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Abstract

The research documented in this thesis is centered on the development and evaluation of
models and algorithms for the optimization of traffic flows and emissions via routing and
pricing in dynamic traffic networks. A set of problems that arise in this context are studied.
These include: (1) the development of a probabilistic approach to model acceleration, (2) the
study of the dynamic capacitated minimum cost flow problem, (3) an experimental analysis
of improvements in shortest path algorithms, and (4) the study of dynamic congestion and
emission pricing.

We propose a probabilistic approach for modeling accelerations and decelerations in traffic
networks as random variables that are a function of speed and road type. We use the
approach to integrate a non-microscopic dynamic traffic model and an instantaneous
emission model.

We develop routing algorithms that can be used in the context of traffic flow optimization.
First, we study the capacitated minimum cost flow problem in dynamic traffic networks, and
develop two solution algorithms for the problem. The developed algorithms are shown
experimentally to be more efficient than an existing algorithm in the literature. Second, we
perform experimental testing to assess the computational performance of a new approach to
solve the shortest path problem in static and dynamic FIFO networks, that tries to overcome
some of the limitations in traditional comparison-based label-setting algorithms.

Finally, we develop a second-best link-based dynamic congestion pricing model and
formulate it as a bi-level program. We develop solution algorithms based on sensitivity
analysis, and model both route and departure time choices as users' reaction to the prices.
We extend the model and algorithms to study emission pricing. Finally, we formulate the
model with additional travel time or emissions constraints, and evaluate the effectiveness of
the pricing methods on small hypothetical network examples.

Thesis Supervisor: Ismail Chabini
Title: Associate Professor, Civil and Environmental Engineering
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Chapter 1

Introduction

This thesis presents models and algorithms for the optimization of traffic flows and

emissions in dynamic (time-dependent) traffic networks via routing and pricing. This

chapter provides a motivation for and a context in which congestion and emissions are

modeled and managed, and presents the objectives, contributions, and organization of the

thesis.

1.1 Traffic Congestion and Emissions

Traffic congestion has been a problem facing urban commuters for several decades, but has

been lately intensified by the growth in automobile ownership and changes in land-use and

development patterns. The economic inefficiencies due to congestion, manifested in the

form of extended travel delays, wasted fuel, and adjustments to activity patterns, have led

communities worldwide to devise measures that aim at its mitigation.

Congestion relief measures have generally been classified into supply and demand

measures. Supply measures are those that adapt the network capacity to the existing demand,

by investing in infrastructure (such as building more roads), enhancing public transport

services, or improving the utilization of the existing network (such as by traffic signal

control, ramp metering, driver information systems, etc.). Demand measures, on the other

hand, are those that adapt the demand to the existing road capacity by influencing users'

travel behavior. Examples of these strategies include using fiscal measures (such as road

pricing, parking pricing, fuel taxes, etc.), adopting alternative work schedules (staggered

17



shifts, flextime policies, compressed workweek), encouraging ridesharing, and

telecommuting.

Although congestion relief strategies might vary in their short-term effectiveness, their

long-term consequences should be carefully analyzed. It has been argued that urban

highways have a tendency to achieve peak congestion levels irrespective of supply and

demand (Downs (1992), Small (1992 a)). Most congestion relief strategies might reduce the

duration of peak-hour traffic congestion but not its intensity as commuters would change

their routes, trip times, and modes of travel to occupy any road space freed by such

strategies - a phenomenon referred to in Downs (1992) as the principle of triple

convergence .

Besides congestion, road transportation is a major source of mobile-source emissions. It

is estimated that motor vehicles in the Unites States are responsible for about 90 % of

carbon monoxide in the air and 50 % of smog and hazardous air pollutants (EPA's website:

www.epa.gov). The accumulation of emissions leads to the concentration of pollutants in the

atmosphere, which are also affected by meteorology, topography, and further chemical

reactions. Vehicular emissions and pollutant concentrations are governed by emission and

air quality standards, set by regulatory agencies such as the U. S. Environmental Protection

Agency. Vehicle emission standards define the maximum allowable tailpipe emissions given

a vehicle's age and mileage. Air quality standards set upper limits on the concentrations of

pollutants in the atmosphere, using various temporal aggregations. In order to achieve

environmental objectives and/or comply with environmental standards, there is need to

implement adequate policies.

In general, reductions in congestion are believed to be positively correlated with

reductions in emissions and subsequent improvements in air quality. One could then apply

the methods previously described for congestion relief to reduce emissions. It should be

noted though that in certain instances, paradoxes could exist between traffic-improving

measures and subsequent emission levels (see for instance Nagurney (2000 a)). For

Triple convergence is defined in Downs (1992) as a combination of (1) spatial convergence, where travelers
formerly using congested roads switch to the faster route on which improvements have been made, (2) time
convergence, where travelers previously traveling before or after the congested period switch their departure
times to the peak period, and (3) modal convergence, where some travelers previously using public transit now
switch to using the private auto as driving has become faster. The result of the three types of convergence is
that traffic conditions prior to the improvement would continue to prevail after the improvement.
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example, in Liu (2003) the emission level consequences of ramp metering, signal

coordination, and demand management are investigated. It is demonstrated that although at a

network level total emissions might decrease, this need not be the case at a local level (such

as in the proximity of the traffic signals). Other policies that specifically aim at reducing

emissions include vehicle technology measures (such as using cleaner fuels or more

effective catalytic converters), inspection and maintenance programs, market-based

incentives such as emission pricing, etc.

Consequently, traffic management strategies should be assessed through multi-criteria

analysis methods that consider both congestion and emissions, and possibly other criteria

such as safety and equity. In order to support the development and evaluation of such

strategies, mathematical models of traffic flows, emissions, and dispersion are needed.

Traffic models simulate the reaction of users to a given management method and, together

with emission and air quality models, send back indicators of congestion, emissions, and air

quality. A traffic-emissions-air quality laboratory consists of the modules shown in Figure

1.1.

Traffic models determine an equilibrium between supply and demand given a network

topology, a matrix of origin-destination demands, user behavioral models (e.g. route and

departure time choices), and link performance functions. They can be classified as static or

dynamic (time-dependent). The reader interested in a review of traffic models is referred to

Cascetta (2001) and Hoogendoorn and Bovy (2001). The outputs from a traffic model,

namely vehicle speeds and accelerations (if available), are fed into an emission model.

Emission models can also be classified as static average speed-based models or dynamic

models that take both speed and acceleration as input. An overview of emission models is

provided in Cappiello (2002). Given a vehicle's technology specification, operating

conditions (speed and acceleration), and external environmental conditions, an emission

model outputs the amounts of emissions (by emission species) generated. These constitute

the input to dispersion and photochemical models, which predict further reactions of the

emitted species, model their dispersion in the air, and eventually output pollutant

concentrations as indicators of air quality. Readers interested in a review of dispersion and

air quality models are referred to Barratt (2001).
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Figure 1.I. Components of a traffic-emissions-air quality simulation laboratory. (from Cappiello (2002))

Considerable attention from the research community has been devoted for enhancing the

prediction accuracy of traffic models and emission models separately. Recently, there has

been an interest in the integration of these models at various levels of detail, a review of

which is provided in Cappiello (2002) and Liu (2003). For instance, a microscopic traffic

simulator can easily be integrated with an instantaneous emission model as the former

generates both speed and acceleration as input to the latter. The integration of a non-

microscopic traffic model, which generates speeds but not accelerations as output, with an

instantaneous emission model is not as straightforward. We describe later in this thesis a

method that aids in this integration.

In addition to the modeling requirements of traffic management strategies, there is need

to develop algorithms that solve the models. Although the development of algorithms is
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usually motivated by the need to solve a particular problem, the algorithms can often be

used in a variety of application settings. Moreover, if the algorithms are used in a real-time

context, such as in Intelligent Transportation System applications, they should be efficient to

meet the running time requirements of the sub-problems in which they arise. In this thesis,

the algorithms that we develop will be aimed at solving dynamic routing and pricing

problems for the optimization of travel times and/or emissions in dynamic traffic networks.

1.2 Thesis Objectives and Contributions

The research documented in this thesis has the following main directions: (1) the

development of methods that enable the enhanced representation of traffic flows and

emissions and that aid in the integration of non-microscopic dynamic traffic models and

instantaneous emission models, (2) the development of models and management algorithms

for congestion and emissions in dynamic traffic networks, (3) the implementation of the

developed models and algorithms in a simulation laboratory, and (4) the assessment of the

effectiveness of the proposed methods by testing them on hypothetical network examples.

More specifically, the main contributions of this thesis with respect to enhancing the

modeling requirements of traffic flows and emissions are: (1) the development of a

probabilistic approach to model accelerations as a function of speed and road type in traffic

networks, with applications in the integration of instantaneous emission models and non-

microscopic traffic models, and (2) the addition of a departure time choice model to an

existing analytical dynamic traffic assignment model.

In the area of management models and algorithms, the main contributions are: (1) the

study of the minimum cost flow problem in capacitated time-dependent networks and the

development of efficient solution algorithms for this problem, (2) the experimental study of

a new approach for solving the shortest path problem in static and dynamic First-In-First-

Out (FIFO) networks that is different from traditional comparison-based label-setting

algorithms, and (3) the formulation of a second-best link-based model of congestion and

emission pricing in dynamic traffic networks as a bi-level program and the development of

solution algorithms for this problem.
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1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 provides a methodology for modeling

accelerations in traffic networks as random variables that are functions of speed and road

type. The probabilistic approach is applied to a data set, for which an acceleration and a

deceleration distribution is developed for every speed range and road type. The

methodology, results, and applications of the acceleration model are presented. Results from

this research have been reported in Abou Zeid et al. (2002).

Chapter 3 provides an in-depth treatment of the minimum cost flow problem in

capacitated time-dependent networks, where a given amount of flow should be sent from a

source node to a sink node at a certain departure time subject to link capacities. Solution

algorithms are developed and computational tests are performed to assess the efficiency of

the developed algorithms. The case of the minimum travel time flow problem is also

addressed. The discussion is further extended to allow for waiting at nodes and for multiple

origins, destinations, and departure times. Results from this research have been reported in

Chabini and Abou Zeid (2003).

Chapter 4 presents a new approach developed in Chabini (2002) for solving the shortest

path problem in static and dynamic FIFO networks, and provides experimental testing of the

algorithms. The approach is based on defining optimality conditions for detecting whether a

label is optimal, and utilizing these conditions to reduce the work needed for sorting labels,

which is a bottleneck operation in traditional comparison-based label-setting algorithms.

Chapter 5 develops methods for congestion and emission pricing in dynamic traffic

networks. A second-best link-based dynamic congestion pricing model is formulated as a bi-

level program with the objective of minimizing total travel time subject to upper bounds on

the link prices and to the users' reaction to the implemented prices. Solution algorithms are

developed, and both route and departure time choices are modeled in the process of finding

uses' reaction (equilibrium). The methodology is extended to study dynamic emission

pricing in general traffic networks, where the prices vary additionally by vehicle category.

Finally, both congestion and emissions are accounted for in the optimization process by

adding total emissions (total travel time) constraints and hot spot environmental constraints
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to the basic congestion (emission) pricing model. Several experiments are conducted to

assess the effectiveness of the proposed pricing methods.

Chapter 6 concludes the thesis and gives directions for future research.

This thesis addresses a set of problems in the context of traffic flows and emissions

optimization. These problems are studied separately in each of the chapters, and can be read

independently of each other.
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Chapter 2

Probabilistic Modeling of
Acceleration in Traffic Networks
as a Function of Speed and Road
Type

2.1 Introduction

Characterizing travel behavior and vehicle activity has been an important research topic that

has numerous applications in traffic and emission modeling. Current travel demand models

give average speeds as outputs, which are not sufficient for the increasing data needs of

emission modelers. Recent emission research recognizes that the engine mode of operation

will be a significant variable in new modal emission models (Barth (1998), Guensler et al.

(1998), Washington et al. (1998), Roberts et al. (1999)). When modal activity exceeds

specific thresholds of variables such as power, positive kinetic energy, acceleration, or idle

mode, emission levels can rise significantly. Thus, there is a need to understand how driving

behavior and dynamic vehicular activity affect the proportion of driving spent in different

modes (idling, cruising, acceleration, deceleration, etc.). Sierra Research (Carlson and

Austin (1997)) developed representative driving cycles for different facility types and

congestion levels after analyzing instrumented and chase car data. While this research was a
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valuable addition to the literature, it does not present a statistical methodology for

generating speed and acceleration distributions, which may be necessary for applications

where specific driving cycles are an insufficient tool. Moreover, driver interaction with the

vehicle in terms of acceleration and (to a lesser extent) deceleration patterns is important for

emission modeling. For example, high-speed, high-acceleration, and heavy braking activities

are typically exhibited by young male drivers, and this in turn increases emissions, while

older drivers might drive more conservatively than younger drivers (Wolf et al. (1999),

Fancher et al. (1998)). Driving patterns might also be dependent on the particular city and

the nature of its transportation network, i.e. whether it is mostly dominated by local streets

or freeways (LeBlanc et al. (1995)), and on the traffic and control conditions (Special

Report: Highway Capacity Manual (1998)). For these reasons, it is important to study those

aspects of driving behavior and road characteristics that may influence the statistics of

acceleration and deceleration events for a given speed.

We develop a novel approach for the quantification of acceleration and deceleration

events in a traffic network. The approach models acceleration as a random variable whose

distribution varies as a function of speed and road type. The basic motivation of this

research is to integrate non-microscopic dynamic traffic models and instantaneous emission

models, though there are other applications as well. Non-microscopic dynamic traffic

assignment models are fast, applicable on a regional scale, and generally easier to calibrate

than their microscopic counterparts. Their basic limitation is that they describe network

conditions in terms of average link speeds, but do not provide accelerations. Load-based

emission models, however, require both speed and acceleration as input. Therefore, a

probabilistic acceleration model is an efficient method of overcoming the shortcomings of

non-microscopic traffic models and providing the necessary link to emission models. Even

in the absence of a traffic model, the acceleration model is also useful when only speed data

are available in a given city from field measurements. This leads, for instance, to more

accurate emission modeling using instantaneous emission models rather than average speed-

based emission models (such as EPA's MOBILE6), which in principle do not properly

quantify emissions from vehicles under dynamic conditions (National Research Council

(2000)) and are thus an approximation at best.
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Several approaches for the quantification of acceleration and deceleration events can be

found in the literature. TRANSIMS, a traffic simulator based on cellular automata modeling,

uses aggregate real-world frequencies of power factor (2*speed*acceleration) to model the

accelerations. The power factor is then used to estimate emissions (Williams et al. (1999)).

Microscopic traffic models assign accelerations to individual vehicles based on the

interaction among vehicles and the traffic regimes. Examples of these regimes are car-

following and free-flowing. Therefore, in these models, acceleration is a function of

parameters such as headway distribution, the relative difference in speed between adjacent

vehicles, and driver reaction time (Ahmed (1999)).

In this research, however, the focus is to develop a probabilistic approach to estimate

acceleration and deceleration activity from the mere knowledge of speed, without modeling

vehicular interactions at the microscopic level. The analysis is conducted using data for four

main road types: interstate highways, state highways, arterials, and collectors. It is well

known that the potential for accelerating or decelerating decreases as speed increases

because of power and traction limitations of the vehicle. However, these limitations are

usually insufficient to describe the dynamics of vehicles. It is also necessary to determine

the statistical distribution of accelerations and decelerations within a given speed range on a

link, which is defined by the state variables of density and flow (or average speed).

This chapter is organized as follows. In Section 2.2, we describe the data for which we

develop an acceleration model. In section 2.3, we present the approach that we developed to

calibrate the model. In Section 2.4, we provide an analysis of the results. In Section 2.5, we

describe an application of the model. Finally, in Section 2.6, we conclude the chapter and

give future research directions.

2.2 Data

The data sets of this research are obtained in conjunction with an intelligent cruise control

study sponsored by the U.S. Department of Transportation and conducted in South Eastern

Michigan from July 1996 to September 1997 by the University of Michigan Transportation

Research Institute (Fancher et al. (1998)). The developed model is built on real-world

driving data collected during the first week of the study, during which the intelligent cruise
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control was not functional. 108 randomly-chosen drivers from eight counties of South

Eastern Michigan were selected to drive in metropolitan and rural areas of the state, using

the same type of vehicle: an instrumented 1996 Chrysler Concorde.

Drivers were classified into five categories according to their driving behavior: (1)

ultraconservative: means an unusual tendency towards far ('far' means large gap between

leading and following vehicle) and/or slow driving, (2) planner: means an unusual tendency

towards far and/or fast driving, (3) hunter/tailgater: means an unusual tendency towards fast

and/or close driving, (4) extremist: means that the driver satisfies more than one of the

above tendencies, and (5) flow conformist: means that the driver satisfies none of the above

tendencies. A flow conformist tends to travel at the same speed as other cars and at

approximately the median headway time-gap.

A sub-sample of eighteen drivers, each conducting 20 to 60 trips, was used to develop

the model presented in this chapter. Most trip durations were less than 30 minutes. The

eighteen drivers belong to the following categories: two planners, three extremists, five

hunters, four ultraconservatives, and four flow conformists. The model does not capture

differences in driver aggressiveness because the intent is to isolate road type as the only

independent variable.

Roads were classified into the following types: high-speed ramp, interstate highway,

state highway, arterial, collector, light duty, alley or unpaved, unknown, and low-speed

ramp. Only four road types (interstate highways, state highways, arterials, and collectors)

are considered in the present study because of data availability. Moreover, these road types

cover most road types in a transportation network (except for on-ramps and off-ramps).

