments.

-- Any large new natural gas export projects will require
long-term contracts, although these (like Troll) are likely
have greater flexibility than those signed in the early
1980s.

Of course these rather pessimistic conclusions would be altered

either by greater movement by consuming or importing countries to
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encourage more competitive natural gas pricing more in line with long

run marginal costs, increased emphasis on pollution control which would

see a move to increase gas use in boilers, especially at the expense of

coal, or a stronger desire on the part of consumers to increase the use

of natural gas for security reasons.

The analytical underpinning of some of these conclusions can be

easily explained using Figure 1 as simple illustration. The estimated

long run marginal cost curve of supplies to Western Europe (aggregated

over all suppliers) is shown as a continuous line beginning at a very

low level, rising slowly and then reaching a level of $3.50 per thousand

cubic feet when supply reaches about 19 TCF per year. The "flatness" of

the curve at intermediate demand levels comes in part from plentiful low

cost reserves and in part from excess capacity in the present (and

committed) pipeline network. The sharp rise in the right-hand portion

reflect both new pipeline costs and more costly reserves.

The horizontal symbols are meant to bracket the estimated range of

future gas prices. The floor of $2.00 per thousand cubic feet

corresponds to oil prices at $11.60 per barrel if gas and oil were

priced equally in terms of heat content and a oil price of $17.40 per

barrel if the gas-to-oil price ratio were at the historical average of

about two-thirds. The corresponding oil prices for the ceiling of $3.00

per thousand cubic feet are $17.40 and $26.10 per barrel.

The vertical lines represent consumption levels. The left-most

level corresponds to current natural gas use in Western Europe, while

the two vertical lines on the right bracket the range of demand which

the study concluded is likely by about 2010. These illustrate the two

major conclusions regarding demand projections: (1) that the growth rate
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of consumption will be low, and (2) that the range between faster and

slower gas consumption growth likely will be narrow. The upper bound on

gas consumption is meant to correspond with the lower price for gas and

the lower level of consumption with the higher price level for gas.

Putting these pieces together, Figure 1 implies that at likely

demand levels in the future, gas prices will remain significantly above

long run marginal costs. This is what is meant by the conclusion that

the market will remain inefficient and natural gas under-exploited in

Western Europe. Another way of saying this is that there are likely to

be further opportunities for some combination of higher demand and lower

prices.

Figure 1 is, of course, an oversimplification in the sense that

dynamic factors such as reserve depletion effects and the importance of

existing contracts are neglected in the long run marginal cost curve.

These and other complications which cannot be included readily in a two-

dimensional graph are accounted for in the dynamic model of Western

European gas trade.

IMPLICATIONS FOR THE FUTURE OF GAS CONTRACTING

The project analyzed contracting practices with special emphasis

upon the changing pressures and motivations for traditional and new

forms of gas contracting. Results on the two key aspects of contracting

practices, price and quantity provisions, are summarized here.

Table 1 presents a concise summary of key changes in the Western

European natural gas market and the associated changes in contracting

practices that have occurred over the past 15-20 years.
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As displayed column 4 of Table 1, pricing practices have undergone

rather dramatic changes over the past history. Pricing practices in

long term contracts had been quite rigid prior to the 1970's and the

initial oil price increase. During the 1970's new contracts and some

renegotiation of old contracts established the practice of indexing the

price for contracted gas deliveries to the price of oil. This practice

continued and spread. In recent years the development has been in the

direction of more sophisticated formulas, but with the impact being a

greater degree of flexibility in the price and continued attempts to

write contract price clauses which make the price terms of the agreed

upon sale more responsive to market conditions for gas and competitive

fuels.

As described more fully in the chapter covering the analysis of

contracts, there is an inherent contradiction between the use of long-

term contracts and the need for price terms which reflect the current

market alternatives. The objective of a contract is to establish

clearly ahead of time the intention to purchase gas and some certainty

as to the profitability of the sale to the producer. This inevitably

requires establishing some set of price terms and it is impossible to

foresee all of the future developments which might arise and to write a

set of price provisions which will correspond to the anticipated future

market conditions. In the past, when oil prices were relatively stable,

the cost of rigidity in the price formula was relatively low. The price

of oil was unlikely to deviate far enough and fast enough to make the

unilateral cancellation of a contract by one party a viable alternative

to fulfillment of the agreed upon obligation.
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Subsequently, however, a long-term fixed price came to be viewed as

too rigid. Parties to a long-term agreement with a fixed or very

inflexible set of price terms would very likely discover in some period

of time that one party or the other had an incentive to demand a

renegotiation under threat of unilateral abrogation. Extreme

variability in the markets and price terms for competing fuels forced

flexibility upon the price terms for the long-term contracted gas

market. This flexibility is noted in the table as the key

characteristic of pricing terms in the 1980's.

The increased sophistication of price indexes in gas contracts is

an extension of this process.

This trend to increased flexibility in price indexes in long-term

contracts will undoubtedly continue. It is a response to the increased

flexibility of the markets on which gas competes, and the increased

flexibility in these markets is likely to persist for the foreseeable

future. While, the particular form of widely used indexes will perhaps

be developed further, the basic principle of a relationship between gas

and oil and of increased flexibility in the contracted gas price will

remain.

Historical developments in the quantity provisions of long-term

contracts do not lead us to similar conclusions regarding future

developments. These developments are summarized in column 5 of Table 1.

While early gas contracts in western Europe were not characterized by

high take provisions, this was largely due to the fact that the

inexpensive Netherlands supply dominated the market. As capital

intensive fields with large liquifaction or pipeline expenses became a

large factor in the supply during the 1970's, high takes also came to
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characterize the market as we note in the table. Recent years, however,

have seen a large amount of renegotiation and therefore de facto

flexibility in quantity provision as well as reports of new contracts

with a larger degree of flexibility in the takes--Troll for example.

There is a widespread belief that the current time is characterized by

greater flexibility in quantity terms. We note in the table, however,

that this increased flexibility is not a general feature, but associated

with particular fields or with marginal quantities from developed

fields.

It is tempting to conclude from the trend towards greater

flexibility in the take provisions of gas contracts that the old-style,

high take, low flexibility contracts are a creature of the past, and

that a producer seeking to sell their gas in today's or tomorrow's

market must forgo the security of rigid long-term contracts. The

analysis of contracts presented in the accompanying study provides one

with an understanding of why such a prognosis would be unfounded. A

prediction of unending flexibility in gas contract quantity provisions

would be a blind extrapolation of history, baseless in its understanding

for the past historical developments, and confused regarding the

underlying purpose which rigid quantity provisions serve.

Long-term contracts in gas are designed to provide the producer

with sufficient certainty of the intentions of the buyer to warrant the

large dedicated capital expenditures necessary to deliver the quantities

of gas needed by the buyer. The importance of this depends critically

upon the nature of the field being developed and the structure market to

which the gas is to be delivered. If the capital expenditures necessary

for developing the field and the associated delivery system are
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relatively small, then the long-term contract is not as critical as when

the capital expenditures are large. In terms of the European market

this is the obvious reason why the Dutch Groningen fields are sold on a

flexible basis while Soviet gas has typically been sold under relatively

stiff quantity terms. When the delivery system is already extensive and

there exist a large number of buyers, then the long-term contract is not

as critical as when the delivery system is dedicated to a single market.

In terms of the North American market this is a principle variable

affecting the degree of flexibility which is possible in the contracting

of Albertan gas to the Midwest and Western US markets in contrast with

the relatively inflexible terms that must be negotiated to bring on line

the production from the Venture field to the East Coast market.

Unlike the historical developments in price indexes, the increased

flexibility in the quantity terms of gas contracts have not been a

response to a permanent change in the gas or competing fuels markets.

The increased flexibility in observed quantity provisions for gas in the

European market have been driven primarily by a change in the

composition of those fields supplying gas to the market and the

associated change in the optimal contract structure. What is important

to keep in mind is that the flexibility that any given producer should

find acceptable depends not upon the general trend of the market, but

rather the nature of the field which that producer is developing and the

range of alternative buyers to which the gas can be sold once the

capacity is installed. A producer like the Soviet Union can accept

flexible quantity provisions only under penalty of accepting the

significant risk of being subject to opportunistic bargaining in the

future in which the actual price of gas delivered above and beyond the
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bare minimum take occurs at extremely unfavorable prices. The mere fact

that there exist competing producers willing to offer flexible quantity

terms does not eliminate this risk nor change the calculated advantages

of long-term contracts. Of course, it may imply that the Soviet Union

will face difficulty finding a buyer willing to accept the inflexible

provisions, but this would then be a signal that Soviet gas is

"expensive."

Our prognosis therefore for future developments in quantity

provisions of contracts is flexibility for particular fields, but

continued reliance upon high take requirements for other fields. The

material in the contracts section of the report makes clear how this

differentiation will develop across the potential suppliers.

ANALYSIS OF WESTERN EUROPEAN GAS TRADE

A dynamic linear programming model was constructed in order to

integrate the supply and demand components of this study. The model was

used to check the feasibility and consistency over time of the various

demand forecasts and supply constraints developed elsewhere in this

study, and where necessary revise any inconsistencies or identify

potential bottlenecks. The supply constraints include reserve levels,

installed pipeline capacities linking various countries, and minimum or

maximum export/import flows associated with either contracts or

exogenous policies.

Given these inputs, the model calculates least-cost production and

trade patterns to meet alternative projected gas demand levels in the

different countries of Western Europe. This provides a method for

estimating the opportunity cost of following a trade pattern which might
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be sub-optimal from the point of view of real costs of production and

transportation. By varying the demand growth rates, the model can

calculate the opportunity cost associated with increasing deliveries to

particular countries.

Numerous model runs were conducted to perform a variety of

sensitivity tests of specific scenarios. Among the variables used in

developing a specific scenario are: the time pattern of gas demand

growth by individual countries; country-specific gas reserve levels and

production costs; different pipeline capacity availabilities and

additions; minimum delivery requirements under existing and foreseen

contracts, and various policy constraints that can be imposed by

specific importing or exporting countries. By having the model

calculate the least-cost solution for each scenario, it is possible to

estimate optimal build-up and depletion profiles, export patterns, and

the real costs (in terms of production and transportation costs) of

policies such as supply diversification strategies.

In Tables 2 to 4, some results of the model runs are presented.

Perhaps most striking are the calculations of the opportunity cost of

producing and delivering additional quantities of gas to the consuming

countries. Although there are minor differences between the importing

countries, related mainly to transportation cost differentials, the

model estimates that the marginal costs remain below $1 per Mcf for the

next twenty years (1986-2000). This holds for all demand levels that

were considered to be even remotely likely and whether minimum contract

takes are imposed or not and reflects the availability of large amounts

of low-cost supplies.
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Table 2

Summary Results: Case 1

Demand Scenario --medium
Export Constraints--none
New Pipelines --none

Discounted Cost ($ bils.) = 13.88

1984 1990 1996 2002 2008 2014

Imports (Bcm/year)
Austria from USSR 2.8 3.6 4.2 5.1 6.1 7.3
Belgium from Algeria 1.5 0.0 0.0 0.0 0.0 0.0
Belgium from Netherlands 5.8 12.1 14.5 17.0 11.3 6.7
Belgium from Norway 1.7 0.0 0.0 0.0 8.6 16.6
France from Algeria 9.0 0.0 15.0 22.4 31.0 31.0
France from Netherlands 7.3 33.6 26.5 27.3 0.0 0.0
France from Norway 2.3 0.0 0.0 0.0 0.0 0.0
France from USSR 4.9 0.0 0.0 0.0 28.4 39.6
Netherlands from Norway 2.8 0.0 0.0 0.0 0.0 0.0
Italy from Algeria 6.7 0.0 18.0 18.0 18.0 18.0
Italy from Netherlands 5.2 27.4 14.4 19.7 17.8 27.7
Italy from USSR 8.2 0.0 0.0 0.0 8.9 7.7
United Kingdom from Norway 12.1 0.0 11.9 20.0 0.0 16.7
W. Germany from Netherlands 15.0 45.1 51.1 0.0 0.0 0.0
W. Germany from Norway 7.0 0.0 0.0 2.9 22.9 49.3
W. Germany from USSR 13.5 0.0 1.9 60.1 52.6 41.4

Total Gas Trade Flow 105.8 121.7 157.6 192.4 205.6 262.0

Marginal Import Cost ($/Mcf)
Austria from USSR 0.45 0.45 0.49 0.76 1.11
Belgium from Algeria NA NA NA NA NA
Belgium from Netherlands 0.15 0.42 0.46 0.75 1.10
Belgium from Norway NA NA NA 0.75 1.10
France from Algeria NA 0.44 0.48 0.76 1.12
France from Netherlands 0.17 0.44 0.48 NA NA
France from Norway NA NA NA NA NA
France from USSR NA NA NA 0.76 1.12
Netherlands from Norway NA NA NA NA NA
Italy from Algeria NA 0.48 0.52 0.81 1.16
Italy from Netherlands 0.21 0.48 0.52 0.81 1.16
Italy from USSR NA NA NA 0.81 1.16
United Kingdom from Norway NA 0.33 0.36 NA 0.71
W. Germany from Netherlands 0.14 0.40 NA NA NA
W. Germany from Norway NA NA 0.44 0.71 1.07
W. Germany from USSR NA 0.40 0.44 0.71 1.07
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Table 3

Summary Results: Case 2

Demand Scenario --medium
Export Constraints--minimum contracts imposed
New Pipelines --none

Discounted Cost ($ bils.) = 17.71

1984 1990 1996 2002 2008 2014

Imports (Bcm/year)
Austria from USSR 2.8 3.6 4.2 5.1 6.1 7.3
Belgium from Algeria 1.5 1.5 1.5 1.5 0.0 0.0

Belgium from Netherlands 5.8 7.6 8.9 12.9 18.3 8.3
Belgium from Norway 1.7 3.0 4.1 2.6 1.6 15.1
France from Algeria 9.0 6.7 5.8 4.0 24.5 31.0
France from Netherlands 7.3 13.9 20.8 29.9 13.5 0.0
France from Norway 2.3 3.4 6.7 7.8 6.4 6.4
France from USSR 4.9 9.6 8.3 8.0 15.0 33.2
Netherlands from Norway 2.8 3.0 4.1 2.6 1.6 1.6
Italy from Algeria 6.7 7.8 9.6 18.0 18.0 18.0
Italy from Netherlands 5.2 9.7 16.4 13.3 20.3 27.7
Italy from USSR 8.2 9.8 6.4 6.4 6.4 7.7
United Kingdom from Norway 12.1 7.6 7.6 0.0 0.0 20.0
W. Germany from Netherlands 15.0 21.6 31.1 45.6 12.9 0.0
W. Germany from Norway 7.0 8.5 13.5 9.0 10.8 42.9
W. Germany from USSR 13.5 14.9 8.4 8.4 51.9 47.8

Total Gas Trade Flow 105.8 132.3 157.3 175.0 207.2 267.0

Marginal Import Cost ($/Mcf)
Austria from USSR 0.45 0.45 0.45 0.64 1.11
Belgium from Algeria 0.32 0.32 0.32 NA NA
Belgium from Netherlands 0.10 0.15 0.27 0.62 1.10
Belgium from Norway 0.46 1.10 0.52 0.62 1.10

France from Algeria 0.30 0.30 0.30 0.64 1.12
France from Netherlands 0.12 0.17 0.29 0.64 NA
France from Norway 0.48 1.12 0.54 0.64 1.12
France from USSR 0.45 0.45 0.45 0.64 1.12
Netherlands from Norway 0.43 1.08 0.49 0.60 1.08
Italy from Algeria 0.30 0.30 0.33 0.68 1.16
Italy from Netherlands 0.16 0.21 0.33 0.68 1.16
Italy from USSR 0.50 0.50 0.50 0.69 1.16
United Kingdom from Norway 0.33 0.98 NA NA 0.74
W. Germany from Netherlands 0.08 0.13 0.26 0.60 NA
W. Germany from Norway 0.42 1.07 0.48 0.59 1.07
W. Germany from USSR 0.40 0.40 0.40 0.59 1.07
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Table 4

Summary Results: Case 3

Demand Scenario --"super"
Export Constraints--none
New Pipelines --1996: Algeria-Italy +12 Bcm
2002: Norway-UK +20 Bcm, USSR-W. Germany +40 Bcm
2005: Algeria-Italy +18 Bcm, USSR-Austria +20 Bcm
2008: Norway-UK +20 Bcm
2011: USSR-Austria +30 Bcm, USSR-W. Germany +40 Bcm
2014: Norway-W. Germany +30 Bcm, Algeria-Italy +18 Bcm
2017: USSR-W. Germany +40 Bcm

Discounted Cost ($ bils.) = 26.39

1984 1990 1996 2002 2008 2014

Imports (Bcm/year)
Austria from USSR 2.8 4.8 6.3 8.2 10.7 13.8
Belgium from Algeria 1.5 0.0 0.0 0.0 0.0 0.0
Belgium from Netherlands 5.8 15.0 19.7 24.8 31.6 40.0
Belgium from Norway 1.7 0.0 0.0 0.0 0.0 0.0
France from Algeria 9.0 12.0 15.0 31.0 31.0 31.0
France from Netherlands 7.3 31.3 43.5 8.8 11.4 17.7
France from Norway 2.3 0.0 0.0 0.0 0.0 0.0
France from USSR 4.9 0.0 0.0 35.5 55.3 76.5
Netherlands from Norway 2.8 0.0 0.0 0.0 0.0 0.0
Italy from Algeria 6.7 18.0 30.0 30.0 30.0 66.0
Italy from Netherlands 5.2 18.3 18.7 25.5 26.4 0.0
Italy from USSR 8.2 0.0 0.0 6.9 24.3 38.2
United Kingdom from Norway 12.1 0.8 20.0 22.6 58.1 35.1
W. Germany from Netherlands 15.0 59.4 18.6 0.0 0.0 0.0
W. Germany from Norway 7.0 0.0 1.0 15.5 66.0 86.0
W. Germany from USSR 13.5 0.0 58.8 85.5 65.7 84.5

Total Gas Trade Flow 105.8 159.6 231.6 294.3 410.6 488.9

Marginal Import Cost ($/Mcf)
Austria from USSR 0.45 0.55 0.95 2.18 0.45
Belgium from Algeria NA NA NA NA NA
Belgium from Netherlands 0.28 0.51 0.94 2.17 3.24
Belgium from Norway NA NA NA NA NA
France from Algeria 0.30 0.53 0.96 2.19 3.26
France from Netherlands 0.30 0.53 0.96 2.19 3.26
France from Norway NA NA NA NA NA
France from USSR NA NA 0.96 2.19 3.26
Netherlands from Norway NA NA NA NA NA
Italy from Algeria 0.34 0.57 1.00 2.23 0.50
Italy from Netherlands 0.34 0.57 1.00 2.23 NA
Italy from USSR NA NA 1.00 2.23 0.50
United Kingdom from Norway 0.36 0.41 0.82 1.03 1.14
W. Germany from Netherlands 0.27 0.50 NA NA NA
W. Germany from Norway NA 0.50 0.91 2.14 3.21
W. Germany from USSR NA 0.50 0.91 2.14 3.21

*************************************************************
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The more crucial factor in calculating marginal costs are pipeline

constraints. So long as import demand levels fall within the capacity

of the existing network, the marginal costs of expanding deliveries are

low. Because the demand scenarios imply that, at best, demand will grow

only modestly, the model is able to operate in most scenarios within

present capacity and in future capacity expansions for which commitments

have already been made. Again, note that the marginal costs calculated

by the model ignore all taxes, royalties, rents, and other transfer

payments. By inference, however, we conclude that the bulk of the

present prices importers are paying for gas are for rents and taxes

rather than merely to cover opportunity costs.

Another interesting result is that, unless demand growth

accelerates substantially, there are significant additional costs

incurred by adhering to the minimum takes in existing contracts.

(Compare Tables 2 and 3.) For the medium-demand scenario, the present

value of the additional opportunity costs are estimated to be $3.8

billion, a 28 percent increase over the least-cost production and trade

scenario. Of course, compared to the unit prices importers are paying

at present, the increase may not seem substantial, and could be

considered the cost of diversification. However, it does indicate that

significant bargaining room exists both among exporters and between

exporters and importers. Indeed, the change in the total discounted

cost of moving from the contract-constrained to the unconstrained cases

is greater than the additional cost of moving from the low demand to the

high demand scenarios.
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SUPPLY AND PRODUCTION COSTS

The past decade has seen most market actors confuse high-priced gas

with high-cost gas, with producers taking advantage of the sellers'

market to maximize markup rather than market share. However, this

should not be allowed to obscure the fact that most natural gas supplies

now available cost very little to produce and transport. The result has

been a surplus of supplies and competition between sources, which drove

gas prices down even before the recent drop in oil prices.

In the Supply Chapter, we employ publicly available information to

analyze natural gas development and production costs for major fields in

Algeria, the Netherlands, Norway, the United Kingdom, and the USSR.

Figure 1 includes the aggregate marginal cost curve derived from our

analysis. This curve should be considered conservative, inasmuch as it

concentrates on the larger increments to supply, e.g., Groningen, Troll,

Algeria, and the Soviet Union, with supply from small domestic fields

limited to the United Kingdom and the Netherlands. Inclusion of

domestic natural gas in France, West Germany, and Italy would extend the

curve further. Even allowing for this conservative interpretation, it

is clear that potential supply of natural gas to Western Europe is far

in excess of current demand at current, or likely, prices.

In North America, lower prices should result in an end to the gas

surplus, but in Western Europe, the situation is not so clear-cut. In

the first place, taxes and royalties, as well as other forms of rent,

have been much higher in Western Europe, and can be reduced to allow

sales to continue. In fact, the need for revenue should encourage some

producers to seek higher sales volumes to offset lower prices. The
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price break has certainly undermined the belief future prices can only

increase such that withholding supplies will inevitably be profitable.

While low oil prices will reduce drilling to some degree, and

therefore discoveries of natural gas, the reduction in demand for

drilling, offshore construction, and similar investments should act to

create short-term surpluses in the oil service, drilling and

construction industries, keeping costs down and improving the economics

of many projects. However, lower prices should not curtail natural gas

availability in Western Europe because current supplies are so abundant

that new discoveries are unneeded until well into the next century.

Costs are low enough, in fact, that producers have the capability

to expand their sales in the low-margin markets, including spot sales

and the smaller, immature markets, such as Spain. This is seen

especially in the Norwegians' attempt to market Troll gas in the smaller

markets.

DEMAND PROSPECTS

In the Demand Chapter, we first analyze the historical development

of natural gas markets, especially in France, Italy, the United Kingdom,

and West Germany. This analysis is then combined with a review of

recent Western European economic growth forecasts to specify three

possible scenarios of Western European natural gas demand. A simple

economic model of the relation between fuel use, and relative oil and

natural gas prices and economic growth is used to generate these natural

gas demand scenarios which are used as input to the Western European

natural gas trade analysis discussed above.
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Natural gas demand is influenced by several factors, most

importantly:

-- Its price relative to those of close substitutes,
especially oil products but also coal and electricity;

-- The level of economic growth, and its composition (e.g.,
growth in heavy industry relative to services and light
industry);

-- Expectations about both future prices and reliability of
supplies;

-- Technology developments affecting the delivered service
cost of natural gas and closely competing fuels;

-- Government policies, especially fuel choice and
environmental policies.

The most important differences in assumptions underlying the three

Western European natural gas demand scenarios relate to (i) natural gas

prices relative to prices of closely competing oil products, and (ii)

the effect of overall energy prices -- in particular, oil prices -- on

economic growth. Regarding oil price expectations, we postulate three

possibilities for future oil prices (constant 1986 Dollars) including,

-- Re-emergence of a strong oil producer's cartel, resulting
in oil prices returning to the $26-30 range in the near

future, and continuing into the next century;

-- Emergence of a competitive world oil market, resulting in
oil prices in the $7-9 range; and,

-- A relatively weak oil producer cartel, resulting in
considerable volatility in oil prices in the $10-20 range.

Economic growth rates and future natural gas demand depend upon

these oil prices scenarios in the following way. High oil prices permit

increased scope for natural gas to increase market share. However,

higher overall energy prices will retard economic growth, and especially

growth of energy intensive industries and activities. The effects of

slower growth on natural gas demand will depend importantly on gas
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pricing policy relative to oil. Low oil prices would have the opposite

effect in that economic growth rates are stimulated; but now natural gas

must compete against cheap oil. Finally, volatile oil prices will

likely have a neutral effect upon economic growth, but will increase the

premium for investing in flexible, fuel-switching capability --

especially for industries where energy accounts for a significant share

of total costs. Investments in such flexible fuel systems will depend

importantly on natural gas pricing policy; for example, natural gas

prices that are rigidly locked to oil prices will reduce the flexibility

premium, and limit the possibility for natural gas demand to benefit

from volatile oil prices.

We employ a simple economic model to analyze the combined effects

of alternative oil prices, economic growth, and efficiency of natural

gas technologies, on future Western European natural gas demand. The

results are presented in Table 5. Most importantly, the analysis

indicates that future Western European natural gas demand to fall within

a fairly narrow range. Overall for the three oil price scenarios

outlined above, the average growth rate for gas demand in the period

through 2010 ranges from 1.88% to 2.05% per year; adjusting further for

various contingencies suggests the plausible range is perhaps 1.5X to

2.5% per year, still a very narrow range.

These small difference are due primarily to the off-setting effects

between oil prices, economic growth, and interfuel substitution

possibilities for natural gas. While high oil prices provide

opportunity for natural gas substitution, they reduce overall economic

growth, especially in the energy-intensive industries, thereby reducing

overall growth in energy demand. Conversely, low oil prices have a
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Table 5

Natural Gas Consumption and Average Annual Growth Rates

1984 Demand Scenarios
consumption

Countries (Bcm) low medium high "super"

France 29.50 2.94% 3.19% 3.43% 5.00%
West Germany 50.20 2.33% 2.52% 2.70% 4.41%
Italy 33.20 2.21% 2.35% 2.49% 4.25%
United Kingdom 47.50 0.87% 0.53% 0.18% 3.28%
Netherlands 38.60 0.50% 0.45% 0.40% 1.00%
Belgium 9.00 2.94% 3.19% 3.43% 5.00%
Austria 4.10 2.33% 2.52% 2.70% 4.41%
Norway 3.70 1.20% 1.00% 0.80% 3.00%

Total/Average 215.80 1.88% 1.96% 2.05% 3.85%

positive impact on economic growth, but reduce opportunities for natural

gas substitution for oil.

Table 5 also includes a much higher set of exogenously specified

growth estimates ("super"); these estimates are not related to any

particular oil price or economic growth scenario, but, as discussed

above, are used only to explore possible Western European natural gas

trade patterns under very extreme demand growth conditions.

Our analysis of the three oil price scenarios reflects the

assumption that government policy changes will have a small overall

positive impact on natural gas demand. We expect only slow, and small,

changes in the protection of market share for coal and nuclear in the

generation of electricity; however, the abundance of natural gas

supplies, and the likely aggressive pricing policies of natural gas

producers, should encourage penetration in, for example, boiler fuel

markets.
A_
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Government environmental policies might have some effect on future

natural gas demand since low pollutant characteristics are an important

attribute of natural gas. Although the value of this quality is

impossible to quantify, the growing concern worldwide with

environmental, health, and safety (specifically acid rain, chemically-

induced mutagenity, radiation, and C02 and S02 emissions) could

conceivably stimulate demand for natural gas well beyond present levels.

This socially-driven, potential impact on demand is noted, but it is

very difficult to project any significant effect with current

information.

NEW TECHNOLOGIES

As noted above, technology developments are potentially important

in analyzing future natural gas demands. We have continued the analysis

of natural gas related technologies begun in our previous two studies

and found that there are still economic possibilities of increasing

efficiency of natural gas use for all three of the oil price scenarios

considered in this study. These gains have not yet reached their upper

limit, and should continue, in combination with the lower gas prices

that have accompanied the fall in oil prices, to augment natural gas's

competitive position against other energy sources.

Specific technology developments in the major consuming sectors--

industry, residential and commercial, electric power generation, and

transportation--are also examined with an eye to determining the

potential scope of their commercial application in the future. The

major technologies assessed are: industrial cogeneration; heat pump and

air conditioning systems in residential and commercial applications; gas
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turbine and steam turbine cycles and methane gas via fuel cells in

electric generation; and, in the transportation sector, compressed

natural gas- and liquid methanol-fueled vehicles, methanol-derived

gasoline, and methane derived middle distillate fuel.

Of these technologies, only methane-gas turbine, combined-cycle

systems provide a potentially excellent opportunity for increased

natural gas demand in electric power applications. In the residential

and commercial sectors, no outstanding technology development is evident

on the horizon that would affect demand, although cogeneration systems

in commercial applications may present opportunities in the future.

There is some evidence that utilities will help stimulate this potential

market. In the transportation sector, potential demand gains are

hampered by the vast alterations in vehicle engines and the development

of a dedicated delivery system needed before liquified petroleum gas,

compressed methane, or methanol could make any inroads into gasoline and

diesel markets.

A FINAL FOOTNOTE: THE TROLL PROJECT

The development of a set of contracts that will apparently allow

the Troll project to move forward was quite fortuitous for this project,

inasmuch as it validates many of the conclusions reached in the

analysis. On the supply side, the Troll project, often described as

"ultra-high cost", is able to proceed even at oil prices in the $15 per

barrel range, once the tax regime was altered. Our analysis of the

physical economics suggest that, exclusive of government rent, gas can

be landed in Western Europe for $1.50 per Mcf with the project as now

constituted. The willingness of the government to reduce its take in
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order to bolster the project shows the attitudinal change wherein lower

prices have encouraged supply increases

On the demand side, the difficulty

finding buyers for first Sleipner, ther

weak nature of the market. The success

prices relative to oil prices shows the

strategies in increasing sales, and the

point to the Western European market ir

competitive markets.

The Troll contracts, which are so

described as the equivalent of letters

of the contract section that the lower

/ that the Norwegians have had in

Troll, illustrates the basic

achieved by discounting gas

importance of relative pricing

e decision to add a new entry

Belgium is a move towards more

flexible that they have been

of intent, confirm the findings

the cost of gas, the less

guarantees the producer requires against risk. Certainly, the size of

the Troll project makes it stand out from other gas deals, but at the

same time, we feel that the manner of its marketing and the price and

policy trends inherent in the deal, are indicative of the changes

occurring in the Western European gas market rather than an aberration.



WESTERN EUROPEAN NATURAL GAS POLICY: MANAGEMENT OR MARKETS?

by

Loren C. Cox1

INTRODUCTION

The Western European natural gas market currently occupies an uneasy

middle position between a true economic market and one constrained by the

policies of many different governments. Its interconnected pipeline system,

relatively short distances for transportation, diversity of supply sources,

and environmental concerns all suggest that an economic market would be easy

to implement. However, the inescapable fact remains that national boundaries

and national policies have had and continue to have enormous impact on the

Western European natural gas market.

Thus, any analysis of this market must deal with the reality of policy

interventions by both consuming and producing countries. Indeed, there is

considerable risk of becoming so transfixed by the enormously complex set of

policies that analysis yields only a reiteration of the reasons why such

complexity evolved. To do so makes little contribution, since participants

know the situation well. At the other extreme, only extolling a true economic

market is overly simplistic, and thus irrelevant.

The aim of this chapter therefore will be to identify those policies that

are the most constraining on an expanded Western European natural gas market,

and to reflect on what gains might be found to mutual advantage by

implementing changed policies.

1 The author owes a special debt of gratidude for the considerable efforts of
the project's Technical Editor, Mr. Peter Heron.
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To put the discussion into context, it is first necessary to review

briefly the history of gas use in Western Europe. However, rather than touch

on each country, this chapter will concentrate on four specific consuming

countries: West Germany, Italy, France, and the United Kingdom. This list

may be somewhat surprising both for what it includes and what it omits. The

United Kingdom is included because it is a potential importer, thus competing

with continental importers; it also is a potential exporter of gas to the

continental market, either of its own production or of resold Norwegian gas

that might pass through its pipeline system. Because the United Kingdom's

future as either importer or exporter is uncertain, it is worth examining with

some care.

The omission of the Netherlands also may seem curious, since in this

country gas occupies the highest percentage of total primary use of any

Western European country. It is that fact that drops it from the list, for

there are almost no imaginable circumstances whereby the Dutch would expand

gas use domestically. Instead this chapter will examine the role that the

Netherlands historically played in Western European gas market development and

speculate on its future role as a natural gas broker.

The chapters elsewhere in this study provide considerable detail on

supply cost questions and on the competitive forces shaping demand for natural

gas in the four countries noted above. However, producing countries' policies

also have influenced the development of the current market in Western Europe.

Supplier strategies both have encouraged the gas market to grow, then have put

limits on its growth. The timing of policy shifts has had a profound impact,

and this chapter will pay considerable attention to those actions, and

reactions to them by consuming countries.
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HISTORICAL DEVELOPMENT: PRE-1973

As noted in our previous studies of North American and East Asian natural

gas trade,2 the first extensive use of gas in Western Europe also was in the

form of manufactured gas. Town gas companies were established in most

countries in the early 19th century, with manufactured gas used primarily for

lighting. Later, town gas expanded to home heating markets and to industrial

use, and continued in all countries at least into the 1950s. By this time,

oil was becoming a significant competitor for direct use under boilers and in

space heating, and town gas companies switched to oil as a feedstock for

manufacturing gas.

Natural gas transmission and use was well established in North America by

the late 1950s, but Western Europe had no apparent access to substantial

supply sources until the 1960s and beyond. Discovery and appraisal of the

Netherland's Groningen field between 1959 and 19623 resulted in the first

significant prospect for transborder trade of natural gas in continental

Western Europe. With successive upward revisions of Groningen reserves in the

1960s, it became clear that Dutch gas would become a significant export

product. Because of the length of time the Netherlands needed to switch its

domestic distribution from manufactured to natural gas, the majority of early

production from this new, large field was available for export. The central

2 International Natural Gas Trade Study Group, Final Report: Canadian-U.S.

Natural Gas Trade, MIT Energy Laboratory Report No. MIT-EL 85-013, Cambridge,
Massachusetts, October, 1985; and Final Report: East Asia/Pacific Natural Gas
Trade, MIT Energy Laboratory Report No. MIT-EL 86-005, March, 1986.

Malcolm W.H. Peebles, Evolution of the Gas Industry, New York University
Press, New York, New York, 1962.



2-4

location of the Netherlands made its gas easily available to West Germany,

France and Italy. Despite its relatively lower calorific value, the Groningen

gas was easily sold, especially when priced to compete with oil products.

Thus, by the late 1960s, Dutch gas was flowing to West Germany, Italy, France,

and Belgium.

At about the same time that the Groningen field was discovered, LNG

imports by the United Kingdom began in 1959 on an experimental basis

(ironically, from Lake Charles, Louisiana). With this supplemental supply

proving a technological success, the United Kingdom contracted with Algeria

for LNG deliveries to begin in 1964. 4 Introduction of this gas required

construction of high-pressure trunk lines, and thus put into place a large

piece of the basic infrastructure that later would be used to transport North

Sea natural gas. With the discovery of North Sea gas in 1965, the U.K. system

was positioned to distribute this high-caloric gas to a large portion of the

country.

Thus, by the late 1960s, natural gas use by a combination of domestic

production and imports was well established in all four countries. This use

was impelled by differing motivations in each country; in all cases natural

gas initially was seen as a very limited option in the fuel mix. For the

United Kingdom, LNG was an alternative to increasingly high-cost manufactured

gas, and a welcome relief to serious air pollution problems.

For France in the 1950s, natural gas was produced principally from the

large southwestern Lacq fields (discovered in 1951),5 but these were located

ibid., p. 28.

J.D. Davis, Blue Gold: The Political Economy of Natural Gas, George Allen &
Unwin, London, England, 1984, p. 173.
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at a considerable distance from major industrial centers. Thus, manufactured

gas retained a significant role in French gas use until the 1960s. By 1966,

Dutch gas was available for French industrial use, first in the north and soon

after in Paris and its environs. Thus, Dutch imports allowed France to solve

an internal distribution problem at an attractive price.

Italy demonstrates similar early experience. Discoveries of significant

deposits in the Po Valley in 19496 were reasonably close to industrial

centers. A problem arose fairly quickly as demand claimed amounts in excess

of domestic production. Although basic market economics would suggest that

increased prices would have affected that demand, price controls on natural

gas foreclosed such a prospect. Thus, Dutch imports became an attractive

supplement.

West Germany also had early experience with natural gas available only in

limited quantities. The Ruhr coal and steel industries were prodigious

producers of manufactured gas, and coal itself was a major fuel. Also, coal

interests have exerted major influence on West German federal policy,

including a policy that the electric utility industry use domestically

produced coal in specified amounts. In 1935, the Reichstag enacted a law that

gave the Laender (states) broad authority over natural gas pricing, and broad

discretionary powers to plan for its transmission and distribution.' The

result was to segment the gas industry, concentrating use in Laender close to

or involved with production. Introduction of Dutch gas thus first occurred in

areas adjacent to the Dutch border, and tended to be used for electricity

6 ibid., p. 167.

7 ibid.
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generation--which did not compete with manufactured gas sales. In this sense,

the Dutch supply was incremental, and closely tied to the electricity sector.

In summary, the use of natural gas in Western Europe throughout the 1960s

was as a specialty fuel, primarily of interest to areas close to domestic

production or to import points. The introduction of natural gas through trade

was incremental both to manufactured gas and to constrained domestic natural

gas supplies. Interfuel competition was not a significant issue, as natural

gas occupied only a minority position in total fuel use. Crude oil and its

products were plentiful and their prices stable, and coal use was still well

established.

In this review of the introduction of natural gas into major Western

European markets, little specific reference has been made to price. One

reason for this omission was that manufactured gas was quite expensive, so

natural gas could be priced at market-penetrating levels, pay for new, high-

pressure transport and distribution systems, and still provide an attractive

rate of return to producers (whether private or public). The other reason is

that producing, contracting, and transmission costs and prices are considered

to be private information. Thus, the only price fairly readily observed is

the price of final sale to end users; that price includes taxes plus all other

costs and margins along the production/transmission/distribution chain.

As a result of this price non-transparency convention, analysis of the

sort undertaken here suffers from a handicap. The author's general

perspective is that price has a significant impact on interfuel competition,

and thus on policy alternatives considered by both producing and consuming

countries. Because price data have not been published in a consistent series

over time and across consumption sectors, we have had to rely on episodic and
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anecdotal evidence. Also, because such information often has been reported in

English language publications, and because most natural gas trade contracts

have been denominated in U.S. $, our references in turn are in U.S. $.

Exchange rates have fluctuated considerably over the period covered in our

analysis, so most mention of price in this chapter are to the then current

U.S. $ equivalent.

The reason for this short digression on price data limitations is that

the next stage of European natural gas trade is the 1970s: the decade of the

first OPEC oil price shock (see Table 2-1). When oil prices rose as a result

of crude oil price increases, the role of natural gas changed dramatically.

Not only did the interfuel competitive environment change, but policy actions

in both consuming and producing countries also sharply shifted. As shall be

seen, the fundamental changes were in the perception of oil price trajectories

and of the availability of oil (whether affected by global depletion--a

popular notion then--or by boycott). In these contexts, policies about

natural gas were based on securing access to supplies, and price was

considered a secondary concern.

As indicated below, this view turned out to be not only inaccurate but

even pernicious. Policies to encourage natural gas use in large consuming

countries led producing countries to institute fiscal regimes, development

policies, and contract terms that led to serious rigidities when later

responding to competition both from falling oil prices and from new gas

exporters.

We now turn to the evolution of natural gas markets in the 1970s.
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Table 2-1

Nominal Crude Oil Prices

(Persian Gulf/Saudi Light)

1.17

1.27

2.54
1.83
1.27

2.01

2.27
2.53
2.80

10.84
11.51

12.85**
13.90**
14.00**
23.20**
36.25**
35.00**
33.50**
29.90**
29.90**

* Calculated on a thermal equivalent basis.
** BP/BNOC prices.

SOURCES:

MMBtu*

21

23

47
34
23

37

42
46

51

199
211

235

255

257

425

664

641

614

548

548

1960-70: M.A. Adelman, The World Petroleum Market,
Baltimore: The Johns Hopkins University Press,
1972. (Derived Persian Gulf prices)

1973-83: BP Statistical Review of World Energy, London,
August, 1985. (Official Saudi Light Prices
and U.K. Forties/BNOC Prices)

Year

1965

66

67

68
69

70

71

72

73

74
75

76

77

78

79

80
81

82

83
84
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THE OPEC OIL PRICE SHOCKS OF 1973-1974: A NEW ERA FOR GAS

The 1973-74 agreement by OPEC to limit production of crude oil and to

a. capture price increases created a very new environment for natural gas. As

noted in our previous studies, these oil price increases were seen as

heralding an end to available liquid and gaseous hydrocarbons. Oil use had

been increasing since the mid-1960s, and both industrial and electric

utilities had built substantial fractions of boiler capacity to use fuel oil.

Until 1973-74, oil prices had been remarkably stable, so such investment

decisions made good sense. However, with the OPEC shock, coupled with threats

of boycott or similar barriers to access, the notion of oil scarcity gained

credibility with remarkable speed.

With a producer's cartel operating with apparent effectiveness, consuming

countries formed the International Energy Agency (IEA), on the presumption

that international cooperation by consuming countries would be more effective

in coping with shortages in oil markets than would individualized actions.

Despite the IEA's apparent helplessness in the face of the second oil price

jump in 1979-80, it continued to seek common, effective counters to cartel

actions.

Based on ministerial agreements made during the 1970s, the IEA evolved

,. the view that reducing oil use would be the most effective action against OPEC

threats. Thus, IEA member countries pledged targets for reducing oil use in

individual countries, with methods for such reductions left to individual

country policies. The use of market forces generally was politically

unpopular--and potentially damaging to local economies. Indeed, some

countries having substantial domestic oil production (notably the United

States and Canada) retained or implemented price controls on crude oil and oil
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products. These price controls on domestic oil production had the effects of

subsidizing oil imports and lowering the total cost of oil use inside that

country, an outcome that was seen by countries without significant domestic

production as unfairly uncompetitive. Whatever the competitive effects, it is

now nearly universally acknowledged that, by any rational measure, these were

misguided policies. However meritorious or wrong-headed various policies may

have been, they all were directed away from oil consumption. A principal

beneficiary of this set of actions was natural gas. Oil was strongly

identified with Middle Eastern production and governments. Energy sources

from any other location were seen as vastly preferable, perhaps because it was

felt cooperation with non-Arab Gulf countries was much easier. However

erroneous this perspective turned out to be, at the time it provided major

impetus to the import and use of both coal and natural gas from anywhere other

than an OPEC country, insofar as that was practically feasible.

In the earlier description of the historic development of the Western

European natural gas market, it was seen that Groningen exports in the 1960s

fit well into certain market niches in West Germany, France, and Italy. These

exports also allowed the Netherlands time to build a domestic distribution

system for its own major utilization of that resource, while simultaneously

generating significant revenues for the Dutch economy. Because the

Netherlands could not use its own gas quickly, they priced their gas exports

in such a way as to develop markets in the countries described above. With

the first oil price shock, the world changed very dramatically.

As Table 2-2 indicates, the price of gas (which had been set to win

markets) no longer needed to stay low to ensure Groningen a place in export

markets.
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Table 2-2

Groningen Export Prices
(US$/MMBtu)

Contract Date Country Initial Price 1976 1981

1966 West Germany N.A. 1.1 4.1

1966 Belgium 0.33 1.1 4.1
1967 France 0.36 1.1 4.1

1970 West Germany 0.38 1.1 4.1
1969 - 70 Italy 0.44 1.1 4.1

SOURCE: Davis, ibid., p. 161.

This Table is not designed to show any particular characteristic of Dutch

export behavior, but rather to illustrate the movement over time of natural

gas prices in relation to oil price increases. As shall be seen, it is only

an example of a general rule about gas pricing in the 1970s.

Before turning to gas prices in consuming countries, it first would be

helpful to look at the exporter situation entering the 1970s. The Netherlands

dominated circumstances at this point, with their contracts backed by the

massive Groningen reserves. As of 1970, Dutch gas exports accounted for

essentially 100 percent of all natural gas trade in Western Europe, and by

1974 they still represented nearly 75 percent.

In the United Kingdom, the 1960 non-associated gas discoveries in the

southern North Sea had reduced reliance on Algerian LNG imports. Although the

contract remained in effect, Algerian LNG increasingly was used in the United

Kingdom for peak-shaving purposes until the contract term expired in 1979.

Because U.K. producers were required to sell their gas production to the

British Gas Corporation (BGC), prices were at low levels (see Table 2-3).

These low prices allowed Algerian LNG to be rolled-in to U.K. supply, so

the price to consumers remained at levels that continued to penetrate the
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Table 2-3

Initial Prices for North Sea Gas

SOUTHERN FIELDS

West Sole
1967-70
1971-

Hewett
Base Price
Valley Gas

Leman

First 600 million ft3/day
Second 600 million ft3/day
Remainder

Indefatigable
All gas to be 1983

Viking (1972)

PRICE/THERM (105 Btu)

UK pence US cents

2.08
1.12

1.195
0.844

1.196
1.1875
1.792

1.208

1.5

3.4Rough (1974)

NORTHERN FIELDS

Frigg (Norwegian) 1974

Brent

Beryl

5.01

2.39

2.83

1.997

2.83

2.81

2.79

2.89

3.5

7.87

(PRICE IN UK PENCE/THERM)

Initial 1982 (est)

8.8

6.5

11.5

12.5

16.0

North Alwyn

Asking for New Fields

22.0 - 23.0

20.0

SOURCE: Derived from Davis, pp. 106, 114.
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market (especially for residential use). With the 1973-74 oil price hikes,

gas contracts from North Sea production also increased in price, though less

than at the rate of oil prices.

The 1972 discovery of the Frigg field introduced Norwegian gas into the

U.K. system. This field was bisected by the U.K./Norwegian boundary, and U.K.

intentions to build its own gas line to the shore made purchase of Norwegian

zone gas an obvious solution. However, Western European buyers also competed

for these supplies, so for the first time the price paid by the BGC was bid

up.8 As noted in Table 2-3, the price for Frigg gas in 1974 was the only sale

made at a price higher than that paid for the initial West Sole purchase in

1967 (which subsequently decreased after the three-year initial contract

period). The competitive force of Western European buyers is a useful way to

take a brief look at Norway.

Norway might be considered a lucky country: it was in the right place at

the right time. Exploration in its North Sea sector began in the late 1960s,

and it began to log discoveries of oil and gas soon afterward. Frigg,

Ekofisk, Albuskiell, Tor, and the giant Statfjord fields were all identified,'

defined, and made available for buyer bidding in the 1970s. Although Norway

long has had a reputation for engineering prowess, it also has a relatively

small population, which is widely scattered across a rugged and vast

landscape. These conditions made domestic use of natural an expensive

proposition, and its small population gave rise to concern about the economy's

ability to absorb a too-rapid development of oil and gas resources. The

Norwegians thus adopted a carefully phased development strategy, designed to

8 Peebles, op. cit., pp. 31, 44.
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dampen inflationary impacts, provide full and geographically distributed

employment (without labor imports), and secure long-term export income to the

Norwegian economy. Concerns also were expressed about internalizing future

expected income into current national budgets.

These very sensible steps all were laudable. Of course, the oil price

shocks were pleasant surprises for Norway, at least at first. Most of its

discoveries in the 1970s were predominantly of oil, and gas development was

oriented toward capturing associated streams and pulling in non-associated

smaller gas fields (Frigg was the early exception). In this early strategy,

the task was to dispose of gas safely, at a profit, and to ensure that oil

development was not impeded. Norwegian supplies from Frigg had been

negotiated before the first oil price hike, and from Ekofisk not long

afterward. The prices in these contracts were relatively modest, with

purchasers apparently willing to pay somewhat more for Norwegian gas than for

alternative supplies, to encourage further development of gas in Norway.

Norway in the 1970s may be viewed as having gained valuable experience in

exploiting its oil/gas reserves, and in establishing itself in Western

European markets as a reliable supplier. The carefully designed phasing of

developments likely was considered as a strength, which also fostered

intermittent auctions of the (expected-to-be modest) gas resources. Potential

buyers would bid for the expected output of the field, and the resulting

contracts provided the financial means to proceed with actual development of

the field. Later the unforeseen risks embedded in the Norwegian strategy will

be examined.

Algeria h been a player in the Western European natural gas market

since 1964, when it first made an LNG delivery to the United Kingdom (although
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the contract was signed in 1961).9 Exports of Algerian LNG to France

commenced in the mid-1960s and to Belgium, Spain, and Italy in later years.

However, it might be argued that at the time, Algerian/U.S. LNG negotiations

had more impact on Algerian exports than did any other factor.

In the 1970s, the U.S. gas market was subject to price controls. This

induced a shortage of U.S.-produced gas and caused pipelines to turn to

imported supplies of gas to satisfy the need for incremental supplies. These

supplies (from Canada, Mexico, and Algeria) were priced higher than U.S.-

controlled prices, but those higher prices could be "rolled in" to the lower-

cost U.S. production. Because Algeria had developed substantial liquefaction

capacity (both to capture flared gas and to utilize non-associated fields), by

the early 1970s it had greater productive capacity than sales contracted for

in the late 1960s. In 1971, a U.S. consortium led by El Paso concluded a

contract with Algeria for 10 Bcm of annual LNG deliveries to several U.S.

terminals. The initial price was negotiated at about $S0.40/MMBtu f.o.b. (As

can be seen from Table 2-1, this was approximately f.o.b. oil price parity.)

U.S. regulatory and Algerian construction delays prevented timely

delivery, and as a result of the oil price increases of 1973-74 and 1979-80,

Algeria argued for an increase in the delivered price of its LNG. Because

U.S. gas markets still were subject to price controls, El Paso agreed to a

second contract as a mechanism to increase the price. This second contract

apparently included an index linking the price of Algerian LNG to oil prices,

a condition that caused the Federal Power Commission to balk--fearing this

would encourage Canada and Mexico to do the same. Deliveries on the first

9 ibid., pp. 28-9.
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contract began in 1978, but due to continuing disputes over the price,

shipments were suspended the following year. The later Trunkline project also

agreed to increases between the pre-1973 negotiation and the late 1970s'

planned delivery. Partial Algerian successes with U.S. contract price

revisions in the mid-1970s undoubtedly encouraged its view that gas should be

linked to f.o.b. oil prices.

However, Algerian attempts to escalate prices to Western European

customers have had mixed success. The 1971-72 project to France at Fos-sur-

Mer fit well into existing distribution from the Lacq fields, and the mid-

1970s' price escalation was absorbable for peak-shaving purposes--and to off-

set decline in Lacq production. Another outcome resulted in negotiations with

the SAGAPE consortium of five Western European nations (Austria, Belgium,

France, Switzerland, and West Germany). SAGAPE signed letters of intent to

buy 15.5 billion Bcm annually for 20 years from Algeria beginning in the mid-

1970s.10 The Algerian demand in the mid-1970s for a tripling of the

previously negotiated price likely was encouraged by the apparent success of

similar moves in the United States, but here the outcome was different. The

Austrian and West German participants dropped out of the consortium, which

then collapsed. As will be noted later, the French and Belgian groups later

accepted higher (and f.o.b. oil-indexed) prices.

An interesting hypothesis can be constructed from this discussion.

Because Algeria was so hawkish about f.o.b. oil price equivalents--and was

encouraged in that strategy by peculiarities in U.S. price-controlled

environment--conditions were created in Western Europe that made Soviet

10 Oil and Gas Journal, November 8, 1976, p. 145.
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supplies enormously attractive. Indeed, had Algeria taken the Dutch strategy

of setting prices with an eye to achieving market penetration, there well may

have been little interest in or actual need for Soviet supplies. Current

Algeria LNG capacity stands at approximately 31.3 Bcm, for which 20.4 Bcm is

either currently contracted or under negotiation. This leaves 10.9 Bcm, or

1.05 Mcf/day, that could have been supplied to Western Europe.

By comparison, since 1975 the Soviet Union has developed capacity to

export 30 Bcm to Western Europe. While it is only speculation that Soviet gas

exports would not have expanded had the Algerians been more aggressive in

marketing, it is an intriguing question, to which we shall return momentarily.

The Soviet Union has exported oil and natural gas for decades. Recent

western (especially U.S.) interest in these exports has tended to focus on the

geopolitical consequences of planning decisions about exports versus domestic

use. There also has been an inclination to view these decisions as being

based on non-economic criteria, most usually attributing anti-western motives

to decisions. This in part is due to cold war suspicions, but also in part to

uncertainty about the capacity of Soviet planners to understand the

consequences of their actions on market economies. Of course, both views

cannot be simultaneously correct. Western European perspectives seem to be

more benign (although occasionally bemused). In general, this view holds that

the Soviet Union knows how to participate in markets (both import and export),

though bureaucratic inefficiency may result in delays on schedules, poor

quality, and so forth. Fluctuating oil exports in recent years were seen by

the U.S. government as deliberately destabilizing; Western Europeans appeared

to attribute the variance to technical field problems, poor equipment,

excessive production, and so forth. This difference in perspectives and
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experience also was at the heart of the dispute over the Urengoi gas export

project in the early 1980s. The U.S. government's view was portrayed as

concerned with technology transfer, easy credit when tightening financial

flows would have hurt military expansion, and especially with creating

resource dependency that could be used as leverage to divide Allied interests

on controversial matters. This chapter will speculate below on this conundrum

and examine alternatives for mitigating the controversy.

Soviet gas supply prospects are examined.in detail in the supply chapter

(see Chapter 3), but the basic facts are straightforward. The Soviet reserve

base is huge, and exploration/delineation still is underway. Domestic use has

first priority, especially to meet the fuel requirements of industrialization.

The second stage of development was export to Eastern European countries,

which expanded rapidly (see Table 2-4). With major transmission lines in

place to this region, further expansion to Western Europe was only a modest

incremental step (though in this case, building new lines to reserves were

necessary). However, deliveries to Western European countries are not a

recent event, as sales to Austria began in 1968 (and expanded in 1974), to

West Germany in 1973, to Italy in 1974, and to France in 1976. Because

transportation costs to Western European delivery points were only

incremental, the prices offered at that time were quite attractive (see Table

2-5). Also recall that by the mid-1970s the SAGAPE consortium was faced with

Algerian demands for a tripling of price. In such circumstances, it is not

surprising that Western Europeans were interested in purchasing natural gas

from the Soviet Union.

As this review indicates, the 1970s largely saw a continuation of

producing/exporting country actions initiated in the 1960s. The Netherlands
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Table 2-4

Exports of Soviet Natural Gas to Eastern Europe: 1967-77

ear Poland Czechoslovakia

967 1.12

'68 1.00

169 0.99

'70 0.76
171 1.13

972 1.14

'73 1.30

974 1.61

'75 1.91

976 1.93

177 2.09

TOTAL 14.98

0.17
0.59
0.89
1.08

1.25
1.47

1.80
2.53
2.81
3.50
3.86

19.95

E. Germany

0.60
2.20
2.51

2.56
2.74

10.61

Bulgaria Hungary Total

0.23

0.90
1.69

2.19

5.01
__m

5.01

,

0.46
0.76
0.76

1.29
1.59

1.88

1.84
2.38
2.61

3.70
6.57
8.59
10.44
11.64

1.98 52.53

Exports of Soviet Natural Gas to Western Europe:

Year Austria

1968 0.14
1969 0.78
1970 0.73
1971 1.08

1972 1.24

1973 1.23

1974 1.60
1975 1.43

1976 2.11

1977 1.89

TOTAL 12.23

W. Germany

0.27
1.62
2.43
3.01

3.84

11.17

Finland

0.34
0.55
0.66
0.68

2.23

Italy

0.60
1.78

2.83
3.82

9.039.03

France Total

-- 0.14
0.78

-- 0.73
-- 1.0,8

-- 1.24
-- 1.50
-- 4.16
-- 6.19

0.75 9.36
1.46 11.69

2.21 36.87

SOURCE: Peebles, op.cit., pp. 31, 44.

Ye

19

19

19

19

19

19

19

19

19

19

19

1968-77
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Table 2-5

Average Apparent Soviet Export Border Pr
(U.S.$ per 1000 cubic fe

COUNTRY 1970

-ices of Natural Gas

.e t)

1974 1975 1976

Exports to:

40Austria

Finland

France

Italy

West Germany

Bulgaria

51 119 125

179 184 177

.. -- 96

29 64 62

53 70 85

57 115 125

Czechoslovakia

East Germany

46

Hungary

Poland

AVERAGE FOR ALL EXPORTS

43

44

57 100 133

56 59 104

117 127

52 110 120

57 91 106

SOURCE: Peebles, op.cit., p. 181.
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already was exporting its North Sea gas, Algerian LNG projects were underway

or under negotiation/dispute, Norwegian North Sea oil development was

proceeding, and the Soviets already were transporting gas to Eastern Europe

and beyond. There appears to be no indication that natural gas trade was

initiated because of market opportunities created by the 1973-74 oil price

increase, or even that there was a significant expansion of existing trade to

capture opportunities presented by that price increase.

What did appear to happen was: (1) producing/exporting countries did

increase the price of natural gas (although not at the same magnitude of oil

price changes); and (2) consuming/importing countries did make policies to

shift fuel use away from oil and toward other fuels, including natural gas.

It was this second factor that had the greatest impact on Western European

natural gas markets in the mid- to late-1970s. The IEA and the European

Economic Community (EEC) both were strongly exhortatory in their attempts to

move member nations away from oil use. This period was characterized by

annual reckonings on barrels of oil saved over previous years (usually using

1973 consumption as the base of comparison). These savings were the result of

a number of factors, including: taxes levied on oil products; the

installation of new, energy-efficient equipment; the impacts of a recession

(which reduced demand for all primary energy forms); requirements and/or

subsidies for insulation; and use of alternative fuels.

It is not possible to affix accurate shares to each of the above actions,

but the generally favorable environment for expansion of natural gas use is

obvious. From 1970 to 1979 natural gas use in the EEC grew from 56 to nearly

200 Bcm.1 As will be recalled from Table 2-1, the price of gas was very

European Economic Community, "Communication from the Commission to the
Council Concerning Natural Gas," Brussels, Belgium, April 9, 1984, pp. 2, 18.
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competitive, and the policy climate for its use was most favorable.

During the 1970s, the countries most closely studied here were leaders in

Western European natural gas use. From 1970 to 1979, West German consumption

grew from about 15 to over 50 Bcm.1 2 During this period, residential and

commercial use steadily increased (from 2.25 to 17 Bcm) and that trend likely

will continue. Industrial use also increased from nearly 7 to over 15 Bcm;

this sector appears to have plateaued. Electric utility use expanded from

about 3.5 to nearly 16 Bcm, but has shown sharp and continued declines since

1979.

In the United Kingdom, natural gas use always has been heavily oriented

toward the residential/commercial sector and toward the feedstock and

specialty industrial markets. By the time of the introduction of Algerian LNG

and later North Sea gas, the distribution system already was well established.

With capital costs already sunk, the infrastructure in place, and an

integrated monopoly (BGC) transporting and distributing the gas, it is no

wonder that use grew--especially considering the prices that were offered. In

examining BGC pricing practices, the Price Commission in 1979 noted that gas

was priced far below alternative fuels in residential markets, as Table 2-6

indicates.

12 Burckhard Bergmann, "The European Market for Natural Gas," Ruhrgas Report
Presented to European Gas Conference 1985, Oslo, Norway, 1985.
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Table 2-6

Natural Gas Prices (=100) versus Alternative Fuels

Use Electricity Coal Oil

Central Heating 140-170 130-150 125-140
Cooking 160-200
Space Heating 170-200 125-140

SOURCE: The Price Commission, British Gas Corporation:
Gas Prices and AlliedChanges, HMSO, London,
England, 1979, p. 116.

Recalling the contract prices for North Sea gas, such prices were

possible, although how long BGC could hold customers if alternative fuel

prices continued to edge upward is a relevant question, addressed later.

In a response to the 1973-74 prices increase, French policy during the

1970s was strongly oriented toward promoting nuclear power. However, natural

gas also became increasingly important to France. By 1975 gross domestic

consumption of gas was 19.3 Bcm, and by 1980 it had grown to 26.4 Bcm.1 3 This

period saw deliveries from the Netherlands, Norway, Algeria, and the Soviet

Union (plus increases in their own domestic production). Because of the focus

on nuclear-generated electricity, French natural gas policy was somewhat

neglected, or at least unclear. During the 1970s, residential use of gas

expanded rapidly, and the industrial sector saw strong growth as well;

however, with the nuclear push, consumption in the electric utility sector

declined sharply.

During the 1970s, Italy had substantial domestic natural gas production,

and most use was concentrated in the industrial sector. Deliveries from the

CEDIGAZ, "Natural Gas in the World," Paris, France, 1985, p. 57.
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Netherlands and the Soviet Union also began during this period, although both

contracts were negotiated in the late 1960s; this also was the start-up period

for LNG trade from Libya. These additional supplies allowed a significant

expansion of natural gas use in the Italian residential sector, which was able

to absorb these relatively higher-priced imports. Because domestic production

was not increasing, imported natural gas became increasingly important. Since

Italy imports nearly all its oil, substituting natural gas for oil must have

appeared to be a supply diversification strategy of sorts.

From this review it is clear that the 1973-74 oil price jump, to some

extent, did affect both natural gas consumers and exporters. However, because

increases in gas prices lagged behind increases in oil prices, expansion of

gas markets was substantial. Further, other national and international

policies were directed to attractive alternative fuels, which gave gas use

additional impetus.

Thus, it is reasonable to attribute the growth in natural gas use in

Western European in the 1970s to two factors. First, the increasing

availability of gas from domestic production and imports from reasonably

proximate sources (via both pipelines and LNG shipments) allowed distribution

grids to expand without serious manpower or material bottlenecks. Second, the

policy overlays from the mid-1970s onward gave considerable encouragement to

use natural gas as a replacement for current imports of oil--or at least to

reduce future oil import requirements.
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TIMES OF TURMOIL: THE 1980s

From the vantage point of 1986, the 1970s was a comparatively a quiet and

orderly period in Western European natural gas trade, a period during which

policy guided the evolution of natural gas use, and imports/exports were

viewed as serving common, if not mutual, interests. However, the second oil

price shock of 1979-80 brought that relatively placid period to an abrupt and

dramatic halt. This event heralded the end of natural gas market growth in

Western Europe, with the first three years of the decade witnessing falling

levels of demand. This occurred despite strong perceptions of the need to

move away from oil. Because, beginning in late 1979, oil prices rose for

three years running, it became an article of faith that they would continue to

increase well into the forseeable future. The push toward reducing dependency

on oil imports became even stronger, and the IEA and EEC became even more

prescriptive in their advice to member nations.

Gas supplier actions added to this atmosphere of confusion and

contention. Algeria suspended LNG exports to France when the French resisted

demands for a major price increase. Dutch demands for price increases had

been underway for some years, and in 1980 the Dutch reached quick agreement

with buyers. This latter action was especially noteworthy, because Groningen

still represented a substantial fraction of total Western European gas trade.

Because Dutch export prices were low, the volume was large, and contract terms

permitted relatively low offtakes, Western European buyers were able to pay

relatively high prices and accede to high take requirements from other

suppliers (especially from Algeria, Norway, and to some degree from the Soviet

Union). Dutch impatience was understandable, as was buyer resistance to the

Dutch price increase.
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In many ways, the Groningen renegotiation marks a watershed event in

Western European gas markets. Its large impact was not only due to the

factors just described, but also due to timing. In the 1979-80 period, Dutch

exports comprised a significant percentage of imports to Italy, France, and

Germany (see Table 2-7).

Table 2-7

Imports from the Netherlands as a Percentage of Total Natural Gas Imports

(average of 1979-80)

Importing Country Total Imports (Bcm) Imports from Netherlands Percent
Italy 14.6 5.5 37.7

France 19.8 11.4 57.6

W. Germany 45.4 24.9 54.9

SOURCE: OECD, Annual Oil and Gas Statistics, Paris, France, 1979/80.

The significance of these relatively high percentages is obvious in

light of the earlier discussion about new contracts, contracts that exploited

the relatively low-cost and very flexible take terms embodied in the Dutch

contracts. In effect, the price renegotiation sharply reduced or entirely

removed opportunities to "roll in" new, high-cost supplies.

Simultaneously, the jump in oil prices contributed to a serious slump in

the world economy, a slump that was especially severe in Western Europe. The

concommitant drop-off in economic activity reduced demand for all fuels, and

for the first time there was a notable drop in the demand for natural gas.

Gas markets were caught in a significant whipsaw effect. First, Western

European countries' base supply contract prices (with the Netherlands) rose

just as expensive new supplies from other sources were either under

negotiation or under development. Simultaneously, although not apparent at

the time, in 1979 gas demand peaked, then began a four-year decline. Finally,

the increase in Dutch prices, in addition to new and expensive supplies,
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raised prices to a level that forced the use of gas in the electric generation

sector to decrease, a fact that (together with the overall decline in

industrial activity) resulted in a shift in load factor toward a more

seasonally varied one. This in turn made high take requirements from new

suppliers such as Norway and the Soviet Union (plus Algerian LNG) especially

onerous.

For all these reasons, the Dutch price change appears to have had a

significant impact on Western European gas markets, although it is not clear

that this impact has been thoroughly appreciated. What is clear is that

existing contracts and domestic production can meet virtually all annual

demand for natural gas in Western Europe throughout the remainder of this

century. If the oil price collapse proves durable, gas contracts likely will

be renegotiated to stretch out deliveries beyond 2000, perhaps bringing

significant price reductions as well.

Contract terms increasingly have tied gas price indices to competing

fuels, especially low-sulfur fuel oil, gas oil, and distillate. Thus, the

price of gas is less likely to be significantly out of line over a long period

(although this in turn depends on the time frame for automatic adjustments,

which typically have been shortening). What have not changed greatly are take

requirements (although Dutch contracts still are the most flexible). With

load factors in Western European consuming countries trending strongly toward

seasonal residential patterns, load balancing considerations will become

increasingly important.

With residential/commercial markets being the only sectors experiencing

continued growth (or remaining stable), this move toward a seasonal heating

pattern is general to the Western European market. In West Germany, the shift
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of load toward the residential sector is especially striking; between 1980 and

1983, gas use in the electricity generation sector declined by 60 percent;

since then it has declined another 30 percent. Electricity generation still

represents nearly 20 percent of total West German consumption, so gas

continues to be subjected to very severe interfuel competition. During the

1980-83 period, the West German residential sector grew approximately by 10

percent, but that increase accounted for less than 3 percent of the total

volume of gas used in total energy consumption.1 4 Although more recent data

suggest that the industrial sector is recovering somewhat, the real growth

continues to be in the residential/commercial sector. The implications for

West Germany are obvious: there will be slow or no growth in the total volume

of gas used and increased seasonal variability of demand for it.

France, in part because of its relatively early, policy-driven commitment

to nuclear power, has chosen not to rely on the use of natural gas in electric

power generation. Its use of gas in the industrial sector was strong and

growing in the 1970s, but levelled off in the early 1980s. Because French

natural gas prices have been high and electricity prices low, expansion in the

residential sector has been less rapid than in, say, West Germany. It is

likely that the cost of electric appliances also will remain low, so longer-

term prospects for increases in residential sector demand for gas are not

likely to improve. France also has the problem of carrying contracts with

very high gas prices. Following the Algerian LNG supply interruption of 1980,

France agreed to a price increase that seemed to have a premium attached for

14 ibid., p. 57; also British Gas Corporation official's speech, 1985, not for
record.
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non-energy purposes. Although deliveries of LNG resumed, natural gas has

been--and still is--at a competitive disadvantage compared to other fuels in

France.

Italy entered the 1980s particularly dependent on imports of all fuels.

Natural gas has been and remains today the only fuel in substantial domestic

production. Therefore, it is not surprising that one of Italy's major

objectives is diversification of imports of all fuels, and especially of

natural gas. In 1981, Italy passed a national energy program designed to

decrease oil dependency. Although the plan was ambitious in scope, by most

accounts it has fallen short of its goals (as did most other national energy

programs of its kind). The following IEA review of Italy underscores those

difficulties.

While most of those policy developments [Italy's national energy program
and subsequent laws] have been positive, actual results of implementing
these policies has been mixed . . . There are also areas where the
government has failed to define policy measures . . . Clearly the effect
of not holding to the targets in the 1971 NEP is to shift the schedule of

implementation back, implying a contjiued high level of dependence on oil
imports for several years more . . .

Irrespective of its national energy program, Italy has been very active in

contracting for natural gas supplies from a very diverse set of exporters,

more so than any other European country. It received Groningen gas, Norwegian

gas, Soviet supplies, LNG from Libya, and pipeline supply from Algeria.

Despite this diversity of suppliers, Italy for a long time has been unable to

reduce supply prices through contract negotiation. While not so obvious as in

15 International Energy Agency, "Energy Policies and Programmes of IEA
Countries," 1984 Review OECD, Paris, France, 1984.



2-30

the French experience, Italy has been inclined (or pushed by the government)

to accept an Algerian price settlement that must have non-price benefits

(which one commentator suggested was in construction benefits for Italy in

North Africa and other Arab countries).1 6 The value of such a trade-off is

open to question, but another policy decision gave natural gas imports a

strong push--the decision to expand gas transmission to the Mezzogiorno region

in the south of Italy.

The majority of Italian industry is located in the north of the country,

and the perceived imbalance of economic development between the north and

south has been a long-standing, contentious issue. The TransMed pipeline

landing point in the south gave further access to supply in that area, and

provided the basis to link north and south with a common pipeline system.

Hookups have increased dramatically, but the bulk of users in the south are in

the residential/commercial sectors. Since most industry is in the north and

already has access to gas, growth in the south is potentially large in terms

of the number of customers but relatively small in volume. In order to use

contracted supply volumes, there has been a temporary shift to gas use in

electric power generation. Between 1983 and 1984 the amount in this sector

rose from 3.14 to 5.73 Bcm,1 7 and recent reports suggest that the trend

continued into 1985 as well.

Because new coal and nuclear plants are scheduled to come on-line in the

1990s, Italy appears destined to follow other Western European countries

16 Jann Haaland Matlary, Political Factors in Western Europe Gas Trade, Oslo,
Norway, 1985, pp. 49-50.

17 Financial Times, "International Gas Report," London, England, January 17,
1986, p. 8.
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toward a gas market concentrated in the residential/commercial sector. Thus,

the load factor problem likely will become more troublesome here as well.

Indeed, if gas used in the electric generation sector declines in the 1990s,

Italy could well face difficulties in using supplies for which it already has

contracted.

Finally, as noted, natural gas in the United Kingdom long has been

focused on the residential/commercial and light industrial sectors, and that

condition has not changed in the 1980s. The most notable development in the

early 1980s was growing concern about future supplies. BGC lost out in

bidding on the very large Norwegian Statfjord and Ekofisk fields (although it

was successful on the Frigg field). The Sleipner field was its next target,

but although BGC was successful in concluding a contract, that contract did

not receive U.K. government approval. Western European interest in this field

appeared desultory but that may be open to question; certainly Western

European buyers did not step in after the U.K. government's failure to approve

the contract. The reasons for failure to approve the contract still are hotly

debated, but clearly it has partial origins in the U.K. price structure

controversy discussed earlier.

Prices to U.K. end users remain the lowest in all of Western Europe, and

the average price paid to producers also is very low.1 8 There is little

incentive to add to reserves, with no one permitted to bid against the BGC and

with gas exports forbidden by law. During and following the Sleipner events,

the prices that the BGC offered to U.K. producers began to move upward, but it

18 L. Cox and M. Lynch, "European Gas Prices: Limits to Growth," MIT Energy
Laboratory Working Paper No. MIT-EL 83-021WP, Cambridge, Massachusetts, 1983.

.- A



2-32

will take some time to determine if this incentive is sufficient to produce

U.K. reserves--and to see if the reserves indeed exist. In the meantime, it

is curious that U.K. consumer prices continue to lag so far behind those on

the Continent.

This brief review of Western European consuming country developments in

the early 1980s includes: continued "off-oil" strategies (except for the

United Kingdom, a major oil exporter); a sharp fall in gas demand, especially

in the electric utility and industrial sectors; and continued growth in the

residential and commercial sectors. All these factors have combined in the

mid-1980s to produce a glut of contracted gas and a load curve that is

becoming increasing seasonal.

Turning to exporter country actions following the 1979-80 oil price

shock, we find that a very mixed set of circumstances prevails. Algeria

consolidated its reputation as an unreliable supplier by suspending LNG

shipments to France, and by threatening similar actions to Belgium and Italy.

After these three countries all capitulated on price terms, deliveries

resumed, although the ill-will generated is likely to be long-lasting.

Certainly it is true that gas priced at levels of the renegotiated contracts

contributed to the fall in gas markets seen in the early 1980s. Clearly,

Algeria's behavior in the 1970s and early 1980s created an aversion by many

countries to relying on it, which in turn likely created a significant

opportunity for Soviet supplies to make in-roads into the effected markets.

The Soviet Union has not suffered from a similar poor reputation, but

nonetheless it was at the center of a major dispute about future reliability.

The controversy surrounding the Soviet Union's negotiations with Western

European buyers in 1981-82 has been chronicled and interpreted elsewhere.
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Stated at its simplest, Soviet gas was (as was true of Norway in the 1970s) in

the right place at the right time. During the protracted renegotiation of

Dutch contracts in the late 1970s, the Netherlands suggested that it might not

renew contracts when they expired in the 1990s. The collapse of the SAGAPE

consortium over Algerian demands for price increases, together with the Dutch

negotiating threat, left Western European purchasers facing an apparently

significant shortfall in future supply. All this occurred in the atmosphere

generated by the oil supply crisis, and there was great pressure to move away

from what were thought to be either politically inaccessible or physically

depleting global oil resources. In addition, there was a firm belief that oil

prices would rise rapidly and forever. Of course, oil prices in Western

Europe continued to rise into 1985 because of appreciation of the U.S. dollar,

thus prolonging this perception in Western Europe.