The distribution of acceleration and deceleration data points, aggregated from all drivers

on every road type, is shown in Table 2.1. These observations correspond to second-by-

second combinations of speed and acceleration.

Table 2.1. Number of observations of acceleration and deceleration by road type.
Road Type Interstate Highway State Highway Arterial Collector

Acceleration 5,597 3,633 20,580 5,804

Deceleration 12,569 6,074 31,586 11,043

28



2.3 Calibration

In this section, we describe the approach that we followed to develop an acceleration model

corresponding to the data described above. The same procedure can be used in general to

derive statistical acceleration distributions from any given acceleration data set though the

fitted distributions might vary from one data set to another.

The first five trips have been eliminated from every driver's record to remove some of

the "novelty factor" bias that might be present at the beginning of the test since drivers might

not be accustomed to their new vehicles. The remaining data are divided into four subsets,

one for each considered road type, to see whether acceleration and deceleration distributions

are dependent on road type. The data in each subset are further divided into two groups:

acceleration data (strictly positive values) and deceleration data (zero or negative values).

Acceleration and deceleration are considered separately since in general they may not be

similarly distributed. In the case of arterials, we have divided the data into two subsets, Sc

for calibration and S, for validation. For the other road types, we did not validate the model

because of the lack of a sufficient number of observations for those road types.

Consider one data group, for example, accelerations (strictly positive values) on road

type r. The statistical distribution analysis is conducted for 10 km/h speed ranges. For each

speed range v, we would like to find a probability distribution that fits the acceleration

distribution obtained from the sample for that particular speed range. Plotting the sample

acceleration values suggests a distribution similar (with a scale factor) to the density of a

half-normal distribution with zero mean (p = 0), and a standard deviation to be determined

(see Figure 2.1).
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Figure 2.1. Acceleration distribution for the calibration data set on arterials for the

speed ranges 21-30 km/h (part a), 51-60 km/h (part b), and 81-90 km/h (part c).

Let N,, be the total number of acceleration observations aggregated from all drivers

driving on a road type r in a speed range v. Let Q/ (a) be the sample probability of

observing a certain value of acceleration a, where a belongs to an acceleration interval of

length 0.2 m/s 2 (e.g. (0.2,0.4], (0.4,0.6],...). If a belongs to an acceleration interval [a,a 2],

we define T,, (a) as the total number of acceleration observations that are in the interval

[a, a 2 ].Then Q,* (a) is given by:

T,,(a)
Q (a)= ', . (2.1)

NT+

The sample standard deviation is given by the expression:

S(a - )2 Qa) = Z(a-0)2Q +
r (a - v ( a A

(2.2)ra2 (a),
Xa2QA

where A consists of all the acceleration values in the data set, taken at 0.2 m/s 2 intervals.

The half-normal probability density function, fitted to the acceleration data, is given by:

2

2 a-pf,,(a)= ex 0.5

2

2 a__
= exp 0.5 ,

(o \ ~ 2~
\. \* ~v. 1~v

0

Y>

(2.3)
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where -, is the standard deviation obtained from the acceleration sample, as given by

expression (2.2).

The half-normal distribution is truncated at some maximum acceleration value a', so as

to avoid predicting unrealistic high accelerations. The truncated distribution is then

normalized so that the area under the resulting density function is one. The resulting density

function is given by:

fr,ad (a)
fnaalzed, (2.4)

f,, (a) da

An error term e,, defined as the sum of the squares of the difference between the

cumulative sample probability F, (a) and the cumulative truncated and normalized half-

normal distribution function F,,,(a) is used to test the goodness-of-fit of the obtained

distribution:

+ = r7-2+ (a)~(\]2
CryZ, 2,,, = (a)- F ,,( . (2.5)

aEA

Low values of the error term F,+*, indicate a good fit, while high values suggest that the

proposed distribution does not explain well the variation in acceleration. This procedure was

applied for every road type and speed range in the acceleration data.

The maximum acceleration values at which the distributions are truncated are

approximately equal to the maximum experimental values of acceleration and deceleration

for every speed range, and they are given by: a+ = 5 m/s 2 for speed ranges from 0-10 to 71-

80 km/h, a+ = 2.5 m/s 2 for speed range 81-90 km/h, a+ =1 IM/s 2 for speed range 91-100

km/h, a+ = 0.75 m/s 2 for speed range 101-1 10 km/h, and a+ = 0.5 m/s 2 for speed range

111-120 km/h.

The steps described above to estimate accelerations are applicable to the deceleration

data for every road type and speed range.
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The density function f, (a) of the combined distribution of acceleration and

deceleration corresponding to road type r and speed range v is obtained by weighing the

truncated and normalized distribution with the probability of occurrence of acceleration and

deceleration, respectively:

P,- f for a 0

f f,- (a)da

f,*,(a) = (2.6)
p1 for a > 0,

f,,, (a)da
0

where P-, and P,+, are the probabilities of a deceleration realization and an acceleration

realization, respectively, obtained from the sample data for road type r and speed range v.

The other terms in expression (2.6) are as previously defined.

In the remainder of this chapter, we refer to the truncated normalized distribution as the

"half-normal distribution."

2.4 Analysis of Results

2.4.1 Comparison of Observed Distributions to Fitted Half-Normal

Distributions

The error terms e obtained upon fitting half-normal distributions (with zero mean and

standard deviations obtained from the sample) to the observed values of acceleration and

deceleration are shown in Table 2.2 (part a) for the four road types. These error values are

satisfactorily low. They support the validity of the hypothesis that accelerations and

decelerations are probabilistically distributed, with the fitted distribution in this case being

half-normal with zero mean and a standard deviation that decreases as the speed increases.

Note that the error term values of deceleration distributions are in most cases lower than

those of acceleration distributions because of the availability of more deceleration data and

the absence of any acceleration value in the interval (0,0.2]. However, error term values are

33



similar among different road types although there is an uneven distribution of data points

among the road types.

Table 2.2*. Error terms of half-normal distributions fitted to the sample acceleration and deceleration
distributions, obtained from calibration on all road types (part a) and validation on arterials (part b).

(a)
Deceleration

State

Highway

0.00891

0.00844

0.00419

0.01068

0.01659

0.02580

0.03268

0.05109

0.07095

0.10081

N/A

N/A

Arterial Collector Interstate

Highway

0.01106 0.01063 0.00146

0.00707 0.00549 0.00560

0.00413 0.00601 0.00227

0.01507 0.00834 0.01325

0.00853 0.02681 0.01494

0.02469 0.03926 0.02932

0.04044 0.04829 0.02863

0.04163 0.05967 0.01719

0.07390 0.08689 0.00164

0.09852 0.09267 0.00164

N/A N/A 0.00050

N/A N/A 0.00047

State

Highway

0.00120

0.00169

0.00097

0.00934

0.04996

0.04295

0.01082

0.01333

0.00036

0.00132

N/A

N/A

Arterial

0.00061

0.00403

0.00102

0.00448

0.03702

0.02982

0.01034

0.00390

0.00129

0.00134

N/A

N/A

Collector

0.00087

0.00218

0.00115

0.03372

0.06297

0.03373

0.01195

0.00350

0.00135

N/A

N/A

N/A

* N/A indicates that not

road type.

enough data were available to calibrate a model for the corresponding speed range and
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Range

(km/h)

0-10

11-20

21-30

31-40

41-50

51-60

61-70

71-80

81-90

91-100

101-110

111-120

Acceleration

Interstate

Highway

0.00895

0.00588

0.00374

0.01215

0.01061

0.02055

0.03146

0.04769

0.06232

0.11171

0.13349

0.15056



Speed Range (km/h)

0-10

11-20

21-30

31-40

41-50

51-60

61-70

71-80

81-90

(b)

Acceleration

0.00903

0.01018

0.03033

0.04087

0.05469

0.05512

0.05648

0.07844

0.10668

Figure 2.2 shows the cumulative sample probability F (a) and the cumulative modeled

distribution function F (a) for accelerations (part a) and decelerations (part b), respectively,

on arterials in subset SC for the speed range 0-10 km/h. The goodness-of-fit is better for the

deceleration data than for the acceleration data due to lack of a sufficient number of

observations in the interval (0,0.2], as stated above.

cl

4-

0t

1

0.8

0.6

0.4

0.2

0 0

0 0.5 1.5 2 2.5 3
Acceleration (m/s 2)

3.5 4 4.5 5

(a)

35

Deceleration

0.00194

0.00265

0.00927

0.04906

0.09007

0.03233

0.00599

0.03284

0.06501

Cumulative s ample
probability

------- Cumulative modeled
distribution function

1



Cumulative sample 1
probability

-0.8 El
------- Cumulative modeled - 0.6

distribution function
- 0.4

0~
-0.2

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

Deceleration (m/s2)

(b)

Figure 2.2. Cumulative sample and half-normal distribution functions for the acceleration data (part a) and the
deceleration data (part b) used for calibration on arterials for the speed range 0-10 km/h.

2.4.2 Validation

Validation of the half-normal distributions was done only for the data of arterials because it

contained enough observations to allow for both calibration and validation. For every speed

range, the same half-normal distribution that was fitted to the acceleration data in subset SC

was compared to the acceleration data of subset S, to test whether the distributions

developed from a certain sample can be applied to another sample for the same road type.

Validation was also done for the deceleration data on arterials. In both cases, the error terms

obtained were acceptable, supporting the adoption of probabilistic models to estimate

accelerations and decelerations. Figure 2.3 shows the cumulative sample probability of the

acceleration data (part a) and deceleration data (part b) in subset Sv and the cumulative

distribution corresponding to the modeled density function (which was derived from the

calibration data set Sc) on arterials for the speed range 0-10 km/h. The error terms for all

speed ranges are shown in Table 2.2 (part b).
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Figure 2.3. Cumulative sample and half-normal distribution functions for the acceleration data (part a) and the
deceleration data (part b) used for validation on arterials for the speed range 0-10 km/h.
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2.4.3 Variation of Standard Deviation of the Distributions with Speed

Range and Road Type

Figure 2.4 shows the variation of standard deviation of acceleration (part a) and deceleration

(part b) distributions among speed ranges for the four road types. Beyond a certain speed

threshold, the standard deviations decrease with speed because at lower speeds, there is a

higher probability of achieving high values of acceleration and deceleration than at larger

speeds. This diversity of acceleration and deceleration at lower speeds is an important

phenomenon in estimating emissions related to engine load or power enrichment. This

phenomenon is violated for the first speed range, where the standard deviation increases

when moving from 0-10 km/h to 11-20 km/h. The reason for this phenomenon could be that

the maximum power available to vehicles at very low speeds is lower than what drivers

desire as acceleration. This observation might also be due to the common "lurch" (sudden

positive variation in acceleration) that follows a light change, or stop and go traffic, and

might be made pronounced by the inexperience of the drivers with a new vehicle throttle.

This effect was also observed in LeBlanc et al. (1995).

Road type is seen to have little effect on the variation of acceleration and deceleration

distributions, as shown in Figure 2.4. While it is expected that stop and go conditions,

characteristic of collectors and arterials, might lead to higher acceleration and deceleration

values, the results actually indicate that highways have similar standard deviations to those

of arterials and collectors, and in some cases have even higher variations. Note that higher

speeds can be reached on highways than on arterials and collectors.
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Figure 2.4. Variation of standard deviation of acceleration distributions (part a) and deceleration distributions

(part b) among different speed ranges and road types.

2.5 Model Application

In this section, we describe a general procedure for a possible application of the acceleration

model. Then we depict one instance where the procedure has been applied. This application
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has been motivated by the integration of a non-microscopic dynamic traffic model and an

instantaneous emission model.

2.5.1 General Procedure

The probabilistic nature of the acceleration model leads to a novel approach for emission

modeling. Since accelerations are modeled as random variables, emission factors which are

functions of speed and acceleration will themselves be random variables. Therefore, an

instantaneous emission model combined with a probabilistic acceleration model can

generate, for every road type and speed range, a probabilistic emission distribution from

which one can obtain multiple moments of emissions (expected value, standard deviation,

etc.).

The approach summarized in the previous paragraph is documented in more details in

Cappiello (2002). For a given emission species i, vehicle category c, speed range v, and

road type r, an expected emission factor z. is calculated based on the probability of

occurrence of every acceleration and deceleration, and is given by:

eicr, = E e',(v, a)] e (v, a) f *,,(a) da. (2.7)
ae[a] a,] al

In expression (2.7), e (v,a) is the emission factor, obtained from any instantaneous

emission model, for emission species i, vehicle category c, speed v, and acceleration a.

a, and a2 are the highest deceleration and acceleration realizations, respectively, in speed

range v, as obtained from the sample data. f*, (a) is given by expression (2.6).

The expected emission factor is obtained by discretizing acceleration and deceleration

values in the interval [a,, a2]. Its expression is:

ei,,v = Z ei (v, a). r,,(a). (2.8)
aas

In the latter expression, Sa = {a] +h/2, a, +3h/2, --. , a2 -3h/2, a., -h/2} is the

discretization interval, and h can be set to any desired value. Here it is set to 0.1 M/s 2.

a+h/2

r,,(a)= ,(x) dx, which is the probability that the acceleration belongs to the interval
a-h/2
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(a -h/2, a +h/2).

This general procedure can be employed in two types of applications. First, it is useful

for the integration of non-microscopic traffic models and emission models. In this case, the

expected emission factors can be applied to the average speeds which are output by the

traffic model in order to predict emissions. A specific application of this type is shown

below. Second, the procedure can be used to enhance the accuracy of emission models'

predictions in cases where speed is obtained from field measurements, for example through

loop detectors, and used as input to the acceleration model which would generate

acceleration distributions for a given road type. Any instantaneous emission model would

then be able to predict emission distributions (or moments of emissions), given the speed

and acceleration (as well as other vehicle and roadway-related factors). Therefore, the

acceleration model allows the deployment of more refined and detailed emission models in

practice, as it allows the determination of acceleration, which is a quantity not measured in

practice, via the measurement of speed only.

2.5.2 Application Example

Below we describe a specific application where expected emission factors have been

generated based on speed data obtained from field measurements. The acceleration model

has been used in Cappiello (2002) in conjunction with EMIT (EMIssions from Traffic), a

recently developed emission and fuel consumption model. We provide a brief description of

EMIT, show results of expected emission factors derived from EMIT, and describe the

integration of EMIT with a non-microscopic dynamic traffic model.

EMIT is a simple statistical model for instantaneous tailpipe emissions (C0 2 , CO,

HC, and NO,) and fuel consumption of light-duty composite vehicles. In order to

realistically reproduce the behavior of the emissions, the explanatory variables in EMIT

have been derived from the load-based approach, using some simplifying assumptions. The

model is calibrated for a set of vehicles driven on standard as well as aggressive driving

cycles, and is validated on another driving cycle in order to assess its estimation capabilities.

The preliminary results indicate that the model gives reasonable results compared to actual

measurements as well as to results obtained with CMEM, a well-known load-based emission
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model (see Fig. 2.5). The goodness-of-fit of EMIT varies with different emission species

(see Table 2.3), but the model has in general a reasonable predictive accuracy. Furthermore,

the model, due to its simple structure, is relatively easy to calibrate and requires less

computational time than detailed load-based models. A detailed description of EMIT can be

found in Cappiello (2002) and Cappiello et al. (2002).

Table 2.3. R-square (R 2) between the measured and the predicted emission (or fuel consumption) rates from
EMIT. Part a: results for calibration. Part b: results for validation. (from (Capiello (2002))).

(a)

CO 2  CO HC NOx FR

Engine-out module, category 7 0.98 0.87 0.58 0.86 0.97
Tailpipe module, category 7 0.98 0.84 0.53 0.79
Engine-out module, category 9 0.97 0.90 0.63 0.87 0.97
Tailpipe module, category 9 0.97 0.88 0.58 0.67

(b)

CO 2  CO HC NOx FR
Engine-out module, category 7 0.96 0.46 0.25 0.83 0.94
Tailpipe module, category 7 0.96 0.36 0.22 0.63
Engine-out module, category 9 0.95 0.50 0.22 0.83 0.95
Tailpipe module, category 9 0.95 0.43 0.32 0.53

Expected emission factors have been calculated in advance (offline), according to the

general procedure outlined above. The speed data used to compute expected emission

factors are obtained from the data set described in this chapter. Figure 2.6 and Figure 2.7

show the calculated expected emission factors of C) 2, CO, HC, and NO, as well as fuel

rates for vehicle category 9 (defined in Cappiello (2002)) as a function of speed on arterials

and highways, respectively. In general, the expected emission factor (g/s) increases with

speed because of the increase in fuel consumption rate. The expected emission factors are

also compared with the facility-specific emission rates from MOBILE6. Note also that

expected emission factors would in general be different for different vehicle categories.
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Figure 2.5. Category 9 - FTP bag 2. Second-by-second engine-out (EO) and tailpipe (TP) emission rates of CO2 and CO. Thick light line: measurements

(calibration data); dark line: EMIT predictions; thin line: CMEM predictions. The top plot represents the speed trace. (from (Cappiello (2002))).
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Figure 2.6. Expected emission rates in g/s (on the left) and in g/km (on the right) for road type arterial and
vehicle category 9. The expected emission rates in g/km of CO, HC, and NOx are compared with the
facility-specific emission rates from MOBILE6 (thin line). (from (Cappiello (2002))).
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Figure 2.7. Expected emission rates in g/s (on the left) and in g/km (on the right) for road type highway and

vehicle category 9. The expected emission rates in g/km of CO, HC, and NOx are compared with the

facility-specific emission rates from MOBILE6 (thin line). (from (Cappiello (2002))).
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An integration component is designed to apply the expected emission factors to the

output (i.e. time-dependent link speeds) of a mesoscopic traffic model, developed in

Bottom (2000), to predict total emissions as well as their spatial and temporal variations.