Under this set of circumstances, the Soviet offer to supply 40 Bcm of gas

at attractive prices and other favorable trade terms was of enormous

importance to Western European buyers. Their commercial experience with the

Soviet Union had been without serious problems, and there seemed little reason

to believe this would change.

In addition, the loss of 15.5 Bcm/year by SAGAPE made the Soviet offer of

20 Bcm/year almost irresistible. If the Algerian sale to SAGAPE had been

consummated, the interest in Soviet supplies may have been small, and likely

only for spot or peaking purposes. What was different in this instance was

U.S. objections to the Western European/Soviet transaction. Outraged over

Soviet actions in Afghanistan and Poland, U.S. foreign policy under President

Carter was focused on a search for effective sanctions to punish such

adventurism. Lacking any realistic military options, the United States
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instead sought Allied cooperation in leveling economic actions against the

Soviet Union. In light of this, the Soviet gas contract was seen as

manifesting Western European indifference to Soviet expansionism, and an

implicit repudiation of the best opportunity available to deny the Soviet

Union commercial benefits. Additionally, U.S. policymakers suspected that

reliance on Soviet gas would give the Soviets leverage over the Alliance in

the future.

After the conclusion of negotiations, the Soviet Union proceeded with a

major expansion in its exploitation of the Yamal/Urengoi reserves. As the new

deliveries fell due, technical problems arose, threatening their timely

execution. Nevertheless, the Soviets met all initial requirements, and thus

allayed Western European concerns about their commercial performance. Indeed,

in sifting through the role of exporters in the 1970s and 1980s, the Soviets'

conduct appears exemplary. In fact, it was one of the few exporters that did

not exploit external market opportunities by threatening to stop deliveries or

increase prices beyond the terms of its contracts. It has shown flexibility

equal to the Dutch (who have set the Western European standard) on both

matters.

In the mid-1980s, Norway's luck apparently ran out. After its successes

with Frigg, Ekofisk, and Statfjord, failure to secure the Sleipner sale could

not have come at a worse time. The Norwegian policy was one of phased

development (bringing oil and gas projects forward in a sequential way), and

As is not infrequent in such policy matters, the lack of available
alternatives was persuasive in favor of proceeding with the contracts. U.S.
policy toward the Soviets is not less belligerent now, but currently the
United States has no objection to Allied trade with the Soviets in other than
high-tech matters.
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during the time that oil and gas prices were increasing, the approach worked

wonderfully. Yet Statoil either seemed unaware or unwilling to admit that the

Western European gas market, by the early 1980s, was decreasing just as new

supplies (including its own) were coming on stream. Holding out for price and

development terms geared to a previous era helped doom the Sleipner

negotiation to failure. At the same time, it was becoming clear that

Norwegian hydrocarbon prospects increasingly favored gas, and its oil options

were increasingly limited. Discovery of the giant Troll gas field, with

Sleipner still in the inventory, presented Norway with a formidable challenge.

In negotiations with both U.K. and Western European buyers, Norway became

increasingly aggressive about price and volume terms. Perceiving what it

thought to be a seller's market, Norway sought to shift both price and reserve

risks downstream, arguing that it had assumed exploration risks. Norway did

not contract to sell a specified volume of gas, but instead sold production

from a specific field; buyers assumed the risk of what the field would

produce. Statoil negotiators also were very aggressive about prices, arguing

for a "security premium" based on their Western Europeanness.

Unfortunately, with Sleipner unsold, Ekofisk operating at reduced output

(because of platform subsidence), and the Troll field too large to sell as a

whole field, Norway entered the mid-1980s facing some serious problems.

Mention of the Netherlands has been interwoven throughout the discussions

of the 1970s and 1980s. The Dutch initiated natural gas trade in Western

Europe, remain prominent today, and will continue to be a major influence for

the foreseeable future. For 15 years it has been a load-balancer, both due to

the nature of the Groningen field and its willingness to contract to fulfill

such a role. Its export prices for four years (1976-80) provided the cheapest
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supply in Western Europe, even while delivery requirements were pushed into

future years (by France, for example, to accommodate expensive Algerian

supplies). With requests for renegotiation receiving no response, the Dutch

then suggested that if the contracts were not be renegotiated, they might not

be renewed upon expiration. Even then, at the height of Dutch irritation,

there was no verifiable suggestion that it would abrogate the contracts.

However, in the panicky policy atmosphere of the early 1980s, renegotiation of

Dutch export contracts did occur--presumably to ensure renewal (and supply)

prospects in the 1990s.

This renegotiation of Dutch contracts also saw indexation of natural gas

with oil products, satisfying the major concern of the Dutch. However, the

flexible take provisions remained, thus keeping the Netherland's exports

exposed to being backed out by other high take export requirements during

times of weak gas markets. This was viewed as a problem, but it may turn out

to be a significant strength in the future.

NEW PROBLEMS AND NEW PROSPECTS: THE FUTURE

This review of Western European natural gas markets has attempted to

identify the key factors in both importing and exporting countries that shaped

the evolution of those markets. The markets originally developed as economic

markets, in the sense that normal commercial transactions determined their

essential character. These markets were small and specialized, and received

little significant policy attention by consuming governments. This was true

despite the fact that most of the exporters and importers are government-

controlled or government-directed organizations.

By the 1970s, natural gas began to play a more prominent role in energy

markets, and this trend accelerated after the first oil price shock of 1973-
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74. It was at this juncture that policy assumed a more prominent role,

particularly in importing countries. The "off-oil" push had begun, and much

more active attention was given to expanding the role of natural gas.

Exporter behavior still remained largely commercially-oriented in nature, and

there appeared to be no gas brought to market that was not already in

prospect. While gas prices did increase, they lagged behind the startling

jump in oil prices.

The second oil price hike of 1979-80 had more dramatic consequences. The

Western European transportation infrastructure was well-developed, and most

major industrial countries enjoyed relatively easy access to gas supplies from

a variety of exporters. Importing countries became even more anxious to

secure alternative fuels to decrease oil imports, and policies by both

individual countries and international agencies were established to speed this

process. At this point, exporters' policies also became more aggressive,

usually reflected in their demands for higher prices. Contract abrogation was

not a factor; Algeria was the only supplier to suspend shipments and then

restart them (Libya's export shutdown appears permanent).

At present (early 1986), the major change that faces both importers and

exporters in the Western European market is the sharp drop in oil prices.

Although the policy frameworks to reduce oil imports still remain in place,

interfuel competition at the burner tip will be savage and the outcome is

uncertain. Gas prices will come under increasing pressure, especially as

contract indexing provisions fall due. Although the residential sectors of

Western European countries likely will not switch if gas prices are only
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somewhat higher than those of light oil products, new hookups certainly will

slow or even halt altogether. Electric generation from gas certainly will

decline if gas prices are not competitive with alternatives and if industrial

users have increasing access to fuel-switching capability.

The implications of this new end-use price competition are striking.

With the demand load curve becoming increasingly seasonal, pressure will

increase to stretch out contracted quantities over even longer periods of

time, with importers seeking greater flexibility in annual takes. With

consumption by base-load users declining, opportunities for large volume sales

are decreasing for all but the lowest cost exporters. Failure to respond to

these competitive circumstances has another possible consequence for

exporters. That problem is the evolution of the view that natural gas is an

expensive fuel that offers no real flexibility in price or delivery terms, and

therefore in the longer run it is fundamentally not reliable. If that

perception takes hold, then gas will carry a discount rather than a premium.

The Western European gas industry (both importers and exporters)

frequently views natural gas as being in a long-range market situation, and

responses to this cannot be distracted or panicked by short-run fluctuations.

While this is a true statement, it is not a complete statement--or necessarily

relevant. Underlying this view is a belief that contractual relationships

will be enduring. But this outlook is challenged by the fact that falling

prices are no more predictable than rising prices. Rising fuel prices bring

contracting parties together to sort out division of rents, a task that may

result in argument, but nonetheless this is a process in which both parties

gain. A falling market (both price and volume) requires allocation of risk,

and this always is a less pleasant task.
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The uncertainties that face future Western European gas markets suggest

that new importance should be placed on achieving greater flexibility. With

high volatility in fuel prices, end users have a strong incentive to invest in

fuel-switching capacity to ensure minimum disruption. End-use flexibility

carries with it opportunities for collecting substantial premia if expected

price variations are great. Installation of fuel-switching capacity will add

to demand uncertainties, increasing the potential for even greater price

volatility.

Natural gas markets have inherent rigidities for several reasons: Storage

of very large amounts is expensive or prohibitive; transportation systems may

stretch over long distances, and the longer the more expensive; distribution

systems (especially for new residential customers) often lie within urban

areas and thus are expensive to construct; new residential customers must buy

new appliances, adding to conversion costs; producers (especially of offshore

wells) need assurance of future sales to make investments to develop the

project--all this, and yet the price of natural gas to end users may vary with

changing relative fuel price competition. These are all difficult matters,

matters moreover that must be dealt with simultaneously.

In other fuel markets, temporary imbalances are moderated through spot

markets. During unexpected circumstances these spot markets act as clearing

agents, and their greatest impact is felt during shorter-term imbalances.

However, if spot markets are well established as a market clearing function,

they also may serve as a reference point that allows contracts to adjust quite

quickly. This helps stabilize markets by ensuring that the price of a fuel

adjusts rapidly to competitive price changes, whether up or down.

The United States has experienced some success with a gas spot market, at

least until new regulatory rules brought new difficulties. The Western
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European natural gas market appears capable of enjoying substantial benefits

from the institution of a spot market as well, and that potential is likely to

increase with time. The growing seasonality of load, sharp competition from

oil products, and the apparent over-contracting of imported gas supplies are

all disturbances with which spot markets can deal efficiently. Spot markets

could move gas at high prices during periods of unexpected peaks in demand,

and at low prices during all periods to large users, which would help clear

excess inventory.

Unfortunately, the prospects for a spot market emerging in Western Europe

are bleak. There are two major impediments: national policies favoring

supply security, and the absence of a common carriage pipeline system. A few

words on each are in order.

There is a strong tendency in Western Europe for purchases to be made on

a bilateral basis, despite the "continental consortium" buying group

negotiations. In effect, each importing country decides what volume of gas it

wants to take from an exporter's current offer. These individual importer

volumes are collected together, and a lead organization (Ruhrgas, for example)

then acts as initial negotiator. The negotiation from that point forward then

is concerned not with volumes, but with price and with minimum/maximum annual

takes.

In short, the volume for each country already has been determined,

implying that demand also has been determined--and therefore supply sufficient

to meet that demand has been secured. This perspective seems firmly

entrenched, and dates from the era of concern over supply shortages.

The second impediment to the development of a spot market in Western

Europe is the lack of common carriage transportation. The pipeline system in
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Western Europe has become highly interconnected. Thus, the physical

capability to move natural gas through the various countries of the region is

not a problem for spot markets. The constraint rather appears to be some

combination of unfamiliarity with such markets, and the unwillingness of

certain sectors of the pipeline system to permit such carriage arrangements.

Ruhrgas, for example, has been characterized as reluctant to engage in common

carriage/spot market transportation arrangements. Ruhrgas is especially

important for several reasons: Its system is the major access point for both

Norwegian and Soviet supplies; the West German market is relatively open and

regulatory interference is slight; and the large fraction of Dutch gas taken

by West Germany gives it considerable potential for flexibility. There are,

however, no indications of any change in Ruhrgas's reluctance to become a

major common carrier in Western Europe.

Absent the use of such mechanisms as spot markets, the Western European

gas market is likely to experience increasing volatility. This probability

arises from rigidities in policy and practice reviewed above, and from the

potential of increasingly unbalanced load factors in the future. The

alternatives for dealing with this volatility are limited, but increasing the

flexibility of the system certainly would help. Such actions as a pipeline

between the United Kingdom and the Netherlands would open the possibility for

two-way flows, including trans-shipment of Norwegian gas via the U.K. system,

and/or United Kingdom access to Soviet supplies. If the Norwegian underseas

pipeline now landing at Emden also had a spur landing in the Netherlands or

elsewhere outside Germany, flexibility would be increased without disturbing

Ruhrgas' capacity.

In certain ways, the Netherlands occupies a potentially pivotal position.

Just as its location was important earlier in establishing markets for
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Groningen gas, its location now could be important for brokering supplies in

an oscillating market. The Groningen reserve/production characteristics have

unique qualities, and if linked with other supply sources could serve another

producing country (e.g., Norway) and several consuming countries' interests

very well.

The future for gas markets in Western Europe is highly uncertain. Policy

management will be less effective when competitive pressures are high, which

they are now and will become increasingly in the future. Although Western

European governments seem mistrustful of economic markets, their influence may

be unavoidable, and attempts to avoid them may carry a very high cost, which

someone will have to pay.

* * *

A TROLL POSTSCRIPT

A contract for the sale of Troll (and perhaps Sleipner) gas to

continental buyers was announced after this chapter was completed. As of mid-

June 1986, details about price and contract terms still remain unclear.

Rather than recasting the analysis of this chapter in light of the Troll sale,

we reflect upon the impact this sale might have on future gas use patterns in

Western Europe. Indeed, the Troll sale would not change the foregoing

analysis in any significant way--except to note that, once again, Norway has

become a "lucky country." The trenchant question is: To what use will the

reported buyers put Troll gas? Oversupply under existing contracts presently

appears substantial. The previously-suggested need for spot markets likely

will increase, as will the necessity to find some way to deal with seasonal

load factor growth.
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Three other issues are intriguing. First, the United Kingdom is the only

country of the four studied that is not a party to this new Troll contract.

Second, the three major producers (other than Norway)--Algeria, Netherlands,

and the Soviet Union--are facing quite different competitive circumstances.

Finally, the new pipeline from the Norwegian North Sea has opened prospects

for additional pipeline interconnections, especially in view of the

substantial remaining Norwegian reserves.

These three issues are not unrelated, and the United Kingdom is the first

obvious point of intersection. Having previously failed to secure the

Sleipner sale, the United Kingdom now potentially faces a "sold out" sign in

Norway. It thus is faced with the prospect of relying upon domestic

production or some incremental import arrangement. This chapter earlier

speculated on a pipeline link from the Netherlands, and this remains a viable

prospect--but only if the Dutch are able and willing to act as a broker for

-- other imports from Norway, and/or the Soviet Union, "mixed" with its own

Groningen production. Additionally, Belgium--with the new Zeebrugge link from

Norway at the same point as its LNG terminal from Algeria--now also has the

opportunity to link up with the United Kingdom, even though it lacks a

Groningen-type supply base.

Further, the United Kingdom has had a stable contractual relationship

with Algeria. Having overpriced its gas for over a decade, Algeria finds

nearly half its liquefaction capacity lying idle, and is facing contract

renegotiations with France, Italy, Spain, and Belgium under very unfavorable

circumstances. The Troll contract leaves Algeria squeezed, and mutual

interests between it and the United Kingdom now may be very strong.

The new contract may make life the most difficult of all for the Soviet

Union. As noted earlier, the Soviet Union has its largest pipeline capacity
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directed into West Germany. Thus, it is heavily dependent upon the West

German pipeline system to deliver gas beyond West Germany itself--especially

to the United Kingdom (the one major market not connected to the continental

system). Of course, the southern route to/through Austria to Italy (and

potentially to France/Switzerland) offers some growth prospects--but not of

such large volumes, and with potentially stiff competition from Algeria via an

expanded TransMed Pipeline.

Soviet gas could move west as well as south, if Ruhrgas offers access

and reasonable tariffs. Under this prospect, through its excess pipeline

capacity, the Soviet Union might become a swing and/or spot supplier. Indeed,

it may have to function like the Dutch in balancing loads, including balancing

its own previously contracted volumes. This is not likely a preferred path

for Soviet gas sales, but it may be the only path open to it. Otherwise, the

Soviet Union will be competing head-on with Algeria for the smaller but

growing Southern European markets. In view of its need for hard currency

earnings, it is likely the Soviet Union will opt for the largest volume sales,

under whatever conditions it must operate.

The Troll arrangement appears to bring the Western European market to

greater "maturity" in terms of interconnection, and thus the market

increasingly will resemble the North American situation than it ever has

before. And this condition includes the prospect for a "gas bubble" of

sustained oversupply conditions, especially if oil prices remain soft through

the next several years. Thus, Western Europe has succeeded in securing gas as

an alternative to imported oil--just as oil is becoming a relative bargain.

It will be interesting to see if Western European countries' policies,

including those of the IEA and EEC, now relax pressures to reduce oil use. If
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so, there may be a real prospect that economic gas markets will begin to

emerge in Western Europe.
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ABBREVIATIONS

UNITS

Mcf = thousand cubic feet
MMcf = million cubic feet
Bcf = billion (thousand million) cubic feet
Tcf = trillion (million million) cubic feet
Bcm = billion (thousand million) cubic meters
MMBtu = million British thermal units
bbl = barrel

1 cubic meter = 35.3 cubic feet
1 cubic foot = 1000 Btus

fob = freight on board (i.e., price of good loaded on ship at
point of export)

cif = cost-insurance-freight (i.e., fob price of good, plus
shipping and insurance costs, or cost at point of import)

SOURCES

FT = Financial Times, daily, London
FTEE = Financial Times Energy Economist, monthly, London
IGR = International Gas Report, bimonthly, London
IPE = International Petroleum Encyclopedia, annual, Tulsa
MEES = Middle East Economic Survey, weekly, Cyprus
NYT = New York Times, daily, New York
OGJ = Oil and Gas Journal, weekly, Tulsa, Oklahoma
PE = Petroleum Economist, monthly, London
PIW = Petroleum Intelligence Weekly, weekly, New York
PPS = Petroleum Press Service, monthly, ondon (succeeded by PE

in 1974)
WO = World Oil, monthly
WSJ = Wall Street Journal, daily, New York
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NATURAL GAS SUPPLY IN WESTERN EUROPE

by

M.A. Adelman and Michael C. Lynch
assisted by Jeffrey A. Stewart

SUMMARY AND CONCLUSIONS

While natural gas is "surplus" in both North America and Western

Europe, supply prospects are very different for the two regions.

In North America, the capacity to produce and deliver natural gas at

prices prevailing in fall 1986, greatly exceeds what consumers are willing

to take. The new but broad-based spot market price for gas has been

falling for the past two years, well before the 1986 oil price drop. Spot

prices in producing regions are now in the neighborhood of $1.50/Mcf. But

this surplus is deceptive in two senses. First, consumer prices are only

moderately affected by wellhead prices; hence, the demand response is

slow. Second, from the supply perspective, few term contracts are being

signed at anything near the levels of spot prices. The consensus, with

which we concur, is that these prices will not support investment

sufficient to maintain the current level of producing capacity. And as

capacity shrinks, prices will rise.

On the other hand, in Western Europe, the price relevant to supply

is hard to discern, in part because natural gas is sold to distributors

and large end-users at prices that are considered proprietary, and in

part because there is no short-term market by which to gain reliable

information. And suppliers are willing to offer much more natural gas

for long-term sales than buyers are willing to take.
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Thus, the long-run disequilibrium in Western Europe appears to be

the opposite of the short-run imbalance in North America. To determine

whether this impression is correct requires a detailed examination of

cost and supply, which this chapter undertakes.

Our conclusion is that a landed or border Western European price

of even $2.50 per thousand cubic feet (Mcf)--compatible with an oil

price of $12 to $15 per barrel-- rules out West Africa, the Persian

Gulf, and the Pacific. But this price is enough to make profitable the

investment needed to supply 10 to 15 trillion cubic feet (Tcf) annually

from non-Soviet Western European sources alone, and perhaps much more

from the Soviet Union. This is several times the amount of gas being

sold today and more than anyone expects to be sold even in the next

century. Even some egregious errors in our calculations --which are

admittedly imprecise--would not affect these conclusions.

So what prevents these large volumes of gas from being developed,

when that would benefit both producers and consumers? The basic

explanation lies with the existence of many barriers to competition. A

competitive market is a method of spreading and using information; the

lack of competition has obscured basic facts on supply. The slow growth

of understanding explains why natural gas prices were under downward

pressure even before the oil price break.

Moreover, as will be shown, lower oil prices have drastically

increased gas supply, an impossible result under competitive market

conditions, but logical enough given current conditions in the Western

European natural gas market.
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The Supply Curve of Natural Gas in Western Europe

In the Western European market natural gas supply is currently

overabundant as a result of the oil crises of the 1970s and the price

increases that resulted. Increased drilling for oil created large

additions to gas reserves. Consumers' desire to reduce oil imports,

coupled with a willingness to sign natural gas contracts at high prices,

led producers to develop production capacity in excess of demand.

The oil price decline of early 1986 doubtlessly will have an impact

on supply. However, there will be no short-term reduction in capacity.

And most of the price paid for natural gas represents not cost but

economic rents, mostly to producing governments. Hence, there is room for

increased supplies over the longer term, even with low oil prices.

Current installed capacity is very inexpensive to operate, since

operating costs are far below current price levels. In the short term,

the surplus of capacity could mean an increase in supplies from countries

seeking to maintain their revenues.

As to new projects, the analysis of this chapter suggests that at

the equivalent of $10/bbl of oil landed or delivered to the point of

import, many gas projects become economically questionable, even excluding

rents. However, with prices slightly higher, and with favorable tax

regimes, substantial new supplies will be available.

Given the very large role transport costs play in producing and

delivering natural gas, long-run delivered cost trends should be

relatively flat. This is especially true in both Algeria, where the

vast bulk of costs are for pipelines, and/or liquefaction and shipping,

rather than for production, and in the Soviet Union, where pipeline
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costs constitute about 80 percent of total delivered costs. In the

United Kingdom and the Netherlands field development costs play a much

larger role.

Future supply trends are heavily dependent on government policies,

but the connection between the two is complex and many-sided. In the

United Kingdom, the British Gas Corporation agreed to pay higher prices

for gas from the southern North Sea and thus greatly increased drilling

and additions to reserves. In Algeria, the government has priced itself

out of most of the markets. The recent trend for producing governments to

reduce their rents has increased supply potential, and a move away from

crude oil price parity would do the same, at least in the short term.

Over the longer term, low oil prices would tend to increase supply from

Norway and the Soviet Union.

The simplest way to represent these results is to aggregate them

into a supply curve. First, the shape of the theoretical supply curve

of natural gas supplies is shown in Figure 1. It consists of three

levels:

(1) Current capacity to deliver gas, (shown by the lowest level),

will contine to operate even at extremely low prices, since variable

costs for both production and transportation are quite low. Oil cannot

recapture the market at any price. But much of this capacity is Algerian

and Soviet, however, and may be unavailable for policy reasons, either on

the producer or consumer side.

(2) The middle level shows where additional supplies can be obtained

cheaply, where fields are known and partly or fully developed but where

transportation constraints prevent their full exploitation. Supergiant
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Figure 3-1
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fields like Groningen, Hassi R'Mel, and Urengoi (in ascending order of

costs) could increase production if pipeline or liquefaction capacity were

added. (Some additional field capacity might be necessary, but the costs

would be small relative to those of transportation.) This gas could be

delivered at prices competitive with very cheap oil, perhaps as low as

$10/bbl.

(3) Finally, large increments in supply could be obtained at

higher price levels, as shown by the top level of the supply curve.

This includes the costs for new fields and pipelines (or liquefaction

capacity) necessary to expand greatly the amount of gas supplied to

Western Europe. For a landed price ranging between $1.50 and $3.00/Mcf,

most of this supply is economic, with the Troll project being in the

middle and small offshore fields, which require (relatively) substantial

pipeline investment, being at the high end.

At the high end of this price range, gas deliveries from more distant

provinces--like Askeladden, Qatar, and possibly Nigeria--begins to become

economic. However, these supplies have been analyzed only cursorily due

to the fact that cheaper, closer supplies are so abundant.

It is, of course, not possible to create an exact, complete long-term

supply curve based on empirical results: Many fields have not been

discovered yet, and/or development costs have not been aggregated.

However, because so much of the gas that is available to Western Europe

over the long run comes from a relatively small number of large fields, it

is possible to develop an empirical supply curve that encompasses a large

portion of the supply that will be available. In addition, using the

obserations on smaller fields that are shown in the producing country
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sections below, costs from areas like offshore Netherlands and United

Kingdom can be estimated. Table 1 shows the numerical data used to create

the supply curve for Western Europe which is presented in Figure 2.

.Before analyzing the curve, some caveats are in order. While

costs for fields like Troll or supplies flowing over gas gathering

systems like Statpipe are reasonably well estimated, a fraction of the

curve represents costs aggregations or interpolations of data, often

subjectively interpretated. Further, some supplies are not included at

all due to a lack of data, such as domestic production in France, Italy,

and West Germany, which accounts for 20 percent of Western European

consumption. However, their inclusion would not notably change the

results of the curve.

The implications of the supply curve are clear: Natural gas supplies

can be abundant in Western Europe for many years to come, even with very

low prices, so long as policies do not inhibit them. Neither the

economics of production and delivery nor the size of the physical resource

will be a constraint.

Plan of the Report

This chapter is divided into three sections and two appendices.

The first section provides some historical background on the development

of the natural gas industry in Western Europe, then gives an overview on

natural gas economics, including a brief discussion of the methodology

used in this chapter. Appendix A includes a more thorough explanation of

the methods and rationales underlying the critical assumptions.
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TABLE 3-1

WESTERN EUROPE SUPPLY CURVE

A. EXISTING PRODUCTION AND TRANSPORT CAPACITY

Country
Netherlands
Groningen
Other

Norway
Statpi
Frigg

UK
Exi sti
FLAGS

Algeria
LNG
Transmed

USSR

pe/Norpipe
(incl. UK s

ng southern

CAPACITY
Production T

(Bcf/yr)
2500
950

hare)

field

ransport

2500
1000

700
700

850 850
360

1000
460Pipeline

882.5
1059Urengoi pipeline

MARGINAL COSTS
Variable Total

($/Mcf)
0.05 0.05
0.4 0.4

0.5
0.6

0.5
0.6

0.25
0.3

0.35
0.35

0.5
0.6

0.25
0.3

0.35
0.35

0.5
0.6

B. EXISTING FIELDS AND NEW TRANSPORT CAPACITY

Algeria
Hassi R'Mel
Rhourde Nousse

USSR
Additional compression on

Urengoi

C. NEW FIELD DEVELOPMENT AND

Norway
Troll
Sleipner
Askaladden

USSR
Yamburg

TRANSPORT

2500
500
400

1000 1000

4000
800

4000
800

350

1

1.4

0.75

2500
500
400

1.5
3.5

3

2.5
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The next section examines the main producing nations, to wit, the

Netherlands, Norway, the United Kingdom, Algeria and the Soviet Union,

in some detail. A brief history and some discussion of producer policies

is provided for each country, but the main emphasis is on the cost

structure of their respective supplies. The section concludes by unifying

the analysis of the economics of the individual supplies to offer an

overview of the economics of natural gas supply for Western Europe.

The final section discusses future developments, beginning with an

overview of forecasts performed by other organizations. Our own

expectations are discussed, including observations on marginal cost

trends in both the short- and long-term, and on the impact of changed

perceptions toward energy resources on the development of future supply.

Appendix B presents data on existing Western European natural gas

contracts.

INTRODUCTION

The oil price spike of 1979-80 provided not only economic but

political impetus for Western European consumers to sign large, long-term

contracts to import natural gas. However, by agreeing to large price

increases for volumes covered in old contracts as well as for new volumes,

they not only rendered large amounts of gas economic to develop but also

set into motion events that would drastically reduce demand. The end

result has been a severe glut of supply for the past several years.

Although recent contract renegotiations have led to reductions in

deliveries, Western Europe still will have to cope with this glut for

years to come, including supplies still under contract, the surplus
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production and delivery capacity that now exists, plus that from large,

undeveloped reserves. This should produce downward pressure on prices,

even if oil prices recover to previous levels.

The question then is: What will the impact of lower gas prices be

on supply? What resources still can be developed, and where will there

be an impetus to increase sales, to add capacity rather than just to

use existing capacity?

Historical Background of Natural Gas Supply in Western Europe

With its abundant coal reserves, Western Europe produced manufactured

town gas for many years. The natural gas discoveries that did occur

before the 1960s (mainly the Lacq field in France in 1951 and the Po

Valley fields in Italy in the 1950s), were uneconomic to transport long

distances and so were utilized locally. This reflected in part the low

price of oil, which was gas's major competitor, plus the lack of an

existing pipeline distribution system. Only the availability of

substantial volumes would provide the assurances necessary to encourage

the development of an infrastructure to transport gas any great distance,

and so development of national gas markets did not occur.

The 1959 discovery of the supergiant Groningen field in the

Netherlands changed the situation dramatically. Within five years, the

Dutch realized that their gas reserves were so huge that they dwarfed

potential domestic consumption. (Even now, after a quarter century of

exploitation, Groningen could satisfy domestic consumption for 40 years

into the future.) Because the field was so large and the costs of

production so low, it was profitable for the Dutch to price the gas low
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enough to ensure the development of a pipeline transmission system

throughout Western Europe to utilize it.1

The Groningen discovery also encouraged oil companies to begin

drilling in the British sector of the southern North Sea, an extension

of the same geological formation. There, in 1965, the first of many

natural gas discoveries was made, leading to the development of a

nationwide natural gas grid in the United Kingdom, which to this day is

independent of the continent.

At the same time, the commercialization of LNG technology led to

the signing of small-scale contracts between Algeria and the United

Kingdom and France. Although the early contracts were not particularly

profitable, they did prove the feasibility of the technology. By the

time of the 1973 Arab Oil Embargo, LNG trade had grown several-fold,

with several new contracts between the North African producers of Libya

and Algeria and southern Mediterranean consumers of Spain, Italy, and

France.

When the 1973 Arab Oil Embargo occurred, gas had reached only a 10

percent penetration into the continental market, and new supplies still

were being discovered. The oil price increases of that time provided a

spur to more extensive LNG projects in North Africa, Soviet pipeline

expansion, and increased drilling in the northern North Sea. Although

predominantly oil was discovered, large quantities of associated gas

1 This condition also was seen in the United States, where the wellhead
price of gas in Texas and Louisiana was far less than the wellhead
price of oil because the gas had to be shipped great distances. Algeria
was able to approach f.o.b. parity for gas as a result of the panic
generated by the oil crises in the 1970s, consumer government perceptions

of resource scarcity, and their zeal to obtain supply at any price.
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were found as well. In 1976, the British began planning the FLAGS

system to utilize their associated natural gas, while the Norwegians

built the 15 Bcm/yr (530 Bcf/yr) Norpipe system to tap the 170 Bcm (6

Tcf) of associated gas in the Ekofisk field and land it in continental

Europe, as well as the 20 Bcm/yr (730 Bcf/yr) Frigg pipelines to deliver

gas from the Frigg field to the United Kingdom.

As a result, Western European gas consumption grew from 10 percent

of the total fuels market in 1973 to 14 percent in 1978; and while

domestic production grew 19 percent, imports more than doubled, providing

60 percent of gas supplies.2 After the second oil price shock, consumers

frantically sought to contract for new gas supplies, while the Dutch

revised their export policy to take advantage of the new atmosphere of

perceived scarcity. In essence, they refused to extend their existing

contracts, allowing exports to decline as contracts expired, thus

"preserving" the remaining Groningen reserves for domestic consumption.

To make matters worse, the new Iranian government tightened the market by

cancelling the IGAT-2 project, which was to have transferred 10

Bcm/yr (350 Bcf/yr) to Western Europe over the Soviet pipeline network.

Thus, Western European demand for natural gas from Algeria, Norway,

and the Soviet Union increased substantially. In response, these

countries increased their price expectations. Algeria, in particular,

demanded parity with f.o.b. crude oil prices, which would have made

delivered LNG more expensive than equivalent delivered oil products.

While importers resisted that pricing concept, they did agree to pay much

OECD Energy Balances. In this instance, Norwegian gas is considered
an import.
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higher prices on both new and existing contracts. As a result large

amounts of production and transportation capacity were added.

However, the combination of recession and higher gas prices resulted

in much lower levels of demand. Initially, consumers responded by

underlifting on contracts that had either no or weak take-or-pay clauses,

mainly the Dutch contracts, then renegotiating lower and more flexible

take levels on other contracts. Only recently have customers demanded

price reductions, and they have received some.

Yet gas frequently is being delivered for more than the equivalent

crude oil price. Low oil prices can be expected to worsen further the

outlook for gas prices further, and the viability of some new gas supply

projects now may be in doubt. The recent signing of the Troll contract,

for example, envisaged a 1995 oil price of $28/bbl, and some participants

are concerned that the project will not be viable at lower levels.3 This

will be discussed in greater detail below.

Western European Natural Gas Resources

As mentioned in our previous studies of international natural gas

supply, neither reserves nor resources are a fixed stock. Both are

increased by investment in facilities and in knowledge. Thus, the fact

that Western European natural gas "proved reserves" are equal to 34

years of production or 27 years of consumption says little about future

gas availability. The rapid growth in reserves in the last two decades

(seen in Figure 3) is a much more important indicator of supply trends,

3 See WSJ, 8/12/86, p. 32.
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Figure 3-3
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as is the level of drilling (shown in Figure 4) and the market price

for natural gas (in Figure 5).

In assessing the natural gas resources available to Western Europe

in the long-term future, estimates of undiscovered gas are indicative

at best. (See Table 2 for estimates made by the U.S. Geological Survey.)

These estimates define undiscovered reserves as gas that would be economic

to produce given current prices, technology, and operating conditions,

including tax regime. Since these factors all change over time, the

amount of undiscovered producible gas will change as well.

The reserves north of 620 N off the Norwegian coast provide a

perfect example of how changing conditions impact the definition of

undiscovered reserves. At present, any but the largest undiscovered

gas field that might exist in the Askeladden area probably would be

considered uneconomic and thus not be included in the resource estimate

shown in Table 2. With the development of the Haltenbanken area further

south, and the construction of a pipeline from there to the Continent, the

incremental cost of hooking up the Askeladden field would fall, forcing a

reassessment of the viability of those resources, possibly allowing a

number of large potential deposits to be added to the "undiscovered

reserves" category.

Further, if the pipeline were extended northward to exploit the

large, existing gas fields at Askeladden, then smaller fields would

only have to bear the incremental cost of being attached to the

trunkline. This would allow much smaller gas fields to be defined as

economic, assuming a constant landed price for the gas, and the resource

base would be greatly increased.
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Table 3-2

Undiscovered Reserves - Northwest Europe

Undiscovered Reserves Assessment
(Tcf)

Low High Mean

Volume South of 62 N
(Areas I and II)

United Kingdom 7.6 27.8 16.4
Norway 32.2 118.3 69.6
Denmark 0.9 3.5 2.0

Germany 0.5 1.8 1.0
The Netherlands 5.2 19.1 11.4

Ireland 0.9 3.5 2.0
Total 47.3 174.0 102.4

Volume North of 62 N

Norway 17.9 127.6 65.0

Total 65.2 301.6 167.4

Volume in Total Northwest

Europe Assessment Area 92.0 258.0 167.0

Total Assessment Area:

Demonstrated Reserves: 222 Tcf
Inferred Reserves: n.a.
Cumulative Production
(1/1/82) 40 Tcf

Notes: Area I consists of Viking and Central Grabens,
Morray Firth basin, and partial Ireland area.
Area II consists of Southern North Seas basin
and partial Ireland area.
Total assessment area includes all of the North Sea,
as well as parts of onshore Netherlands, Belgium,
and France.

Source: H. D. Klemme and Charles Masters, "Assessment of
Undiscovered Conventionally Recoverable Petroleum
Resources of the Northwest European Assessment
Area," USGS Open File Report 84-094, USGS, Washington
D.C., 1984.
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Fi gure 3-4
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FIGURE 3-5
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Given proved reserves of over 30 years of supply, plus undiscovered

reserves that would roughly double this, natural gas supplies in Western

Europe seem quite secure. Since the Soviet Union and Algeria have

reserve-to-production ratios of 70 and over 100, respectively, few

concerns about adequacy of supply are necessary.

Economics of North Sea Supply

In early 1986, the North Sea received considerable attention as

one of two "high-cost" areas most at risk from falling oil prices. In

fact, average development plus operating costs for oil in the British

North Sea in 1984 were on the order of $7/bbl, with operating costs

alone some $2/bbl.4 Variable costs are naturally higher than the average

for some fields, especially smaller ones, but large-scale forced shut-ins

are not foreseen.5 Even so, these costs are well below 1985 oil prices,

and obviously much oil field development, at least, is quite viable

economically if the tax regime allows it. Tax levels today are under

intensive scrutiny in both Norway and the United Kingdom for precisely

this reason.

However, the development of natural gas reserves is a different

matter. Even with prices for oil and gas equal at the point of

M.A. Adelman, "The Competitive Floor to World Oil Prices," MIT Energy
Laboratory Working Paper No. MIT-EL 86-011WP, Cambridge, Mass, 1986,
forthcoming in The Energy Journal.

5 Some analysts have suggested forced shut-ins will not occur in the
North Sea above $5/bbl. The U.K. Energy Department has calculated
production costs for older fields at $9/bbl, $15/bbl for more recent
fields, and $21/bbl for fields now under development, but this obviously
includes development as well as variable costs. See PIW, 5/5/86, p. 3.
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consumption, the wellhead value of gas per unit of heat content is

lower than oil because of its higher transportation and distribution

costs. Moreover, at the point of consumption, gas is restricted to

less valuable stationary uses, where it competes mainly with coal and

residual fuel oil.

Additionally, a number of policy decisions have altered the economic

environment in which gas field development takes place. The monopsony

powers of the British Gas Corporation (BGC) in the British North Sea

depressed wellhead prices for natural gas in the southern sector,

drastically reducing incentives for finding and development. Recent steps

to reverse this situation have resulted in increased drilling and

discoveries.6 Similarly, price controls in Italy have suppressed

production, while West Germany at one point shut-in domestic production in

favor of imports with high take-or-pay clauses.

For gas reserves associated with oil, development and operating

costs are limited to the costs of processing and transporting the gas.

However, as will be shown below, these are not negligible. On the

other hand, associated gas and gas condensate fields contain substantial

amounts of liquids, whose sales can yield substantial revenues. This can

greatly enhance a project's viability.

6 After BGC began paying higher prices for gas from the southern North
Sea, one industry journal said a "Second Boom Grips UK Gas Basin..."
IGR, 4/13/84, p. 4. More recently, spending is being reduced by a
number of major operators, such as BP and Britoil, and a recent report
indicated that rig requirements have been cut 14 percent in the last
three months. Still, a number of discoveries have been made in the
southern sector that promise substantial reserve additions.
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Unlike the United States, most North Sea production comes from a

handful of fields. Thus, analysis of the resource economics is largely

project analysis. Discerning marginal cost trends for the North Sea

basin is made more difficult by the small sample size. Transportation

costs cannot be generalized, given the differences in terrain which

pipelines must cross. Still, past and expected development costs can

be examined, as well as the role transporation costs play in delivering

natural gas. The section below describes the methods applied to

individual countries and projects.

Cost Assessment

There are a variety of methods by which to assess the costs of

delivered natural gas: project evaluation, rate-of-return assessment,

and so forth. The methods used in this chapter, which have been explained

in detail in previous reports,7 are determined by project types and the

available data. This section provides a brief review of the method of

calculation and assumptions used in analyzing costs; they are discussed in

more detail in Appendix A.

By "cost" we mean the price that would make it barely worthwhile

for a producing company to develop a given gas deposit, setting taxes

equal to zero. That is, the discounted value of future revenues must

exactly equal value of the capital expenditures. This yields the

annualized marginal cost per unit of a project with a given time profile.

See especially the North American report, pp. 22-25, and the East
Asia-Pacific report, Table 5.
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This cost is the baseline for the contracting parties, i.e., the

producing company and the government. They must measure this cost in

order to agree on taxes and other obligations incumbent upon the producing

company.

The great bulk of cost consists of the return on the necessary

investment. To calculate this, need the following is needed:

Capital expenditures for development, excluding those for

exploration and bonuses, rentals, royalties, acreage acquisition, and

other expenditures not needed for development. It covers field

development, which includes the costs of platforms, drilling, and

connecting wells and field pipelines.

Reserves, which are total cumulative output through the

facilities purchased by the capital expenditures.

Annual output, in the initial and in subsequent years, over

the lifetime of the project.

The cost of capital, or minimum acceptable rate of return.

Given these complete data, one can write the following equation:

P * -e- (a+i)T (K/R) * T
(a+i)

where P is the supply price, or cost, a is the depletion rate, i is the

rate of return, or discount rate, K is the total capital expenditure, R

is the amount of reserves, and T is the time of production.

The rationale underlying this equation is that a single unit produced

each year over the life of the project is worth its present value, stated

on the left-hand side of the equation. There will be T units delivered,



3-24

each costing (K/R) up front. Given realistic values of i, a, and T, the

left-hand side is usually simply equal to P/(a+i).

The equation can be used in either of two ways. First, we can

take an appropriate rate of return i, and calculate a cost or supply

price per Mcf of gas. This yields the lowest price that would make the

investment barely worthwhile. Or, given a market price, the rate of

return which the investor would receive (if there were no taxes) can be

calculated. A government must begin with this rate, and attempt to

obtain the highest possible share of it, up to the point where the

company would abort the project, rather than accept anything less.

The chief problems are with obtaining the data and with using

approximations to cover gaps in the data. For Algeria and the Soviet

Union, there are few or no data on capital expenditures. These are

estimated by using U.S. drilling and non-drilling costs for similar

depth classes and geological environments. In the North Sea, expenditures

are generally available by project. We think they generally tend to

overstatement, perhaps for the sake of bargaining, or because of

gold-plating or featherbedding. We make no corrections on this account.

In some important cases, costs are so low that even an extravagant margin

for error would not matter.

Reserves developed are publicly known for nearly every project or

field, though the definitions used and the reliability of the data,

vary widely.

Expenditures divided by reserves yield "in-ground costs" per unit.

Other information is needed to derive "above-ground costs", or cost at the

wellhead. An Mcf of gas in the ground is an asset, which must be held a
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certain length of time before it can be sold off. If each Mcf could be

sold as soon as it was purchased, below-ground costs would equal wellhead

costs. If it could all be sold in the first year, i.e., a decline rate of

100 percent per year, in-ground costs plus the needed return for one year,

would equal the wellhead cost. In general, the higher the decline rate,

the quicker the return, and hence the lower the necessary rate of return

and the smaller the multiplier that transforms in-ground costs to wellhead

costs.

The pattern of production and its decline rate is often unstated

and we are compelled to approximate it in various ways detailed in

Appendix A.

The necessary equity rate of return for companies producing oil

and natural gas in the United States and Canada is about 10 percent,

real. For field development in the Western European area, howeve, we

use 12 percent, reflecting a somewhat higher degree of geological risk.

For pipelines, which can be used by any field in the operating area, a 10

percent rate is used. The reader can easily substitute other rates.

Operating costs are assumed to be 5 percent of capital expenditures,

(see Appendix A for a more detailed explanation). However, for LNG

plants, 3 percent of capital expenditures is used and fuel costs are added

in separately.

Pipeline capital expenditures have been reported for all major

Western European projects, so transportation costs can be calculated

from actual data, using the methods described in Appendix A. However,

geographical diversity makes a rule-of-thumb for transportation costs

impossible to develop.
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Given the wildly fluctuating exchange rates of the last decade, it

seems inappropriate to use actual exchange rates to convert costs from

foreign currencies into U.S. dollars. Thus, we have chosen to rely on

the purchasing power parity index developed by the OECD.8 Lacking any

accurate inflation index for drilling or pipeline construction costs

that would be applicable to the diverse areas covered in this chapter,

the implicit price deflator for the U.S. gross national product was

used to convert current-year dollars into 1985 dollars.

In many cases, natural gas is not an independent product. It is

frequently either associated with oil or contains liquids. In both

cases, the economics are different from those of a dry gas field. For

associated gas, since the costs of production must be borne by the oil

being produced regardless of whether the gas is flared or piped to

shore, the marginal cost of the gas is the cost of transportation. For

gas fields that contain liquids, the cost of processing the liquids

cannot be separated from the rest of the field development expenditures,

and so the value of the liquids is subtracted from the cost of producing ;

the gas. A $10/bbl value is assumed for the liquids, correlating to a low

price for crude oil. Appendix A discusses the rationale and methods

behind this in more detail.

8 See Michael Ward, Purchasing Power Parities and Real Expenditures in
the OECD, Organization of Economic ooperation and Development, Paris,
France, 1985.
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Rents to Government and Costs to Operators

In analyzing the economics of natural gas supply, taxes and other

sources of rent are omitted for several reasons. First, the sheer

complexity of the various systems, each bearing differently upon each

individual operator and even upon each project. But even if every

aspect of taxes could be accounted for, this approach would not be

wise. More salient is the amount of rent attainable on the production

of natural gas in any given country or region. The division of rents

is a condition that the parties to a contract must negotiate. Our

objective is to show both sides (and other parties) the approximate

value of a project--which may be zero.

This leads to the second reason for omitting taxes and rents. The

rent to the government usually acts as a cost to the operator. Therefore,

a project that yields a positive pre-tax rate of return is perhaps not

worth undertaking post-tax. Both parties thereby lose. The company is

not a free agent, of course, and the government may not be either,

depending on the circumstances. It may be constrained by public opinion

to believe that "there's gold in them thar wells", and that failure to

demand more rent reflects timidity or corruption by government personnel.

Conversely, the operator may miscalculate or misstate costs. Thus, in the

short run, rents to the government are a cost to the operator, and the

short run may extend forever if both sides dig in. In the long run, both

sides are better off if they negotiate on the basis of costs as they exist

in reality.

Third, rents do not necessarily take the form of taxes. They may

be obsolete cost factors (a particularly important factor in deep-water
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development, where platform costs have decreased dramatically in the

last ten years). Or they may be "gold-plating" of installations, or a

payoffs, or overpayment of personnel, or requirements for domestic

purchase of goods or services that are available more cheaply from

foreign sources. Or they may be requirements to produce uneconomic oil

or gas deposits, either to satisfy some local interest and produce

local jobs, or to placate the fetish to preserve "precious, non-renewable

resources". There are many such possibilities, and they could not

possibly be measured here.

When announced investment plans are considered, and unit costs

calculated from them, we do not subtract imbedded rents. Some of these

rents exist to comply with government requirements. Moreover,

corporations are rarely suspected of understating the costs that are

submitted to governments and to public scrutiny. Nevertheless, there

is usually no way of peering behind the announced numbers.

Project investments calculated by using factors drawn from the

United States are relatively rent-free as far as factor inflation is

concerned from 1984 onward. There were many private rents in previous

years, generated by rapid expansion and resultant inefficiencies, but

we consider them to be largely squeezed out now. Of course, since the

U.S. numbers are averages, there is considerably more margin for error

in either direction.

The next section describes the main producing countries in more

detail, followed by a short section describing the small producers and

potential suppliers to Western Europe, such as Qatar and Nigeria.
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NATURAL GAS PRODUCING COUNTRIES

Although a large fraction of the natural gas consumed in Western

Europe is produced domestically, the future of the market will depend

in large part on the behavior of a handful of countries that have large

gas reserves available for export. This section examines the Netherlands,

Norway, the Soviet Union, and Algeria, plus the United Kingdom, which has

the potential to be either an importer or exporter, depending on future

prices and policies.

The Netherlands

With the 1959 discovery of the supergiant Groningen field, the

Netherlands ushered in the age of natural gas into Western Europe.

Like other countries, small deposits and manufactured gas had provided

supplies prior to that time, covering 1 to 2 percent of Dutch energy

needs,9 with a growing natural gas industry due to a number of field

discoveries. However, the Groningen field proved to be so large that

it allowed a massive conversion of the Dutch economy to natural gas.

Originally estimated to contain 2 Tcf of reserves, Groningen was

repeatedly upgraded so by 1963 reserves were put at nearly 40 Tcf,

although today they are believed to be twice that large.1 0 Although

Dutch long-term planning entails a horizon distant enough to see depletion

affecting the reservoir, Groningen will be a major factor in Western

European gas trade for years to come.

In 1960, roughly 60 percent of gas consumed was manufactured gas.
OECD Energy Balances.

10 J. Davis, Blue Gold, p. 156.
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Although the economics of Dutch gas revolve around the Groningen

reserves, other, smaller fields, both onshore and offshore, have come

to play an increasing part in Dutch production (see Figure 6). What

stands out is the fact that Groningen is a huge reservoir, with high

productivity, at medium depths, in an area having superb infrastructure,

all suggesting that its gas is extremely cheap to produce. This is

confirmed by the fact that, although the border price in the mid-1960s was

as low as $0.33/Mcf, 11 72 percent of the revenues were reported to be

going to the government in the form of taxes, dividends, and royalties.12

The amount of revenue left to cover production costs and corporate return

on capital could not have been large.

Our analysis of costs, discussed below, confirms this, with

development and operating costs estimated to be below $0.10/Mcf. Even

assuming a large margin of error, there is little chance that the costs

in this field can be significant relative to the value of the gas in

the marketplace. (The costs of other Dutch fields, where known, are

discussed below.)

Having gas that was far too abundant to be consumed domestically

and able to compete with oil prices in the 1960s (even allowing for the

costs of constructing new transmission/distribution systems) opened the

door for Western Europe to enter the gas age. Contracts were signed,

first with small consumers on the borders, then with the West Germans,

Belgians, and French. Export prices were on the order of $0.40/Mcf,

11 Davis, op. cit., p. 161.

12 PPS, 4/65, p. 149.
wrw
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Figure 3-6
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with links to low-sulfur fuel oil that would allow 70-75 percent of any

change in oil prices to be reflected in gas prices after some delay.

Dutch policy was to allow development of the Groningen field in a

measured way, so as to avoid disruption of energy markets. In other

words, prices should be similar to competing fuels, which had the benefit

of increasing rents to producers, and especially to the Dutch government.

The other Western European countries proved to be willing buyers, and the

establishment of a continental natural gas market was begun.

Within a few years, however, the spectre of competition appeared,

as Soviet natural gas exports were offered in quantity. (Contracts for

25 Bcm/yr (880 Bcf/yr) were signed in the early 1970s, although the

first Soviet export pipeline, to Eastern Europe, was finished in 1967.

Its current capacity is 28 Bcm/yr.1 3) Concern about this development

led to the first Dutch export contract signed at a fixed price, with

Italy, for 6 Bcm/yr (210 Bcf/yr), in 1970.14

Then the oil price hikes accompanying the 1973 Arab Oil Embargo

increased both the demand for and price of gas, and energy markets

underwent drastic change and the suppliers' fear of competition was

replaced by the consumers' fear of shortages. In addition, the added

premium for more secure energy supplies meant that natural gas' value

relative to oil was perceived to have increased, although perceptions

differed among producers, importing governments, and actual consumers.

This allowed the Dutch to ask for and receive much higher prices for

Davis, op. cit., p. 124.

14 PE, 6/74, p. 228.
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their exports, including renegotiation of the Italian contract that

raised the base price and included an ndexation to oil.

At the same time, the new atmosphere of perceived resource scarcity

led Dutch policymakers to become concerned about the future of domestic

energy resources. Gasunie felt that its gas reserves needed to be

"conserved" for more valuable uses, and not "wasted" where less noble

fuels would suffice. Thus, the Dutch gave priority to the distribution

companies serving residential and small commercial users; ultimately,

supplies for electricity generation were to be phased out. The plan was

to allow export contracts to expire without renewal or extension, leaving

enough reserves to supply domestic needs well into the next century.

After 1973, at which time 50 percent of the then-known reserves were

committed, no new contracts were signed.

This policy also was reflected in Dutch attempts to acquire gas

from other sources to prolong the availability of cheaper domestic

gas. Thus, The Dutch signed a contract with Norway for 1.7 Bcm/yr (60

Bcf/yr) from the Ekofisk field, and, in 1978, for 4 Bcm/yr (140 Bcf/yr)

of Algerian LNG to be delivered starting in 1984, though this was

subsequently cancelled.1 5 Negotiations to import gas from the Soviet

Union also were undertaken, but no contract was signed.

The increase in gas prices also meant a startling increase in

government revenues. By 1975, half of all corporate taxes came from

the gas industry, and royalties and the profits from the state's share

of Gasunie were even larger. Of government revenues in 1975, 8 percent

15 PE, 12/78 p. 533.
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came from the gas industry.1 6 This increased the value of Dutch currency

and made non-gas exports more difficult, leading to the coining of the

term "Dutch disease" to denote the damage to non-mineral sectors of the

economy that resulted from large-scale mineral exports.

With the second oil price shock in 1979, the Dutch demanded new

changes in their contracts. By spring 1980, higher oil prices and the

expressed willingness of consumers to pay higher prices to other

exporters, led the Dutch Economics Minister to threaten to halt exports

if gas price renegotiations were not satisfactory. The result was much

higher prices and a change to indexation with low-sulfur fuel oil prices,

readjusted monthly. At the same time, the Dutch refused Algerian demands

for higher, crude oil-related prices on their LNG contract, and as a

result it was cancelled.

However, the Dutch did not have the same take-or-pay protection as

their competitors. When the additional supplies and the higher prices

clashed with the weakening economy, commitments to take gas could not

be met and the Dutch bore the brunt of the loss. For example, France

cut back its cheaper Dutch supplies in 1982 by 39 percent while Algeria's

market share increased by one third, despite its higher price.17

Overall, Dutch exports fell drastically, by 30 percent in 1982,

with overall sales (i.e., including domestic) falling 12 percent. With

the increased prices, revenues were slower to fall, though they were

16 From International Financial Statistics, International Monetary
Fund, and PE, 8/75, p. 295.

17 PIW, 5/2/83, p. 11.
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far below those anticipated, and this discrepancy caused some economic

problems.

In 1983, the reduction in sales and the addition of reserves from

new discoveries led to an official reassessment: Gas supplies were no

longer to be hoarded for future domestic use. The Dutch now sought new

contracts (especially with the United Kingdom) and ten-year extensions

of old contracts, at the same time reducing prices to defend existing

market share. Price indices were changed to include gasoil, rather

than just low-sulphur fuel oil, which had the effect of making them

more responsive to changes in the heating market and lowering them

slightly as of October 1, 1984.18 Appendix B shows the extensions that

have been signed to date.

The Dutch were, in fact, disappointed at BGC's reaction to their

offer of supply. The Minister for Economic Affairs indicated that

"...statements suggesting that such gas is over-priced astonish me."19

In fact, the Dutch said they had offered to be competitive on price,

flexible on supply, and to finance the pipeline. 2 0 Despite all this,

BGC apparently felt comfortable with the cushion of supply that would

be provided by the impending Sleipner deal and the existing domestic

supply, and turned the Dutch away.

Dutch policy now has come full circle. At present, the Dutch rely

on competitive prices to maintain export levels. Although they still

18 FT, 1/21/85, "Netherlands Survey," p. IV.

19 IGR, 4/13/84, p. 7. Dutch gas was argued to be 10 to 20 percent
more expensive than Sleipner gas. See PE, 5/84, pp. 188-189.

20 PE, 5/84, p. 189.
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have gas available for export, however, major increases in exports

probably will not be sought while oil prices are low.

The Resource Base

It is not possible to separate the role of Groningen gas in the

Dutch resource base from that of other, smaller fields. Increasingly

higher estimates of the reserves in Groningen have helped undo the

Dutch perception that it is a rapidly depleting resource.2 1 Beyond

that, the discovery of numerous fields in the Dutch North Sea has provided

a significant boost to reserves. Figure 7 shows the rate of growth in all

Dutch reserves over the last two decades.

The Economics of Dutch Supply

Table 3 indicates that, given what is known about well depth and

productivity, the cost of gas from Groningen appears to be lower than

one cent per Mcf.2 2 This would seem astonishing but for the nature of

the reservoir as described above, which suggests that Groningen gas is

among the world's cheapest. No field today has similar characteristics

and is also located in a major consuming area.

21 IPE, 1977 puts total reserves at 58 Tcf, while Peebles, 1980, (cited
in Davis, op. cit., p. 156) states that industry put them at 70 Tcf.

22 An early report suggested that well productivity for one of the
initial clusters would be 26 MMcf/d, substantially lower than that
reported in the 1977 IPE. Even so, this would increase costs only to
the vicinity of 140/2-T $0.006/Mcf, or $0.03/Mcf. See PPS September
1963, p. 346. In a later report, modifications in well -design were
said to have increased well productivity from approximately 50 MMcf/d
in the first 14 clusters of 8 to 11 wells, to as much as 110 MMcf/d in
subsequent clusters. See WO, 1/73, pp. 38-39.
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Figure 3-7
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Table 3-3

Dutch Gas Development-Operating Costs

Groningen

1 Drilling and equipping costs per well 640 ($ M)
2 Allowance for non-drilling costs per well 480 ($ M)
3 Allowance for gathering per well 340 ($ M)
4 Total development costs per well 1460 ($ M)
5 Depletion 0.04
6 Annual development-operating costs per well 307 ($ M)

7 Development-operating costs per day per well 840 ($)
8 Average production rate per well 140 (MMcfd)
9 Average development-operating costs as sold 140 (MMcfd)
10 Marginal development-operating costs as sold 0.006 ($/Mcf)
11 Development costs in ground 0.008 ($/Mcf)

0.001 ($/Mcf)

Sources:

1. Joint Association Survey, 1984, figure for 9,500',
Onshore Texas. 1984 development costs converted
to $ 1985 using implicit price deflator from
Economic Report a_ the President.

2. Assumed to be 75% of line 1.

3. Assumed to be 30% of line 1 + line 2.

5. 1984 Dutch production / Dutch reserves at year end,
from Qil and GS Journal, December 31, 1984, p. 74.

6. Line 4 * (0.12 + 0.04 +0.05), allowing 12% discount
rate, 4% depletion, 5% operating costs.

7. Line 6 / 365.
8. International Petroleum Encyclopedia, 1977, p. 239.
9. Line 7 / ((line 8) * 1000).
10. (line 9) * ((line 5 + i) / i) i = 0.12.
11. Delevopment costs at wellhead = line 4 * 0.16 / 51,100

MMcf/year = $O0.005/Mcf (0.16 = depletion + discount rate,
51,000 MMcf = yearly production).
Development costs in ground = development costs at
wellhead divided by (1 + (i / a)) i = 0.12, a = 0.04.

IS
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In the Netherlands, the role of Groningen is dominant, although

the Dutch increasingly are turning to higher-cost supplies. The smaller

offshore fields naturally are more expensive.

At present, however, there is not enough information to estimate

the long-term marginal cost trend in the Netherlands. Several field

development reports, shown in Tables 4 through 6, show that the offshore

fields are much more expensive than Groningen. This suggests that

marginal costs for the Dutch can be expected to increase, but also

that future supplies will not provide rents for the government on the

scale that gas Groningen has.

Norway

After the presence of hydrocarbons was found in the southern North

Sea, albeit natural gas and not oil, drilling moved to the northern

areas, where water depths were likely deeper and the weather worse, but

where prospects for oil were thought to be good. The Ekofisk field,

located in 1968, was the first of the major oil discoveries. Its large

reserves of associated gas led to the development of the Norpipe pipeline

system for deliveries to Emden, West Germany. The first large gas field,

Frigg, with 10 Tcf of reserves, was discovered in 1972, and led to a

contract with the United Kingdom for delivery of up to 15 Bcm/yr (530

Bcf/yr). 23

23
Reserves, of which 40 percent are in the U.K. sector, from IPE,

1977, p. 239. Delivery volumes are geared to production, and td
Norwegian exports have been about 12 Bcm/yr (425 Bcf/yr). See BP Review
of World Gas.
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Table 3-4

Dutch Gas Development-Operating Costs

Ameland Field

1 Drilling and equipping costs per well 3.15 ($ MM)
2 Allowance for non-drilling costs per well 2.36 ($ MM)
3 Allowance for gathering per well 1.65 ($ MM)
4 Total development costs per well 7.16 ($ MM)
5 Depletion 0.05

6 Annual development-operating costs per well 1.58 ($ MM)

7 Development-operating costs per day per well 4.33 ($ M)
8 Average production rate per well 33.300 (MMcfd)
9 Average development-operating costs as sold 0.130 ($/Mcf)
10 Marginal development-operating costs as sold 0.184 ($/Mcf)
11 Development costs in ground 0.029 ($/Mcf)

Sources:

1. Joint Association Survey, 1984, figure for 10,000',
Offshore Louisiana. 1984 development costs converted
to $ 1985 using implicit price deflator from
Economic Report f tht President.

2. Assumed to be 75% of line 1.

3. Assumed to be 30% of line 1 + line 2.
5. Assumed, 1984 Dutch production / Dutch reserves

at year end = 0.04, from Oil and Gas Journal, December 31, 1984,
p. 74. 0.05 used due to low Groningen depletion.

6. Line 4 * (0.12 + 0.05 + 0.05), allowing 12% discount
rate 5% depletion, 5% operating costs.

7. Line 6 / 365.
8. Qil an Gas Journal, January 27, 1986, p.68.

9. Line 7 / line 8.

10. (line 9) * ((line 5 + i) / i) i = 0.12.
11. Development costs at wellhead = line 4 * 0.17 / 12.16 Bcf/

year = $0.100/Mcf (.17 = depletion + discount rate,
12.16 Bcf = yearly production).
Development costs in ground = development costs at wellhead
divided by (1 + (i / a)) i = 0.12, a = 0.05.
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Table 3-5

Dutch Gas Development-Operating Costs

F/3 Project (F/2, F/3,, F/6 Fields)

Oil & Gas Project

1. Development costs
2. Reserves
3. Average production rate
4. Depletion (Q/R)

5. Development costs in ground
6. Development costs as sold

7. Operating costs
8. Development-operating costs as sold

9. Development-operating costs as sold,

adjusted for condensate production

650 ($MM)

423 (Bcf)
66 (Bcf/year)

0.156
1.537
2.718
0.492
3.210

($/Mcf)
($/Mcf)
($/Mcf)
($/Mcf)

2.546 ($/Mcf)

Sources:

1. International Petroleum Encyclopedia, 1981, p. 204.

Development cost given in $ 1981, converted to $ 1985
using implicit price deflator from Economic Report
Qf the President.

2,3. World Oil, August 15, 1985, p. 78.

5. Line 1 / line 2.

6. (line 1 / line 3) * (line 4 + i) i = 0.12.
7. 0.05 * line 1 / line 3 (annual operating expenses / annual

production) annual operating expenses assumed to be 5% of

development costs.
8. Line 6 + line 7.

7. Line 8 - (yearly revenue from oil sales / line 3)
- line 8 - ((4,380,000 bbl) * ($lO/bbl)) / (line 3 * 1000).
Oil production rate from World Oil. August 15, 1985,
p. 78. $10 oil price assumed.
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Table 3-6

Dutch Gas Development-Operating Costs

Zuidwal Field

1. Development costs 432 ($MM)
2. Reserves 883 (Bcf)
3. Peak output 53 (Bcf/year)

4. Field life 20 (years)
5. Depletion 0.019
6. Development costs in ground 0.489 ($/Mcf)
7. Development costs as sold 1.208 ($/Mcf)
8. Operating costs 0.408 ($/Mcf)
9. Development-operating costs as sold 1.616 ($/Mcf)

Sources:

1,2,4. International Gas Report, September 28, 1984, p. 7.
Development costs given in Guilders 1984, converted to
$ 1985 by dividing by the 1984 Purchasing Power
Parity, from Purchasing Power Parity and Real Expenditures
in tbhe fl D, and multiplying by the ratio of 1984 / 1985
implicit price deflator from the Economic Report of

the President. (Note that the costs include a 15 kilometer
pipeline.)

3. Petroleum Economist, September 1983, p. 360.
5. a = 0.019 to satify the equation Q * (1 - exp (-at)) = aR

Q = 53, t = 20.
6. Line 1 / line 2.

7. c = (line 1 * (i + a)) / (line 3 * (1 - exp (-(i + a) * t)))

i = 0.12, a = 0.019, t = 20.
8. 0.05 * line 1 / line 3 (annual operating expenses / annual

production) annual operating expenses assumed to be 5% of
development costs.

9. Line 7 + line 8.
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The Norwegian sector of the North Sea has not proven to be as gas

prone as the southern North Sea, although several smaller fields, like

Cod, have been connected to the Ekofisk pipeline and sold into continental

Europe. The third major gas development was the Statfjord sale, in 1981,

which involved associated gas located 150 miles north of Frigg, well to

the north of Ekofisk. It entailed laying the longest underwater pipeline

in the world, partly to allow the wet gas to be processed at Karsto, in

Norway, before transshipment to the continent.

Subsequently, however, the industry began discovering more gas

than oil--specifically the Sleipner and Troll fields-- while the area

north of 620 N, opened for drilling in 1979, yielded almost exclusively

gas. Given transportation costs, this northerly gas is much less likely

to be developed than similarly located oil fields would be. (The precise

economics, insofar as they have been estimated, are discussed below.)

After the sale of Statfjord gas to a consortium of buyers in

continental Europe, the Norwegians turned next to marketing the Sleipner

field, located 200 miles north of Ekofisk and containing about 7 Tcf of

reserves. Given the glut in natural gas supplies on the continent and the

optimistic price expectations of the Norwegians, only the United

Kingdom showed real interest. After protracted negotiations, an agreement

with the BGC was reached in late 1984. This included a base price of

$4.10/Mcf ($1.40/Mcf less than the Statfjord base price, partly reflecting

the drop in oil prices), lower volumes than the Norwegians had wanted to

sell, especially peak volumes, and a sharing of the tax revenues from the

gas liquids pipeline, which the British wanted landed in the United
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Kingdom with the gas, but which the Norwegians insisted on landing in

Norway.

However, in early 1985 the U.K. government intervened and cancelled

the deal for a variety of reasons (discussed below). This left the

Norwegians with a "small" gas field unsold at the same time they were

trying to market the much larger Troll field. This suggested to the

Norwegians that Troll gas would be much harder to sell than originally

thought.

The Norwegians floated several responses to the Sleipner

cancellation. First, they suggested that, given unwillingness to accept

the gas contracts being offered, oil field development would be

accelerated to maintain the domestic offshore service industry, and

further supplies of gas simply would not be forthcoming. A second

tactic was a change to offering quantities of gas rather than entire

fields, leaving the development decision and source of gas to by made

by the Norwegians. Of course, new contracts still would have to involve

large quantities if fields like Troll were to be developed, but smaller

fields could provide incremental volumes. (In fact, the Tommeliten field,

which contains only 750 Bcf, is slated for development to provide several

years of supplies to the Ekofisk field to help with its subsidence

problem.)

Thus, it came as quite a surprise to many observers in spring 1986

when not only was a contract concluded that would justify development

of Troll, but that would include the Sleipner field as well. By all

accounts, the buyers were seeking gas from Troll, and the Norwegian

government encouraged them to increase purchases to cover Sleipner
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also. To date, many details of this deal are not clear, but an analysis

of the economics of the development is provided below, followed by a more

general analysis of Norwegian supply economics.

Troll

Except for the Soviet-Western European contract for Urengoi natural

gas, the Troll contract is the largest ever signed, covering 450 Bcm (1.6

Tcf) of gas to be delivered from 1993 to 2020. At present, reports of

24
project costs are not entirely clear, but some information is available.

Originally, the planned Troll field development called for a $6

billion investment, which would have produced 1.5 Bcf/d and 70 tb/d of

oil.2 5 Gas would be piped over either the Frigg field pipeline or

through the Statpipe system. The plan to include oil production reflected

the government's insistence that oil not be left in the ground.2 6 The

uneconomic oil has now been excluded, and the project was revised to

reduce costs and the length of time required to develop the field.

The volumes of gas to be delivered include 1.76 Tcf from Sleipner

and 14.12 Tcf from Troll. The delivery period is 1993 to 2020, with

gas being delivered first from Sleipner, then from Troll (which makes

24 The Troll development revision was announced only in April 1986, and
details have been forthcoming only in the last few months. Therefore,
much uncertainty lingers as we analyze the development.

25 OGJ, 11/28/83, p. 48.

26 The Norwegians were hardly alone in their belief that the oil must
not be left behind without regard for the economics of its development.
As the Nordic editor of the Financial Times put it, "...only an altruistic
[sic] political decision by the Storting to abandon the oil layer would
make [large-scale gas exports] possible before the next century." See FT,
9/24/82, p. 32.
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up the great bulk of the project). Expenditures fall into three

categories: $1.92 billion for Sleipner development, $3.2 billion for

Troll field development, and $2.56 billion for pipeline and the Zeebrugge

shore terminal construction.2 7

It is hard to say whether the pipeline expenditures are necessary.

Originally, it was expected that Troll gas would be piped the short

distance to the United Kingdom, and either be sold there or piped over

land a short distance, then under the Channel to the Continent. (The

decline of production from Frigg in the mid1990s will also allow

deliveries of increasing amounts of gas to the United Kingdom without new

pipeline construction.) The current project calls for an undersea

pipeline of nearly 700 miles to Belgium, although early volumes will be

sent through Statpipe.28

In any case, the current plan is designed to cover the cost of

laying a new pipeline, and it leaves three-fourths of Troll gas

undeveloped. It therefore is proper to look at the capital costs of

production for the Troll field. The operating conditions are extremely

difficult, since the field lies under 1100 feet of water, yet is so

close to the seabed that directional drilling cannot be used. Still,

very high production rates bring unit costs down to low levels.

Total Troll field capital expenditures are $3.2 billion, which

indicates an in-ground cost of $0.227 per Mcf. However, the formula

(1+(i/a)), developed earlier, cannot be used, since the duration of the

27 OGJ, 6/9/86, p. 19.

28 OGJ, 9/22/86, p. 26.
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flow is limited and there is no indication of any decline rate. Some

simplifying assumptions must therefore be made: that the delivery

period is 23 years, and that there is zero decline. (The lower the

decline rate for any given cumulative output, the higher the cost of

holding the asset in-ground.) The formula equation [7] from Appendix A

can then be used:

P * (1-e-2 3 i)/i = $.227 * 23

The rationale for the equation is that the right-hand side is the

up-front outlay for 23 Mcf, to be delivered at a rate of 1 Mcf per year

for 23 years; the left-hand side is their present value. If a value

for i, the necessary rate of return, is assumed, P can be computed as

the supply price, or cost. Conversely, if a value for the net price is

assumed, the rate of return, i, can be determined.

If the needed rate of return is 12 percent, then P = $0.669/Mcf. 2 9

Conversely, at a price of $3.50, as has been reported,3 0 the rate of

return, before taxes, is 67 percent.

This calculation relates only to field development. Pipelines are

necessary before the initial sale can be completed, and the price of

the gas must cover the full cost of developing the pipeline. Subsequent

sales will pay only pipeline operating and maintenance costs. Pipeline

(and shore facilities) are slated to cost $2.56 billion. While capacity

is said to be planned for as much as 40 Bcm/yr (1412 Bcf/yr), we shall

29 If a 10 percent internal rate of return were employed, as was done
recently by a Statoil official in calculating costs for Askaladden, a

supply price of $0.58/Mcf results, as shown in Table 7. See PE, 1/86,
pp. 8-10.

30 PIW, 6/9/86.
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assume that the full costs will be borne by the sales announced to date,

which total 20 Bcm/yr (706 Bcf/yr).

At that rate, transportation costs will total $0.62/Mcf, or 8.8

cents per Mcf per 100 miles. Additional volumes, such as the 4

Bcm/yr (140 Bcf/yr) of sales now being discussed for Austria, Spain,

and Italy, may cost less to transport, if only additional compression

is required. 3 1

Re-estimating the rate of return with these pipeline costs simply

involves subtracting the transportation costs from the landed price.

Thus, a $3.50/Mcf landed price becomes a $2.90/Mcf wellhead price.

(The precise price formula is unclear at this point, though the

widely-cited $3.50/Mcf price has been said to correspond to an oil

price of $28/bbl.3 2) Operating costs for the field will be $0.23/Mcf.

Subtracting that from a $2.90/Mcf wellhead price, yields $2.67/Mcf to

cover capital costs, which would give an internal rate of return of 51

percent. Table 7 shows sensitivity analysis for various assumed rates

of returns and wellhead prices.

Calculating the rate of return at a price of $3.50/Mcf may be

counting the chicks before they hatch. "The agreement gives all the

buyers the right to renegotiate prices, volumes, and length of the

contract."3 3 Unless the Western European gas market can be controlled

and prices fixed above the market-clearing level, or unless oil prices

PIW, 7/7/86, p. 10.

WSJ, 8/12/86, p. 32.

OGJ, 6/9/86, p. 20.
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TABLE 3-7

Troll Sensitivity Analysis

A. Initial volumes

Price of oil in $/bbl:

Equivalent landed price
of gas in $/Mcf

Pipeline costs

Operating costs

Wellhead netback

Rate of return

10

1.67

0.62

0.23

0.82

15.6%

B. Subsequent Volumes (no pipeline

Price of oil in $/bbl: 10
Equivalent landed price

of gas in $/Mcf 1.67

Pipeline variable costs 0.18

Operating costs 0.23

Wellhead netback 1.26

Rate of return 24.1%

C. Supply Price if IRR is

Assumed rate of return

Capital Costs

Operating costs

Pipeline costs

Equivalent landed price
of gas in $/Mcf

Equivalent price of oil in
$/bbl

assumed

8.0%

0.50

0.23

0.62

1.35

8.08

capital costs

15 20

2.50 3.33

0.18 0.18

0.23 0.23

2.09 2.92

40.0% 56.0%

10.0% 12.0%

0.58 0.67

0.23 0.23

0.62 0.62

1.43 1.52

8.58 9.11

15

2.50

0.62

0.23

1.65

31.6%

20

3.33

0.62

0.23

2.48

47.6%

25

4.17

0.62

0.23

3.32

63.5%

30

5.00

0.62

0.23

4.15

79.5%

)

25

4.17

0.18

0.23

3.76

72.0%

15.0%

0.81

0.23

0.62

1.66

9.95

30

5.00

0.18

0.23

4.59

87.9%

20.0%

1.05

0.23

0.62

1.90

11.43
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recover much more strongly than we expect, the chance of ever collecting

such a price seems unlikely. But the project appears to be viable even at

lower oil prices.