The combined model allows the evaluation of various traffic management strategies and

their effectiveness in reducing traffic congestion, air pollution, and fuel consumption. For

instance, in Cappiello (2002) various scenarios of traffic conditions (with and without an

incident) are considered to assess the impact of dynamic route guidance (an Intelligent

Transportation Systems traffic management method) on travel time, emissions, and fuel

consumption.

2.6 Conclusions

In this chapter, a probabilistic approach that models acceleration activity as a random

variable has been developed. Statistical acceleration and deceleration distributions have

been developed as a function of real-world data of vehicle speeds and road types. As the

speed range increases, the standard deviation of the acceleration and deceleration

distributions decreases because at higher speeds only a limited range of accelerations and

decelerations can be achieved due to power and traction limitations. This observation was

consistent among all road types. Moreover, the standard deviations are similar among

road types, which might suggest that road type has little effect, if any, on acceleration and

deceleration variation. However, this effect should be studied further with more data from

other cities, since there is reason to believe that driving behavior differs from city to city,

especially those that have more hills (LeBlanc et al. (1995)).

For every road type and speed range, and for both acceleration and deceleration, a

half-normal distribution having the same mean and standard deviation as the original data

was fitted to the observations. The fitted distribution was truncated at some maximum

acceleration value in order to consider only physically feasible accelerations. In almost

all cases, the fit was very close as indicated by low error term values. This implies that

the half-normal distribution well approximates the acceleration and deceleration activity

distributions for the given data. The specific parameters of the distribution might have to

be calibrated separately for each city since there might be other factors, not captured by
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our model, that affect these distributions. Moreover, the distribution that would fit other

acceleration and deceleration data from different regions might not be half-normal.

However, the same methodology developed in this research can be used to develop other

acceleration probability distributions.

A general procedure was given to illustrate an application of the probabilistic

modeling approach. Then specific results were provided where the acceleration model

was used in conjunction with EMIT (Cappiello (2002), Cappiello et al. (2002)), an

instantaneous emission model, to generate expected emission factors for the purpose of

integration with a non-microscopic traffic model.

For further research, it would be useful to apply the methodology developed in this

research to other data sets (namely the Sierra chase car data) to investigate further the

nature of the fitted distributions as well as the effect of road type on these distributions. It

would also be important to quantify the activity from freeway ramps. Moreover, it would

be interesting to disaggregate this model to assess the impact of driver aggressiveness and

vehicle type on the variation of acceleration and deceleration distributions.
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Chapter 3

The Minimum Cost Flow

Problem in Capacitated Dynamic
Networks

3.1 Introduction

The minimum cost flow problem is the problem of sending flows in a network from

supply nodes to demand nodes in minimum total cost such that link capacities are not

exceeded. This problem has been studied extensively in the context of static networks

(Ahuja et al. (1993)). In this chapter, we study the minimum cost flow problem in

dynamic (or time-dependent) networks, where link travel times, costs, and capacities are

time-varying quantities that depend on the entry time of the link.

The minimum cost flow problem has numerous applications in transportation,

logistics, and telecommunication. For instance, in transportation the problem arises in air

traffic flow management with enroute (airspace) capacities (Bertsimas and Stock

Patterson (1998)) or in road traffic networks with physical or environmental capacities.

An application that motivated the work of this chapter has been the optimization of

vehicular emissions to meet air quality standards set by regulatory agencies such as the

US Environmental Protection Agency (EPA's website: www.epa.gov). These standards

mandate that ambient pollutant concentrations in any area of the United States do not

exceed a certain threshold beyond which the public and the environment are endangered.
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Pollutant concentrations over a link are directly related to the emission rate (emissions

mass per unit time) on that link. The emission rate is in turn dependent on the amount of

flow on the link. Therefore, by imposing upper bounds on the link flows, one can ensure

that no excessive pollutant concentrations (hot spots) are prevalent over any link in the

network.

Link cost can be defined in several ways, such as travel time, travel distance, out-of-

pocket cost, or emissions generated or inhaled along the link. If link cost is equal to its

travel time, for instance, one can exploit some properties of the link travel times as cost

functions to develop specialized efficient algorithms for that purpose, as shown later in

the chapter. In this chapter, we study the general dynamic minimum cost flow problem,

where cost can be equal to any defined criterion. We address one variant of the problem

where a given amount of flow needs to be sent from an origin node at a certain departure

time, say zero, to a destination node. This is referred to as the one-to-one dynamic

minimum cost flow problem. This problem has been studied in Cai et al. (2001), where

solution algorithms are developed that consider three particular waiting policies at nodes:

no waiting, unbounded waiting, and bounded waiting. Moreover, in Miller-Hooks and

Stock Patterson (2002) a solution algorithm that solves the time-dependent minimum

time flow problem with unlimited waiting allowed at nodes is given. The main objective

of restudying the dynamic minimum cost flow problem in this chapter is to develop more

efficient solution algorithms that are obtained by exploiting some properties of the

problem.

The approach that we use to solve the minimum cost flow problem is the computation

of successive shortest paths in residual networks. We note that in the shortest path

problem, which is a particular case of the minimum cost flow problem, link capacities

can be viewed as infinite; thus, all the flow can be sent on a shortest path. However, in

the general capacitated minimum cost flow problem, a series of shortest path problems

should be solved since a single shortest path might not have enough capacity to carry all

the flow. For each of the successive shortest paths, an amount of flow equal to the path

capacity is augmented until all the flow has been sent from the origin to the destination.

Moreover, while dynamic shortest path problems can be viewed as static shortest path

problems in a static acyclic time-space network (defined in Section 3.2.2), the residual
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time-space network (defined in Section 3.2.3) in which the minimum cost flow problem

is solved is not acyclic along the time dimension. Thus, to solve the minimum cost flow

problem, there is need to develop solution algorithms that are not specific for acyclic

time-space networks, as opposed to classical dynamic shortest path algorithms in

dynamic networks. The reader interested in the latter topic is referred to Grier and

Chabini (2002), Chabini and Lan (2002), Pallottino and Scutellai (1998), Chabini (1998),

Cai et al. (1997), Ziliaskopoulos (1994), Kaufman and Smith (1993), Orda and Rom

(1990), Dreyfus (1969), and Cooke and Halsey (1966).

We present two algorithms, denoted as Algorithm B and Algorithm C, for the shortest

path computation involved in the solution of the dynamic minimum cost flow problem.

We also review an algorithm, due to Cai et al. (2001), which we denote as Algorithm A.

Algorithms A, B, and C were implemented, and their computational efficiencies were

assessed by using large-size capacitated dynamic networks. The computational results

indicate that Algorithms B and C are more efficient than Algorithm A. Moreover, for the

test networks used, the successive shortest path algorithm employing Algorithm C

achieved significant time savings, compared to that employing Algorithm A (by up to a

factor of 11 3) and that employing Algorithm B (by up to factors of 25, 39, and 72 for

three different implementations of Algorithm B).

The remainder of this chapter is organized as follows. In Section 3.2, we provide

definitions and notation. In Section 3.3, we review a formulation of the dynamic

minimum cost flow problem. In Section 3.4, we describe a generic solution algorithm and

present some properties that will be useful for developing solution algorithms. We review

an algorithm developed in Cai et al. (2001) for the computation of minimum cost paths in

the residual network, and develop two efficient minimum cost path algorithms. In Section

3.5, we discuss the case where link travel cost is equal to its travel time and describe

specialized algorithms that compute paths which minimize total travel times in

capacitated dynamic networks. Then we describe how the developed algorithms can be

used or extended to account for various waiting policies, multiple sources, destinations,

and departure times. Finally in Section 3.6, we provide experimental results for the

solution algorithms presented in this chapter.
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3.2 Notation and Definitions

3.2.1 Network Data

Let G = (N,A) be a directed network. N = {l,...,n} is the set of nodes and A ={1,...,m} is

the set of arcs. Let A(i) represent the set of nodes after node i, i.e. A(i) = j: (ij)e A}.

We refer to A(i) as the forward star of i. Let B(j) represent the set of nodes before node

j, i.e. B(j) = {i: (i, j)e A}. We refer to B(j) as the backward star of j. We associate

with every arc (i, j) a positive travel time de (t), a travel cost c (t), and a non-negative

capacity U, (t), where t e T = {0,1,2,..., M - 1} is the entry time of the link, and M is a

time horizon beyond which travel is prohibited. The capacity Uj, (t) refers here to the

maximum flow that can be admitted at the entrance of arc (i, j) at time t. In certain

applications though, the capacity of an arc might refer to its storage capacity, i.e. the

maximum number of flow units that can be present on the arc at any time. Every arc

(i, j) has a residual capacity r. (t) defined as: i (t)= Ujj (t) - fu (t), where f, (t) is the

flow measured at the entrance of arc (i, j) at time t. Denote the source node by s and the

destination node by q. Let v be the amount of flow that should be sent from s to q. We

assume that all network data is deterministic and that no waiting is allowed at nodes in

the general model. Later in the chapter, we show how the solution algorithms that we

develop for the no-waiting case can be extended to allow for general waiting policies at

the nodes.

3.2.2 Time-Space Network

The time-space network is a useful tool for implicitly studying the minimum cost flow

problem. Note that although we exploit the concept of time-space network to illustrate

how the different solution algorithms operate, none of the algorithms presented in this

chapter was implemented by explicitly constructing the time-space network.

The time-space network is a static network constructed by expanding the original

network in the time dimension by making a separate copy of every node i e N at every

time t e T, called a node-time pair (i, t). Let G* = (N*, A*) represent the time-expanded
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network of the original dynamic network. Set N* denotes the nodes of G*, which are

given by N* ={(i,t): (i,t)e N x T}. The set of arcs A* consists of arcs from every node-

time pair (i,)e N* to every other node-time pair (j,t+dj(t)), where je A(i) and

t+d.(t)< M . The cost of an arc connecting (i, t) to (j,t +dj(t)) is equal to e. (t). We

note that the time-space network is acyclic along the time dimension.

3.2.3 Dynamic Time-Dependent Residual Network

We rely on the concept of residual networks to develop solution algorithms for the

minimum cost flow problem. A definition of residual networks is provided in Ahuja et al.

(1993) for static networks and in Cai et al. (2001) for dynamic networks. The dynamic

residual network corresponding to a feasible flow f can be viewed as the static residual

network of the time-space network corresponding to the dynamic network, and is derived

as follows. We denote the reverse arc of an arc (i, j) as (j, i). Every arc in the time-space

network, connecting node-time pair (i, u) to node-time pair (j, t), and on which fj (u)

flow units depart its beginning at time u, has a corresponding reverse arc connecting

(j,t) to (i,u) such that: d(j,i,t,u) = --d(U), c(j,i,t,u) = -c,(u), and

r(j,i,t,u)=-r (u), where d(j,i,t,u), c(ji,t,u), and r(ji,t,u) are the travel time,

travel cost, and residual capacity of the reverse arc connecting (j,t) to (i,u), if one

"departs" along this reverse arc at time t and arrives at its end at time u. Sending flow

on a reverse arc is equivalent to reducing flow on its corresponding forward arc which

carried flow in a previous iteration.

We define an augmenting path P from source node s to destination node q in the

residual network as a path which has positive residual capacity U(P), which is equal to

the minimum residual capacity of its constituent arcs. Assume that an augmenting path P

connects the nodes s = () ,i ,... i, = q . Let i denote the arrival time at a node i, which is

also equal to the departure time from i if waiting is not allowed at nodes. We define the

following recursive relationship: t) = 0, t1, = I + dk1 (tk ) if (4i 1,ik ) at time ti is
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not a reverse arc, and tk = li' + d(i-1,it otherwise. We denote the predecessor

node-time pair (ik1 , ti ) of node-time pair (ik,, t) along path P as p(ik, , ).

3.3 Formulation

In this section, we review a formulation of the minimum cost flow problem in discrete

dynamic networks. This formulation is given in Cai et al. (2001).

Min I (tUWJ (t)
(ij)E A teT

Subject to:

Ifsi (0)= V (3.1)
(sJi)E A

f(t')- Zf,(t)=0 Vje N\{s,q},te T (3.2)
(ij)(= A, t +di(1')=1 ( j,k )E A

Z Yfq(t)= V (3.3)
(i,q)c A {t O tM t+diq(t) MI

0<! f.(t)! U((t) V(i,j)e A,te T (3.4)

The objective function is to minimize the total travel cost of the flow traveling on all

the links of the network before the time horizon M. Constraints (3.1), (3.2), and (3.3) are

the flow conservation constraints. Constraint (3.1) ensures that the total flow departing

the origin node s at time zero is equal to its supply v. Constraints (3.2) ensure that the

total flow arriving at an intermediate node j at time t is equal to the flow that departs j

at time t. Constraint (3.3) states that the total flow arriving at the destination node q is

equal to its demand v. Finally constraints (3.4) are the flow bound constraints for each

link at each time.

3.4 Solution Algorithms

In this section, we present solution algorithms that solve the one-to-one dynamic

minimum cost flow problem. Extensions to the problem, including multiple sources,

destinations, and departure times and various waiting policies, are addressed in Section 5

of this chapter.
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We use the well-known successive shortest path approach, which we adapt to the

dynamic residual network, to develop solutions algorithms for the formulation presented

above. As noted previously, the time-space network serves as an implicit tool for

studying the problem and interpreting the various algorithms, but is not explicitly

constructed. The successive shortest path approach is a classical approach that can be

found in textbooks on network flow algorithms (see for instance Ahuja et al. (1993)). The

approach adapted to the dynamic residual network is based on solving a series of

successive shortest path problems, where each is solved in a residual time-space network.

An amount of flow equal to the capacity of each minimum cost path obtained is

augmented, until all the flow has been sent from the origin to the destination. Algorithms

developed for the dynamic minimum cost flow problem are specializations of this

approach. The main difference among the algorithms is the algorithm used to solve a

shortest path problem in the dynamic residual network. Below we describe the steps used

in the successive shortest path algorithm adapted to solve the dynamic minimum cost

flow problem. Then we define some properties that will be useful to develop various

solution algorithms with various levels of efficiency.

Let z be the amount of flow which has been sent so far by the algorithm. Initially z

is set to zero, as no flow has been augmented yet. When z is equal to the given amount

of flow v that should be sent from s to q, the algorithm is terminated. Let )r(q)

represent the cost of a minimum cost path from s to q obtained in a certain

augmentation iteration, and let r(q) represent the travel time of this path. If r(q) is

greater than the time horizon M, the problem is infeasible and the algorithm is

terminated. Let U'(P) denote the minimum of two terms: the residual capacity of path P

and the amount of flow that still needs to be sent from s to q. The generic structure of

the successive shortest path algorithm which solves the problem is described as follows:

Step 1: Initialization

z = 0

Step 2: Compute a minimum cost path with positive residual capacity from the origin to

the destination

(Algorithms to perform this step are given later in this section).
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Step 3: Find the capacity U(P) of the augmenting path

If r(q)> M, return, problem is not feasible, and stop.

Otherwise, U(P) = min mn r (ti) n r(i, jt, tt and U'(P)= mintv - z, U(P)}.

Step 4: Augment flow and update the dynamic residual network

For every arc on the augmenting path connecting node-time pair (i, t,) to node-time pair

(j, t, )

If ti > t,, then r1,(t, )= r, (ti)- U'(P) and r(j,i, tj, ti) = r(j,i, t, t,)+ U'(P)

Otherwise, r, (tj) r/l (tj ) + U'(P) and r(i, j, t, t)= r(i, j, t,, t)-U'(P)

z = z + U'(P)

If z = v , then stop. Otherwise, go to Step 2.

Finding the capacity of a minimum cost path, augmenting the flow, and updating the

residual network (Steps 3 and 4) are standard procedures common to all solution

algorithms presented in this chapter and the solution algorithms known in the literature.

The method of computing minimum cost paths is however peculiar to every solution

algorithm. We present three such algorithms for minimum cost path computations. As

mentioned previously, the first algorithm for minimum cost path computations, denoted

as Algorithm A, is an existing algorithm, developed in Cai et al. (2001). Algorithm A is

interpreted in this chapter differently than in Cai et al. (2001). The second and third

algorithms, denoted respectively as Algorithm B and Algorithm C, are more efficient

solution algorithms developed by progressively exploiting some properties of the time-

space network. Let ff(i,t) denote the minimum travel cost from the source (s,0) to node-

time pair (i,t), and let z(i,t) denote an upper bound on this cost. That is, z(i,t) is the

cost of a minimum cost path found so far by the algorithm from node-time pair (s,0) to

node-time pair (i, t). Before presenting the three approaches, we make some observations

that will be useful in the development of the solution algorithms:
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1. We note that the residual time-space network is composed of two subnetworks: a

forward network, denoted as G', consisting of the set of forward arcs, denoted as

A+, that have positive travel times; and a reverse network, denoted as G-, consisting

of the set of reverse arcs, denoted as A-, that have negative travel times. Each of the

two subnetworks G+ and G-, alone, is acyclic. There are two approaches to visit the

residual time-space network to compute minimum cost paths. The first approach is to

visit the two subnetworks successively, making use of the acyclicity property. In this

approach, the forward subnetwork G+ is visited first, and minimum cost labels at the

nodes are computed. Next the reverse subnetwork G is visited to update the

minimum cost labels at the nodes, using as initial values the labels computed from the

subnetwork G'. The forward and reverse subnetworks are visited successively until

the minimum cost labels at all nodes, as obtained from both subnetworks, are equal.

At this point a minimum cost path with positive residual capacity has been found. The

second approach to compute minimum cost paths is to visit the two subnetworks G+

and G- simultaneously rather than using the results of one subnetwork to initialize

the labels in the other subnetwork. We present one algorithm that follows the first

approach and two algorithms that follow the second approach later in this section.

2. In general, a node-time pair (i,t) might be visited more than once by a solution

algorithm because different paths reaching (i,t) will in general produce different cost

labels at (i, t). For example, suppose that the cost label of (i, t) obtained from a path

P that reaches i at time t is equal to Tp,(it). And suppose that after (i,t) is visited,

its cost label decreases to P,(i,) due to another path P2 that reaches i at time t.

Then (i,t) should be revisited by the algorithm as its decreased cost label could

potentially update the cost labels of nodes in its forward star. Consequently, an arc

connecting node-time pair (i,t) to node-time pair (j,tj) might be visited more than

once in every minimum cost path computation. Note the difference here between the

general minimum cost flow problem and one of its variants, the minimum time flow

problem, where a link cost is equal to its travel time. In the latter case, a node-time
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pair (i,t) needs to be visited at most once because if it can be reached, its cost label,

which is the travel time from (s,0) to (i,t,), will always be equal to t irrespective of

the path through which (i,t) is reached. Therefore, every arc connecting node-time

pair (i,t) to node-time pair (jt) needs to be visited at most once in every minimum

time path computation. The latter problem is a connectivity problem between the

source node and all nodes that correspond to the destination node in the time-space

network.

3. We note that it is not necessary to visit all nodes in the time-space network. Only the

relevant node-time pairs that can be reached (or a subset of these, as will be shown

later in the chapter) along paths departing node-time pair (s,0) need to be visited.

Below we describe the procedures of exploring the network and finding a minimum

cost path in Algorithms A, B, and C (i.e. Step 2 of the generic algorithm).

3.4.1 Algorithm A

We review an existing algorithm, developed in Cai et al. (2001), for minimum cost path

computations involved in the solution algorithm to the dynamic minimum cost flow

problem. We present below an interpretation of this algorithm that is different from the

description given in Cai et al. (2001), which we refer to as Algorithm A, in the time-

space network, and according to the properties that. were discussed above. Algorithm A

employs the first approach outlined above to compute minimum cost paths. That is, the

two acyclic subnetworks G' and G- are explored separately. In each subnetwork, the

algorithm visits all node-time pairs (j,t) and computes the estimated minimum cost

labels ir(j,t) according to the following optimality conditions:

r(j, t) =Min ' -, minm mi ;(.') + c(u) (3.5)
{il(i, {}{uiu+dj,(u)=t& , ((u)>O}

;f(j, t)k+ = min {(j,t)k, in min u U)k+1 + c(i, j, u, (3.6)
i'j 1,71{aU+s(i,j,UJr)=1 &r~i,'j,2,,)>o}
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where k denotes the iteration number, i.e. the number of subnetworks explored so far (k

is referred to as a section index in Cai et al. (2001)). Equations (3.5) and (3.6) are used in

subnetworks G' and G~, respectively. Exploration of subnetwork G' is done in

increasing order of time as G' is acyclic (Chabini (1998), Pallottino and Scutellai

(1998)). The estimated minimum cost label Z(j, )k in iteration k is initialized to the

value it had in iteration (k - 1), and is updated by exploring all the node-time pairs (i, u)

in the backward star of (j,t), even though some of these node-time pairs may never be

reached from (s,0). When all node-time pairs in subnetwork G' have been visited, a

new iteration (k +1) begins, and subnetwork G- is explored in decreasing order of time

(corresponding to the reverse arcs), using Z(j, t)k as initial values of the cost labels of all

nodes (j,t). Equations (3.5) and (3.6) are applied successively until all cost labels

obtained from one subnetwork are equal to the cost labels obtained from the other

subnetwork. When the algorithm terminates, f(i, t)= z(i, t), V (i,t)e N x T . The travel

cost of a minimum cost path is given by z(q) = min{ff(q,t)}, and its travel time is given
tE T

by r(q) = Arg min{f(q,t)}. The running time complexity of the dynamic minimum cost
te T

flow algorithm based on Algorithm A is in O((nMM2 )), since at most v augmentations

are done by the algorithm. In each augmentation, at most nM iterations (sections) are

done, and in each iteration mM arcs are explored (which corresponds to the number of

arcs in the time-space network).

To argue the correctness of Algorithm A, we note that Algorithm A applies an

identical logic as that used in Yen's implementation (1970) of Bellman-Ford's shortest

path algorithm, and whose run time is equal to half that of Bellman-Ford. Yen's

algorithm divides the network G into two subnetworks, G, and G2 . G, consists of all

arcs directed from a node i to a node j, where i < j, and G2 consists of all remaining

arcs, i.e. those connecting a node i to a node J, where i > j. Note that both subnetworks

G, and G2 are acyclic. The algorithm computes estimates of minimum cost labels in one

subnetwork and uses these estimates to initialize the cost labels in the other subnetwork.
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This procedure is repeated successively until all the estimated minimum cost labels from

both subnetworks converge to the same value. It can thus be seen that Algorithm A that

operates on the two acyclic subnetworks G' and G- is identical to the algorithm

developed in Yen (1970).

3.4.2 Algorithm B

Algorithm B differs from Algorithm A in several respects. First, the minimum cost labels

of the nodes are obtained by simultaneously exploring the forward and reverse arcs,

rather than exploring the two subnetworks separately. Second, instead of computing the

minimum cost labels of all nodes in the time-space network, only the relevant nodes that

could be reached from the origin node at departure time zero are visited. Third, the nodes

are visited in increasing order of time (as illustrated next) which leads to a smaller

number of arc explorations. Next we describe the algorithm and provide its pseudocode.

3.4.2.1 Description of Algorithm B

We maintain a set of candidate nodes C which initially includes only the source node at

departure time zero, i.e. (s,0). The set C holds all node-time pairs (i,t) which have been

reached so far by the algorithm, and which are to be visited. Note that a node-time pair

(i,t) might be inserted in the set C more than once, as explained previously. We

initialize the cost labels z(i,t) of all node-time pairs (,') to infinity, and the minimum

cost label z(s,0) (which is equal to zr(s,O)) of (s,0) to zero.

The algorithm visits nodes in increasing order of time, taking into consideration the

existence of reverse arcs with negative travel times. We define a time-bucket B, as an

array or a list that stores the nodes which have been reached at time t, i.e. node-time

pairs (i,t). Therefore, we maintain (M + 1) buckets each corresponding to one arrival

time t at the nodes, 0 < t M. We always select elements from the minimum time

bucket B. When the minimum time bucket B, is empty, we check if any elements have

been inserted at a lower time bucket B,', where t'< t (due to the reverse arcs). If so, we

next select those elements in the minimum non-empty time bucket B,,. Otherwise, we
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select elements from the next non-empty time bucket B,,, where t"> t. The rationale

behind this selection strategy is to achieve computational time savings by visiting those

node-time pairs that are reached along reverse arcs as soon as they are reached, as these

can potentially update the cost labels of node-time pairs in higher time buckets. Delaying

their visit, on the other hand, could result in revisiting several node-time pairs in higher

time buckets.

For every node-time pair (i,t) selected from B,, we explore the arcs with positive

residual capacity that connect (i,t) to node-time pairs (j,u), where 0 < u = t + d (t) M

if the arc connecting (i,t) to (j,u) is a forward arc and 0 u = t - d,,(u)< M if it is a

reverse arc. We update the cost label ir(j,u), if necessary, and add (j,u) to bucket B of

the candidate set C if it is not already in B,4. We repeat this process until there are no

more candidate nodes in C. When the algorithm terminates,

,(i,t)= z(i, t), V (i, t) e N x T . The travel cost of a minimum cost path is given by

z(q) = min{r(q, t)}, and its travel time is given by r(q) = Arg min{ff(q,t)}.
IET tE T

Note that other implementations of the candidate set C and other selection functions

are also possible. Below we provide the pseudocode of Algorithm B for a general

implementation of the candidate set C.

3.4.2.2 Pseudocode of Algorithm B

Step 1: Initialization
A A

z(i,t)= oo, V(i,t)e N x T; z(s,0)= 0

Z(q) = oo; C = {(s,O)}

Step 2: Node selection

Select (i,t,) from C; C = C \{(i,t,)}
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Step 3: Explore forward and backward star

For all je A(i) such that r,, (t, )>0 and J w s

t. = ti + d (t,)

If t < M and i(i,1 ,)+c,(t,)< U 7(j, t )I then

ff(j,t) lr(i, t, )+ c U(ti)

pAj't = (i, ti )

if (j, tj ) o C, then C = C U j(j, tj)

For all j e B(i) such that j # s

For all t such that ti, =t, + d1 (t1)and r(t,)<U1 (1 )

If (i,t, )-c (t )< (j,ty )j then

)7j't )=(i,ti)-cii (ti)

p(j, t )(ilti )

If (j,t1 )o C, then C = CU( j,t1 )I
Step 4: Stopping criterion

If C = 0, STOP; otherwise, go to Step 2.

Note that in Step 3, if the origin node s is reached, it is not added to the candidate set

so as to restrict the departure time at s to t = 0.

3.4.2.3 Implementation Details

The selection function in Step 2 of the pseudocode of Algorithm B will lead to multiple

implementations of the candidate set C, such as a time-bucket, a queue, or a dequeue.

The number of node-time pairs visited by the algorithm (and inserted in set C) will in

general be different for different data structures since the order of node additions and

selections is not the same for all data structures, and the number of label revisions before

convergence is a function of this order. Consequently, the theoretical running time

complexity of the algorithm depends on the data structure used to implement the
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algorithm. When the candidate set is implemented as a queue or a dequeue, Algorithm B

can be viewed as a direct application of a static label-correcting shortest path algorithm to

the residual time-space network, and hence upper bounds can easily be established on its

running time. Note that the running time complexity of Algorithm B with a time-bucket

implementation of the candidate set is still under investigation as this implementation

differs from all known label-correcting implementations in the literature. However, as the

numerical results in Section 3.6 indicate, the time-bucket implementation is more

efficient in practice than both the queue and the dequeue implementations.

3.4.3 Algorithm C

Algorithm C aims at reducing significantly the number of node-time pairs that need to be

visited in Algorithm B by employing special node addition and selection procedures. The

basic idea is to compute lower bounds on the minimum travel cost from any node-time

pair to the destination, and utilize these bounds to achieve computational time savings by

reducing the search area in the dynamic residual network. Let e, (i, t) be the minimum

travel cost from node i to destination node q, if one departs node i at time t after the nl

augmentation and update of the residual network. We first state a property related to the

lower bounds, which will be needed in developing the solution algorithm.

Lemma 3.1: The function e,(i,t ) is a non-decreasing function of the number of

augmentations. That is. enfl (i, t) e,, (i, t).

The proof of Lemma 3.1 is given in Appendix A. U

Let e(i,t) be a lower bound on the minimum travel cost from node-time pair (i,t) to

the destination node q. Since the minimum cost labels e(i,t) are non-decreasing

functions of the number of augmentations, one can use e, (i,t) (the minimum cost from

(i,t) to q obtained before augmenting any flow) as an estimate of e(ii). The lower

bounds e(i,t) can be used to improve the node selection and label update procedures as

follows.
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Let A(i,t) be the minimum travel cost among all paths from origin node s at

departure time zero to the destination q constrained to go through node-time pair (i,t).

A

For an estimate A(i,t) of A(i,t), one can use the sum of travel cost from (s,O) to (i,t)

and the lower bound on the travel cost from (i,t) to q, i.e. A(i,t)= 7i, t) + e(i, t). A(i, t)

could then be updated if the cost label r(i,t) is updated. We note that if A1(i,t) is greater

than or equal to the minimum cost label ff(q) at the destination found by the algorithm so

far, it is not useful to explore the forward and backward star of node-time pair (i, t), since

the minimum cost label at the destination from all these elements is greater than or equal

to 2A(i,t). That is, for all (j,u) in the forward star or backward star (along reverse arcs

with positive capacity) of (i,t): 11(j,u) > A(i,t) and since A(i,t): ,r(q), then

A(j,u) uz(q). Therefore, none of the nodes in the forward or backward star of (i,t) can

improve the minimum cost label at the destination. The use of this observation

considerably reduces the number of nodes that are visited by the algorithm, which is

described next.

3.4.3.1 Description of Algorithm C

To compute the lower bounds e(i,t) on the minimum travel costs for all (i,t)e NxT,

one can use any dynamic all-to-one shortest path algorithm, such as algorithm DOT

developed in Chabini (1998). In this case, e(i,t)= e,(i, t), which is the minimum cost

obtained before augmenting any flow. Note that the efficiency of Algorithm C depends

on the quality of the lower bounds e(i, t) chosen. Values of e(i,t) smaller than e) (i,t)

can be used. The computation of those lower bounds will take less time than that of

eo (i, t), but they would not reduce the set of node-time pairs searched by the algorithm as

would e0 (i, t). For example, static lower bounds can be obtained from a virtual static

network where link travel costs are defined as: c= Min{c, (t). In the extreme case, one
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can use e(i,t)=0, V(it)e NxT, in which case Algorithm C would correspond to

Algorithm B with the candidate set implemented as a cost-bucket (where nodes are

selected from the candidate set in increasing order of cost).

After computing the lower bounds, we set the labels A(i,t) and i(i,t) of all node-

time pairs (i,t) to infinity, and we set i(s,O) to zero and A(s,O) to e(s,O). We initialize

the minimum cost label at the destination ir(q) to infinity. The algorithm stores the node-

time pairs in the candidate set C as a priority queue where the smallest A(i,t) label is

selected. Initially, C includes only the source node s at time zero, i.e. (s,). The

algorithm selects a node-time pair (i,t) with minimum label A(i,t). If the label A(i,t) is

less than the minimum cost label ff(q) at the destination found so far, which means that

the destination node q has not been visited yet (i.e. i # q), the arcs with positive residual

capacity in the forward star and backward star (reverse arcs) of node i are explored (as

before). Otherwise, if the selected node i is the destination node q, the algorithm is

terminated since all node-time pairs in the forward and backward star of (qr(q)) as well

as the remaining node-time pairs in C cannot lead to a cost at the destination lower than

Zc(q).-

3.4.3.2 Pseudocode of Algorithm C

Step 1: Computation of lower bounds

Obtain e(i,t) V(i, t)e N x T (e.g. from DOT)

Step 2: Initialization
AAA A A

A(i, t)= oo, A(i, ')= 00, V (i,t)e N x T; ir(s,O) = 0; A(s,O)= e(s,0)

ff(q)=oo; C={(s,0)}

Step 3: Node selection

(i,t) = Arg min A(jt)
(ij,)E C
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C = C \ {(i, tj)}

Step 4: Stopping criterion

If i = q, then stop. Otherwise, go to Step 5.

Step 5: Explore forward and backward star

For all je A(i) such that r (ti)>0 and j# s

t =ti+di(ti)

If t ; M then

If ;(i, t,)+ c(t < j, and ;f(i, t) + c,(ti)+ e(}, t) < then

If = (j, t )+e(j,tj)

P(j, t' ) (i, ti)

if (j, tC )c Ci , then C = C Uc a sty )

If j C q , then r(q)= (j, i th

For all j B(i) and j # s

For all t., such that ti = tj + dji (tj ) and r,j (tj )< Uji (tj

If )(i, ti)-cj )r J~) and )r(i'tj)-c.#( + e(j. t.)r(q)) then

A(j~tj)= Ait)-y()

$(j, t =(j, I +(j, tj

PGj tJ)=(i ti)

if (j, tj )o C , then C = C U J(j, tj)

If j = q, then r(q) = z(j, ty

Step 6: Check if candidate set is empty

If C = 0, then stop; problem is infeasible. Otherwise, go to Step 3.
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Note that although the pseudocode given above corresponds to Step 2 of the generic

algorithm, the computation of lower bounds (Step 1 in the pseudocode) is not repeated

for every augmentation. Moreover, for multiple minimum cost flow problems having the

same destination, the computation of lower bounds would be done only once. Although it

is not done in the current implementation, one can obtain tighter lower bounds on the

travel costs. Since the minimum travel cost from any node-time pair to the destination is a

non-decreasing function of the number of augmentations, one can update after every

augmentation the lower bounds of those node-time pairs (i, t,) that are on a shortest path

A A

(the augmenting path), as follows: e(i,t,)=f(q)-ir(i,t,), which is the difference

between the minimum cost label at the destination and the minimum cost label at (i,t,)

(since z(i,t)= ;r(i,t) when the algorithm terminates) obtained in the given

augmentation iteration.

3.4.3.3 Correctness of Algorithm C

Let ;r* be the cost of a minimum cost path from (s,O) to the destination q in the residual

network. Before proving the correctness of Algorithm C, we state the following lemma.

Lemma 3.2: Before Algorithm C terminates, there exists always a node-time pair (i,ti)

in the candidate set C such that: (1) z(i,t ) + e(i,t1) z *, and (2) (i,t, ) is on a shortest

path to q.

The proof of Lemma 3.2 is given in Appendix B.