If we assume that the price of gas stays approximately equal in

thermal value to the price of oil at $10/bbl, i.e., about $1.67/Mcf,

then the Troll rate of return is about 24 percent (after allowing for

operating costs; see Table 7). In other words, if the initial contract

covers the pipeline costs, the rest of the Troll field is viable even

if oil prices are below $10 when production begins.

The chief obstacle to sales at such prices lies in the chagrin of

the Norwegian decision-makers. Only a few years ago, they could have

pre-sold the Troll field at $6 and, allowing a $1 return to the operating

company, for $5 to Norway. At present, they probably cannot obtain more

than half of that net, and if the price of oil stays at current levels

($15), and the gas price stays near the thermal parity ($2.50), they will

receive only about $1.50/Mcf. Moreover, pre-selling Troll would have

started development several years sooner. Thus the Norwegian policy of

holding out for a very high price for the so-called "ultra-expensive Troll

gas" turns out to have been a great mistake, resulting in the loss of well

over half the value of the asset.

This is, of course, complicated by the fact that no contract is

inviolable, and no price agreement is guaranteed fixed. Although

Statfjord gas was sold at a high price, changes in the market environment
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meant that the price was subsequently renegotiated downward.3 4 Still, the

overall Norwegian policy of "orderly development", to avoid the economic

difficulties faced by the Dutch, and to ensure the maximum amount of

Norwegian content in the offshore industry, has delayed development and

reduced the benefits to the country. Many observers in the private sector

have suggested that faster development with investment of the surplus

rents overseas would reduce the impact of the "Dutch disease," but this

policy has not been accepted by the government.3 5

The current state of the Troll field development has been

substantially clarified by the recent announcement that the project

partners had unanimously agreed to accept the government's tax concessions

and to submit development plans to the government.3 6 (The buyers must

still approve the purchase contracts by October 15 in order to meet the

project deadline.) According to this report, Shell estimated that, should

oil prices remain at $15/bbl, the rate of return for the project would be

8 to 10 percent. Referring to Table 7, we can see that, using our

calculations of the project economics, the cost of the landed gas would be

between $1.35 and $1.43/Mcf, if those rates of return hold. The

equivalent price of oil would be much less than $15/bbl, but this can be

explained by two factors.

The willingness of the Norwegians to respond to market conditions in
this manner probably helped persuade customers that they would not bear
all of the market risk for the Troll contract, which would have
contributed to their acceptance of the contract.

See PE, 11/75, p. 429, and NYT, 3/18/85, p. D9.

See PIW 9/22/86, p. 10.
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First, the contract apparently calls for the landed price of the

gas to be less than the equivalent crude oil price. As noted above, at

$28/bbl for oil, the gas price would be $3.50/Mcf, or 75 percent of the

Btu-equivalent price of oil. Assuming that this ratio is constant for

all oil prices, and we have no knowledge one way or another, then a

$15/bbl price for oil would mean a landed price for the gas of $1.875/Mcf,

somewhat higher than the cost cited above.

This discrepancy is not serious, however, since it is expected

that the government will receive some degree of rent. If all of the

above calculations are correct, then the rent would be equal to between

$0.445 and $0.525/Mcf. If, as reported, Shell expects to receive a 15

percent rate of return at an oil price of $20/bbl, then using the same

assumptions as above yields a landed cost of $1.66/Mcf, a landed price

of $2.50/Mcf, and a rent to the government of $0.84/Mcf.37

Given these estimates, it would appear that (a) the gas will be

priced at a competitive level, and (b) the government has made sufficient

concessions to allow the project to proceed even under a weak oil price

environment. Thus, our earlier pessimism over this project has changed

substantially.

Note that we are applying the rate of return that Shell is reported
to have calculated for the "project" to Troll development costs, not to
Sleipner or to the pipeline. This, and other factors concerning the
precise participation by the different partners, financing, etc., which
would affect the calculations, are not easily assessed given the
information available to us.
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Sleipner

The economics of the Sleipner development are an interesting facet

of the Troll deal. Originally, the group of fields known collectively

as Sleipner was slated for development with sales planned for either

the continent or the United Kingdom. The high CO2 content of the gas

meant that development would be expensive. Since the original

negotiations followed shortly after Statfjord.was sold in July 1981 for

$5.50/Mcf landed at Emden, the Norwegians argued that the higher cost

associated with Sleipner meant that an even higher price was justified.

The original development plan called for expenditure of $3.5

billion3 8 for the full 7 Tcf of reserves.3 9 Given the planned delivery

profile, the above-ground cost would have ranged from $1.10 to $1.70/Mcf

(see Tables 8A and 8B), depending on the length of production. No

separate estimates of the pipeline construction costs were announced, but

given the distances involved, they probably would have been on the order

of $0.30/Mcf. (See the section on U.K. associated gas.)

Under the revised development plan, deliveries from Sleipner are

slated to be only some 27 percent of total reserves. Since Sleipner

38 See WSJ, 2/13/85, p. 35. For higher estimates, see PE, 12/84, p. 438,
which gave $5 billion, and WO, August 15, 1984, p. 82, wich put costs at
$6 billion. These apparent7 included pipeline costs as well as field
development costs.

PE, April 1984, p. 137.



3-54

Table 3-8 A

Norwegian Gas Development-Operating Costs

Sleipner
Gas/Condensate Field

Case Al: Original development plan with 10-year field life

1. Development costs
2. Reserves

3. Average production rate
4. Depletion (Q/R)
5. Development costs in ground
6. Development costs as sold

7. Operating costs
8. Development-operating costs as sold
9. Development-operating costs as sold,

adjusted for condensate production

3.5 (Sbillion)
7.0 (Tcf)
700 (Bcf/year)

0.100
0.500 ($/Mcf)
1.100 ($/Mcf)
0.250 ($/Mcf)
1.350 ($/Mcf)

1.084 ($/Mcf)

Sources:

1. Wall Street Journal, February 13, 1985, p. 35.

2. New York Times, June 3, 1986, p. Al, and Petroleum
Economist, April 4, 1984, p. 137.

3. 7 Tcf / 10 years. 10-year project to supply 7 Tcf, from
Wall Street Journal, February 12, 1985, p. 35. Other

reports of project life: 15-20 years, from Financial
Times Energy Economist, February 1985, p. 1.; 25
years, from Financial Times International Gas Report,
February 15, 1985, p. 1. See Case A2 for costs using
20-year life.

5. Line 1 / line 2.
6. (line 1 / line 3) * (line 4 + i) i = .12.

7. 0.05 * line 1 / line 3 (annual operating expenses / annual
production) annual operating expenses assumed to be 5% of

development costs.
8. Line 6 + line 7.
9. Line 8 - revenue from condensate sales.

= line 8 - ((condensate reserves bbl / gas reserves mcf)
* $7.50 / bbl). Condensate reserves = 250 MM bbl from
Petroleum Economist, April 1984, p. 84. $7.50 condensate
price assumed. Note that this calculation assumes that the
condensate/gas production ratio = the original condensate/gas
reserve ratio.
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Table 3-8 B

Norwegian Gas Development-Operating Costs

Sleipner
Gas/Condensate Field

Case A2: Original development plan with 20-year field life

1. Development costs 3.5 (Sbillion)
2. Reserves 7.0 (Tcf)
3. Average production rate 350 (Bcf/year)
4. Depletion (Q/R) 0.050
5. Development costs in ground 0.500 ($/Mcf)
6. Development costs as sold 1.700 ($/Mcf)

7. Operating costs 0.250 ($/Mcf)
8. Development-operating costs as sold 1.950 ($/Mcf)
9. Development-operating costs as sold,

adjusted for condensate production 1.684 ($/Mcf)

Sources:

1. Wall Street Journal, February 13, 1985, p. 35.

2. New York Times, June 3, 1986, p. Al, and Petroleum

Economist, April 4, 1984, p. 137.

3. 7 Tcf / 20 years. 15-20 year project life, from Financial
Times Energy Economist, February, 1985, p. 1. Per

Financial Times International Gas Report, February
15, 1985, p. 1, 7 Tcf to be supplied over 25 years.
Wall Street Journal, February 12, 1985, p. 35, reports

project life as 10 years. See case Al for costs

using 10-year life.
5. Line 1 / line 2.

6. (line 1 / line 3) * (line 4 + i) i = 0.12.
7. 0.05 * line 1 / line 3 (annual operating expenses / annual

production) annual operating expenses assumed to be 5 of

development costs.
8. Line 6 + line 7.
9. Line 8 - revenue from condensate sales

= line 8 - ((condensate reserves bbl / gas reserves Mcf)
* $7.50 / bbl). Condensate reserves = 250 MM bbl, from
Petroleum Economist, April 1984, p. 84. $7.5 condensate
price assumed. Note that this calculation assumes that the
condensate/gas production ratio = the original condensate/gas
reserve ratio.
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development costs are $1.10/Mcf in-ground,4 0 five times those of the Troll

field, it is curious that Sleipner is being developed at all, especially

when Troll should easily be able to fulfill the existing contracts.41

These capital costs yield a development-operating cost of $3.40/Mcf,

but they are dependent on certain assumptions used where gaps in the data

exist. (See Table 9A.) For instance, the 1.76 Tcf reserve figure

represents contracted deliveries, not developed reserves, a figure not

provided in the original reports. If the ratio of production-to-reserves

that was observable in the original field development project holds true

for this plan (and it does not necessarily), then 2.33 Tcf are planned for

development, leaving additional supplies that can be sold. If that is the

case, then the development and operating costs will be less than $3/Mcf,

after adjusting for condensate production (see Table 9B.)

If pipeline construction costs are charged to Troll, then Sleipner

gas becomes more economical than if a new pipeline were necessary. Of

40 The analogy with oil from the Troll field is obvious. The original
project costs would equal somewhere between $0.71 and $0.86/Mcf in-ground,
notably lower. The difference might be explained by a loss of economies

of scale, but it also may be due to the need for processing to remove the
high levels of C02 found in Sleipner gas. Under the British contract, the

C02 was not to have been removed by the project operators, but would have
been blended in to the British system. Trade reports have suggested that
the portion of the field with the C02 will not be developed for the

current sale. See Offshore, 8/86, p. 54. The cost of processing the
condensate may have grown relative to total development costs, given that
liquids production has apparently grown as a part of the project. See

OGJ, 9/22/86, p. 26.

41 One almost gets the impression that the Norwegians believe the Sleipner
field should be developed because of its place in the discovery sequence,
or because it is on the route to Europe from Troll, rather than because of
any particular economic rationale. One industry observer has remarked in
private conversation that he believes selling Sleipner is a matter of
national pride for the Norwegians, especially after the British rejection
of the proposed sale.
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Table 3-9 A

Norwegian Gas Development-Operating Costs

Sleipner
Gas/Condensate Field

Case B: Troll/Sleipner ales contract development
Reserves = 1.76 Tcf

1. Development costs
2. Reserves

3. Average production rate
4. Depletion (Q/R)
5. Development costs in ground
6. Development costs as sold

7. Operating costs
8. Development-operating costs as sold

9. Development-operating costs as sold,

adjusted for condensate production

1.92 ($billion)
1.76 (Tcf)
141 (Bcf/year)

0.080
1.091

2.723
0.681

3.404

($/Mcf)

($/Mcf)
($/Mcf)
($/Mcf)

3.138 ($/Mcf)

Sources:

1,2,3. Li and Gas. Journal June 9, 1986, p. 19. Reserves =

expected Sleipner production under the Troll/Sleipner
sales contract.

5. Line 1 / line 2.

6. (line 1 / line 3) * (line 4 + i) i = .12.

7. 0.05 * line 1 / line 3 (annual operating expenses / annual

production) annual operating expenses assumed to be 5% of

development costs.
8. Line 6 + line 7.

9. Line 8 - revenue from condensate sales
: line 8 - ((condensate reserves bbl / gas reserves Mcf)
* $7.50 / bbl). Condensate reserves = 250 MM bbl from

Petroleum Economist, April 1984, p. 84. $7.5 condensate
price assumed. Note, this calculation assumes
that the condensate / gas production ratio = original
condensate / gas reserve ratio.
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Table 3-9 B

Norwegian Gas Development-Operating Costs

Sleipner
Gas/Condensate Field

Case B2: Troll/Sleipner sales contract development
Reserves = 2.33 tcf

1. Development costs 1.92 ($billion)
2. Reserves 2.33 (Tcf)

3. Average production rate 141 (Bcf/year)
4. Depletion (Q/R) 0.061
5. Development costs in ground 0.824 ($/Mcf)

6. Development costs as sold 2.465 ($/Mcf)

7. Operating costs 0.681 ($/Mcf)
8. Development-operating costs as sold 3.146 ($/Mcf)
9. Development-operating costs as sold,

adjusted for condensate production 2.880 ($/Mcf)

Sources:

1,3. Oil and Gas Journal, June 9, 1986, p. 19.

2. 1 * (7/3) 1 = # platforms currently planned to develop

the field, from Oil and Gas Journal, June 9, 1986, p. 19.

7 = reserves to be developed and 3 = # of platforms

to be used in original Sleipner development plan

(see case A), from Petroleum Economist, April 1984,

p. 138.
5. Line 1 / line 2.

6. (line /line 3) * (line 4 + i) i = .12.
7. 0.05 * line 1 / line 3 (annual operating expenses / annual

production) annual operating expenses assumed to be 5 of

development costs.
8. Line 6 + line 7.

9. Line 8 - revenue from condensate sales
= line 8 - ((condensate reserves bbl / gas reserves Mcf)
* $7.50 / bbl). Condensate reserves = 250 MM bbl, from
Petroleum Economist, April 1984, p. 84. $7.5 condensate

price assumed. Note, this calculation assumes that the
condensate / gas production ratio = original condensate /
gas reserve ratio.
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course, a connection to the Frigg pipeline to replace falling levels of

Frigg production would mean much lower pipeline construction costs than

delivery to Belgium. Or, if Troll bears the pipeline costs, Sleipner

becomes more feasible.

A report recently received suggests that the development may be

more economic than originally appeared.42 First, the reserves to be

developed are given as 1.9 Tcf. However, two. new pieces of information

were added: (1) capacity is to be 8.8 Bcm/yr (310 Bcf/yr) of natural

gas and 100,000 b/d of condensate. In other words, the level of initial

production reported previously and used in Tables 9A and 9B is far less

than planned peak production.4 3

This information has a large impact on the cost of producing the

Sleipner gas. First, the in-ground development cost drops slightly

because of the higher reserve figure. Second, depletion is much higher,

which reduces the development costs, as shown in Table 9C. Third, the

higher production level reduces the operating costs, since we account for

them as a percentage of total capital expenditures which are not

increased. Finally, the level of condensate production is much higher

than estimated in the previous two tables; although less than one-third of

42 OGJ, 9/22/86, pp. 26-27. Although there is still uncertainty, we
willT-ssume that these data are correct, and that there are no
misinterpretations. For example, we assume that the report of 1.9 Tcf
reserves is accurate, not a listing of contract sales instead of
reserves.

It is possible that capacity is higher than the level of production
now planned, but full capacity utilization is appropriate for measuring
per-unit costs.
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Table 3-9 C

Norwegian Gas Development-Operating Costs

Sleipner
Gas/Condensate Field

Case C: Troll/Sleipner sales contract
Reserves = 1.9 tcf

i. Development cost
2. Reserves
3. Reported capacity
4. Depletion (Q/R)
5. Development cost in ground
6. Development cost as sold
7. Operating cost
8. Development-operating cost

as sold
9. Development-operating cost

as sold, adjusted for conden-
sate production

sources: 1,2,3. Oil and Gas Journal
5. linel/line2
6. (linel/line3)*(line4+i)
7. 0.05*linel/line3 (annu

production) annual oper
development cost

8. line6+line7
9. Line 8 minus value of
Mcf of gas produced. Cond
100,000 b/d, from Oil and
Value of condensate assume

development.

1.92
1.90
310

0.163
1.011
1.754
0.310

($bn)
(tcf)
(bcf/year)

($/Mcf)
($/Mcf)
($/Mcf)

2.063 ($/Mcf)

1.179 ($/Mcf)

September 22, 1986

i

al

at

p. 26-27

=.12
operating expense/annual

ing expense assumed 5% of

condensate production per
ensate production is
Gas Journal 9/22/86, p. 26.
d at $7.5/bbl.
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the natural gas is being developed, more than two-thirds of the total

condensate reserves are included in the project as it now stands.4 4 The

result is that the above-ground cost of the natural gas is only $2.06/Mcf,

25 percent lower than the earlier estimate, and only $1.18/Mcf when the

condensate offset is taken into account. Thus, given conservative values

for the condensate and even assuming full pipeline costs of $O.60/Mcf,

this gas can be delivered to the continent for $1.80/Mcf, which is

equivalent to less than $12/bbl of oil. If much of the gas is delivered

via the Statpipe system, the delivered cost will drop substantially.

The project economics are obviously much improved, as is our

assessment of its viability. If oil is only $15/bbl when deliveries

begin, however, and if the price index in the contract brings the landed

natural gas price to $1.875/Mcf, as discussed above, then there is little

room for taxes and royalties. Certainly, the unitization of the field

with Troll should allow the much better Troll economics to carry this

marginal development.

Other Norwegian Gas Supplies

A number of unanswered questions about the Troll contract affects

other future Norwegian supplies. By all appearances, the Troll deal is

intended, in part, to provide the Norwegians with the capacity to reach

easily other continental customers. By landing one pipeline in Belgium,

Unfortunately, information on the individual fields that make up the
Sleipner cluster is not available to us, but it appears that the
development has been planned for the field that contains the bulk of
the condensate reserves and little of the C02. It may also be that
earlier reports understated the condensate reserves of the whole group.
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the Norwegians will introduce real competition between transportation

systems, and Ruhrgas no longer will have monopsony powers. This is

apparently a major concern of the Norwegians.4 5 This should facilitate

small-scale deals and even spot sales to other customers, such as Spain,

Switzerland, and Italy.

Incremental pipeline costs should, if anything, be lower than they

were for the original deal. Some reports suggest that the planned

development includes looping of the Ekofisk-to-Emden pipeline to add 20

Bcm/yr (730 Bcf/yr) of capacity.46 Even if this is not the case, gas

could be delivered via the Frigg pipeline, or through the Statpipe

system at a small incremental cost as fields now producing for them

decline.

The Statfjord pipeline, built to transport associated gas from

northern North Sea fields to Ekofisk and then to Emden, will allow

Norway to deliver 20 Bcm/yr (706 Bcf/yr) at very low costs. The pipeline

cost $3.5 billion,47 which translates to a cost of about $0.84/Mcf. Since _

the gas now being used is associated gas, the incremental production costs

are very small. Because the pipeline crosses such a large area, new

fields can be hooked up to it relatively cheaply to replace declining

45
PIW, 6/9/86.

46 Private conversations with industry officials.

47 IEA, Natural Gas Prospects, 1986, p. 78. According to The NYT,

10/16/85, p. D5, the Statfjord pipeline cost only $2.34 billion and had
a capacity of only 280 Bcf/yr. This figure probably does not include g
connections to the Heimdal and Gullfaks fields and similar expenses.
If correct, then costs for the trunk pipeline are about $0.55/Mcf.
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production in the current fields. (See Table 28 below for examples of the

costs of hooking up fields to trunklines.)

New Fields South of 620 N

Development costs for a number of fields, including Odin and

Northeast Frigg, which were hooked up to the Frigg pipeline to the United

Kingdom, are shown in Tables 10 through 13. The costs are fairly low,

even though the fields are much smaller than, for example, Sleipner and

Troll. For the Tommeliten field, which is planned to produce gas

initially for injection into Ekofisk, costs are over $2/Mcf, but the

production of associated liquids will offset nearly half those costs, even

if the liquids are worth only $10/bbl. (See Table 14.)

The development of Troll capacity for injection into the Oseberg

field could be considered as a new field development, although the

small size and the use of a five-well, subsea unit makes the resulting

costs less typical of the Norwegian North Sea. Tax breaks given to the

project and savings from the changed drive mechanism in the Oseberg

field (which will reduce the number of wells necessary at Oseberg by

20) create this viability. Tables 15A and 15B show the economics of the

project, with case A presenting the total development costs charged to the

gas project, and case B subtracting the savings in the development of the

Oseberg field from using the gas, but including the cost of injection

facilities.4 8

48 See OGJ, 6/23/86, p. 24.
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Table 3-10

Norwegian Gas Development-Operating Costs

Odin Field

1. Development costs
2. Reserves
3. Peak output
4. Field life

5. Depletion

6. Development costs in ground
7. Development costs as sold

8. Operating costs
9. Development-operating costs as sold

594

777

135

9

0.108
0.764
1.151

0.220
1.371

($MM)

(Bcf)

(Bcf/year)
(years)

($/Mcf)
($/Mcf)
($/Mcf)
($/Mcf)

Sources:

1,4. International Petroleum Encyclopedia, 1981, p. 196.

Development costs given in $ 1981, converted to
$ 1985 using implicit price deflator from Economic
Report of the President.

2,3. International Petroleum Encyclopedia, 1985, p. 212.
5. a = 0.108 to satify the equation Q * (1 - exp (-at)) = aR

Q = 135, t = 9, R = 777,000.

6. Line 1 / line 2.

7. c = (line 1 * (i + a)) / (line 3 * (1 - exp (-( i + a) * t)))

i =0.12, a = 0.108, t = 9.

8. 0.05 * line 1 / line 3 (annual operating expenses / annual

production) annual operating expenses assumed to be 5% of
development costs.

9. Line 7 + line 8.
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Table 3-11

Norwegian Gas Development-Operating Costs

North East Frigg Field

1. Development costs

2. Reserves

3. Production rate

4. Depletion (Q/R)

5. Development costs in ground

6. Development costs as sold

7. Operating costs
8. Development-operating costs as sold

0o

275 ($MM)
141 (Bcf)

77 (Bcf/year

0.546
1.950
2.379
0.179
2.558

($/Mcf)
($/Mcf)
($/Mcf)
($/Mcf)

Sources:

1. International Petroleum ncvcloedia, 1984, p. 212.

Development costs given in $ 1983, converted to $ 1985
using implicit price deflator from Economic Report
of the President.

2. Petroleum Economist, April 1983, p. 127.

3. World Oil, August 15, 1984, p. 80.
5. Line 1 / line 2.

6. (line 1 / line 3) * (line 4 + i) i = 0.12.

7. 0.05 * line 1 / line 3 (annual operating expenses / annual
production) annual operating expenses assumed to be 5 of

development costs.
8. Line 6 + line 7.
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Table 3-12

Norwegian Gas Development-Operating Costs

Heimdal
Gas/Condensate Field

1. Development costs
2. Reserves

3. Production rate
4. Depletion (Q/R)

5. Development costs in ground
6. Development costs as sold
7. Operating costs
8. Development-operating costs as sold

9. Development-operating costs as sold,
adjusted for condensate production

1.4

1.2

110
0.092
1.167

2.698
0.636
3.334

($billion)
(Tcf)
(Bcf/year)

($/Mcf)
($/Mcf)
($/Mcf) .
($/Mcf)

3.136 ($/Mcf)

Sources:

1. International Petroleum Encyclopedia, 1981, p. 186.

Development costs given in $ 1981, converted to $ 1985
using implicit price deflator from Economic Report
of the President.

2. World gil, August 1985, p.76.
3. International Petroleum Encyclopedia, 1984, p. 212.
5. Line 1 / line 2.

6. (line 1 / line 3) * (line 4 + i) i = 0.12.

7. 0.05 * line 1 / line 3 (annual operating expenses / annual
production) annual operating expenses assumed to be 5 of

development costs.
8. Line 6 + line 7.
9. Line 8 - (yearly revenue from condensate sales / line 3)

= line 8 - ((2,920,000 bbl) * ($7.5/bbl)) / (line 3 * 1000).
Condensate production rate from International
Petroleum Encyclopedia, 1984, p. 76. $7.50 condensate
price assumed.
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Table 3-13

Norwegian Gas Development-Operating Costs

Frigg Field

1. Development costs 1.947 ($billion)
2. Reserves 10.981 (Tcf)
3. Average production rate 0.250 (Tcf/year)
4. Depletion (Q/R) 0.023
5. Development costs in ground 0.177 ($/Mcf)
6. Development costs as sold 1.111 ($/Mcf)
7. Operating costs 0.389 ($/Mcf)
8. Development-operating costs as sold 1.500 ($/Mcf)

Sources:

1. Offshore, June 5, 1976, p. 42. Note: Total cost given

as 2.2 billion $ 1976 with one-half attributed to
the pipelines to shore. 1.1 billion $ 1976 converted to
$ 1985 using the implicit price deflator from the
Economic Report of the President.

2. Reserves as of June 1985, from International Gas
-Report, July 5, 1985, p. 16, plus cumulative production
to June 1985, from Development of the Oil and Gas Resources

of the United Kinqdom. 1985, p. 69. Production for the
first half 1985 at average rate 1981-1984.

3. Ibid., p. 69. Average rate 1981-1984.

5. Line 1 / line 2.
6. (line 1 / line 3) * (line 4 + i) i = 0.12.
7. 0.05 * line 1 / line 3 (annual operating expenses / annual

production) annual operating expenses assumed to be 5% of
development costs.

8. Line 6 + line 7.
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Table 3-14

Norwegian Gas Development-Operating Costs

Tommeliten
Oil & Gas Project

1. Development costs
2. Reserves

3. Depletion (assumed)
4. Average production rate (aR)
5. Development costs in ground
6. Development costs as sold
7. Operating costs
8. Development-operating costs as sold

9. Development-operating costs as sold,
adjusted for condensate production

626

650

0.10
65

0.963
2.119
0.482
2.601

($MM)

(Bcf)

(Bcf/year)
(Bcf/year)
($/Mcf)
($/Mcf)
($/Mcf)
($/Mcf)

1.678 ($/Mcf)

Sources:

1,2. Offshore, May 1986, p. 148.

5. Line 1 / line 2.
6. (line 1 / line 4) * (line 3 + i) i = 0.12.
7. 0.05 * line 1 / line 4 (annual operating expenses / annual

production) annual operating expenses assumed to be 5% of

development costs.
8. Line 6 + line 7.

9. Line 8 - (yearly revenue from oil sales / (line 4 * 1000))

= line 8 - ((600,000 bbl) * ($10/bbl)) / (line 4 * 1000).

Oil production rate = aR. Oil reserves of 60 MM bbl

from Offshore, May 1986, p. 148. $10 oil price

assumed.
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Table 3-15 A

Norwegian Gas Development-Operating Costs

Troll Field

Development for Oseberg injection

Case A: Costs of development

1. Development costs

2. Reserves

3. Production rate

4. Depletion

5. Development costs in ground

6. Development costs as sold

7. Operating costs

8. Development operating costs as sold

394

255.5

25.55

0.100

1.542

3.393

0.771

4.164

($ MM)

(Bcf)

(Bcf/year)

($/Mcf)

($/Mcf)

($/Mcf)

($/Mcf)

Sources:

1,2,3. Oil and Gs Journal, June 23, 1986, p. 24. Costs
given in $ 1986. Reserves = planned production of
70 MMcfd over 10 years.

4. Line 3 / line 2.
5. Line 1 / line 2.
6. (line 1 / line 3) * (line 4 + i) i = 0.12.
7. 0.05 * line 1 / line 3 (annual operating expenses / annual

production) annual operating expenses assumed to be 5% of
development costs.

8. Line 6 + line 7.
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Table 3-15 B

Norwegian Gas Development-Operating Costs

Troll Field
Development for Oseberg injection

Case B: Costs of development subtracting Oseberg savings

1. Development costs 249 ($ MM)

2. Reserves 255.5 (Bcf)

3. Production rate

4. Depletion

25.55 (Bcf/year)

0.100

5. Development costs in ground

6. Development costs as sold

7. Operating costs

8. Development operating costs as sold

0.975 ($/Mcf)

2.144 ($/Mcf)

0.487 ($/Mcf)

2.631 ($/Mcf)

Sources:

1,2,3. Oil and Gas Journal, June 23, 1986 p. 24. Cost

reduction from case A due to $263 MM savings at
Oseberg as 20 less wells are needed, less $118 MM

for conversions for gas injection. Costs given in
$ 1986. Reserves = planned production of 70 MMcfd
over 10 years.

4. Line 3 / line 2.

5. Line 1 / line 2.

6. (line 1 / line 3) * (line 4 + i) i = 0.12.
7. 0.05 * line 1 / line 3 (annual operating expenses / annual

production) annual operating expenses assumed to be 5% of
development costs.

8. Line 6 + line 7.
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These examples demonstrate that Norwegian natural gas still can be

developed at current low oil prices, with rents available for both the

government and companies. If the tax regime is too strict, however,

many new developments will not go forward. The presence of nearby

pipelines with spare capacity also will be a major, if not the major,

factor in influencing their development. New fields as costly as

Northeast Frigg will be at risk, however, should the price of oil remain

at $15/bbl or lower.

New Fields North of 620 N

"'Roll up the map of the 62nd parallel. W 9will not need that for
15 years."' U.K. Department of Energy official

At present, it is hard to conceive of new supplies being developed

beyond Troll and Sleipner and the replacement of declining Ekofisk and

Statfjord production. Large reservoirs have been discovered off Norway

north of 620 N. However, the transportation distances involved ensure

that the costs will be much higher, and these supplies are not under

consideration for export in the near future.

To date, two areas of interest north of 620 N have been drilled:

Askeladden and Tromsoeflaket, above 710 N, and the Haltenbanken area,

at 650 N. The former thus far has 6 Tcf of recoverable gas and the

latter about 12 Tcf,50 although U.S. Geological Survey estimates show

that total resources for both could be much higher (see Table 2). The

Cited in Offshore, 8/86, p. 71.

See PE, 1/86, p. 8. PIW 9/29/86, p. 10, puts Haltenbanken reserves
at 11 T7.
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Askeladden area has been assessed thoroughly and is now under

consideration for development.

However, the extreme distance of the Askeladden fields from markets,

combined with the lack of infrastructure, apparently has made their

development uneconomic. Development costs have been put at $3.2 billion,

plus either $2.4 billion to build both a pipeline to shore and an LNG

plant or $13 billion to build a pipeline south.5 1 Table 16 indicates that

the wellhead cost of the gas will be $1.50/Mcf, (slightly higher than the

cost of landed Troll gas for example). However, the costs of LNG or

pipeline transportation would add to this considerably, raising the landed

cost of the gas on the continent to $3.00/Mcf. 5 2 (This is on the low side

of an estimate by Ager-Hanssen, the senior executive vice-president at

Statoil, of $1.73 to $2.43/Mcf landed in northern Norway and $3.21 to

$4.85/Mcf landed in Western Europe.53 He may very well have included

royalties and/or taxes.)

51 The pipeline cost estimate might include field development costs.
Since the amount of gas reserves required for such a pipeline were put

at 30 Tcf, this suggests that the pipeline would be larger than the 870

mcf/d to 1.2 Bcf/d (320-440 Bcf/yr) capacity of the LNG plant under
consideration. The largest pipelines now in use can carry 1412 Bcf/yr,
which would provide a depletion rate of 5 percent for 30 Tcf of reserves.
See OGJ, 2/27/84, pp. 68-69.

52 Assuming that the annual development-operating charge for both the

pipeline and the LNG plant is 20 percent of the total capital cost to

allow for the higher risk, and that the LNG plant capacity is 870 mcf/d
(320 Bcf/yr). At 1.2 Bcf/d (440 Bcf/yr) capacity (and the same capital

cost), the per-unit cost would drop by $0.40/Mcf. The pipeline capital
cost is assumed to be $10 billion, and the capacity assumed to be 1400

Bcf/yr.

Cited in PE, 1/86, p. 9. This assumes a 10 percent internal rate of

return. He iTso estimated that the delivered cost to the United States
would be from $3.47 to $5.02/Mcf.
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Table 3-16

Norwegian Gas Development-Operating Costs

Askelladen Field

1. Development costs

2. Reserves

3. Depletion (assumed)

4. Production rate (aR)

5. Development costs in ground

6. Development costs as sold

7. Operating costs

8. Development-operating costs as sold

3.31

6.0

0.10

600

0.552

1.214

0.276

1.490

($billion)

(Tcf)

(Bcf/year)

($/Mcf)

($/Mcf)

($/Mcf)

($/Mcf)

Sources:

1. 0il and Gas Journal, February 27, 1984, p. 68.

Development costs given in $ 1984, converted to $ 1985
using implicit price deflator from Economic Report
of thel President.

2. Petroleum Intelliaence Weekly, September 10, 1984, p. 8.

5. Line 1 / line 2.

6. (line 1 / line 4) * (line 3 + i) i = 0.12.
7. 0.05 * line 1 / line 4 (annual operating expenses / annual

production) annual operating expenses assumed to be 5% of

development costs.
8. Line 6 + line 7.
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There are desirable aspects to both transportation options. With

the LNG option, the gas could be sent either to Western European or

U.S. markets, and development could occur in small increments, on the

order of 300 Bcf/yr. While the pipeline would require large sales volumes

and would be constrained to the Western European market, the development

of other, smaller offshore fields would be facilitated, especially as

Askeladden declined and pipeline capacity became available.

The reality, of course, is that between the glutted Western European

(and U.S.) markets and the availability of cheaper, undeveloped gas

resevoirs south of 620 N, these fields are unlikely to be developed for

export before the turn of the century. Developing the gas for domestic

use is under consideration, especially by conversion to electricity

(possibly on offshore platforms to save the cost of constructing an

undersea pipeline) and transporting the electricity south. To date, none

of the options has appeared sufficiently attractive to reach fruition.

The problem is that building a large-scale transportation system

would necessitate large contracts, meaning either rapid growth in Western

European gas demand or expiration of existing contracts. However, Troll

and Sleipner, as well as the many smaller southern fields, should satisfy

Western European demand for many years to come, and demand growth on a

large scale seems unlikely. Thus, any large-scale development lies

decades in the future. Statoil has noted that it believes there will be

no buyers for this gas until after 2000, and that methanol or fertilizer
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plants might be appealing, but the quantities of gas that would be used

are small and at present those markets are weak.54

Small-scale development might be more appealing, because it would

allow the government to spread some of the revenues from the offshore

service industry northward,5 5 as well as to justify the drilling effort

in those waters. Some of the natural gas from the project could be

diverted for domestic use as well, providing further justification.

However, any export of gas from this region would mean bypassing cheaper

gas in the south.

Norwegian Policy

The petroleum finds in the North Sea mean that as a nation we
shall become richer. The Government is of the opinion that these
new possibilities should be used to develop a qualitatitvely better
society. A rapid and uncontrolled growth in the use of material
resources should be avoided, unless the social structure is otherwise
substantially changed.--Royal Norwegian Ministry of Finance, 1974

Norway was very quick to recognize that the bonanza of oil and gas

forthcoming from the North Sea would have potentially profound impacts

on the country's economy. The 1969 discovery of Ekofisk was followed

by a number of other finds, that, by the end of 1973, had boosted proved

reserves to 4 billion bbl of oil and 23 Tcf of gas.57 Concern about the

54 PE, 1/86, pp. 8-10, and OGJ, 4/28/86, p. 40.

55 In Norwegian Long-Term Programme: 1986-1989, Report No. 83 to the

Storting (1984-85), p. 26, the Royal Ministry of Finance stated: "A
development of petroleum fields may help to give Central and North
Norway a broader industrial and commercial base."

56 Petroleum Industry in Norwegian Society, Parliamentary Report No. 25
(1973-74), Oslo, Norway, p. 6.

OGJ, 12/31/73, p. 309.
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possible impact of large-scale development led the government to analyze

its options, resulting in a number of policy recommendations affecting the

oil and gas industry. 5 8

The recommendations resembled more those of an OPEC country than

of an OECD member (in fact, cooperation with OPEC was one of the steps

recommended).5 9 Conservation of finite hydrocarbon resources for their

very valuable uses as raw materials and even food was felt to be

necessary,6 0 and the potential disruption to the economy of a booming

offshore drilling and service industry, and of large revenues from oil

and gas exports was recognized. The policies that were recommended,

and pursued, included: (a) a moderate development of oil and gas

resources; (b) a gradual introduction of oil and gas revenues into the

domestic economy; and (c) government majority control of as much of the

industry as possible (upstream, downstream, service, and petrochemical).

By releasing tracts for exploration at a slow rate, maintaining a

high tax rate, and requiring participation by Norwegian state-owned

companies, Norway has met these objectives. The production ceiling of

90 million tonnes of oil equivalent (1.8 million bbl/d of oil equivalent)

set in 1974 is still well above current production levels, although

ongoing field development, and especially the beginning of Troll

production in the late 1990s, could see this level reached.

Petroleum Industry in Norwegian Society, Parliamentary Report No. 25
(1973-74), Royal Norwegian Ministry of Finance, Oslo, Norway.

59 ibid., p. 14.

60 ibid., p. 16.
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At the same time, however, the non-petroleum sectors of the economy

have suffered, in part because oil prices were so much higher than

anticipated when the moderate pace of oil development was defined. The

manufacturing share of GDP has shrunk from 18.2 percent in 1979 to 13.6

percent in 1984, while the mining and quarrying sector (dominated by oil

and gas) has doubled to 18.6 percent over the same period. This occurred

despite the benefits to the manufacturing sector of having captive demand

for equipment from the offshore oil and gas industry. In fact, high

inflation and low productivity growth have hurt the international

competitiveness of the Norwegian economy, leading to moves to devalue the

kroner.

The weakness in international energy markets has caused some reversal

of Norwegian policy. The cancellation of the Sleipner deal by the

U.K. government provided the first impetus, and the plunge in oil and gas

prices a hearty shove. Whereas in the 1970s the government's concern

focused on excessive growth of employment in the oil and gas sector to the

detriment of the rest of the economy, now the primary concern is the

possibility that reduced exploration and development would create

unemployment in that sector. As the 1984-1985 report to the Storting from

the Royal Ministry of Finance put it, "The main task in the programme

period in Norway will be to ensure employment for everyone and safeguard

and develop further the welfare society. 6 1

Retaining and creating jobs in the non-hydrocarbon sector still is

a main concern of the Norwegian government, but one focus of the Troll

op. cit., p. 20. Emphasis added.
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contract was to provide work for the offshore industry during a period

of weak oil markets. Taxes also have been cut to a major extent to

encourage continued investment by foreign oil companies.6 2 However,

taxes are still the highest in the North Sea, even after the latest

revisions, such that the minimum economic field size in the Norwegian

sector is 500 million barrels (versus only 100 million barrels in the

U.K. sector), although other factors play a role.6 3

Norwegian tax rates have been criticized by the oil industry for

years, but revisions to them have been slow. Private companies have

continued to seek concessions despite complaints that the fiscal regime

yields poor returns, partly because of the size of finds still being

made in Norwegian waters.6 4 Only recent reluctance on the part of

foreign oil companies to bid for exploration licenses, combined with

the drastic fall in oil prices, have forced a reconsideration by the

Norwegian government. As one Norwegian official said, "...there isn't

any support for adjusting the total tax level, as long as it is possible

for us to get exploration and production licenses out without trouble."65

62 OGJ, 7/21/86, p. 35. The industry's "special tax rate" is to be cut

from-'5 to 30 percent, and the 10 to 15 percent royalty on new field
developments will be foregone.

The estimate of viability assumes an oil price of $15/bbl, and is
made by Wood, Mackenzie, cited in PIW, 8/18, 1986, pp. 2-3.

64 As the WSJ, 8/29/84, p. 29, pointed out, Chevron refused a 1972

offer to operate Statfjord, which turned out to be the largest oil
field discovered to date in the North Sea, and companies are afraid to
repeat that mistake.

65 Hans Henrik Ramm, Petroleum Adviser to Norway's Finance Minister,
cited in ibid.
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With oil and gas revenues falling and with the possibility of

increased personal income taxes, further concessions for the petroleum

industry become increasingly difficult. Projects that are marginal and

that would require deep cuts in the government's take may not receive

the necessary help. Yet the alternative may look even worse: a shrinkage

of oil and gas revenues and of employment. The recent concessions on the

Troll/Sleipner development demonstrate that the government is still

willing to be flexible.

The United Kingdom

The United Kingdom not only had the first but also the most highly

developed manufactured gas industry in Western Europe. By 1961, the

United Kingdom accounted for nearly two-thirds of total Western European

manufactured gas consumption and, relative to total energy requirements,

U.K. gas consumption was five times that of the rest of Western Europe.6 6

However, as coal prices increased during the 1950s, the industry's

competitive position faltered. By 1956, the price per therm for coal gas

used in heating was only slightly cheaper than electricity, and when

adjusted for efficiency, it was more expensive than any fuel but butane

(see Table 17).

The British Gas Council, which oversaw the 12 Area Boards governing

gas distribution, realized it was at a strategic crossroads. To reduce

costs, it began centralizing its gas production, at the same time seeking

alternatives to coal gas. To that end, investment was made in oil-based

66 OECD Energy Balances: 1960/74, Paris, France, 1975.
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TABLE 3-17
RELATIVE COSTS OF HEATING FUELS

IN THE UK IN 1956

(COAL GAS = 100)

Price per therm

Coal Gas 100

62.5Kerosine

Wood 29.2

29.2Coal or Coke

Butane

Electricity

Price per therm adjusted
for apparatus efficiency

100

62.5

91.7

54-92

187.5 187.5

120.8120.8

Note: For coal gas and butane, a small,

assumed. Otherwise, efficiency drops by
high efficiency stove is

about 50 percent.

Source: Petroleum Press Service, May 1956, p. 178.

Fuel
_ _ _ ~ ~ ~ ~ ~ ~ ~
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gas manufacturing systems, while at the same time the Gas Council signed

the first long-term contract with Algeria for LNG supplies.

The 1959 discovery of the Groningen field in the Netherlands aroused

interest in the North Sea basin, particularly the shallow areas off the

southern United Kingdom. (Previously, only two small onshore gas fields

had been found, both by the Gas Council.) The first discoveries were made

in 1965, and within three years, the United Kingdom was enjoying an

abundance of natural gas from a number of large fields. As Figure 8

shows, growth of reserves was dramatic during the late 1960s, as these

discoveries were assessed and booked.

Not surprisingly, this gas obviated the need for either more LNG

imports or manufactured gas, and within a few years many of the coal-gas

plants were shut down. In fact, the quantities of gas discovered were so

large that it was difficult to absorb them all. The Continental Shelf Act

of 1964 shaped the development of these resources by (a) preventing their

export and (b) granting monopsony power to the British Gas Council, except

in certain cases of direct industrial use, such as in petrochemical

plants.6 7

The British Gas Council (which became the British Gas Corporation

(BGC) in 1972) looked upon the southern North Sea supplies as a reservoir

of cheap natural gas which it could use both to cover costs of expansion

of its system and to penetrate new markets. Most gas was sold to

industrial and residential/commercial customers, rather than to the

electric generation sector, and prices offered to producers were roughly

67 See Davis, op. cit., p. 103.
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Figure 3-8

BRITISH NATURAL GAS RESERVES
(January 1)
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Source: Oil & Gas Journal
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one-quarter the price of manufactured gas.6 8 Having no other markets open

to them, producers had little choice but to accept these prices, although

exploration suffered as a result. Not until many years later were higher

prices paid for supplies from the southern sector of the North Sea. (See

Table 18.)

However, the BGC continued to seek new supplies, including imports

from Norway. Although having lost out on the Ekofisk and Statfjord

sales, the BGC managed to contract for gas from Frigg (which straddled

the U.K. and Norwegian sectors of the North Sea) and Sleipner (although

the government later cancelled the contract). Prices offered for these

supplies were higher than those for U.K. fields, and while the BGC did

pay a higher price for the more costly northern U.K. gas, a lower price

was paid for the U.K. share of Frigg than the Norwegian share,

demonstrating BGC's monopsony power. In addition, the cheap gas from

the south was "rolled-in" with the higher cost Norwegian and northern

sector U.K. gas, keeping average prices low.

BGC has consistently expressed concern about its future supplies,

particularly as Frigg volumes decline in the next decade, and is unsure

of potential future domestic additions-to-reserves. The Sleipner contract

was signed for this reason, but the U.K. government, more confident than

the BGC that higher prices for domestic gas would bring on higher

supplies, would not approve the contract.

68 ibid., p. 98, shows manufactured gas costs as being 4 to 5 pence per
therm and the prices to the first fields developed were on the order of
1 to 1.2 pence per therm (p. 106). The BGC was in the unique position

of being not only a monopsony purchaser but a partner in the fields.
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TABLE 3-18

PRICES FOR UK NORTH SEA AS

Location

Nest Sole Southern

Hewett:

Base price

Valley gas

Date Price

[Pence/There]

Notes

1967-70 2.08

1971- 1.12

Southern

Leean: Southern

First 600 NNcf/d

Second 600 NMcf/d

Retainder

1.195

0.944

1.196

1. 1875

1.792

Indefatigable Southern

All gas to 1983

Southern

Southern

1.208

These prices are for the first 15 years of production.

After that, prices will be 1.196p, 1.167p, and 1. 14 6p per
there respectively for the specified aeounts produced per

day for the Leean field; and

1.208p for first 600 Ncfd, 1.792p for next

600 nNcf/d, and 1.158p per there for the balance for the

Indefatigable field. (converted at 2.4 d per pence)

1972 1.5

1974 3.4

Frigg Northern

(Norwegian sector)

Brent Northern

1974 B.8

1982 11.5 (est)

1975 6.5

1982 12.5 est)

Terns of delivery of

British gas probably

considerably different,

with price closer to that

of Brent field.

Production start-up 1976.

1982 16.0 est) Price on shore after delivery

via Frigg line. Production start-up 1976.

North Alwyn Northern 1982 22-23 est) Price for North Alwyn associated

gas. Production tart-up 19B7.

Cleeton, Hoton,Southern

Hyde, Ravenspurn

28-30 p/therm

(est)

Production due

in 1988.

Southern 23-24 p/there est)

Sources: Davis, 1984, pp. 106 and 144, and trade press.

Field

Viking

Rough

Beryl Northern

Sean South

& Sean North

--- -- -- -- -- -- -- -- -- -- -- -- --- -- -- -- -- -- -- -- -- -- -- -- --- -- -- -- -- -- -- -- -- -- -- -- --

--- -- -- -- -- -- -- -- -- -- -- -- --- -- -- -- -- -- -- -- -- -- -- -- --- -- -- -- -- -- -- -- -- -- -- -- --
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In fact, the prolonged Sleipner negotiations saw the British extract

a series of concessions from the Norwegians. In part, this reflected the

short-term glut of natural gas on the continent and the lack of buyers

there, and in part the changing expectations for future oil prices as

energy markets generally proved weaker than had been expected just a short

time before, when the Statfjord contracts were signed. The concessions

included the construction of a 40-inch pipeline with capacity far in

excess of what the Sleipner contract required; an agreement to share the

tax proceeds from the liquids pipeline to Norway (which the British had

wanted landed in the United Kingdom), and a reduction of the level of peak

supplies, presumably raising the development costs slightly, although

exact figures are not available.

After an agreement embodying all these concession was signed, the

conflict between the BGC and the oil companies with gas reserves in the

southern North Sea intensified. Many of the companies produced

projections showing that domestic natural gas supplies would be adequate

for the foreseeable future, and that large-scale imports were

unnecessary. One company even offered a large gas supply contract

without specifying the source of the gas, a move some believed was an

attempt to make the Sleipner deal appear unnecessary.69

Two other factors affected the government's decisions on this

deal. First, given the high unemployment rate in the United Kingdom, the

69 One good example would be BP's analysis which suggested that despite
declining contracted gas, gas about to be contracted and gas already
discovered would cover British needs until about 1995. Only a small
amount of newly discovered gas would need to be discovered and developed
before the turn of the century. See FT, 5/6/83, p. 8. See also FT,
12/18/84, p. 1, and FTEE, 2/85, p. 1.
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government was reluctant to import something that could arguably be

produced domestically.7 0 Secondly, since the contract price was

denominated in U.S. dollars, the depreciation of the pound meant that

the price had grown 40 percent, up to 35 p/therm, versus an average

purchase price of 15 p/therm at the time.71

Since the cancellation of the Sleipner contract, the future

purchasing plans of the BGC have been uncertain. Initially, an oversupply

situation had developed, and some observers said that the BGC was sitting

on domestic reserves.7 2 However, contracts have been moving forward

gradually and a number of new field developments are to be undertaken.

(See below.) Still, certain exogenous policy developments will affect the

amount and manner of natural gas contracts that the BGC agrees to in

coming years.

For one thing, the privatisation of the BGC will give it the power

to pursue its own strategies, and these could include signing new

contracts with Norway.7 3 Second, a possible cross-channel pipeline

70 FT, 1/24/85, p. 2.

71 See FTEE, 2/85, pp. 1-2, and FT, 1/28/85, p. 16, which put BGC's

average purchase price in 1984 a13.3 p/therm.

72 See, for example, Offshore, 10/85, p. 21.

We do not take seriously reports that the BGC is considering building
20 coal gasification plants at a cost of 1 billion apiece to replace
dwindling North Sea reserves, as reported by The Economist, 4/16/83,
p. 61.
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link that would allow both exports to and imports from the continent

would break the BGC's monopsony power.7 4

The BGC's main response to these threats has been to offer prices

that approach world levels for new natural gas supplies, especially

from the southern sector. (See Table 18.) And in fact, higher prices

have spurred more drilling and discoveries in the southern sector. In

1985, numerous gas discoveries were made in the southern North Sea,7 5

and the listing in Table 19 shows that many of these have economic

potential. (Although flow rates do not correlate directly with reserves,

they are a factor in determining the economics of field development, as is

shown below.)

Having raised its buying price for southern North Sea gas, the BGC

was overtaken by events in world oil markets. The data presented below

suggest that there still is gas available that less than $2.00/Mcf, but

marginal costs appear to be increasing and rapid expansion of supply

may not be possible. However, maintaining current levels of domestic

production should pose no problem. As fields discovered in the last

two years are assessed, a clearer picture of the future of natural gas

supply from the southern sector will emerge.

74
Companies were recently given the power to make direct sales to

industrial customers, but with one small exception, BGC has used its
old, low-priced purchase contracts to undersell all such efforts. See
OGJ, 12/30/85, pp. 48-49.

75
See Offshore, May 1986.
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GAS WELL DI

Operator

TABLE 3-19
SCOVERIES IN

Block-well

SOUTHERN NORTH SEA

Flow Rate

48/11a-7 34 MMcfd
+ 230 b/d conden.

Ardmore
Petroleum

Amoco

BP
BP
BP
BP
BP

49/13-one well 1

47/9a-7

48/18-1
42/30-4
47/5a-4
48/7b-5
49/4-1

n.a.

n.a.

13.7 MMcfd
n.a.
n.a.
n.a.
8.5 MMcfd

Britoil
Britoil
Britoil

47/14a-6
47/14a-7
47/14a-8

Charterho
Petroleum

use 44/29-one well

48/11b-6
48/11b-4

44/22-3
44/22-one

44.2 MMcfd
48.8 MMcfd

+ 300 b/d conden.
35 MMcfd

well 3 MMcfd
+ 33 b/d conden.

Gulf

Hamilton
Hamilton
Hamilton
Hamilton
Hamilton

50/6-1

43/26-1
43/26-3
43/26-5
43/8a-3
43/15a-2

1.3 MMcfd
+ 2,074 b/d oil

3.2-14.2 MMcfd
49.5 MMcfd
40.2 MMcfd

15-33 MMcfd
27 MMcfd

London &
Scottish

43/12-one

48/18a-one well
+

48/17a-2
49/29-B4

19-34 MMcfd
652 b/d conden.

34 MMcfd
31 MMcfd

Arco

40
31

n.a.

MMcfd
MMcfd

n.a.

Conoco
Conoco

Conoco
Conoco

well

Mobil

Mobil
Mobil

n.a.
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TABLE 19
(cont.)

Operator Block-well Flow Rate

Phillips

Phillips

49/11a-2

49/11a-3

34.6 MMcfd
+ 70 b/d conden.

31.5 MMcfd
+ 97 b/d conden.

Ranger
Ranger

Shell
Shell
Shell
Shell
Shell

Texas Gas

48/18b-3
48/19b-7

48/14-2
48/20a-3
48/19a-6
44/28-2
48/13a-two

12 MMcfd
29 MMcfd

wells

44/23-4

n.a.
n.a.
n.a.
n.a.
n.a.

27 MMcfd

Ultramar

Zapata

49/5-3

42/15b-one well

39 MMcfd

n.a.

Trade press.Sources:
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Economics of Gas Supply in the United Kingdom

Excluding imports (i.e., gas from Frigg), U.K. gas supply consists

of the southern North Sea and the FLAGS associated gas collection system.

Recent developments suggest that while there will be additions to peaking

capacity--such as the Rough and Morecambe fields, the latter in the Irish

Sea--and continued hookups of small gas and gas/condensate fields as well

as associated gas flows from northern and central sector fields, most

future U.K. gas production will be from fields in the southern sector of

the North Sea.

Unfortunately, new field development in the southern sector has

not been sufficient in recent years to allow the kind of analysis of

development costs that is possible for oil.7 6 When development

expenditures are examined relative to capacity and reserve additions,

the results fluctuate so wildly as to render them unreliable. This

undoubtedly reflects the low level of field development and expenditures

for associated gas pipelines (specifically FLAGS) that were made for some

years before deliveries actually started, which makes costs difficult to

average out.

It is possible to provide some estimate of operating costs, using

production rates and aggregate operating expenditures (see Table 20).

As can be seen, these inflate at roughly 5.5 percent annually in real

terms, although the data are slightly contaminated by the growing impact

of associated gas, for which only pipeline expenditures are available.

76 See Adelman, "The Competitive Floor Price for World Oil," Energy
Journal, October 1986, for an analysis of U.K. oil costs.
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Table 3-20

United Kingdom Gas Field Operating Costs
($ 1985)

Total Gas field
Operating
Expenditures
(million $)

295.38

287.71

294.70

363.47

374.82

394.52

Total Gas

Production
(Bcf)

1387

1317

1321

1352

1396

1418

Development f the Oil and Gas Resources of the United
Kingdom, 1985. Production from p. 69, (includes associated gas).
Expenditures from p. 78, (includes expenditures on FLAGS

and the other associated gas gathering pipelines). Expenditures
given in sterling of the year in question.

Converted to $ 1985 by dividing by the purchasing power
parity, from Purchasina Power Parity aLd Real Expenditures fghe
-OECD, for the year in question and multiplying by the ratio of
1980 / (year in question) implicit price deflator from the
Economic Report f the President.

1979

1980

1981

1982

1983

1984

Unit
Operating
Costs
($/Mcf)

0.213

0.218

0.223

0.269

0.269

0.278

Source:

m

aom
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Table 3-21

British Gas Development-Operating Costs

Esmond Complex (Esmond, Forbes, Gordon Fields)

1. Development costs

2. Reserves

3. Average production rate

4. Depletion (Q/R)

5. Development costs in ground

6. Development costs as sold

7. Operating costs

8. Development-operating costs as sold

688

600

73

0.122

1.147

2.281

0.471

2.752

($MM)

(Bcf)

(Bcf/year)

($/Mcf)

($/Mcf)

($/Mcf)

($/Mcf)

Sources:

1,2,3. Petroleum Economist July 1985, p. 260.
Development costs given in sterling 1985, converted
to $ 1985 by dividing by the 1984 Purchasing Power
Parity, from Purchasing Power Parity and Real ExDenditures
in the OECD, and multiplying by the ratio of the 1985/1984
implicit price deflator from the Economic Report
of the President.

5. Line 1 / line 2.

6. (line 1 / line 3) * (line 4 + i) i = 0.12.
7. 0.05 * line 1 / line 3 (annual operating expenses / annual

production) annual operating expenses assumed to be 5% of

development costs.
8. Line 6 + line 7.
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Table 3-22

British Gas Development-Operating Costs

Hewett Field
(Expansion of an existing field)

1. Additional development costs

2. Reserves added

3. Peak output

4. Depletion (Q/R)

5. Development costs in ground

6. Development costs as sold

7. Operating costs

8. Development-operating costs as sold

49

120

36.5

0.304

0.408

0.569

0.067

0.636

($MM)

(Bcf)

(Bcf/year)

($/Mcf)

($/Mcf)

($/Mcf)

($/Mcf)

Sources:

1,2,3. il and Gas Journal, April 28, 1986, p. 34.
Development costs given in $ 1986.

5. Line 1 / line 2.
6. (line 1 / line 3) * (line 4 + i) i = 0.12.
7. 0.05 * line 1 / line 3 (annual operating expenses / annual

production) annual operating expenses assumed to be 5 of
development costs.

8. line 6 + line 7.

lol
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Table 3-23

British Gas Development-Operating Costs

Morecambe Field

1. Development costs

2. Reserves

3. Peak output

4. Depletion (Q/R)

5. Development costs in ground

6. Development costs as sold

7. Operating costs

8. Development-operating costs as sold

2.85

5

438

0.088

0.570

1.353

0.325

1.678

($Billion)

(Tcf)

(Bcf/year)

($/Mcf)

($/Mcf)

($/Mcf)

($/Mcf)

Sources:

1. World Oil, August 15, 1981, p. 174 (includes costs of pipeline

to shore). Development costs given in $ 1981, converted
to $ 1985 using implicit price deflator from

Economic Report f the President.
2,3. Petroleum Economist, Febuary 1985, p. 67.

5. Line 1 / line 2.

6. (line 1 / line 3) * (line 4 + i) i = 0.12.
7. 0.05 * line 1 / line 3 (annual operating expenses / annual

production) annual operating expenses assumed to be 5% of
development costs.

8. Line 6 + line 7.
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Table 3-24

British Gas Development-Operating Costs

Thames Complex (Thames, Yare, Bure)

1. Development costs 230

2. Reserves 460

3. Peak output 43.8

4. Depletion (Q/R) 0.095

5. Development costs in ground 0.500

6. Development costs as sold 1.129

7. Operating costs 0.263

8. Development-operating costs as sold 1.392

($MM)

(Bcf)

(Bcf/year)

($/Mcf)

($/Mcf)

($/Mcf)

($/Mcf)

Sources:

1,2. Petroleum Intelliqence Weekly, Feburary 2, 1985,
p. 12. Development costs given in $ 1985.

3. International Ga Report, Febuary 1, 1985, p. 2.

5. Line 1 / line 2.
6. (line 1 / line 3) * (line 4 + i) i = 0.12.
7. 0.05 * line 1 / line 3 (annual operating expenses/annual

production) annual operating expenses assumed to be 5% of
development costs.

8. Line 6 + line 7.
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Table 3-25

British Gas Development-Operating Costs

Victor Field
Gas/Condensate Field

1. Development costs 139 ($MM)

2. Reserves 706 (Bcf)

3. Production rate 91 (Bcf/year)

4. Depletion (Q/R)

5. Development costs in ground

6. Development costs as sold

7. Operating costs

8. Development-operating costs as sold

9. Development-operating costs as sold,

adjusted for condensate production

0.197 ($/Mcf)

0.380 ($/Mcf)

0.076 ($/Mcf)

0.456 ($/Mcf)

0.444 ($/Mcf)

Sources:

1. International Petroleum Encyclopedia, 1984, p. 202.

Development costs given in $ 1984, converted to $ 1985
using implicit price deflator from Economic Report
of the President.

2. Development of the Oil & Gas Resources of the

United Kingdom, 1985, p. 64.
3. Petroleum Economist, October 1984, p. 391.

5. Line 1 / line 2.

6. (line 1 / line 3) * (line 4 + i) i = .12.

7. 0.05 * line 1 / line 3 (annual operating expenses / annual
production) annual operating expenses assumed to be 5% of

development costs.
8. Line 6 + line 7.

9. Line 8 - (yearly revenue from condensate sales / line 3)
= line 8 - ((146,000 bbl) * ($7.50/bbl)) / (line 3 * 1000).
Condensate production rate from Petroleum Economist,
October 1984, p. 391. $7.50 condensate price assumed.

0.129
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Table 3-26

British Gas Development-Operating Costs

Vulcan, Vanguard, South Valiant Fields

1. Development costs

2. Reserves

3. Depletion (assumed)

4. Production rate (aR)

5. Development costs in ground

6. Development costs as sold

7. Operating costs

8. Development-operating costs as sold

960

1.4

0.10

140

0.686

1.509

0.343

1.852

($MM)

(Tcf)

(Bcf/year)

($/Mcf)

($/Mcf)

($/Mcf)

($/Mcf)

Sources:

1. Petroleum Intelligence Weekly, March 3, 1986,-p. 12.
Development costs given in $ 1986.

2. New York Times, Febuary 26, 1986, p. 5.
5. Line 1 / line 2.
6. (line 1 / line 4) * (line 3 + i) i = 0.12.
7. 0.05 * line 1 / line 4 (annual operating expenses/annual

production) annual operating expense assumed to be 5% of

development costs.
8. Line 6 + line 7.
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However, a number of developments, mostly in the southern sector,

have been recently announced in sufficient detail to calculate their

costs (see Tables 21 through 26). (Note that Morecambe will be used

for peaking purposes and that the Hewett development is an expansion of

an existing field.) The variance is high, but all the fields would be

viable at oil prices around $15/bbl, assuming that pipeline costs are

small. Using reserves as to weight the costs yields a weighted average,

for these developments, of $1.65/Mcf.

Associated Gas

The United Kingdom has substantial reserves of associated gas in

oil fields in both the central and northern sectors of the North Sea.

Approximately 13% of domestic production in 1984 consisted of associated

gas.7 7 Future levels of supplies depend on the development of a pipeline

system to gather the gas now being flared or reinjected into a variety of

fields and on the economics of such a system.

For associated gas, most costs will be for gathering and pipelining,

since exploration and field development costs are borne by the oil.

(Processing costs need not be considered, since recovery of the liquids

before flaring is almost always economic.) Thus, the true marginal cost

of associated gas consists of costs of the pipeline and associated onshore

facilities.

Table 27 summarizes an analysis performed in the late 1970s of the

economics of several suggested gas gathering systems. (These include

Development of the Oil and Gas Resources of the United Kingdom 1984,
U.K. Department of Energy, p. 69. Gas used on oil production platforms
is excluded.



3-99

TABLE 3-27

ASSOCIATED GAS
(1985

TRANSPORTATION
US$)

Proposed
System
Central System
All U.K. Fields
All U.K. Fields

plus Statfjord
Existing Pipelines
Recommended

Total
Capital
Costs

1460
2650
3024

2606
2993

Annual
Capital
Costs

175
318
363

313
359

Annual
OperatingDesign
Costs Capacity

59 297
100 533
114 677

100
114

373
657

Costs per
Mcf

0.787
0.785
0.705

1.108
0.721

Source: A North Sea gas gathering system,
U.K. Department of Energy, May 1978.

COSTS
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some gas/condensate fields, as well as oil/gas fields.) In most cases,

the range of estimated costs for delivering gas with these systems

(excluding the Statfjord/Heimdall legs) was substantially below $1/Mcf.

The system that was developed, the Far North Liquid and Associated Gas

System, is reported to have cost $1.6 billion.78 Using the previously

described method, this translates into a delivery cost of roughly

$0.75/Mcf.

However, the incremental cost of hooking up new fields should be

lower, since the trunk pipeline reflects sunk costs. Turning to estimates

made during the original gas gathering pipeline study, Table 28 provides

some examples of these incremental costs, which range from $0.40 to

$1.25/Mcf.

Algeria

With its supergiant Hassi R'Mel field and its close proximity to

Western Europe, Algeria is in a uniquely favorable position as a gas

producer. It can achieve very high rents by exporting natural gas,

partly by pipeline, to the second largest market in the world. However,

by demanding too high a price, the Algerians have lost many of their

customers and may lose more. At present, they not only have huge surplus

export capacity, but there is little prospect in the foreseeable future of

significant increases in sales.

Although Algerian natural gas resources include more than just the

Hassi R'Mel field, this field dominates the Algerian supply picture.

78 Natural Gas Prospects, International Energy Agency, 1986, p. 78.
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TABLE 3-28

COST OF HOOKING UP GAS FIELDS, UK NORTH SEA

Distance Peak
System Capacity
(miles) (Bcf/year)

(million
1985$)

COSTS
($/Mcf

($/Mcf) per 100 mis.)

Field
Fulmar
Magnus
9/18

Hookup Pipeline
147.5

Lomond
Magnus2
Statfjord
Beryl

33.1
48

154.1
49.3

207.7
83.2

Proposed
Thelma
Thelma2
Thelma3
Thelma4

Trunkline
136
136
136
136

Options:
300
530
675
830

Onshore Facilities:
System A
System B

System C
System D

297.11
532.9

677.075
827.455

555
794
973

1062

0.317
0.253
0.244
0.218

Note: Currency converted at .4665 pounds per dollar,
which is average of 1979 and 1980 purchasing power parity
exchange rates, from OECD, Purchasing Power Parities
and Real Expenditures in the OECD

Pipeline capacity from OGJ 8/12/85; (estimated for
Fulmar and Beryl).
Capital costs in January 1980 pounds from A North
Sea gas gathering system, Energy Paper Number 44
UK Department of Energy, May 1978, pp. 27-31.

Field

85
73

36.5
75
73

365
100

471
203
223
557
251
805
340

0.942
0.474
1.038
1.263
0.584
0.375
0.578

0.64
1.43
2.16
0.82
1.18
0.18
0.69

438
538
571
596

0.248
0.173
0.144
0.122

0.18
0.13
0.11
0.09

A*
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Discovered in 1956, by 1966, its reserves were estimated at 39 Tcf.7 9

By 1977 they had grown to 54 Tcf, not including approximately 1.5 Tcf

that already had been produced.80 Other fields, shown in Table 29,

contain a reported 129.3 Tcf proved reserves, led by the Rhourde Nousse

field with 13.1 Tcf. (The Oil & Gas Journal listed proved reserves of

107 Tcf on January 1, 1986.) At 1985 production rates, the existing

reserves have an expected life of well over 100 years.

On the other hand, undiscovered resources are believed to be fairly

small. Algeria officially maintains that its possible and probable

hydrocarbon reserves constitute one-third of its proved reserves. The

U.S. Geological Survey puts the mean expectation for undiscovered gas at

only 26 Tcf, less than one-quarter of the amount discovered to date.8 1

Partly due to its small oil reserves and partly due to these low

expectations for undiscovered resources, Algeria considers itself to be

resource poor. However, for the purposes of natural gas trade, Algeria

is a major supplier. Even if the above assessments are correct, resources

will not be a constraint on Algeria's natural gas trade position for

decades. In reality, these assessments probably reflect an assumption

that the minimum economic field size is very large, reflecting the high

79 PPS, February 1966, p. 44.

80 IPE, 1977, p. 239.

81 January 1, 1986 reserves were 107 Tcf, and gas produced to that date
amounted to 12 Tcf. Reserves from OGJ, op. cit. and cumulative production
from Energy Information Administration, lEpartment of Energy, The
Petroleum Resources of Libya, Algeria, and Egypt, March 1984, p 77.
Undiscovered resources from U.S.G.S. 82-1056, cited in DOE, ibid. The
estimated range of undiscovered natural gas is 19 to 35 Tcf, at the 5 and
95 percent probability levels.
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TABLE 3-29
ALGERIAN NATURAL GAS RESERVES

(Tcf)

Field Proven Probable Possible

Hassi R'Mel 85.3 -- --
In Salah 5.2 15.2 15.7

Rhourde Nousse 13.1 2.2 2.0
Tin Fouye Tabankort 5.4 5.0 --

Gassi Touil 6.9 1.6 1.0

In Amenas 5.5 1.1 2.0

Stah 7.7 0.6 0.2

Haoud Berkaoui 0.2 -- --

TOTAL 129.3 25.7 21.0

Totals may not add due to rounding.

Source: Sonatrach, cited in Mossavar-Rahmani, op. cit. p. 120.
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transporation costs of the gas and perhaps also the Algerian policy

environment. In the future, if the minimum economic field size drops,

resources should grow substantially.

Algeria initiated the first long-term LNG contract, beginning

deliveries to the United Kingdom in 1964. Small contracts with France

and Spain followed, usually delivered for under $1/Mcf (in current

dollars). These prices were essentially competitive with then-current

oil prices, a necessity in marketing the gas. At least one study

suggested that these exports were not really economical, but Algeria

has argued they were undertaken to develop the technology.8 2

Algeria was well positioned to take advantage of the first oil

shock. The first large-scale (135 Bcf/yr) contract for LNG exports had

been signed only in 1972, with France, but a number of others were

under consideration, including several with U.S. companies. (Spot

sales were made to the United States in the winter of 1970, at prices

on the order of $1.50/Mcf. 8 3 )

Given both the regulation-induced tightness in the U.S. natural

gas market, and competitive prices for LNG, it was natural at the time

that U.S. pipeline companies turn to Algeria for supplies. Contract

82 Clinton Mouer, "The Economics of Liquefied Natural Gas," MIT Sloan
School of Management, Masters Thesis, Cambridge, Mass., June 1973,
p. 80. When the net present value was set to zero, the internal rate
of return was 7 percent, less than the opportunity cost of capital at
that time of 8 percent.

83 PPS, 7/70, p. 269. Although the price equates to approximately

$9/FT7 of oil, far above market prices at the time, transportation
costs for natural gas were high enough that the price was probably
competitive when delivered along the East Coast, to Boston in particular.
Other reports put the price at as little as half those prices. See, e.g.,
PPS, 4/70, p. 144, which put proposed c.i.f. prices at $0.68 to 0.85/Mcf.
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negotiations took place from the early 1970s on, and a number were

signed, although some were never initiated. In all, contracts for 16

Bcm/yr (564 Bcf/yr) were signed at one time or another, and an additional

20 Bcm/yr (730 Bcf/yr) was negotiated, although the peak flow to the

United States was only 7.2 Bcm (253 Bcf). No deliveries are being made at

present.8 4

A number of problems have prevented exports of Algerian LNG to the

United States. In one instance, at the end of 1973, the Algerians

cancelled a contract when the required approval from the U.S. government,

specifically the Federal Power Commission, was not granted within the time

they required. The Algerians seemed to be responding to rising world oil

prices, which had rendered the original contract price of $0.42/Mcf

unappealing,85 and the contract was renegotiated at higher prices.

Subsequent price increases were accepted by El Paso, and approved by

U.S. regulatory agencies, in 1979, but Sonatrach abrogated the contract

only months later since oil prices were still rising. When U.S. natural

gas prices weakened, the importers chose to abrogate the contracts, as

their sales prices became increasingly uncompetitive. Trunkline, for

example, was able to replace its LNG imports at half the Algerian price.86

84 In settling claims with Sonatrach, Panhandle Eastern promised to
begin good-faith negotiations for marketing LNG in the United States.
See IGT Highlights, 7/28/86, p. 1.

85 PE, February 1974, p. 67.

86 Platt's Oilgram News, 12/15/83, p. 3. Falling U.S. gas consumption
and inflexible take-or-pay clauses in the Algerian contracts also were
contributing factors.
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Abrogation of the contracts allowed importers to reduce the price of

natural gas to their customers.8 7

After the 1973 oil crisis, a number of other LNG contracts were

under consideration by customers as diverse as Germany and

Czechoslovakia. The contracts actually concluded, mostly after the

second oil crisis, were with Spain (for 4.5 Bcm/yr; 160 Bcf/yr), France

(for a total of 9.1 Bcm/yr; 320 Bcf/yr) and Belgium (for 5 Bcm/yr; 175

Bcf/yr). In 1984, however, only 19.1 Bcm (675 Bcf) actually was exported;

none of the countries had been able to accommodate the full contract

quantities, both due to the weakness in energy demand in Western Europe

and due to their overestimation of natural gas demand potential. As the

highest-priced exporter, the Algerians have suffered proportionally more

than most other suppliers.

More recently, Algeria commenced deliveries to Italy via a pipeline

beneath the Mediterranean Sea. The Algerians initially delayed

deliveries, demanding a higher price. As a result, the start-up of

deliveries was delayed by almost two years, increasing interest costs by

nearly $250 million.

The result is that Algeria now finds itself with 1550 Bcf/yr of

export capacity (1100 Bcf/yr of LNG capacity, and 450 Bcf/yr of pipeline

capacity), of which about 60 percent will be utilized in 1986.89 The

87 Trunkline cut its prices by 19 percent. See OGJ, 12/19/83, p. 52.

88 PIW, 5/30/83, p. 5.

89 Assuming the Belgians and Spanish are able to take 2.5 Bcm each, the

French 8 Bcm, and the Italians 12 Bcm. Yugoslavia is slated to take
1.5 Bcm when the pipeline from Italy has been expanded, but the date



3-107

recent Troll contract with Norway should make it difficult for Algeria to

increase its sales. Indeed, it may be that the Belgians will abrogate

their contract with Algeria altogether. The French and Spanish

governments have proven susceptible to political pressure, as well as

Algerian threats to respond by limiting imports from them, and so they are

less likely to cancel their contracts, although adjustments are being

sought.

Algerian Policy

"If LNG were to be sold on terms comparable to the cost of

its real global economic alternative--that is, syngas from
coal--Gulf producers would be offered a real incentive to
move ahead with their investments. Modest though such a
return would be--a little over $1.00/MMBtu, or perhaps
one-third of the return on oil--it would at least put a
positive value on the gas itself. The days when producer
governments would put gas into an LNG plant at zero wellhead
value, and content themselves megaly with a financial return
on their investment, are over."