Corollary 3.3: Every node-time pair (j,tj) selected from C is such that:

A (j, tj +e(j, tj~5

The proof of Corollary 3.3 is given in Appendix B. U

To argue the correctness of Algorithm C, we prove the following three properties:

(1) Algorithm C stops after a finite number of iterations.
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Let A be the minimum cost of an arc. Any node-time pair (i, t) further than K =I

A

arcs from (s,O) is such that: )A(i,t,)> j(i,tj ) r(i,t)> K.A = r*. By Lemma 3.2, there is

a node-time pair (i) in C such that A(j,t) ; *. (j,tj) would then be selected from

C before (i,ti). Therefore, any node-time pair further than K arcs from (s,O) is never

visited by Algorithm C.

Let p(K) be the set of node-time pairs that are within K arcs from (s,O). Failure of

Algorithm C to terminate could then only be due to continued revisiting of node-time

pairs in y(K). Any node-time pair (i,t,) in p(K) is revisited at most a finite number of

times w(i,t ) as there is a finite number of paths from (s,O) to (i,t1 ) passing only through

nodes within K arcs from (s,O). Let o = max w(i,t) denote the maximum number of
(i ,tj)cu(K )

times any node-time pair in p(K) is revisited. Then, after at most w.jp(K)l selections,

none of the node-time pairs in p(K) will be revisited. Since node-time pairs outside

u(K) are not visited, Algorithm C must terminate.

(2) If the problem is feasible (i.e. there exists at least one path connecting (s,O) to q),

Algorithm C stops when the destination is selected (Step 4 of the algorithm).

Assume that the problem possesses a non-empty feasible domain. We prove by

contradiction that the algorithm cannot exit at Step 6 (i.e. when the candidate set is

empty). By Lemma 3.2, the last node-time pair (i,t) selected from C (where i w q)

before C becomes empty must be on a shortest path P to the destination. Since there is

at least one more node-time pair after (i, t,) on P, one can invoke the same argument as

in the proof of Lemma 3.2 to conclude that one of those node-time pairs after (i,t,) on P

must be in C after (i,t ) is selected from C. Therefore, (i,t,) cannot be the last node-

time pair to be selected from C. Hence, the destination node will eventually be added to

C, and the algorithm terminates when the destination node is selected (Step 4 of the

algorithm).

(3) When Algorithm C terminates, the cost label at the destination is optimal.
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By Corollary 3.3, when the destination node (q,t,) is selected from C,

A(q,tq)= C(q,t,)+e (q,tq ) But e(q,t) =0. Therefore, A(q,tq) it , and the cost

label T(q, tq) is optimal.

3.4.3.4 Implementation Details

The implementation of Algorithm C corresponding to the numerical results of this

chapter uses a binary heap data structure to implement the list of candidate nodes C.

Other priority queue data structures can be used. Let NA and Ns be respectively the

number of nodes added to and selected from the heap during the course of Algorithm C.

At most NA nodes are stored in the heap at any one time. The number of selected nodes

is less than or equal to the number of added nodes (Ns NA) because the algorithm can

be terminated before all nodes in the heap are visited. The nodes are organized by

estimated minimum cost labels to the destination from each node.

1. The initialization of the labels A(i, t) takes O(nM).

2. Selecting and removing the minimum element from the heap is done Ns times, and

each time it takes 0(log NA ).

3. Adding an element to the heap is done N times, and each time it takes G(log NA).

m
4. Assuming that the average number of outgoing arcs from every node is equal to -,

n

exploring the forward star and backward star of all selected nodes is done at most

2m * Ns times (counting also the reverse arcs). Exploring an arc can be done in 0()
n

but might lead to updating the label of a node that is already in the heap and

consequently to a percolate operation, which can be done in 9(log NA ).

Therefore, the theoretical running time complexity of the specialized version of

Algorithm C is 0 nM + NA log NA + Ns log N .Note that the computation of the
n )

lower bounds e(i, t) can be done in 0(n M+ mM) through a] gorithm DOTr and is done
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only once. If a static shortest path algorithm is used to compute lower bounds, then the

run time of this step is in O((n + m)log n). One can in principle establish upper bounds on

the numbers of selections and additions from the heap. However, those upper bounds

would be too loose to assess the efficiency of the algorithm. Experimental results

(Section 3.6) are a better tool in this case.

3.5 Special Cases and Extensions

In this section we revisit the assumptions that were made in the model formulation, and

show how to extend the solution algorithms that we have developed for the new cases of

interest. We specifically address the following issues: (1) the case where link travel costs

are equal to their travel times, (2) the waiting-is-allowed policy at nodes, and (3) the case

of multiple sources, multiple destinations, and multiple departure times.

3.5.1 The Case of the Minimum Travel Time Problem

A particular case of the time-dependent minimum cost flow problem is the time-

dependent minimum travel time flow problem, which is obtained by setting the link costs

equal to their travel times. Therefore, Algorithms A, B, and C described above can be

directly used as shortest path algorithms in the solution algorithm to the minimum travel

time flow problem. The efficiency of the adaptation of Algorithm A to the minimum time

problem will not be discussed as the algorithm was originally developed to solve shortest

paths in the general minimum cost flow problem. Its adaptation to the minimum time

problem would lead to a less efficient algorithm. However, for Algorithms B and C, one

can develop specialized versions that determine shortest paths in the solution algorithm to

the minimum travel time flow problem more efficiently than the original versions by

exploiting properties of link travel times as cost functions to reduce the number of

operations performed by these algorithms. Below we briefly describe these specialized

algorithms and provide their running time complexities. For a detailed description of

these algorithms, the reader is referred to Chabini and Abou Zeid (2002). Moreover, we

describe another algorithm in the literature that was proposed to solve the time-dependent

minimum travel time flow problem.
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3.5.1.1 Algorithm B Specialized for the Minimum Travel Time Flow Problem

The computation of shortest paths involved in the solution of the time-dependent

minimum travel time flow problem can be viewed as a connectivity problem between the

source node and all nodes that correspond to the destination node in the time-space

network. As demonstrated in Section 3.4, a node-time pair needs to be visited at most

once in every minimum time path computation. This would lead to a significant reduction

in the number of node additions and selections, as compared to the general minimum cost

flow problem, and consequently, to a decrease in running time. The running time of the

specialized version of Algorithm B is independent of data structures used which allow for

node additions, updates, and selections in o(i) run time, as the order of node additions

and selections does not affect the number of times the reachable nodes are visited.

Therefore, the maximum number of nodes which could be visited by the algorithm is

equal to nM, which is the total number of nodes in the time-space network. For every

node visited, all forward and reverse arcs which have positive residual capacity are

explored only once. Thus, the maximum number of arc explorations is equal to 2mM

(mM forward arcs and mM reverse arcs). Consequently, when the specialized version of

Algorithm B is used to compute shortest paths, the theoretical running time complexity of

the time-dependent minimum travel time flow algorithm is in O((nM + mM)v).

Moreover, the specialized version of Algorithm B implemented using a time-bucket

data structure can be terminated when the destination node is selected. To show this, we

first provide a lemma whose proof is given in Appendix C.

Lemma 3.4: For any augmenting path, the arrival time at the destination is greater than

the arrival time at any intermediate node-time pair on the augmenting path.

To exploit this property, one can visit nodes in increasing order of time, taking into

consideration the existence of reverse arcs with negative travel times. The

implementation of an increasing order of time algorithm can be done by means of a time-

bucket data structure, as described previously. When the destination node is selected from

a bucket B,, there is no need to explore higher time buckets as there exist no reverse arcs

emanating from any node-time pair in a higher time bucket (see the proof of Lemma 3.4),

and the algorithm can be terminated. Therefore, the specialized version of Algorithm B
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applied in an increasing order of time would result in significant computational time

savings as compared to the initial version of Algorithm B where all reachable node-time

pairs are visited.

3.5.1.2 Algorithm C Specialized for the Minimum Travel Time Flow Problem

As the computation of shortest paths involved in the minimum time flow problem is a

connectivity problem between the source node at a certain departure time and the

destination node corresponding to the earliest arrival time, one can reduce the number of

node-time pairs visited by the specialized version of Algorithm B. This is the main idea

behind the specialized version of Algorithm C, which tries to direct the search towards

the destination node, by using lower bounds on the minimum travel times from node-time

pairs to the destination node. In the specialized version of Algorithm C, any node-time

pair cannot enter the heap more than once, as explained before. We next analyze the

running time complexity of the algorithm.

As before, let NA and Ns be respectively the number of nodes added to and selected

from the heap during the course of the specialized version of Algorithm C. The same

running time analysis that was given for Algorithm C applies here as well. Note that for

the specialized version of Algorithm C, NA is less than or equal to the total number of

node-time pairs in the time-space network, i.e. NA ; nM, since a node-time pair is added

to the candidate set at most once. In practice, the number of additions NA to the heap is

much lower than nM due to the lower bound property which reduces the search area in

the network. The number of explored arcs is at most 2mM which is the maximum

number of arcs in the residual time-space diagram. Note that an update operation does not

lead in this case to the percolation of any node in the heap, and can thus be done in 0(i).

Therefore, the theoretical running time complexity of the specialized version of

Algorithm C is in O(nMlog(nM)+ mM). In practice, however, this upper bound is

almost never reached because of the low number of node selections and additions. When

the specialized version of Algorithm C is used to compute shortest paths, the theoretical

running time complexity of the time-dependent minimum travel time flow algorithm is in

O((nMlog(nM)+ mM)v) since at most v augmentations will be done.
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The specialized versions of Algorithms B and C were implemented, and their

computational efficiencies were assessed by using large-size capacitated dynamic

networks. The computational results indicate that the specialized version of Algorithm C

is more efficient than the specialized version of Algorithm B due to the lower bound

property used in the former algorithm. For the test networks used, the successive shortest

path algorithm employing the specialized version of Algorithm C achieved significant

time savings, compared to that employing the specialized version of Algorithm B by up

to a factor of 15. For more details, the reader is referred to Chabini and Abou Zeid

(2002).

3.5.1.3 Other Algorithms

As noted above, the specialized versions of Algorithms B and C can be used to compute

shortest paths in the solution algorithm to the time-dependent minimum travel time flow

problem, leading to running time complexities of O((nM + mM)v) and

O((nMlog(nM)+mM)v), respectively. Below we provide a brief description of an

existing algorithm in the literature which can solve the time-dependent minimum travel

time flow problem and show its running time complexity.

In Miller-Hooks and Stock Patterson (2002), an algorithm which can solve the time-

dependent minimum travel time flow problem where unlimited waiting is allowed at all

nodes is developed. As is the case of the earlier algorithms described in this chapter, the

algorithm in Miller-Hooks and Stock Patterson (2002) is also a particular case of the

generic flow augmentation algorithm. It differs from the other algorithms in its way of

computing minimum time paths. The shortest path algorithm developed in Miller-Hooks

and Stock Patterson (2002) uses a dynamic adaptation of a label correcting algorithm

which performs at most O(nm) steps. Each of these steps involves an evaluation of the

minimum travel time D1 (t) (see Chabini (1998), Dj (t) =minbw(Q,)s>, (s - t + di (s)),

where ubw(i,t) is the maximum waiting time allowed at node i at departure time t)

corresponding to an arc (i,j) and a departure time t, which can be done in O(M) time.

Therefore, each shortest path computation is done in 0(nmM). Since at most v

augmentations will be done, the theoretical running time complexity of the overall
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solution algorithm developed in Miller-Hooks and Stock Patterson (2002) is in

O((nmM)v).

Note that if unlimited waiting is allowed at nodes, the specialized versions of

Algorithms B and C can still be used to compute minimum time paths with the same

running complexities as in the no-waiting case. We discuss waiting policies in the next

section.

3.5.2 Waiting Policies

We refer the reader to Chabini and Dean (1998) for a comprehensive discussion of

waiting policies and solution algorithms for shortest path problems where waiting is

allowed. Here we briefly summarize some concepts and properties of waiting policies

that will be useful in extending Algorithms B and C to allow for the possibility of waiting

at nodes. In order to fully characterize a waiting policy, one needs to specify the structure

of three time-varying waiting attributes: the time window of allowed waiting, the waiting

cost, and the waiting capacity of a node i at time t. By time window, we refer to upper

and lower bounds on the amount of waiting allowed at node i at time t, denoted

respectively as ubw(i, t) and lbw(i, t). The waiting cost can be general if it is a function of

the amount of waiting that has already occurred, or it can be memoryless otherwise. Let

cw, (tr) denote the cost of waiting at node i for r units of time, if waiting starts at time

t. Waiting capacity, denoted as U, (t), controls the amount of flow units that can be held

at node i at time t.

For simplicity, assume that the lower bound on waiting is zero. To express the

presence of a bounded waiting policy in the time-space network, one needs to add for

every node time pair (i,t) vertical arcs connecting (i,t) to (i,t + r), where

0 r ubw(i,t). The cost of every such arc is given by cw, (tr), its travel time is equal

to T , and its capacity is equal to U, (t). This transformation of the time-space network

results in the addition of O(nM2) arcs.

We discuss a waiting structure for which the specialized versions of Algorithms B

and C can be used to solve the problem efficiently. Consider the minimum travel time
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flow problem with unlimited waiting allowed at nodes and infinite waiting capacity. If

unlimited waiting is allowed at nodes, the specialized versions of Algorithms B and C

can be used with the same running time complexities as in the no-waiting case. To see

this, note that unlimited waiting can be represented by adding for every node-time pair

(i,t) in the time-space network a vertical arc from (i,t) to (i,t + 1). This transformation

results in nM additional arcs in the time-space network, and thus the total number of

arcs in the time-space network is nM + mM instead of mM. Therefore, the running time

complexities of the time-dependent minimum travel time flow algorithms with the

specialized versions of Algorithms B and C used to compute shortest paths and with

unlimited waiting allowed at nodes are still in O((nM + mM)v) and

O((nM log (nM) + mM) v), respectively.

3.5.3 Multiple Sources, Destinations, and Departure Times

In this section, we describe how Algorithms B and C (or their specialized versions) can

be used as minimum cost (time) path algorithms in the successive shortest path algorithm

in a network with multiple supply nodes and/or multiple demand nodes. Examples of

network flow problems involving multiple sources and/or sinks are the evacuation

(multiple destinations) and quickest transshipment problems (multiple sources and

destinations). In the case of multiple sources, we also allow for multiple departure times.

One technique to solve these problems is to transform the given network and

supply/demand structure into an equivalent network with one source and one destination,

and then apply the minimum cost flow algorithms developed in this chapter to the

transformed network. To transform a network with multiple sources into one with an

equivalent single source, we create a supersource node S. We connect S to every

source-time pair (s, t) with positive supply v(s, t) by an arc that has a travel time equal to

t , a travel cost equal to zero , and a capacity equal to v(s,t) at time zero and equal to

zero at all other times. Note that this transformation preserves the supply structure of the

original problem as it ensures that the right supplies are available at the corresponding

sources at the right departure times.
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To transform a network with multiple destinations into one with an equivalent single

destination, we similarly create an artificial superdestination node Q. In addition, we

create a copy q' of every destination node q, with positive demand v(q,). We connect

q, to q' by an arc that has zero travel time, zero travel cost, and infinite capacity.

Additionally, we connect q' to Q by an arc that has zero travel time, zero travel cost,

and capacity equal to v(qi) at time M and equal to zero at all other times. We allow for

waiting at q' without any penalty. This transformation ensures that the amount of flow

that departs q' at time M to the superdestination Q is exactly equal to the demand v(q,)

of destination node qi.

3.6 Computer Implementations and Numerical Results

We have implemented the various solution algorithms discussed in this chapter for the

purpose of experimental testing. The objectives of the experimental study were the

following: (1) analyze the running times of the solution algorithms for the dynamic

minimum cost flow problem, where Algorithms A, B, and C are used to compute shortest

paths, as a function of the following input parameters: the size of the network, the

number of nodes, the number of arcs, the number of time periods, and the amount of flow

that should be sent from the origin to the destination, (2) analyze the number of node-

time pairs in the time-space network that are visited per augmentation by Algorithms B

and C as a function of the size of the network, and (3) assess the practical computational

performance and the time savings of Algorithm C as compared to Algorithms A and B.

3.6.1 Computer Implementations

We have developed computer implementations for Algorithms A, B and C. For

Algorithm B, we have tested three implementations corresponding to three data

structures: a time-bucket (as described previously), a dequeue, and a queue.

All the algorithms are coded in C++. The codes are available upon request. The tests

were performed on a DELL Pentium III 933 megahertz computer with 256 megabytes of
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RAM. The running times of the algorithms are reported in seconds, and they represent the

average running time over 10 trials of each algorithm, where each trial corresponds to a

different origin-destination pair.

3.6.2 Test Networks

Test networks were generated using a pseudo random network generator. Input to this

network generator consists of: number of nodes, number of arcs, number of time

intervals, range of link travel times, range of link travel costs, and range of link

capacities. The topology networks are generated in two stages. First a cycle involving all

nodes is created to ensure strong connectivity. Then the remaining number of links is

added randomly.

3.6.3 Results

Table 3.1 shows the running times of the successive shortest path algorithm, using

Algorithms A, B, and C to compute shortest paths, as a function of the size of the

network, the number of nodes, the number of arcs, the number of time periods, and the

amount of flow that should be sent from the origin to the destination. The ratios of the

running times of the three algorithms to that where Algorithm C is used are reported in

parentheses. For the test networks used, the solution algorithm employing Algorithm C to

compute shortest paths achieved significant time savings compared to the other

algorithms. The successive shortest path algorithm using Algorithm C was faster than

that using Algorithm A by up to a factor of 113, and faster than that using Algorithm B

by up to factors of 25, 39, and 72 for the time-bucket, dequeue, and queue

implementations, respectively.