As mentioned above, Algeria consistently has sought higher than

prevailing prices for its gas exports, using a variety of arguments.

While its demands for f.o.b. parity with crude oil prices have received

the most attention, that is only one approach. The crude oil parity

argument was strongly made because it seemed the most simple: To them,

deliveries would commence has not been announced. The surplus LNG
capacity reflects nameplate capacity; actual capacity may be less due
to engineering problems and neglect of unutilized machinery.

90 Nordine Ait-Laoussine, Executive Vice President, Sonatrach May 1979, in
"Developments in the Natural Gas Industry of Algeria, OPEC Review,
Vol. III, No. 2, Summer 1979, p. 7.
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the value of gas exports should be the same as the value of crude oil

exports.91

Other arguments included the notion, not held uniquely by Algerians,

that natural gas should be "reserved" for use in "premium" markets, and

priced to reflect that premium value, while less "noble" hydrocarbons,

presumably coal, satisfied demand for boiler fuels.92 When oil was priced

at still $14/barrel, they argued that the price should be equated or

linked to the cost of synthetic gas, which was well above crude oil

equivalency prices.93 When oil prices rose, Algeria suggested using

equivalency with middle distillate.94 Finally, lacking all else, they

suggested that, as pioneers of the technology, they deserved greater

rewards for having accepted the risks.9 5

In fact, Algeria has not limited its goal to achieving a crude

oil-equivalent price. In 1974, they demanded a ten-fold increase in

prices by 1979, well over equivalent oil prices. 9 6 Later, in 1977,

Mossavar-Rahmani, op. cit., p. 92.

92 Nordine Ait-Laoussine, "Towards a New Order in Gas Pricing," OPEC
Review, Vol. IV, no. 2, Summer 1980, pp. 50-72. Ait-Laoussine was

speaking as a private consultant at this point.

93 Nordine Ait-Laoussine, "Developments in the Natural Gas Industry of

Algeria," OPEC Review, Vol. III, no. 2, Summer 1979, p. 7.

94 Ait-Laoussine, 1980, . cit., p. 67. This would have increased
prices 10 percent above t ose of crude oil equivalency.

95 Algerian Minister of Energy and Petrochemicals Belkacem Nabi, quoted

in MEES, 4/21/80, p. 5.

96 Certainly, the Algerians' expectations of oil prices may have included
such an increase, but that is not clear from the information available.
Their prices at that time were equivalent to $1.80 to $2.40/bbl of oil,
and they asked for an immediate increase to approximately the equivalent
of $12/bbl, roughly the prevailing price. See PE, May 1974, p. 177.
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they argued that the appropriate price would be $6.50/MMBtu in 1985, or

about three times the then-prevailing price!9 7

Algeria has never attained its pricing goals. It was, however,

highly successful in repeatedly convincing customers to accept higher

prices, and has (like others) introduced oil price-indexation into its

contracts. It also managed to convert a number of contracts from c.i.f.

pricing (i.e., pricing related to end-use markets) to f.o.b. pricing

(i.e., "value" pricing).9 8

Their success occurred due to the fears of customers during the

past oil crises that their energy supplies would be inadequate, reflecting

their belief that prices were not as important as locating supplies.

Actual users had little influence (either politically or through the

marketplace) until the gas was delivered. Both the French and Italian gas

utilities resisted Algerian price increases, but their respective

governments overrode them, and provided subsidies to offset the

higher-than-market prices. The Italian government agreed to pay about

$0.50/Mcf of the price (depending on exchange rates), or more than 10

percent. The French government similarly agreed to a 13.5 percent subsidy

Ait-Laoussine, 1979, p. 9, quoting himself. The same caveat applies
as in the previous footnote.

98 Ait-Laoussine, 1980, p. 65, criticized this practice, both because
of problems with keeping the gas competitive, but also because "...energy
prices are expected to increase faster than the transportation
charges...," meaning that buyers would receive the rents from the
resulting disparity in c.i.f. prices for gas and oil.
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to Gaz de France (GdF), which was subsequently rescinded due to budgetary

constraints.

When the gas did arrive, customers refused to buy it in the

quantities expected. The demand for energy in general had been

overestimated, and in addition natural gas prices were losing their

competitive advantage. Although government planners felt that gas

imports were much preferable to oil imports, consumers held a different

view of the differential value of the two. As the price of gas rose in

response to renegotiated gas contracts, consumers were less likely to

switch to gas.

The recent fall in oil prices has led to strong demands for a

reduction in LNG prices. Algeria, maintaining the fiction that its

crude oil still is selling at official pre-crash prices, has refused.

As a result, the Belgians and Italians unilaterally lowered the price

they were paying. Instead of $3.81/Mcf for LNG f.o.b. Algeria and

$3.45/Mcf for pipeline gas at the Tunisian border, for Belgium and

Italy respectively, they are now paying $2.30/Mcf and $2.00/Mcf (f.o.b.)

while awaiting conclusion of the renegotiation process.100

At the same time, the French and Spanish have agreed to an interim

price on the order of $3.18/Mcf f.o.b. (about $3.60 c.i.f.), indexed to

The French government did agree to allow GdF to increase prices to
offset the loss of the subsidy. See PIW, 3/12/84, p. 4. Even with the
subsidy, GdF claimed that half its 1982deficit was due to the excessive
price for Algerian LNG. See PIW, 5/2/83, p. 3.

100 ibid. They have stated that any difference in the price that is
finalTynegotiated will be paid (or demanded) retroactively.
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Dutch and Soviet gas export prices rather than to crude oil prices.1 01

Reports suggest that this is an interim price and that negotiations

for a new, long-term pricing formula are still underway.10 2

The future direction of Algerian policy is not clear. Although a

recent statement by the Energy Minister admitted that it is not possible

to market a fuel that is not priced competitively, 10 3 the Director General

of Sonatrach expressed optimism over regaining sales to the U.S. market,

based on his assessment of the lack of available gas in Canada and

Mexico.10 4 Considering the glut in the U.S. natural gas market, and with

current spot prices at $1.50/Mcf, LNG imports appear extremely unlikely,

at least at prices comparable to those paid in Western Europe.

This optimism no doubt is based on Algeria's past successes in

obtaining sales at prices above those prevailing in the market. Algeria

has denied that its prices were political in nature,10 5 but at the same

time it has sought to reinitiate the defunct contracts both through its

political contacts10 6 and by putting pressure on those U.S. banks through

which it has loans to use their influence with the importing pipelines.10 7

101 See IGR, 4/11/86, pp. 1-3.

102 ibid.

103
Summer of 1985, cited in PIW, 9/16/85, p. 5.

104 OPEC Bulletin, July/August 1985, p. 57.

105 IGR, 10/26/84, p. 11.

106 Such was referred to during a March 1985 visit to the United States
by Algerian President Benjedid. See PIW, 3/25/85, p. 6.

107 WSJ, 3/28/84, p. 36.
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At the same time, Algeria is seeking new contracts outside its

traditional markets. A small (1 Bcm/yr, or 35 Bcf/yr) barter contract

was signed with Brazil last year, which would have used Algerian LNG

tankers to deliver and regasify the natural gas at a reported price of

$4.00 to $4.5/Mcf, c.i.f.1 0 8 However, the contract failed to achieve

approval due to internal disputes in Brazil. 10 9 The Algerians also

have sought customers in the Pacific basin, but at crude oil-equivalency

prices and given the LNG glut in that market, customers have no incentive

to buy additional supplies from a new source.1l0

The Economics of Algerian Natural Gas Supply

In arguing for higher LNG prices, Algeria repeatedly has suggested

that the complexity and expense of the liquefaction process requires

prices higher than those being paid by customers. Whatever the merit

of this argument, cost is an important criteria in investment decisions.

Specifically, we need to know the returns that Algeria requires to provide

natural gas to the Western European market. To that end, the costs of gas

production, liquefaction, and transportation are examined.

At present, the Hassi R'Mel field provides most of Algeria's natural

gas production, and an approximate cost can be estimated from available

data. Table 30 shows that the development/operating cost of Hassi R'Mel

is approximately $0.05/Mcf, due to its shallow depth and prolific

108 MEES, 3/25/85, p. A7.

109 IGR, 7/19/85, p. 1.

110
IGR, 11/22/85, p. 1.
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Table 3-30

Algerian Gas Development-Operating Costs

Hassi R'Mel

1 Drilling and equipping costs per well 530 ($ M)

2 Allowance for non-drilling costs per well 400 ($ M)
3 Allowance for gathering per well 280 ($ M)
4 Total development costs per well 1210 ($ M)

5 Depletion 0.01

6 Annual development-operating costs per well 218 ($ M)

7 Development-operating costs per day per well 600 ($)

8 Average production rate per well 120 (MMcfd)
9 Average development-operating costs as sold 0.050 ($/Mcf)
10 Marginal development-operating costs as sold 0.054 ($/Mcf)
11 Development costs in ground 0.0003 ($/Mcf)

Sources:

1. Joint Association Survey, 1984, figure for 7,500', Onshore Texas.
1984 development costs converted to $ 1985 using
the implicit price deflator from Economic Report of
_the President.

2. Assumed to be 75Z of line 1.

3. Assumed to be 30% of line 1 + line 2.

5. 1984 Algerian production / Algerian reserves at year
end from Oil and Gas Journal, December 31, 1984, p. 74.

6. Line 4 * (0.12 + 0.01 + 0.05), allowing 12X discount
rate, 1 depletion, and 5 operating costs.

7. Line 6 / 365.

8. International Petroleum Encyclopedia, 1977, p. 239.

9. Line 7 / ((line 8) * 1000).
10. (line 9) * ((line 5 + i) / i).

11. development costs at wellhead = line 4 * 0.13 / 43,800 MMcf/
year = $0.004/Mcf (0.13 = depletion + discount rate,
43,800 = yearly production).
Development costs in ground = development costs at wellhead
divided by (1 + (i / a)) i = 0.12, a = 0 .01.
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production per well. (Any error will be insignificant on an absolute

scale.)

Once produced, the gas must be transported. To transport gas from

Hassi R'Mel to Arzew requires a 510 kilometer pipeline. In 1984, a

contract for $200-$300 million was let to expand capacity by 5 Bcm/yr

(175 Bcf/yr) by looping the existing line.ll Using the methodology

described previously, yields a transportation cost of $0.29/Mcf, which

is in close agreement with the estimate of $0.25/Mcf made in the 1982

IEA report.1 1 2 The distance to Skikda, where 8.5 Bcm/yr (300 Bcf/yr, or

27 percent) of the liquefaction capacity is located, is about one-quarter

longer, and the distance to Cape Bon in Tunisia, where the TransMed

pipeline begins, is about twice that. From the Rhourde Nouss field to

Hassi R'Mel is about the same distance as from Hassi R'Mel to Arzew. The

resulting transportation costs to the various exit points are shown in

Table 31.

The major transportation costs are incurred after the gas has

reached the sea. According to the 1986 IEA report, the Transmed pipeline,

at 12 Bcm/yr (425 Bcf/yr) capacity, cost $1.6 billion, although this

includes the Algerian section.1 13 Subtracting the onshore section, brings

PIW, 8/20/84, p. 6, put the cost at $300 million, while WSJ, 8/15/84,
p. 3ut it at $196 million. The latter report conceivably could exclude
subcontracts, some materials, etc., so we have used the higher number.

112 op. cit., p. 127. The IEA estimate is from Hassi R'Mel to the
Tunislanborder, which is slightly further than to Arzew. This cost
estimate is approximately one-third higher than U.S. marginal pipeline
costs.

113
p.2 cit., p. 78. PE, July 1983, p. 257 put the cost at $3 billion.
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TABLE 3-31

ALGERIAN NATURAL GAS COSTS
($/Mcf)

COSTS Hassi R'Mel Rhourde Nousse

Production 0.050 0.100
Transportation

to Arzew 0.300 0.600
to Skikda 0.375 0.675
to Transmed 0.600 0.900

LNG costs
Capital costs 0.600 0.600
Operating (3%) 0.140 0.140
Fuel (10% input)

Arzew 0.035 0.070
Skikda 0.043 0.078

Total liquefaction costs
Arzew 0.775 0.810
Skikda 0.850 0.885

"fob" cost
Arzew 1.125 1.510
Skikda 1.275 1.660
Transmed 0.650 1.000

Transport costs (exAlgeria)
to S. France 0.110
to Zeebrugge 0.440
to Italy 0.400

Total costs, cif
to S. France

Arzew 1.235 1.620
Skikda 1.715 2.100

to Zeebrugge 1.715 2.100
to Italy 1.050 1.400

Source: See text.
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the capital cost down to about $1 billion. (This is probably too

high.)11 4 Applying the previously described method to this capital cost

yields a transportation cost of $0.40/Mcf.1 15

There is a possibility that capacity will be boosted to 18 Bcm/yr

(635 Bcf/yr), but since looping will be necessary to accomplish this,

rather than just additional compression, costs for incremental volumes

will not fall significantly.

The LNG plants at Arzew apparently cost on the order of $2.6

billion for 15.5 Bcm/yr (550 Bcf/yr) of capacity.1 16 Using this as a

base cost1 17 yields liquefaction costs of $0.775 to $0.885/Mcf, as

shown in Table 31. The table also compares this cost with costs to the

point of import for the pipeline. Most other estimates of liquefaction

costs are around $1.00/Mcf.1 1 8 Using our estimates, the total costs to

114 A recent report estimated the cost of the undersea segment between
Tunisia and Sicily at $520 million, or half this amount. The length
from Sicily to the Italian coast is noticably longer, but mostly onshore,
and should be less than half the cost from the Tunisian coast, so the $1
billion estimate seems to be on the high side. See M.T. Bensalem,
"Inspection and Maintenance Techniques for the Algeria-Italy
trans-Mediterranean Pipeline," OGJ, 7/7/86, p. 54.

115 The 1982 IEA report estimated the cost at $1.53/Mcf, which this
included transportation to Northern Europe, but the precise distance is
not stated.

116
$1.7 billion in 1978 dollars, according to PE, August 1978, p. 348.

The cost was estimated at the beginning of the Foject at exactly half
that (PE, October 1974, p. 378), but such escalation was common for this
type oproject during the mid-1970s. See the Asia-Pacific report for a
more detailed discussion of cost escalation, pp. 48-68.

117 Industry sources have informed us that the Arzew plant was
"gold-plated," reflecting the expectations for very high future LNG
prices and little cost control, so we assume that other plants will be
no more expensive.

118 See pp. 26-27 of the Asia-Pacific report.



3-117 -

the point of delivery vary from $1.05 to $2.10/Mcf. Insofar as most

production comes from Arzew, the true range is much more narrow.

Since Hassi R'Mel has the capability to produce at current levels

for as long as a half-century, suggesting that Rhourde Nousse represents

long-term marginal costs overstates the point. Certainly, an additional

$0.30/Mcf does not represent a severe escalation over such a long time

horizon. Any future increments to transportation capacity appear likely

to be via undersea pipelines, suggesting a further moderation of costs.

On the other hand, any new liquefaction capacity probably would be

much more expensive than that built in the late 1970s, given cost

escalation. (This is one reason why Algeria has concentrated on pipeline

deliveries for future incremental volumes.) Also, to the degree to which

the Algerian plants have not been able to reach full capacity for

technical reasons, our costs would be understated. If the low capacity

utilization is the result of price disputes, then that hardly can be

counted as a physical cost.

The Algerians are considered to be unreliable suppliers because

they have often threatened to stop deliveries if their demands for

contract revisions were not met, and have sometimes carried out those

threats. Their gas should therefore sell at a discount, although their

customers may forego that.

The Soviet Union

The Soviet Union has by far the largest reserves of natural gas in

the world. It also has an urgent need for the hard currency that gas

exports offer, as well as a willingness to price its resources
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competitively in order to penetrate markets. Thus, the Soviet Union

has the potential to become the dominant natural gas supplier to Western

Europe.

However, the location of these resources in a forbidding environment

and the vast distances the gas must be transported both suggest that there

are economic constraints on delivery of Soviet gas, especially at a time

of weak oil prices and saturated gas markets. This section attempts to

assess whether continued expansion of gas exports would be profitable to

the Soviet economy.

Perhaps comparing expected natural gas prices with long-run marginal

costs was superfluous when gas sold at $5.50/Mcf, and when Western

European consuming governments were panicked about supply. But the most

recent large-scale contract in Western Europe, for the sale of Norwegian

offshore gas, is nominally at $3.50/Mcf (with renegotiation available at

any time) if oil prices are $28/bbl. So our reference prices will be from

$1.75 to $3.50/Mcf.

Is it profitable to develop Soviet gas at prices clearly much

below this range?

The closed Soviet economy and the difficulty of translating Soviet

costs into Western equivalents make analysis of Soviet gas supplies

difficult, but certain limited inferences can be drawn. Based on what

information is available, it appears that gas can be produced and

delivered from Western Siberia to the West German border for about

$2.00/Mcf. Since most of the costs are in rubles, the Soviets should

be willing to expand their capacity to sell gas to Western Europe, to

say nothing of continuing deliveries, even if Western European natural
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gas prices are around $2.50/Mcf. Until the pipeline from Urengoi reaches

full capacity, the economic incentives to increase sales will be much

higher.

Historical Background

The Soviet natural gas industry developed in a manner similar to

that of the United States. Before World War II, most gas consumed was

manufactured or associated gas. However, during the search for oil to

replace reserves in regions occupied or threatened by the Germans prior

to and during the war, a number of large natural gas deposits were

found in the Northern Caucasus and Volga-Ural areas. At that time,

little effort was made to develop or exploit these resources; indeed,

investment allocated to gas of all types comprised only 3 percent of

all investment in the oil and gas industries in the Fourth Five Year

Plan (1946-50), and only 8 percent in the Fifth (1951-55). Even then, a

large fraction of the allocated investment was devoted to manufactured

119
gas.

The post-WWII search for oil continued to find natural gas at a

far greater rate than the country was exploiting it. From 1946 to

1955, reserves grew twice as fast as production, despite the fact that

only 10 percent of exploratory drilling was devoted specifically to

gas.120 By 1956, the Soviets officially recognized the abundance of

natural gas resources, which led to formulation of an official goal to

119 Robert W. Campbell, The Economics of Soviet Oil and Gas, Resources
for the Future, 1968, pp. 197-8. Hereafter ESOG.

120 ESOG, p. 198.
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increase its share in consumption from 6 percent in 1958 to 21 percent

in 1965.121 Until the mid-1960s, though, the gas industry generally

did not meet its goals, unlike the oil industry. This resulted mainly

from bottlenecks due to shortcomings in completing pipelines, as well

as slowness in developing gas-using equipment.1 2 2

As Soviet reserves became increasingly concentrated in Siberia and

other areas distant from domestic consuming centers, rapid expansion of

the pipeline system became necessary. As a result of this effort,

approximately 74 percent of the country's population is now connected

to natural gas, and only the most remote areas are not part of the

system.123

At the same time, however, gas supplies became so abundant that

the Soviets sought exports to Western Europe, first in the late 1960s,

and then again in the late 1970s, totalling 25 Bcm/yr (880 Bcf/yr) and

24 to 32 Bcm/yr (850 to 1130 Bcf/yr), respectively. 1 2 4 Currently, the

Soviets still have about 15 Bcm/yr (530 Bcf/yr) of excess pipeline

capacity from Urengoi, and are drilling in the Yamburg field with the

intent of adding 200 Bcm/yr (7 Tcf/yr) of production capacity. Some of

this will be devoted to exports to Eastern Europe and some to domestic

consumption; additional exports to Western Europe may be sought in the

future.

121 ibid.

122 ibid.

123 OGJ, 2/10/86, p. 35.

124 A number of the contracts grow slowly. The higher number assumes
all gas, including optional amounts, is sold.
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Resources

"Explored" reserves of natural gas in the Soviet Union total 1,500

Tcf. While proved reserves are not reported separately, they are probably

about half to two-thirds of explored reserves. Hence, Soviet reserves

constitute from 38 to 52 percent of the non-communist world's proved

reserves.12 5 (The quantities are so enormous that the precise amount is

not important.)

Most of these reserves were discovered in the last decade and most

(6 out of the 8 supergiants) are located in Siberia. This largely

reflects discoveries in the Yamal peninsula, where fields like Urengoi

and Yamburg are currently estimated to contain 284 and 168 Tcf,

respectively.1 2 6 The fact that Urengoi alone contains more natural gas

than current U.S. proved reserves underscores the enormity of the resource

base in that area.

Since the first major natural gas discovery in Siberia was only

two decades ago, and the Urengoi field, discovered at that time, is

only now being exploited, the province can hardly be described as mature.

The U.S. Geological Survey estimated West Siberian undiscovered gas at

between 235 and 1519 Tcf (see Table 32), with a mean of 702. For the

total country, they estimate undiscovered natural gas could be 2000 Tcf,

OGJ, 12/31/85. The Soviet Union reports "explored" reserves, which
inclhes proved and some probable, according to the U.S. definition.
See ESOG, p. 60, or USSR Energy Atlas, CIA (1985), p. 13, for an
explanation.

126 OGJ, 12/12/83, p. 57.
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Table 3- 32

Undiscovered Reserves - U.S.S.R.

Undiscovered Reserves
(Tcf)

Low High

Assessment

Mean

Middle Caspian Basin
East Siberian Basin
Volga-Urals Basin
West Siberian and
Kara Sea Basins
Timan-Pechora Basin and
Barents-Northern Kara Shelf

Total of Areas Given

25.5

44.8
19.0

123.0
330.5
142.0

62.8

158.2

63.0

235.0 1519.0 702.0

179.1 498.1 325.2

503.4 2612.6 1311.2

--- Reserves -----
Demon-
strated Inferred
(Tcf) (Tcf)

Cumulative
Production
as of 1/1/81
(Tcf)

Middle Caspian Basin
East Siberian Basin
Volga-Urals Basin
West Siberian and
Kara Sea Basins
Barents-Northern Kara

Total of Areas Given

6.0
32.0

75.0

Shelf
400.0
11.3

524.3

n.a.
25.0
25.0

260.0
n.a.

n.a.

0.8

n.a.

n.a.

n.a.

7.3

n.a.

Notes:

Middle Caspian Basin: Most giant discoveries should be
offshore, the area is oil prone, but gas is more probable

at deeper depths.
East Siberian Basin: At the time of assessment, the area was

in the early stages of exploration with one well per 3200
square kilometers. Most of the wells have been drilled in
previously drilled areas. These wells have found mainly gas.

Volga-Urals Basin: The Orenburg field was discovered in 1975
with 70 Tcf. No major new discoveries are likely.

Timan-Pechora Basin, Barents-Northern Kara Shelf: Only the
Southwest portion of the Timan-Pechora basin is highly
explored. The Barents-Northern Kara Shelf is mostly unex-
plored. Significant possiblilities for finding gas giants
in structural traps ot the Timan-Pechora basin exist. The
eastern and central regions of the Barents-Northern and Kara

Shelf are mainly gas prone.



3-123

Table 3- 32 (continued)

Sources:
James W. Clarke, "Assessment of Undiscovered and Convention-
ally Recoverable Petroleum Resources of the East Siberian
Basin, U.S.S.R.," USGS Open File Report 84-1027, USGS,
Washington, D.C., 1984.

Charles R. Masters, "Assessment of Undiscovered and Convention-
ally Recoverable Petroleum Resources of the Volga-Urals
Basin, U.S.S.R.," USGS Open File Report 81-1027, USGS,
Washington, D.C., 1981.

Charles R. Masters, "Assessment of Undiscovered and Convention-
ally Recoverable Petroleum Resources of the West Siberian and
Kara Sea Basins, U.S.S.R.," USGS Open File Report 81-1147,
USGS, Washington, D.C., 1981.

Gregory F. Ulmishek, "Assessment of Undiscovered and Convention-
ally Recoverable Petroleum Resources of the Timan-Pechora
Basin, and Barents-Northern Kara Shelf, U.S.S.R.," USGS Open File
Report 82-1057, USGS, Washington, D.C., 1982.

Gregory F. Ulmishek and Wyman Harrison, "Assessment of Undiscovered
and Conventionally Recoverable Petroleum Resources of the Middle
Caspian Basin, and Barents-Northern Kara Shelf, U.S.S.R.," USGS
Open File Report 82-296, USGS, Washington, D.C., 1982.



3-124

far greater than in any other region.127 Obviously, the resource base is

not a constraint in terms of future gas supply from the Soviet Union.

Cost escalation, pipeline capacity, and investment policy will be the

determining factors.

The Economics of Soviet Natural Gas Supply

Unfortunately, it is not appropriate to apply the same cost

methodology to Soviet resource development as is used for other countries,

because much of the Soviet expenditures are in rubles, and the income from

export sales is in dollars or other hard currencies. The appropriate

exchange rate between rubles and dollars is a matter of debate among

economists, with the official rate set at 1.3 dollars per ruble. Since

hard currency can be used to obtain goods that are not otherwise available

in the Soviet Union, its ruble value is difficult to measure. In theory,

the Soviets should be willing to spend more money (in rubles) to develop a

natural gas export project than the price (in dollars) they would receive

from it. How much more is not clear, but it is very important in

determining future export policy, especially in an environment of weak

prices.

Of what value are estimates of Soviet natural gas production and

transportation costs? Certainly the Soviets are not indifferent to the

costs, especially where some are in hard currency. Also, if the costs

are known, then indications about opportunity costs can be provided,

127 See, for example, Charles D. Masters, "World Petroleum Resources--a
Perspective," U.S. Geological Survey Open-File Report 85-248, 1985,
p. 20. The IEA (1982), p. 362, shows total CPE remaining gas resources

as exceeding 3000 Tcf.
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given what is known about the costs of substitution, etc. Then, too,

the extent to which costs appear to be increasing is a vital indicator

of changing investment patterns, and of Soviet willingness to continue

exploiting their natural gas reserves.

The estimation of costs will be approached in several ways. First,

an evaluation of what the Urengoi field development would cost in the

United States will be made for purposes of comparison. Second, the costs

of transporting the gas to the West German border will be provided,

including the hard currency costs for the Yamal pipeline now coming into

operation. Then development costs for the Yamburg field will be

presented, to provide some idea of what trends the Soviets face as they

exploit their resources in less tractable areas. Finally, there will be

some discussion of the trends in long-run marginal costs as demonstrated

by both field development described above and other available indicators.

Urengoi as the North Slope

In previous studies, the U.S. Gulf Coast was used as a surrogate

to estimate supply costs in Southeast Asia, given the similarities in

operating conditions in the two regions.128 However, the only places

outside the Soviet Union that resemble Siberia are the North Slope of

Alaska and the Canadian Arctic. While gas fields in northern Alaska

are 200 miles and more above the Arctic circle, the weather there is

milder than in the Urengoi field, which straddles the Arctic Circle.

In fact, no natural gas is being produced in the North American Arctic,

128 See East Asia/Pacific report, supply chapter, p. 17.
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beyond the associated gas at Prudhoe Bay (which is mostly reinjected),

so actual development costs are not available.

However, in the past few years many wells have been drilled in

these areas, allowing some indication of well costs. In Alaska, the

average cost for onshore gas wells between 5000 and 10,000 feet deep

was $3.5 million from 1979 to 1984, which would consist mainly of gas

wells on the Kenai Peninsula in the south.1 2 9 Total Alaskan onshore

well costs, including oil wells and dry holes, dropped from $3.4 million

per well in 1981 to $1.8 million in 1984.130 In the Canadian Arctic,

onshore wells in the Mackenzie Delta were estimated at $1.5 to 2.25

million.1 31

Assuming the operating environment at Urengoi to be harsher than

in the North American Arctic and the infrastructure less developed, we

use $5 million as a per-well cost in the Urengoi field. Making a similar

allowance for non-drilling costs and dry holes,1 3 2 we derive total

129 Joint Association Survey of Drilling Costs, American Petroleum
Institute et. al., various years. Hereafter JAS. The depth at Urengoi
is put at 3400 to 10,400 feet according to IPE, 1977, p. 242, but
Gustafson (1983), p. 79, indicates that the average well depth drilled
at Urengoi in 1979 was 5350 feet.

130 JAS. For wells between 7,500 and 9,999 feet deep, in current
dollars.

131 Geological Survey of Canada, Oil and Natural Gas Resources of Canada
1983, Energy Mines and Resources, Canada, 1984, p. 24. The figure given
is $2 to 3 million in 1983 Canadian dollars, converted at .75 C$/US$.
Costs probably have decreased since then. While the figure is for all
wells, shallow oil and gas wells in the United States show similar costs.
See JAS.

132 Adelman and Ward, Annual Review of Energy, 1979. Also see the

discussion in Table 5 of the East Asia/Pacific report, Supply Chapter,
p. 18.
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per-well costs of $10 million for the Urengoi field.1 3 3 Gathering costs

are assumed to be 10 percent of per-well costs, or $1 million per well.

Thus, total development costs per well are $11 million. Applyling a

discount rate of 12 percent and a depletion rate of 3.1 percent,1 3 4

the annual development-operating costs per well are $2.2 million. 135

Since well productivity appears to be 15 to 20 MMcf/d, 13 6 and well

cost is $6300/d, above-ground costs would be $0.42 to $0.56/Mcf, if

this field were being developed in North America.

133 In ibid., an allowance was made for (a) a pipeline to shore and (b)

the hig-ercosts of overseas operations. Together they were assumed to
increase per-well costs by 50 percent. At Urengoi, we assume that
Soviet costs are lower than U.S. costs due to lower labor costs, for
example, but that this is offset by lower efficiency in the Soviet
industry. Therefore, no adjustment is made. The effect of spending
rubles is discussed elsewhere. As shown below, this is roughly the
same as the estimated costs per well in the Yamburg field, which is

located further north and has a less developed infrastructure, suggesting
the Urengoi well costs should be lower. However, the Yamburg field is
much shallower, which would offset the harsher conditions.

134 Peak production is planned for 250 Bcm/yr (8.8 Tcf/yr), according
to Gustafson (1983), p. 78, and initial reserves were 285.6 Tcf, according
to OGJ, 9/22/86, p. 57.

135 Operating costs usually range from 3 to 5 percent of total capital
costs. Total development costs can be converted to annual
development-operating costs by multiplying them by the discount rate
plus the depletion rate plus operating costs, i.e., $11 million * (.12
+ .031 + .05). See Appendix A.

136 According to Gustafson, (1983) p. 80, 1000 new production wells

were planned between 1981 and 1985, intended to increase production by
200 Bcm/yr (19.3 MMcf/well/d). In fact, it appears that production
increased by 150 Bcm/yr, but the number of wells drilled to produce
that result is not known. If 1000 wells were drilled, then well
productivity would be 15 MMcf/d. This is an underestimate, since some
wells are offsetting depletion, but the depletion rate was not large in
this period, so we have chosen to ignore it.
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Transportation of Natural Gas from the Yamal Peninsula

In size and scope, the Urengoi Pipeline resembles nothing so much

as the Alaska Natural Gas Transportation System (ANGTS). Planned to

transport 3.9 Bcf/d (1.4 cf/yr), versus 3.2 Bcf/d or 1.2 Tcf/yr for

the ANGTS system, the pipeline covers 2740 miles to the Czechoslovakian

border1 37 (compared to 4800 miles for the ANGTS system), although the

Urengoi passes through only 200 miles of continuous and discontinuous

permafrost (plus 200 miles of sporadic permafrost) versus 770 miles for

ANGTS.1 38 Unlike the Alaskan line, the Soviets use larger pipe (56

inch) with lower compression (1100 psi being the norm, with plans to

raise that to 1469).139 Still, given cost estimates as high as $50

billion for the ANGTS project, the capital costs for the Yamal pipeline

are obviously large.

As discussed in a previous study,14 0 pipeline costs in Arctic

regions are subject to debate. However, for the non-Arctic region, a

transportation cost between $1.50 and $2.00/Mcf would be expected,

137 Plus roughly 600 kilometers to the West German border.

138 See Executive Office of the President, Energy Policy and Planning,
Decision and Report to Congress on the Alaska Natural Gas Transportation
System, September 1977 for information on the ANGTS system, and Central
Intelligence Agency, USSR Energy Atlas January 1985, for the Urengoi
Pipeline. The CIA lists the pipeline capacity at 32 Bcm/yr or 3.1 Bcf/d,
but most other sources put it at 40 Bcm/yr, or 3.9 Bcf/day, reflecting the
capacity for a 56 inch pipe with high compression.

139 The Soviets are apparently having difficulties overcoming the
technical problems inherent in the higher pressures, although they
claim to be capable of producing pipe that can operate at those
pressures. See OGJ, 7/4/83, p. 49. The Alaskan line was planned with
48-inch pipe, with -Fpressures as high as 1680 psi under consideration
for some parts of the line. See ANGTS report, p. 75.

140 North American report, Appendix B.
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using U.S. cost factors.14 1 The capital costs would run on the order

of $12 to $20 billion for that segment.

For the Arctic segment, the best comparison available is the planned

Polar Gas pipeline from the Beaufort Sea, which would deliver an annual

average of 9.8 Bcm/yr (345 Bcf/yr) for a capital cost of $3.3 billion.14 2

Using the methods described above, the cost for new Arctic pipelines

appears to be 12.5 cents per Mcf per 100 miles. Thus, the Arctic segment

of the Urengoi pipeline appears to cost about $0.50/Mcf.

In fact, total costs for the Urengoi pipeline have been variously

reported as ranging from $15 to $22 billion.14 3 This suggests that

pipeline costs will be from $1.30 to $3.30/Mcf, depending on assumptions

about throughput and rate of return. Table 33 shows the sensitivity of

per-unit costs to the different assumptions.

Another approach is to use the Soviet rule of thumb of 1 billion

rubles per 1000 kilometers of 56-inch pipeline.14 4 This yields a cost

of $6.5 billion to the West German border, or less than $1/Mcf, well

141
In the early 1980s, 7.5 cents/Mcf/100 miles seemed to be the cost

for new large-diameter pipelines, yielding the $2/Mcf estimated. More
recently, construction costs have dropped by perhaps 25 percent, bringing
the transportation costs down to $1.5/Mcf. See the East Asia/Pacific
report, p. 66. For the spur to Turkey, costs will be under 5

cents/Mcf/100 miles, suggesting the lower number is more appropriate. See
OGJ, 7/14/86, p. 44.

142 OGJ, 1/6/86, pp. 76-80.

143 Oil & Gas Pocket Reference 1984, Armco National Supply Co., p. 37,
and CIA, USSR Energy Atlas, p. 11, respectively.

Gustafson, (1983) p. 39.
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TABLE 3-33
SOVIET PIPELINE

URENGOI TO
($/Mcf)

REAL RATE OF
THROUGHPUT 5%
(A. Capital Cost is $6.5 bil
30 Bcm/yr (1060 Bcf/yr) 0
35 Bcm/yr (1236 Bcf/yr) 0
40 Bcm/yr (1412 Bcf/yr) 0

10%
lion)
.74
.64
.56

COSTS
BORDER

RETURN

0.98
0.84
0.74

(B. Capital
30 Bcm/yr (1
35 Bcm/yr (1
40 Bcm/yr (1

(C. Capital
30 Bcm/yr (1
35 Bcm/yr (1
40 Bcm/yr (1

Cost is $15
060 Bcf/yr)
236 Bcf/yr)
412 Bcf/yr)

Cost is $22
060 Bcf/yr)
236 Bcf/yr)
412 Bcf/yr)

Project life assumed at 25
See text for sources.

billion)
1.71
1.47
1.29

billion)
2.51
2.15
1.89

years.

2.27
1.94
1.70

3.32
2.85
2.50
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below the other estimates.1 4 5 However, adding in the Arctic segment

separately, and using the cost factors given above, brings the estimate to

between $1.25 and $1.50/Mcf, which is at the low end of the range from the

other estimates.

Why this large discrepancy in pipeline costs? In the first place,

while they do not discuss their methodology, the CIA frequently has

estimated Soviet expenditures by measuring the equivalent costs in the

United States, i.e., using U.S. labor rates, raw materials costs, etc. 46

While this is a useful approach, it overstates the costs as the Soviets

perceive them.

On the other hand, one would expect the CIA to be well-informed

about the hard currency costs of the pipeline (which it put at $7

billion), since that involves correlating information about sales from

Western European companies. Still, where those goods were bartered for

natural gas, and where pricing assumptions for the natural gas were

probably optimistic, the $7 billion may thus be overstated.

14 5 .The only precise Soviet report of pipeline costs is A. I. Shirkovsky,
who in 1965 stated that the 40-inch, 4460 kilometer Gasli-Ural line cost
504 million rubles. Assuming an annual throughput of 350 Bcf, and using
the then-official exchange rate of 0.90 U.S. dollars to the ruble,
inflated to 1985 U.S. dollars, yields a cost of 2.8 cents per Mcf per 100
miles, about half the current U.S. marginal pipeline costs. For the
Urengoi field (non-Arctic segment), this would be the equivalent of
$0.66/Mcf. The age of the source reduces the reliability of this
estimate. See A. I. Shirkovsky, "Problems of the Development of
Gas-Condensate Fields and Modern Ideas for Their Solution," in Proceedings
of the Seminar on the Development and Utilization of Natural Gas
Resources, Mineral Resources Development Series, No. 25, United Nations,
New York, 1965, pp. 158-167.

146 This method is used in estimating the Soviet defense budget.
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Certainly the $6.5 billion estimate seems low, allowing little

margin for any ruble expenditures even if the CIA's estimate of hard

currency was too high by a factor of 2. Thus, we believe the appropriate

figure is somewhere between the two lower ones, which, depending on

throughput and rate-of-return assumptions, yields a cost of $1 to $2/Mcf.

Delivered costs of Soviet natural gas from Urengoi to the West

German border then appears to be approximately $2/Mcf, plus or minus

about $0.50/Mcf. Since much of these costs are borne in rubles, it

would seem that the Soviets will be willing to sell natural gas at very

competitive prices.

Yamburg Field Economics

Unlike the Urengoi field, we have some direct data about the costs

of developing the Yamburg field, which, while slightly smaller than

Urengoi, is still the second largest in the world, with reserves of 168

Tcf.1 4 7 Using a cost figure of $5.2 billion for development of 195

Bcm/yr (6.88 Tcf/yr) of production yields a development/operating cost

of $0.16/Mcf.1 4 8

The astute reader will note that this is much cheaper than for the

Urengoi field. Two factors are at work that make such an estimate

147 OGJ, 9/22/86, p. 57.

148 Field capital expenditures are listed as 4 billion rubles in WO,

2/1/85, p. 9, and converted at the official exchange rate of 1.3 Zillars
per ruble, yielding an in-ground development cost of $O.031/Mcf. The
depletion rate is 4.1 percent, according to the reserve figure given above
and the production figure of 195 Bcm/yr given in PE, 12/85, p. 454. Using

a 12 percent discount rate gives us an above-ground development cost of
$0.122/Mcf. (See footnote 135.) Operating costs, at 5 percent of total
capital expenditures divided by annual production, come to $O.038/Mcf.
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plausible. First, the Yamburg field is shallower, about 3500 feet deep

versus over 5000 feet for Urengoi.1 4 9 This lowers drilling costs

substantially, so that the per-well costs in Yamburg, about $10.4 million,

are roughly the same as those estimated for Urengoi.150 Second, well

productivity at Yamburg appears to be about twice as high as at Urengoi,

again acting to depress relative costs.151

To render this estimate comparable to that for Urengoi requires

adding the pipeline cost to the Urengoi field, at the start of the

trunkline to the west. Using our estimate of 12.2 cents per Mcf per

100 miles for Arctic conditions adds $0.146/Mcf to Yamburg costs, making

the total cost at the trunkline entrance $0.306/Mcf. Thus, Yamburg gas

can apparently be delivered to the West German border for approximately

the same amount as Urengoi gas.

As confirmation, E. G. Altunin, the Tyumen bkom Secretary for

industry, estimated that each increment of 35 Bcm (1235 Bcf) from north

Yamal would cost an additional 1.5 billion rubles.1 5 2 This is roughly

double the previous figure, but probably includes pipeline costs.

Using this as the field development cost and applying the method given

149 IPE, 1977, p. 242, and see above for Urengoi.

150 The Urengoi estimate is obviously much less certain. See WO, 2/1/85,
p. 9, for field capital expenditures and number of wells.

151
With 6.88 Tcf/yr planned peak output and 500 wells being drilled,

per-well production would be 38 MMcf/d. WO, 8/86, p. 72, puts per-well
yield in West Siberia at as high as 35 to 45 MMcf/d.

152
Gustafson, (1983) p. 49. This presumably means that the capital

costs for 35 Bcm/yr (1.2 Tcf/yr) of capacity are an incremental 1.5
billion rubles, not 1.5 billion rubles for each 35 Bcm of gas produced,
which would equate to an additional $1.60/Mcf, which seems to be an
excessive amount.
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in the paragraph above would suggest an additional $0.33/Mcf in

development-operating costs, which is very similar to the estimate

above of development/operating and transportation costs to the Urengoi

field.1 53

Marginal Cost Trends

Estimating the costs of any given new Soviet field development

does not conclusively demonstrate marginal costs for the country as a

whole. This reflects the fact that Soviet gas resources are still in

the early stages of development, and the country is not a competitive

environment.

Recent reports suggest that the marginal costs of Soviet oil

production are rising rapidly. Thane Gustafson estimated that investment

in oil more than doubled from 1976 to 1984, while production barely

increased.1 5 4 For natural gas, investment tripled from 1971 to 1979,

while production doubled, but the rapid expansion which occurred would

tend to inflate the increase in marginal costs.1 5 5

On the other hand, the largest resources are, as mentioned, in

Siberia, and the large discoveries available in the Yamal area now are

planned for exploitation. Specifically, the Yamburg field is being

developed as a follow-up to the Urengoi field and, if demand exists,

153 An annual capital charge is derived by multiplying the total capital

expenditure times the discount rate (12 percent) plus the depletion rate

(4.1 percent). Annual operating costs are assumed equal to 5 percent of

total capital expenditures.

154 NYT, 10/31/85, p. D17.

155 Gustafson, (1983) p. 7.
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its gas will be marketed to Western Europe in the same way as the Urengoi

field was, i.e., a large-diameter pipeline transporting large incremental

volumes. At present, it is likely to be used to meet increases in

domestic consumption and deliveries to Eastern Europe, which has already

agreed to take 20 to 22 Bcm/yr (710 to 780 Bcf/yr), and to replace and

supplement older, declining fields.

Thus, the incremental cost of developing the Yamburg field can be

used as an indicator of marginal costs in the Soviet Union for some

time to come. Since Yamburg costs are very close to Urengoi costs,

relatively flat marginal costs are implied.

Ed Hewett used reported Soviet investment figures to calculate the

marginal costs for oil and gas over the last 15 years, shown in Table

34. As can be seen, oil costs indeed have risen rapidly, while gas

costs have been relatively stable.1 56 This can be explained in several

ways. Oil to date has been more intensively exploited in the Soviet

Union than gas. The Soviets still are developing their supergiant gas

fields. They also have benefitted from the increasing infrastructure

in Siberia, as well as from their own advances in pipeline technology,

which, as Gustafson points out, have made the northern gas fields economic

today, whereas ten years ago their development was postponed. 57

156
Transportation costs have risen, reflecting the greater distance of

the new Siberian supplies, but these should remain stable for some
time, as most incremental supplies come from the Yamal peninsula.

157 Hewitt, op. cit., p. 36. The pipeline technology existed ten years

ago, but the"~bi1ity to produce it was much more limited and much higher
imports from the West would have been required.
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TABLE 3-34

MARGINAL COST TRENDS IN SOVIET GAS SUPPLY
(Investment per net increment to energy output)

1969 rubles/bdoe

Extraction Extraction Plus
Period Costs Transportation Costs

1966-70 3812 n.a.
1971-75 4765 9013
1976-80 4279 11904
1980 4717 n.a.

Source: Hewett (1984), p. 41.
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Thus, the expansion of pipelines, gathering systems, roads, and

other infrastructure in Siberia should act to depress growth in long-term

marginal costs. The presence of extremely large reserves in one area

should have a definite dampening effect on incremental costs, although the

more rapidly development is pushed, the higher the costs will rise.

Still, since most costs are pipeline costs (see Figure 9) and pipelines

are not subject to increasing costs, marginal costs should not increase

dramatically in Soviet gas production.

Soviet Gas and the Soviet Economy

An examination of the Soviet economy is beyond the scope of this

chapter, but the effects of recent developments can be analyzed, if

only qualitatively. These include the drop in oil prices on the Soviet

economy, the need for hard currency, and the losses from lower oil

prices, as well as the impact of General Secretary Mikhail Gorbachev

and his new economic policies.

Because of the insulation of the Soviet monetary system from the

West, and the inability of the domestic manufacturing sector to deliver

goods of quality and capability similar to Western goods (in most

instances), the Soviet Union has a particular need for "hard" currency,

that is, money that can be used to purchase goods in Western countries.

Since the Soviet ruble is valued by the government at artificially high

prices, and due to the low demand for finished products from the Eastern

Bloc, most purchases in the West require that the Soviets pay with money

earned from exports to the West, i.e., "hard" currency.
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Figure 3-9
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As Figure 10 shows, these exports have grown substantially, even

in the last decade.1 5 8 In part, this is due to much higher oil revenues,

resulting from the explosion in oil prices, as well as from a growth in

oil exports to the West. (See Figure 11.) All this has helped the

Soviets keep their foreign debt low and stable, much more so than in most

of their allies. In the early 1980s, gross hard currency debt to the West

remained at approximately $20 billion, while net debt remained at about

half that.15 9

Falling oil prices and the weaker dollar could alter that trend.

Indications are that falling oil prices are beginning to result in an

increase in that debt.1 6 0 Even the contracted-for increase in natural

gas deliveries and a reversal of the decline in oil production will

leave the country with a drastic decline in hard currency earnings.1 6 1

Short-term effects, such as this year's harvest and the Chernobyl nuclear

accident, are difficult to assess; the weather is unpredictable and there

is still little data on the economic impact of the Chernobyl disaster.

158 Note that the figures are in nominal dollars.

159 CIA, op. cit., 1985, p. 73, puts the 1984 gross debt at $20.2 billion,
and the net dTTE at $10.4 billion, a decline from $12.5 billion in 1981.

160 Syndicated Western bank loans to the Soviet Union grew from $100
million in 1983 to $900 million in 1984 and $1.5 billion in 1985. So
far this year, two syndicated loans have been announced, totalling $675
million. See WSJ, 4/11/86, p. 31.

161 Oil production was reportedly up 1.4 percent in the first quarter,
according to OGJ, 6/9/86, p. 30. The intensive efforts to bring shut-in
wells on-line and debottleneck the industry should see a short-term spurt
in production, though it may not last long. Some observers have estimated
the decline in hard currency earnings at $4 to $5 billion, (WSJ, 4/11/86,
p. 31) while the IMF has estimated a increase in the deficit7T $5 to $6

billion. (NYT, 5/5/86, p. A8)
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Figure 3-10
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Figure 3-11

SOVIET OIL EXPORTS
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If, as predicted by Soviet experts, the harvest is good, $3 to $4 billion

in grain imports can be avoided. 1 6 2 (Grain is unlikely to be affected by

fallout.) On the other hand, meat and dairy product imports may have to

be increased, as well as fruit and vegetable imports, due to the impact of

fallout. Still, these items can be reduced in the Soviet diet much more

easily (with less political turmoil) than grain, which is a staple.

The impact of Gorbachev's new economic policy on hard currency

needs is not clear. The new five-year economic plan calls for greater

worker discipline and better use of existing technology and resources,

but not for any major structural changes in the economy. 163 As one

official put it, "The changes must be profound . . . but they must also

be gradual."1 64

It seems as if the intention is to focus on: (1) more decentralized

decision-making, (2) increased efforts on debottlenecking in order to

reduce waste and inefficiency, and (3) more automation and increased use

of computers.

What does this mean for hard currency exports? Successful

debottlenecking, particularly of agriculture, could reduce the need for

hard currency by reducing the amount of food lost due to poor planning,

inadequate transportation facilities, etc. On the other hand,

decentralized authority resulted in a spurt of imports in China, and the

162 See Marshall Goldman, "Chernobyl's Economic Fallout," Boston Globe,
5/11/86, p. A21.

163
NYT, 10/14/85, p. D8.

16 Abel Aganbegyan, director of the Institute on Production Forces and
National Resources, quoted in ibid.
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same may happen in the Soviet Union. Certainly, more imports will

be necessary in order to increase the use of computers and automated

machinery.

The role of natural gas is fairly clear: The Soviet Union has the

capacity to deliver to Western Europe approximately 65 Bcm/yr, (2.3

Tcf/yr) 15 Bcm/yr (530 Bcf/yr) more than it has contracted to deliver

in the short term. By signing several small contracts with Mediterranean

countries,165 it has managed to reduce this surplus, but it can still move

gas to Western Europe without significant further investment. The amount

of hard currency provided by these exports would depend on (a) the price

of oil at the time, and (b) the relative price of delivered natural gas

needed to make the sales. At $3/Mcf, the hard currency revenues from 15

Bcm (530 Bcf) would total $1.6 billion, and at $5/Mcf, $2.6 billion. This

would only partly offset the expected loss in oil revenues in 1986. The

planned Progress pipeline from Yamburg to Eastern Europe is scheduled to

be completed in 1989, with 30 Bcm/yr (1060 Bcf/yr) of capacity, 20 to 22

Bcm/yr (710 to 780 Bcf/yr) of which will be delivered to Comecon

countries. 1 6 6 If the additional 8 to 10 Bcm/yr (280 to 350 Bcf/yr)

capacity is used for hard currency sales, it would result in $1 to 2

billion/yr, although the price on these additional supplies is likely to

165 Greece has a contract for 1.5 Bcm/yr (53 Bcf/yr) with options on

another 3 Bcm/yr (105 Bcf/yr), and Turkey has agreed to take an initial

1.5 Bcm/yr, with options on an additional 6 Bcm/yr (210 Bcf/yr).

166 See OGJ Newlsetter, 4/21/86, PIW, 8/12/85, p. 8, and IGR, 3/30/84,

p. 5. Since the line is composed-c6 56 inch pipe, it seems reasonable

to assume that capacity could be expanded to 40 Bcm/yr (1.4 Tcf/yr)
with the addition of appropriate compressors. PE, 5/84, p. 188, put
planned capacity at over 40 Bcm/yr.
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be lower than Urengoi gas, especially in light of the recently-signed

Troll contracts.

Investment Policy in the Energy Industries

The new economic plan contains a message for the oil and gas

producing industries as well. The Soviet version of the old American

axiom, is, "If it ain't broke, don't spend money on it." Investment

in the Soviet Union frequently emphasizes the troubled sectors of the

economy, often at the expense of sectors that are performing well.

Thus, when the oil sector was surpassing its quotas in the early 1960s,

the government shifted its emphasis to gas. Now that gas is outperforming

oil, relative to their respective quotas, the focus of investment is

shifting back toward oil. However, officials have insisted that

investment levels in gas will be maintained, and Gorbachev himself has

noted the incipient problems in the Yamal producing area.16 7

The Security Question

Much analysis of Western Europe natural gas markets has as its

origin the fears of excessive dependence on the Soviet Union for natural

gas supplies, although to a large degree those fears are higher outside

Western Europe than within it. This is not the first time a Soviet

pipeline has raised security concerns: In 1962-63, the Kennedy

administration pressured Western Europeans to deny export of wide-diameter

pipe and other equipment needed by the Soviets for to complete their

167 See OGJ, 10/7/85, p. 66.
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"Pipeline of Friendship". The arguments then were very similar to those

made by the Reagan administration: The infrastructure would benefit the

Soviet military, dependence on the Soviet Union for oil supplies would

increase Western European vulnerability to Soviet pressure, and the

improvement Soviet economic conditions would ease pressure on the Soviet

military budget.1 6 8 The outcome then was different, as a combination of

political pressure and offers of cheap oil supplies from multinationals

convinced the Western Europeans to cooperate. Considering that oil is a

much more easily traded and replaced commodity during a disruption than is

gas, it is interesting that the oil deal was cancelled while the gas

pipeline went forward.

The question of political, economic, and/or military vulnerability

resulting from dependence on a particular supply source is beyond the

scope of this chapter. 1 6 9 However, the question of security of supply

and policy issues arising from dependence on a supply source that is

perceived to be unstable or insecure do need to be addressed.

The first point is that the United States should not throw stones

on the issue of supply security. Aside from embargoes on items such as

grain, the United States frequently has resorted to political intervention

in the oil industry. In recent years, this has included boycotts of oil

from Libya and Iran, as well as of oil field equipment for Vietnam and the

168 See Bruce W. Jentleson, "East-West Energy Trade and Domestic
Politics," International Organization, Vol. 38, No. 4, Autumn 1984, for
an excellent summary and a review of the vehemence with which many
American politicians opposed the pipeline.

169 Some discussions of the topic include Adamson (1985), Hewett (1984),

Niebling, Russell and Shubik (1984), and Stern (1980).
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Soviet Union. The Reagan administration even has attempted to interfere

in the activities of foreign subsidiaries of U.S. companies that attempted

to deliver equipment to the Soviet Union.

Of course, other gas suppliers have not always proven entirely

reliable, as discussed below. On the other hand, where importers of

Soviet gas have argued that the Soviet Union is particularly reliable,

some observations must be made.

The Soviet Union, on rare occasions, has resorted to boycotts of

fuels for political reasons. During the 1956 Suez Crisis, it announced

an oil boycott of Israel, a notable action at a time when the oil industry

was less politicized.1 7 0 More recently, the chief of the Soviet coal

union announced that no Soviet fuel would be delivered to the United

Kingdom until the coal miners' strike ended, although the practical impact

was minor.171 Other instances include actions against Albania, Australia,

China, France, Rumania, the United Kingdom, the United States and

Yugoslavia, but for the most part the Soviets have appeared to be more

concerned with maintaining their exports to hard currency countries.172

170 In 1955, the Soviet Union provided one quarter of Israel's oil
supplies, but ceased deliveries following the Israel's military moves
in the Sinai. Although oil and politics always have been closely tied,
an embargo at that time was unusual enough to stand out, and was cited
as a reason for the wariness of oil importers in considering purchases
of Soviet oil in PPS, January 1957, p. 7.

171 See WSJ, 10/30/84, p. 30, and PIW, 2/4/85, p. 11. Freight costs
rose, thougih, since Soviet ships hadbackhauled fuel oil from the
Mediterranean to the United Kingdom.

172
172 A good source on economic sanctions is Gary Clyde Hufbauer and
Jeffrey J. Schott, Economic Sanctions Reconsidered: History and Current
Policy, Institute for International Economics, Washington, D.C., 1985.
Table 1.1, pages 13-20, lists the cases studied. It is worthy of note
that since 1945, the Soviet Union appears on the table 6 times, while the
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One mistake made by many observers is to overemphasize the danger of

embargoes and the intentional withholding of supplies for political

reasons. Security of supply is broader. Intentional disruptions are

the most dangerous, because the causality implies both an attack on a

specific target and an uncertainty about the duration. Further, although

Soviet use of natural gas supplies to gain political leverage seems

unlikely, there remains the possibility of an intentional disruption from

other sources. The Shah of Iran was perceived as a reliable supplier

because he did not participate in the Arab Oil Embargo of 1973, but his

domestic enemies disrupted production and deliveries in order to damage

him.17 3

Soviet natural gas supplies have, in fact, been "disrupted" several

times for seasonal reasons. Since Soviet gas exports are a residual of

production and consumption, with the domestic grid capable of drawing

supplies from the export pipeline as needed, the result has been a

reduction in exports during periods of severe winter weather in the

western Soviet Union. Since this often coincides with cold weather

in Western Europe, some inconvenience has occurred, although the presence

United States is listed 62 times. Sampling bias probably is responsible
for part of the difference between them. Another source which is more
specific to the Soviet Union is John Van Oudenaren, "The Urengoi
Pipeline: Prospects for Soviet Leverage," The Rand Corporation, Santa
Monica, California, December 1984, especially pp. 6-9.

173 There is no suggestion here that a revolution is likely in the

Soviet Union, but it has been known to happen before. Labor actions,
though rare and harshly suppressed, are not unknown, and the war in
Afghanistan has created a large body of people who are dissatified with
the Soviets, although they lack the capacity to affect natural gas
shipments seriously. Afghanistan provides 2.4 Bcm/yr (85 Bcf/yr) to
the Soviet Union, hardly enough to make a significant difference if it
were lost. See BP Review of World Gas.
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of the large Groningen field as a "swing producer" has alleviated the

problem substantially. (Unfortunately, obtaining data on monthly gas

exports and separating the effect of demand changes has proven impossible

to date.)

The aspect of this is the impact on supply in Siberia during

extremely cold winters. Equipment is more prone to failure and workers

less effective when temperatures drop to 65 degrees below zero, as they

sometimes do.1 7 4

There also are reasons to believe that the Soviet export pipeline

may be vulnerable to technical difficulties. For example, the pipelines

from Siberia are laid side by side, only 100 to 150 feet apart, thus

increasing the chances that a leak and explosion in one will affect the

others.1 7 5 Some pipelines apparently have "floated" out of the

permafrost, as the inadequately cooled gas caused the surrounding

permafrost to melt and the pipeline to partially surface. This increases

the likelihood of a rupture.1 7 6 This sort of problem is not unknown in

the Soviet Union; the pipes in the Samotlor oil gathering system are

beginning to experience breaks and explosions, and three or four ruptures

frequently occur simultaneously.17 7

174 Minus 54 degrees Celsius.

175 According to John Kean, President of Nuri Corp., cited in Platts
Oilgram News, 10/28/83, p. 2. A 1985 gas pipeline explosion in Kentucky
left a crater 30 by 100 feet wide, and up to 20 feet deep. See NYT,
4/29/85.

176 ibid.

177 OGJ, 8/12/85, p. 67.
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In addition, there are indications that the Soviets are not

processing all of the liquids from the gas they produce, which places a

greater strain on the compressors.1 7 8 Since the American embargo on

pipeline equipment resulted in greater reliance on domestically-produced

compressors, which presumably are of lower quality, the possibility of

reduced gas flows due to compressor problems cannot be ignored. Loss of

one compressor should not have a major impact on the system, but it will

increase the strain on the other compressors, and thus the likelihood of

further failures.

These problems fall under the jurisdiction of commercial prudence,

and point to reasons a customer should not be overly reliant on any one

given producer, including the Soviets. Still, natural gas supplies

from other sources have been threatened or disrupted for both political

and commercial reasons.

The most well-known interference with supplies is the "technical

problems" that Algeria suffers with its LNG plant whenever it is

dissatisified with contract terms, usually prices. In early 1974, gas

consumption in France had to be reduced by 25 percent in many areas to

offset the failure of the Skikda liquefaction plant to produce LNG,

which the French suggested may have reflected a desire for contract

renegotiation rather than actual technical troubles.1 7 9 Similarly, in

1980, El Paso's deliveries were deliberately stopped over its refusal

178 Gustafson, (1983) p. 81.

179 PE, 4/74, pp. 149-150.
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to agree to higher prices.1 8 0 Algeria's customers have shown willingness

to respond in kind when the market turned around, both by refusing to take

deliveries of gas that they could not consume, and by unilaterally setting

the price while negotiations were still underway.18 1

Both the Netherlands and the Soviet Union have threatened to

interrupt supplies if more favorable pricing terms were not accepted by

their customers, although. in neither case were the threats carried

out.18 2 Politically motivated embargoes of LNG also have occurred, as

when Libya and Algeria imposed an embargo of LNG shipments during the

1973 Arab Oil Embargo. More recently, the caterers strike in the

Norwegian North Sea resulated in a two week reduction of production by

2 Bcf/d from Frigg, Statfjord, and Ekofisk (although had the situation

been regarded as serious the Norwegian government had the authority to

step in and end it).183 As it was, the BGC was forced to invoke cutoffs

of gas to industrial users with interruptible contracts.

For the customer, the most important question is whether the hazards

of interruption or decreased deliveries from the Soviet Union, Norway, and

Algeria, are independent or correlated. If they are independent, and if

supply is drawn in roughly equal proportions from all three, then supply

is not insecure. For example, if in any given month there is one chance

180 WSJ, 7/2/80, p. 19.

181
See IGR, 10/26/84, p. 11, for reduced French takes.

182 PE, April 1980, p. 176.

18 See OGJ, 4/14/86, p. 58-59. Some analysts suggested that the
government did not intervene, and indeed may have encouraged the strike,
because it wanted to reduce oil production and strengthen the market. See
NYT, 4/7/86, p. D12.
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in ten of an interruption in each of the three sources, there is only one

chance in a thousand of all going down together.

Seasonal interruptions may be correlated between Norway and the

Soviet Union, but not Algeria. Political interruptions might be

correlated between the Soviet Union and Algeria, but this is unlikely.

When the OPEC nations were cutting back oil production, the Soviet

Union gladly took advantage of the resulting high prices. Certainly,

buyers must be prepared to deal with an interruption of supplies from

any given producer, but the simultaneous cessation of supplies seems to

be a low-probability event.

Other Potential Suppliers

In the mid- and late-1970s, many other natural gas trade projects

to Western Europe were considered, including sales LNG or pipeline gas

from Nigeria and Iran. The announcement that Iran would resume gas

trade with the Soviet Union, the development of the supergiant North

field in Qatar, and the restructured Bonny LNG project in Nigeria all

suggest that ideas for such trade have not been completely abandoned,

although the distances involved suggest that the economics will be less

than favorable.

The driving force behind all these projects is the location of

enormous gas reserves in areas that have no ability to use significant

amounts of the resource. Iran has 470 Tcf of proved reserves, much of

it associated with oil, Nigeria has 47 Tcf, also largely associated,
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and Qatar has 148 Tcf in the North field.184 Together their reserves

are nearly three times greater than those of Western Europe, including

Norway.

But the prospects for these projects achieving economic delivery

to Western Europe are not bright. A brief overview of cost estimates

for each of the proposed projects is provided below. Although these

costs are not always higher than those of alternative supplies, such as

Askaladden, they all lie at the high end of the spectrum. For this

reason, they have not received as detailed attention as the projects

discussed above.

Pipeline Gas from the Persian Gulf

The most attractive of all alternative projects would be some

version of pipeline delivery from the Persian Gulf to Western Europe,

specifically the IGAT-2 project (or an updated variant).1 8 5 This called

for Iranian deliveries of gas to the southern Soviet Union, allowing for

diversion of Soviet supplies to Western Europe. Unfortunately, a precise

estimate of the economic savings involved and of the resulting delivery

costs to Western Europe from this project would require a regional

analysis of Soviet gas production and consumption, an endeavor beyond the

scope of this study. Suffice it to say that this type of swapping

184 OGJ, 12/30/85.

185 Iran is currently holding discussions with the Soviet Union over
resumption of deliveries of natural gas, but observers have suggested
the talks are more of diplomatic interest than of relevance to possible
energy trade. See WSJ, 8/26/86, p. 29.
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probably would result in delivery cheaper than new gas production from

West Siberia, i.e., less than $2/Mcf.

A new gas pipeline originating in the Persian Gulf and bypassing

the Soviet Union by going through, for example, Turkey, has been

considered, both by countries far south of the Soviet Union, and also

by Iran, presumably for political reasons. Depending on the producer

involved, such a pipeline would be between 3000 and 4000 miles long,

before reaching Southern Europe. Mossavar-Rahmani estimates the cost

of such a pipeline project at $3.70 to $4.70/Mcf, which would be at

least twice as expensive as U.S. transportation costs over equal distance,

but is not unreasonable, given the terrain and lack of infrastructure in

many places.

LNG from the Persian Gulf

Even though LNG exports were under consideration from the Persian

Gulf to as far away as the United States before the second oil price

shock, it is difficult to see how they would be economic now, even

given a recovery in oil prices. Using factors developed in the East

Asia/Pacific report, liquefaction would cost $1.00/Mcf, regasification

$0.35/Mcf, and transportation about $2.25/Mcf.1 86 Thus, without including

production costs, which should, admittedly, be low, a base delivered cost

186 The transportation cost estimate reflects an assumption of a route
around the Cape of Good Hope of 11,300 miles, and a shipping cost of
$0.20/Mcf/1000 miles.
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of $3.60/Mcf is reached.18 7 This suggests LNG exports will remain

uncompetitive for the foreseeable future.

Natural Gas from Nigeria

The large quantity of associated natural gas in Nigeria (442 Bcf

was flared in 1983188) and the reluctance of its various governments

over the years to see that gas "wasted" has encouraged a number of

proposals for delivering the gas to market, including the construction

of a pipeline to North Africa and Western Europe (either to Italy or

Spain), or an LNG export project. However, the prohibitive costs of

both projects have prevented them from progressing beyond the planning

stage.

For example, the current, reconfigured plan for LNG exports would

require $5 billion in capital expenditures to deliver 4.25 Bcm/yr (150

Bcf/yr). 18 9 Compared to $8 billion to deliver 20 Bcm/yr (706 Bcf/yr)

from Troll, this project hardly appears competitive. In fact, the

capital expenditures appear to be out of proportion with other LNG

export projects, especially considering the low production costs due to

the gas being associated. Economies of scale and the high cost of

187 The IEA (1982), p. 151, estimates costs for such a project at
$2.95/Mcf, plus $0.25/Mcf for gas gathering. Mossavar- Rahmani, op. cit.,
p. 98, provides a cost estimate of $4.65/Mcf, plus $0.60 for production,
gathering, and delivery to the liquefaction plant.

188 International Energy Annual 1984, Energy Information Administration,
Dept. of Energy, Washington, D.C., 1985, p. 64.

189 See WO, 8/15/85, p. 107, and PIW, 11/11/85, p. 12. No breakdown of
the costsThas been given.
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capital construction in West Africa are usually cited as the reasons

for the higher relative costs.

A TransSaharan pipeline has also been intermittently considered as

a means of gathering gas from various deposits in West Africa and moving

it to the Western European market, perhaps through Algeria or the Straits

of Gibraltar. Aside from the fact that such a pipeline would be

vulnerable to the many political conflicts in the region, and that Algeria

would be unlikely to look favorably on such a project, because it would

further reduce what little market power it now has, the costs would be

extremely high. While the estimate of $4.71/Mcf provided by

Mossavar-Rahmani191 seems high, being roughly equal to pipeline costs in

Arctic conditions, even using U.S. cost factors the delivery cost would

probably surpass $2.00/Mcf. The true figure would probably be much

higher, given the isolation of much of the terrain which the pipeline

would traverse and the high costs of transporting materials there.

While there are obvious benefits to be gained from diversification

of supply, it appears that, economics aside, the political obstacles to

transporting Nigerian gas into Western Europe are formidable, although

too complex to examine here. Still, there are large amounts of gas

available to Western Europe from these areas, some of it at medium

level costs (i.e., Iranian gas swapped for Soviet gas), but most of it

available only at prices in the $3 to $5/Mcf range, depending on the

190 Mossavar-Rahmani, op. cit., p. 98, puts the cost of an LNG project
from West Africa to Northwest Europe at $3.81/Mcf plus $0.60/Mcf for
production and gathering. Applying factors from the East Asia/Pacific
study yields a cost of roughly $3.00/Mcf plus production and gathering.

191 op. cit., p. 97. Excludes $0.30/Mcf for production and gathering.
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rents required by producers and on other factors such as the amount of

liquids that would be produced or the amount of flaring that is

occurring. Small quantities may become available over the next decade,

but they will not be of major importance relative to the other producers.

CONCLUSION: THE ECONOMICS OF WESTERN EUROPEAN GAS SUPPLY

This section draws together all the threads strung through the

individual country discussions to provide a picture of the economics

governing future natural gas supply in Western Europe. The impact of

policy variables and changing views toward mineral resources are discussed

below.

This section also provides an overview of various available supplies

of natural gas, as well as their costs and quantities. It does not

provide a specific estimate of the costs of future, undiscovered supplies,

but short- and long-term cost trends in the different supplier regions are

addressed below.

The first question is: How much gas can be delivered if oil prices

keep falling, and at what point do supplies dry up for economic reasons?

In essence, What are the variable costs of existing capacity? We have

seen that the variable costs of producing and transporting most of the

natural gas now available are quite low. Low oil prices should not affect

existing gas supplies.

However, this does not take into consideration some of the non-cost

expenses that private companies incur in producing natural gas, most

notably royalties and taxes related to production levels (as opposed to
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income).1 9 2 In addition, the costs of ceasing deliveries (whether

incurred by plugging a well, yielding a lease, or litigation for

non-performance), are not considered. The former would promote shut-ins

at prices higher and the latter at prices lower than simple economic

rationality would dictate.

Therefore most existing capacity will continue to be produced at

extremely low price levels, even lower than seems likely to occur.

Hence, buyers could safely increase takes from the current levels.

However, the development of new capacity, either to increase sales or

to replace declining capacity, would require higher prices than those

that would equate to $10/bbl oil, for example.

New capacity falls into two categories: replacement and

incremental. Replacement capacity is cheaper because it can use existing

transportation facilities, whereas incremental capacity may (depending on

location and timing) involve the construction of new transport

facilities: pipelines or LNG plants.

Geographical diversity makes it impossible to provide any rule of

thumb for incremental transportation capacity, but pipeline costs in

the North Sea usually have been under $1.00/Mcf, and often half that.

For small fields close to existing pipelines, including associated gas

supplies, costs can be less, although small volumes may not justify

construction of even short pipelines. To develop new liquefaction

192 For national oil companies, e.g., Sonatrach, taxes and royalties
usually are not an issue. But they sometimes are subjected to rules
that make no sense for a state-owned concern.
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capacity the costs are higher, on the order of $1.00/Mcf or more,1 93

with an additional $0.10 to $0.45/Mcf for shipping.

Costs of new production capacity vary, being extremely low in the

Groningen and Hassi R'Mel fields but much more expensive for the smaller

North Sea fields. New supplies are available for $1.00 to $2.00/Mcf, with

some exceptions (additional Troll supplies being less and Sleipner more,

for example).

Thus, replacing declining production with new fields through existing

transportation capacity will allow gas to continue to be delivered to

Western Europe for as little as $1.00/Mcf.1 94 This suggests that, under

unrestrained competition, oil will not capture any market share from

natural gas in Western Europe except through growth in overall energy

demand, even at extremely low prices.

On the other hand, adding capacity would be notably more expensive.

Transportation costs will, for any sizeable increments, involve costs

approaching $0.50 to $1.00/Mcf. Combined with production costs,

incremental supplies will cost as little as $1.50/Mcf for cheaper fields

or as much as $2.50/Mcf for smaller, offshore fields not close to shore.

For the onshore supergiant Groningen, incremental supplies are available

at very low costs, while the supergiant Hassi R'Mel can deliver gas for a

193 This was the cost level that appeared to be most common in Asia;
the paucity of construction efforts in North Africa makes it difficult
to generalize about current costs.

194 The extent to which some countries are willing to sell gas at these
low prices, even if rents are still forthcoming, is discussed below.
At certain times in the past, some, like Algeria, have been reluctant
to sell even at relatively high profits.
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little more than $1.00/Mcf via an undersea pipeline, and the supergiant

Troll for perhaps $1.40/Mcf.

Thus, if oil prices remain in the $12 to $15/bbl range, many of

the smaller fields will not be viable and the larger fields will increase

their market share, although concessions on taxes and royalties probably

will be necessary.
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EXPECTATIONS FOR THE WESTERN EUROPEAN GAS MARKET

Given the above analysis of the economics of natural gas supply in

Western Europe, some conclusions about future market behavior can be

drawn. This section first reviews forecasts for Western European gas

supply, concentrating particularly on those of the International Energy

Agency (IEA); then discusses trends in natural gas supply, both short-

and long-term; and concludes by describing the current market situation

in Western Europe and its evolution.

Supply Forecasting for Western Europe

Now that the gas market in Western Europe has begun to weaken, it

is superfluous to point out that the numerous forecasts of gas production

have been very wide of the mark. Nor is it important that the current

market weakness was foreseen several years ago by several of the

researchers on this project.1 9 5 The history of mistaken forecasts has a

different import.

This chapter attempts not to predict what decision makers in natural

gas will do, but rather to explain what they can do--to lay out the

boundaries that constrain their actions. Thus, the Demand Chapter

aims to discover how much gas consumers will take at various prices and

at what terms of sale. The Supply Chapter aims to show how much gas it

would be profitable to produce, at various prices, and how soon. If

195 M. A. Adelman, "The Changing Structure of the Oil and Gas Market,"
delivered to the IAEE/BIEE International Energy Conference, Cambridge,
U.K, 1982, published in Paul Tempest (ed.), International Energy Markets,
Oelgeschlager, Gunn & Hain, 1983, pp. 15-25; and Loren Cox and Michael
C. Lynch, "European Gas Prices: The Limits to Growth," Energy Laboratory
Working Paper, MITEL 83-021WP, August 1983.
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the market were competitive and uncontrolled, both these independent

inquiries could be brought together to generate a price and volume

trajectory over time. (Policy constraints alter the actual results.)

'The difficulty with the various forecasts is that they have put

largely unelucidated data through unexplained black boxes. There is no

way to tell precisely what the forecasters assumed about supply, demand,

and policy controls. Since production and sales are determined by all

three factors, it usually is unclear what precisely the constraining

factors might be.

To correct that deficiency, this section examines a number of

forecasts of natural gas supply in Western Europe, focusing particularly

on those of the OECD, but including some made by other governments as well

as an important private forecasts.

Forecasting Difficulties

The most important difficulty in forecasting future natural gas

supply trends is that, until recently, most forecasters focused primarily

on oil. Equally important has been the mixed nature of supply and the

large role policy interventions play therein. Supply from the Netherlands

through the end of this century, for example, is largely determined by

government willingness to export. Lower oil prices and decreased demand

since 1982 have had the paradoxical result of increasing the desired level

of exports.

Moreover, where much of North American natural gas supply depends

on the drilling investments of literally thousands of producers, whose

actions can be forecast with help from the law of large numbers, in
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Western Europe much potential supply still consists of large fields and

single-project developments, especially in the Norwegian North Sea and

in the Soviet Union. These discrete decisions have proven difficult to

predict, especially where cost data are scarce and where governments

play a major role.

The Soviet Union is a large supplier of natural gas, with potential

for much larger production. While some information is available, on both

physical and decision-making aspects, it is generally inferior in both

quantity and quality to information about Western supplies. Since

economic planning in the Soviet Union is more rigidly controlled by the

government than in Western countries, Soviet policy and political changes,

which are difficult for outsiders to foresee, play an even larger and more

obscure role than in the Western natural gas industry.

In the West, the emergence of a new and bountiful natural gas

province has further complicated forecasting. Drilling in the northern

North Sea began only recently, with Ekofisk (containing over 3 Tcf of

associated gas) being the first major natural gas deposit discovered in

1969 outside of the southern U.K. basin. Frigg, the first dry natural

gas field discovered in northern waters (at 600 N), was found in 1972.

Thus, the first OECD forecast was reduced to speculating about the

potential for natural gas supply from these regions.196 At that time,

although proved and probable reserves in the North Sea were estimated to

196 As the authors put it, "Any present assessment of potential natural
gas resources in Western Europe must be regarded as provisional,
particularly in view of the preliminary knowledge of the geological
conditions in the North Sea." See OECD, op. cit., 1974, Volume II,

p. 137.

v.
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be between 80 and 110 Tcf, additional possible reserves were estimated to

range only from 7 to 21 Tcf. 97 Compared with current proved reserves of

104 Tcf for Norway alone, this is obviously a major source of error.1 9 8

Even the 1982 OECD report was too early to incorporate recent

geological developments. The Troll field was not discovered until

1979, and given the deep water technology of the time, it seemed

impossibly expensive to develop. Drilling north of 620 began only in

1980. While the Askaladden and Haltenbanken discoveries of 1981 are

not currently planned for export to Western Europe, Troll is slated to

commence production in the 1990s. The 1982 OECD report certainly

recognized the potential of the far northern waters, which were estimated

to contain 35 to 71 Tcf of additional reserves.1 99 The most recent OECD

forecast for Western European gas supply, which was recent enough to

incorporate some of the drilling results north of 620 N, was at the high

end of the 1982 OECD supply range (see Table 35).

The first major OECD energy study was commissioned prior to the

1973 Arab Oil Embargo, and it was intended to ascertain the degree of

future energy dependence on volatile areas and the potential for avoiding

it. Of course, the 1973 oil price increases rendered the forecasts

inoperative, but the results are still informative. Most of the error of

this OECD forecast is due to overestimating offshore production, as Table

35 shows. Forecasters could not allow for the low monopsony prices paid

197 ibid., p. 138.

198 OGJ, 12/31/85.

199 OECD, op. cit., p. 91.
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TABLE 3-35 A

OECD Europe Production Forecasts 1980 & 1985
(Tcf)

Year of forecast

1974

1977

Predicted Production
…-------…--Years----------

1980 1985

5.1-5.7
4.4

9.5-10.1

onshore
offshore
TOTAL

United Kingdom and Norway
The Netherlands
Other
TOTAL

2.6

3.6

1.7

7.9

1982
United Kingdom and Norway
The Netherlands
Other
TOTAL

ACTUAL PRODUCTION
United Kingdom and Norway
The Netherlands
Other
TOTAL

2.3

3.2

1,5
7.0

2.7

2.6
1.3-1.5
6.6-6.8

2.4

2.7

1.5

6.6

Sources: 1974 forecast: Enerqy Prospects to t9_5, OECD, 1974.
1977 forecast: World Enerqv Outlook, OECD, 1977.
1982 forecast: Natural Gas Prospects .tD200 D, OECD, 1982.

Actual production:
1980: British Petroleum, "Statistical Review," 1980.
1985: Cedigaz, "Natural Gas in the World 1985," Centre

International d'Information sur le Gaz Natural et tous

Hydrocarbures Gaseux, Paris, France, 1985.

5.3-5.9
7.2

12.5-13.1

2.8-3.2
3.2-3.9

2.0

8.0-9.1



3-165

TABLE 3- 35 B

OECD Europe Production Forecasts 1990 & 2000
(Tcf)

Year of forecast

1982

1986

Predicted Production
------------ Year----------

1990 2000

United Kingdom and Norway
The Netherlands
Other
TOTAL

United Kingdom and Norway
The Netherlands
Other
TOTAL

2.7-3.0
2.1

1.3-1.6
6.1-6.7

2.1-2.4
2.0-2.3

1.2-1.4
5.3-6.1

2.5-3.9
0.9

1.0-1.6
4.4-6.4

2.0-2.9
1.8-2.1
1.0-1.2
4.8-6.2

Sources:

1982 forecast: Natural .Gas rospects ,g 2000, OECD, 1982.
1986 forecast: Natural Gas rospects, OECD, 1986
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by the BGC, the Netherlands' reluctance to lease offshore areas for

drilling, and the belief that oil and gas were appreciating assets whose

exploitation could be profitably delayed. Where the analysts not

unreasonably assumed that high oil prices and short-term energy scarcity

would accelerate development of domestic resources, the price increases

actually delayed it.

The follow-up report issued in 1977 reflected some of the lessons

learned in the years following the first oil crisis. Production

projections were revised downward rather drastically, although they

still proved to be one-fourth too high. However, in this instance, the

difference was mainly the OECD's overestimation of Dutch production, an

error that reflected both Dutch policy and the unexpected lack of demand

at prevailing prices, rather than a misestimate of supply.

The 1982 OECD report, partly due to its short prediction horizon,

came fairly close accurately forecasting to actual levels of 1985

production. The estimates for both onshore and offshore production

were scaled back from those of the previous report, although they still

were slightly too high. The authors particularly acknowledged remaining

uncertainty about future Groningen production levels, as the Dutch

government tried to reformulate policy to cope with a surplus due both to

lower-than-anticipated demand and to new discoveries.

The methods used in the 1982 report were stated as follows:

"The first two scenarios are representative of

econometrically based methodologies for projecting energy supply
and demand using a combination of econometric techniques and
judgement with an underlying assumption of an unchanged energy
policy environment. Specific assumptions are made about
economic growth, oil prices, and the prices of competing fuels
and these are used in conjunction with estimated historical
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price and income elasticities to derive energy demands by
end-use sector. Supplies are matched to demands, taking into

account judgemental assessments of likely availability, and in
this process the 'desired' fuel mix may be altered to reflect
constraints on the availability of non-oil fuels. The demand
for oil is then determine 0 at the end of this iterative
process, as a residual."

This methodology was applied to both a low- and a high-growth

scenario, with oil prices inversely related to growth. A third scenario

was used, in which national projections for energy use were taken and

altered to reflect continuing reductions in oil use, both for economic and

policy-related reasons. The relative price structure of 1980 was used,

and policies were assumed to be "strengthened" where necessary to achieve

the desired results. The assumption that the mere statement of goals and

targets directly reduced consumption is questionable at best.

In essence, these projections are policy driven:- Prices do not

adjust to reflect the relative supply/demand balance.

In contrast to the OECD, one consulting group took the approach of

determining potential supplies, assuming a relaxation of political and

policy constraints.2 0 1 Their forecast relied on "...the essential

parameters of reserves' availabilty and national economic and political

interests of the producing countries."2 0 2 Even so, allowance was made

for constraints on production, as well as the constraints on short- and

medium-term demand. Still, the group managed to "forecast" much higher

200 op. cit., p. 33.

201 Energy Advice, Energy Supplies and Prices in Western Europe to the
Year 2000, Geneva, Switzerland, March 1985.

202 ibid., p. 86.
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natural gas production and sales than did the 1982 IEA report, as shown

in Table 36.

In summary, most forecasts produced to date have operated under

severe handicaps. Aside from incomplete knowledge, two major defects

may be noted.

First, most forecasts assumed that the existing policy environment

would remain unchanged. In 1974, this would lead one to overestimate

future Dutch supplies and in 1980, to underestimate them. Any policy

that can be made, can be reversed.

The other major shortcoming was an underestimation of supply.2 03

In part, the tendency for policy decisions to restrict production (often

by restricting demand) is misinterpreted as a sign that resources are

scarce.2 0 4 Additionally, by considering proved reserves of a fluid under

pressure to constitute the total resources available, it follows

rigorously that production will begin to decline, usually immediately.

Although reserves are occasionally revised downward, especially if prices

fall, in any large petroleum province such as the North Sea, only gradual

changes in additions to reserves per unit of drilling can be expected.

These underestimations of supply have repeatedly led to errors.

The Dutch decision to extend export contracts was a recognition in part

of new discoveries, as well as lower than projected sales. Similarly,

203
This has been discussed extensively in the previous two studies.

204 This dynamic was also at work in the United States, particularly

during the Carter Administration.
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Table 3-36

European Natural Gas Supply

(Bcf/yr)

1984

Production

Potential Peak Annual
Production in 1990's

Forecasts
1990 2000

Netherlands

Norway

United Kingdom

Other Producers

2,439

1,045

1,250

1,373

3,601

more than 5,295

1,588

N.A.

Source: Energy Supplies and Prices in Western Europe to the Year 2000,

[Energy Advice, 1985], p.85.

2,548

1,176

1,764

1,960

2,744

2,156

2,274

2,234
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the U.K.'s decision not to approve the Sleipner deal reflected new

confidence that gas discoveries would continue, as they have.20 5

Predicting future policy directions for producer countries (or

consumers) is foolhardy at best. But the economic pressures to adopt

particular policies can be measured by analyzing the costs of supply,

as we have done in this chapter. However, costs are not the only factor

affecting long-term supply or policy changes: The trends of supply costs

affects decision making, both public and private. The next section

examines these trends.

Future Cost Trends for Western European Gas Supply

In assessing the future of Western European gas supply, two trends

are important: (1) the short-term cost effects of both the oil price

crash and the natural gas supply glut, and (2) the long-term marginal

supply cost trend. The latter will prove to be especially important if

oil prices remain low over a long period of time, which ultimately

would suggest that rising costs of natural gas production will result

in a loss of market share to oil, all else being equal.

Short-term Cost Trends

Previous studies by this group noted that the costs of gas production

and delivery were driven higher by demand-side inflation. Large-scale

rent-capturing occurred as tight labor markets led to rapid growth in wage

205 See Offshore, May 1986, p. 89, for a list of discoveries made in
1985, including 11 natural gas strikes in the southern sector of the
U.K. North Sea. Table 19 lists discoveries we have found in the trade
journals.
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levels, as land bonuses and other rents to governments soared, and as

inefficiency increased dramatically due to the increased demand for

drilling, plant and pipeline construction, and so forth. The post-1982

weakness in oil prices marked the beginning of a reversal of this trend,

with drilling, labor, and capital costs all declining.

To some extent, this phenomenon can be seen in Western Europe,

particularly in the declining rental costs for offshore drilling rigs.

The contract price, which at its peak in the early 1980s was $90,000/d,

by late 1983 had fallen to $20,000 to $25,000/d.20 6 However, with

direct operating costs of $25,000/day, it has been suggested that this

price represents the floor price,20 7 despite the surplus of rigs that

has occurred due to the fall in oil prices. 2 0 8 It is possible that the

writing-off of rigs and/or bankruptcies among small oil or drilling

companies will lead to further declines in rig rates over the next year

or two, and that labor efficiencies will lower the operating cost.20 9

It is important to note that drilling costs are unlikely to behave

in the North Sea as they have in the United States, because North Sea

drilling should not be as adversely affected by the oil price collapse.

In part, the impact will be delayed, and in part, it should be less

severe. This delay will come from a combination of company and government

206 OGJ, 11/14/83, p. 90.

207 OGJ, 11/11/85, p. 28. Wood-Mackenzie provided the rig rate data.

208
OGJ, 5/19/86, p. 22, showed 31 rigs idle in the North Sea in April,

versus 9 at the beginning of the year before the oil price collapse.

209 ibid. In the United States, rigs are reportedly selling for 4.5 to
15 cents on the dollar. See OGJ "Newsletter," 7/21/86.
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behavior. Producing governments, anxious to prevent an increase in

unemployment, may encourage continued field development where private

companies might prefer to delay it.2 1 0 Reductions in taxes, or tax

write-offs that act as subsidies, may be used to improve the desirability

of either exploration or development. Other policy changes, more

difficult to quantify, may keep drilling from declining by reducing

development or exploration costs. Certainly, a relaxation in

local-content demands for equipment and services is unlikely when

employment in the industry is weak, but other constraints can be loosened

without serious political or economic side-effects. For example, the

Norwegian decision to allow Troll's oil to remain in the ground rather to

than require its production greatly improved the economics of the project.

Given the long time span involved in North Sea operations, most

private operators will not react immediately to the oil price collapse.

The lengthy time necessary to develop some projects (such as Troll), could

encourage field operators and purchasers to treat the recent fall in oil

prices as a short-term aberration that will be partly or totally reversed

by the time deliveries are scheduled to begin. If and when prices remain

depressed, the effects on the drilling industry will become more severe,

and costs should drop further.

The impact of the oil price collapse on drilling outside North

America also will be mitigated by the fact that oil and gas production

is much cheaper overseas.2 1 1 In fact, although expenditures by major

210 This may be the case with Troll, where much of the financing will
come from government sources.

211 See Adelman, 1986, op. cit., Table III.
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oil companies for exploration in the United States has fallen by 40

percent this year, the same companies have cut spending outside of

North America by only 18 percent.2 12 How rapidly and how far drilling

will fall depends in part on the willingness of governments to reduce

taxes and royalties.

The very large surplus of capacity to produce and deliver natural

gas to Western Europe means that marginal costs will be very low for

some time, but only as that capacity becomes utilized. The marginal

cost of increasing throughput in the Urengoi pipeline is very small,

but Western European countries may prefer to develop and produce the

Troll field at a higher cost.2 1 3 Still, the existence of this capacity

which can be delivered for a marginal (i.e., variable) cost of less

than $1.00/Mcf should act in most instances to keep prices low and

markets competitive. The fact that the lion's share of this capacity

is found in countries that rely heavily on hydrocarbon exports for

revenues will enhance that tendency.

Long-term Cost Trends

Over the long-term, the declining size and increasing depth of oil

and gas deposits should increase the marginal costs of the resource.

Given that the high costs of transporting natural gas result in a floor

212 PIW, 7/7/86, p. 6.

213 The price probably would be the same for the two, however.
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price that is much higher than that for oil,2 1 4 the rate at which natural

gas costs will increase over the next decade or two is very important.

The more rapid the increase, the more quickly gas will lose market share

to oil, all else being equal.

To reiterate, the predominance of transportation costs in natural

gas production and delivery costs will sharply mitigate any decline in

the resource base. Construction costs may increase at times, but there

is no unavoidable upward cost pressure on them analogous to those

experienced in resource development. Indeed, manufacturing processes

typically become more productive over the long-term, reducing costs.

Of course, in the North Sea transportation costs are usually lower.

Pipeline costs tend to be less than $1.00/Mcf, frequently half that, and

field development costs comprise a much higher share of total delivered

costs, particularly in the United Kingdom and the Netherlands. Those two

countries should experience the most severe cost escalation of the major

producers, although as the infrastructure in their producing regions

improves, some cost savings will occur.

The tendency for increases in long-term resource costs to be

mitigated by improving knowledge and technology has been discussed

elsewhere,2 1 5 but the North Sea provides a textbook example. The last

214 In "The Competitive Floor to World Oil Prices," Adelman demonstrates
that enormous quantities of oil could be produced for less than
$1.00/bbl. Although there are significant quantities of natural gas that
can be produced for approximately $1/bbl of oil equivalent (in the Soviet

Union and the Middle East for example), oil costs only $1.00/bbl to
transport, while natural gas transportation from e.g., the Middle East or
the Soviet Union, typically costs $10-$15/bbl of oil equivalent.

215 M.A. Adelman, "Scarcity and World Oil Prices," Review of Economics

and Statistics, August 1986.
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decade has seen rapid improvement in technology, which has had the

effect not so much of providing cheaper gas but of allowing previously

uneconomic gas fields to become viable. This is especially true in the

U.K. sector (since the Norwegians have deliberately delayed exploitation

of their resources).

The best example of this is the use of new production systems,

including subsea completions, semisubmersible floating production

facilities, tanker-based floating production facilities, and tension-leg

platforms. These technologies can permit production of fields that are

too small and/or too deep to warrant a full production platform and they

will, in effect, add to the resources available at current prices.

The dominant factor remains the very large resources that are

available now: discovered fields, many undeveloped, and pipelines or

liquefaction plants already in place. It will be many years before

there is a need for more intensive development in most of the Western

European supply regions, and advances in infrastructure and technology

will go far to offset the decline in the resource base represented by

the next phase of discovery and development.

The Current Market

Although many natural gas supply contracts index the price of

natural gas to competing oil products, the market has not cleared. The

continued glut in natural gas markets may result in lower gas prices

relative to competing fuel prices, especially of oil, but there is no

"natural" relationship between the two prices. A previous study noted

that the ratio of oil to natural gas prices in the United States has
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varied considerably over time, even before the market was regulated.2 16

In the U.S. market, gas prices declined sharply throughout 1985, before

oil prices began their plunge, and a similar situation may occur in

Western Europe.

There is no reason to expect that a thoroughly competitive natural

gas market will develop in Western Europe. But careful observation

suggests the direction in which the shadow equilibrium price is pressuring

the market. If demand outstrips supply, then the price will be below

competitive equilibrium, and a queue of disappointed would-be buyers would

form. If supply exceeds demand, then sellers could not sell as much as

they would wish.

There clearly is excess supply at present. The past several years

have seen the Norwegians, the Dutch, the Algerians, and the Soviets all

unable to sell supplies at current prices. The result has been downward

pressure on gas prices relative to oil prices. They have not just been

following oil prices down, although some buyers have sought to take lower

quantities and some sellers have preferred to shut-in production rather

than reduce prices.

The Illusion of Oil and Gas as Appreciating Assets

It is widely believed that oil and gas are fixed stocks that can

only grow more valuable over time. The net value of the deposit (i.e.,

price less extraction cost) must rise at the rate of interest in order

to induce the holder to keep it in the ground rather than sell it.

216 North American report, Supply Chapter, op. cit., p. 10.
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This belief has exerted a powerful influence over public and

government opinion, and has generated a strong bias against producing

hydrocarbons, particularly against producing them to sell to foreigners

who thus obtain the "irreplaceable resource" at prices less than it is

really worth, or will in time be worth.

We cannot review here the whole theory of depletable resources, 217

but we must point out that the evidence is clear that over time the real

price of practically every mineral has declined rather than risen.

Clearly something is wrong with the argument that mineral resources are an

appreciating asset.

We suggest that the limitation on resources is not relevant, because

no resource will ever be exhausted. What matters is diminishing returns:

the tendency for discoveries to become constantly smaller and less

accessible. This tendency has been opposed by increasing knowledge, which

has (thus far) more than overborne it. The minimal conclusion is that

mineral prices are the uncertain, fluctuating residual of two opposing

forces. Hence they are risky assets, and in evaluating them, holders

should use high discount rates or any other appropriate means of allowing

for risk.

Any actor who preferred to hold rather than sell oil reserves

(e.g., in the Persian Gulf) would have (a) gained in 1945-1950; (b)

lost heavily during 1950-70, as real prices declined; (c) profitted

hugely during 1970-74; (d) not gained during 1974-1978; (e) profitted

217 M. A. Adelman is now preparing a paper on the subject, to be issued

in the first instance as a Working Paper of the Center for Energy Policy
Research at M.I.T. See also Adelman, et. al., Energy Resources in an
Uncertain Future, 1983.
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in 1978-80 even more than in 1970-74; (f) lost disastrously in 1980-86.

Taken as a whole, the gain during the 1945-86 period would have been near

zero. For the 1970-86 period, the increase would have been from $3.00 to

$8.00 (in 1982 prices), or 6.32 percent (real) annually. This is not an

impressive rate of return, especially since it was improved by a one-time

change, specifically the imposition of the monopoly after 1970.

With the decline in resource value of the last few years and the

increasing realization that the finite nature of oil and gas has been,

to put it mildly, overstated, the market has entered a new era. In the

past, producer nations often withheld supplies expecting their assets

to appreciate, thereby tightening the market and fulfilling their

expectations. They now have recognized that the value of their asset

has declined in the last few years, and instead are seeking to increase

sales, and thereby maintain revenues. As a result, the market has

weakened considerably and may very well weaken further, given the number

of producers who need to maintain revenues in the face of declining

prices, and given the available surplus capacity that is economic to

utilize at almost any price.

Higher volumes of gas sales will exert downward pressures on oil

prices, while lower oil prices will exert increased pressures on producers

to sell more gas. The vicious spiral of increasing competition may be

broken by transitory events, such as an oil crisis, but a long-term

reversal will come about only when producers feel they have more to gain

by withholding their assets than by producing them. Our analysis of the

economics of supply suggests that this is most likely to occur at very low

prices.



APPENDIX 3A

METHODOLOGY FOR ESTIMATING THE COSTS OF NATURAL GAS SUPPLY

There are a wide variety of methods by which to assess the costs of

delivered natural gas, including project evaluation, rate-of-return

assessment, etc. Our methods, which have been explained in detail in

previous reports,1 are determined by the type of project and the amount of

data available. This section provides a brief review of the manner in

which natural gas costs have been determined in this report.

Rationale of Method

The net present value of any given development can be shown by:

T

V = £ (Rt - Ct) (l/(l+i))t
t=O

V E (PtQt Ct) (1/(l+i))t

Where:
V = net present value
R = revenues = PQ

P = price

Q = annual production

i = discount rate or cost of capital, percent/year

C = operating cost

Setting V equal to zero, we are to solve for P. Simplifying

assumptions made include:

(1) Production starts at the maximum rate, and declines at a

constant exponential rate from the original level QO.

1 See especially the North American report, pp. 22-25, and the East
Asia/Pacific report, Table 5.
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(2) Capital expenditures are made at one instant, just before

production starts.

(3) Operating cost is a constant fraction of capital cost, i.e., Ct

= cK, where K is total capital expenditures.

(4) All production and receipts are in continuous time.

Some other important relations that will be needed below:

Qt QO et

'T Qt dt R Q 1-e-at Qo/a, as t--> 00
a

C t = cK

K f e-it [ (Ra/(l-e-at) eat) -cK dt

We will ignore operating costs, cK, and treat them separately

below.

Field Development Capital Costs

The objective of calculating field development capital costs is to

find the marginal or incremental cost per Mcf of gas obtained by investing

in a new project. We first show how to do this when the minimum amount of

information is available, then how to incorporate additional data.

In all cases, we end with an equation of the following type:

P = f(i, K, R, Q, a, T) [1]

where P = market price or supply price (see below);
i = market interest rate or project rate of return (see

below);
K = capital expenditures;
R = reserves to be developed;
Q = initial or peak output;
a = exponential decline rate;
T = life of project.
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Equation [1] can be used in two alternative ways. First, by taking

i, the discount rate, as exogenous, P can be calculated as the supply

price or cost, the price that would make the investment just profitable.

Or, alternatively, by taking P as a market price, we calculate i as the

rate of return on the investment, disregarding taxes. A number of

examples demonstrate how equation [1] can be employed.

Case 1: K, R are known

Assume a = 1/15 = .067, which is a well-known rule of thumb. In

both the United States and the North Sea, a runs almost twice as high,

and it is best to use 0.1 as a first approximation.

Reserves = cumulative output, declining exponentially, as shown by

the equation:

R = Q e -at dt = (Q(1-e aT)/a [2

Assuming T is indefinitely long, then R = Q/a [3]

The revenue stream declines at a rate a, and its value declines at

the compound rate (a+i). Thus,

PQ $ e -(a+i) dt = [ PQ (l-e-(a+i)T) ] / (a+i)

= PQ/(a+i) [4]

when T is infinite. The present value of revenues must be just equal to

the capital expenditures:

PQ/(a+i) = K

Since Q = Ra,

P = (K/R) * (a+i)/a [5]

In other words, the supply price is equal to the cost per Mcf in

the ground (K/R) multiplied by the adjustment for holding the stock

until produced, (a+i)/a = (1 + (i/a)).
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Alternatively, if the price is known, the rate of return can be

solved for, as indicated by:

i = a((PR/K)-1) [6]

Case 2: K, R, and Q are known

Again, assume T is infinite, take Q/R = a, and use equations [5]

or [6].

Case 3: K, R, Q, and T are known

By solving equation [2], a can be found, but by using the actual T

rather than infinity. Then insert a and the known T into the following

equation, and solve for either P or i:

P * 1-e - (a+i)T = (K/R) * T [7]

a+i

With realistic values of i, a, and T, the left-hand side is equal

simply to P/(a+i).

In the special case of a zero decline rate over the known time period

T, R=QT, and Q=R/T. Then:

V = (PR/T) * (1-e-iT)/i K = [8]

A single unit produced each year over the life of the project is

worth its present value, stated at the left hand side of the equation.

There will be T units delivered, each one costing (K/R) up-front.

Note: In the foregoing example, we assume that all capital

expenditures are made at one time, in year zero. We assume peak output

occurs initially, followed by an exponential decline. In fact, capital
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expenditures stretch over several years, usually peaking just before year

zero, when production starts. Typically, production builds up over

several years, then holds approximately stable for a few more, then

declines steeply.

The errors are mutually offsetting. Adelman and Paddock showed

that for North Sea fields, the value of P calculated as above gave an

excellent prediction of the values as calculated form the actual

production plans, tabulated by Wood, Mackenzie & Co.2

The result of the Adelman-Paddock test is not surprising. McCray3

gives the following formula slightly adapted here for calculating the

expected decline period, which our short method equates to infinity:

T = R * n (Qo/Qf)

Qo-Qf

where T is the period in years, R=reserves=estimated cumulative output,

Qo=initial-year output, and Qf=final-year output. Obviously when the

final-year output is zero, the period is infinite.

Consider proved reserves of 100, initial-year output of 10. Not

nowing the final output, we set the depletion/decline rate equal to

10/100 = 0.1. Setting the price to unity, and the discount rate to 10

percent, the present value of the reserve is equal to 10/.20 = 50.

Suppose we know, however, that final-year output is 2. Then we

can calculate:

2 M.A. Adelman and James L. Paddock, "An Aggregate Model of Petroleum
Production Capacity and Supply Forecasting," M.I.T. Energy Laboratory
Working Paper MIT-EL 79-005WP, Cambridge, Massachusetts, 1980.

3 A. W. McCray, Petroleum Evaluations and Economic Decisions (Englewood

Cliffs, N.J., Prentice-Hall, Inc., 1975, p. 323.
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T = 100 * In 5 = 12.5*1.6 = 20.1 years

Since the final-year output is 0.2 times the initial-year output,

the average decline must be the reciprocal of 0.2 to the power 1/20.1,

or 1/0.923 = 1.083. Then the present value of the deposit, again setting

the price to unity, is:

PV = 10 * [ 20.1 e_(.083+.10)20.1 dt] = 10*[(1-e-3h 6 8 )/.183] = 53.3

Thus our method, which assumes infinite time, understates present

value, and overstates cost, by a factor of 6.6 percent. If output

stays on an initial plateau before declining, cost is further overstated.

In the North Sea, where detailed data on reserves, production

levels, and field development investments are available, the in-ground

costs can be readily calculated and converted into above-ground costs

using equation [5]. In some instances, particularly the recent proposed

Troll field development, there is no meaningful decline rate. In such

cases, given the internal rate of return, life of production, and field

development costs, the supply price can be calculated using the formula

shown in equation [7].

In some areas, such as Algeria and the Soviet Union, few or no

reports of investment costs exist. In these cases, the method applied in

the East Asia/Pacific report is used: well costs are estimated using

reported U.S. drilling costs for the same depth class and adjusted for

non-drilling costs and overseas conditions, as shown.4 Multiplying by the

discount rate plus the decline/depletion rate yields the annual capital

4 See Table 5 in the supply paper, p. 18.
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charge, which can then be divided by the well productivity to yield a per

Mcf development cost.

Operating Costs

In most of our examples, an industry rule of thumb has been that

operating costs are 3 to 5 percent of capital expenditures. This can

be seen in Table A-1, where a detailed breakdown of capital and operating

costs was made for a number of types of projects: production, pipeline and

liquefaction.5 For this study, we take the high end of the range (i.e., 5

percent), although in the case of LNG plants, where operating costs are

skewed by fuel consumption, 3 percent is assumed as the operating cost and

fuel costs are added separately. Fuel costs are assumed to be the

delivered cost of the gas, since anything in excess of this will be rent

to the producer. 6

Pipeline Costs

For many producers, pipeline costs comprise a substantial fraction

of the delivered costs of their gas, either due to distance or environment

(e.g., offshore projects). Unfortunately, because of the substantial

differences in operating environments, no generalization is

possible in estimating the capital costs of pipelines. For example,

Soviet pipelines face many river crossings as well as mountains and

One private corporation provided detailed cost estimates for several
large LNG projects. In them, operating costs usually were 4 percent
for gas fields and 7 percent for liquefaction plants, the latter
presumably due to high fuel costs.

6 The role of inflated plant-gate fuel prices in raising LNG cost
estimates is discussed in the East Asia/Pacific report, on pages 38-42.
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TABLE A-1

OPERATING COSTS RELATIVE TO CAPITAL COSTS

Total
Capital

Source Costs

PIPELINES
Trans Alaska Gas S

Total System
Pipeline

TAGS Phase II
Total System

Pipeline

North Sea Gas Gath
System A
System B

System C
Existing Pipelines
Recommended System

Annual
Operating
Costs

ystem Phase I
7173
4548

7121 1

3635

ering Projects:
1460
2650 1

3024 1

2606 1

2993 1

78
20

28
35

59
00
14
00
14

Processing
System A
System B

System C
System D

facilities (North
199
285
349
381

Sea Gas
11

16
19
21

Gathering
5.5%
5.6%
5.4%
5.5%

Project):

Venture Gas Field

LNG PROJECTS
LNG Project
Liquefaction plant
Regasification plant

Nixon library

Sources: See next page.

Ratio

1.1%
0.4%

1.8%
1.0%

4.0%
3.8%
3.8%
3.8%
3.8%

2446

800

15

100

30

1

4.1%

3.8%
4.0%
3.5%

6.7%
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TABLE A-1
(cont.)

Sources:
TAGS is from "Trans Alaska Gas System:
Economics of an Alternative for North Slope Gas,"
January 1983, Exhibit A2, A3.
Fuel is excluded.
Venture is from "Venture Gas Project:
Application to the National Energy Board
for an Export Licence," vol. II, pp. 6-13, 6-16.
North Sea Gas Gathering Project estimates are
from "A North Sea gas gathering
system," UK Dept. of Energy, May 1978.
LNG Project is basic project costs estimated
in LNG Handbook, a Commemorative publication of LNG-6,
courtesy of JGC corporation. Fuel is excluded.
Liquefaction and regasification plants from
Robert DiNapoli, "Economics of LNG Projects,"
Oil and Gas Journal, 2/20/84, p. 50.
Nixon library from NYT 9/29/86, p. B8.
Operating costs based on assumed rate of
return on endowment of 10 percent.
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Arctic conditions for part of their routes. Algerian pipelines might

traverse relatively easy terrain for much of their routes, but more

equipment and personnel have to be imported than elsewhere. North Sea

pipelines may reflect typical cost profiles for undersea pipelines, but if

Norwegian pipelines cross the Norwegian trench, their costs will be

higher.

To compound the problem, there are so few examples of pipeline

construction in any given area that it is difficult to draw overall

conclusions about transportation costs: An initial pipeline may be

excessively expensive due to unexpected difficulties with the terrain,

lack of existing infrastructure, or the costs of developing and using

of new pipelaying technology. Also, the period when any given pipeline

is lain may be one of inflated or deflated capital construction costs,

depending on the state of the industry and its position on the business

cycle at the time of contracting and construction.

Thus, although we sometimes make comparisons between reported

construction costs and more general estimates of normal costs (for '

example for undersea pipelines), this paper relies on actual specific

project costs to the extent possible. When considering the cost of new

supplies, what has been observed about past pipeline costs will be

incorporated, with the caveats discussed above.

The method used for converting pipeline capital costs, which are

the most commonly reported costs, to per-unit natural gas costs will be

as follows: The annual capital charge is taken as 12 percent of total

capital costs, the same as that for a project with a real rate of return
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of 10 percent and a life of 20 years. 7 Operating costs are the same as

described above, and throughput is assumed to be 100 percent, except where

noted.

Discount Rates

For field development projects, a discount rate of 12 percent is

assumed, reflecting their inherent geological uncertainty inherent.

For pipelines, which can be utilized by any field in their locale, a 10

percent discount rate is assumed (see previous paragraph).

Accounting for Inflation and Currency Conversion

Inflating costs to current dollars is difficult for several reasons.

First, real exchange rates vary over time, but must be accounted for in

some manner. Second, there is not necessarily a direct correspondence

between any given price deflator and the various costs involved in

developing and transporting natural gas. In the United States, a price

deflator for field development exists--the IPAA drilling index--but it

cannot be freely translated to North Sea conditions. Nor can a general

price deflator reflect the boom and bust conditions extant in the oil

industry, and the accompanying boom and bust in costs.8

Our approach thus is as follows: When given field development or

pipeline costs from the past several years, no inflation is applied.

For older examples (pre-1983), the implicit price deflator for U.S. GNP

is used to inflate to 1985 U.S. dollars. When the report is not in

See IEA, Natural Gas: Prospects to 2000, 1982, p. 53.

8 Short- and long-term cost trends are discussed in the main body of the
paper.
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U.S. dollars, the currency exchange rate we use is the purchasing power

parity index, published by the OECD.9

Natural Gas Liquids

Field development costs for natural gas liquids include only those

processing costs that are specifically necessary for their production.

We need not bother with the meaningless argument that liquids should be

assigned their "fair share" of exploration and development costs.

Data on the costs of processing the gas in the North Sea for liquids

are not available. Presumably estimates of capital expenditures for gas

field development include the investment necessary for gas processing and

liquids recovery. Therefore, we estimate the revenue from the gas

liquids, and treat it as an offset to, or subtraction from, the

development-operating cost of the gas. Representative prices are used for

natural gas liquids that reflect an assumption of low oil prices,

i.e., $10/bbl.1 0

The same method could be applied to oil field developments where

associated gas is produced as a byproduct. However, since gas pipeline

costs make up the vast majority of the costs of producing associated gas,

9 See Michael Ward, Purchasing Power Parities and Real Expenditures in the
OECD, OECD, Paris, France, 1985.

10 Condensate values have been described as 15 percent less than naphtha
prices, roughly the same as crude oil. See Gas Gathering Pipelines (North
Sea) Ltd., Gas Gathering Pipeline Systems in the North Sea, Her Majesty's
Stationery Office, London, England, 5/78, p. 53. There is not really a
spot market in condensate, but an examination of Algerian condensate
prices, which are roughly competitively priced, shows them to be close
to crude oil prices. LPG, because of its lower heat content, is much
lower in price.

XW:
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and pipeline costs are known, most of the incremental costs of producing

and delivering the gas can be shown.

There are three systems that deliver associated gas from the North

Sea: FLAGS (northern British sector), Norpipe (Ekofisk) and Statpipe

(Statfjord area). Although some non-associated gas is included, the

amounts are small, and the data are insufficient to allow production

cost estimation except in a few cases.
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CONTRACT VOLUMES

Table 3B-1 shows the volumes exported/imported by country,

for 1987-2017, under the' existing contracts as used under the Blitzer

model's low demand scenario. Also shown are 1984 actual deliveries.

The volumes are actual contracted volumes adjusted to conform to the

low demand scenario.

Contract volumes and durations were ascertained from a variety of

sources. Contract volumes, durations, and sources are listed in Table

3B-2 which also details calculations and assumptions. The base

sources for this information were Ente Nazionale Idrocarburi (ENI),

Energy and Hydrocarbons, 1981 and 1983. The ENI data was adjusted for

contract revisions/adjustments as reported in trade periodicals,

journals, and newsletters. Among the sources reviewed for contract

revisions/adjustments were: International Gas Report, Petroleum

Economist, Oil and Gas Journal, International Petroleum Encylopedia,

and BP Review of World Gas.

In most cases, the volumes contracted greatly exceeded the

expected imports (expected imports = gross demand - nonexported

domestic production) under the low demand scenario. To conform

gas flows under existing contracts with import demand, all contracted

volumes were adjusted by decreasing the expected takes as a percentage

of contracted volumes. The expected take percentages were determined
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by considering both the actual contract take provisions and historic

performances under the given contracts. Reduced expected takes as a

percentage of full contract volumes are as follows:

Algerian contracts with France and Italy 80%
Algerian contract with Belgium 30%
Russian contracts 50%
Dutch contracts 50%
Norwegian contracts 80%
Norwegian Sleipner/Troll contract

During build-up 100%
Post build-up 80%

;e
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Table 3B-1

Contracted Volumes
Adjusted for Low Demand Scenario

(Bcf)

Exporter Importer

Algeria
Belgium
France
Italy
TOTAL

Austria
France
Germany
Italy
TOTAL

The Netherlands
Belgium
France
Germany
Italy
TOTAL

Norway
United Kingdom
Belgium
France
Germany
The Netherlands
TOTAL

Net imports by country

United Kingdom
Austria
Belgium
France
Germany
Italy
The Netherlands
Norway

1984

55

287
232
574

144

158

448
268
1018

204
276
644
14

1137

480
69

77

193

107

926

480
144

328
798

1286
513

-1031
-926

1987

53

251

339
643

71

274
565

424
1333

74

175

455
106
810

268
106

120
323

106

923

268
71

233
820
1344
868
-704
-923

1990

53

237

339
628

71

339
565

424
1398

74

125

455
106

761

268
106

120

323
106

923

268
71

233
821

1344
868
-655
-923

1993

53

237

339
628

71

339
565

424
1398

74

115

455
106

750

268

120

177
380
120
1065

268

71

247

867
1400
868
-630
-1065

1996

53

237

339

42

339

297

226
904

53

115

455
0

623

268

144

273
477
144

1306

268
42
250
963

1228
565
-479
-1306
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Table 3B-1 (continued)

Contracted Volumes
ted for Low Demand Scenario

(Bcf)

Exporter Importer

Algeria
Belgium
France
Italy
TOTAL

Austria
France
Germany
Italy

TOTAL

Netherlands
Belgium
France
Germany
Italy

TOTAL
Norway

United Kingdom
Belgium
France
Germany
The Netherlands
TOTAL

Net imports by country

United Kingdom
Austria
Belgium
France
Germany
Italy

The Netherlands
Norway

Adjusl

1999

53

141

339
533

42

339

297

226
904

53

0
455

0
508

0
97

299
342
97

836

2002

53

141

,339
533

42

282

297

226
847

53

0

455
0

508

0

92

275
318
92

777

2005

0

0

.339
339

0

226
0

226
452

53

0

455
0

508

0

92

275
318'
92

777

2008

0

0

339

339

0

226

0

226
452

0

0

455
0

455

0

56

226

226

56

565

2011

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

56

226

226

56

565O
_e

565

0

42

203

779

1094
565

-411
-836

0

42

198

699

1070
565

-417
-777

0

0

145

501

773
565
-417
-777

0

0

56

452

681
565

-399
-565

0

0

56

226

226
0

56

-565

---
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Table 3B-1 (continued)

Contracted Volumes
Adjusted for Low Demand Senerio

(Bcf)

Exporter Importer
2014 2017

Algeria
Belgium 0 0

France 0 0

Italy 0 0
TOTAL 0 --I

Austria O O

France 0 0

Germany O O

Italy O O

TOTAL O O

Netherlands
Belgium O O

France 0 0

Germany O O

Italy O 0

TOTAL O O

Norway
United Kingdom 0 0

Belgium 56 56

France 226 226
Germany 226 226
The Netherlands 56 56

TOTAL 565 565

Net imports by country

United Kingdom 0 0

Austria 0 0

Belgium 56 56
France 226 226
Germany 226 226
Italy 0 0

The Netherlands 56 56
Norway -565 -565
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Table 3B-2

Sources X...

1984 actual volumes: Cedigaz, "Natural Gas in the World 1984,"

Centre International d'Information sur le
Gaz Natural et tous Hydrocarbures Gaseux. Paris,

i 4." 1985.

Contracts listed by exporter by importer

Algeria:

Belgium: Contract 1982-2002 176.5 Bcf/year, BP Review of
World Gas, London, 1985, p. 14.

France: Contract
Contract
Contract

1964-1989 17.65 Bcf/year, BP, Q. cit.
1972-1997 119.14 Bcf/year, BP, 9o. d.
1982-2002 176.50 Bcf/year, BP, go. cj.

Italy: Contract 1983-2008 @ 423.60 Bcf/year. Contract initiation,
BP, . it. Contract duration, Ente Nazionale
Idrocarburi, Energy and Hydrocarbons, 1981, Italy,
1982, p. 76. Contract volume, Cedigaz, o_. cit.

USSR:

Austria: Contract 1975-1995 35.3 Bcf/year, Enerqy and Hydrocarbons,
1981, oo. cit.

Contract 1984-2004 52.95 Bcf/year, Ente Nazionale Idrocarbi,
Enerqv and Hydrocarbons, 1983, Italy, 1984, p. 98.
20 year duration assumed consistent with German/
French/Italian Trans-Siberian agreements.

France: Contract 1976-2001 141.2 Bcf/year. Volume, ibid. Duration,
Petroleum Economist, January 1975, p. 17.

Contract 1984-2009 282.4 Bcf/year, Petroleum Economist,
March 1982, p. 105. 1987 volume, International
Gas ReDorL, June 21, 1985, p. 2.

Germany: Contract 1973-1993 @ 335.35 Bcf/year, Energy and Hydrocarbons,
1981, Q. cj.

Contract 1984-2004 370.65 Bcf/year, ibid

Italy: Contract 1974-1994 247.1 Bcf/year, ibid.
Contract 1984-2009 282.4 Bcf/year, ibid.
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Table 3B-2 (continued)

Sources

The Netherlands:

Belgium: Contract 1966-95 147.91 Bcf/year + 1996-2005 contract
extension 105.9 Bcf/year, Petroleum Economist.
March 1985, p. 103.

France: Contract 1967-1987 0 328.29 Bcf/year, Enerav ntiLHydrocarbons,
1981. oD. cit. 1988-1998 extension 229.45 Bcf/year,
Petroleum Economist, March 1985, p. 11.

Contract 1970-1990 @ 21.18 Bcf/year, Enerqy and Hydrocarbons,
1981, Q 'il

Germany: Contracts, various, entered into 1966-1975: Per Petroleum
E.nnomist, February 1985, p. 66, contracts
extended 10 years, with total volume to be taken
over contract life plus extension = 17,297 Bcf.
Yearly volume = 910.74 Bcf = 17,297 / (remaining
remaining contract period + 10). Original contract
expirations estimated to be 1993. Estimated as the
volumetric (contract volumes) weighted average of
the Netherlands/German contracts. Expirations and
contract volumes, Energv an Hydrocarbons, 1981,
ap. ·Gt.

Italy: Contract 1974-1994 211.8 Bcf/year, iJig.
Assumed contract not extended.

Norway:

United Kingdom:
Contract 1977-1997 335.35 Bcf/year, ibid.

Germany: Contract 1977-1997 289.46 Bcf/year, ibid.
Volume, Enerav ad Hydrocarbons, 1983, QL, ci.

Contract 1986-2007 123.55 Bcf/year. Duration,
International Petroleum Encvlopedia, 1983 p. 186.
Volume, Energ and Hdrocarbons. 1983, 2, i.

Contract 1993-2020 (Troll/Sleipner). Duration and
volumes, Dil and Gas Journal, June 9, 1986, p. 19.
Initial production (1993) under the Norway/ European
utility group contracts given, peak production
and takes by each country (Germany, the Netherlands,
Belgium, and France) also given. Calculations
assume constant production increase from 1993 to 2000
with constant production thereafter. Also assumed
each country pruchases, over time, in proportion to
its expected takes in the year 2000.

A.

'.w'
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Table 3B-2 (continued)

Sources

The Netherlands:
Contract 1977-1997 @ 88.25 Acf/year, Enerqv and Hydrocarbons,

1981, Q ci.
Contract 1986-2007 42.36 Bcf/year. Duration,

Tntrnat ina l Ptroleum Encvlopedia, 1983,
p. 186. Volume, Enerqy and Hydrocarbons, 1981,

PL, t.
Contract 1993-2020 (Troll/Sleipner), see Norway/Germany.

Belgium: Contract 1977-1i997 88.25 Bcf/year, Enerqy and Hydrocarbons,
1981, op. cit.

Contract 1986-2007 r44.13 Bcf/year. Duration,
International Petroleum EncvloDdia, 1983, p. 186.
Volume, Enerav and Hydrocarbons, 1983, 2p c.,

Contract 1993-2020 (Troll/Sleipner), see Norway/Germany.

France: Contract 1977-1997 88.25 Bcf/year, Enerqy and Hydrocarbons,
1981, gp. cit.

Contract 1986-2007 61.78 Bcf/year. Duration,
Internatijona Petroleum EncyloJdia, 1983, p. 186.
Volume, nergy and Hydrocarbons, 1983, Q. cit.

Contract 1993-2020 (Troll/Sleipner), see Norway/Germany.
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PROSPECTS FOR NATURAL GAS DEMAND IN WESTERN EUROPE, 1986-2000

by

Arthur W. Wright

INTRODUCTION

Western Europe is easily the most complex and least tractable of the

world's major markets for natural gas. No fewer than five countries are key

suppliers, two of which lie outside the region (the Soviet Union and Algeria)

and three within it (Norway, the Netherlands, and the United Kingdom), with

the latter two also being important consumers. On the demand side, some 14

different national energy policies are at work, and the Soviet Union's role as

a major supplier injects a controversial national security element into the

analysis. Furthermore, the Western European market trades two physically dis-

tinct types of natural gas: Dutch gas at some 0.8 million Btu (MMBtu) per

Mcf, and all other gas at about 1.0 MMBtu per Mcf.

Some of this variety shows up in the diversity of how gas is used in the

countries of Western Europe. In 1984, the share of natural gas in total pri-

mary energy use was about 14 percent. In France, however, it was only about

12 percent, while it was some 46 percent in the Netherlands. The shares of

natural gas consumption in primary energy use by major sectors for these two

countries show even greater disparities:

France The Netherlands

Residential/Commercial 23.3% 46.3%

Industrial 21.9% 71.4%

Electricity Generation 0.0% 57.5%

This broad variation in policies, influences, and consumption patterns is the

abiding characteristic of the Western European gas market. Differences in
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weather and in the structures of national output do not explain much of the

diversity. And different resource endowments account for some of it only be-

cause nationalist energy policies have prevented the development of natural

gas markets according to strictly economic criteria. Had it not been for

policy barriers based on political criteria, the gas resources of the Nether-

lands and the North Sea, for example, might have supported a rather

homogeneous development of demand in the core countries (the United Kingdom,

France, Germany, Italy, Belgium, and the Netherlands).

Yet, for all this policy-driven complexity, prospects for natural gas

demand in Western Europe over the next 15 years depend on the same economic

factors as in North America and Japan. The most important factor is the price

of oil (or, more accurately, expectations about the future levels and price

structures of refined oil products). The institutions for trading natural

gas, in particular how it is priced, also exert a strong influence, as do the

rates and composition of economic growth. Finally, long-run strategic (or

"disequilibrium") considerations also play a large role. This chapter ad-

dresses each of these factors.

The complexity of the Western European market for natural gas shapes the

analysis by forcing us to be selective. Economy dictates focusing on only

four countries in detail: France, Italy, the United Kingdom, and West

1 Indeed, if one accepts the general thrust of the results of Blitzer's
dynamic programming model (described in Chapter 5), the unconstrained devel-
opment of the Western European natural gas market would have greatly reduced
the roles of both Algerian and Soviet gas supplies--both of which are sources
of political controversy and instability in the market.
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Germany.2 We consider only in broad terms the prospects for demand in the

Western European market as a whole, and in the other ten countries in the

region.

Before examining the Western European market, this chapter first sets

forth the concepts and principles that underlie the subsequent analyses. We

then present an overview of natural gas demand in the entire Western European

market, followed by detailed analyses of the four major countries. The chap-

ter concludes by synthesizing the general and the specific analyses, using as

a framework the three different scenarios that form the basis of the demand

side of Blitzer's modeling work (see Chapter 5).

THE NATURE OF DEMAND FOR NATURAL GAS

Natural gas demand is influenced by a host of factors. The most central

is its price relative to those of close substitutes, especially oil products

but also coal and electricity. Other factors include the level of energy

prices generally, economic growth (both rate and composition), expectations

about both future prices and reliability of supplies, demographics, new tech-

nologies, and environmental policies. This section provides a framework of

economic analysis to help sort out how these factors apply to the Western

European natural gas market.

2 These four countries, together with the Benelux countries, account for about
95 percent of current Western European gas use (OECD/IEA, Natural Gas Pros-

pects, Paris, France, 1986, p. 41). One could argue that the Netherlands, as
a major user of natural gas--currently consuming more than both France and
Italy combined--merits detailed treatment, too. However, owing to its now-
lengthy history of gas use (stretching back to the 1950s), the Dutch market
appears to be almost fully saturated; evidently, this applies even to family
automobile use. If so, future increases in gas demand turn mainly on economic

growth. In contrast, the four countries studied here all offer significant

possibilities for demand growth through substitution and economic growth.
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Economic Demand Functions for Natural Gas

Throughout this chapter, the term "demand" is used in its economic sense;

that is, demand is a function that relates different quantities demanded by

buyers to different prices charged by sellers. Typically, a change in one or

more shift parameters will increase or decrease the entire function; that is,

more or less gas will be demanded at higher or lower prices than before the

shift occurred. The most important shift parameter is the price of the compe-

ting oil product (e.g., residual fuel oil).3 Other shift parameters are

stocks and prices of user equipment, technologies, and people's tastes.

As holds true with most goods, demand curves for gas "slope downward."

Greater amounts will be demanded at low prices than at high prices, assuming

that shift parameters are held constant, and the quantity demanded will be

more responsive to a given price change in the long run than in the short run.

If prices change suddenly, purchasers' quantity responses will be restricted

by their existing capacities to use gas. With time, however, replacement of

capital stock and other adjustments will widen the scope of these responses.

The importance of user equipment as a shift-parameter introduces a

strategic or dynamic element into the analysis. Expectations about both fu-

ture prices and reliability of supplies help frame investors' decisions to in-

stall gas-using capacity. Thus, supply expectations may shape the course of

gas demand over time. This factor was clearly evident in the development of

the U.S. natural gas industry between the end of World War II and the late

We discuss the problem of incorporating oil prices into the analysis

of gas demand below.
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1960s (when regulation-induced shortages first appeared in the market for new

reserves). The discovery of a new field (Mid-Continent, Groningen, Western

Siberia), a cost-reducing technological development (high-pressure, "seamless"

steel pipe), a shift in government policy (binding price ceilings in the

United States in the late 1960s; Oslo's recent new approach to gas exports --

all these are capable of profoundly altering future demand for natural gas.

Categories of Gas Demand 4

The demand for natural gas is not homogeneous. Three consuming sectors

commonly are distinguished: residential/commercial, industrial, and electric

utility. In all three sectors, levels of demand depend on the price of gas.

But the price often varies by customer class, and other factors of the demand

functions also may differ.

In the residential sector, the prices of near substitutes--mainly middle

distillate fuel oil and, increasingly, electricity--are important shift para-

meters, as are household income and user equipment. However, the derived

demands of commercial, industrial, and electric utility customers do not

depend directly on income. Stocks of equipment and technology also are impor-

tant. The long-run decision to install "dual-fuel" (gas and oil) capability

makes fuel switching a short-run possibility. For most commercial sector

demands, as for most residential ones, relevant long-run substitutes include

distillate fuel oil and/or electricity. Industrial users can substitute dis-

tillate in both process-heat and feedstock applications, and residual fuel oil

under boilers; conversions in the latter case tend to be to dual-fuel capabil-

A useful supplement may be found in OECD/IEA, op. cit., pp. 33-41.
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ity, given the high proportion of fuel bills in total costs. In electric gen-

eration, residual fuel oil is the effective short-run substitute for natural

gas. Coal and nuclear (base load) and distillate fuel oil (peak load) are all

long-run substitutes, as of course are hydro and pumped storage.

Broadly speaking, residential (R) and commercial (C) gas demands are less

"price-elastic" than industrial (I) and electric utility (EU) demands. For

any given percentage change in price, the percentage change in quantities

demanded for R and C use is relatively smaller than for I and EU uses. R and

C demands sometimes are labelled "captive," suggesting that homeowners and

shopkeepers are prisoners of capital outlays, which represent a larger frac-

tion of their total costs of gas use, and this therefore retards their range

of possible adjustments to price changes.

Exceptions, of course, do exist. Some large commercial users (e.g.,

apartment houses) find it worthwhile to invest in fuel-switching capability.

And certain large industrial users--e.g., petrochemical producers and some

firms using process heat--employ techniques expressly designed to use natural

gas. Thus, they have less elastic demands than the "penny-switchers" who

swing from gas to residual fuel oil and back again in response to relative-

price movements of as little as one penny per MMBtu.

These arcana of natural gas economics are important to understand how gas

markets operate. Differences among market segments both in marginal use value

and in price elasticities imply the existence of distinct ranges in the total

demand curve in a given gas market. Figure 4-1 depicts a stylized market for

natural gas at end-use. The highest demand prices and steepest slopes occur

in the region labelled "R+C", followed by "I", and then by "EU". The range of

the R+C region of the demand curve below which the I region begins is not
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relevant: No seller will sell gas for R+C use if I use will fetch a better

price. And similarly for the range of the I region below which the EU region

begins.

Prospects for the growth of gas demand will vary considerably, depending

on whether gas prices are clearing (or are allowed to clear) below the R+C

range. All other factors being constant, if the market clears in the R+C

range, sellers will realize greater revenues than they would if it cleared in

the I or EU range. Among buyers, the range of market-clearing prices will

shape the rates of penetration by gas into the various market categories.

Not long ago, natural gas was viewed as a "premium" fuel in many parts of

the world--in North America (except on the Gulf Coast), Western Europe, and

Japan (but not in the Soviet Union)--because incremental units of gas

delivered to many markets fetched R+C prices. Today, many have begun to view

gas more as a "blue-collar" fuel that will clear in the I range (against

residual fuel oil) or even (in the long run) in the EU range (against coal)--

in the process opening up new markets to natural gas in other categories.

This view is now common in North America and to a lesser extent in Western

Europe.

The Critical Role of World Oil Prices

As noted above, when studying the demand function for natural gas, the

most important shift parameter is the price of the competing oil product. An

expected increase in oil prices will tend to reduce total energy demand--

quantities demanded at every price--and vice versa. Movements in the relative

prices of oil, gas, and other fuels will shift gas demand, in some cases

quickly and significantly. Thus, investors in fuel-using equipment are

forced, willy-nilly, to form expectations about future oil prices.
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The sharp drop in world crude oil prices since November 1985 has forced

us to think harder about how oil-price expectations are built into our

analyses. As of mid-1986, the range of possible and plausible oil-price ex-

pectations looks to be quite wide. We argue here that where expectations ac-

tually settle in the range will shape significantly both the level and the

forms of investment in energy-using equipment--and hence also the future

course of demands for natural gas.

Since 1973, there have been three major oil-price shocks. In the first

two (1973-74 and 1979-80), crude oil prices rose severalfold. In the third

(1985-86), prices thus far have fallen by 50 percent or more.

These three oil-price events have one thing in common: Few, if any,

analysts were able to provide a coherent account and forecast of these

precipitous price movements. Many thought the oil price increases of the

1970s were permanent--that "high" and ever-rising oil prices were here to

stay. On that basis, natural gas buyers were willing to sign gas contracts

with price and other terms set at "premium" levels and tied to oil at or near

thermal parity.

As it turned out, high oil prices were not here to stay. However, it

does not follow from this that oil prices, now fallen, will stay low. In

fact, we cannot be sure how actors in energy markets will form their expecta-

tions about future oil prices. Choosing one particular assumption about ex-

pectations would leave our analysis vulnerable to becoming irrelevant. It

therefore is best to resort to sensitivity analysis to cope with the wide

range of possible assumptions about oil price expectations.

To do this, we postulate a reference oil price that participants in gas

markets use when deciding whether to invest, how much, in what, where, and
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when.5 Any given reference oil price necessarily is associated with some set

of expectations about world oil prices. We may think of a reference price as

an expected value or mean, plus some measure of the probability that the ac-

tual price will diverge from the mean in any particular period. Reference oil

prices may well differ not only in their means but also in their divergences

from the means.

We further postulate that the key element in oil price expectations is the

market structure that decision makers believe will prevail in the world oil

market over the decision horizon: say, 10 to 20 years.

Three structural scenarios for the world oil market are postulated:

(1) A Strong Oil Cartel Re-forms: At one extreme is a re-formed world

oil cartel, with a coalition of larger exporting countries again led by Saudi

Arabia. The reference price in this extreme scenario would be around $28 per

barrel (bbl), + $2.6 Loosely speaking, this scenario resembles oil market

conditions in the mid- to late-1970s.

(2) Competition Prevails in the World Oil Market: At the other extreme,

competitive forces eventually may prevail in the world oil market, pushing

prices down to near long-run marginal cost. A plausible competitive reference

price might be $8/bbl, + $1. This scenario may be likened to conditions in

the world oil market over the 1950-70 period.7

M.A. Adelman is the source of this concept, but he is not to blame for any
misrepresentation or misuse in its application here.

All prices are quoted in 1986 dollars.

7 See M.A. Adelman, "The Competitive Floor to World Oil Prices," Energy Jour-

nal, forthcoming, for an analysis of long-run marginal costs for oil produc-
Toin in different producing regions of the world.
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(3) The Oil Cartel Waxes and Wanes: Intermediate between these two ex-

tremes is an oil market in which the cartel's grip is loosened but not com-

pletely broken. There is general uncertainty from one period to the next

about just how tight the cartel's grip is going to be. The reference price

under this "clumsy-cartel" scenario might be $15/bbl, + $5.8 Something resem-

bling this scenario has appeared in the world oil market since early 1982, and

some might argue that it also prevailed during 1975-77.9

These three oil-price scenarios have quite different implications for fu-

ture gas demand. Natural gas markets may clear in different price ranges of

8 The existence of price volatility suggests that organized futures trading in
natural gas could be economically viable under this scenario. The possibility
has been considered in the United States--indeed, one model contract has been
submitted to the U.S. Government for approval--and references are made to ap-
plying it to Western Europe (e.g., with respect to the "swing" role that
Groningen gas plays in that region). Regulatory impediments (especially
restrictions on gas deliveries and prices) appear to be the most serious bar-
rier to organized trading in natural gas.

The urge to speculate about which of the three variants is most probable
over the next 15 years or so is irresistible. Giving in to the urge, but

entirely as an aside, we opt for (3), for at least three reasons.
First, energy supplies in general are much more price-elastic now than

than they were in the early 1970s. Low or even "soft" energy prices will not
cause much of a permanent loss in existing capacity, plus acquired exploratory
knowledge, gained in response to the high oil prices of the 1970s. More
price-elastic energy supplies make variant (1) less likely to occur today than
(admittedly with hindsight) in the early 1970s.

Second, energy demands in general are more price-elastic than they were
in the early 1970s. The investments in energy-saving and fuel-switching ca-
pacity prompted by the oil prices and expectations of the 1970s will not go
away for many years. More price-elastic demands also reduce the probability
that a strong cartel will re-form.

Third, prospects for variant (2) are dimmed by the inability, or unwill-
ingness, of the major energy-consuming nations to learn from sad experience
and kick the cartel while it is down. A vigorous oil stockpiling program
would be much cheaper to implement now than it was five years ago; moreover,
the mere existence of a large stockpile would pose a credible threat to any
re-forming oil cartel and reduce its ability to disrupt the market. The ener-
gy users' failure to take measures like stockpiling, plus the financial stake
of the big oil exporters in gaining and exercising market power, make the com-
petitive variant unlikely.
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the demand curve, and investments relating to fuel use and interfuel choice

are likely to vary across the three oil-price scenarios. Moreover, the vari-

ous scenarios likely will have quite different effects on macroeconomic ac-

tivity and performance, and especially on economic growth.

Under scenario (1), a re-formed and cohesive oil cartel, gas markets

would be more apt to clear in the "premium" or R+C range.1 0 In contrast, at

the opposite extreme of scenario (2), gas markets could well clear in the

"blue-collar" or I and EU ranges, with their relatively price-elastic demands.

The mixed oil price scenario, (3), would see gas demand less stable than in

the two extreme cases. This instability would create substantial uncertainty

about where gas markets would clear, which in turn would affect investment de-

cisions, to which we now turn.

High oil prices (scenario 1), which pull up other energy prices, on the

one hand would encourage investment in more energy-efficient capacity, thus

tending to retard the growth of total energy use, and with it growth of gas

demand. On the other hand, provided gas prices were not closely linked to oil

prices, high oil prices also would tend to encourage investment in gas-only

capacity (e.g., in process-heat applications, petrochemicals, new residential

and commercial buildings, and conversions of existing heating plants), and in

add-on capacity to permit fuel-switching from oil to natural gas.1l The low

10 This is particularly true if governments respond (as did those of many
Western countries in 1974) by placing restrictions on gas use and taking other
measures that turn gas into a political good. In this case, both economic and
political criteria will make gas a "premium" fuel.

Following the first two sharp oil-price rises, in 1973-74 and 1979-80, gas
prices in many new contracts were linked tightly to oil prices, often at
premia in terms of cost per usable Btu. This can be traced, in our view, to
the unique supply conditions existing in gas markets at the time, and these
would be unlikely to occur again if our scenario (1)--a reprise of the mid- to
late-1970s--came to pass. Those unique gas supply conditions were the
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oil prices at the opposite extreme (scenario 2) would push these investment

choices in just the opposite directions. Under scenario 2, prospects for in-

creased natural gas demand would hinge to a large extent on expectations about

the volatility of gas prices relative to those of oil, and on macroeconomic

forces.

The large price variances associated with scenario (3) would provide the

greatest incentive to invest in fuel-switching capacity. This is because a

premium would be placed on the flexibility of fuel-switching capacity. In ad-

dition, the instability of oil prices under this scenario could enhance the

penetration of gas into previously single-fuel uses. This presumes, of

course, that gas prices are less tightly tied to oil prices than they were in

the past, as we expect them to be (see footnote 9).

Oil price expectations exercise their macroeconomic effects both through

"real" impacts on aggregate supply and through governments' responses in fis-

cal and monetary policies. Lower oil prices tend to increase aggregate supp-

ly, and thus to stimulate economic activity; the converse is true for higher

oil prices. If past policymakers' responses to oil price shocks are any

(continued)

regulation-induced shortages in North America and the infancy of the industry
in the Pacific basin region and in Western Europe (outside the Netherlands).
These conditions made for short- and intermediate-run supply price
elasticities of supply that were low enough to confer market power on sup-
pliers. With today's more "mature" gas industries all around the world, supp-
ly elasticities will be greater, even in the short run. This point is rein-
forced but does not depend on the current gas "gluts" found in various regions
of the world.

The investment behavior discussed here depends on governments not
responding high oil prices as discussed in footnote 7, so natural gFas becomes
a "premium" fuel by fiat. Government restrictions on gas trading and use, of
course, will have a chilling effect on all new investment in gas-using capac-
ity.
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guide, fears of the inflationary effects of higher oil prices would tend to

push macro policy toward restraint, aggravating the deflationary impact of the

higher prices. Conversely, policymakers may feel freer to pursue expansionary

macroeconomic policies under low oil prices, thus enhancing the stimulative

effect of the low oil prices.

In terms of natural gas demand, these macroeconomic "income" effects work

against the fuel-substitution effects of the associated scenarios. Any in-

creased demand for gas that higher oil prices would bring would be weakened to

the extent that those same oil prices would reduce economic growth. The off-

set would be even greater if restrictive macroeconomic policies reinforced the

aggregate supply effects of higher oil prices. The opposite holds true for

lower oil prices: The decline in demand for gas due to lower oil prices would

be mitigated by stepped-up economic activity, and the more so as macroeconomic

policies pushed economic expansion.

Whether the substitution or the income effects will win out is an empiri-

cal question. The experiments in North America during the first two oil-price

shocks (1973-74 and 1979-80) were spoiled by coterminous government-induced

shortages of natural gas and the related passage of the U.S. Natural Gas

Policy Act of 1978. In Western Europe and Japan, one cannot reject the

hypothesis that the higher oil prices of the 1970s spurred gas demand, but

again the experiments are clouded: by policy favoring diversification in

Japan and by the relative infancy of the gas industries in both regions. In

the calculations used to generate demand scenarios for the modelling exercise

(see Appendix A and Chapter 5), macroeconomic effects outweigh substitution

effects in all four of the countries studied in detail.
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The relationships just discussed have some interesting applications in

several of these countries. In particular, an examination of how they inter-

act with national energy policies yields some interesting results.

OVERVIEW OF NATURAL GAS DEMAND IN WESTERN EUROPE

A Timely Case Study: "Norway's $64 Billion Gas Deal"

On June 3, 1986, Statoil of Norway and a consortium of six natural gas

companies in Belgium, France, Germany, and the Netherlands announced a major

new contract that the New York Times labelled "Norway's $64 Billion Gas Deal."

The contract calls for deliveries of Norwegian gas to the consortium beginning

in 1993 and rising by 1998 to peak annual volumes of 20 Bcm. A new pipeline

said to cost nearly $3 billion (presumably at 1986 prices and exchange rates)

will transport part of the gas from the Sleipner and Troll fields in the Nor-

wegian North Sea to Zeebrugge, Belgium; this pipeline will pass by the Ekofisk

field, where it will hook up to an existing pipeline to permit the rest of the

gas to be transported to Emden, West Germany. According to various press

reports, the deal presumes that an onshore trunk pipeline will be built

through France to southern Europe, and Statoil officials also have mentioned

the possibility of building a spur pipeline to the United Kingdom. 1 2

This contract (which took a year and half to negotiate) highlights many

salient features of the Western European gas market in the mid-1980s:

(i) major potential suppliers;

(ii) the complex roles of large supplier-users;

12 See, for instance, Wall Street Journal, June 4, 1986, p. 35.
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(iii) the existing West German (Ruhrgas) monopsony of access to gas
supplies;

(iv) the diversity of national energy policies;

(v) the national security element; and

(vi) notions of what constitutes "stability" in this market.

All these features will affect the course of natural gas demand (as well as

supply, contracts, and policy) in Western Europe for the remainder of this

century.

The new contract13 is based on the ability of the Norwegians to supply

significant quantities of natural gas to the core industrial countries of

Western Europe. In 1985, Norway lost a sizable contract to supply Sleipner

gas to the United Kingdom just before it was to have been signed. Under the

newly signed contract, the Norwegian government will bear much of the front-

end risk of financing the development of gas reserves in the Troll field and

of building the new pipeline to Zeebrugge. This is a newly aggressive stance

compared with Oslo's previous reticence toward oil and gas development (see

Chapter 3).

The new contract also involves the Netherlands and potentially the United

Kingdom, both of whom are major gas producers and major consumers. The

Netherlands also exports sizable amounts of gas. The Dutch firm, Gasunie, is

a member of the buyers' consortium, and (as mentioned) Statoil already is con-

sidering extending a spur line from the new pipeline into the United Kingdom.

13 Our sources state privately that it is in fact a contract and not just a
"letter of agreement" committing both sides to negotiate further. A tentative
design and construction schedule already exists. However, the Wall Street
Journal recently wrote that ". . . the Norwegian government . . . wants the
consortium of buyers, oil companies and governments to approve the contract by
year's end . . ." (August 12, 1986; emphasis added).
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While much of the public discussion in the two countries has been couched in

terms of planning for future supplies when domestic resources "run out,"

moving Norwegian gas into both countries now in order to displace their own

gas south and east in fact could prove very economical. Displacements of this

kind have been common for years in the North American and Soviet/Eastern Euro-

pean markets.

The new Norwegian contract raises several interesting questions about the

energy policies of some major actors in the Western European gas market. Gaz

de France (GdF) was slated to take 8 Bcm annually--40 percent of the 20 Bcm

peak volume. Given existing contracts and nuclear power plans, could that

volume of gas be sold in French markets? Or, more to the point: Would the

gas be priced to fit into the French market, and how would its price affect

existing contracts and goals for nuclear power in electric generation? And

how much of its gas would GdF have to moved on into Spain, Switzerland, and

Italy? If France does boycott the deal, will German, Dutch and Belgium buyers

take over its share of the gas in the orgianl deal?

What does the new contract imply about Dutch policy regarding rates of

development and export of its gas reserves? Will the Dutch in fact use the

Norwegian gas to displace more of its own production into the export market,

or will they substitute the imported gas at home and cut back on production?

Will the United Kingdom, also a major producer of gas, permit construction of

the proposed spur pipeline to its shores and begin exporting its own gas to

the continent? Will the prices associated with the new contract force the

U.K. government to reconsider both its export and domestic policies toward

gas?
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Construction of the new trunk pipeline to Zeebrugge would break Ruhrgas's

monopsony as gas transshipper in the Western European market.1 4 Yet Ruhrgas

is a member of the consortium. From what we have been able to gather, the

Norwegians insisted on the construction of the trunk pipeline to Zeebrugge, in

addition to the connection into Emden. Ruhrgas resisted this until it learned

that Statotl also was negotiating separately with Elf Aquitaine to bring the

line only to Zeebrugge. The inference might be that Ruhrgas, seeing its

monopsony doomed in either event, preferred to be part of the new deal

(indeed, in a lead role, taking the same percentage of peak volumes as GdF)

rather than sitting on the sidelines.

The national security element in the Western European market was front

and center in press coverage of the contract. The New York Times' front-page

headline stressed ". . Cutting Reliance on Soviet Supply." In the Wall

Street Journal, a lead sentence stated that the contract ". . . reduces

Europe's potential long-term energy dependence on the Soviet Union." The

Journal went on to quote a "senior Reagan administration official" to the ef-

fect that the contract had calmed U.S. fears about Western European reliance

on Soviet gas. And Petroleum Intelligence Weekly, listing Austria as "among

prime candidates for future Troll contracts," noted that country's near 80-

percent dependence on Soviet gas.15

News accounts also suggested that the Norwegian gas delivered in the core

Western European market would carry a security premium compared with Soviet

14 One news report cited a Norwegian belief that it has ". . already lost
possible gas sales to Switzerland as a result of high Ruhrgas [pipeline]

rates . ." (emphasis added), Petroleum Intelligence Weekly (PIW), June 9,
1986, p. 2.

15 ibid.
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gas. Underlying this suggestion, however, is the notion that Norwegian North

Sea gas will be "expensive" to produce and transport. This raises the ques-

tion of what precisely makes Norwegian gas "expensive": resource costs, or

taxes and other components of government revenues? West German sources say

that price terms in the contract, translated at current values of the formula

referents, in fact do work out to be somewhat higher than Soviet gas. But,

this raises the further question of which Soviet gas: current "spot" gas?

long-term contracted minimum takes? at current formula values? The same

sources state that the price of the Norwegian gas also works out to be some-

what less expensive than Groningen gas, on a thermal-equivalent basis. How-

ever, volume terms for Groningen gas are the most flexible in the market, and

questions similar to those for Soviet gas also arise in this comparison.

In fact, while the idea that the new contract contains a security premium

cannot hurt Western European relations with Washington, we are skeptical that

any such premium in fact could survive competitive pressures down the road

when (and if) deliveries actually begin or, alternatively, that Washington

would come up with financial assistance to offset the penalty. Reliance on

buyers' willingness to absorb a premium penalty seems a slender reed on which

to support several billion dollars of up-front investment in pipeline and

other development.

More fundamentally, it is highly speculative to attach prices to the

Sleipner-Troll gas, and then to compare those prices with their Soviet or

Dutch counterparts. The supply prices of the Norwegian gas, and in turn the

economic viability of the entire project, turn on two interrelated variables:

the Norwegian government's take, and the disposition of the remainder of

Troll's potential supplies. The economics of both wellhead production and
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pipeline shipment of Troll gas would be much more favorable if all of it could

be sold, not just the 25 percent involved in the new contract. In fact,

without substantial further sales out of Troll, the project probably will not

go forward.16 Calculations by Adelman and Lynch (see Chapter 3) suggest that

Troll gas will offer a good rate of return at a wellhead price below

$2.00/Mcf--but this assumes development and transportation of the entire

reserves of the field, not just 25 percent of them.

A Wall Street Journal header on June 4, 1986 (p. 35) asserted that the

new contract "Will Stabilize Western European Market." By "stabilize" the

Journal meant the security blanket of the old, familiar long-term contract.

Given today's energy-market conditions, that time-honored institution is

obsolete; attempting to use it is likely to leave one or another party to the

contract unhappy.1 7 Moreover, appearances are deceiving: While the Norwegian

contract is multi-year and contains provisions that govern its entire term, it

almost certainly is not a long-term gas contract in the old sense. Evidently,

the price terms--the formula itself--may be reopened at the option of either

side every four years. In addition, the quantity terms appear to be renegoti-

able and to contain provisions for market-outs in case of "hardship." If this

is true, the locus of interest turns on how the project is financed, particu-

larly regarding the development of Troll reserves and the construction of the

new pipeline to Zeebrugge. Statoil, with help from the Norwegian Ministry of

Finance, will finance the pipeline. The private producer participants in

16 See Wall Street Journal, August 12, 1986, p. 32.

17 This theme was very much present in the two earlier reports of this pro-
ject.
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Troll, who will have to outlay substantial capital to develop the reserves,

have raised serious questions about the viability of the new contract.18 The

pricing package includes cuts in taxes, in royalty oil payments by producing

companies, and in the companies' obligations to pay the government's share of

exploration costs. Such provisions confirm the suspicion that earlier

estimates of the "high costs" of Norway's North Sea petroleum production con-

tained significant economic rents.