Table 3.2 (a) shows the number of node-time pairs N. added to the candidate set C

and the number of node-time pairs Ns selected from C, per augmentation, for

Algorithm C as a function of network size. Table 3.2 (a) also shows the number of node-

time pairs that are selected in Algorithm B for the time-bucket, dequeue, and queue

implementations (In Algorithm B, the number of nodes added is equal to the number of

nodes selected). In Algorithm A, all node-time pairs are visited, and so they are not
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shown in the table. The computational time savings of the successive shortest path

algorithm employing Algorithm C that will be reported below are due mainly to the small

number of node-time pairs visited by Algorithm C. Table 3.2 (b) shows the average

number of selections and additions (in %) per augmentation relative to the total number

of node-time pairs. The results indicate that in Algorithm B a considerable part of the

time-space network is explored. Moreover, as expected, different implementations of

Algorithm B lead to different number of node visits. The results indicate that fewer nodes

are visited using the time-bucket data structure than the dequeue and the queue data

structures. Moreover, fewer nodes are visited using the dequeue than the queue. The

effect of the number of node visits on running times is illustrated in Figures 3.3-3.7.

Figure 3.1 shows the variation in running times of the algorithms as a function of

network size, with the number of arcs being three times the number of nodes. Figure 3.2

shows the running times as a function of the number of nodes. The number of arcs is held

constant at 10000. Figure 3.3 shows the running times as a function of the number of

arcs. The number of nodes is held constant at 100. Figure 3.4 shows the running times as

a function of the number of time intervals. Finally, Figure 3.5 shows the running times as

a function of the amount of flow that should be sent from the origin to the destination.

Figures 3.1-3.5 indicate that the running times of the three algorithms increase as a

function of all network parameters. As network size, number of nodes, number of arcs, or

number of time intervals increases, the size of the time-space network also increases.

Thus, more node-time pairs could be reached by the algorithms. As the demand of flow

units at the destination increases, more augmentation procedures could be done, and

therefore the running time increases. However, note that for the successive shortest path

algorithm employing Algorithm C, the marginal rate of increase in running time is small.

The increase can be attributed to the fact that most of the work done in this algorithm is

in the initialization phase and the computation of lower bounds, and these procedures are

done only once irrespective of the amount of flow to be sent. The successive shortest path

computations and augmentation procedures are very fast in comparison. In the solution

algorithms where Algorithms A and B are used to compute shortest paths, the

computation of shortest paths is the most time-consuming part of the algorithms, as in
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each shortest path computation all nodes are visited in Algorithm A and all reachable

nodes are visited in Algorithm B.

Based on above numerical results, it is seen that Algorithm C is more efficient than

both Algorithms A and B. Moreover, the solution algorithm based on Algorithm B yields

lower running times than that based on Algorithm A.

Numerical results that measure the effectiveness of the minimum travel time flow

algorithm using the specialized versions of Algorithms B and C are reported in Chabini

and Abou-Zeid (2002). The ratios of running times of the minimum cost flow algorithm

to those of the minimum time flow algorithm were in the range of 2 and 1.2 for

Algorithms B and C, respectively (and their specialized versions). As expected, the

minimum cost flow algorithm has a higher run time than the minimum time flow

algorithm because a node-time pair might be visited more than once in the shortest path

algorithm (i.e. Algorithm B or C). However, for Algorithm B, the ratio is higher than for

Algorithm C since in Algorithm C the most time-consuming part is the computation of

lower bounds which is done only once, while in Algorithm B the time-consuming part is

the exploration of the network.

Table 3.1. Running times (reported in seconds) of the successive shortest path algorithm employing
Algorithms A, B, and C as a function of various network parameters. The ratios of running times of the
three solution algorithms, with respect to that employing
d, - [1,5], c,1 e [1,7], and Uij e [1,10].

m = 3n, T= 100,v=20
n

Alg. A

Alg. B (Queue)

Alg. B (Dequeue)

Alg. B (Time-
Bucket)
Alg. C

m 10000, T 1
n

Alg. A

Aig. B (Queue)

500
2.678
(56.5)
1.770
(37.4)
0.847
(17.9)
0.463
(9.8)
0.047
(1)

0, v 2
1000
23.487
(86.9)
5.554
(20.6)

1000
6.324
(67.3)
4.929
(52.4)
2.497
(26.6)
1.1 16
(11.9)
0.094
(I)

0_
2000
30.915
(109.5)
14.583
(51.7)

2000
18.50
(87.3
12.76
(60.2
6.887
(32.5
3.375
(15.9
0.212
(1)

3000
34.78
(108.
20.57
(64.3

3000
7 36.380

(113.8)
7 19.909

(62.3)
11.624
(36.3)
6.934
(21.7)
0.320

7)
8

Algorithm C, are reported in parentheses.

4000
41.614
(95.3)
27.074
(62.0)
16.368
(37.5)
10.879
(24.9)
0.437
(1)(1)

4000
34.262
(86.8)
23.219
(58.8)
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Alg. B (Dequeue) 3.758
(13.9)

Alg. B (Time-
Bucket)
Alg. C

2.834
(10.5)
0.270
(1)

n= 100,T= 100,v=20
m
Aig. A

Aig. B (Queue)

Aig. B (Dequeue)

Alg. B (Time-
Bucket)
Alg. C

500
0.549
(46.2)
0.150
(12.7)
0.101
(8.5)
0.092
(7.8)
0.012
(1)

n~ 1000, m3000,v =20
T 30
Alg. A

Alg. B (Queue)

Alg. B (Dequeue)

Alg. B (Time-
Bucket)
Aig. C

1.770
(67.8)
0.412
(15.8)
0.341
(13.1)
0.215
(8.2)
0.026
(1)

n = 1000, m = 3000, T = 100
V

Aig. A

Alg. B (Queue)

Alg. B (Dequeue)

Alg. B (Time-
Bucket)
Alg. C

1
0.583
(6.7)
0.383
(4.4)
0.232
(2.7)
0.116
(1.3)
0.087
(1)

80

9.081
(32.2)
5.260
(18.6)
0.282
(1)

12.351
(38.6)
7.643
(23.9)
0.320
(1)

13.581
(34.4)
8.463
(21.4)
0.395
(1)

1000
1.053
(47.7)
0.207
(9.4)
0.175
(7.9)
0.182
(8.2)
0.022
(1)

2000
1.791
(44.4)
0.256
(6.4)
0.242
(6.0)
0.256
(6.3)
0.040
(1)

3000
2.991
(50.2)
0.350
(5.9)
0.350
(5.9)
0.376
(6.3)
0.060
(1)

4000
3.886
(50.6)
0.415
(5.4)
0.416
(5.4)
0.455
(5.9)
0.077
(1)

5000
4.859
(50.0)
0.472
(4.9)
0.479
(4.9)
0.495
(5.1)
0.097
(1)

3.636
(60.9)
1.852
(31.0)
1.3 14
(22.0)
0.568
(9.5)
0.060
(1)

90
6.334
(74.1)
3.984
(46.6)
2.307
(27.0)
0.968
(11.3)
0.085
(1)

10
2.679
(29.5)
2.172
(23.9)
1.208
(13.3)
0.515
(5.7)
0.091
(1)

100
6.294
(66.7)
4.897
(51.9)
2.569
(27.2)
1.104
(11.7)
0.094
(1)

15
4.557
(49.1)
3.650
(39.3)
1.994
(21.5)
0.833
(9.0)
0.093
(1)

150
10.936
(79.9)
8.773
(64.1)
3.898
(28.5)
1.712
(12.5)
0.137
(1)

20
6.294
(66.7)
4.897
(51.9)
2.569
(27.2)
1.104
(11.7)
0.094
(1)

200
14.264
(79.2)
14.379
(79.8)
5.289
(29.4)
2.397
(13.3)
0.180
(1)

25
9.012
(94.0)
6.860
(71.6)
3.663
(38.2)
1.516
(15.8)
0.096
(1)

5
1.6 10
(18.0)
1.280
(14.3)
0.728
(8.2)
0.318
(3.6)

0.089
(1)



Table 3.2. (a) Number of node-time pairs selected and added in Algorithms B and C per augmentation. (b)
Average number of selections and additions (in %) made in Algorithms B and C per augmentation relative
to the total number of node-time pairs as a function of network size. In (a) and (b), the number of arcs is
three times the number of nodes, the number of time intervals is 100, the flow that should be sent is 20

units, dY e [1,5], c,, e [1,7], and Uj [1,10].
(a)

Number Nodes 0
Number of Node Selections NS 20.39

Made in Alg. C
Number of Node Additions N A 63.31

1000 2000
25.28

79.95

28.75

95.22

34.64 31.26

112.29 99.45

Made in Alg. C
Number of Node Selections Made in 38723.01
Alg. B (Time-Bucket)
Number of Node Selections Made in 43068.06
Alg. B (Dequeue)
Number of Node Selections Made in 73956.72
A . (Queue)

76727.28 152885.50 223721.80

83892.27 173449.10 252432.60

148223.20 317176.90 431749.80

304651.50

339040.90

563987.50

(b)

Number of Nodes
Avg. Number of Selections Made in
A1g. C Relative to Total Number of
Node-Time Pairs
Avg. Number of Additions Made in
A1g. C Relative to Total Number of
Node-Time Pairs
Avg. Number of Selections Made in
Alg. B (Time-Bucket) Relative to
Total Number of Node-Time Pairs
Avg. Number of Selections Made in
Alg. B (Dequeue) Relative to Total
Number of Node-Time Pairs
Avg. Number of Selections Made in
Alg. B (Queue) Relative to Total
Number of Node-Time Pairs

500
0.041 %

0.127%

77.446 %

86.1360%

147.913 %

1000
0.025 %

2000
0.014%

3000 4000

0.080 % 0.048 % 0.037 % 0.025 %

76.727% 76.443% 74.574% 76.163%

83.892% 86.725 % 84.144% 84.760%

148.223,% 158.588 % 143.917 % 140.997 %
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Figure 3.1. Running times of the successive shortest path algorithm employing Algorithms A, B, and C as a

function of network size. The number of arcs is three times the number of nodes. The number of time

intervals is 100. The flow that should be sent is 20 units. de E [1,5], Ce, e [1,7], Uj e [1,10].
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Figure 3.2. Running times of the successive shortest path algorithm employing Algorithms A, B, and C as a

function of the number of nodes in the network. The number of arcs is 10000. The number of time intervals

is 100. The flow that should be sent is 20 units. d, e [1,5], c, e [1,7], Uj e [1,10].
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Chapter 4

Experimental Results Using

Improved Shortest Path
Algorithms

4.1 Introduction

The study of shortest path problems in static networks has been the subject of extensive

research and has resulted in the development of various solution algorithms with different

running time complexities (see Ahuja et al. (1993)). More recently, there has been an

interest in developing shortest path algorithms for dynamic (time-dependent) networks

where network attributes such as link costs and travel times depend on the entry time of

the link (Grier and Chabini (2002), Chabini and Lan (2002), Pallottino and Scutelli

(1998), Chabini (1998), Cai et al. (1997), Ziliaskopoulos (1994), Kaufman and Smith

(1993), Orda and Rom (1990), Dreyfus (1969), and Cooke and Halsey (1966)). Shortest

path problems arise in various application settings and often occur as subproblems to

solve more evolved problems such as in the solution of dynamic traffic assignment

models. Substantial research efforts have been directed at speeding up shortest path

algorithms to meet the computational requirements of large-scale dynamic network flow

models.

The objectives and contributions of this chapter are twofold. First we introduce a new

algorithm (Algorithm Lazy-Sorting Label-Setting (LSLS)) developed in Chabini (2002)

85



for finding a single source shortest path tree in static networks. The new approach is

different from traditional comparison-based label-setting shortest path algorithms as it

tries to avoid finding a node with the minimum label at every iteration as the sole mean to

label set a node. In Algorithm LSLS, certain optimality conditions defined on the node

labels are utilized to determine if the labels are permanently set thus trying to avoid the

need for sorting, which is the bottleneck operation in comparison-based label-setting

algorithms. Second we extend the approach to solve one-to-all shortest paths in dynamic

(time-dependent) First-In-First-Out (FIFO) networks for all departure times. We use the

minimum arrival time labels corresponding to a certain departure time from the origin to

reoptimize the shortest path computation corresponding to the following departure time.

The optimality conditions we define for this problem also allow us to reduce the effort

spent in sorting the nodes. We perform several experimental tests on large-scale

hypothetical networks to assess the effectiveness of the new approaches in reducing the

need for sorting and the resulting running times.

The remainder of this chapter is organized as follows. In Section 4.2, we describe the

LSLS shortest path algorithm for static networks, provide its pseudocode, and conduct

experimental tests to evaluate its effectiveness. In Section 4.3, we describe an application

of the LSLS algorithm for dynamic FIFO networks, provide its pseudocode, and assess

its effectiveness by testing it on several networks with varying parameters.

4.2 A New Approach for Solving the Shortest Path
Problem in Static Networks

4.2.1 Description

In this section, we present Algorithm Lazy-Sorting Label-Setting (LSLS) developed in

Chabini (2002) for computing shortest paths in static networks from one origin node to

all other nodes. Algorithm LSLS is similar in structure to comparison-based label-setting

algorithms, such as Dijkstra's algorithm, with modifications in the comparison-based

steps. Let N denote the set of nodes and let A denote the set of arcs. Set S denotes the

set of selected nodes, and set C denotes the set of candidate nodes (i.e. those that have
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not been selected yet). The cost of an arc (i, j) is denoted as c,1 . We assume that arc

costs are non-negative. Sets A(i) = {j: (i,j)c A} and B(i) ={j: (j,i)e A} represent the

forward and backward star of node i, respectively. Let ic(i) be an upper bound on the

minimum travel cost from the origin node s to node i. When the algorithm terminates,

Jz(i) is the minimum travel cost from s to i. The predecessor indices denoted as pred(i)

are used to trace a shortest path tree.

In Figure 4.1, we state Dijkstra's algorithm for clarity of presentation.

S=p; C=N;

r(i)= oo Vie N \{s}; zr(s)=0; pred(s)=0.

While ISI <NI

i = Arg min(r(j));
je C

S=SU{i}; C=C\{i};

For all j e A(i)

If Zc(j)> r(i)+ c11, then z(j)=rc(i)+c4 and pred()= i.

Figure 4.1. Dijkstra's algorithm.

We note that the bottleneck operation in Dijkstra's algorithm is the determination of

the node with the minimum cost label (select-min operation) since it requires sorting of

the node labels and subsequent updating of data structures (e.g. priority queues).

Different data structures have been suggested to develop implementations of Dijkstra's

algorithm. They rely on reducing the time needed to perform the select-min operation

(e.g. Dial's implementation, radix heap, etc.). Those implementations are also classified

as comparison-based approaches since they employ some form of sorting to select the

node with minimum cost label at every step.

It would be desirable to find a mechanism that can detect optimality of a cost label of

a node, and select it in 0(1) time, and to use this mechanism to reduce the number of
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nodes that undergo sorting. This is the essential idea of the LSLS Algorithm. It tries to

avoid sorting nodes as much as possible (thus the name Lazy-Sorting), and instead to

determine if a node has been permanently set by performing certain optimality checks.

Let a(j) denote a lower bound on the minimum cost label of node J. Lemma 4.1

defines an optimality criterion for the label of a node.

Lemma 4.1: If the label ir(j) qf a node j satisfies f(j)! min (a i)+c j), then
ic B ( J and ic C

ir(j) is optimal.

Proof:

The proof is by contradiction. Assume that v(j) min (a(i)+c,) but that ir(j) is
ic B(j)and i Cc

not optimal. This means that r(j) would be updated at some point to a label

G'(j)= Zr(i)+ C, < rc(j) by a node i e C, where i e B(j). But ff(i) a(i) by the

definition of a(i). Therefore, we have:

10'(j)=(i) +c > a(i)+c min (a(i)+cj) 7c(j). This contradicts the
i icB(j)and is c

assumption that ic'(j) < ir(j), and therefore rc(j) is optimal.

We define the caliber l(j) of a node j as the minimum cost of all arcs in the

backward star of 1. 1() = (in c . If j has no incoming arcs, the caliber 1(j) is equal to

+ oo. Let min(C) denote the minimum cost label in the candidate set C (min(C) is + oo,

if C is empty). Corollaries 4.2 and 4.3 are immediate consequences of Lemma 4.1.

Corollary 4.2: If the label ir(j) of a node j satisfies z(j) ! min(C)+ 1(j), then z(j) is

optimal.

Proof:

First, we prove that min(C) is a lower bound on the optimal labels of all nodes in C.

That is, we can set a(i) = min(C) V i e N. To prove the above property, we first need to

prove that if the current label ir(p) of a node p is equal to min(C), then r(p) must be

optimal. Any path q from origin node s to node p consists of three subpaths: the first

subpath contains nodes in S, the second subpath links the last node in S, say 1, on path

88



q to the first node in C, say k, on path q, and the last subpath links node k to node p

(k might coincide with p ). Let c (k) = zQ)+ c/, be the cost of the subpath of q from s

to k. Note that 0 (k) > min(C) since min(C) is the minimum cost label in C after all

nodes in S have updated their forward star (and I is one of those nodes). Since the cost

of the subpath from k to p is greater than or equal to zero, then the cost of the path q

from s to p is greater than or equal to min(C), and thus min(C) is optimal.

Now we prove that min(C) is a lower bound on the optimal labels of all nodes in C.