The announcement of the Norwegian contract was surprising to many because

of the widespread impression that the Western European gas market (like others

around the world) faces excess supplies, based on existing contractual commit-

ments, that should last well into the future. And yet here is a contract for

new supplies, with a peak contract volume equal to a third or more of current

gas imports (both pipeline and LNG) into Western Europe. These facts make the

new contract seem more destabilizing than otherwise. Where will all that gas

go in France and in the other three countries who are parties to the deal?

"Excess supplies" cannot be defined, of course, without reference to

prices. As in North America and the Pacific Basin, the realization slowly has

dawned in Western Europe that the prices embodied in gas contracts signed in

the mid- and late-1970s are not sustainable. That is to say, insistence on

adhering to the price terms of many of those contracts would precipitate

breachers of contract, defaults, and bankruptcies. Realism therefore dictates

that actual transaction prices for natural gas be lower than those thought

reasonable several years ago. These lower prices will help clear up "excess

supplies."

18 Wall Street Journal, op.cit., p. 32.
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But even with lower price terms, the Norwegian contract still looks

risky, particularly if real oil prices remain in their present range ($12-

15/bbl).1 9 A more dynamic interpretation is required to comprehend fully the

broader implications of the contract. The Norwegian deal must be seen as a

bold (if risky) attempt to change expectations about the future availability

of gas in Western Europe. As suggested earlier, a strategic shift of this

sort could increase the demand for gas over the long run through its effects

on investors' expectations about both the price and the supply security of

natural gas in Western European markets.

Media reports have made much of the "strategic" importance of the Nor-

wegian contract. It would establish Norway as a major gas supplier throughout

the core Western European market, as well as provide it with access to several

peripheral markets. As noted above, the new pipeline to Zeebrugge would break

Ruhrgas's monopsony on transshipment in the region and, through France, open

up a second major trunk pipeline system in the core market. In turn, this new

pipeline configuration would give Norway access to the Austrian, Spanish, and

Italian markets. Indeed, the capacity of the proposed pipeline to Zeebrugge

would be larger than that required to fulfill just the deliveries envisioned

in this contract.2 0

If this interpretation is correct, "Norway's $64 Billion Gas Deal" could

be just the sort of stroke that we found the Canadians contemplating in North

America and that we argued Japan should consider.

19 Recent reports suggest that the Norwegian calculations for the project re-
quire minimum oil prices of about $20 per barrel (ibid.)

20 One news report puts total annual capacity for the pipeline at 46 Bcm,

split 25-21 between Zeebrugge and Emden. See PIW, June 9, 1986, p. 2.
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The Current Western European Pattern of Gas Use

As noted, there really are no "typical" Western European patterns of gas

consumption. This holds true also for overall primary energy use and for the

structure of gas use itself. In 1984 the shares of the various sources of

primary energy in Western Europe as a whole, in the four countries examined in

detail, and in the Netherlands, are shown in Panel (a), and the pattern of gas

use by major sector in 1983 is presented in Panel (b). Again excluding the

Netherlands, the noteworthy features of these panels include:

(1) the relatively large share of gas devoted to residential/commercial

use in the United Kingdom;

(2) the relatively small share in the same sector in West Germany; and

(3) the relatively large shares of gas used to generate electricity
in Italy and West Germany.

Finally, Panel (c) shows the diversity across Western Europe in the per-

centage share of total energy consumption occupied by natural gas, in 1983, in

the following sectors: (a) industry; (b) residential/commercial; (c) total

fossil fuels used to generate electricity; (d) total electric power generated

in "conventional thermal" plants; and (c) total electric power generated.

Western Europe is sufficiently small and economically compact that the

major gas resources of the Netherlands and the United Kingdom21 alone could

support quite uniform development of the gas industry throughout the entire

region. However, as noted earlier, political barriers, reflecting nation-

alistic energy policies, prevented this development. The "haves" (in terms of

21 Norway is an exception to the analysis in this paragraph. The reasons in-
clude its much lower population density and its relatively low degree of in-
dustrialization, compared to the nations in the industrial heartland of West-
ern Europe.
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Panel (a)

(mi

Total

PRIMARY ENERGY USE, BY ENERGY SOURCE, 1984
llions of metric tons of oil equivalent Lmt,

Nat. Gas Oil Coal H'

oe])

ydro Nuclear

W. Europe: 1,249.4
(100%)

190.1 591.0 256.7 107.0 104.6
(15.2%) (47.3%) (20.5%) (8.6%) (8.4%)

France:

Italy:

U.K.:

W.Germany:

Neths.:

187.0
(100%)

140.2
(100%)

191.9
(100%)

260.9
(100%)

66.7

(100%)

23.5 86.2 25.2

(12.6%) (46.1%) (13.5%)

26.5 84.7 15.3

(18.9%) (60.4%) (10.9%)

45.2 88.7 45.3

(23.6%) (46.2%) (23.6%)

41.1 110.9 83.3

(15.8%) (42.5%) (31.9%)

31.2 28.9 5.7

(46.8%) (43.3%) (8.5%)

13.7 38.4

(7.3%) (20.5%)

11.3 2.4

(8.1%) (1.7%)

1.2 11.5

(0.5%) (6.0%)

4.7 20.9

(1.8%) (7.9%)

0.0 0.9

(0%) (1.3%)

Gas, London, England, August 1985, p. 2.
.

SOURCE: BP Review of World
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Panel (b)

GAS USE BY MAJOR SECTOR, 1983
(billion cubic meters [Bcm])a

W. Europe:

France:

Italy:

U.K.:

W.Germany:

Neths.:

Total b

197.6
(100%)

25.7
(100%)

25.6
(100%)

48.5
(100%)

44.0
(100%)

33.4
(100%)

Industry Res./Comml. et al.C

69.6

(35.2%)

11.3

(44.0%)

10.4

(40.6%)

14.8

(30.5%)

16.4
(37.3%)

9.11

(27.2%)

91.4
(46.3%)

12.5

(48.6%)

11.4
(44.5%)

28.9
(59.6%)

16.3

37.0%)

15.2

(45.6%)

Elec. Gen .

26.3
(13.3%)

1.0
(3.9%)

3.4
(13.3%)

0.4

(0.8%)

8.8
(20.0%)

8.3
(24.9%)

Notes: a. Totals may not equal sum of components due to slight errors i
converting from mtoe to Bcm.

b. = domestic production + net imports + net stock reductions.
c. Also includes agriculture, public-service, and "other (non-

specified)". Whenever the last category is of any magnitude,
it covers mainly residential or commercial uses.

d. = returns and transfers + statistical differences + manu-
factured gases + petroleum refineries + own use and losses
(all net).

n

SOURCE: OECD, Energy Balances of OECD Coluntries, 1982/83, Paris, France,
1985.

Misc.d

10.0
(5.0%)

1.8
(7.0%)

0.4
(1.6%)

4.4

(9.1%)

2.4

(5.5%)

0.7

(2.1%)

, A_.
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Industry

W. Europe: 24.6%

France: 21.9

Italy: 24.8

U.K.: 31.7

W. Germany: 21.7

Neths : 46.3

Panel (c)

PERCENTAGE SHARE OF NATURAL GAS IN TOTAL
SECTORAL ENERGY CONSUMPTION, 1983

Fossil Fuels "Conventional
Res./Comml. Used in Thermal" Elec. Total Elec.

et al.a Elec. Gen. Power Gen'd. Power Gen'd.

32.8% 14.4% 15.2% 9.5%

23.3 4.5 6.1 1.7

30.5 10.6 10.5 7.5

47.4 0.7 0.6 0.5

20.4 11.2 12.7 9.9

71.5 61.8 61.9 58.2

Notes: a. Also includes agriculture, public service, and "other (non-
specified)." Whenever the last category is of any magnitude,
it covers mainly residential or commercial uses.

SOURCE: OECD, Energy Balances of OECD Countries, 1982/83, Paris, France,
1985.

U:%·
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natural gas resources) elected to expand intensively their domestic consump-

tion of gas through subsidies, rather than to export their gas to the highest

bidders. Even the Dutch, who for year have exported natural gas as far as

Italy, have overdeveloped domestic consumption of gas relative to what they

would have done had their policy been to maximize the economic present value

of their gas resources.

The energy policies of the have-nots also help to explain the diversity

of natural gas use across Western Europe. For example, France has con-

centrated on developing nuclear power as the major basis for electricity pro-

duction. Belgium also has stressed nuclear power, as has West Germany, al-

though to a lesser degree.

For internal political reasons, West Germany and the United Kingdom long

have subsidized their domestic coal industries. The retarding effect of this

on the development of natural gas use has been greater in West Germany than in

the United Kingdom, partly because the latter also promoted the development of

domestic gas resources. In addition, though, the United Kingdom has had to

deal with air pollution problems related to the widespread use of coal in the

residential sector; in contrast, West Germany has pushed the use of its

domestic coal mainly in industry and electric generation. And in Italy, which

lacks major domestic resources of either fuel, the move to natural gas began

only after the oil-price shock of 1973-74. The noteworthy feature of Italian

energy policy is the practice of assigning dominant positions in energy

markets to huge, state-run enterprises: ENI in oil and SNAM in natural gas.

Finally, note the sizable variations in energy pricing policies among the

various countries. These variations derive from differences in taxation and

subsidy practices and in contract terms (e.g., the linkage of gas to oil pro-
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duct prices). The details of certain of these pricing policies are described

below.

Macroeconomic Policies and Economic Growth

As mentioned earlier, macroeconomic policies are important determinants

of natural gas demand, because of their impacts on economic growth. Since the

oil-price shock of 1973-74, economic growth in Western Europe has been pallid

compared with that of the 1950s and 1960s. For the 1973-83 period, the OECD

gives an average annual growth rate of real GNP of about 2.2 percent. Unem-

ployment rates persistently have run double what they were before the slow-

down.

The relevant question here is whether this pattern will change, and (if

so) when. A common view is that the confluence of higher oil prices and in-

creasing structural defects in Western European labor markets in the 1970s

raised fears of escalating inflation among Western European governments and

discouraged them from adopting expansionary macroeconomic policies. By this

same view, the declines in oil prices, in interest rates, and in the value of

the U.S. dollar since late 1985 should give these governments enough slack in

terms of aggregate supply that they can afford to pursue more expansionary

fiscal and monetary policies. This holds true even without structural reforms

in labor and goods markets (like those now mooted in France by Premier

Chirac).2 2 Oil prices (and expectations) at about $8/bbl, as in scenario (2)

above, would reinforce this point.

22 See ibid.
, ,
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We cannot predict what macroeconomic policies the various Western Euro-

pean governments will pursue. The important point is that, for two of the

oil-price scenarios discussed earlier--(2) low ("competitive oil market") and

(3) variable ("weak cartel")--Western European governments could pursue more

expansionary policies than they have recently with less fear of rekindling un-

acceptable rates of inflation.

Some Demand Forecasts

Table 4-1 summarizes three recent, independent forecasts of natural gas

demand in Western Europe. We present them to illustrate several points about

such forecasts, and because in part they form the basis for the demand

scenarios analyzed in Chapter 5. The first point is that forecasts have half-

lives approaching those of subatomic particles. Another point is that basic

underlying assumptions are the all-important ingredient in any forecast.2 3

Third, one forecast rarely agrees with another.

23
Accordingly, before commenting on the three forecasts in Table 1, we should

briefly list the assumptions that underlie them.
"Roland" refers to a forecast from a 1984 working paper by Kjell Roland,

"Natural Gas Supply and Demand in Western Europe, 1990 and 2000," manuscript,
Stanford Energy Modelling Forum, Stanford, California, February 1984, p. 5.
For economic growth rates, "Roland" assumes an average annual increase in GDP
of 2.5 percent from 1983 onward. The rates for France and West Germany aver-
age 3 percent a year in 1983-85 and then decline to the regional average; the
United Kingdom experiences growth rates of half a point less than the region
as a whole. Income elasticities of gas demand are assumed to range from 0.7
to 0.9 except for the Netherlands, which has a "significantly lower
elasticity" (ibid., p. 4). Relative fuel prices "are not drastically
changed," incTluding incentives in the United Kingdom for "continuing substitu-
tion of gas for crude oil and to some extent for coal." [This last assumption
is no longer valid.] Real crude oil prices fall during the late 1980s but
then increase at 1-1.5 percent per year through 2000.

"IGU" refers to projections of "potential economic demand" reported in
International Gas Union, Report of Task Force: World Gas Supply and Demand,
1983-2020, no date or place of publication available, 1985, p. 23. "The
potential gas demand figures are central estimates ... Actual gas demand . . .
is more likely to be below the . . . potential [figures] . . . than above
them" (ibid., p. 22).
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Table 4-1

FORECASTS OF WEST EUROPEAN GAS DEMAND

1990'Current' Use

(1982) 212 Bcm 236-252 Bcm

1.35-2.185

(1983) 203 Bcm

2.45

FORECAST
2000

iF

276-307 Bcm

2010

N.A.

1.6-2.0O

240 Bcm 261 Bcm 271 Bcm 

0.855 0.4%

I.E.A.
(1986)
AAPC:*

(1984) 212 Bcm

(a):0.9S

(a):224 Bcm
(b):244 Bcm

(b):2.4S

(a) - 'Low Growth/High Oil Price"

(b) a 'Hgh Growth/Low Oil price"

*Average Annual Percentage Change Between Years.

Roland
(1984)
AAPC:*

IGU
(1985)
AAPC:*

248 Bcm
280 Bcm

1.0S

258
305

0.4%

Bcm
Bcm 

1.4S 0.85%
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The "Roland" forecast dates from 1984 and therefore may be forgiven for

failing to predict such imponderables as the steep, post-1985 decline in oil

prices. Roland and his colleagues also did not foresee the change in U.K. gas

pricing policy that has accompanied the "privatization" of the British Gas

Corporation (BGC); thus, their figures for the United Kingdom may be too high.

The "Roland" projections also underestimated the growth of gas use in Italy,

which surpassed their 1990 figure in 1984.

The IEA's 1986 "illustrative projections" update its 1982 forecast, which

foresaw substantially greater future gas use than do these later figures. The

IEA's earlier forecasts came under fire because actual figures have lagged be-

hind those forecast.24 In fairness, it should be pointed out that, since the

early 1980s, the trimming of demand growth estimates for natural gas (and for

other forms of energy) has taken place worldwide. The 1986 IEA report is a

near-model of circumspection and balance.

(continued)

"IEA" refers to "illustrative projections" given in OECD/IEA, Natural Gas
Prospects, op.cit., pp. 57ff. and 123. According to Appendix I, pp. 1 1 9-21,
the two sets of estimates are both based on declining real oil prices until
1990, then a steady increase indefinitely thereafter; case (b) assumes a more
rapid rate of increase than does case (a)--e.g., $45/bbl versus $30/bbl in
2000 (1984$). Economic growth rates in cases (a) and (b) are assumed to be
3.5 percent and 2.5 percent annually, respectively, over the period 1983-2010.
U.S. dollar exchange rates are assumed to revert to 1983 levels from those of
1984-85. Perhaps most significant, the IEA forecasts assume that the ratio of
burner-tip gas prices to oil prices remains the same as in early 1985 through-
out the forecast period.

24 See, for example, Energy Advice, Energy Supplies and Prices in Western
Europe to the Year 2000, place of publication not available, 1985. This docu-
ment can serve as a caution to the arrogant among oil-price forecasters: "Once
the realization of oil as a 'permanent' high-cost commodity dawned, ... "
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The IGU's 1985 forecasts of "potential economic demand" for gas over the

next 35 years are based on much less explicit assumptions about growth and oil

prices than the other two studies. In fact, they derive from a survey of IGU

members who are gas users.

Appendix A describes the methodology used to derive the gas demand fig-

ures that were fed into the dynamic programming model (discussed in Chapter 5)

as part of this study. These figures are not "estimates" of Western European

gas demand, much less "forecasts." Rather, they are the product of postulated

macroeconomic growth rates that generate total energy demands, coupled with a

price-based rule for choosing the share of gas in total energy demand, for

each of the four countries discussed in detail below. Thus, they merely are

illustrative of how different macroeconomic and gas-choice assumptions may af-

fect future gas demand. The various demand trajectories actually used in the

model runs are not strikingly different from the forecasts just discussed.

Peripheral Areas Affecting the Western European Gas Market

Before turning to the four countries, a few words are in order about

other areas that affect the Western European gas market but to which this

chapter does not otherwise give detailed attention.

The first is the Benelux countries: Belgium, the Netherlands, and Luxem-

burg. The dominant gas-using member of the group is the Netherlands, which

accounts for about 80 percent of total Benelux gas use and commonly is viewed

(with reason ... see earlier Tables) as having a "saturated" gas market that

leaves little room for future demand growth (except through economic growth.)

Belgium accounts for most of the remaining 20 percent and has some potential

to expand use in its residential/commercial and industrial sectors; further,
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it currently uses very little gas in the electric generation sector. However,

even with a significant rate of economic growth, total Belgian gas consumption

would not be large enough to affect the market significantly.

The second peripheral area is a polyglot of smaller countries: Switzer-

land, Austria, and Spain. Spain has considerable potential for future growth

in gas demand. Its total energy use is 20 to 25 percent greater than that of

the Netherlands, and its economy is still less industrialized than the coun-

tries to its north. At present, only LNG is available in Spain, but the

recent Norwegian contract may change that fact by the mid-1990s. Switzerland

can tap into gas flows in any direction between France, Italy, and Germany.

Swiss purchases improve the economics of pipeline capacity, but the relatively

small size of its demand levels limits its impact on the overall market. The

same holds true for Austria, which is able to tap into Soviet gas entering

Central Europe. Its total energy demand being of roughly the same magnitude

as Switzerland's, Austria's impact on the overall market also is limited.

The third peripheral area is Communist Eastern Europe. Although gas

demand in this region would make a fascinating story by itself, here it is of

interest primarily as a possible competitor for Soviet gas supplies to Western

Europe. As suggested in Chapter 3, competition is apt to be mainly short

term (e.g., due to periods of severely cold weather or during a breakdown in

the Soviet supply mechanism). The Soviet supply picture (discussed in detail

in Chapter 3) suggests that, in the long term, Eastern Europe will not be an

effective constraint on exports to Western Europe, especially considering

Soviet needs to obtain hard currency.
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DETAILED DEMAND ANALYSES OF FOUR COUNTRIES

This section discusses the prospects for natural gas demand in the four

countries--France, Italy, the United Kingdom, and West Germany--that seem most

likely to shape future demand in Western Europe. As argued earlier, world oil

prices, economic growth, and gas pricing will drive the demand for gas in

these countries. However, differences in national energy policies also are

important.

France

France consumed 31.0 Bcm of natural gas in 1985, or 11.7 percent of its

total energy consumption. In 1985, domestic production provided 5.4 Bcm and

imports 25.6 Bcm, up from 23.5 Bcm in 1984. Sources of imports in 1984 were

as follows:2 5 Algeria, 9.0 Bcm; the Netherlands, 7.3 Bcm; the Soviet Union,

4.9 Bcm; and Norway, 2.3 Bcm.

Natural gas currently meets just under one-quarter of total energy demand

in the residential and commercial sectors, and just under one-fifth of demand

in the industrial sector.26 In the electric generation sector, however, the

share of gas is a mere 1 percent. These shares are the lowest of the four

countries discussed.

It is the stated intention of the French government to phase out gas in

the generation of electricity by 1990 in favor of nuclear power. Nuclear

25CEDIGAZ, "Natural Gas in the World, 1985," Centre International
d'Information sur le Gaz Natural et tous Hydrocarbures Gaseux, Paris, France,
1986; and British Petroleum PLC, "Review of World Gas," London, England, Au-
gust 1985, Table 12.

26 DRI Europe, The Outlook for Natural Gas in Western Europe, 1985-2000,
London, England, November 1985.
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power now accounts for nearly one-half of French electricity production,2 7 and

by 1990 it is targeted to provide some three-quarters (see Table 4-2).

The French pro-nuclear program began in the 1970s with what were plausib-

ly economic-efficiency motives, given perceptions and expectations at the

time. The large state-run utility, Electricite de France (EdF), succeeded in

expanding nuclear generating capacity, backing out now-dearer oil, and con-

tributing to the modernization of French agriculture and industry.

However, lagging demand growth--not unique to France--has left EdF with

excess capacity. The responses to this have been bureaucratic, not economic.

Government-subsidized rates to spur electricity use effectively have given EdF

a fiscal role, not only in producing electricity but also in shaping the dis-

tribution of income. This has added bureaucratic to economic obstacles to

natural gas's penetration of the electric generation sector. Natural gas also

faces competition from subsidized electric power in the residential, commer-

cial, and industrial sectors.

Despite this, however, gas use has increased steadily in the residential

and commercial sectors, from 5.8 Mtoe in 1974 to 11.1 Mtoe in 1983. In the

industrial sector, it has increased some two-thirds over 1974 levels (see

Table 4-3). The combined share of gas from these three sectors is about the

same as that of the electric generation sector. However, the use of elec-

tricity is slated to expand (largely at the expense of oil; their shares of

total final energy consumption in 1983 were 44 and 39 percent, respectively)

far more rapidly than natural gas. The drop in oil prices since late 1985 may

27 Financial Times Energy Economist, "World Status: Electricity," Issue 45,
London, England, July 1965.
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Table 4-2

FRENCH ELECTRICITY CAPACITY & GENERATION

1983

Production
(TWh)

of
Production

Nuclear
Hydro
Coal, etc.

TOTAL

1990

Production
(TWh)

S of
Production

Nuclear
Hydro
Coal, etc.

TOTAL

Source: Edf.

Capacity
(GW)

25.5
19.9
30.7

125
66

76

76.1

47
25

28

267

Capacity
(GW)

56.0
26.1
27.8

273

69
31

110.9

74
18
8

373
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alter these plans but, given the excess capacity in electricity generation,

probably- by retarding the back-out of oil rather than by increasing gas use.

As shown in Table 4-4, GdF sets gas prices according to category of end

use: "domestic" or household (which includes so-called "collective heating"),

commercial, and industrial. In addition to prices set by GdF, the consumer

also pays a value-added tax (VAT), which is deductible against income tax (in

the case of commercial and industrial users, at a rate of 18.6 percent in

1983-84). Residential and commercial customers all pay essentially the same

price; there are few geographic differences. In contrast, prices to industri-

al customers reflect geographic location, a monthly demand charge, and a com-

modity charge that varies with the quantity taken. Table 4-5 provides exam-

ples of gas prices paid by residential/commercial and industrial consumers in

the Paris region from 1978 to 1984.

Given all this, the price of oil should have little effect on gas demand

in France--probably the least effect of the four countries examined here. If

oil prices are high, the nuclear commitment will look good, and if they are

low, the nuclear commitment will look bad. However, the use of nuclear power

is so central to French energy policy that additional penetration by gas may

be modest at best, regardless of oil-price expectations. Barring serious

problems with further development of the nuclear industry--worse, apparently,

than the political effects of the Chernobyl accident--the central question

about French gas demand is whether France's gas industry can maintain its

present shares in the non-electric markets. The recent 23 percent cut in in-

dustrial gas prices suggests that GdF is aware of this problem.2 8

28 International Gas Report, no. 53, April 11, 1986.
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Table 4-4

FRANCE: CONSUMER TARIFF GROUPS AND PERCENT OF GAS

1980

Domestic Users:

1. Heating Tariffs

2. Other Tariffs

3. Collective Heating

4. Commercial Users

5. Industrial Users

TOTAL

26.8

4.9

9.9

15.0

43.4

100.0

1981

26.6

4.5

10.0

14.4

44.6

100.0

1982

27.1

4.5

10.6

15.0

42.8

100.0

SALES TO GROUP

1983

27.3

4.8

11.0

15.3

41.6

100.0

Source: European Economic Community publication, Earostat, Gas Prices 1978-1984.
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Table 4-5

FRANCE: EXAMPLE DOMESTIC & INDUSTRIAL CONSUMER PRICE (PARIS AREA)

Domestic (Annual Consumption 8.4 GJ per customer)

Taxes Included
48.7
53.6
67.9
76.8
90.8
100.3
107.6

Excl. Taxes
41.4
45.6
57.7
65.3
77.2
84.6
90.7

Industrial (Annual Consumption 419 GJ per customer) FF/GJ

Taxes Included
19.8
21.6
30.2
35.7
46.6
51.9
56.5

Excl. Taxes
16.9
18.3
25.7
30.4
39.6
43.7
47.6

GJ = gigajoules.

Source: EEC, Eurostat, Gas Prices 1978-84.

January 1978
1979
1980
1981
1982
1983
1984

FF/GJ

January 1978
1979
1980
1981
1982
1983
1984
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Italy

In 1985, Italy consumed 33.4 Bcm of natural gas, or 17.4 percent of its

total energy consumption. In 1984, domestic production accounted for 13.7

Bcm, and imports for 19.7 Bcm. Sources of imports in 1984 were as follows:

the Soviet Union, 8.2 Bcm; Algeria, 6.3 Bcm; and the Netherlands, 5.2 Bcm.2 9

In the past decade, Italy has increased natural gas as a percentage of

its total energy consumption, reflecting the government's desire to reduce de-

pendence on imported oil. Gas use in the electric generation sector has more

than trebled (see Table 4-6), although the share of gas inn total electric

power generated is still below the Western European average. Nevertheless,

current policy envisions reducing the share of gas in electric generationt to

8.9 percent in 1990, and further to 6.1 percent in 1995.30

The most important aspect of Italian gas use is its regionality. In both

the residential/commercial and the industrial sectors, SNAM (the state-owned

gas production and import corporation) currently supplies over 80 percent of,

total delivered gas to the more economically developed northern and central

regions. However, SNAM recently has publicly expressed interest in connecting

new residential/commercial customers in the less-developed south, although

demand forecasts for this region suggest this still would constitute only 25

percent of total energy demand in this sector. 3 1 Although natural gas is ac-

cessible to nearly three-quarters of all residences in the northern region,

29 CEDIGAZ, op.cit.

30 Financial Times, "International Gas Report," No. 29, London, England, April
26, 1985, p. 3.

31 SNAM S.P.A. (ENI Group), "Natural Gas Development Program, 1984-87," Milan,
Italy, 1985.
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growth potential has not been exhausted. SNAM's gas development plan (see

Table 4-7) involves 580 communes, more than half of which are northern com-

munes planned to be connected to the existing grid. This of course conflicts

with SNAM's public statements, which emphasize the connection of new consumers

in the south.

SNAM's forecasts for 1990 put residential consumption in the north and

central regions at 12.4 Bcm, compared with 9 Bcm in 1982. SNAM expects that

by the end of 1986, 40 percent of southern households will have end-use capac-

ity.

By contrast, gas use in electric generation is greater in the south than

in the north (currently 1.7 and 1.1 Bcm, respectively). Demand in 1990 is

forecast to reach 2.4 and 2.6 Bcm, respectively. However, as stated above,

the government ultimately wishes to reduce the share of gas in electric gener-

ation.

The story is similar in the industrial sector. Despite massive state

aid, the southern region has a very thin industrial base. Given this fact,

there is considerable doubt associated with any demand forecast for this

region. However, SNAM's objective is to raise the number of large commercial

users in the south from 83 in 1982 to 522 in 1990.

Total natural gas consumption in Italy rose considerably more than SNAM

had forecast from 1983 to 1984, by 17.1 percent to 32 Bcm (residential & com-

mercial sector, 7.4 percent; electric generation sector, 82.8 percent). The

residential/commercial sector accounted for 40.7 of total gas use;32 elec-

32
Financial Times, "International Gas Report," no. 33, London, England, June

21, 1985, p. 16.
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Table 4-8

TOTAL POPULATION
SERVED BY GAS
REGION

IN MEZZOGIORNO

COMMUNES SERVED BY GAS
MARCH '81 MARCH '85

%POPULATION SERVED
MARCH '81 MARCH '85

MARCHES
MATIUM
ABRUZZO
MOLISE
CAMPANIA
APULIA
BASTILICATA
CALABRIA
SICILY
TOTAL
SOURCE SNAM

2

12
30
10
16
16
3

3

1

93

10
18
58
14
23
27
7

6

7

170

49.5
26.2

52
41.5

39
29.5
19.4

9
7.7

25.8

74. 5
38. 2
61.7
46.1
42. 4
34.7

25
15.1
16.1
32.3
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tricity generation 18 percent; and industry 30 percent. This unexpected in-

crease in demand appears to be due in part to pricing issues.

Prices in Italy are determined at two levels. First, SNAM determines

prices for primary distribution in conjunction with local utilities and

Cofindustria (the association representing large private users). Second, lo-

cal utilities impose a tariff, which is determined by negotiations between the

distributor and the Interministerial Price Committee. Table 4-9 shows 1982

gas sales patterns.

The number of consumers served by distributors is much greater than those

served directly by SNAM: in 1983, 8,600,000 and 4,851, respectively.33 To

understand Italian end-user prices, it is important to realize that VAT rates

vary with consumer type. VAT rates have varied over the last few years; more

recently, the fixed primary distribution tariff has been some 6 percent of the

total price. This is linked to inflation indices and is reviewed annually. A

variable component is tied to the end-user price of #2 heating gasoil. This

additional tariff is designed to give the local utilities a "fair rate of

return." These tariffs vary from city to city and depend on the different

costs each utility faces for gas purchases, investment, labor, maintenance,

and general expenses. Also, different residential consumers are subject to

different tariffs, depending on which of three use categories they fall into:

cooking and water heating, individual space heating, and grouped central heat-

ing. Table 4-10 shows sample prices for consumers in the

residential/commercial and industrial sectors.

Eurostat, EEC, Luxembourg, "Gas Prices, 1978-84," Italy, p. 47.
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Table 4-9

ITALY: PATTERN OF GAS SALES, 1982

(1) SNAM DIRECT SALES: 57%

Of which: Power Stations 38.5%

Chemicals 7.0%

Motor Fuel 1.0%

(2) SALES VIA DISTRIBUTORS: 43%

Of which: Small Domestic Consumers 10.0%

Individual Central Heating 17.0%

Collective Heating 8.0%

Non-Domestic Users 8.0%

SOURCE: EEC
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Table 4-10

ITALY: EXAMPLE DOMESTIC AND INDUSTRIAL CONSUMER PRICES (ROME AREA)

Domestic (Annual Consumption: 8.4 GJ) LIT/GJ

January 1978
1979
1980
1981
1982
1983
1984

Taxes Included
5064
4504
6763
11759
12519
17754
*20026

Excl. Taxes
3989
3461
5421
10099
10804
15484
17754

Industrial (Annual Consumption: 419 GJ)

January 1978
1979
1980
1981
1982
1983
1984

Taxes Included
3965
3125
6134
9034
9844
12780
14475

Excl. Taxes
3478
2741
5381
7856
8560
10830
12267

Source: EEC, Eurostat, Gas Prices, 1978-84.
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The point to be made from the foregoing discussion is that gas prices in

Italy vary considerably from customer to customer. For example, net of VAT,

the domestic user in Rome paid approximately $0.340/cubic meter in 1984 versus

$0.295 in Milan (or about 15 percent less).34 Gas price tariffs are currently

under review in an effort to reduce these discrepancies. In 1984, before

taxes, gas was highly competitive with other fuels on a heat-equivalent basis;

it was approximately 6 percent cheaper than heavy fuel oil, 20 percent cheaper

than light fuel oil, 30 percent cheaper than LPG, and 300 to 400 percent

cheaper than electricity.

Using the information developed above, we can apply the three oil price

scenarios developed earlier to illuminate future natural gas demand in Italy.

Overall, gas demand in Italy will be considerably more sensitive to oil prices

than in France, for example. Given the heavy fuel-switching from oil to gas

that took place in the early 1980s, any significant price differential in fa-

vor of gas also will increase gas demand. However, this fuel-switching mostly

takes place in the electric generation sector, and as Italian policy is to

phase out hydrocarbons in this sector over the next ten years, any switching

effect likely cannot hold over the long term. In conclusion, the prospects

for growth in natural gas demand in Italy appear to be the best of the four

countries examined, given the potential for demand growth in the

residential/commercial and industrial sectors as Italy's gas grid continues to

be expanded.

34
Financial Times, "International Gas Report," no. 46, London, England, De-

cember 20, 1985.



4-50

The United Kingdom

The United Kingdom consumed 56.0 Bcm of natural gas in 1985, or 21.1 per-

cent of its total energy consumption. In 1984, domestic production provided

42.3 Bcm and imports from Norway the remaining 13.7 Bcm.

The United Kingdom is the second largest gas user of the four countries,

consuming only 4.0 Bcm less than West Germany in 1985. Gas has a very high

penetration in the residential/commercial sector (in 1983, 60 percent of total

energy consumption [see Table 4-11]). This can be explained by historical

patterns of gas use (see Chapters 2 and 3 for a fuller discussion) and by U.K.

gas pricing policies to domestic users. Through the control of gas supply and

participation in all early offshore developments, the British Gas Council

(today the British Gas Corporation [BGC]) developed an extensive distribution

system and, with it, established prices for gas that were highly competitive

with those of alternative fuels. For 1974 through 1983, residential/ commer-

cial gas use increased approximately 60 percent,-versus 40 percent for all

sectors. Therefore, short-term future gas use does not depend on increased

penetration through further development of the distribution system, as it does

in other Western European countries (and most importantly, in Italy); the dis-

tribution system already is largely in place in the United Kingdom.

The United Kingdom uses very little gas in the electric generation sector

(a mere 1.0 percent of total energy consumption) in 1983. Electric genera-

tion historically has been based on coal, and this trend continues (80 percent

in 1983), although nuclear is accounting for an increasing amount. This is

due to the abundance of coal in the United Kingdom and the concommitant

reliance on coal-fired electric generation plants. In addition, the phasing-

out of oil-fired plants, which was accelerated by the 1979-80 hike in oil
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prices, helped to preserve coal's dominance. In sum, there appears little

likelihood that gas can achieve any significant penetration in this sector.

In contrast, gas accounts for a substantial percentage of total energy

demand in the industrial sector (approximately 30 percent in 1983, or 13.2

Mtoe). A substantial proportion of these sales was made on an interruptible

supply basis,3 5 suggesting the potential for some of these sales to be re-

placed by coal in the future. However, given current and past competitive gas

pricing policies, any significant change in demand likely would be driven by a

price hike. This likelihood is discussed below.

A potentially significantly impact on gas demand is the privatization of

the BGC. The government has announced that "free" imports and exports of gas

will follow the floatation of BGC stock, and competition in the industrial

sector will be encouraged legislatively (until recently it appeared that the

BGC would be able to continue to monopolize the gas distribution system

through price setting, denying competitors fair access.)3 6 The new regulatory

structure has yet to be disclosed; however, the purchasing and marketing of

post-deregulation gas clearly will have profound influence on demand levels.

The preference for gas in both residential/commercial and industrial sectors

is unlikely to continue after the privatization has been completed. Thus, al-

though there still is potential for increased gas demand in both these sec-

tors, it appears that deregulation-related price increases may restrain this

growth.

35 International Gas Union, World Gas Supply and Demand, "1983-2020 Demand--
West Europe: The Markets for Gas," Report Submitted to the Task Force, p. 63.

36 Financial Times, "International Gas Report," nos. 45 and 48, London, Eng-
land, December 6, 1985, p. 12, and January 31, 1986, p. 9.
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Gas prices in the United Kingdom are set according to tariffs established

by the BGC in conformity with government-determined financial goals. No

direct taxes are levied on gas sales. Table 4-12 shows BGC sales by number of

consumers and sales. In the residential/commercial sector, there essentially

are two types of tariffs: the credit and the domestic prepayment tariffs

(essentially a two-part tariff combining a standing [or fixed] and a quantity-

used charge). Since 1983, small consumers in all sectors have benefitted from

a rebate granted if the standing charge is higher than the quantity-used

charge.

In the industrial sector, there is a wide range of prices paid. Recent

policy has been aimed at reducing this range, which currently favors large

consumers who often have interruptible contracts.

Gas prices relative to those of competing fuels are relevant to future

gas demand (see Table 4-13). Historically gas has been highly competitive

with both heavy fuel and gasoil, but less so with coal. This largely cor-

responds with actual usage patterns in the industrial sector. Table 4-14 pro-

vides examples of gas prices paid by both domestic and industrial consumers in

London from 1978 to 1984.

West Germany

West Germany consumed 60.0 Bcm of gas in 1985, or 15 percent of its total

energy consumption. Domestic production provided 17.2 Bcm and imports 42.8

Bcm. In 1984, total imports were 35.5 Bcm: 15.0 Bcm from the Netherlands,

13.5 Bcm from the Soviet Union, and 7.0 Bcm from Norway.3 7

CEDIGAZ, op.cit.
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Table 4-12

BRITISH GAS SALES 1982-83

Users

Domestic Sales:

1. Prepayment Tariff

2. Credit Tariff

3. Commerical Sales

4. Industrial Sales

5. National & Local
Government

Consumers

10.8

85.5

3.0

0.5

0.2

n 15929428 16463 M therms

Source: EEC, Eurostat, Gas Prices, 1978-84.

Sales

2.2

50.1

11.8

34.0

1.8

TOTAL
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Table 4-13

PRICES OF FUELS USED BY MANUFACTURING INDUSTRY PENCE/THERM (DELIVERED)

1977 1978 1979 1980 1981 1982 1983 1984

Coal 8.20 8.90 10.36 13.43 15.52 18.43 19.07 19.09

Heavy Fuel Oil 13.48 12.64 15.70 22.24 26.65 28.15 31.00 36.86

Gas Oil 18.23 18.30 23.83 34.93 40.68 44.27 45.82 47.07

Gas 9.26 11.71 13.67 17.57 21.59 23.24 24.06 26.34

Electricity 50.33 55.67 61.53 69.35 79.29 86.10 85.09 84.67

Source: Digest of UK Energy Statistics, 1985, Department of Energy, U.K.
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Table 4-14

UNITED KINGDOM: EXAMPLE DOMESTIC & INDUSTRIAL CONSUMER PRICES (London)

Domnestic (Annual Consumption: 8.4 GJ) UKL/GJ

January 1978
1979
1980
1981
1982
1983
1984

Taxes Included
2.79
2.79
3.00
3.79
5.51
6.79
6.67

Excl. Taxes
2.79
2.79
3.00
3.79
5.51
6.79
6.67

Industrial (Annual Consumption: 419 GJ)

January 1978
1979
1980
1981
1982
1983
1984

Taxes Included
1.76
1.76
2.32
2.55
2.65
3.27
3.43

Excl. Taxes
1.76
1.76
2.32
2.55
2.65
3.27
3.43

Source: EEC, Eurostat, Gas Prices, 1978-84.

UKL/GJ
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The central theme of West German gas policy is to allow competitive

forces to drive the market. This broad policy nothwithstanding, efforts to

protect the domestic gas industry from supply disruptions include diversifying

supply sources, improvements in storage capacity, and expansion of pipeline

networks.3 8 In 1983 total demand, excluding exports, grew 4.3 percent over

1982 levels; in the residential sector it grew by 5.2 percent, reflecting a

shift in consumption from the electric generation to the domestic sector and

to a lesser extent to the industrial sector (see Table 4-15).

Gas use in the electric generation sector is indirectly driven by govern-

ment policies toward coal. The West German government provides extensive sup-

port for coal production, largely in response to political pressures from

miners. Some substitution of oil and gas due to government subsidies of the

coal industry as taken place over the last five years; these include price

supports, production and exploration grants, and investment tax credits. Fu-

ture demand increases in the electric generation sector are planned to be met

both by hard coal-fired plants and by new nuclear generation capacity (which

accounted for 23.5 percent of electricity generation in 1984). Therefore,

there appears little opportunity that gas will increase its share of the

market in this sector; in fact, it is having difficulty in maintaining even

its current share, which fell in 1985 about 10 percent from 1983 levels.3 9

Any real growth in gas demand will come from the residential/commercial

and industrial sectors. Gas currently accounts for 23 percent of

38 International Energy Agency, "Energy Policies and Programs of IEA Coun-
tries, 1984 Review," Paris, France, 1985.

Ruhr Gas Aktiengesellschaft, "Ruhn Gas Statistics," Essen, Germany, 1985.
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residential/commercial use. Limited demand growth in these sectors has fol-

lowed the growth of the distribution system. According to Ruhrgas, the major

supplier of gas in West Germany, the number of households expected to use gas

for space heating will increase from 6 million in 1982 to some 8 million by

1990, as the distribution system is further developed. 4 0 This appears to be a

reasonable forecast, given increases in the numbers of households connected to

the gas grid in the last few years (approximately 250,000 to 300,000

annually).

Gas meets about 21 percent of energy demand in the industrial sector. In

a recent DRI forecast,41annual demand growth was forecast to be 3 percent in

2000, approximately half coming from increased market penetration in this sec-

tor and half from industrial growth itself. Increased penetration is forecast

to come from additional gas use in the process industries, although this will

be offset by declines in some traditional gas-using industries, such as steel-

making.

Figure 4-2 shows recent changes in natural gas consumption patterns in

West Germany. Gas use in the industrial sector has risen modestly, sig-

nificantly in the residential/commercial sector, and declined about equally in

the electric generation sector. As in the other three countries, demand for

gas is highly correlated with its price competitiveness via other fuels.

Table 4-16 provides a breakdown of consumers according to prices paid, to

which VAT at 14 percent is added (deductible from income tax for industrial

40 Idem., "Natural Gas on the Road into the Next Century," Essen, Germany, Au-
gust 1983.

41 CEDIGAZ, op.cit.

-a
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Figure 4-2

Natural Gas Consumption in the Federal Republic of Germany
by Consumer Groups

[in Mill.tons coal equtvalent]
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Table 4-16

GERMANY: NATURAL GAS, PERCENTAGE SALES BY TARIFF GROUP

1980 1981 1982 1983

Domestic Users:

1. Heating Tariffs 26.8 26.6

2. Other Tariffs 4.7 4.5

3. Collective Heating 9.9 10.0

4. Comercial & Similar Uses 15.0 14.4

5. Industry 43.4 44.6

TOTAL 100.0 100.0

In 1983 the total number of customer was 8,425,000.

Source: EEC, Eurostat, Gas Prices, 1978-84.

27.1

4.5

10.6

15.0

42.8

100.0
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Table 4-17

WEST GERMANY: EXAMPLE DOMESTIC & INDUSTRIAL CONSUMIER PRICE (DUSSELDORF)

Domestic (Annual Consumption: 8.4 6J) DM/GJ

January 1978
1979
1980
1981
1982
1983
1984

Taxes Included
29.42
29.42
29.69
35.97
46.76

45.24

Excl. Taxes
26.27
26.27
26.27
31.83
41.38

39.68

Industrial (Annual Consumption: 419 GJ)

January 1978
1979
1980
1981
1982
1983
1984

Taxes Included
14.45
14.45
14.58
19.36
24.45

22.20

Excl. Taxes
12.90
12.90
12.90
17.13
21.64

19.47

Source: EEC, Eurostat, Gas Prices, 1978-84.

DM/ GJ



4-63

and commercial users). There are considerable differences in the final price

paid by end-use sector. These price differences result from the problems of

applying local distribution charges equitably. Supply contracts for all

households are revised annually. In a manner similar to domestic users,

prices for industrial consumers are set by negotiations with suppliers.

Prices paid by industrial users are not required to be published although, as

with domestic users, there is considerable dispersion in prices paid. In gen-

eral, after a sharp rise in the early 1980s, gas prices in West Germany have

been relatively stable.

Summary

Overall, the Western European natural gas market is relatively young com-

pared to those of North American, and it is also highly complex. The current

patterns of gas consumption--both in terms of its share of total energy use

and in its distribution among residential, commercial, industrial, and elec-

tric generation sectors--vary widely among the countries of Western Europe.

Indeed, the gas industries of certain countries (such as the Netherlands and,

as regards residential use, the United Kingdom) are "mature," while those of

other countries (such as West Germany) are still in their adolescence.

Despite this complexity, the same core factors will shape the course of

natural gas demand over the coming 15 years in Western Europe as they will in

North America and the Pacific Basin. These factors are the price of natural

gas relative to those of other fuels, economic growth, and the energy policies

of individual countries. In addition, strategic considerations (to some ex-

tent tied to policy and how gas is priced) will have an impact on the levels

and patterns of future gas demand.
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The Relative Price of Gas

As a determinant of future natural gas demand in Western Europe, the

price of gas has two elements: its price per se and its price relative to the

(expected) prices of crude oil and refined products. If, as seems likely, fu-

ture gas prices are tied less mechanistically to those of oil, natural gas

demand will be less dependent on oil prices. Gas prices doubtlessly still

will rise or fall as oil prices move up or down, but the prices at which the

various regional sub-markets for gas clear also will depend on the structure

of gas demand and on supply conditions.

We postulate three main possibilities for oil-price expectations, based

on the market structure one expects to prevail in the world oil market. These

structural possibilities are: (1) a strong, reconstituted oil cartel (with

"high" oil prices); (2) a competitive market, with no cartel (and with "low"

oil prices); and (3) a weak cartel, of varying cohesiveness (and cor-

respondingly variable oil prices). We suspect that gas demand will vary ac-

cording to which structural expectation prevails, although we have, as yet,

little idea exactly by how much. High oil prices would retard all energy-

using investments, gas included; the weakening of the gas/oil price link (if

it occurs) would partly offset this retarding effect on gas demand. Low oil

prices would have the opposite effect, but gas would have to compete against

cheap oil; this would increase the importance of freeing gas prices from

linkage to oil prices. Finally, variable oil prices would put a premium on

fuel-switching capability, spurring investments in fuel-switching capacity

wherever energy accounted for a significant share of total costs. For gas to

compete in the "penny-switcher" market would require greater freedom to vary
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prices among classes of users than has been permitted in many parts of Western

Europe.

Economic Growth

This chapter did not undertake a separate analysis of economic growth

factors, which is an important determinant of natural gas demand, although

some general observations can be made. Economic growth in Western Europe has

been sluggish in the 1980s, apparently as the result of governments' reluc-

tance to pursue expansionary macroeconomic policies for fear of renewed infla-

tion. Absent structural reforms in labor and other markets, this reluctance

may persist, despite beneficial supply-side impacts of lower oil prices. If

so, an important source of growth in the demand for natural gas--still incom-

pletely developed in most of Western Europe, as discussed--will be lacking.

Note that the likelihood of instituting more expansionary macroeconomic

policies likely varies with expectations about oil prices. High oil prices

would pose more difficulties for macroeconomic policymakers fearing inflation

than would low oil prices. We therefore expect that Western European govern-

ments would resist expansionist policies more resolutely under high- than un-

der low-oil-price expectations. For governments subject to and concerned with

short-term, "political business cycle" effects, variable oil prices would pose

problems of their own. This latter set of oil-price expectations perhaps

would cause instability in macroeconomic policies that would reduce economic

growth in Western Europe and hence weaken overall growth in gas demand.
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National Energy Policies

We asserted at the very outset of this chapter that differences in na-

tional energy policies largely explain disparate patterns of current natural

gas use in the countries of Western Europe. Some of these policies pertain

directly to gas, others indirectly but with no less impact. Thus, Dutch and

U.K. government measures deflect domestically-produced gas supplies from in-

ternational to internal uses. The French government's singleminded pursuit of

nuclear power development in the generation of electricity includes restric-

tions and subsidies that singificantly retard possibilities for development of

gas use. And West German policies favoring the use of domestically-produced

coal in the generation of electricity pose obstacles to penetration by gas in

that sector, even if gas prices were to become more favorable. Clearly, in

Western Europe, national patterns of gas use will not become more similar un-

til these policy barriuers are reduced.

As with economic growth, national energy policies likely will vary with

different expectations about oil prices. High oil prices probably would rein-

force many of the policies that contribute to diversity in gas use, such as

the French commitment to nuclear power. In contrast, low oil prices could un-

dermine such policies, thereby fostering more homogeneous gas development

throughout the region. Our guess is that variable oil prices also would rein-

force the more idiosyncratic policies that were adopted in response to the oil

price shocks, and thus weaken any trends toward common patterns of gas use in

Western Europe.
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Strategic Considerations

In our study of North America, we argued that strategic decisions by both

the U.S. and the Canadian governments would largely shape the future evolution

of gas use.4 2 In the case of Japan, the strategic decision concerned the con-

struction of a national gas grid, if not of steel pipe, then of LNG terminals

and transshipment facilities. In the case of Western Europe, strategic issues

also are important. Certain of them involve the energy policies of individual

countries--e.g., French willingness to consider curtailing nuclear power de-

velopment or West German reconsideration of its policy of prohibiting gas use

in electric utility boilers (perhaps as part of an anti-acid rain campaign),

and these should not be overlooked.

But the overriding strategic issue in Western Europe is whether the Nor-

wegians will be able to implement not only the large deal announced in June

1986, but also other large deals involving the other three-quarters of the

Troll field. To do so, they must in effect increase demand in Western Europe

by persuading enough customers that it can supply gas at competitive prices

over an extended period, in order to induce new investments by its customer-

countries both in infrastructure and in gas-using equipment. If the Nor-

wegians can build the pipeline into Zeebrugge, Belgium, and if it then is ex-

tended through France, the West German monopsony position in the West European

gas market will have been broken. The result then should be more vigorous

competition throughout the entire region, and with it will come larger volumes

of natural gas both demanded and delivered. Only then will it be possible to

exploit Troll gas to the fullest extent envisioned.

42 In Washington, the issue is pipeline policy. In Ottawa, the two issues are

wellhead supply and export pricing.
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It appears that the decision to proceed with the Zeebrugge pipeline ac-

cording to the current schedule hinges critically on expectations about oil

prices. Even though growth in total energy demand might be greatest under our

low-price scenario, the associated price of gas could be too low to support

both development of Troll reserves and new pipelines to transport the gas to

customers. (This point suggests another important determinant of the

viability of the Norwegian strategy, namely, the size of compressible economic

rents and whether the Norwegian government politically can allow enough of

them to be squeezed out, if need be.) High oil prices would make gas prices

much more attractive, but the macroeconomic effects could at least defer Nor-

wegian plans further into the future, if not kill them altogether. From the

narrow perspective of Norwegian gas development and export, perhaps the most

favorable oil-price scenario would be variable oil prices, a development that

would stimulate the demand for flexible fuel systems--primarily oil/gas dual-

fired systems.

* * * *

The net result of this analysis, as applied to the four major energy-

consuming countries of Western Europe, is not the derivation of one single,

overall forecast of future natural gas demand. The imponderables are simply

too numerous and too weighty to make such an endeavor worthwhile. Even

without a strategic breakthrough on Norway's sales of Troll gas, there still

is some room for natural gas demand to grow in all four countries. Italy of-

fers the most favorable prospects, in all sectors, particularly if certain of

its regional policies begin to click in the less-developed south. France and

West Germany both should use more gas in the residential and commercial sec-

tors, and probably in the industrial sector as well, but barring policy
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shifts, neither country is apt to increase gas use in the electric generation

sector. In fact, currently envisioned decline in this sector in West Germany

could cancel out any growth in gas use in the other sectors.

If the Norwegians succeed on a large scale in bringing Troll reserves

onstream before 2000, the picture sketched about would be quite different.

Some of the market for Troll gas would be in entirely new regions (e.g.,

Spain), but the Norwegians' plans only can succeed if France and Italy at a

minimum, and probably West Germany and the United Kingdom as well, use more

gas than is currently planned. That is to say, the success of Norway's

strategy regarding Troll depends more on the development of favorable price

terms than many decision makers in the four countries now expect will happen.
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APPENDIX

DERIVATION OF DEMAND SCENARIOS

by

Arthur W. Wright

This study did not attempt to construct a model that would supply

econometric or other estimates of natural gas demand in Western Europe. How-

ever, for the simulation runs using the dynamic natural gas trade programming

model described and applied in Chapter 5, it was necessary to obtain natural

gas demand scenarios for various oil-price assumptions based on relative

prices and economic growth. We therefore constructed a simple "calculator,"

which takes parameters for GNP or GDP growth, generates associated total ener-

gy use levels in each year, and then calculates the share of natural gas in

total energy demand.1 For each of the four countries studied in detail, fu-

ture gas demands were calculated for the period 1984-2017 for the three oil-

price scenarios.

Our approach to estimating future natural gas demand must exhibit certain

characteristics. First, it must be dynamically stable in the sense that

estimated energy or gas use should not go suddenly "off the charts" in some

future year. Second, it also had to reproduce the historical values early in

the time period (1984 and 1985). Obtaining even a simple calculator having

these two characteristics proved to be challenging. We repeatedly made

simplifying, ad hoc assumptions, or abandoned particular derivations that

posed difficulties, as became desirable on theoretical or other grounds. It

1 We gratefully acknowledge the assistance of Charles Blitzer and David Wood,
who are only partly to blame for the results of this exercise.
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turned out that, given the supply conditions input to the model, the simulated

results were insensitive to the demand numbers. Therefore, we suspended the

search for a more satisfying set of assumptions until such time that we have

the resources to conduct further research into better ways of capturing par-

ticular relationships.

The key idea of the "calculator" is to divide both total energy use and

natural gas use into two components. One is driven by the stock of existing

capital equipment in use at the beginning of the time span studied (1984).

The energy/gas efficiency characteristics of this historical capital stock are

fixed, and so energy/gas consumption is "captive." We assume that this stock

depreciates at a constant rate, so that the effect of the old equipment decays

at an exponential rate. The second component of energy/gas demand depends

upon the efficiency characteristics of new capital goods. We "model" this

component as depending upon economic growth (to contain the level of new in-

vestment ) and relative energy prices (to capture efficiency effects). Al-

gebraically, for total energy use:

Et = E(1 - )t + I()Yt Y0(1- de)
t ] (1)

where: Et = total energy use at time t (O = 1984);

d = the constant annual rate of economic depreciation of energy-
eusing capital stock;

I = a function that determines the energy intensity of new capital
stock; and

Yt = GNP or GDP at time t ( = 1984).

For natural gas:

Gt= G(1 -dg)t + S()[Et - E0(1 - d)t (2)

where: Gt = total gas use at time t (O = 1984);

d = the constant annual rate of economic depreciation of gas-using
gcapital stock; and
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S = a function that determines the share of natural gas in new gas
use.

Substituting equation (1) into equation (2), we express gas use as follows:

Gt = G(1 - dg)t + S(.)I(-)[Yt - Y(1 - de)t .(3)

For oil prices, we assumed that they fell from an OECD weighted average

for 15 products in 1984, $27.68/bbl, to an estimated $16.00/bbl in 1986, and

then (high) rose to $28.00 or (low) fell to $8.00/bbl in 1987 and stayed there

through 2017. The middle, or variable, oil-price scenario is taken to be the

mid-point between the high and low scenarios.

Assumptions about economic growth over the period 1986-2017 were adjusted

to reflect expected differences between the oil-price scenarios as well as

inter-country differences (e.g., the United Kingdom produces oil and the other

three countries do not). The economic growth assumptions used in the model

runs presented in this report were as follows:

For France, Italy, and West Germany:

Strong Cartel Competition
(High Oil Prices) (Low Oil Prices)

1986 3.0%

1987 0.0% 3.0 per year
1988-90 1.5% for the entire

1990-99 2.0% period
2000-17 2.5%

For the United Kingdom:

1986 -1.0% -1.0%

1987 2.5% -2.0%

1988 2.5% -1.0%
1989 2.5% 0.0%

1990-91 2.5% 1.5%
1992-94 2.5% 2.0%
1995-99 2.5% 2.5%
2000-17 2.5% 3.0%
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As noted, the growth rates for the United Kingdom differ because of its size-

able oil production. By the year 2000, however, the special effects of oil

prices (both ways) wear off, and U.K. growth rates become the same as for the

other three countries.

The calculator as it now stands is quite sensitive to assumed economic

growth rates. Scaling the rates up or down moves both energy use and gas use

around quite significantly. (Again, though, changes in gas demand do not push

the model runs around very much.)

In calculating the term for "new" energy use, we assumed an energy/GNP

elasticity of unity. This was based on the view that (except in transition

periods) the long-run energy/GNP elasticity tends to be about unity. During

transition periods (e.g., after the oil-price shock of the mid-1970s), the ob-

served elasticity may be less than unity, but that is because of the delayed

adjustment to the new conditions. Here, though, we only are estimating the

elasticity for new capital equipment.

To derive energy and gas use attributable to the capital stock existing

at the beginning of the time span, we started with estimated rates of economic

depreciation for different classes of capital equipment. 2 By assigning the

equipment to industrial sectors, judiciously choosing an average figure for

each sector, then weighting them by sectoral shares in energy or gas use, we

were able to calculate average rates of depreciation. The figures for total

energy use were reassuringly grouped right at 0.12. Those for gas use varied

21 See Hulten, Charles R. and Frank C. Wykoff [19811], "The Measurement of Eco-

nomic Depreciation," in C.R. Hulten (editor), Depreciation Inflation and the
Taxation of Income from Capital, The Urban Institute Press, Washington, D.C.
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considerably more, reflecting the disparate patterns of gas use across the

four countries:

France 0.10
Italy 0.07

United Kingdom 0.09
West Germany 0.08

The choice of the component of gas use by far proved the most difficult

task. The initial notion was that gas use might be expected to vary with its

price relative to that of oil, from some maximum at a very low relative price

(say, the Dutch share of natural gas in total energy use) to some minimum at a

very high relative price. If one knows the relative prices at which maximum

and minimum values occur, the share function could be approximated elegantly

by a logit function, or inelegantly by a bounded linear function. Postponing

the logit approach until further research is possible, we used the inelegant,

bounded linear approximation.

Unfortunately, we had to estimate the values of the relative prices of

gas at which the maximum and minimum shares would be reached; depending on

what one chooses, of course, the slope of the linear approximation may vary

quite significantly. Moreover, the results of applying the calculator proved

very sensitive to the choice of this slope, and we ended up using ad hoc as-

sumptions both in order to get the various countries' results to track actual

data for 1983 and 1984, and to prevent gas use from going off the charts. As

a rule, where it proved necessary to assume relatively high share factors in

the early years to get the calculator rolling for a particular country, we as-

sumed that they would decline over time, at least in the direction of the more

conservative factors used for France and Germany. This is clearly an area

warranting further study, in order to sharpen the choice of gas as a share of

total energy use with new capital equipment.
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The linear share factors estimated by the procedure described above for

the four countries were as follows:

High Oil Price Scenario

France:

Italy:

United Kingdom:

West Germany:

1983-87 0.137
1987-2017 0.150

1984
1985
1986-87
1988-89
1990-94
1995-99
2000-17

1984
1985-86
1987-88
1989-94
1995-99
2000-10
2011-17

0.300
0.250
0.225

0.220
0.210
0.205
0.200

0.265
0.250
0.240
0.220
0.200
0.190
0.180

1984-87 0.147
1988-2017 0.150

Low Oil Price Scenario

France:

Italy:

United Kingdom:

West Germany:

1984-2017 0.137

1984 0.300

1985 0.250
1986 0.225

1987 0.220

1988-89 0.200
1990-94 0.180
1995-2017 0.170

1984 0.265
1985 0.225
1986-89 0.200
1990-94 0.180
1995-99 0.160
2000-17 0.150

1984
1985-87
1988-90
1991-2017

0.195
0.190
0.180
0.175
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The results of the foregoing assumptions are reported in the following

Tables, two each (for high and low oil price expectations) for the four coun-

tries. The tables show the GNP or GDP figures used, total energy use, total

gas use, and the implied year-to-year percentage changes in gas use.
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0. C)30

(:. (030)

0:. 03(:1

(. 3(0. ( 3 0
C). 030

0. 00

C). 030

0. 03)

24. 9
26. 6
28. 2
29. 9
31.5
33. 1

34. 5
36. 0
37. 4
38. 7
40. C)

41. 4
42. 7
44. 1
45. 4
46. 8
48. 2
49. 6
51. 1
52.6
54. 1
55. 7
57. 4
59. 0:

60. 8
62. 5
64. 4
66. 2
68. 2;

70. 2
72. 2
74. 4
76.. 6
78. 8
81. .:

83.6
86.. 0
88. 6

(actual ' 83)
0. 067
0. 059
0. 062
0. 0(:54
0. 049
0. 0)45
0. 041
0(:. 038

C). 036

0. 035
0. 033
O. 032
C). 031

6). 030
0. 030
(). (030

C). 030)
0. E029

0. 029

0. 029
(). O')a

C0. 029

0). (029
0. (0:29
C). 0?9

0. 0290. (02:19)

(1. (03C)

1983
1984
i. f85
1986
1987
1988
1989
199C)
1991
1992
1993
1994

1 39)
1 997

1998

2. 0 01

2006
.. .

2012

2()1 5

2016
2() i 7
Et )1 : 8
' .
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ITALY: "Stronrg Cartel" Variant

GNP/GDP :

(billi rion TOTAL. YR TO YR YR TO YR
1975 US $) ENERGY CHANGE GAS CHANGE

YEAR USE IN ENERGY USE IN GAS
HIGH (mrt e) USE ( BCM) USE

Oii PrF- ice

198( $231.91

1983 $228. ) 25.4 (actual 83)
1984 $233. 93 14(0.2 29.8 0. 174
1985 $2'33. 19 1418 0. 1i1 31.7 ). 063
1986 $ 246.37 144.6 0. 020 33. 1 0. (046
1.987 $246. 37 1.43.6 -0 007 34.3 C). 036
1988 $; :5 C) 06 1 44 8 C. 0 (8 35.4 0 31
1989 $-E53. 8 . 146. 1 0. 009 36. 7 C. 035
199'0) $257. 62 147. 5 0:, C 36. 7 0. 002
13r3. 262. 77 1i ;49 7 ·. 015 37. 8 0. 2 9
1392 $ 268 (1:3 1 5'. 1 . 1 6 38.8 . 0) 26
1 993 $273. 39 154. - 0. 0 )6 39. 7 0. 023
1994 $278. 86 157.2 C) 0I 7 4(). 5 C). (021
. 95 284. 43 1. 59. 3 0. 16 0. 0 ) 02
1996 $'29( ). 12 162.8 0.. 18 413 C. .(18
J. 997 $295. 93 165. 7 0. 18 42. C) 0. (0 17
1998 $30 1.84 168.7 0. 018 42. 7 0.0 16
1999 $ 307. 88 171.8 C. 018 43. 4 0,. 1 6

...C' 131i . 158 175.9 0. 024 43. 4 ( )) 1
2'.) 1 $323. 47 180. 1 0. 024 44. i S. (')(:
2002(3 $33 1.55 184.4 .2 (4 45. 1 0. 020
200( l)3 $339. 84 188.9 0. (:)24 46. (: , 0 2 "
;-:04 $l34.8 3 4 193. $ 4. c1, L4 46. 9 0. 020

j $ 357. 1j4 47· ;L 8 1'7, 08 4)71
'2 )0f6 , 365,. 97 203 ) . 0. 24 48.8 C). C:) 2-2007 $375. 1 i 0 ' ) .. 4 7 0 )
i 0 8 $384. 50 213. 1 . ) 25 50 . 8 ('. l(),' 
( -9 $394. i ' 218. 4 C). 0 '5 51 . 8. 0 i

201( $4()3. 97 223.8 0.025 52.9 0 2:
J21. I $ 14. 4 i 7 '2 9. 3 54. . 021L

i2_ 1 , $ 424. 42 235. C 0 - 55. 1 0. 21
i .3 4 . 03 $. 408 O.. B 35 5 .302
'2 C14 $ 445. 39 24-6. . . 51 57. 6 . 2

20) 4·f:j7 '7 ; 0253. 07 """) C) 5. ' 

2C') 16 $468. 48 25. 2 . C- != 60. 1 0.
'2 C) 7 $ 48 0. 19 2 6 j r ) (6. 0 '

201_ (43~. 8$ 3 9;72. 3 . 0 $ 62:. 8 6c ) 1.3
21i9 $504:. 5) 279. C1 () ; 5 6 4. (. C )
L() 2L5 - 1 2_ , )1 I , 65. 7
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ITAL.Y: "Cornpet iticr," Variant

GNP/GDP:
(bi 1 li r

1975 US $)

LOW
Oil Price

TOTAL..
ENERGY

USE
(mt oe)

YR TO YR
CHANGE

IN ENERGY
USE

GAS
USE

(BCM)

YR TO YR
iC----.CHANGE

I N GAS
USE

1980 $1231.91

1983
1984
1985
1986
1 r..H7
1988
.989

199 1

19'33

1994
1 9 9
1996
1.997
1998
1 '999

2. ):)C) 1.
20(33

20 10 ;;:, i 9

2 (:) 1 '

20 1 

2( i 1 
2 (3 ! 9

$228. 00
$2'33. 933
$239. 19
$24. 37
$253. 7 6
$26 1. 37
$269. 21 J
$7, 7.29
$i-.i. 61

$31 ,-'. 09
$ 3J. . 5
$331. 1(:

$34 1. 03
$351 26
$36 1.8 3

$383. 83
9.5. 35

$40:C7. 2i

$419. 4
$43.C. 01
$444. 97
$458, 32
$472. 0 r6
$486.2 3
$500). 81

$515. 84
$531. 31
$547. 2=5
$563. 67
$5 s:). 58,
$598. 00'
$615. 94
$634. 42
$ 65,. 4 5
$673. (35

141. 8
144. 6
147. 7
151. 0t

154. 6
158. 4
162. 4
166. 6
171. 0
175. 6
180. 4
185. 4
190. 6

201. 7
20)'7. 5
21.3. 5
219. 7
226. 1

232. 8
239. 6
246. 7
254. C;3

261.6
269. 3
277. 3
285. 
294. 1
30]2. 9
3 11. 9
32 .1.3
330. 9
340. 8
351. 0
36 '.. 5
372. 3

0. 01 1
O. 02()

(0. 021

0. 022
0. (3024
0. 024
0. )25
0. 026
0. 026
0. 027
C). 027
0. 028
O. 028
0. 028
0. 029
0. 029
0. 029
0. 029
0. 029
0. 0(29
0. 029
(C). 3 C)

(). (]300. ()30

0. 0300. )30

C). 030

0. 03()

0. 030
0. 030C:). (])30C). 030)

0. 0)3C)
(] *3.030

25. 4
29. 8
31. 7
33. 1
35. 0
35. 2
36. 7
35. 9
37. 0
38. 0
39. 1
40. 1
39. 4
40. 3
41. 2
42. 1
43. 1
44. 0
45. 0
46. 0
47. 1
48. 2
49. 3
50. 5
51. 7
53. 0
54. 3
55. 7
57. 1
58. 6
6(. 
61. 8
63. 4
65. 1

68. '7
70. 6
72. 6

(act ua l
I:.
C.

o3.
0.0.
0.C),

.
0.(-)

0.
0.().

o3.().

C).

C).

0).
C.

0.().0.
C).

().
).

0.C).

0.0).()o.

C).
1).

' 83)
174
:C63

046
056
006
044
023

029
027
026
01 7

,Q23
022
022

022
023

023
023023

024
025
025
025
026
026

()27

()7
O1 ,-s3

I a gi

O )-'

,.

m
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UNITED KINGDOM: "Stro g Cartel" Variant

GNP/GDP:
(bi I i T -rOTAL YR TO YFR YR TO YR

1975 US $) ENERGY CHANGE GAS CHANGE
YEAR USE IN ENERGY USE IN GAS

H I GH (rt e ) USE (BCM) USE
Oil Pr. ice

198) $251. 0-)1

1983 $259. 90 49.5 (actLua. '83)
1984 $2-66. 14 191.9 50). 8 0. 0]27
1 985 $7 : 79 190. 7 --0. 006 51.4 0. 01.2
1986 $;--7:. 06 184. 8 -0 031 50. 8 -)0. 012 
1987 $276.81 184.8 .000 50. 9 0.002
1988 $283.74 185.3 0. 003 51.6 0. 013
1989 $29(0. 83 186. 4 0. 006., 5(. 1 -0. -029

1990 $ 298. 1 0 187.9 . 08 50. 5 . 0 08
1. 1I $3(.5. 55 1 89. 8 0 01. 9 0. 0(9
99 $313. 9 19. 0. 01 51. 5 0. 10

i93 $ 3. 194. 7 0. 014 52. ) ). 1
1994 $ 329. )5 ! 977. 7 0. 015 52.6 . 012
1995 $337. E27 I'01. . )017 49. 7 -0. 055
1996 $345. 70 2 5: 4.. () 18 50. 3 0. 011
1. ':-7 7 ! $35C9- 4. 3;.r5 2'C):8. 4 0. 019 50. 9 0. 012
1998 $363.20 212.4 0.2. 51.5 0.013
1999 $372.29 216.8 0. 020 52.2 0.014
2000 $381.59 221.3 0. 021 5. 8 -0. 28
2i05 $391. 1.3 226.C 0. 022 51.5 (. 15
2 C)0; $400.) 91 231. ( (). 022 52.3 ] . 016
2003 $410. 93 236. 2 0. (22 53.2 0. 017
2()(4 $421. 21 241. 6 0. (23 54.2 0. 018

;3 $4. 74 E47. C1 . 023 55.1 .1 18
2006 $4. 4 53 252. 9 ( ) i- 56.2 C. 19
t: 007 $45.. 59 58. 9 . 0 24 57 . 3 0. 02 
2008 $4 44. '3 265. ( : 0. 24 58. 4 0 . 0 !20
2009 $476. 56 271.4 0. 024 59.6 . 021
'2010 $488. 47 27 7. 9 0. 024 60. 9 0. 021

20:11 $5(:00. E8 284. 7 0. 024 59. 1 -0. 030
2) 1 2 $513. C) 291.6 0. 24 60.3 (. 22
201i.3 $526. :)3 -98. 7 0:. 02:4 61 7 . 7 )22
20) 1 4 $5 39. 18 306. 0 0. '25 63.0 )0 -
20 15 $ 55 . 65 313. 5 0. 0.5 64. 5 :. 0.) 23
2016 $5;66. 48 321.3 0 . (k-5 65.9 0:. -i 3
20 ) 17 ·4: 323 2 t:). C5 67.4 :. :;
20 18 $ 595. 15 337.3 C0. 025 69. : '
2019 $6 10:. 03 345. 7 0c. C:o25 70:,. 6 

2 )$6;2.5.28 354. 3 0. . 3 4
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UNITED KINGDOM: "Cornpetit i.r" Varianrt

GNP/GDP:
(b i 1 i r, TOTAL YR TO YR YR '1 I YN

1975 US $) ENERGY CHANGE GAS CHANGE
YEAR USE IN ENERGY USE IN GAS

LOW (mt oe) USE (BCM) USE
Oil Price

1980]) $,2 51.01

1983 $259. 90 49. 5 (actual '83)
1984 $'266. 14 191.9 50.8 . 027
1.985 $272. 79 190. 7 -0. 0C6 50. 3 -0. 010
1986 $270.6 184.8 -(0.031 47.9 -0.048
1987 $264. 66 177.9 --0. C)37 46. 3 --0. 033
1988 $262. 02 173. C) -0. 027 45. 1 -0. 026
1989 $262. 02 1 7. 1 - . 0) 17 44. -0. 018
199 $L265. 9 5 169. 7 -0 ()()2 41.9 -0. 0 52
1991 $ 269. 93 169.6 . )000 41. -0. 011
199' $275. 33 170.7 0. 006 41. 3 - 0. :()05
1I 9~) 3$280. 84 172. 0 ) ()8 41. --(). ())4

1994 $ 28 E,. 46 173.6 0. 009 41. () -)0.002
i. 995 $293. 62 176. 3 0. 015 38· 1 -(). 070
1996 $31)i. '96 179.2 ] ). 017 38. 2; . 001
1997 $30,8. 48 182. 4 0. 018 38.3 )0. C0)3
1998 $316. 19 185.8 0. 019 38. 5 C). 005
1: -9 9 $3i'4. 1 ) 189.5 0. 02) 38.7 0 0:7

.;333. ;82 194. 3 ). 025 37. 3 -0. (37
200 1 $343. 84 199.3 ) . 026 37. 7 O. 0)13
2002 )i$354. 15 204.6 0. 026 38. 3 0. 014
200i3 $364. 78 210. 1 0. 027 38. 9 0. 016
200)4 $375. 72 215.8 0. ()27 390.6 C). 017
20()05 $386. 99 2 21. a 0C. 028 40. 3 0. 19
;.- ( 06 $ 0398.60 228. 1 C). 028 41.1 0. 1 (20
20)7 $410. 56 L34.5 . 0 )2.8 4 1 . 9 . ' 1
20(:)8 $422. 88 241.2 0. 029 42 9:. 0
20)9 $435. 56 248. 2 0. 029 43. 8 C-). (0. )23
20i)10 $448.63 255. 4 0.029 44.9 0.0 t)24
20 ) 1. $462. 09 262. 8 0. 029 46.0 : :. 024
2012 $475.95 27. 5'0.) 0);9 47. 1 0.025
()3 $49C.2 L :78. 4 . 0. 29 48. 3 0. 0i;E
20) 14 $54. 94 286. 6 0.29 49.6 

20O 15 $52). 08 295. 1 0. 030 5:). 9 5). ot.
2016 $535. 69 303. 8 0. 30 52. 3 .3 02'7
i0. OI 7 c:1 . 7 - 312. 9 0. 030 53. 7 0. 027
20 1i $ 56 8. 3 1 3 22.2 0. 03) 552 0. ), 8
2t() 0. . $585. 36 331. 7 0. 030 56.7 )0. 028
t,: 0 $6(. 92 341.6 C. 030 58.3 0. (:)28
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WEST GERMANY: "Stro, ng Cartel" Variant

GNP/GDP:
(bi i ion

1975 US $)

HIGH
Oil. Price

1980 $496. ()7

TOTRL
ENERGY

USE
(mt oe)

YR TO YR
CHANGE

IN ENERGY
USE

GAS
USE

(BCM)

YR TO YR
CHANGE
IN GAS

USE

$496. 70
$509. 61
$522. 35
$54(:0. 64
$540:. 64

$548. 75
$556. 98
$565. 3
$576. 64
$588. 18
$599. 94
$61, 1.94
$624. 1E '
$6;36. 66
$649. 39
$662. 38
$675. 63
$6 9 2. 5;-'
$7(:)9. 83
$727. 58
$745. 77
$764. 4. .
$783. 5'L
$803. 11
$823. 19
$84"13. '7'7

$864. E86

$886. 48
$908. 64
$931.36
$95J4. 65
$978. 51

$ 1, 028. 0)5

$1, 0:)53. 75

$ 1,(: 08. (: 9

11, 10 7. 7. '
$1, 1 34. 77

(act ua 
).
0.
().

0.
C).

0.

()C).
C).

C).

C).

0.0.

0.

C) 

().

(C).

().

0.
().

()
C).

(C).

:C).

).

().(i.
0.
C0.

C).

C).
(j.

YE.AR

1983
1984
1985
1986
1987
1988
1989
199(0)
1991

1 9 341994
1995
1. 9 C46

1998
1999

: ) 12 u() 0

'2C)! 1(

20022010

2¢ 182 () 19
2020)1

260. 9

284. 7
290. 9
297. C
302. 9
31 0. 4
31 7. 8

332. 6
340. 1.

347. 6

362. 8
37 0. 6

38',. 3
39C0). '2
400. 3
410. 6
421. a
431.9
442. 9
454. 2
465. '7
477. 5
489. 5
50)1. 9

514. 5
52.7. 5
540. 7
554. 
568. 2
582. 5
597. 1

617. 1

6;:7. 4

O. 0(37

C). C)46

Ct. 007

(:2). (:)2'

0. 021
0. oL
0). (-)2(4)

:). 024
0. 02'

O. (:)230. 0220. 023
0. 022
C). 022

0. 0C22
0. 021
C). 026

C). (:26

0. 0260. 026

(. (:)26
0. 025

(C). 025

). 025
(C). 0250. 025
0. (:)25

C). ()'25C). 025
0). 0 25

C). (:) 5

C). 025

C). 025

43. 9
46. 2
48. 2;

50. 5
51. 0
52. 7
53. 8
54. 8
56. 0:i

57. 2
58. 3
59. 5
6(). 6

61. 7
62. 9
64. 0(
65. 1

66. 6
68. 1

69. 7
71. 3
72. 9
74. 6
76.3
78. 1

79. 9
81. 8
83. 7
85. 7
87. 7
89. 8
92. 0
94. 2
96,. 5
98. 8
01. 3
103. 7
106. 3

'83)
051

048(:)48

033
21

) 1 9021

(:)19

(:) 1 8

018
(:0)18

0)23
023

023

(:-)23

023
024
024

024

024
;:' 4
I')L. 
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WEST GERMANY: "C-mrnpetit ic r," Variarnt

GNP/GIDP:
(bi ion

1975 US $)

LOW
Oil Price

TOTrAL

ENERGY
USE

(mt oe)

YR TO YR
CHANGE

IN ENERGY
USE

GAS
USE
(BCM)

YR TO YR
CHtANGE-
IN GAS

USE

$496. ()7

$496. 70
$509. 61
$522. 35
$54(. 64
$55E. 86
$573. 56
$59(C:). 77

$608.49
$626. 75
$645. 55
$66-4, 92

$684. 86
$'7 5. L 1

$726. 57
$748. 37
$770. 82
$793. 94
$817. 76
$842-:. 2 '9
$867. 56
$893. 59
$920. 4(
$948. 03.
$976. 45

$1, 0()5.74
$1, ()35. 92
$1. , 066.99
$1,0()99. 00
$1, 131.. 97
$1, 165.93

$1,20. 91
J, C36. 94

I 1 2 74. 05

$1,31 :1. 64.
$ 1 , 35 92. 18
$1, 433. 95
$1, 47L6. 9*7

(act ua 1
C).

C.

0.
C0.

0.
C).

C(.
0.
C).

C).0.
C0.

C0.

).

0.

0.

0.0.
().

0.
...

0.
0.0.0.
0.
).

0.

C).
).
).

YEAR

1980a

1983
1984
1985
1986
19 87
1988
1989
1 99)

1992

1.991997
1. 99

200(6)

2006

20 1 C
i 1 7

2012:r) f ,

2019

202:C,
i-'(, ) 8i .

26c). 9
269. 5
279. 2-.

287. 1
294. 5
301. 5
308. 1
314. 6

327. 4
333. 8
340. 3
347. 1
354. i

361. 2
368. 7
376. 5
384. 6
393. 1
40)1. 9
411.2
42aC0. 8

430. 9
441. 4
452. 3
463. 8
475. 6
488. )
500. 8
514. 1
527. 9
542. 3
557. 2
572'. 6
5C8. 5
6(05. 0
622. 1

). 0360:). 0)3 
. 2:I8

C). ()26
C). 024

C). 021

C:). 020)a

0. 0C20
C). C:)20:)

C. C) 2

C:). 021
(. (:)21
C:). :)22
C). 022E

0. 023
0. C023
C). C)23

0. 024

C). C) 2

C). 026c). C)a6

C:). (26-0. 027

0. 027C). C)2-'7
0.028'1
(). 028

C). C) . 8

C). 028

43. 9
46. 1
47. 8
49. 9
51. 8
52. 1
53. 5
55. 
55. 5
56. 8
58. 3
59. 7
61. 2:

62. 7
64. 3
65. 9
67. 6
69. 4
71. 2
73. 1
75. 1
77. 1

79. 2
81.4
83. 6
86. 0
88. 4
90. 9
93. 5
96. 1
98. 9

104. 7
107. 8
110. 9
114. 2
1. J. 7. 5
121. 0

83)
051
036
045
037
006

(28
008
c)25
025

025

025
OS25

025

026
027
027
027

028
028

028028

028

029
C)i.' 

029029

(:029029E

O29;-8E

(3'2'9
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WESTERN EUROPEAN NATURAL GAS TRADE MODEL

by

Charles R. Blitzer
with the assistance of

George Deltas and Peter Scully

INTRODUCTION

'This chapter provides a brief description and overview of the

natural gas trade model for Western Europe, which was developed as part

of the M.I.T. Center for Energy Policy Research (CEPR) study of

international natural gas trade. The model provides a framework for

integrating the supply and demand components of this study and has four

principle objectives.

Our first objective for use of the model is to check the

feasibility and consistency over time of various demand forecasts and

supply constraints. These constraints include reserve levels, installed

pipeline capacities linking various countries, and minimum or maximum

export/import flows associated with either contracts or exogenous

policies. This integration provides a mechanism for isolating some of

the principal bottlenecks that are likely to emerge in the evolution of

natural gas trade in Western Europe.

A second use of the model is to calculate least-cost production and

trade patterns to meet projected levels of future demand growth in

different countries. The model derives these to be consistent with

various supply-side constraints and cost assumptions, as well as with

existing and anticipated minimum contract deliveries from individual

exporters to individual importers.

A third, closely related objective is to estimate the marginal

costs of expanding production or increasing consumption in different
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countries, or the marginal costs of additional exports from one specific

location to another. On the production side, the model includes both

operating and investment costs. Operating costs are always incurred

when there is production from a particular reserve. Investment costs

are not automatic, but come about whenever additional capacity is built

to expand production above the level of capacity previously installed.

Since the model is dynamic, it can keep track of yearly reserves and

whether low-cost reserves are being fully utilized. Whenever this

occurs, the model calculates the so-called "user cost" associated with

depletion of low-cost reserves, which forces additional use of higher

cost gas. Similarly, the marginal costs of transporting gas from one

location to another include the marginal operating costs, capital

costs,1 and the user costs of having to use alternative routes and

reserves when a particular pipeline is fully utilized.

Finally, the model can be used to perform a-variety of sensitivity

tests. Among the variables used in developing a specific scenario are:

the time pattern of gas demand growth by country, country-specific gas

reserves and production costs, major expansions of the pipeline network,

minimum delivery requirements under existing and foreseen contracts, and

various policy constraints that can be imposed by specific importing or

exporting countries. By having the model calculate the least-cost

solution for each scenario, it is possible to estimate optimal build-up

and depletion profiles, export patterns, and the real costs (in terms of

1 Due to lumpiness in pipeline investment, the choices about pipeline
expansion that the model itself can make are restricted. This point
will be amplified below.
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production and transportation costs) of supply diversification

strategies.

It is important to stress that the model, as presently formulated,

does not determine either the time path of gas demand or the market

clearing prices in Western Europe either as a whole or for individual

countries. Rather, these are taken as projections derived in the Demand

chapter. Of course, the model can be solved repeatedly to investigate

what would happen to costs and trade patterns if demand were to grow

more or less rapidly. In this respect, the model is similar to the

model developed for Pacific Basin LNG trade and is different from the

North American model, which included specific demand curves for Canadian

gas exports. In the future, it may be possible to extend the model to

examine optimal gas consumption levels, but the feasibility of this

extension will depend on the availability of data, from which explicit

price-sensitive demand functions could be estimated.

The specific structure of production and transportation costs,

contracts, reserves, demand growth, etc. associated with each scenario

are based on work described elsewhere in this report. A linear

programming algorithm is used to find the least-cost solution for each

scenario.2 There is no presumption that the least-cost solution is the

most likely to emerge in the future. Rather, the purpose is to

ascertain the cost of deviations that may be due to government

intervention, diversification objectives, pre-existing contractual

relationships, taxation policies, and so forth.

The model is formulated and solved on an IBM PC-XT using the
GAMS/MINOS system developed at the World Bank and Stanford University.



5-4

Natural gas production, exports, and required new investment levels

are calculated at three-year intervals beginning in 1984 and continuing

until 2017. This long time horizon is required to account fully for the

long investment lags and long operating lives of major capacity

expansion projects. Dynamic relations also are important because

production in earlier periods affects marginal production costs in the

future. Because of the well-known and inevitable problems with terminal

conditions, we report results only through 2014.

The remainder of this chapter is divided into three sections. The

next section presents and discusses the algebraic formulation of the

model. The following section reviews the model's internal pricing

structure. The last section describes and discusses the results of

various model runs.

MODEL FORMULATION

In technical terms, the model is formulated as a mathematical

programming problem in which a computer algorithm is used to find the

optimal time path of the values of the endogenous variables (e.g.,

production and trade flows in each country, investment in new gas

production capacity, etc.). This section reviews the formulation of the

model. It should be understood that this modeling framework is

considerably more flexible than this summary may indicate, in the sense

that additional constraints, projects, producing regions, policy

interventions, etc. could be added.

The model takes account of gas demand in eight countries. Five of

these countries--France, West Germany, the Netherlands, Italy, and the
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United Kingdom--are considered "major," in the sense that their demands

are relatively large, and all but the Netherlands (for reasons explained

in Chapter 2) were the focus of attention in the Demand component of

this study. The "minor" consuming countries include Austria, Belgium,

and Norway. They are included for completeness and because considerable

volumes of traded gas flow through these countries. For all countries

future gas consumption levels are exogenous to the model, having been

forecast as part of a particular scenario. Gas consumption in 1984 and

future growth rates are summarized in Table 5-1. 3 It should be noted

again that these demand projections are conditional on the availability

of supply (which this model is designed to test), as well as on specific

assumptions concerning oil and gas prices and economic growth.

In addition to these consuming countries of Western Europe, the

model also includes exports from Algeria and the Soviet Union.4

Domestic production of natural gas in the "minor" producing countries--

Austria, Belgium, France, West Germany, and Italy--is handled

exogenously. This implies that for these countries, net imports of gas

are part of the ex ante design for each scenario. However, the pattern

of where these imports come from is endogenous to the model, except for

possible limits imposed by existing contracts.

1984 consumption, production, and trade data are based on data from
British Petroleum. Some minor modifications were made to the
consumption data to ensure equality with domestic production plus net
imports.

Significant exports from other countries outside the region were ruled
out on a priori grounds of relative costs.
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Table 5-1

Natural Gas Consumption and Average Annual Growth Rates

1984 Demand Scenarios
consumption

Countries (Bcm) low medium high "super"

France 29.50 2.94% 3.19% 3.43% 5.00%
West Germany 50.20 2.33% 2.52% 2.70% 4.41%
Italy 33.20 2.21% 2.35% 2.49% 4.25%
United Kingdom 47.50 0.87% 0.53% 0.18% 3.28%
Netherlands 38.60 0.50% 0.45% 0.40% 1.00%
Belgium 9.00 2.94% 3.19% 3.43% 5.00%
Austria 4.10 2.33% 2.52% 2.70% 4.41%
Norway 3.70 1.20% 1.00% 0.80% 3.00%

Total/Average 215.80 1.88% 1.96% 2.05% 3.85%

Table 5-2

Reserves, Capacity, Production, and Costs

1984

.------------------------------ marginal marginal
production operating capital

reserves capacity production costs, costs,
Countries (Tcm) (Bcm) (Bcm) $/Mcf /Mcf/year

Algeria 3.1 42.5 17.2 0.10 1.30
Netherlands-1 4.0 85.0 69.1 0.01 0.10
Netherlands-2 2.0 0.45 5.25
Norway-1 1.0 31.2 29.6 0.20 1.50
Norway-2 1.5 0.30 2.50
Norway-3 2.0 0.45 4.80
Norway-4 1.0 0.50 5.00
Norway-5 1.0 1.00 12.50
USSR (Export only) 41.1 65.3 29.4 0.15 1.50
United Kingdom-1 1.5 51.1 35.4 0.30 2.25

United Kingdom-2 1.0 0.45 5.25
Austria na na 1.3 na na

Belgium na na 0.0 na na
France na na 6.0 na na

Italy na na 13.1 na na
West Germany na na 14.7 na na

Total 59.2 275.1 215.8
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Gas production in Algeria, the Netherlands, Norway, the Soviet

Union, and the United Kingdom are all endogenous variables. For the

Netherlands, Norway, and the United Kingdom, rising production costs are

simulated by specifying several reserve "pools" in each country, each of

which has different production costs and different levels of ultimate

reserves. The model determines the ordering and timing of development

in each. For each country, the endogenous variables include production,

required capacity expansion, and remaining reserves. Table 5-2

summarizes data on reserves, production, and costs.

Gas trade takes place though a series of pipelines linking

adjoining countries.5 For simplicity, we assume that pipeline capacity

linking two adjoining countries can be used both for trade in either

direction and for transshipments. For example, the pipeline capacity

between the Netherlands and West Germany is used both for the

Netherlands's exports to West Germany and Italy and for Norway's exports

to the Netherlands, Belgium, and France. Similarly, Norway's exports to

France flow through four "pipelines:" Norway-West Germany, West

Germany-the Netherlands, the- Netherlands-Belgium, and Belgium-France.

Table 5-3 lists all 12 pipelines in the system and the directions and

amounts for each.

The following sub-sections describe the model in greater detail.

The format is to provide the underlying motivation of specific

5 Algeria exports LNG to France and Belgium rather than shipping
thorough a pipeline. The fact that gasification and regasification
facilities are limited implies that the model's considering this link as
similar to a pipeline (although including the additional costs of LNG)
does not greatly distort reality.
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Table 5-3

Export Flows and Pipelines

Pipeline Segment Export Flows in Pipeline Segment

Norway - United Kingdom

Norway - W. Germany

USSR - W. Germany

USSR - Austria

Algeria - Italy

Algeria - France
(LNG)

Norway to United Kingdom

Norway
Norway
Norway
Norway

to W. Germany

to Netherlands

to Belgium
to France

USSR to W. Germany

USSR to France

USSR to Austria
USSR to Italy

Algeria to Italy

Algeria
Algeria

Netherlands - W. Germany

Netherlands - Belgium

France - Belgium

France - W. Germany

Italy - W. Germany

to Belgium

to France

Netherlands to W. Germany
Netherlands to Italy
Norway to Netherlands
Norway to Belgium
Norway to France

Netherlands to Belgium
Netherlands to France
Norway to Belgium
Norway to France

Netherlands to France
Algeria to Belgium

USSR to France

Netherlands to Italy

Italy - Austria

1984 Flow
(Bcm)

12.1

7.0

2.8
1.7

2.3

T13.8

13.5

4.9

18.4

2.8

8.2

TT11.0

6.7

1.5

9.0

T0.5

15.0

5.2
2.8

1.7

2.3

27.0

5.8

7.3

1.7
2.3

7.3

1.5
8.8

4.9

5.2

USSR to Italy 8.2
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constraints and to describe them specifically in prose and algebraic

equations. In general, endogenous variables are represented by capital

letters and parameters by lower-case letters. Bars over letters

indicate exogenous variables. The subscripts "i" and "j" refer to

producing and/or consuming countries, "k" refers to different reserve

structures with different costs in producing countries, "p" refers to

pipelines, and "t" refers to the time period. Variables with bars are

predetermined. All volumes of gas are denominated in billions of cubic

meters per year (Bcm per year) and costs are in U.S. dollars per

thousand cubic feet ($/Mcf), except as noted.

Supply-Demand Balances

We begin with the identity that total gas production in each

country plus imports of gas to that country from all other countries

equals exports of gas from that country to all others plus domestic

consumption. These supply-demand balances are expressed in the

following relationship:

Total Total Dom estic

production, + imports, = consumption, +
country i to country i country i

tS,

try

Let Xikt represent annual production from reserves of type k in

country i in year t; C t represent consumption in country i in year t;

and E(ij,t) represent exports from country i to country j in period t.

Algebraically, we have:

Xi,k,t + E Eji t
k '' j ''

= Ci,t + Ei,jt
1

i

(1)
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For the minor producing countries, production and consumption are

predetermined for each scenario.

Production-Reserve Relationships

There is a recursive relationship between production in any one

period and the remaining reserves in the next period; that is:

Remaining
k in coun

start of

.R 1 [ ][ Production

Remaining reserves Number from reserve k
:= k in country i, - of Years in country i,

tart of year t-1 per Period year t

i1 m, .

Defining Rik t as reserves (in Bcm) in country i at the start of period

t, and recalling that periods are three years in length, the equation

is:

R = R -3X (2)
i,k,t R,k,t-l - 3X ,kt-1 (2)

The following constraint represents a simple approximation to the

limitations on annual production imposed by the level of remaining

reserves. That is, production from each reserve in each country in each

year can be no greater than an exogenously specified fraction of

reserves remaining at the beginning of that year:

Maximal rate Remaining reserves
k < of reserve k in country i,

- depletion start of year t

country i

These maximal rates, ai,ks can represent either technical/engineering

limits or more restrictive policy interventions. Initially, technically
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imposed bounds are assumed.6 That is:

Xik t < ai,kRik,t

Production-Investment Relationships

Annual gas production in each country also is constrained by

available production capacity, which in turn depends on previously

undertaken investment projects. Base year extraction capacity is

predetermined, but endogenous investment activities allow that to be

augmented at constant capital costs per unit production in each reserve

type in each country.7 That is:

k < capacity, reserve minus +
ill < k, country i, depreciation

year t-1 rate

Let Ki,k,t stand for production capacity from reserve k in country i in

year t, Ii,k,t stand for new capacity introduced in year t, and di stand

for the rate of depreciation in country i. We then may derive the

following relationships:

X. < K. (4)Xikt - i,k,t

6 We recognize that the technical relationship between production and
reserves is more complicated than represented here, but have adopted
this formulation for its simplicity. If data were available, it would
not be difficult to substitute more complex equations.

Initial productive capacity for high-cost reserves in the Netherlands,
Norway, and the United Kingdom are taken to be zero. For these reserves
all production capacity is determined endogenously.

-% I---
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Ki,k,t (1-di)Ki'kt_1 + Ii, t

Pipeline Flows and Restrictions

Total natural gas flows through a specific pipeline segments equal

the sum of all the "from-to" exports that must flow through that

pipeline segment. In some cases, only one export flows through a

pipeline (e.g., Norway-United Kingdom), while in other cases up to five

exports share the same pipeline segment (e.g., the Netherlands-West

Germany). That is:

Flow in pipeline p Sum of exports
(between countries = [country i to

k and 1), country j,

year t year t

Let PFp t represent total flows in year t in pipeline segment p. There

are 12 pipeline segments and 16 export activities. Table 5-4 lists

which exports flow through each pipeline segment. Equation (6) defines

the flow through pipeline p, where the summations are only for those

export flows, Eijt, which are associated with pipeline segment p.

This relationship is summarized as:

PFp t = C Ei,j,t (6)
1 j

Annual flows through each pipeline segment are limited by available

capacity in that year. Unlike with production, the model has relatively

little freedom to choose the optimal pattern of pipeline expansion. The

reason for this is that there are significant economies of scale in
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Table 5-4

Pipeline Capacity and Operating Costs
(units: Bcm/year and $/Mcf)

operating 1993-

Pipeline segments costs 1984 1987 1990 2017

Norway - United Kingdom 0.11 20 20 20 20

Norway - W.Germany 0.20 15 35 35 66

USSR - W.Germany 0.25 55 55 65 81

USSR - Austria 0.30 15 15 15 15

Algeria - Italy 0.20 12 18 18 18

Algeria - France b/ 0.20 15 15 15 15

Netherlands - W.Germany c/ 0.01 81 81 81 81

Netherlands - Belgium 0.025 a/ a/ a/ a/

France - Belgium 0.02 a/ a/ a/ a/

France - W.Germany 0.05 a/ a/ a/

Italy - W.Germany 0.075 a/ a/ a/ a/

Italy - Austria 0.05 a/ a/ a/ a/

NOTES:

a/ Pipeline capacity is not explicitly constrained.

b/ Algerian LNG exporting capacity to France is 31 Bcm per year;

France can expand its LNG importing capacity from 15 to 31 Bcm

per year at a capital cost of $50 per installed Mcm per year.

c/ Initial capacity can be expanded endogenously at a given, constant
capital cost of $22 per Mcm.
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pipeline construction. In general, it pays to build excess capacity

initially and then have demand catch up, rather than continually make

small additions. For this reason, the capacities of pipeline segments

from Norway, the Soviet Union, and Algeria are treated as exogenous or

"scenario" variables. Since other pipeline segments within Western

Europe either have surplus capacity or can be expanded at low capital

cost, they are not explicitly bound. However, all rules have

exceptions; in this model there are two. Because of its large magnitude

and the relative unimportance of economies of scale problems (due to the

fact that this link is not just one, but a multitude of pipelines each

of which can be expanded marginally), the expansions of the Netherlands-

West Germany pipeline links are determined endogenously using constant

marginal cost. The other exception is LNG exports from Algeria to

France. Algerian export capacity is taken as exogenous, but the model

calculates how much additional regasification capacity to install in

France, up to the limit imposed by Algerian capacity.8 That is:

Flow in pipeline Installed capacity
p, year t < of pipeline p,

year t

Let PCAPp t represent installed capacity in year t for pipeline

segment p, and IPp t represent additions to pipeline segment p, which is

first available for use in year t. The variable IP with a bar over it

indicates that it is an exogenous value (pre-set for each scenario), and

IP without a bar indicates the variable is endogenous. We then have:

8 For details, see Table 5-4.
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PFpt

PCAPp't

< PCAPp t (7)

= PCAPp t_- + IPpt + IPp't (8)

Cost Calculations

The model considers four sets of out-of-pocket costs. These are:

(1) operating (or current) costs of gas production; (2) capital costs

associated with investment and capacity expansion in gas extraction;

(3) marginal operating costs of shipping gas through particular pipeline

segments (including the Algeria-France LNG link); and (4) investment

expenditures associated with the endogenous expansion of pipelines. The

costs of pipeline expansion, which is part of the different scenarios,

are given to the model as a constant. While constants do not affect the

solution of any one run of the model, these costs are important when

comparing different scenarios. That is:

Extraction 1
operating
costs,

country i

Extraction
capital

costs,

country i

year t

Pipeline p

operating
costs,

in year t

Pipeline p

capital
costs,

n year t

Unit
extraction

operating
costs,

country i

Unit
extraction
capital

costs,
country i

Total

annual
production,
country i,

year t

I

P

F
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Define OCt as total operating costs in year t, oci k as the unit

marginal operating costs of gas production in country i from reserve k,

and opp as the unit marginal operating costs of pipeline segment p. The

following equation defines the sum of these costs:

OCt EE oc ,kXikt + E oppPFpt (9)
i k p

Define INt as total investment costs in year t, cci,k as unit capital

costs for expansion of gas production from reserve k in country i, and

Cpp as the capital expansion cost associated with an increase in

pipeline segment p's capacity by one Bcm per year. These costs are

annualized and discounted to reflect the fact that new capacity that

become available in year t incurs its investment expenditures in the

previous year.9 The following equation defines total investment costs

in year t:

INt = cci,kIi k t + E cPpIPpt (10)
ik p

Objective Function

The objective function represents what the model is attempting to

achieve, or how it selects among alternative programs that are feasible

in the sense that all constraints are satisfied. Here, the model is

asked to find the feasible program with the lowest discounted present

In addition, to account for terminal conditions and the long life of
investments, the capital costs near the end of the planning horizon are

truncated.
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value cost. Other objective functions could be utilized in models such

as this one. These include maximization of revenue to producers or

taxes to governments, or simulation of competitive or monopolistic

market behavior. However, to use other objective functions would have

required more data than was available for this study.

Define TDC as the total discounted costs of any solution, and t as

the discount factor in year t.10 This total is calculated using the

following equation:

TDC = bt[OC + INt ] (11)
t t t

PRICE STRUCTURE OF THE MODEL

In addition to solving for the endogenous variables described

above, (technically called primal variables), the model calculates a set

of implicit or "shadow" prices (dual variables). Each constraint or

equation has an associated shadow price, that represents the marginal

cost--in terms of the objective function--of that constraint being

"tightened" by one unit. These are calculated based on the model's

internal cost structure and are used in determining the optimality of

any intermediate solution. In effect, the model knows that an optimal

solution is found whenever: (a) all variables that are not at their

upper or lower limits have the property that the marginal benefits (MB)

from increasing that variable by a small amount exactly equal the

10
In principle, the discount rate need not be constant over time.

Also, different discount factors could be applied to different flows if
these differed substantially in their risk characteristics.
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marginal costs (MC) of doing so; and (b) there are no variables for

which marginal benefits exceed marginal costs.1l These costs and

benefits are calculated using the shadow price structure. The shadow

prices also are useful in that they can be employed in evaluating

specific projects outside the model, so long as those projects are not

too "large."

To illustrate how the shadow price structure works, we examine the

interrelations among a few key prices and variables. Consider first the

costs and benefits of exporting a small additional amount from country i

to country j; that is, increasing variable Ei,j,t by one Bcm. This

variable appears in three or more equations: the supply-demand balance

(equation (1)) for the exporting country, the supply-demand balance

(equation (1)) for the importing country, and as many equation (6)'s as

there are pipelines through which that export of gas must flow. The

shadow prices associated with each of these equations or constraints can

be used to perform a cost-benefit test on whether this variable should

be increased or decreased. The production cost of the gas is the shadow

price of equation (1) for the exporting country. To this must be added

transportation costs, which are the sum of the shadow prices of all

pipeline capacity constraints through which the gas flows on its way to

country j. This must be compared with the implicit value of gas

imported into country j, which is the shadow price of equation (1) for

that country. If the total cost of increasing E is less than the
ij,t

These are known as the "complementary slackness" conditions and hold
for all constrained optimizing problems.
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cost of Ekj t ' where "k" is exports from another country, then the

model will choose to increase exports from i to j and reduce them from

country k.

The next step is to see what determines the marginal production

cost of gas in country i. Here we examine the equations where Xi,k, t

appears. Marginal operating costs of extractions are oci,k times the

shadow price of equation (9), which is merely the discounted value of

expenditures in year t. Capital rental charges for equipment are added

from equation (4). Together these form total out-of-pocket marginal

production costs. In addition to direct costs, there are "user" costs

related to resource depletion. These appear as the shadow prices of

constraints (2) and (3). The shadow price of (3) is the value of being

able to produce one additional unit from a low-cost reserve in which

production is constrained by an upper limit related to remaining

reserves. The shadow price of (2) represents the cost of limiting

future production from the reserve because depletion now decreases the

upper bounds on possible production in later years. The value of the

gas in producing country i is the shadow price of equation (1) for that

country.12

To determine the costs of using a particular pipeline, the model

calculates the marginal operating costs from equation (9) and the

capital rental charges from equation (6). While the former costs are

12 Note that whenever a country is producing from more than one resource
or reserve base in a given year, the model adjusts the user costs of the

lower-cost resources so the total costs of producing from all resources
is identical. If this were not the case, it would pay to stop producing

from one or more reserve.
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always positive, the latter are positive only when a pipeline is being

fully utilized. The total capital costs for pipeline expansion are

derived from equation (10) when the model itself determines the optimal

expansions. But in other cases where, for reasons of economies of

scale, the pipeline expansion is taken as part of the exogenous

scenario, these costs are added directly to the objective function as

constant increments to total cost.

RESULTS

This section illustrates how the model can be used to analyze the

factors that determine least-cost supply patterns and marginal costs of

delivering gas. The simulations use data that were developed as part of

the Supply and Demand chapters, as summarized in Tables 5-1 to 5-6.

Table 5-1 summarizes the four different demand scenarios that were

developed for this study.13 The "low" and "high" demand growth

scenarios correspond to "high" and "low" average oil prices,

respectively. As explained more fully in the Demand chapter, the reason

why gas demand grows relatively slowly when world oil prices are high is

that the negative income effect of high oil prices on economic growth

outweighs the positive substitution effect of lower relative gas prices.

The reverse holds true when oil prices are low.14 The relatively minor

13 This table contains the average annual growth rates for gas demand in
each scenario. However, the model actually utilizes a time sequence of
demand growth rates for each country in which yearly growth rates often
diverge substantially from the average. The Demand chapter provides
more detail on these derivations.

14 Note that for those countries that are net oil exporters, gas demand
grows more rapidly in the "low" case because both their economic growth
and oil prices are positively correlated.
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differences between the average annual growth rates are explained by the

fact that the opposite signs of the income and price substitution

effects associated with changes in world oil prices nearly cancel each

other. The "super" demand growth scenario is meant to represent an

upper limit on how rapidly demand might grow through a combination of

faster economic growth, reductions in the relative price of gas, and

other demand promoting effects.

The reserve and production cost data used in the model are

presented in Table 5-2. (The Supply chapter discusses their derivation

in greater detail.) Tables 5-3 to 5-5 summarize assumptions about the

pipeline network, including the marginal costs of shipments through each

segment, and the capital costs of expansions. One of the questions the

model can be asked is whether there are additional costs associated with

meeting import demand under existing contracts, which may not represent

the lowest costs of production and transportation. The estimated

minimum deliveries corresponding to existing gas contracts are

summarized in Table 5-6.15

Although these tables summarize our best estimates, we recognize

that there is great uncertainty about supply costs, future expansions in

the pipeline network their costs, and future demand growth. Therefore,

the results discussed here should be interpreted as tentative and

illustrative. The model is available for others to use substituting

their own assumptions.

For details on the derivation of these numbers, see Appendix B of the
Demand chapter.
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Table 5-5

Pipeline Expansion Costs

Size of Investment

Increment Cost
Pipeline (Bcm per year) ($ bils.)

Full

Capacity
Annual

Usage Cost
($/Mcf)

Norway - United Kingdom
Norway - W.Germany
USSR - W.Germany
USSR - Austria
Algeria - Italy
Algeria - France
Netherlands - W.Germany

20

20

40

20
12

10
1

1.0

1.5

7.5

3.8

1.6

0.5

0.022

0.21

0.32
0.80
0.80
0.57
0.21

0.09

Table 5-6

Minimum Contracted Volumes, Adjusted for Take Provisions
(units: Bcm/year)

Exporter/Importer 1984 1987 1990 1993 1996 1999 2002 2005 2008 2011 2014 2017

Algeria/Belgium
Algeria/France
Algeria/Italy

USSR/Austria
USSR/France
USSR/W. Germany
USSR/Italy

Holland/Belgium
Holland/France
Holland/W. Germany
Holland/Italy

Norway/Belgium
Norway/France
Norway/Holland
Norway/UK
Norway/W. Germany

1.6 1.5

8.1 7.1

6.6 9.6

4.1

4.5
12.7

7.6

5.8
7.8

18.2
0.4

2.0
2.2

3.0
13.6
5.5

2.0

7.8

16.0
12.0

2.1

5.0
12.9
3.0

1.5

6.7

9.6

2.0

9.6

16.0

12.0

2.1

3.6

12.9
3.0

3.0 3.0
3.4 3.4
3.0. 3.0
7.6 7.6

9.2 9.2

1.5

6.7

9.6

2.0

9.6
16.0

12.0

2.1

3.3
12.9
3.0

3.4
5.0

3.4
7.6
10.8

1.5

6.7

9.6

1.2

9.6
8.4

6.4

1.5
3.3

12.9
0.0

4.1

7.7

4.1
7.6

13.5

1.5 1.5

4.0 4.0
9.6 9.6

1.2 1.2

9.6 8.0
8.4 8.4

6.4 6.4

1.5 1.5

0.0 0.0
12.9 12.9

0.0 0.0

2.8 2.6
7.9 7.8

2.8 2.6
0.0 0.0
9.7 9.0

0.0
0.0
9.6

0.0

6.4

0.0
6.4

1.5

0.0
12.9

0.0

2.6

7.8
2.6
0.0
9.0

0.0
0.0
9.6

0.0
6.4

0.0
0.0

0.0
0.0
12.9
0.0

1.6
6.4
1.6
0.0
6.4

0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

0.0
0.0
0.0
0.0

0.0

0.0

0.0
0.0

1.6

6.4

1.6
0.0
6.4

0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

1.6
6.4

1.6
0.0
6.4

0.0
0.0
0.0
0.0

0.0

0.0
0.0

0.0

1.6

6.4
1.6
0.0
6.4

--------------------------------------------------------
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To demonstrate how the model can be used, summary results are

presented for five cases. Case 1 assumes a medium level of demand

growth for natural gas. For the period 1984-2017, the average rate of

demand growth is about 2 percent per year, with consumption growing

somewhat faster in France, West Germany, and Italy, and more slowly in

the United Kingdom and the Netherlands. In addition, we assume that the

model is free to disregard existing contracts in choosing the minimum

cost pattern of meeting demand. Pipeline capacity is shown in Table

5-4.

Table 5-7 summarizes the results for Case 1. The top portion of

the table lists the assumptions about the underlying scenario and the

total discounted costs of meeting this level of demand.1 6 The scenario

assumptions are summarized in terms of which demand-growth pattern is

used, whether exports are constrained by policy and/or existing

contracts, and if new pipelines are added in addition to those specified

in Table 5-4. The next portion of the table summarizes the time pattern

of trade flows. The most striking result is that, through the 1990s,

Continental import demand is met by exports from the Netherlands for

those countries (West Germany, France, Italy, and Belgium) where there

is a choice among sources. This is due to relatively low production and

transportation costs in and from the Netherlands.

These include all costs associated with those internal choices the
model can make. Not included are the costs of domestic production in
the minor producing countries and the fixed costs of the pipelines,
which are exogenous for each scenario. These are shown in Table 5-4.
Solutions that include other pipelines have their investment cost added
to the total.
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Table 5-7

Summary Results: Case 1

Demand Scenario --medium
Export Constraints--none
New Pipelines --none

Discounted Cost ($ bils.) = 13.88

1984 1990 1996 2002 2008 2014

Imports (Bcm/year)
Austria from USSR 2.8 3.6 4.2 5.1 6.1 7.3

Belgium from Algeria 1.5 0.0 0.0 0.0 0.0 0.0
Belgium from Netherlands 5.8 12.1 14.5 17.0 11.3 6.7
Belgium from Norway 1.7 0.0 0.0 0.0 8.6 16.6
France from Algeria 9.0 0.0 15.0 22.4 31.0 31.0
France from Netherlands 7.3 33.6 26.5 27.3 0.0 0.0
France from Norway 2.3 0.0 0.0 0.0 0.0 0.0
France from USSR 4.9 0.0 0.0 0.0 28.4 39.6
Netherlands from Norway 2.8 0.0 0.0 0.0 0.0 0.0
Italy from Algeria 6.7 0.0 18.0 18.0 18.0 18.0
Italy from Netherlands 5.2 27.4 14.4 19.7 17.8 27.7
Italy from USSR 8.2 0.0 0.0 0.0 8.9 7.7

United Kingdom from Norway 12.1 0.0 11.9 20.0 0.0 16.7
W. Germany from Netherlands 15.0 45.1 51.1 0.0 0.0 0.0
W. Germany from Norway 7.0 0.0 0.0 2.9 22.9 49.3
W. Germany from USSR 13.5 0.0 1.9 60.1 52.6 41.4

Total Gas Trade Flow 105.8 121.7 157.6 192.4 205.6 262.0

Marginal Import Cost ($/Mcf)
Austria from USSR 0.45 0.45 0.49 0.76 1.11
Belgium from Algeria NA NA NA NA NA
Belgium from Netherlands 0.15 0.42 0.46 0.75 1.10
Belgium from Norway NA NA NA 0.75 1.10
France from Algeria NA 0.44 0.48 0.76 1.12
France from Netherlands 0.17 0.44 0.48 NA NA
France from Norway NA NA NA NA NA

France from USSR NA NA NA 0.76 1.12
Netherlands from Norway NA NA NA NA NA
Italy from Algeria NA 0.48 0.52 0.81 1.16
Italy from Netherlands 0.21 0.48 0.52 0.81 1.16
Italy from USSR NA NA NA 0.81 1.16

United Kingdom from Norway NA 0.33 0.36 NA 0.71
W. Germany from Netherlands 0.14 0.40 NA NA NA
W. Germany from Norway NA NA 0.44 0.71 1.07
W. Germany from USSR NA 0.40 0.44 0.71 1.07
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As low-cost reserves in the Netherlands are depleted and absolute

demand levels increase, other supply sources are needed. By the turn of

the century, France and Italy begin importing from Algeria, while West

Germany imports increasingly from the Soviet Union. When pipeline (and

LNG) capacity from Algeria reaches its upper limit, France and Italy

begin importing from the Soviet Union. Norwegian exports to West

Germany rise rapidly because the pipeline from the Soviet Union to West

Germany reaches its upper capacity limit, and it is less expensive to

satisfy French demand with that gas than for France to import from

Norway.

The United Kingdom is a special case because the model can choose

to meet its demand through either increased domestic production or

imports from Norway. In the early years, it is less expensive to

produce domestically than import, but the reverse is true in later years

as low-cost reserves are depleted.

The last panel in Table 5-7 presents the marginal costs of each

import in the optimal solution.17 These include the marginal costs of

production and transportation from exporting to importing country.

These are "pure" marginal costs in the sense that they do not include

any rents or taxes. Also, the amortization costs associated with

capital investments, such as pipeline or initial production capacity,

are exogenous to the model. For these reasons, the marginal costs may

appear low. However, they are consistent both with the production and

17 Values are shown only for imports that have positive levels. Imports
which potentially might have been included in the solution but are not,
are indicated by "NA."
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transportation costs shown in Tables 5-2 and 5-4 and with the fact that

demand does not grow rapidly in this scenario. Toward the end of the

projection period, costs begin to increase quite rapidly as low-cost

reserves either become depleted (e.g., the Netherlands) or not available

at the margin due to pipeline limitations (e.g., Algeria).

These results may be considered infeasible in the sense that they

are inconsistent with existing gas delivery contracts. Case 2 differs

from Case 1 in that the minimum "takes" associated with existing

contracts are imposed as a minimum condition. These are summarized in

Table 5-6. Demand above these minimums can be satisfied by the

least-cost trade patterns. Table 5-8 contains summary results for this

scenario. Through the end of this century, the model chooses to deliver

the minimum levels from Norway, Algeria, and the Soviet Union.

Additional quantities come from the Netherlands, which is the lowest

cost producer. The bottom portion of Table 5-8 shows the differences

between the unit costs from the Netherlands and from other exporters to

each importing country.

As contracts expire and as low-cost reserves in the Netherlands are

depleted, the model selects a balanced trade pattern based entirely on

cost considerations. The main difference between the trade pattern for

later years in Cases 1 and 2 is that the Netherlands remains an exporter

for a longer period, exporting much less in the 1990s in Case 2 than in

Case 1. In the case of the United Kingdom, the minimum imports from

Norway in Case 2 mean that domestic reserves are greater in later years,

which implies that domestic production in the first decades of the next

century will be cheaper than continuing to import from Norway after
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Table 5-8

Summary Results: Case 2

Demand Scenario --medium
Export Constraints--minimum contracts imposed
New Pipelines --none

Discounted Cost ($ bils.) = 17.71

1984 1990 1996 2002 2008 2014
**********************************************************
Imports (Bcm/year)

Austria from USSR

Belgium from Algeria
Belgium from Netherlands
Belgium from Norway
France from Algeria
France from Netherlands
France from Norway
France from USSR
Netherlands from Norway
Italy from Algeria
Italy from Netherlands
Italy from USSR
United Kingdom from Norway
W. Germany from Netherlands
W. Germany from Norway
W. Germany from USSR

2.8
1.5

5.8

1.7

9.0

7.3

2.3

4.9
2.8
6.7

5.2

8.2

12.1

15.0

7.0

13.5

3.6
1.5

7.6
3.0
6.7

13.9
3.4
9.6
3.0
7.8

9.7

9.8
7.6
21.6
8.5

14.9

4.2
1.5

8.9
4.1

5.8

20.8
6.7

8.3

4.1
9.6

16.4
6.4

7.6
31.1

13.5

8.4

Total Gas Trade Flow

Marginal Import Cost ($/Mcf)
Austria from USSR
Belgium from Algeria
Belgium from Netherlands
Belgium from Norway
France from Algeria
France from Netherlands
France from Norway
France from USSR
Netherlands from Norway
Italy from Algeria
Italy from Netherlands
Italy from USSR
United Kingdom from Norway
W. Germany from Netherlands
W. Germany from Norway
W. Germany from USSR

105.8 132.3 157.3 175.0 207.2 267.0

0.45 0.45 0.45

0.32 0.32 0.32
0.10 0.15 0.27
0.46 1.10 0.52
0.30 0.30 0.30
0.12 0.17 0.29
0.48 1.12 0.54
0.45 0.45 0.45
0.43 1.08 0.49

0.30 0.30 0.33
0.16 0.21 0.33

0.50 0.50 0.50
0.33 0.98 NA
0.08 0.13 0.26
0.42 1.07 0.48

0.40 0.40 0.40

5.1

1.5
12.9

2.6

4.0
29.9
7.8
8.0
2.6
18.0
13.3
6.4
0.0
45.6
9.0
8.4

6.1

0.0
18.3
1.6

24.5
13.5
6.4
15.0
1.6
18.0
20.3
6.4
0.0
12.9
10.8
51.9

7.3

0.0
8.3

15.1
31.0
0.0

6.4

33.2
1.6

18.0

27.7
7.7

20.0
0.0

42.9
47.8

0.64
NA
0.62
0.62
0.64
0.64
0.64
0.64
0.60
0.68
0.68
0.69
NA

0.60
0.59
0.59

1.11

NA

1.10

1.10

1.12

NA

1.12

1.12
1.08

1.16

1.16

1.16
0.74

NA
1.07
1.07
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existing contracts expire. Of course, this conclusion is sensitive to

assumptions about demand growth in the United Kingdom, which in this

scenario grows very slowly.

Note, however, that the total discounted costs are significantly

greater under existing contracts than they would be if trade patterns

depended solely on costs. In Case 2, the increase in discounted costs

is almost $4 billion, an increase of more than 27 percent over Case 1.

Similar results were obtained by exogenously constraining the level of

total exports from the Netherlands, either in absolute amounts or

relative to remaining low-cost reserves.

The model also can be used to estimate the implications of

different patterns of gas demand growth. Simulations were conducted

using each of the scenarios summarized in Table 5-1 with and without

minimum contract "takes" imposed. Results for the "super" demand

scenario are presented in Tables 5-9 (no minimum contract constraints)

and 5-10 (minimum contract takes). Here, gas demand in Western Europe

grows at a rate so rapid it cannot be satisfied (at any cost) without

building more pipelines than those that were initially assumed and

summarized in Table 5-4.

For these cases the model was run with numerous alternative

pipeline additions, with the discounted capital costs of "new" pipelines

being added to production and pipeline operating costs, which are

determined in each solution. The results for the configuration with the

lowest total discounted costs are reported in Tables 5-9 and 5-10.18

18 Since all possible configurations were not tried, this trial-and-
error procedure does not necessarily lead to a true minimum-cost
solution. However, comparison of the many solutions obtained suggests
that our results are not too far from the global optimum.
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Table 5-9

Summary Results: Case 3

Demand Scenario --"super"

Export Constraints--none
New Pipelines --1996: Algeria-Italy +12 Bcm
2002: Norway-UK +20 Bcm, USSR-W. Germany +40 Bcm
2005: Algeria-Italy +18 Bcm, USSR-Austria +20 Bcm
2008: Norway-UK +20 Bcm
2011: USSR-Austria +30 Bcm, USSR-W.AGermany +40 Bcm
2014: Norway-W. Germany +30 Bcm, Algeria-Italy +18 Bcm
2017: USSR-W. Germany +40 Bcm

Discounted Cost ($ bils.) = 26.39

1984 1990 1996 2002 2008 2014
**********************************************************

Imports (Bcm/year)
Austria from USSR

Belgium from Algeria
Belgium from Netherlands
Belgium from Norway
France from Algeria
France from Netherlands
France from Norway
France from USSR
Netherlands from Norway
Italy from Algeria
Italy from Netherlands
Italy from USSR
United Kingdom from Norway
W. Germany from Netherlands
W. Germany from Norway
W. Germany from USSR

2.8
1.5
5.8
1.7

9.0

7.3

2.3

4.9
2.8

6.7

5.2
8.2

12.1

15.0
7.0

13.5

4.8
0.0
15.0
0.0
12.0
31.3
0.0
0.0
0.0
18.0
18.3
0.0

0.8

59.4
0.0
0.0

6.3
0.0

19.7
0.0
15.0
43.5
0.0
0.0
0.0
30.0
18.7
0.0
20.0
18.6
1.0
58.8

8.2
0.0
24.8
0.0

31.0
8.8
0.0
35.5
0.0
30.0
25.5
6.9

22.6
0.0
15.5
85.5

10.7
0.0
31.6
0.0
31.0
11.4
0.0
55.3
0.0
30.0
26.4
24.3
58.1
0.0
66.0
65.7

13.8
0.0
40.0
0.0
31.0
17.7
0.0
76.5

0.0
66.0
0.0
38.2
35.1
0.0

86.0
84.5

Total Gas Trade Flow

Marginal Import Cost ($/Mcf)
Austria from USSR
Belgium from Algeria
Belgium from Netherlands
Belgium from Norway
France from Algeria
France from Netherlands
France from Norway
France from USSR
Netherlands from Norway
Italy from Algeria
Italy from Netherlands
Italy from USSR
United Kingdom from Norway
W. Germany from Netherlands
W. Germany from Norway
W. Germany from USSR

105.8 159.6 231.6 294.3 410.6 488.9

0.45 0.55

NA NA

0.28 0.51

NA NA

0.30 0.53
0.30 0.53

NA NA

NA NA
NA NA

0.34 0.57
0.34 0.57
NA NA

0.36 0.41
0.27 0.50
NA 0.50

NA 0.50

0.95
NA

0.94
NA

0.96
0.96
NA

0.96
NA

1.00

1.00
1.00
0.82
NA

0.91
0.91

2.18
NA

2.17
NA

2.19
2.19

NA

2.19
NA

2.23
2.23
2.23
1.03

NA

2.14

2.14

0.45

NA

3.24
NA

3.26
3.26

NA

3.26

NA

0.50
NA

0.50
1.14
NA

3.21
3.21
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The most important additions to the network for reducing costs are

periodic increases between Algeria and Italy, the Soviet Union and

Germany, and Norway and the United Kingdom.

The pattern of gas trade in Case 3 is not too different from that

in Case 1, although the trade volumes are much larger in each time

period. The Netherlands initially is still the primary exporter, with

Algeria and the Soviet Union becoming major exporters in the 1990s, and

Norwegian exports growing rapidly afterwards. This is similar to the

results obtained when demand grows more slowly, but the transitions in

that instance are much accelerated.

Not surprisingly, it would be quite costly to meet this level of

demand growth. The total discounted costs of Case 3 are about twice

those for Case 1. The differences are more pronounced in the later

years, when the absolute differences in gas consumption are larger. In

Case 1, the marginal costs of one additional Mcf of demand averaged

about $0.75 in 2008. In Case 4, the marginal costs are nearly 3 times

as high, averaging about $2.20 in 2008.

The only difference in the scenarios for Cases 3 and 4 is that

minimum contract takes are imposed in the latter. As expected, the

effect of these additional constraints is to increase total costs by

slowing exports from the lowest cost source (the Netherlands) and using

higher cost gas from Norway, the Soviet Union, and Algeria. But in

comparison with Cases 1 and 2, the absolute and relative effect of these

constraints is much less. The reason is that demand grows so rapidly

that exports from higher cost suppliers are needed by early in the 1990s

in any case.
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Table 5-10

Summary Results: Case 4

....- kDemand Scenario --"super"
Export Constraints--minimum contracts imposed
New Pipelines --1996: Algeria-Italy +12 Bcm
2002: Norway-UK +20 Bcm, USSR-W. Germany +40 Bcm
2005: Algeria-Italy +18 Bcm, USSR-Austria +20 Bcm
2008: Norway-UK +20 Bcm
2011: USSR-Austria +30 Bcm, USSR-W. Germany +40 Bcm
2014: Norway-W. Germany +30 Bcm, Algeria-Italy +18 Bcm
2017: USSR-W. Germany +40 Bcm

Discounted Cost ($ bils.) = 28.52

1984 1990 1996 2002 2008 2014

Imports (Bcm/year)
Austria from USSR 2.8 4.7 6.3 8.1 10.7 13.8
Belgium from Algeria 1.5 1.5 1.5 1.5 0.0 -0.0

Belgium from Netherlands 5.8 10.5 14.1 20.7 30.0 38.4
Belgium from Norway 1.7 3.0 4.1 2.6 1.6 1.6

France from Algeria 9.0 6.7 11.0 13.5 31.0 31.0
France from Netherlands 7.3 23.6 32.5 18.7 28.3 38.5
France from Norway 2.3 3.4 6.7 7.8 6.4 6.4
France from USSR 4.9 9.6 8.3 35.3 32.0 49.3
Netherlands from Norway 2.8 3.0 4.1 2.6 1.6 1.6
Italy from Algeria 6.7 7.8 30.0 30.0 48.0 66.0
Italy from Netherlands 5.2 18.6 12.3 26.0 8.4 0.0
Italy from USSR 8.2 9.8 6.4 6.4 24.3 38.2
United Kingdom from Norway 12.1 7.6 9.3 22.6 56.2 30.3
W. Germany from Netherlands 15.0 35.9 53.9 12.9 12.9 0.0
W. Germany from Norway 7.0 8.5 13.5 9.0 29.7 58.9
W. Germany from USSR 13.5 14.9 11.1 79.1 89.0 111.7

Total Gas Trade Flow 105.8 169.4 225.0 296.9 410.2 485.7

Marginal Import Cost ($/Mcf)
Austria from USSR 0.45 0.45 0.64 1.16 0.45
Belgium from Algeria 0.32 0.36 0.66 NA NA
Belgium from Netherlands 0.17 0.32 0.62 1.15 1.26
Belgium from Norway 0.51 1.00 0.94 1.16 1.26
France from Algeria 0.30 0.34 0.64 1.17 1.28
France from Netherlands 0.19 0.34 0.64 1.17 1.28
France from Norway 0.53 1.02 0.96 1.18 1.28
France from USSR 0.45 0.45 0.64 1.17 1.28
Netherlands from Norway 0.48 0.97 0.91 1.13 1.24
Italy from Algeria 0.30 0.48 0.68 1.21 0.50
Italy from Netherlands 0.23 0.48 0.68 1.21 NA
Italy from USSR 0.50 0.50 0.69 1.21 0.50
United Kingdom from Norway 0.38 0.78 0.81 1.03 1.14
W. Germany from Netherlands 0.16 0.40 0.61 1.14 NA
W. Germany from Norway 0.47 0.87 0.90 1.12 1.23
W. Germany from USSR 0.40 0.40 0.59 1.12 1.23
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Another possible application of the model is to evaluate, at least

in part, the economics of building additional pipeline capacity. For

instance, note that in Case 1 it is optimal to fully utilize the

exogenous pipeline capacity of 18 Bcm per year between Italy and Algeria

from 1996 onward. This full utilization implies that the model would

choose larger volumes of Algerian exports to Italy if it could, because

that would satisfy Italian demand at lower total cost. However, the

capital costs of building a pipeline must be compared with the potential

savings.

The results of such an experiment are shown in Table 5-11. The

underlying scenario is identical with Case 1 except export capacity

between Algeria and Italy is increased by 12 Bcm per year beginning in

1996. This additional capacity is utilized, with Italian imports from

the Netherlands (and later from the Soviet Union) being reduced

accordingly. This permits greater exports from the Netherlands to

Germany and France, with those countries reducing their higher cost

imports from the Soviet Union and France. In total, the effect of these

reallocations is to reduce production costs and marginal transportation

costs by $210 million (discounted to present value). However, when the

discounted cost of the additional pipeline is included, the total

discounted costs of this scenario are $310 million greater than for

Case 1.

In closing, we again emphasize that these results are meant to be

illustrative of the model's structure and potential applications. The

outcomes of the scenarios reported here are highly sensitive to specific

cost data for each country, projected pipeline construction and costs,
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Table 5-11

Summary Results: Case 5

Demand Scenario --medium
Export Constraints--none
New Pipelines --1996: Algeria-Italy +12 Bcm

Discounted Cost ($ bils.) = 14.19

1984 1990 1996 2002 2008 2014

Imports (Bcm/year)
Austria from USSR
Belgium from Algeria
Belgium from Netherlands
Belgium from Norway
France from Algeria
France from Netherlands
France from Norway
France from USSR
Netherlands from Norway
Italy from Algeria
Italy from Netherlands
Italy from USSR
United Kingdom from Norway
W. Germany from Netherlands
W. Germany from Norway
W. Germany from USSR

2.8

1.5

5.8

1.7

9.0
7.3

2.3

4.9
2.8

6.7

5.2

8.2
12.1

15.0

7.0

13.5

3.6
0.0

12.1

0.0
0.0
33.6
0.0
0.0
0.0
0.0
27.4
0.0
0.0

45.1
0.0
0.0

4.2
0.0

14.5

0.0
4.9

36.6
0.0
0.0
0.0
30.0
2.4
0.0
20.0
53.0
0.0
0.0

Total Gas Trade Flow

Marginal Import Cost ($/Mcf)
Austria from USSR
Belgium from Algeria
Belgium from Netherlands
Belgium from Norway
France from Algeria
France from Netherlands
France from Norway
France from USSR
Netherlands from Norway
Italy from Algeria
Italy from Netherlands
Italy from USSR
United Kingdom from Norway
W. Germany from Netherlands
W. Germany from Norway
W. Germany from USSR

105.8 121.7 165.6 192.4 205.6 259.6

0.45 0.45
NA NA

0.14 0.28
NA NA

NA 0.30

0.16 0.30
NA NA

NA NA
NA NA

NA 0.34

0.20 0.34
NA NA

NA 0.33

0.13 0.27
NA NA

NA NA

5.1

0.0
17.0
0.0
13.3
36.4
0.0
0.0
0.0
30.0
7.7
0.0
20.0
2.9

0.0
60.1

6.1

0.0
16.4

3.6
31.0
0.0
0.0
28.4
0.0
30.0
12.8
2.0
0.0
0.0
22.9
52.6

7.3

0.0

6.7

16.7
31.0
0.0

0.0

39.6
0.0
30.0
15.7

7.7
14.3

0.0

49.3
41.4

0.48
NA

0.45
NA

0.47
0.47
NA

NA
NA

0.51
0.51
NA

0.36
0.43
NA

0.43

0.64
NA

0.63
0.63
0.64
NA

NA

0.64
NA

0.69
0.69
0.69

NA

NA

0.59
0.59

1.11

NA

1.10

1.10

1.12

NA

NA

1.12
NA

1.16

1.16

1.16
0.71

NA

1.07
1.07

---------------------------------------------------------------------------

M.-
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and exogenous demand projections. One obvious implication of these data

is that the marginal costs of importing gas to Western Europe are low in

comparison with existing contract prices, and that they do not rise very

sharply unless demand grows extremely rapidly. This suggests that

different results would doubtlessly obtain if the data contained in

Tables 5-1 through 5-5 were revised substantially.



FLEXIBILITY AND PRICE TERMS IN CONTRACT NEGOTIATIONS

IN EUROPEAN NATURAL GAS MARKETS

by

John E. Parsons

INTRODUCTION

This chapter analyzes two key issues involving long-term natural gas

contracts in the Western European market. The first is the extent to which

the various suppliers will need to depend upon contracts with high take

provisions, as opposed to more flexible provisions or spot sales, under

various conditions. A treatment of contracts in an earlier study discussed

the criteria by which such a decision is made;' this chapter applies them

to the various suppliers in the Western European gas market. Second, an

analysis is undertaken of the price indices typically used in this market,

the problem of price renegotiations, and the extent to which changes in the

contract delivery prices can be anticipated. Appendix A provides a summary

of the source material of the parameters used in the country analyses

discussed in this chapter.

The chapter shows that there is an increased possibility for more

flexible contracts in Western European natural gas markets. However, this

possibility is supplier- and field-specific. The Groningen fields will

International Natural Gas Trade Study Group, Final Report: East
Asia/Pacific Natural Gas Trade, MIT Energy Laboratory Report No. MIT-EL
86-005, Cambridge, Massachusetts, March 1986.
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continue to play the role of flexible supplier, as they have in the past.

The large new contribution to flexible supplies will be the Troll fields.

This chapter also shows that the cost figures developed in the Supply

chapter by Adelman and Lynch for the Troll field justify development

without use of strong take-or-pay contracts; however, the numbers indicate

that the field cannot be a flexible supplier in the same fashion as

Groningen, and some security is needed in the form of take commitments.

Supplies from Algeria and the new Troll field represent an intermediate

case, with liquefaction (for Algeria) and transportation costs high enough

to make take-or-pay commitments an important contribution to project

returns. While marginal Soviet gas deliveries may be made using current

excess capacity, new Soviet gas will be developed only with traditional

take-or-pay commitments. This chapter also explains why contract prices

likely will remain tied to oil prices, and why renegotiations will only

partially respond to short-term gas sale prices. The price renegotiated

will continue to be referenced partially to project costs.

CONTRACT FLEXIBILITY

As explained in the earlier study, one primary objective of

take-or-pay contracts in gas markets is to eliminate opportunistic behavior

by buyers, thereby guaranteeing the supplier a price that will cover the

cost of the large capital expenditures necessary to develop and deliver

natural gas, as well as a reasonable profit. This problem is particularly

important in the Western European gas market, which is characterized by a

small number of buyers (primarily France, Italy, the Federal Republic of

Germany, and the United Kingdom), some of which have monopsonistic power.

·�Z
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For example, the British Gas Corporation (BGC) exercises this power over

fields in the North Sea, and Ruhrgas exercises significant power in

brokering purchases from both the USSR and Norway. An important fact to

bear in mind, and one often overlooked, is that monopsonistic power can be

used not only to negotiate a relatively low price relative to other markets

(as the BGC did for many years), but--due to the large capital expenditures

targetted specifically for delivery of gas to a given

customer--monopsonistic power also can be used opportunistically to bargain

a price that renders the initial investment unprofitable. This second

factor is a problem not just for the seller, but for the buyer as well.

The buyer's future ability to engage in opportunistic behavior will be

anticipated by suppliers, who will require some form of guarantee--such as

a strong long-term contract--that will reduce the profitability of the

relationship. This problem has been perpetuated by the failure of Western

Europe to develop a common carriage system (see the Demand chapter for a

detailed discussion).

A key task is to determine exactly how important these opportunism

problems are, and exactly how much change in the nature of take-or-pay

contracts can be anticipated. The earlier treatment of contracts in the

East Asia/Pacific natural gas trade study presented a model ("CONTRACT,"

which is included as an appendix to the Contracts chapter in a previous

study [see Footnote 1]) for estimating the portion of a field's net present

value that is secured by means of long-term contracts. This chapter

applies the CONTRACT model to the Western European natural gas market in

order to assess opportunities for introducing more flexible contract

relationships between buyers and sellers. A brief review of the model

follows.
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The opportunistic bargaining problem basically is rooted in the small

number of buyers facing any given supplier and in the high capital costs

needed to develop both a natural gas field and its delivery system. If a

supplier were to install capacity without being assured of a given rate of

return via strong long-term contract commitments, then it would face the

danger that buyers might be in a position to negotiate a lower delivery

price from the supplier. The problem is determining the significance of

this danger, and estimating the lower range of prices that a supplier can

anticipate if capacity is installed without such commitments.

CONTRACT provides this estimation. It takes as input various

parameters both of a potential supplier's cost structure and of the prices

that would be the likely outcome of negotiations for long-term contracts

(including the possibility that negotiations would fail to reach any

agreement). The model then projects a probability distribution of prices

that a supplier could anticipate from sales made to that same market or to

buyers after capacity has been installed on a "spot" or short-term basis.

The model essentially evaluates the importance of the opportunistic

bargaining power that the installation of capacity yields to the potential

buyers. In instances where there is excess demand, competition among

suppliers will neutralize any opportunistic bargaining power that the

installation of capacity may have yielded to buyers. In instances where

there is excess supply, the price may be bid down as a result of the

bargaining power that the installation of capital yields to buyers. How

low the price will be bid depends critically upon the cost structure of the

gas field. For example, if there are high capital costs, then prior to the

installation of capacity the supplier will not accept a low price, and the
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buyers either will accept a price that makes the development of the field

worthwhile or they will refuse such a price and the field will be

cancelled. Once the capacity has been installed, however, the buyers are

aware that the supplier may accept price terms below those which will yield

it an acceptable rate of profit on its initial capital expenditures, and

their bargaining position therefore will be more aggressive. Their ability

to negotiate a lower price then depends upon the probability that there

will be excess supply available at prices below those necessary to yield an

adequate return on the supplier's capital. In the results presented below,

note that suppliers with very low capital costs per Mcf of natural gas have

significantly greater leeway in developing fields in the absence of strong

take-or-pay contract provisions.

The key inputs to the model are: (1) the number of potential buyers,

which determines the competitive pressures that buyers will face during

negotiations for the supplier's capacity; (2) the range of possible

reservation prices (i.e., the prices above which each buyer may be willing

to purchase the gas--this must be a range, since from the supplier's point

of view, there is a significant degree of uncertainty in negotiations about

the actual price it can demand from buyers; and this uncertainty is a

central issue behind the value of long-term contracting); and (3) per unit

operating costs. The probability that the reservation price of enough

buyers will be at the lower end of the range of reservation prices, so

there is excess supply at a price below total unit costs, is the

determining factor in assessing the value of long-term take-or-pay

contracts.

The primary results of applying the CONTRACT model to the Western

European natural gas market are as follows.
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Opportunities exist in that market to increase the flexibility of

contract provisions in the coming years. However, this increased

flexibility will be provided by particular suppliers, and does not

represent a feature to which all suppliers must adapt. For instance, the

Netherlands can continue to operate as a flexible supplier. Norway's Troll

field represents the new and large addition to gas supplies that can be

prudently developed without reliance on strong take-or-pay provisions.

Our analysis of the Troll field, based on publicly available cost

data, demonstrates that long-term, inflexible take-or-pay contracts are

unlikely to increase the security and value of the Troll field by a

magnitude comparable to Soviet fields or traditional gas projects. In many

of the press reports about the announcement of the development of this

field, there has been much discussion of the suprisingly flexible or low

commitment of contracted gas. Our results demonstrate that this is neither

a peculiar marketing strategy nor a dangerous experiment in new markets on

the part of the Norwegians, but simply a consequence of the project's cost

structure.

Alternately, one may view our results, along with the information that

the Troll field contracts are very flexible, as evidence that the field

developments costs probably are in the low range, as has been claimed.

However, the capital costs for Troll given by Adelman and Lynch are

slightly higher than those given for low-cost Algerian gas. Both Troll and

low-cost Algerian gas can be developed with increasingly flexible

contracts. A key variable determining the possibility for flexibility of

both is the number of markets that each supplier feasibly can serve. If

there is a difference in flexibility between Troll and low-cost Algerian

supplies, it is likely to come as a result of the development or failure to
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develop alternative routes and markets to supply. While marginal additions

to USSR and high-cost Algerian supply, using existing excess delivery

capacity, may be possible on the basis of short-term sales, the model

suggests that strong long-term contracts remain an essential ingredient for

future development of significant capacity for these two suppliers.

The following material summarizes results for each of the major

suppliers.

USSR

To assess the importance of strong take-or-pay contracts in the future

development of USSR natural gas fields and pipeline capacity, data for the

CONTRACT model must be developed. Cost data for development, production,

and transportation costs are taken from estimates provided by Lynch's

Appendix B to the Supply chapter. At the high end of what he terms

"sensible estimates," the above-ground costs for field development and new

pipelines are around $2.56/Mcf, of which about two-thirds, or $1.70, are

capital costs. Operating costs (that is, short-run variable costs of

supply) account for the remaining $0.86/Mcf. USSR gas currently flows to

three primary buyers: France, Italy, and the Federal Republic of Germany.

A range of possible reservation prices is used for each of these three

buyers, running from $1.50 to $4.25/Mcf, with an expected delivery price of

about $3.32/Mcf.

As noted earlier, an important question concerns the probability that

the negotiated price would fall below the total project costs of $2.70/Mcf.

For a project with an annual delivery of approximately 9 Bcm at an expected

base price of $3.32/Mcf, a long-term contract with high take requirements
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would yield the USSR a net present value of $1.69 billion. Increasing

flexibility or anticipating that much of the gas would be sold through spot

market or short-term sales would cut the expected net present value by

almost 34 percent, or by $0.57 billion. In the case of the USSR, if the

range of possible prices is as specified and the cost structure is close to

that estimated by Lynch, then the danger is significant that the price of

gas sold absent strong take-or-pay contracts will yield an inadequate rate

of return. This indicates that, for USSR gas, there should be little

significant shift to spot sales. The USSR reasonably could seek to use its

current excess capacity for spot sales, but this should not be viewed as

anything other than a temporary feature of the market.

The above calculations used future natural gas prices higher than

those currently prevailing. One should not take current spot sales as an

indicator of the long-term clearing price for fixed-commitment contracted

gas. (This issue is discussed in greater detail below; for the moment,

note that the high prices currently reported for Troll gas are a reminder

that such an identification would be in error.) The picture regarding

moves to flexibility in USSR gas contracts is, however, even starker if one

believes that current natural gas prices represent a long-term trend, for

this implies smaller margins and a greater cost due to opportunistic

behavior.

These figures apply only to gas contracts requiring capital

expenditures on new fields and pipelines. For existing extra capacity, the

importance of long-term contracts will be less. However, once new capacity

is needed, then the amount of gas being sold under short-term arrangements

from pre-existing fields must be incorporated into calculations for the new

W.
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field; otherwise, the contracts for the new field supply merely will

replace the supply delivered under short-term arrangements, therefore

failing to provide the supply security for which they were intended.

One important caveat concerns the USSR's Eastern European customers.

If the quantity of gas demanded and supplied to these buyers continues to

increase significantly, then the negotiating relations between the USSR and

its Western European buyers will be altered significantly. The issue is

not related to problems of long-term supply limitations or increasing

supply costs and their effect on which buyers will have access to gas at

what price; rather, given an anticipated level of gas deliveries to Western

Europe, the salient point is that the existence of potential Eastern

European customers able to draw from the same field and delivery system

significantly reduces the ex post bargaining problem for the USSR. Given

an expected level of demand in both Western and Eastern Europe, the

possibility that one set of buyers--in Western Europe, for example--may

seek to negotiate lower delivery prices after the capacity has been

installed is less threatening to the USSR. Although the additional gas

that the USSR would need to divert from Western to Eastern Europe probably

could be sold in Eastern Europe only at a price lower than in Western

Europe, this lower price represents a floor on opportunistic bargaining

that the USSR may face.

The results of running a similar simulation for USSR fields, which

included a total of six potential buyers under the assumption that it is

possible to switch delivery of supplies from one buyer to another, show

that the importance of long-term contracts falls significantly, although

still remaining notably large. The importance of long-term contracts both
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to the net present value (NPV) of a field and to pipeline capacity

development drops from 30 to 9 percent of the NVP under the best

assumptions, or to $152 million of a field NPV of $1.69 billion.

NORWAY: THE TROLL FIELD

Calculations concerning Norwegian gas from the Troll field yield a

significantly different conclusion regarding possibilities for flexible

contracts. According to cost figures presented by Lynch and Adelman in the

Supply chapter, the capital expenditures necessary to develop Troll are

dramatically below the expected price of gas, even under several dismal

future price scenarios. Therefore, the dangers inherent in developing the

Troll field, absent strong take-or-pay terms, are likely to be minimal, and

it is reasonable to expect that this field will be developed using

innovative and flexible purchasing commitments.

For our simulation of the value of long-term contracts for the Troll

field, we used a figure of $1.09/Mcf in capital costs, and $0.40/Mcf in

operating expenses. Notice that long-term contracts are important only

when the short-term sales price can be opportunistically bargained below

this relatively low cost--an event with low probability. To examine the

extreme danger case, the model assumes three potential buyers, with

reservation prices ranging from $0.50 to $4.00/Mcf, yielding an expected

price of $2.75. For this set of possible scenarios, long-term contracts

offer the project a moderate amount of security, guaranteeing 9 or 10

percent of the project's NPV and prices only $0.10/Mcf greater than those

that would result from short-term sales with opportunistic bargaining.
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Of course, if Norway increases the capacity of the Troll field so it

approaches a capacity satisfying the total demand of its potential

customers, then the danger of opportunistic bargaining increases.

Nonetheless, the extremely low cost of development makes even this

situation relatively danger-free, at least compared to other gas projects.

At the extreme assumption of an expected price of $2.35 and a possibility

that the price drops as low as $1.60 in take-or-pay contract negotiations

and to $0.50 in short-term sales negotiations, the take-or-pay contracts

secure 13 percent of the NPV, a relatively low figure for most natural gas

markets.

THE NETHERLANDS

Costs of Dutch gas from Groningen are far below expected prices, and a

relatively large portion of the costs are in operating expenses. Under

these conditions, the value of long-term contracts is nil.

Of course, deliveries from Groningen were the first to be cut back in

times of excess supply (such as in the early 1980s), perhaps creating the

impression that, absent long-term contracts, the Dutch face buyers who

cancel their initial commitments and potentially demand lower prices,

thereby creating the impression that long-term contracts would be useful in

securing more stable markets. In fact, this impression is the result of

confusion regarding the role that the Dutch fields play given the low

importance of long-term contracts in securing the NPV of their development.

The realized flexibility in actual supplies in no way contradicts the

conclusion that long-term and inflexible contracts would not add to the

value of the Dutch fields. The cutbacks in purchases made
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in times of excess supply do not represent opportunistic behavior on the

part of buyers, or an unanticipated event, or an effort on the part of

buyers to force renegotiation of long-term prices lower than originally

anticipated. The Dutch are able to meet the needs of consumers and thereby

are able to extract a premium price--a premium price on average. In times

of excess supply they will cut back their deliveries and in times of

shortage they will deliver with a premium charge. This role for Groningen

gas will continue into the future, with the possible amendment that it will

face competition from the new Norwegian fields, Troll in particular.

The other Dutch fields are significantly more expensive. The costs

for the Zuidwal field ($1.133/Mcf), while significantly above those for

Groningen, nevertheless are notably below the range of long-term expected

natural gas prices. Thus, even for these more expensive Dutch fields,

there is a great amount of room for contract flexibility not possible for

the USSR or Algerian fields.

However, since the other Dutch fields are more expensive than

Groningen, it could make sense for the Dutch to sell gas from these fields

first, preserving Groningen gas for the premium flexible market.

ALGERIA

The final major supplier is Algeria. As mentioned above, there is

significant possibility for increased flexibility in Western European

markets stemming from the gas fields in the Netherlands and, to a dramatic

extent, from the Troll field. However, as emphasized before, this does not

imply that all producers should adapt their practices to this new

development. Like the USSR, Algeria must expend large amounts of initial

.n
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capital to make its gas deliverable to the Western European market. This

suggests that long-term take-or-pay contracts are likely to remain a

significant feature of Algerian contracts. However, note that Algeria,

like Troll, represents a somewhat intermediate supplier: It is not as

dependent upon long-term contracts as is the USSR, but nevertheless it is

unable to choose the flexible supply market as its targetted market.

Again, note that this conclusion refers primarily to new investments

in capacity and does not concern marginal additions to capacity or sales of

current excess capacity.

Using the CONTRACT model and inputting data from Adelman and Lynch's

supply cost estimates, Algeria seems in a better position than its current

insistence on relatively high-priced inflexible contracts would justify.

We begin by using cost estimates for the Hassi R'Mel project in Algeria, in

which the total capital costs c.i.f. to South France are $0.92/Mcf and

operating costs are $0.32/Mcf. We assume only two buyers, and possible

reservation prices range from $1.00 to $5.00/Mcf, with the expected price

being $2.80/Mcf. In this situation, the long-term contracts secure at most

10 percent of the project development NPV. If the expected price is

$3.00/Mcf, then the importance of the long-term contracts drops to between

2 and 7 percent of project NPV. When the number of potential buyers is

three and the expected price $2.50/Mcf, then the importance of long-term

contracts is negligible.