There should be a node p in C whose current label is min(C) (and thus its optimal

label) and whose predecessor is a node in S. Consider any other node j in C. An

optimal path q from origin node s to node j consists of three subpaths: the first subpath

contains nodes in S, the second subpath links the last node in S, say 1, on path q to the

first node in C, say k, on path q, and the last subpath links node k to node j. Notice

that the current label z(k) of node k must be equal to its optimal label (i.e. to the cost of

the subpath of q from s to k) since node I (which is the predecessor of node k on the

optimal path to k) has already updated its forward star. There are two cases: (1) If node

k coincides with node p, then the optimal label of k is equal to the optimal label of p

(i.e. equal to min(C)). Since the optimal label of j is greater than or equal to the optimal

label of k (since arc costs are non-negative), then the optimal label of j is greater than

or equal to min(C). (2) If node k is different from node p, then the current label of

node k (which is equal to its optimal label) is greater than or equal to the current label of

node p (which is equal to its optimal label min(C)) because min(C) is by definition the

minimum current label in C. Since the optimal label of j is greater than or equal to the

optimal label of k, then the optimal label of j is also greater than or equal to min(C).

Thus, we have established that min(C) is a lower bound on the optimal labels of all

nodes in C.
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Since 1(j) < c. V (i, j) e A , by the definition of I(j), we have:

min(C)+ i(j) min (a(i)+ c,), and thus .r(j) min (a(i)+ cj). By Lemma 4.1,ie B(j)and ie C iE B(j)and iE C

71(j) must be optimal.

Corollary 4.3: If the label z(j) of a node j satisfies

fr(j) ! min(C) + min {l(i) + c, 4 after being updated from all nodes i e B(j), then
cB (i) and Je C

rc(j) is optimal.

Proof:

Suppose that .c(j) min(C)+ min 1i(i) + c, I after being updated from all nodes
jE B(i) and je C

i e B(j). If zc(j) were not optimal, z(j) would be updated at some later stage by a node

i e C, where i e B(j), whose current label Yr(i) would be updated to ff'(i) < fr(i). That is

we would have: f'(j) = f'(i)+c,. However, we have: ir'(i)>min(C)+(i). That is,

a(i) = min(C) + 1(i) would be a lower bound on the label of any node i e B(j) and i e C

that gets updated. Since .r(j)5 min {min(C)+l(i)+ cJ = min {a(i)+ c. 4, c(j)je B(i) and jE C je B(i) and je C

must be optimal by Lemma 4.1. U

After giving the optimality conditions for the label of a node, we are now ready to

describe the LSLS algorithm. As in Dijkstra's algorithm, the nodes in the LSLS

algorithm are organized in two sets: selected nodes S (i.e. those nodes that have been

visited by the algorithm and whose forward star has been updated) and candidate nodes

C. Moreover, the candidate set C is further divided into four disjoint subsets:

permanently labeled nodes denoted as P, i.e. those nodes whose labels are known to be

optimal but that have not been selected yet, two sets of candidate nodes H (heap) and D

(delayed) that have been reached but not yet known to be optimal (i.e. whose labels can

potentially still be updated), and a set of non-reached nodes denoted as NR.

The algorithm works as follows. As long as the set P of permanently labeled nodes is

non-empty, the algorithm selects a node i from P, updates the cost labels of non-

permanent nodes j in the forward star of i, and inserts j in D if j has not been

reached before. When the set P becomes empty, the algorithm examines the node i with
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the minimum label g(j) in H, and if r(j) is less than the minimum cost label in D, it

inserts i in S and updates the cost labels of nodes j in the forward star of i. If j has

not been reached before (i.e. j e NR) , the algorithm checks whether the inequality

7(j) f (i)+1(j) is valid, where ir(j) is the minimum cost label of j found so far by the

algorithm. If the inequality holds, node j is permanently set. This is valid because of

Corollary 4.2, and because r(i) = min(C). Node j is then inserted in P. Otherwise, it is

inserted in D in an attempt to delay (with the hope of avoiding) its entry to the heap.

After every selection from H, the algorithm checks if any nodes have been inserted in P

in which case these nodes are visited next.

When both P and H are empty, or when P is empty and the minimum cost label in

H is greater than the minimum cost label in D, the algorithm visits all nodes i in D.

For each node i in D, the algorithm updates r(i) by examining all nodes j in its

backward star that belong to one of the sets P, H, or D, i.e.

min+(i), min ((j) + c, J. Then the algorithm checks if the following
je B(i)and jcPUHJD

inequality is valid: i(i) min(D)+ min {i(j)+ c , where min(D) denotes the
je B(i)and leC

minimum cost label in D. If the inequality holds, node i is permanently set by Corollary

4.3, and is inserted in P. Otherwise, it is inserted in H. Note that the condition

r(i) min(D)+ min l(j)+ c,14 is stronger than the condition g(i) min(D) + 1(i),
jB(i j nd -eC

since min 1(j) + c1j 4 1(i). Note that the inequality is strict if c, > 0. The
je B (i) and jc=C

algorithm terminates when all the nodes have been placed in S.

As such, the LSLS algorithm tries to delay the placement in the heap H of those

nodes that have not yet been determined to be permanently set. In doing so, some nodes

might move directly from D to P, thus avoiding the sorting step that would have been

necessary if the node were inserted in H. Thus, the aim is to keep the set H as small as

possible during the course of the algorithm as operations on this set are the most time-

consuming parts of the label-setting algorithm. If set H remains empty or contains a very

small number of nodes that is not a function of the input, then the run time of the LSLS

algorithm would be linear (in the order of (n + m)).
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4.2.2 Pseudocode of the Lazy-Sorting Label-Setting Algorithm for Static
Networks

Step 1: Initialization

S =; H ={s}; D = 0; NR = N\{s};

r(i)=oo Vie N\{s}; fr(s)=O; pred(s)=O;

min(D)= oo.

Step 2: Computation of Caliber (can be done outside of the algorithm as a
preprocessing step)

/(j)=minc. VjeN

Step 3: Stopping Criterion
If S = N , then stop. Otherwise, go to Step 4.

Step 4: Visiting P

While P ##

Select i from P; P= P \{i}; S= S U{i};
For all j e A(i) such that j i S U P

If gc(j)> r(i)+ C, then

c(j) = ;z(i)+ ci
pred(j) = i
If jG NR, then D = D U{j}

If j e D and min(D)> zr(j), then min(D) z(j)

If H =# or min(H) min(D), then go to Step 6. Otherwise, go to Step 5.

Step 5: Visiting H

Select i from H; H= H\{i}; S = S U{i};
For all j e A(i) such that j 0 S U P

If ff(j)> (i)+ c, then

Ir(j)= r(i)+ c1
pred(j) = i
If jc NR then

If f(j) ; z(i)+l(j), then P = P U{j}. Otherwise, D = D U{J}.
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If j e D and min(D)> ir(j), then min(D) = ir(j).

Go to Step 3.

Step 6: Visiting D

While D # #

Select i from D; D= D \i}.
For all j e B(i) such that je PUHUD

If rQ) > Z(j)+ c1 i then

ff(i) = (j + c,,

pred(j)= i
If zr(i) min(D)+ min ti()+ cJ ,then P= PUi}.jc B(i) and jeC

Otherwise, H = H U {i}.
min(D)= oo
Go to Step 3.

Note that when the algorithm visits a node i e P and updates the label Zc(j) of a node

j e A(i), the optimality condition c(j)! min(C) +1(j) is not checked in the current

implementations. The rationale behind this is that rc(j) = c(i)+c,, and since c N 1(j)

and r(i) min(C) with a high chance that ff(i)> min(C), then that there is a low chance

that the inequality zr(j)=1r(i)+c,, <min(C)+1(j) is satisfied. The reason that

ff(i)> min(C) holds with a high chance is that when the algorithm visits node i,

min(C) is equal to the label of the predecessor node k of i if k were in the heap, and so

r(i)> ff(k) = min(C) if ck, > 0. Otherwise, if i were inserted in P when the set D was

emptied, then ff(z) min(D) = min(C).

4.2.3 Experimental Results

We have implemented the LSLS algorithm described above to test its effectiveness in

reducing the number of nodes that need to be sorted and its running time. All codes are

written in C++. The tests were performed on a DELL Pentium III 933 megahertz
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computer with 256 megabytes of RAM. The running times of the algorithms are reported

in seconds, and they represent the average running time over 10 trials of each algorithm,

where each trial corresponds to a different origin node. The random network generator is

the same as that used in the computational experiments in Chapter 3 of this thesis.

In the following, we report numerical results using two implementations of the LSLS

algorithm. Implementation I refers to the algorithm described above except that when the

nodes in set D are visited, their cost labels are not updated by visiting nodes in their

backward star and the optimality check performed on a node j in set D is:

zr() min(D)+l(j). Implementation 2 refers to the pseudocode given above, where the

cost labels of nodes in set D are updated by visiting nodes in their backward star and the

optimality check performed on a node j in set D is:

r(i)5 min(D)+ min, l(j)+c.J.
je B(i)and Je C

We report two measures of effectiveness: the running time of the LSLS algorithm as

compared to that of Dijkstra, and the number of nodes that are known to be optimal and

that need not be sorted (denoted as nodes in P). Tables 4.1, 4.2, and 4.3 show the results

as a function of network size, number of nodes, and number of arcs, respectively. Figures

4.2, 4.3, and 4.4 compare the percentage of nodes that are known to be optimal using the

optimality conditions for both implementation I and implementation 2 as a function of

network size, number of nodes, and number of arcs, respectively. Link costs belong to

the following range: cq E [1,3].

Comparing implementation I to implementation 2, the percentage of nodes that are

determined to be optimal through the optimality conditions is significantly greater for

implementation 2 than for implementation I as a function of all network parameters. This

is expected since in implementation 2 the optimality checks on nodes in set D are

stronger, as explained previously. It can be seen from the results that for implementation

2 more than 70 % of the nodes can be known to be optimal without the need to sort them.

This suggests that one can almost avoid the costly sorting operations performed on

priority queues by enforcing stronger optimality conditions.

Comparing the running times of both implementations of the LSLS algorithm to the

running time of Dijkstra's algorithm, implementation I and Dijkstra's algorithm have
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similar running times for the test networks used. However, the running time of

implementation 2 is greater than that of implementation 1 and Dijkstra's algorithm due to

the additional work performed in examining the backward star of nodes in D. The latter

result is somehow surprising due to the fact that a substantial number of nodes are known

to be optimal through the optimality checks. We interpret those running times as

indicative of the current implementation of the algorithms but not as conclusive of the

expected experimental performance. Enhanced implementations of the LSLS algorithm

could result in more savings in running times, which is a topic for future research.

Finally, Figure 4.5 compares the number of nodes that are known to be optimal

through the optimality conditions for different cost ranges as a function of network size

and using implementation 2. It is observed that as the cost range increases, the number of

nodes that get inserted in P decreases. This is intuitive since if the cost range is small

and the label of a node j gets updated from a node i, then it is more likely that the

caliber of node j would be equal to the cost of arc (i, j) than if the cost range were

larger. Consequently, if the cost range is small, a larger proportion of the nodes would

satisfy Lemma 4.2. In the extreme case where the cost is uniform among all links, all

nodes would satisfy the optimality condition (see Figure 4.5).

Table 4.1. Summary of results as a function of network size for implementation I (part a) and
implementation 2 (part b) of the Lazy-Sorting Label-Setting algorithm for static networks. The
number of arcs is three times the number of nodes.

(a)

Number
of Nodes t (LSLS) t(Dijkstra) t(Dijkstra)/t(LSLS) Nodes in P % of Nodes in P

1000 0.00044 0.00051 1.15 483.60 48.36

2000 0.00108 0.00151 1.39 913.30 45.67

3000 0.00186 0.00187 1.00 1400.90 46.70

4000 0.00295 0.00272 0.92 1830.10 45.75

(b)
Number
of Nodes t(LSLS) t(Dijkstra) t(Dijkstra)/t(LSLS) Nodes in P % of Nodes in P

1000 0.00051 0.00051 1.01 763.60 76.36

2000 0.00128 0.00151 1.18 1461.30 73.07

3000 0.00271 0.00187 0.69 2172.90 72.43

4000 0.00481 0.00272 0.57 2879.30 71.98
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Figure 4.2. Percentage of nodes in P as a function of network size for implementation 1 and

implementation 2 of the Lazy-Sorting Label-Setting algorithm for static networks. The number

of arcs is three times the number of nodes.

Table 4.2. Summary of results as a function of the number of nodes for implementation 1 (part a)

and implementation 2 (part b) of the Lazy-Sorting Label-Setting algorithm for static networks.

The number of arcs is held constant at 15000.

(a)

Number
of Nodes t(LSLS) t(Dijkstra) t(Dijkstra)/t(LSLS) Nodes in P % of Nodes in P

1000 0.00086 0.00093 1.09 708.20 70.82

3000 0.0024 0.00231 0.96 1301.40 43.38

6000 0.00557 0.00435 0.78 2790.40 46.51

9000 0.01218 0.00703 0.58 4612.40 51.25

12000 0.01305 0.01163 0.89 5997.50 49.98

(b)

Number
of Nodes t(LSLS) t(Dijkstra) t(Dijkstra)/t(LSLS) Nodes in P % of Nodes in P

1000 0.00207 0.00093 0.45 985.80 98.58

3000 0.00416 0.00231 0.56 2117.30 70.58

6000 0.00854 0.00435 0.51 4479.80 74.66

9000 0.01376 0.00703 0.51 7429.90 82.55

12000 0.01732 0.01163 0.67 10752.30 89.60
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Figure 4.3. Percentage of nodes in P as a function of the number of nodes for implementation 1
and implementation 2 of the Lazy-Sorting Label-Setting algorithm. The number of arcs is held
constant at 15000.

Table 4.3. Summary of results as a function of the number of arcs for implementation I (part a) and
implementation 2 (part b) of the Lazy-Sorting Label-Setting algorithm for static networks. The

number of nodes is held constant at 1000.

(a)

Number
of Arcs t(LSLS) t(Dijkstra) t(Dijkstra)/t(LSLS) Nodes in P % of Nodes in P

3000 0.00044 0.00051 1.16 499.80 49.98

6000 0.00053 0.00061 1.17 491.00 49.10

9000 0.00059 0.00067 1.14 589.60 58.96

12000 0.00073 0.00083 1.14 685.10 68.51

15000 0.0009 0.00096 1.06 699.70 69.97

50000 0.00328 0.00321 0.98 864.70 86.47

100000 0.00551 0.00690 1.25 936.50 93.65

(b)
Number
of Arcs t(LSLS) t(Dijkstra) t(Dijkstra)/t(LSLS) Nodes in P % of Nodes in P

3000 0.0005 0.00051 1.02 782.60 78.26

6000 0.0008 0.00061 0.76 785.50 78.55

9000 0.00117 0.00067 0.57 901.30 90.13

12000 0.00153 0.00083 0.54 968.20 96.82

15000 0.00201 0.00096 0.48 987.70 98.77

50000 0.0063 0.00321 0.51 999.00 99.90

100000 0.0108 0.00690 0.64 999.00 99.90
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Figure 4.4. Percentage of nodes in P as a function of the number of arcs for implementation 1
and implementation 2 of the Lazy-Sorting Label-Setting algorithm for static networks.

The number of nodes is held constant at 1000.
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Figure 4.5. Percentage of nodes in P as a function of network size and cost range for

implementation 2 of the Lazy-Sorting Label-Setting algorithm for static networks. The

number of arcs is three times the number of nodes.
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4.3 Application of the Lazy-Sorting Label-Setting
Algorithm to Dynamic FIFO Networks

4.3.1 Description

In this section, we extend the LSLS algorithm presented in the previous section to solve

shortest path problems in dynamic FIFO (First-In-First-Out) networks for the case of one

origin to all destinations and all departure times. Note that if a dynamic network is FIFO,

one can use Dijkstra's algorithm to compute the minimum arrival times at the nodes for a

certain departure time (see Chabini (1998)). Similarly to Section 4.2, we will use

optimality conditions to check if a node is already permanently set. However, the

optimality conditions are different. Let T ={Ol,..., M} denote the set of departure times.

The FIFO property implies that one cannot arrive earlier at a path (or link) destination by

departing its origin later. That is, the arrival time function is non-decreasing.

Mathematically, this is equivalent to the following condition:

c,(t)< !,1(t +1) Vt e {0,1,...,M - 1}, where icr (t) denotes the minimum arrival time at

node j if one departs origin node s along some path P at time t. Thus, the minimum

arrival time at node j if one departs origin node s at time t is a lower bound on the

minimum arrival time at node j if one departs origin node s at time t + 1. One can then

utilize the following optimality check to detect if a node's label is optimal.

Lemma 4.4: If the arrival time label r (t + 1) of node j at time t + is equal to the

minimum arrival time label ic, (t) of node j at time t, then ;c1 (t + 1) is optimal.

The data structures and selection rules used in the algorithm are the same as those

used in the implementation of the LSLS algorithm for static networks. The only

difference is in the optimality condition used to check if an arrival time label

corresponding to a certain departure time is optimal. Below we give the pseudocode of

the LSLS algorithm adapted for dynamic FIFO networks. We let d, (t) denote the travel

time on arc (i, j) if one departs node i at time t. Moreover, we assume that the network

becomes static after a time horizon M , i.e. dj (t)= d,(M) V t > M .
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4.3.2 Pseudocode of the Lazy-Sorting
Dynamic FIFO Networks

Step 1: First Departure Time

Use Dijkstra's algorithm or LSLS algorithm to find minimum arrival times for departure

time zero. t = 1.For t =1 to M , perform the following steps:

Step 2: Stopping Criterion for Whole Algorithm

If t = M , then stop. Otherwise, t = t + 1, and go to Step 3.