For the set of highest-cost estimates--those for the Rhourde Nousse

field--the results are more tentative. If an expected price of $2.50/Mcf

is calculated for two buyers, then the certainty of a take-or-pay contract

provides Algeria with an NPV 30 percent higher than without. When there
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are three buyers, the importance of long-term contracts falls to 9 percent.

For higher expected prices, the value of long-term contracts falls only

marginally.

The example of Algerian supply allows us to emphasize the importance

of understanding the role of long-term contracts in interpreting the

behavior of actual gas markets, and to contrast this with an understanding

of typically competitive commodity markets. In most clearing markets, the

price of a good is determined by the marginal value of the commodity and by

the marginal cost. A producer's actual cost of production does not

determine the profit that producer will earn. If one producer has a cost

of production higher than other producers, then it will earn a smaller rate

of profit in long-run equilibrium. The rate of profit it can expect to

earn may affect its decision to enter the market at all, but there is no

other connection between its costs and the market price of its product.

In seeming contradiction of this basic principal of economics, Algeria

often has claimed that its high costs of liquefaction require that it

receive a higher price for its gas than other suppliers receive for theirs.

In a clearing market, this is unjustifiable. A buyer will purchase from

the lowest-price supplier, and if the Algerians wish to be the supplier,

then they must offer the clearing price regardless of their own costs.

However, gas markets are much more complicated than is indicated if only

the moment at which is market clears is considered, and this is one point

embedded in the CONTRACT model.

Consider a case where Algeria signs a long-term contract to deliver

LNG at the current market-clearing price, but requires that the buyer

commit to purchasing a given volume over the next 20 years, then embeds
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these terms in stringent take-or-pay clauses. These conditions are

embedded in the contract to ensure that the buyer will not renegotiate

opportunistically. They yield to Algeria a minimum payment, regardless of

the buyer's future decisions. Now assume that the prices of substitute

fuels move downward, so that buyers now wish to renegotiate the price of

their takes. Under this new circumstance, the gas market may clear among

other buyers and suppliers (for instance, the Netherlands), so the new

clearing price is significantly lower than it was at the time the original

contracts were signed. Should we therefore anticipate that Algeria will be

forced to readjust its price closer to this new clearing price? Would it

be in Algeria's best interest to do so?

Although the common answer to this question is yes, it may not be

correct. The Algerians may either refuse to reopen their contract or they

may accept renegotiations--on the principal that the price to be negotiated

should be above the price of Dutch gas "because the costs of liquefaction

are high." This would be a reasonable position in which the price paid is

"determined" ex post by the costs of production, although at the time the

contract was signed the price was set in expected value to clear against

all other suppliers, i.e., according to the marginal value of the gas.

This ex post reference to cost is an effort to enforce the ex ante

efficient contract, which was written in reference to the clearing price.

This confusion between ex post and ex ante efficiency and the stubborn

insistence that current deliveries or even renegotiated contract prices

should be related to the then-current clearing price for new gas is a major

one in discussions of gas contracts and renegotiation problems.
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PRICE INDICES

This chapter began with a discussion of those economic features of the

natural gas industry that compel producers to demand long-term contracts.

The central conflict created by the decision to require long-term contracts

is the need to reconcile the object of specifying the obligations of the

consumer or buyer, that is, the need to constrain the flexibility on the

one hand, and the need to adapt the contracts or the obligations of the

buyer so they respond fairly to the sometimes drastically changing market

circumstances that occur during the term of the contract. If two parties

sign a contract when an alternative fuel--oil, for example--is priced at

$28/barrel, then when oil becomes available at $15/barrel, the obligation

to continue purchasing natural gas at higher prices negotiated earlier may

have disasterous consequences for the buyer.

In standard commodity markets, the price response of a good to the

changing costs of supply and to changing market prices for substitutes is

determined by the concurrent forces of supply and demand: Buyers either

may continue purchasing the commodity at the going price or switch to the

substitute commodity. For reasons discussed above, and in greater detail

in the East Asia/Pacific study, it is not often possible to permit this

form of price determination in the natural gas market, or in any market

requiring long-term contracts. If the buyer were free to demand a lower

price for natural gas by threatening to abrogate the contract, then the

objective of the contract--to protect the producer against opportunistic

behavior on the part of the buyer in ex post price negotiations--is

undermined. The buyer also would be free to seek renegotiations to exploit

the advantage of the supplier's capital commitment under the guise of

F"~R
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changed circumstances, making cheaper alternative supplies available. The

problem of price indices and price renegotiations primarily is an exercise

in attempting to resolve this contradiction. That is, it is an attempt to

incorporate the equilibrium price and quantity adaptations that would occur

in a clearing market when there is a supply shift in a related market

without also permitting opportunistic behavior.

Since the mid-1970s, natural gas delivery prices commonly have been

pegged to the price of oil. Under certain simple assumptions, this is a

convenient way to resolve the central contradiction of long-term

contracting in the natural gas market.

Take the following situation. In a current market, natural gas

is competitive with fuel oil in the industrial market. If supply

conditions in the crude oil market change and if buyers are free to switch

between fuel oil and natural gas, then the equilibrium prices for both oil

and natural gas would change accordingly. We would expect the prices of

oil and natural gas to move together--that is, in the same

direction--although not in lock-step. This does not imply that natural gas

always will trade at some fixed discount from fuel oil, but it does imply

that if the price of fuel oil declines, then the price of natural gas also

will decline by some determinable amount. Note that this is a purely

counterfactual experiment--we conjecture what would happen if the market

were competitive and absent any of the strategic and opportunistic elements

that mandate the use of contracts in the first place.

Bearing this in mind, then a contract in which the price of natural

gas is pegged to the price of oil in accordance with this equilibrium

relationship can provide a resolution to the problem of contract rigidity.
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A buyer faced with declining oil prices will receive a break on the price

of natural gas, and renegotiations will be unnecessary. Therefore, a

supplier may safely interpret a buyer's pursuit of a price renegotiation as

an attempt to exploit opportunistically the bargaining power that the buyer

has gained over the supplier. The legitimate objectives that a price

renegotiation serves when future prices are fixed by contract and not

subject to changes in alternative markets would have been satisfied by the

indexing clause, and hence the supplier has no need to concede to a

renegotiated price.

There are several problems with this resolution. The first is purely

technical. The most appropriate price index is not necessarily the

counterfactual equilibrium price relationship between oil and natural gas

(hence forward referred to as "the counterfactual equilibrium

relationship"). A price index that simply mimics the counterfactual

equilibrium relationship simply shifts the full price risk to the supplier,

and achieves no efficiency gains. One objective of imposing a price index

is not simply to pass the benefits of the cost decrease to the buyer, but

to induce the buyer to make "efficient" future take decisions under the

changed market conditions. If the producer has the right to determine the

volume of subsequent takes, for example, based on the new price, then one

objective of the price index would be to induce the most efficient take

decisions ex post, and thereby to improve the ex ante efficiency of the

contract. The price might conform more or less to the counterfactual

equilbrium relationship, depending upon the divergence necessary to induce

the proper incentives.

This is related to the fact that, although gas prices recently have
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been pegged to oil prices, the gas market has not "cleared." This may be

currently inefficient, ex post, but it also may be interpreted as an

outcome that, as one element of an entire earlier contractual relationship,

formed an efficient market ex ante (as argued above in terms of the

Algerian renegotiation position).

A second problem is that the counterfactual equilibrium relationship

may be very complex and poorly understood. While true, it still may

significantly improve flexibility.

The third and most serious problem is that it probably holds true only

over a narrow range of prices. If, for example, the price of oil falls

significantly over an extended period, then natural gas might more directly

compete with fuel oil in the industrial market, making the relationship

between oil and natural gas in this range more elastic. But as we cannot

predict the future, any index is likely to encounter difficulties. This is

Adelman's point when he decries the persistent efforts of many suppliers to

index the price of natural gas to the price of oil. There is no single,

persistent, pre-determinable relationship between the two. Yet, while this

may be true, it is not sufficient reason to recommend against using the

price of oil as an index. For the reasons just given, this index yields an

ex post delivery price that is, on average, more in accordance with what

one might expect from a clearing market--but it avoids instituting this

clearing market and thereby preserves some advantages of long-term

contracts not present in a clearing market. It is a compromise and an

imperfect resolution to the central contradiction that arises out of the

need to contract, but its strengths are real.



6-20

Finally, we must distinguish between the short- and long-run

equilibrium price relationship between the oil and gas markets. The

short-run relationship may differ significantly from the long-run

relationship. One typically would wish to write the price formulae in

terms of the long-run relationship.

The problem of short- versus long-run raises an additional

complication in the area of appropriate incentives. The responsiveness of

natural gas prices to changes in demand is supposed to stimulate decisions

to shift in and out of natural gas. If price changes are preprogrammed,

then it is not clear that the desired long-run adjustments in the various

consuming segments that would justify the long-term price adjustment will

in fact occur. In fact, it typically is necessary to write the price index

so the contract price does not completely adjust so much as it would in the

reduced form counterfactual equilibrium relationship. If the price of oil

rises, then the contract price of natural gas also rises, but remains below

market-clearing levels. Conversely, if the price of oil falls, the price

of natural gas falls but not enough to permit the gas market to clear.

This feature of the necessary price index reinforces the comments above

regarding Algeria's bargaining strategy.

One example of this type of problem is particularly relevant to

pegging the price of natural gas to oil. The development of new natural

gas supplies was one of many market responses to the OPEC cartel. To the

extent that natural gas supplies are pegged to oil prices in a manner that

guarantees the oil suppliers that, if they raise their prices, then the

price of gas will rise as well, can work to stabilize or strengthen the

power of the cartel. However, if the corresponding rise in gas prices is



6-21

less than what the cartel would establish, and is equal to what would arise

in our counterfactual equilibrium relationship under competition in which

cheaper gas supplies replace oil (albeit at higher prices, due to higher

oil prices), then this effect will not take place.

The decision regarding which alternative fuels should be the basis for

indexing therefore is fundamentally a decision about what one believes is

the comparative static reduced-form relationship of the equilibrium prices

for the counterfactual negotiations. If one believes that natural gas will

compete with distillate fuel oil and that the movements of distillate fuel

oil prices will determine the equilibrium prices for natural gas, then one

would choose distillate fuel oil as the price index. However, this does

not imply that natural gas must remain in lock-step with distillate fuel

oil: One might choose a much looser, non-linear relationship.

In Western Europe, where differences in national energy policies and

in economic and consumption factors produce a variety of price

elasticities, one would expect that contracts written between different

countries would be indexed to different alternative fuels. However, in

constructing the index, other features also are important: the

availability of the index prices series and its objectivity and accuracy.

The past several decades have seen several periods of price

renegotiations and several cases of unilateral alterations in contract

terms. Some contracts provide that, after a specified period of time, the

original price formula may be renegotiated. In all other cases, the force

majeur clause is invoked to achieve the same end.

This raises the question of what efficacy the price index has if the

parties to the contract renegotiate price. Some analysts assert that the
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original price clauses have little meaning when this happens. But this

interpretation of renegotiations may ignore some forces prevailing at the

time of renegotiation and how these were anticipated when the original

contract was written.

A variety of conditions and forces play a role in renegotiation, and

there is a commensurate variety of ways in which they may be interpreted in

terms of the objectives of long-term contracts.

First, the forced renegotiations are not purely and simply a case of

reopening the original contract negotiations based upon new market

conditions. In the original contract negotiations, both parties were free

to accept or reject offers based on their perceptions of the alternatives

available to each. In the original negotiations, there is no compelling

basis for either party to accept a "fair price," except insofar as their

best available alternative is that price. In renegotiations, however,

another factor is present: What are the consequences if an agreement on

"fair price" is not reached? The nature of these possible consequences and

the notion of "fair price" need to be carefully defined.

If the contract were litigated and adjudged to be fully in force, then

the possible consequences might be paying a pre-established penalty for

breach of contract and the fair price might be considered the originally

contracted-for price. However, in many cases the legal system will not

enforce a contract to the letter of the original agreement, or it is

incapable of enforcing the original penalties. Alternatively, this may not

be the enforcement rule to which the supplier and buyer would have agreed

ex ante. Also, the cost of litigation may be prohibitively expensive.
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In some instances, the original contract may have been negotiated on

the understanding that the price formula would apply only so long as market

conditions remained within a prescribed range. If, however, conditions

changed dramatically in ways not originally anticipated, then both parties

might wish to abrogate. In this case, the two parties instead might wish

to renegotiate the contract so it reflects what they would have agreed upon

had they, at the time of the original negotiation, known these new

circumstances. In this context the notion of a "fair" price becomes

meaningful. It may be the reasonable task of the renegotiations, perhaps

supported by agreed-upon arbitration or even litigation, to identify the

price that would have been negotiated--the "fair" price.

When it is possible to specify the rules governing this process, they

may be included in the contract. When it is not possible, then the

arbitrartion or legal system may be called upon to determine the

appropriate price formula, perhaps based on principles embodied in the

original contract.

One simple example of a case where it is possible to specify a basis

for identifying the price that "would have been" negotiated without having

to identify a particular price formula comes from U.S. natural gas

contracts signed in the 1960s and 1970s. In these contracts, a "Most

Favored Nation" clause stipulated that a buyer must pay to one pipeline the

best price that it was currently paying to other pipelines as a result of

contract negotiations. Assuming that new contracts are being continually

signed, then the sequence of prices the buyer agrees to pay is in some

respects comparable to a spot market, and the price clause simply maintains

the price of the contract at the going spot price. This accomplishes the
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objective stated above of having the contract price correspond to the price

of a counterfactual equilibrium price, thereby permitting the seller the

power to allow the buyer the right to make decisions on the size of take

based upon this price. Further, it accomplishes this without resorting to

the imperfect process of using a price index pegged to an alternative fuel.

However, in the Western European natural gas market, there are not

enough new contracts being signed to make the Most Favored Nation clause a

satisfactory surrogate to the counterfactual equilibrium price. The

Western European market is characterized by a few big sellers, by some

monopsonistic buyers, and at times by cooperative agreements among buyers.

Nevertheless, a comparable purpose is served by the notion that there

exists a "fair" price that can be determined after sufficient

investigation. The notion of "fair" may assert the supplier's right to

receive a given level of return on capital assets (as is the case in U.S.

regulatory pricing of utility services), or the notion of fair may be

determined as relating to the price of the fuels with which natural gas

currently is competing. The availability of data may determine which

definition is most appropriate.

The principles used during arbitration or litigation may be based on

principles stated in the original contract. For example, if the parties

originally pegged prices to the price of oil, then the arbitrator may use a

similar benchmark, albeit with modifications, in resolving subsequent

renegotiations. Alternatively, if the parties set the original price based

on a specified parity relationship, then this principal may govern

renegotiations. However, if the purpose of renegotiations is to break out

of a previously agreed-upon relationship that no longer retains its
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validity, then the arbitration authorities must seek alternative solutions.

CONCLUSIONS

This chapter has discussed the possibilities for increased flexibility

in natural gas take-or-pay contracts in the Western European market. At

price levels existing prior to the recent cut in world oil prices, the

prospects for increasing such flexibility were good. This conclusion still

holds for prices below 1985 levels, although not so low as current clearing

prices for short-term natural gas sales. Since current low oil prices are

not likely to persist in the long run, prospects for flexibility remain.

This conclusion may not apply to particular fields and to purchases

made from particular buyers. USSR current delivery capacity likely will

require take-or-pay levels that were used in the past. This also holds

true for certain fields, such as Algerian gas delivered from the Rhourde

Nousse plant. Norwegian gas from Troll delivered to the Continent

(although not to the United Kingdom) can be sold on terms similar to the

sale of less expensive Algerian gas, especially if planned additional

pipeline capacity to Belgium is built. These last two suppliers can be

expected to sell gas on terms moderately more flexible than historically

has been true in Western European markets. Nevertheless, there does not

exist an alternative source for major quantities of flexible supplies such

as those the Groningen field has provided.

In contrast with views expressed elsewhere in this study, this

chapter's conclusion regarding oil product price indices is that oil prices

will continue to play a central role in natural gas contract price terms.
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Terms of Western European Gas Contracts by Elise L. Erler (May 1986)
(Sources: Data Resources Inc., various issues of Energy Economist. International Gas Report,
Petroleum Economist).

SUPPLY CONTRACTS FOR ALGERIA (Sonatrach)

FRANCE (Gaz de France)
(3 Contracts)

$4.70/MMBtu
$4.41/MMBtu at Tunisian border

ITALY (Snam)

$4.80/MMBtu

Price Index
(May 1986)

100% OPEC crude oil
paying in dollars

100% OPEC crude oil

Price Review

Contract Length

Every 3 Years

#1: 25 Years
#2: 25 Years
#3: 20 Years

Renegotiation

Flexibility Terms

Delivery Level

1985-1986: Price

1984: 90%-100% take-or-pay

9.1 Bcm (5/86)

1985: Index formula, delivery flexibility

1984: 86%-100% take-or-pay

1983: 2.13 Bcm
1984: -6.56 Bcm
1990: 12.0 Bcm

3/86: $3.80/MMBtu f.o.b.
12/84: $4.46/MMBtu at Sicily

Basis of Supply Supply Basis

#1: 1964 contract for 0.57 Bcm/yr
#2: 1972 contract for 3.83 Bcm/yr
#3: 1964 contract for 5.68 Bcm/yr
12/85: France gained flexibility in take;

prices are high and subsidized by
French government

3/86: $3.80/MMBtu f.o.b.

Supply Basis

Second Trans-Mediterranean pipeline is being
built

Contracts re-established in 1982
Prices were high; subsizidized by Italian gov-

ernment for 3 years

Appendix A:

Consumer

Base Price

Price

Notes
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Appendix A: Continued.

SUPPLY CONTRACTS FOR NETHERLANDS (Gasunie)

France (Gaz de France)

$3.70/MMBtu

Italy (Snam)

$4.20/MMBtu

West Germany (Ruhrgas)

$3.50/MMBtu

Price Index
(May 1986)

Price Review

Contract Length

Renegotiation

Flexibility Terms

Delivery Level

65% fuel oil; 35% gasoil;
Inflation indicator
1984: Paying in ECUs

1984 - Every 3 Years

10 years added in 1984
until 2003

Every 3 Years
1985: Price lowered

1984: 30% take-or-pay

1985: 5.3 Bcm (8% increase
for first 6 months)

65% fuel oil; 35% gasoil;
Inflation indicator
1984: Paying in dollars;
want to pay in ECUs

1984 - Every 3 Years

10 years added in 1984
until 2003-2010?

Every 3 Years
1985: Price lowered

1984: 30% take-or-pay

1984: 4.6 Bcm
1985: 3.4 Bcm (6% increase

for first 6 months)

65% fuel oil; 35% gasoil;
Inflation indicator

1984 - Every 3 Years

10 years added in 1984
until 2003-2010?

Every 3 Years
1985: Price lowered

1984: 30% take-or-pay

1985: 11 Bcm (10% increase
for first 6 months)

2/85: $3.57/MMBtu

Basis of Supply Supply basis

Price index changed to
compete with electricity.

12/84: $4.16/MMBtu
at border

Supply basis Supply basis

Contract represented 14% of
Italy's natural gas consumption.

Gasunie has flexible swing capacity with extra natural gas available for purchase (when peak
demand creates contract shortages for other natural gas suppliers or when the Soviet Union
cannot make its contracted deliveries).

Consumer

Base Price

Price

Notes
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Appendix A: Continued.

SUPPLY CONTRACTS FOR NORWAY (Statoil)

Consumer

Base Price

Price Index

(May 1986)

Price Review

Contract Length

France (Gaz de France)

$4.20/MMBtu
$3.75/MMBtu (Troll)
$5.50/MMBtu (Statfjord)

60% fuel oil; 40% gasoil
Troll index includes inflation

Troll: Regular review for each buyer
Statfjord: 10/85 and 2/86 for 6 to 9 months
Sleipner: Cancelled

Troll: 1985-2020
Statfjord: 1986-2007

West Germany (Ruhrgas)

$4.20/MMBtu
$3.75/MMBtu (Troll)
$5.50/MMBtu (Statfjord)

60% fuel oil; 40% gasoil
Troll index includes inflation

Troll: Regular review for each buyer
Statfjord: 10/85 and 2/86 for 6 to 9 months
Sleipner: Cancelled

Troll: 1985-2020
Statfjord: 1986-2007

Renegotiation

Flexibility Terms

Delivery Level

Troll: 80% to 105%

Troll: Start in late 1990s;
plateau at 15 Bcm after 2000

Troll: 80% to 105%

Troll: Start in late 1990s;
plateau at 15 Bcm after 2000

Statfjord: $3.76/MMBtu (1986 short term)
Sleipner: $4.00/MMBtu (cancelled)

Statfjord: $3.76/MMBtu (1986 short term)
Sleipner. $4.00/MMBtu (cancelled)

Basis of Supply Field dedicated except Troll (supply basis) Field dedicated except Troll (supply basis)

Final Statfjord terms not included. U.K. government rejected purchase of Sleipner gas.
Norway has been selling natural gas on a dedicated field basis Except for Troll).

Price

Notes
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Appendix A: Continued.

SUPPLY CONTRACTS FOR SOVIET UNION (Soyuzgazeksport)

France (Gaz de France)
(3 contracts)

Italy (Snam)
(2 contracts)

West Germany (Ruhrgas)
(5 contracts)

$3.70/MMBtu $4.20/MMBtu $4.20/MMBtu

Price Index
(May 1986)

#1,2: 50% fuel oil; 50%
gasoil; Inflation indicator

#3: 40% fuel oil; 40% gasoil;
20% inflation indicator

40% fuel oil; 40% gasoil;
20% crue oil; pays in dollars

50% fuel oil; 50% gasoil

Price Review

Contract Length

Renegotiation

#1: 1984-2000
#2: Until 2008

1985: #3 price and take;
next in 1987

#1,2,3: Until 2000
#4: 1984-2008

1985: #4 contract plateau
level reduced from 10.5
Bcm to 8.0 Bcm

Flexibility Terms

Delivery Level

1984: 80% take-or-pay
1985: #3: 80%-105%

take-or-pay

#1,2: 4 Bcm
#3: 8 Bcm
1985: Total take lowered

1984: 80% take-or-pay

#1: 7 Bcm

#2: Flexibly building to
6 Bcm in 1992

1984: #4: 64%-100%
take-or-pay

#1,2,3: 11Bcm
#4: 10.6 Bcm
#5: 0.65 Bcm

2/86: $3.10/MMBtu at border
12/84: $4.25/MMBtu at border

Basis of Supply Supply basis

10/84: #4: $3.80/MMBtu

Supply basis

#1,2: Signed in 1982 to
replace dwindling domestic
and Dutch gas supplies.

By 1991, Italy will buy 13 Bcm
per year from Soviet contracts.

#5: For West Berlin.
Ruhrgas wants less

contract and more spot
gas from Soviet Union.

Soviet Union is increasing its natural gas sales to Western Europe to replace decreasing
revenues from declining oil output.

Consumer

Base Price

Price

Supply basis

Notes



TECHNOLOGIES FOR NATURAL GAS UTILIZATION

by

David C. White

INTRODUCTION

The use of gaseous fuels dates from the late 18th century, when town

gas produced by coal gasification was used for street lighting, in

residences, and in some industrial processes. The first half of the 19th

century saw an excess of clean-burning and low priced gaseous fuel, as

natural gas associated with petroleum production entered the market (see

Chapter 2 for a fuller discussion of the history of natural gas use in

Western Europe). In the United States, the petroleum, petrochemical, and

other energy-intensive industries grew in close proximity to the oil fields

and used natural gas as the fuel of choice for process heat, steam and

electricity production, and as a chemical feedstock. The excess of

associated gas plus the discovery of major natural gas fields in the United

States led to the construction of natural gas pipeline networks to other

major industrial centers (the distribution networks established from town

gas gave a ready market for this low-cost fuel). The development of this

natural gas delivery system was well-established in the United States by

the mid-1900s. It has developed rapidly since the 1960s in Europe and is

still expanding; and since the 1970s natural gas (mostly in the form of

LNG) has been part of Japan's growing mix of fuel supplies.
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Alongside a worldwide supply and transmission network for natural gas

and a growing base of proven reserves, there has developed a broad set of

technologies to exploit this fuel for its inherent advantages over

alternative sources of energy.

Natural gas is ideal for residential, commercial, industrial, and

electric generation applications that require a high-quality,

thermally-controllable source of energy. Because it can be delivered

essentially pollution-free (no sulfur, inorganic solids, or heavy

hydrocarbons), it is possible to build simple combustion systems that

produce high-temperature heat and, depending upon application and design,

that emit only C02, H20, and some NOx.

Natural gas-fired systems have the lowest capital costs of any system

using a hydrocarbon fuel as its primary energy source. It can be burned as

an open flame for cooking, baking, and other process applications where

product contamination would render other hydrocarbon fuels prohibitive. It

can be used in combustion chambers to produce steam or to heat other

fluids, such as in petroleum refineries, most industrial process steam

applications, or in electric power production. It can be used in internal

combustion engines or gas turbines over a full range of sizes from a few

horsepower to the hundred thousand horsepower gas turbines.

The large range of applications for which natural gas can and has been

used, plus nearly a century of development of natural gas-burning

equipment, has produced a wide spectrum of commercially available

equipment. New equipment reaching commercialization in the last decade

include the phosphoric acid fuel cell system, which uses reformed natural
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gas, and the large-scale gas turbines operating at higher temperatures and

having increased thermal efficiencies (45%+) than those developed for

aircraft propulsion and modified for utility peak-load applications. The

increased price of natural gas in all markets worldwide following the high

crude oil price rises of the late 1970s stimulated further development of

natural gas-consuming equipment. Efficiency improvements were sought to

help maintain its cost competitiveness with both other hydrocarbon fuels

and electricity. Today much of this development work is yielding improved

efficiences in gas-consuming equipment used in all consuming sectors.

Thus, as natural gas markets return to price competitiveness in today's era

of lower world crude oil prices, a full set of technologies and

commercially available equipment are in place, ready to exploit natural

gas's other important attributes--namely, that of its being a

clean-burning, low-polluting, easily useable fuel.

The major problem with natural gas is that it is difficult both to

transport and to store. Conventional crude oil and its many liquid

derivatives are much easier to transport and store, and have much higher

energy density per unit volume under normal temperatures and pressures.1

Both pressurization and liquefaction are used to transport natural gas, but

the former process entails the costs of constructing and maintaining

pipelines from source to end user, and the latter entails the costs of

1One cubic foot of middle distillate has, under standard conditions, a heat
at combustion of 106 Btu/ft3, while natural gas (or methane) is only 103
Btu/ft3. By going to higher pressure (140 bars), the energy density
increases to 180,000 Btu/ft3 or by liquefying at approximately -1600,
increases to 675,000 Btu/ft3.
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liquefying, transporting in special temperature-controlled vessels, and

regasifying it for final use.

For contiguous land masses and during periods of high demand for

natural gas, a pipeline system has proven to be an efficient and economic

delivery system. The network of natural gas pipelines in North America has

functioned well for over 50 years; at present, it gathers, transports, and

distributes natural gas to meet fully 25 percent of total U.S. energy

demand. The Western European system still is expanding; natural gas

represents a major energy source, meeting about 15 percent of total energy

demand. Figure 7-11 shows the relative costs of delivering hydrocarbon

fuels by pipelines and ocean transport, including liquefaction of natural

gas.

Liquefaction of natural gas is a well-developed, mature technology

whose major disadvantage is the costs involved in liquefaction, transport,

and regasification, except for long distances (over 3,000 miles), where it

competes with gas transported by pipeline. For large facilities, say 1

Bcf/d, Adelman and Lynch in a previous study give typical liquefaction and

regasification costs of $1.50/Mcf, plus transportation charges of

$0.20/1000 miles.2 Thus, processing and transport charges over distances

of 3000 to 4000 miles are typically $2.00 to $2.50/Mcf. To this must be

added the resource cost, plus profits, taxes, etc. Adelman and Lynch give

typical discovery and development costs of $0.30/Mcf, so LNG delivered from

supplier to large consumer at prices of $3.00 to $4.00/Mcf should be

feasible and still allow for reasonable profit margins at all parts of the

system. At these prices, with world crude oil priced around $20/bbl, LNG

is competitive with other major clean liquid fuels, such as middle
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distillates. Because natural gas is difficult and expensive to store and

transport via pipelines or LNG, the potential for large rents by resource

owners and developers, under normal supply/demand conditions, is

substantially less for natural gas than it is for crude oil.

Today, delivery of natural gas to end users can be by pipeline,

conversion to LNG and transport, or conversion to a liquid such as

methanol, gasoline, or middle distillate. If a transportation fuel is

desired, chemical conversion to methanol, gasoline, and middle distillate

is technically feasible but expensive relative to petroleum-derived liquid

fuels, mainly due to processing costs and primary energy lost in

conversion.

Significant R&D programs by major oil and chemical companies are

exploring ways to transform the methane molecule to a more useful liquid

hydrocarbon. The high chemical stability of the CH4 molecule makes this a

difficult and expensive task in terms of process economics and energy lost.

New chemical conversion technology may come in time, but basing projections

on inventions not yet made is even more risky than predicting world crude

oil prices. History has not treated such forecasts kindly.

The following sections discuss specific technologies based on methane

and methane-derived chemical or transportation fuels. The data given are

derived from the extensive published literature on natural gas-consuming

equipment and technologies to convert natural gas to other products,

including liquid hydrocarbon fuels. The major message from this review is

that natural gas for combustion applications--including process heat, steam

raising, thermal engines, and similar applications in the residential,
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commercial, industrial, and electric generation markets--is not constrained

by the availability of cost-effective, high-performance, end-use equipment.

Rather, the central issue for all these applications is natural gas

supplied at competitive prices in an unconstrained marketplace. Data

presented in the Supply chapter of this study indicate that natural gas,

free of present policy constraints, should be available at prices

competitive with world crude oil. Both the resource base and the delivery

system are adequate and capable of expanding to meet current and projected

demand. The technology to use natural gas is also available. These

technologies will help sustain demand and, depending on other

factors--prices, environmental issues, energy policy--could help natural

gas obtain a growing share of future energy demand.

TECHNOLOGY FOR NATURAL GAS UTILIZATION

Technologies that use natural gas in the consuming sectors--

industrial, commercial, residential, and electric utility--are well

developed, mature, and available in a world-competitive marketplace.

Technology for natural gas use by the transportation sector exists for

speciality markets, but not as a general competitor with vehicles designed

to use petroleum-based liquid transportation fuels.

Below are listed a few technologies for each consuming sector; these

represent areas with new market potential and highlight developments

currently underway for equipment using natural gas.

Industrial

Cogeneration:
--gas turbine: process steam

--energy drives (methane gas): process steam
--fuel cell: process steam
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Process Heat:

--regenerative burners (increased efficiency)

--engine-driven dryers/process heaters

Heavy Oil- or Coal-Fired Boilers:
--gas injection to reduce NOx after combustion; can also include

sulfur sorbent injection to reduce SOx

Commercial

Packaged Cogeneration:
--engine-driven systems, consisting of electric generation,

refrigerant compressors, and absorption chillers

Space Conditioning:
--gas-fired heat pumps plus, for cooling, desiccant

dehumi di fi cati on

--gas-fired desiccant dehumidification plus electric cooling.systems

Residential

Furnaces:
--pulse combustion and condensing system (increased efficiency)
--modular heaters with advanced controls and simplified piping

Electric Generation

Base Load:

--gas turbine-combined cycle systems using advanced higher
efficiency gas turbines in the 100 MW-size range

Environmental Control:
--natural gas injection for NOx reduction after comustion;

also can include sulfur sorbent injection to reduce SOx

--natural gas in conventional boilers to reduce emissions

Transportation

CNG-Fueled Vehicles:
--currently fleets of vehicles are the most feasible application

INDUSTRIAL NATURAL GAS UTILIZATION

Natural gas has a broad market in most industrialized countries.

Typically, 30 to 40 percent of the natural gas is consumed by industry in

the developed Western countries (see Table 7-1).
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Table 7-13

Country Industrial Gas Consumption/Total Sector Energy

United States 41
United Kingdom 32
France 22

West Germany 24
Italy 26

Japan 6

The principal uses of natural gas are in boilers to produce process

steam, as process heat in the primary metals, chemicals, and paper

industries, and as process drying in the food and textiles industries. The

specific advantages of natural gas in these applications are:

--natural gas boilers and burners can be controlled over a wide
temperature range;

--specific temperature requirements can be maintained for product
quality control;

--high exhaust air temperatures can be used for preheating combustion
air, which increases efficiency;

--natural gas is a "clean" fuel, and thus can be used for direct

heating of liquids, foods, etc.; and

--natural gas combustion can be designed for' very low pollutant

emissions, and also can be useful in special applications to reduce

emissions from other hydrocarbon fuels.

Natural gas faces price competition from residual oil and coal for

boiler applications, a factor complicated by the fact that most industrial

boilers are dual-fired, and thus allow rapid shifts from one to another

fluid hydrocarbon fuel as prices change.
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For process heat, natural gas and electricity compete in some

applications. The more precise temperature control and improved delivery

of heat energy to the work surface that is possible with some electrical

heaters favor electricity over natural gas. Such applications are very

price/cost sensitive, and manufacturers of gas-fired end-use equipment

continue to improve their products to maintain a share of these specialty

markets. To a major degree, it is the relative price of electricity versus

natural gas, rather than technology advances, that determines which energy

form is used.

There are social, economic, and technological reasons for industry to

continue to use natural gas, but there are no specific technology

innovations on the horizon that offer major opportunities for natural gas

use in industrial applications. The current R&D programs sponsored by the

U.S. utility industry are typical of the programs of end-use technology

improvement currently underway in North America, Western Europe, and Japan.

The U.S. gas utility industry, through the Gas Research Institute

(GRI), is working on selected projects to increase efficiency of natural

gas industrial equipment and to develop new applications.4 The major R&D

activities include:

--Improved gas-fired engine drives for cogeneration, heat pumps, and
compressors;

--Development of higher temperature and higher efficiency recuperators
and heat recovery systems;

--Advanced burner and combustion controls;

--Improved and new processes for the metals, glass, and ceramics
industries;

--Development of fuel cells for both cogeneration and direct
production of electricity; and

--Development of improved absorption chillers and dessicant
dehumidification systems for cooling.
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In the United States, the general approach to R&D is to have

cost-sharing on end-use equipment by the gas supply industry and the

manufacturers of end-use equipment. This is helping to overcome the

economic constraints of a large, disaggregated market of both buyers and

suppliers. To a major extent, the technology is mature and well known, so

market penetration for product innovation is difficult, although the above

approach to risk sharing is proving effective in bringing forth products

with improved efficiency or with new industrial applications.

Industrial Cogeneration in the United States

The installation of cogeneration facilities is economic when the

electric power generated produces revenue (or savings) that justifies the

capital required to build a cogeneration facility over a simple

steam-raising facility. For plants in the range of 125 x 106 to

1000 x 106 Btu/hr, the additional capital for the cogeneration part of the

system is approximately 130 percent for the smaller and 85 percent for the

larger system. Thus, a cogeneration plant will involve a capital

investment approximately two times that of a boiler producing process

steam. The ability to generate sufficient revenue from electricity

production to justify the larger capital investment makes cogeneration

systems very sensitive to the plant steam-load factor. In general, load

factors of at least 50 percent or larger are required for cogeneration to

be economically feasible.
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A U.S. Department of Energy (DOE) study using a real rate of return

greater than 7 percent indicated that, in the United States, there could be

a potential 39,000 MW of cogeneration installed in industrial sites by the

year 2000.5 Eighty percent of the plants and 90 percent of the power are

in six major industrial sectors (SIC 20 - Food; SIC 22 - Textile Mill

Products; SIC 26 - Pulp and Paper; SIC 28 - Chemicals; SIC 29 - Petroleum

and Coal Products; SIC 33 - Primary Metals) (see Table 7-2). Over 40

percent of the power produced is in plants from 10 to 50 MW in size and

nearly two-thirds in plants from 2 to 50 MW. The total potential natural

gas demand represented by these industrial cogeneration facilities is

between 2 and 3 Tcf. Natural gas will have to compete in price with middle

distillate and residual fuel oil to obtain this market. Dual-fuel

capability is usually standard practice in package boilers and cogeneration

facilities.

Table 7-2 summarizes the results of the DOE study. Regionally, 40

percent of the cogeneration potential is along the eastern seaboard, and 24

percent in the southwest. The cogeneration potential is greatest,

therefore, in those areas where for electric utilities the gas turbine

combined cycle systems are most promising (see p. 7-26 section on "Electric

Utility Use on Natural Gas" for a fuller discussion). The Tabors study

projected 28 MW additional capacity to utilities along the eastern

seaboard.1l The industrial cogeneration potential in this same region is

approximately 16 MW. Since both are supplying the same electricity demand,

the industrial cogeneration installed will reduce the need for utility

generation capacity. Should the full industrial cogeneration potential be
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Table 7-2

Potential Number of Cogeneration Plant Sites,

Megawatts and Sizes for ROI 7% (uninflated)5

Potential MW
Potential No.

of Plants

20

22

26

28

29

33

Remaining Sectors

TOTAL

7,005
1,882

7,962
10,316
5,836
2,397
3,950

39,348

Size (MW)

2

2 - 10

10 - 50

50 - 100

100

Total MrW Production

1,162

7,844
16,881

7,621

5,842

39,348

SIC

18

5

20

26

15

6

10

100

734
499

437

547

236

434

730

20

14

12

16

6

12

20

3,644 100

3

20

43

19

15

TOTAL 100
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installed, the need for electric utility capacity would be reduced

correspondingly. The opportunity for cooperation and net savings in

capital investments between industry and utilities is substantial across

the country and even greater in the eastern Atlantic coastal states. The

advantage of cooperation between industry and the electricity utility

sector is being recognized and used as an effective alternative way for

U.S. utilities to add generation capacity to meet future electricity

demand.

RESIDENTIAL AND COMMERCIAL NATURAL GAS UTILIZATION

The residential and commercial markets are major consumers of natural

gas. For most countries the residential market is the largest, ranging

from 35 to 60 percent, except for Italy and West Germany, which have very

small residential demand. The commercial market is very country-specific,

as shown in Table 7-3.3 The sum of these markets in most countries is

slightly larger than the industrial demand.

Table 7-3

(%) Residential/Commercial Sector Consumption of Natural Gas/
Total Sector Energy

Country Residential Commercial

United States 52 53
United Kingdom 58 --
France 36 71

W. Germany 4 17

Italy 18 42

Japan 36 39
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Seasonal variations in residential demand place constraints on the supply

system, because they require some storage capacity; it also stimulates

selective sales of interruptable gas or other marketing procedures to

reduce demand variations.

The general focus of R&D for residential end-use equipment is to

increase furnace efficiency by pulsed combustion or by condensing exhaust

gases. Efficiency gains from approximately 60 to over 90 percent for

poorly designed and adjusted furnaces have been obtained in new,

commercially available equipment. In the United States, gas-fired heat

pumps are under development for colder climates.
4 Coefficients of

performance (COPs) from 1.2 to 1.7 are possible in these systems. Some R&D

is underway on residential-size air conditioning equipment, but this market

is dominated by electric air conditioning systems and is not promising.

Another area of important R&D for the residential market is for new

systems of interior piping. Flexible copper and steel tubing is being

investigated, along with rapid-disconnect outlets, to accommodate gas-fired

room heating equipment. The Japanese market is the most advanced in this

new technology. Western Europe, and particularly the United Kingdom, also

are developing this approach for new and retrofit construction. The U.S.

market has not yet developed, delayed by building codes and other

institutional constraints. Both end-use and gas service technologies may

contribute to continued growth in residential gas demand. Western Europe

residential demand has been and is projected to be an important part of

future demand, so such R&D will likely help this market.
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The commercial market is very country-specific, and is largely

determined by building heating and coaling loads. Historically this market

has consisted of packaged boilers and chillers to supply heating and

cooling and other hot water requirements. Research and development to

improve these conventional equipments is underway. One major thrust for

U.S. markets is for package cogeneration systems, sized to thermal load, as

characterized in Figure 7-2. This technology offers the promise of

economic savings for commercial building owners, reducing electricity

demand growth for electric utilities, and helping gas utilities to add

year-round gas load. The technology under development4 includes a range of

engine-driven systems from 15 to 650 kW electric capacity. The phosphoric

acid fuel cell is also part of the cogeneration strategy. Over 40 units of

40 kW size are being tested, and a 200 kW unit is under development.

Heat Pump/Air Conditioning Systems

A heat pump is a machine in which the application of external energy

causes heat to flow from cold to hot regions. All heat pumps require an

external source of energy. Electric, gas, solar, geothermal, and waste

heat sources all have been used to drive heat pumps. Most types of heat

pumps operate on a vapor compression refrigeration cycle. For a gas-fired

heat pump (GFHP), the conversion from chemical energy to mechanical work is

performed at the site where heating/cooling is needed; thus, thermal energy

normally wasted in producing mechanical work can be captured to provide

additional space heating in winter months or domestic water heating in

summer months. This ability to capture and use energy normally wasted
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makes the gas-fired machine potentially more efficient in utilizing primary

energy. Since it can combine waste heat recovery with heat extracted from

the cold, outside air or from conditioned space, the GFHP also is superior

to gas furnace/air conditioner systems in utilizing primary energy. If

wasted heat is not captured and used during the cooling season, the

efficiency advantage of a gas-fired machine is lost.

To produce mechanical work, one alternative to the thermal engine is

to use an electric motor for the compression of refrigerant. The electric

heat pump (EHP) is a relatively mature technology, and it is possible to

obtain good performance and long life from it at a reasonably low system

cost. In contrast, to perform the compression function the GFPH requires

several complex components. The development of cost-competitive, yet

efficient equipment represents a difficult technology challenge facing gas

heat pumps.

An alternative way to produce cooling is with an absorption system,

where the equivalent of refrigerant compression is accomplished by

absorbing the refrigerant in a liquid solution at low temperatures, pumping

the solution to a boiler with a liquid feed pump, then boiling the

refrigerant out of the liquid solution by applying gas heat. Current

absorption technology yields a heating COP of about 1.25 and a cooling COP

of 0.5 for residential-size equipment.4

Modifications that can be made to improve performance of the basic

absorption cycle include: multiple components, e.g., two boilers (double

effect); additional heat exchangers; higher operating temperatures and/or

pressures; different fluid pairs; multiple cycles; and combined cycles,
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e.g., regeneration. In the double-effect cycle, the latent heat of the

refrigerant produced in a high-pressure generator is used to produce

additional refrigerant in a low-pressure generator. A double-effect cycle

is expected to improve the heat pump efficiency by 50 percent over the

basic single-effect in residential-size equipment. The performance

improvement requires a significant increase in hardware complexity and

investment over the single-effect cycle.

Most cooling systems, whether gas or electric, actually provide two

types of cooling: sensible cooling (temperature reduction) and latent

cooling (dehumidification). In a desiccant-based cooling system, the

latent cooling load is met by means of a desiccant, or drying agent, which

removes moisture from the air. The desiccant is regenerated by the

application of a heat source that releases the moisture, which is ejected

to the outdoors as exhaust. Sensible cooling can be incorporated by

including standard electric cooling components with reduced capacity.

In the U.S. market, Cargocaire Engineering Company provides the

equivalent capacity of an 80-ton electric air conditioner by substituting

15 tons of desiccant for 60 tons of electric cooling. 6 In a typical 30,000

square-foot supermarket located in the humid southeast United States, the

desiccant-based system reduces the electrical load to the customer by 27

percent, while increasing annual gas consumption by 750 to 1,500 Mcf.

Desiccant systems for cooling applications are another way to utilize

waste heat from cogeneration systems or other thermal engines. In the

United States, research on total desiccant cooling systems in the size

range of 5 to 20 tons is under development under GRI sponsorship. 4
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Attaining COPs of 1.2 is a design objective for early systems, with 1.7 an

objective for advanced systems.

Gas-fired engine-driven heat pump systems have heating COPs from 1.2

to 1.7 and cooling COPs from 0.6 to 1.0. The competitive system is the

electric heat pump. In very cold climates, the GFHP is best for heating.

In small sizes (particularly in residential applications) the gas-fired

systems are not economically competitive with electric systems.7 In large

systems (commercial applications) either gas or electric systems may prove

the best choice (see Figure 7-3). In any system comparison, size,

operating conditions, regional temperatures, and gas and electricity prices

all must be considered. Companies and electric utilities in North America,

Western Europe, and Japan are supporting research on improving the

performance and cost of their respective systems, and in time, systems with

improved efficiencies are expected to reach the commercial market.

An assessment of current and projected GFHP technology was performed

by GRI, and some of the results are shown in Figures 7-3, 7-4, and 7-5.

While the development of new and improved technology may help retain

current demand, there is no basis for projecting a significant natural gas

demand growth in either the residential or commercial space conditioning

markets based on outstanding gains in GFHP equipment. Lower natural gas

prices may have a more dominant effect on future demand than end-use

technology gains.

NATURAL GAS FOR ELECTRICITY GENERATION

Gas Turbine and Steam Turbine Cycles

Gas-fired boiler-steam turbine drives for electricity generation have

a long history of use in the United States. Before 1970, natural gas was
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the dominant industrial and utility boiler fuel in the southwestern United

States. In 1985, because of excess natural gas capacity and hence

favorable prices, 3 Tcf of natural gas were burned by electric utility

companies. The 1986 drop in world crude oil prices may affect the

consumption of natural gas. Nevertheless, the lower capital costs of

natural gas boilers, considering combustor design and emission controls,

make such systems competitive with residual fuel oil and even coal, if

long-term, competitively priced natural gas is available.

While uncertainties in both government regulations and the future

price of natural gas make conventional boiler steam turbine systems

unlikely in the United States, there is growing interest in gas turbine

combined cycle systems (GTCC) for electric utility applications. Several

U.S. utility companies currently are planning GTCC installations based on

using middle distillate or natural gas by obtaining a Federal Energy

Regulatory Commission (FERC) waiver of the Fuel Use Act for a specified

period (usually 10 years).8

The largest commitment to GTCC systems comes from the Japanese utility

industry. 9 The plan is for 7,200 MW to be built by 1994. In 1985, Tohoku

Electric brought on-stream two 548 MW GTCC systems in 1985 that were

supplied by Mitsubishi. The measured efficiency was 49.1 percent (low

heating value [LHV] for methane). Using the high heating value (HHV)

typically used in U.S. efficiency calculations yields a 44 percent

efficiency. The NOx level was 10 ppm, obtained using a low NOx combustor,

followed by selective catalytic reduction using ammonia hydroxide in the

exhaust streams. The combination of high efficiency and very low emitted
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pollution is a major accomplishment. The approximate 10 point gain in

efficiency over conventional scrubbed coal or heavy fuel oil-fired steam

plants is a significant fuel savings for these gas-fired GTCC systems.

While less than one year of operation has been logged on these plants,

their current and projected availability is high, making them attractive

competitors for base- as well as intermediate-load applications.

The first of the GTCC systems at Tohoku Electric was built in

approximately 30 months and placed into commercial operation just 34 months

from the start of construction. Modular design and factory construction of

the heat recovery boiler (four units: economizer, evaporator, SCR module,

and super heater) plus three gas turbines (118 MW) and one steam turbine

(191 MW) helped to reduce the plant construction time.

In the East Asia/Pacific region, where there is significant present

and future natural gas available, the GTCC system is a promising and very

competitive technology.

In the electric utility sector of the Federal Republic of Germany,

existing regulation hinders the use of gas. Gas-fired power plants for

base-load generation currently are not licenced by the authorities. Only

if the regulation changes could base-load gas-fired power plants be built.

In France, for example, the electric utility sector uses primarily

nuclear fuel and therefore natural gas plays only a minor role. Since the

electric utility industry in France has a very high nuclear capacity, it

provides electricity at relatively low cost to the industrial and

residential sectors. Natural gas is not likely to be a factor, unless this

situation were to change drastically.
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In Western European countries with indigenous gas resources, such as

the Netherlands and Norway, planning and construction of combined cycle

power stations for electricity generation are under way. In Norway a 1000

to 2000 MW station will be built, and in the Netherlands existing power

stations will be replaced with combined cycle stations. The driving force

for these decisions is not technology but the availability of cheap natural

gas. In the current, government-managed gas markets of most Western

European countries, technology will not be a major influence on natural gas

demand.

Table 7-4 shows typical use of natural gas for electricity production

in four Western European countries, and in the United States and Japan.

Table 7-43

Country % Natural Gas for Electricity/Total Sector Energy

United Kingdom -0-
France 2

West Germany 15
Italy 12

Japan 22

United States 14

Electric Utility Use of Natural Gas in the United States

The U.S. electric utility industry currently uses approximately 3 Tcf

of natural gas annually, of which two-thirds are under firm contracts and

one-third are interruptable. 10 Of this gas, over 98 percent is used in

steam boilers and approximately 1.2 percent is used for combustion turbine
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peaking power. North American Electric Reliability Council (NERC)

projections for natural gas consumption in 1992 are for 20 percent lower

demand than present levels.10

The potential for increased use of natural gas by electric utilities

is difficult to assess with any reliable accuracy. For gas turbine

applications, natural gas and middle distillate fuels are perfectly

substitutable--price alone determines the choice. An indication of this

potential market can be obtained from a recent study by Tabors and Flagg,ll

who used the Electric Power Research Institute (EPRI) Electric Generation

Expansion Analysis System (EGEAS) to project the generation choice for the

period 1990 to 2004 for the six "model" EPRI regional utilities. The

growth rates used in these studies were: NE, 2.1 percent; SE, 3.7 percent;

EC, 3.5 percent; SC, 4.2 percent; WC, 3.2 percent, and W, 3.5 percent.

(These are approximately 0.1 to 0.2 percentage points higher than the

1983-1992 growth rates projected by NERC.10) The capital costs and heat

rates used by Tabors et al. for the plant types considered, updated to

$1984, were:

Table 7-5a

Plant Costs and Heat Rates1l

Heat Rate
$1984 (Btu/kWhr)

Light water reactor 2100 10,700
Atmospheric fluidized bed coal (AFB) 950 9,640

Gas turbine combined cycle 330 7,260
Advanced gas turbine combined cycle 480 6,210
Advanced combustion turbine 250 10,300
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Comparing these numbers to data from the EPRI/Fluor study12 for advanced

gas turbine and combined cycle systems, we typically have:

Table 7-5b

Plant Costs and Heat Rates2

EPRI/Fluor Capital Cost ($1984) Heat Rate (Btu/kWhr)

Advanced gas turbine 500 8,000
combined cycle

Advanced combustion turbine 250 11,900

Thus, the capital costs of the Tabors study are equivalent to those of the

EPRI/Fluor study, but the heat rate is 15 to 20 percent lower and will

understate fuel usage, and hence fuel cost, in their expansion planning

study. However, the data used are sufficiently representative that their

conclusions can be used to indicate potential gas demand following upon

electric utility installation of GTCC systems. These systems, designed for

natural gas, ultimately could be converted to integrated gasifier GTCC

systems if the cost of gas were to increase sufficiently to make the

capital cost of the coal gasifier economically desirable.

The low capital costs--$250/kW for combustion turbines and $500/kW for

the GTCC system fired with natural gas at $4.00/MMBtu--make the GTCC

system a dominant choice in 4 of the 6 model EPRI regional utilities for

the 1990-2004 planning period. The essential results of the Tabors study

can be gleaned from the relative amount of GTCC installed in 2004.11
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Table 7-6

GTCC Installed by the Year 200411

GTCC TOTAL
REGION (MW) (MW)

NE (Northeast) 12,000 12,000

SE (Southeast) 16,000 16,000
EC (East Central) 9,000 16,000

SC (South Central) 13,000 25,000
WC (West Central) 9,000 17,000
W (West) 500 12,000

The choice of unit additions from the available technologies considered in

Table 7-5a were either GTCC or AFBC, and the MW additions for each were

approximately linear over the 15-year planning study. The essential

feature of the study is that on the eastern seaboard, where coal costs are

high, the choice is 100 percent GTCC. In the three central regions, gas

and coal are competitive and split the market 50/50. In the west, low coal

costs capture the total market. Based on this study, the projected

incremental gas consumption by regions in the United States is:

Table 7-7

U.S. Electric Generation Incremental Gas Consumption (106 Mcf)1 1

Region 1990 1994 1999 2004

NE 420 1040 1690 2410

SE 80 710 1900 3350

EC 0 230 360 640
SC 0 280 340 640

WC 30 130 400 710

W 0 60 10 20

TOTAL 530 2450 4700 7770
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Of the projected increase in natural gas demand of 0.5 Tcf in 1990 to

almost 8 Tcf in 2004, 80 percent is consumed on the eastern seaboard (NE

and SE). Thus, in this scenario, the availability and price of natural gas

in the eastern states is a critical factor. For the early 1990s, the low

capital costs and rapid construction potential of the GTCC system are a

powerful driving force. By the mid- to late-1990s, the coal gasifier

technology should be fully commercial, so for an additional $800/kW

($1984),12 an environmentally clean, coal-fired base-load plant can be

available, which is already producing revenue and whose capital costs are

partially subsumed in the rate base. The phased construction being studied

by EPRI12 gives an additional dimension to the Tabors-Flagg study, making

their results usable on a basis to project potential electric utility

natural gas demand to the year 2000. Even if their results are 50 percent

too high, they still project a 200+ percent growth in natural gas consumed

by the electric utility industry.

The Tabors-Flagg study performed some fuel- and capital-sensitive

studies. Under conditions of a 25 percent increase in fuel cost, from

$4.00 to $5.00/MMBtu, gas turbine combined cycle units are not chosen until

approximately 1995. This sensitivity to fuel prices and consequently also

to heat rates needs more attention. The study used heat rates that were 15

to 20 percent low, and thus there is a bias toward GTCC systems that, under

realistic conditions, may significantly overstate their choice. The

potential for reducing risk in uncertain load growth projections and for

spreading capital commitments over a longer time period are not included in
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the Tabors-Flagg study; these approaches conceivably could help

counterbalance the negative effects of higher heat rates or higher natural

gas costs.

A current example of a GTCC system in the advanced stage of planning

is the generating facility being planned by Ocean State Power of

Burrillville, Rhode Island. The first of two 235 MW, $165 million

generating facilities is in the final stages of authorization of

construction to be completed in 1989.19 Ocean State Power is a partnership

between TransCanada Pipelines Ltd. (Toronto, Canada), Eastern Utilities

Associates (Massachusetts), Newport Electric Corporation (Rhode Island),

and J. Makowski Associates, Inc. (Boston, Massachusetts). The plant will

be fueled by natural gas under a 20-year supply agreement signed with

ProGas of Calgary, Alberta, a company that represents a consortium of 269

Canadian natural gas producers. Transportation of natural gas from Calgary

will be provided by TransCanada Pipeline within Canada, and by Tennessee

Gas Transmission within the United States. The electrical output of the

first 235 MW plant has been contracted to four New England utilities.

This plant has several important features, which may represent

important new arrangements in how electric generating facilities are funded

and how natural gas for electricity generation is sold. The financial

partners include a gas transmission company, two electric utilities, and a

financial firm. The gas, purchased by long-term contract between a distant

gas producer and the customer, will be transported under common carriage

arrangement by two transmission companies, one in Canada and one in the

United States. The bulk of the electricity output is being sold to
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electric utilities that have no financial ownership in the plant. The

projected cost of the electricity to the electric utilities purchasing the

power for their systems is below avoided costs and lower than projected

costs from other generating sources based on other fuels (coal, oil,

nuclear). This particular case study is consistent with the U.S. electric

planning study done by Tabors et al.1 1 It helps to establish a new

marketing procedure for Canadian gas, and gives further evidence that

electric generation may be a source of significant growth in demand for

natural gas in the United States.

Other Factors Affecting GTCC Power Plant Costs

The initial low capital overnight cost of GTCC systems--$500/kW in the

United States and $400 to $500/kW in Japan--is aided further by the short

construction period in holding down final plant costs. Assuming a 3

percent escalation rate and 12 percent interest, the following shows the

percentage increase in overnight costs during time of construction,

assuming a linear construction expenditure rate.

Increase in Overnight Cost by Escalation and
Construction Allowance for Funds Used During Construction

3 years +25%

5 years +46%

10 years +116%

The lower capital cost of GTCC plants allows them to use more

expensive fuels and still be cost competitive. Typically, coal-fired power

plants will cost at least two times more than GTCC plants. At $500/kW for
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GTCC systems and with a 14 percent rate of return on capital, this results

in at least a $1.50/MMBtu fuel price premium that can be paid for a

gas-fueled system. The lower operating and maintenance costs of GTCC- over

coal-fueled plants yield at least another $1.00/MMBtu cost advantage.

Thus, the lower capital and operating costs of gas-fired plants allow fuel

premiums of $2.50/MMBtu or larger on a comparative cost of producing one

kWhr of electricity. The higher thermal efficiency of the GTCC systems

(approximately 20 percent) further help to offset the premium paid for a

clean-burning fuel.

The advanced GTCC systems, which have heat rates of 8,000 Btu/kWhr

(and efficiencies of 42+ percent), are believed to offer even further

potential for improvement. Efforts to achieve higher gas turbine

temperatures through material improvements and interblade cooling are under

development and are expected soon to be available in commercial equipment

having projected heat rates around 7,500 Btu/kWhr. Further potential

efficiency gains may be possible using the isothermal turbine concepts

employing interstage reheat. Gas turbines for stationary base-load

electric power generation have the potential, through continual design

optimization, to add another 5 to 10 percentage points to overall thermal

efficiencies over the next 20 years.

EPRI has conducted detailed analyses of the phased installation of

integrated gasifier GTCC systems--starting with gas turbines, later adding

a heat recovery system steam cycle to produce a combined cycle system, and

finally, if desired, adding a front-end coal gasifier to produce an

integrated gasifier-gas turbine combined cycle gasifier (IGTCC) system.

The final integrated system is modeled after the demonstration IGTCC system
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now operating in the Southern California Edison system at Cool Water,

California. This demonstration was developed under EPRI sponsorship with

multi-industry funding: EPRI, Southern California Edison, Texaco, General

Electric, Bechtel, and Japanese utilities. A detailed study of the

economics of phased IGTCC systems has been conducted by Fluor for EPRI and

a report is available. 1 2 Table 7-8 and Figures 7-6 and 7-7 show typical

data from this study.

Methane Gas for Electricity Generation: Via Fuel Cells

Fuel cell systems using phosphoric acid electrolytes and hydrogen as

fuel are under commercial development by United Technologies. Funding from

GRI and DOE have resulted in the development of a 40 kW system, and units

are being field-tested in the United States and Japan. Concurrently, EPRI

and DOE are funding, at United Technologies, a parallel development of an

11 MW phosphoric acid fuel cell. Recently, United Technologies and Toshiba

of Japan entered into a joint agreement to develop the phosphoric acid fuel

cell. These two companies currently are seeking purchase commitments for

twenty-three 11 MW systems from utilities worldwide to begin initial

production.

The phosphoric acid fuel cell system based on methane uses a steam

reformer step to change CH4 to H2, a fuel cell to convert H2 to direct

current (dc) electricity, and a power conditioner to convert dc to ac with

acceptable wave form and load handling characteristics. The maximum system
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Table 7-8

Typical Data on Phased Construction of Systems Composed of

Gas Turbine, Steam Cycle, and Coal Gasificationl2

Unit Costs ($/kW)**
1 Unit 2 or 3 Units

88°F Ambient*
Heat Rate
(Btu/kW)

Current Gas

Turbine

Advanced Gas
Turbine

260

240

Gas Turbine and

Steam Cycle

245

230

500

12,300

11,900

8,000

NG or Middle Dist.

NG or Middle Dist.

NG or Middle Dist.

Phased IGCC

Current GCC + Texaco
Gasifier

Advanced GCC + Texaco
Gasifier

Advanced GCC + Texaco
Gasifier (gas quench)

Advanced GCC + Texaco
Gasifier (radiant and
convective coolers)

1,420

1,320

10,100 Coal

9,600

10,1001,270

1,380

Coal

Coal

Coa 19,000

Unphased IGCC

Advanced Gas Turbine and
Texaco Gasifier

* Heat Rate: - 100% - 88 F

97% - 200 F
95% - 20°F

1,308

- 100%

- 100%

- 130%

9,600 Coal

Load

Load

Load

**($ January 1984)

Equipment Fuel
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efficiency is approximately 41 percent, and the cost exceeds $2000/kW (the

current price is $2000/kW + site costs). While theoretically the fuel cell

can have very, low losses (no Carnot thermal efficiency limits), its

potential has not been obtained in practical systems. Fuel cell efficiency

typically is 60 to 65 percent, reformer efficiency is 65 to 70 percent, and

power conversion is approximately 95 percent, leading to an overall 40+

percent system efficiency. The high capital cost and low efficiencies,

coupled with no appreciable gains in cost as unit size increases, make fuel

cells a poor bet for large-scale electric power generation. The GTCC

system is much more promising for intermediate- and base-load power

applications.

Specialty applications in commercial or large residential complexes

may be a feasible approach, however. Modest power generation in a city's

central core, where load exceeds what existing transmission facilities can

accommodate, is one potential area of application. However, fuel cell

systems are unlikely to be major sources of natural gas demand in the next

decade, if at all, unless new technology not now foreseen becomes

available.

COMPRESSED NATURAL GAS-FUELED VEHICLES13

Natural gas is an excellent fuel for use in internal combustion

engines. Presently-used fuels--gasoline and diesel--have specific

combustion characteristics that require engines to be designed to match the

fuel for optimum performance--spark ignition (gasoline) and high

compression auto ignition (diesel). Natural gas, which has an octane of
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approximately 130 (compared to 87 to 92 for no-lead gasoline), needs higher

compression ratios (15/1) plus spark ignition because it does not auto

ignite, as does diesel fuel. While dual-fueled engines, both gasoline and

diesel, can and have been built, the efficient use of natural gas likewise

requires dedicated engines.

All general-purpose vehicles need, in addition to their design and

manufacturing infrastructure, an operational fuel supply system. Developed

nations have an existing transportation system based on gasoline and diesel

fuel. So long as reasonably priced petroleum-derived fuels exist, it is

hard to imagine a set of conditions that would bring forth both the

manufacturing infrastructure and a compressed natural gas fuel supply

system that would allow natural gas to compete with the existing complex

and highly competitive auto/truck manufacturing and fuel supply systems.

However, in nations where the indigenous resource base is predominantly

natural gas--Canada, New Zealand, Australia, and Indonesia (i.e., many

nations in the East Asia/Pacific region)--an alternate mobile vehicle

infrastructure could and may be a logical development.

For most countries, the most probable gas-fueled vehicles market is

for fleet vehicles--short-range intercity vehicles, such as taxis, delivery

trucks, postal service and police vehicles, school busses, and government

fleet vehicles. Special engines and fuel delivery systems could be

developed to serve such a market. In the United States, there are 4 X 106

fleet automobiles in fleets of 10 or more, and 3 X 106 fleet trucks in

fleets of 6 or more. Manufacturing to supply the special engines for this

fleet is technically feasible, and the national network of natural gas

pipelines to distribute the fuel is already in place.
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To use natural gas in mobile vehicles, the present technology is to

use storage systems at 2400 to 3000 psig for compressed natural gas (CNG)

or to use liquefied natural gas (LNG) stored as a cryogenic liquid at

temperatures near the atmospheric boiling point of methane. Typical CNG

steel storage cylinders are 10.5" in diameter and 38" in length, weigh 100

pounds, and store 320 cubic feet at 70oC (3.2 equivalent gallons gasoline).

Weight reductions by a factor of two are possible, by using cylinders made

of aluminum liners overlapped with glass fibers or Kevlar. Typical small

vehicles use two or three cylinders, an equivalent of 6 to 10 gallons of

gasoline. Trucks usually have more potential storage space for cylinders

and can carry more fuel. However, both full development and U.S.

Department of Transportation certification of such alternate cylinders has

not yet occurred.

For CNG to be used in the engine, pressure reduction to about 1 psig

is required. Two stages of pressure reductions normally are used, and the

heat of expansion needs to be supplied to avoid regulator freeze-ups during

operation. Safety requires overpressure protection of the cylinders and

isolation of the passenger compartment from methane intrusion.

The engine has a high compression ratio (usually about 15/1), spark

ignition, and requires a spark adjustment with speed to obtain optimum

performance. Full optimization of gas-fueled engines has not been

achieved. Emission levels are lower from gas-fueled engines, and it may be

a preferred fuel in congested city areas. Ford Motor Company, Caterpillar,

and Cummins Engine all have developed prototype engines for natural gas

operation. The engine design problems are manageable and only need a

market to justify the development costs.
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A typical conversion factor (clearly engine specific) for natural gas

to gasoline is 125 cubic feet of natural gas = 1 gallon of gasoline. Thus,

if the average gasoline consumption per vehicle is 1000 gallons per year,

it would require 8 X 106 vehicles to create 1 Tcf of natural gas demand.

Methane to Chemicals

The typical petrochemicals derived from methane are shown in Figure 8.

In addition to carbon black, the major primary products, often used as

feedstocks for other products, are ammonia, methanol, and acetylene. The

methanol and ammonia streams follow after producing synthesis gas (CO, H2)

from methane by steam reforming or partial oxidation. These products can

be derived from synthesis gas produced from any feedstock (coal, heavy

petroleum, etc.), but for products with a hydrogen/carbon ratio of 2 or

greater, methane is the preferred feedstock to produce the hydrogen at

minimum energy and processing costs.

The methane found as associated gas from petroleum production by

petroleum exporting nations, plus the general surplus of methane in remote

locations or in nations with modest populations or modest

industrialization, have resulted in a worldwide excess of petrochemical

production from methane. Since chemicals derived from methane are a

logical way to obtain markets, there is good reason to believe this excess

of methane-produced chemicals will continue and will be exported to the

developed Western world. In North America and Western Europe, where

pipeline networks allow methane to be delivered for fuel use to a wide

range of consumers--residential, commercial, industrial, and electric power
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methanol and concludes that properly designed engines can give about 20

percent higher output for the same size, consume about 15 percent less

energy at part load, and operate at high load more economically than can

comparable diesel engines.

Reference 16 has results comparable to those given above, using a

research engine, and further shows that 10 to 20 percent H2
0 added to

methanol can yield greater energy efficiency and lower emissions. In this

study, a single-cylinder test engine using methanol and also isooctane was

operated under conditions that met standard U.S. Environmental Protection

Agency emission requirements. It was shown that a properly designed

methanol engine could have greater efficiency than a gasoline engine. As

much as 40 percent greater output per unit of energy consumed was obtained

by increasing the compression ratio from 8 to 12 and also by adding 10 to

20 percent H20 to reduce NOx emissions. The higher octane rating of

methanol, plus its cleaner burning characteristics, if exploited in a

dedicated engine designed for methanol, does partially offset the lower

energy per unit volume or weight of methanol over gasoline. Both the

laboratory work of Reference 16 and the field test data on multi-cylinder

engines in Reference 15 support this potential. However, it is not

feasible to use methanol in today's commercial gasoline engines without

major retrofit.

In today's world, with transportation vehicles optimized for gasoline

or diesel fuel use, it is very difficult to postulate a methanol fuel

strategy. The problems of developing markets for methanol-fueled vehicles

(in addition to the comparative cost of methanol and gasoline) are
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substantial and perhaps insurmountable. If methane is to become a

significant resource for transportation vehicles, the methane-to-

methanol-to-gasoline process developed by Mobil or the middle distillate

Shell process may be the only feasible way to use methane as a primary

source for transportation vehicles.

Gasoline from Methanol

The Mobil process, which uses the shape-selective zeolite ZSM-5,

yields the following methanol-to-gasoline conversion:7

X C30 H (CH2)x + X H20

100 lbs -, 44 lbs 56 lbs

Approximately 95 percent of the energy in the methanol is contained in the

hydrocarbon yield. With additional processing, 88 weight percent of the

hydrocarbon can be in the gasoline range. Thus, the gasoline yield and

energy yield are reasonable for the overall process. However, even at

these yields, it takes approximately 2.5 gallons of methanol to yield 1.0

gallon of gasoline. The Mobil-M route takes methanol to a product

compatible with existing transportation equipment and is the only

commercially operating process for going from methane to gasoline. Methane

to synthesis gas to methanol to gasoline involves significant processing

costs, plus energy loss from the primary feedstock. Methane is not a

promising economic route, particularly if crude oil prices are in the range

of $20 per barrel or lower.
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Middle Distillate from Methane

The production of middle distillate fuel from synthesis gas has been

developed by Shell and also by Gulf-Badger. These processes essentially

are Fischer-Tropsch reactions optimized to produce aliphatic straight-chain

hydrocarbons in the middle to upper part of the C1 to C50 range. The

yields by percent weight of the new Shell catalysts are shown in

Figures 7-9, 7-10, and 7-11.

The Shell process first produces a product that is 40 to 70 percent

wax, depending upon process conditions, then hydrocracks the wax to the

desired end products (see Figures 7-9 and 7-10). Typical final product

yields are 60 percent gas oil, 25 percent kerosene, and 15 percent

tops/naptha for a process maximizing gas oil. For a maximum of kerosene,

the yields typically are 50 percent kerosene, 25 percent gas oil, and 25

percent tops/naptha (see Figure 7-11).

Overall thermal efficiency of methane to hydrocarbons is about 60

percent. The Shell process for middle distillate or gasoline is an

alternative to the production of methanol as a way to obtain liquid fuels.

Well-optimized methanol processes usually will yield better thermal

efficiency--say, 65 to 70 percent, compared to about 50 percent for the

higher hydrocarbon fuels preferred for transportation.

CONCLUSIONS

New technology does not appear to be a major determinant in natural

gas end-use market demand. Gas-consuming technology is mature and

available from many competitive manufacturers worldwide. The recent
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Figure 7-9
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Figure' 7-10
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Figure 7-11

SMDS Product Breakdownl8
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changes in world oil markets appear to be increasing natural gas supply at

competitive prices. The general availability of natural gas delivery

systems to most consuming sectors in the United States, Western Europe, and

Japan, plus well-proven end-use technologies, could be a stimulus to gas

demand, which in turn also could stimulate R&D on end-use equipment to gain

a larger market share. New technology opportunities do exist, even for

mature end-use equipment.

The prospect that new technology will be a major driving force for

methane to develop new markets is excellent for GTCC systems used in the

generation of electric power. In the United States and probably in most

other consuming countries, this requires the delivery of methane to the

burner tip at prices below $4.00/Mcf. For base-load plants with a 70

percent load factor using an advanced GTCC system with 8,000 Btu/kWh, every

$1.00/Mcf represents a $0.01/kWhr fuel cost. For capital charges of 14

percent, every $500/kW plus a 70 percent load factor also represents a

$0.01/kWhr capital cost. Considering all factors (clean emissions,

modestly sized units of capacity, low capital costs, well-established

technology, etc.), the gas turbine or gas turbine combined cycle system

gives methane a reasonably competitive position against any other electric

power generation system: heavy fuel oil, coal, or nuclear. A 1,000 MW

GTCC system at 8,000 Btu/kWhr and 70 percent load factor represents a

potential annual natural gas demand of 50 Bcf. Electric power generation

thus represents one major potential source of new natural gas demand.

Natural gas is a highly desirable fuel in the industrial market and,

if prices are competitive at the burner tip, it will maintain its market
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share. Speciality markets in primary metals production may offer an

additional potential market. Similarly, industrial cogeneration systems

could be a source of new demand, particularly in the United States, under

current economic and regulatory conditions facing electric utilities.

Advanced technologies to meet this market's needs are under development,

and some advanced systems are commercially available.

Natural gas demand in the residential and commercial sectors is more

dependent upon the delivery system than on development of new end-use

technology. While considerable improvements have been made in furnaces for

all applications and in gas-driven thermal machines for air conditioning,

process drying, compression, etc., there is no outstanding technology

development that appears to offer unique opportunities for new natural gas

applications in conventional markets. Natural gas always has been and

still is a very desirable primary energy source for these markets, when it

can be delivered at competitive prices. The availability of package

cogeneration systems for commercial applications may represent a growing

market in the United States. To a large degree, this demand growth will be

influenced by the policies of electric utility companies in their planning

to meet future electric load growth. There is growing evidence that

utilities may help stimulate this potential market.

The potential exists for natural gas use in the transportation market,

but has the disadvantage of requiring special engines and a dedicated

delivery system. The transformation of methane to gasoline and middle

distillate has significant process and energy costs. While the technology

has improved, no outstanding breakthroughs have been made, nor can any be
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forecast with any degree of assurance. The stable CH4 molecule is

difficult to transform into the higher energy density and more

transportable higher-order liquid hydrocarbons.

In summary, the ability of advanced technology to stimulate natural

gas demand is relatively limited. Commercial technology is available to

all end-use markets. The growing willingness of natural gas suppliers to

face marketplace competition from other hydrocarbon fuels is a strong

indication of a potential expansion in natural gas demand. Both existing

and improved technology will be available to support this potential demand

growth. The end-use market sector that will have the largest growth in

natural gas demand appears to be country-specific and heavily influenced by

each country's fuel policies. For any country facing severe constraints on

electric generation using nuclear power, the combination of cost-effective

technology and the low environmental impact of natural gas represents a

significant potential for new demand by the electric utility sector.

Current economics indicate that natural gas delivered to the burner tip

at prices below $4.00/Mcf is and will be very competitive with other fuels.

However, beyond the economic considerations alone, natural gas offers

the additional advantages of reducing other externalities--such as

pollution costs--that may, in the future, render it appreciably more

attractive.
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