Step 3: Initialization

S=; H={s}; D=O; NR=N\{s};

Ir(t)= oo V i e N \ {s}; fr(s)= t ; pred(s)= 0;

min(D)= oo.

Go to Step 4.

Step 4: Stopping Criterion for the Algorithm at a Certain Departure Time

If S = N , then go to Step 2. Otherwise, go to Step 5.

Step 5: Visiting P

While P # #
Select i from P; P= P\{i}; S=S U{i};
For all je A(i) such that j i S U P

If ', (t) > izr (t) + dy (Yrc (t)) then

Ir1 (t) =fi(t)+dj(g, (t))

pred(j)= i
If j e NR then

If ff (t)= irf (t -1), then P = P Uj}. Otherwise, D = D U{j}.
If j e D and min(D)> ,c(j), then min(D)= ff(j).

If H = t or min(H) > min(D), then go to Step 7. Otherwise, go to Step 6.

Step 6: Visiting H

Select i from H; H = H \{i}; S = S U{i};
For all j e A(i) such that j o S U P
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If ff 1 (t) >fi (t)+di(fi(t)) then

7Cj(t) = )ri (t) + dij(ri(t ))

pred(j) = i
If je NR then

If Zj (t)=f ir(t -1), then P = P Uj}. Otherwise, D = D U{j}.

If j e D and min(D)> ir(j), then min(D)= ir(j).

Go to Step 4.

Step 7: Visiting D

While D # #

Select i from D; D = D \{i}.
If ff(t)= frf(t -1) , then P = P U{i}. Otherwise, H = H U{i}.

min(D)= oo

Go to Step 4.

4.3.3 Experimental Results

We have implemented the algorithm described above using the C++ programming

language to test its effectiveness in reducing the number of nodes that need to be sorted

and its running time. The computer platform and network generator used are the same as

those used in the computational tests described in Section 4.2.3.

Tables 4.4, 4.5, and 4.6 show the results as a function of network size, number of

nodes, and number of arcs, respectively. Link travel times belong to the following range:

d,1 (t)e [1,3] Vt c T . The set of departure times considered in these experiments is

T =100. The results indicate that the running times of the LSLS algorithm for dynamic

FIFO networks and Dijkstra's algorithm are similar in magnitude. In the results, we also

summarize the number of nodes that are known to be optimal through the FIFO

optimality condition. The reported numbers represent the average number of nodes that

are known to be optimal, where the average is computed over all departure times. As a

function of network size (Table 4.4), the percentage of nodes that verify the optimality

condition and avoid being placed in the heap is almost constant (around 25 %). As the
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network becomes sparser (Table 4.5), the number of nodes that verify the optimality

condition increases, while it decreases as the network becomes denser (Table 4.6). This

might be due to the fact that as the network becomes denser, the probability of having

strict FIFO arcs on a path increases. As a result, the probability of strict FIFO arrivals at

the nodes increases, and the number of nodes satisfying Lemma 4.4 decreases.

Table 4.4. Summary of results as a function of network size for the Lazy-Sorting Label-Setting algorithm
for FIFO dynamic networks. The number of arcs is three times the number of nodes.

Number
of Nodes t(LSLS) t(Dijkstra) t(Dijkstra)/t(LSLS) Nodes in P % of Nodes in P

1000 0.06263 0.0675389 1.08 253.30 25.33

2000 0.14081 0.1439591 1.02 493.70 24.69

3000 0.22799 0.2339348 1.03 801.10 26.70

4000 0.33854 0.3378199 1.00 1044.40 26.11

Table 4.5. Summary of results as a function of the number of nodes for the Lazy-Sorting Label-Setting
algorithm for FIFO dynamic networks. The number of arcs is held constant at 15000.

Number
of Nodes t(LSLS) t(Dijkstra) t(Dijkstra)/t(LSLS) Nodes in P % of Nodes in P

1000 0.14238 0.13349 0.94 71.10 7.11

3000 0.29492 0.28886 0.98 518.10 17.27

6000 0.60861 0.529 0.87 1944.80 32.41

9000 0.99358 0.76459 0.77 3891.00 43.23

12000 1.35979 0.94785 0.70 6275.80 52.30

Table 4.6. Summary of results as a function of the number of arcs for the Lazy-Sorting Label-Setting

alorith for FIFO dynamic networks. The number of nodes is held constant at 1000.

m t(LSLS) t(Dijkstra) t(Dijkstra)/t(LSLS) Nodes in P % of Nodes in P

3000 0.06263 0.06754 1.08 253.30 25.33

6000 0.08361 0.08205 0.98 142.40 14.24

9000 0.10104 0.1019 1.01 104.40 10.44

12000 0.1155 0.11496 1.00 90.00 9.00

15000 0.14238 0.13349 0.94 71.10 7.11

50000 0.38109 0.36039 0.95 34.50 3.45

100000 0.72881 0.68638 0.94 29.30 2.93
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Chapter 5

Congestion and Emission Pricing
in Dynamic Traffic Networks

5.1 Introduction

5.1.1 Background

Road pricing is a market-based policy instrument that has been advocated by economists

as a means of revenue generation or traffic demand management. Despite a general

attitude of public opposition on the basis of equity issues, recent interest in road pricing,

particularly in a form known as congestion pricing, has been spurred by federal

legislation (e.g. Intermodal Surface Transportation Efficiency Act of 1991 which

authorized funding for planning and implementation of congestion pricing demonstration

projects), and advances in road pricing technology (e.g. electronic road pricing) (Lo and

Hickman (1997)). The rationale behind congestion pricing is that the average trip cost

perceived by an individual does not capture the full external costs imposed on other users

of the network. The problem is then to determine the prices that should be charged to

travelers in order to account for the actual congestion costs induced by their use of the

network. Congestion pricing is a type of responsive pricing that can change consumption

patterns (Vickrey (1994)) by influencing users' travel choices at various levels: route

choice, departure time choice, mode choice, destination choice, and frequency of travel.
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Emission pricing, is another form of road pricing, that is aimed however at the pricing

of the emission externality. It has not been studied as extensively as congestion pricing,

but is receiving more attention lately as policy-makers strive to come up with economic-

incentive approaches to combat pollution and meet air quality standards (Nagurney (2000

b)).

The framework that we propose in this chapter can be used to model pricing for

congestion, emissions, or a combination of the two criteria. The solution algorithms that

we develop can as well solve all these variants. Moreover, the basic framework can be

extended to account for cases where pricing is done to optimize one criterion subject to

constraints on the other criterion. For instance, pricing can aim at reducing congestion

subject to an upper bound on the total emissions generated, or vice versa. The

presentation, however, will be mainly focused on congestion pricing for simplicity and

for its popularity as a pricing concept, but will be extended later in the chapter to cover

the variants mentioned above.

5.1.2 Taxonomy

Congestion pricing has been studied in the literature from different modeling perspectives

and under various assumptions, which we classify by referring to a taxonomy based on

the following dimensions:

Theory: The theory of marginal cost pricing (see Appendix D for more details), dating

back to Pigou (1920) and further explored by Walters (1961) and Vickrey (1969),

postulates that in order to maximize the economic efficiency of trip-making, a toll equal

to the difference between the marginal social cost and marginal (for the additional user)

private cost should be levied. However, technical or political constraints could render the

implementation of marginal cost pricing infeasible. Consequently, this has resulted in

what is known as second-best pricing, i.e. the best that can be done given that marginal

cost pricing cannot be employed (McDonald et al. (1999)), and has received considerable

attention from the research community. Examples of second-best pricing include pricing

only a subset of the links or paths in the network and/or imposing upper bounds on the

prices.
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Objectives: Congestion pricing ultimately aims at optimizing a certain system

performance which varies with the assumptions made on travel demand. If the demand is

inelastic to the prices, the objective function could be to minimize total travel time. In the

case of elastic demand, minimizing total travel time can be achieved by setting the tolls

large enough to drive the demand to zero, which is impractical in reality. In this case,

therefore, the objective function could be to maximize net social benefit (defined as the

difference between the total network user benefit from travel and the total social cost

incurred by all network users).

Type ofhtemporal analysis: This refers to whether travel demands, network conditions

(such as travel times and capacities), and tolls are time-varying (dynamic) or not (static).

Pricing strategies: These include (1) link-based tolls, (2) path-based tolls, (3) origin-

destination (O-D) based tolls, (4) destination-based tolls, (5) zone-based tolls (e.g. cordon

pricing), (6) tolls for distance traveled and/or time spent in the network, and (7) vehicle-

category-based tolls (mostly applicable in emission pricing). The reader is referred to

Gomez-Ibanez and Small (1994) and Lo and Hickman (1997) for a more comprehensive

review of pricing strategies.

User classes: Users can be classified according to one or more of the following criteria:

travel time or cost perceptions, information access, value of time, and vehicle category.

For instance, in congestion pricing, it is important to account for differences in valuations

of time in analyzing the effects of a particular pricing scheme (e.g. commercial vehicles

versus ordinary travelers). In emission pricing, the tolls can be made to vary by vehicle

category to reflect differences in emission rates among vehicle categories.

Next we provide a review of the literature on congestion pricing as related to the

above taxonomy.

5.1.3 Literature Review

In static traffic networks, after the pioneering works of Pigou (1920) and Knight (1924),

marginal cost pricing has been developed in Walters (1961), Vickrey (1969), and

Dafermos and Sparrow (1971). The classical two-route problem, where an untolled

alternative road is available parallel to a tolled road, has been studied by LUvy-Lambert

(1968), Marchand (1968), Braid (1996), and Verhoef et al. (1996). In Yang and Bell
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(1997), an elastic demand model with queues is given and a bi-level programming

approach is employed to select the best tolling policy that replaces queuing delays with

an equivalent amount of tolls. Verhoef (2002) studies second-best pricing in static

congested networks with perfect driver information and elastic demand. He derives a

general solution for social welfare maximization based on a bi-level programming

approach (Stackelberg game). Bi-level models of traffic management have also been

studied in Patriksson and Rockafellar (2002), Clegg at al. (2001), Labbe et al. (1998), and

Brotcorne et al. (2001). Recent developments (Liu and McDonald (1998, 1999), Small

(1992 b), and Liu and Boyce (2002)) address multiple-period pricing models.

Dynamic congestion pricing models, where network conditions and link tolls are

time-varying, have been addressed in Henderson (1974), Agneiv (1977), Arnott et al.

(1990), Carey and Srinivasan (1993), and Huang and Yang (1996). Moreover, in Arnott

et al. (1990), the effectiveness of various pricing policies (time-varying, uniform, and

step tolls) are compared. The limitations of those models are that they consider either a

bottleneck or a single-destination network. Wie and Tobin (1998) develop dynamic

marginal cost pricing models for general transportation networks. As indicated by the

authors, the application of their model is limited to destination-specific (rather than link

or route based) tolling strategies, which might not be easy to implement in practice.

Moreover, since the tolls are based on marginal cost pricing, it is implicitly assumed that

all links can be priced. In Viti et al. (2003), a dynamic congestion pricing model is

formulated as a bi-level program, and the prices are allowed to affect the route and

departure time choices of travelers. It is assumed that the prices are equal across the links

that can be charged.

5.1.4 Objectives and Contributions

In this chapter, we develop methods for dynamic congestion pricing in general traffic

networks. The main purpose of restudying the problem is to address some of the existing

limitations in the literature on dynamic pricing. Our approach follows a link-based

second-best pricing strategy by allowing some links to remain unpriced and imposing

link-specific upper bounds on the prices. Moreover, the prices are allowed to vary by

link. We model the congestion pricing problem as a game between a traffic authority, that
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sets prices to optimize some system performance measure, and users that react to the

implemented prices by choosing paths that minimize their disutilities. If the traffic

authority takes into account the reaction of the users while selecting a control strategy

(pricing), this would result in a higher payoff function (e.g. higher net social benefit) than

if the user reaction function were not considered. This is known as a Stackelberg game

(von Stackelberg (1934)) in game theory, and can be formulated as a bi-level program.

In this chapter, we use this methodology to formulate and solve the dynamic

congestion pricing problem where the objective is to minimize total travel time given a

subset of links that can be priced and upper bounds on the prices. We study users'

reactions to the prices at the levels of both route and departure time choices. The model

assumes that travel demand and are capacities are time-dependent (within a day) but

stationary from day to day (i.e. the same time-dependent patterns of travel demands, as

well as arc capacities, are experienced daily), and that travelers have learned the optimal

travel choices through their daily explorations of the network. The developed methods

can then be used in a planning (offline) context.

We extend the methodology developed for congestion pricing to the case of emission

pricing, where the prices differ as well by vehicle category. While congestion and

emission pricing try to reduce the congestion and emission externalities, respectively, it is

not immediately obvious how a congestion pricing policy will affect emissions, and vice

versa. Thus, there is need to consider both the congestion and emissions criteria when

determining the prices. Therefore, we modify the basic congestion pricing model

proposed earlier in this chapter to account for certain environmental constraints, such as

total emissions and hot spot constraints.

The main contributions of this research can be summarized as follows: (1) the

formulation of a dynamic link-based second-best congestion pricing model as a bi-level

program, where the prices are time and link-dependent and are constrained by link-

specific upper bounds, (2) the development of solution algorithms for the congestion

pricing model with both route and departure time choices, (3) the extension of the

developed methodology to study emission pricing, (4) the formulation of a congestion

(emission) pricing model with total emissions (total travel time) constraints or hot spot
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environmental constraints, and (5) the evaluation of the proposed models and algorithms

on small hypothetical network examples.

5.1.5 Chapter Organization

The remainder of this chapter is organized as follows. In Section 5.2, we study a dynamic

link-based congestion pricing model. Specifically, in Section 5.2.1, we formulate the

model. In Section 5.2.2, we review models of route and departure time choices that will

be needed later in the chapter to model users' reaction to the prices. In Section 5.2.3, we

study the analytical properties of the problem and develop gradient expressions that will

be useful in the development of iterative solution algorithms in Section 5.2.4. In Section

5.3, we extend the basic methodology developed for congestion pricing to study emission

pricing. In Section 5.4, we study a constrained version of the congestion/emission pricing

model. We provide a taxonomy of constraints that can be added to the model, and

formulate two variants: congestion (emissions) pricing subject to a maximum total

emissions rate (total travel time), and congestion/emission pricing subject to hot spot

constraints. In Section 5.5, we evaluate the effectiveness of the developed methods by

conducting experimental analyses on small hypothetical network examples. Finally, in

Section 5.6, we give conclusions and directions for future research.

5.2 Dynamic Congestion Pricing Model

5.2.1 Formulation

Before presenting the formulation of the congestion pricing model, we summarize in

Table 5.1 the basic variables and parameters used in this chapter.

Table 5.1. Notation.
Symbol De finition

a link index

c" (t) cost of link a at time t as perceived by class m users

c (p, t) cost perceived by class m users departing path p connecting O-D pair (r s) at

time t

CF r (p) commonality factor for path p of O-D pair (r,s)
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corr(() correlation of the total utilities of alternatives (p) and (p) that share a

common departure time

d" (p, t) travel time of path p connecting O-D pair (r,s) at time departure time t

' total demand for travel between O-D pair (r,s) for class m users over the

possible set of departure times T

D" () demand for travel between O-D pair (r,s) at time t for class m users

e'S (p, t) total emissions (grams) per vehicle of category m departing path p connecting

O-D pair (r, s) at time t

EF,,., (t) emission factor (grams/second) due to vehicle category m entering link a at

time t

E(q) total network emissions

h'S (p,t) the flow rate of class m users departing path p connecting O-D pair (r,s) at

time t

h'* (p, t) the equilibrium flow rate of class m users departing path p connecting O-D pair

(r,s) at time t

k time index

I time index

L, length of path p

L, length of links common to paths y and p

m user class index

p path index

Py (p) marginal probability for class m users of choosing path p connecting O-D pair

(r,s) (summed over all departure times)

Pr (p, t) joint probability for class m users of choosing path p , connecting O-D pair

(r,s), and departure time t (for joint choice of route and departure time);

probability for class m users of choosing path p , connecting O-D pair (r,s), at

departure time t (for route choice only)

Pr, (p / t) probability for class m users of choosing path p connecting O-D pair (r,s)

conditional on choosing departure time t

P,, (t) marginal probability for class m users of choosing departure time I to travel

from origin r to destination s (summed over all paths connecting (r,s))

P,,' (t / p) probability for class m users of choosing departure time t to travel from origin
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r to destination s conditional on choosing path p

q, (l) toll levied at the entrance of link a at time t (for congestion pricing)

q nma"' maximum toll that can be levied on link a at any time (for congestion pricing)

q,,(t) toll levied at the entrance of link a at time t for vehicle category m (for

emission pricing)

ma " maximum toll that can be levied on link a at any time for vehicle category m

(for congestion pricing)
q (p,t) total toll for users departing path p connecting O-D pair (r,s) at time i (for

congestion pricing)

q (p, t) total toll for vehicle category in departing path p connecting 0-1) pair (r, s) at

time / (for emission pricing)

(r,s) O-D pair index

R rs set of routes (paths) between O-D pair (rs)

I time index

,rv* preferred arrival time at destination s for travel between O-D pair (r,s)

t * - A", t + AJ preferred arrival time window at destination s for travel between O-D pair (r,s)

T set of departure times

U'; (p, t) total utility of (path, departure time) alternative (p, t) for class m users traveling

between O-D pair (r,s)

V,"'7 (p, t) total systematic component of utility of (path, departure time) alternative (p,)

for class in users traveling between O-D pair (r,s)

jr(P) systematic component of utility common to all (path, departure time) alternatives

using path p for class m users traveling between O-D pair (r,s)

j(p, t) systematic component of utility specific to (path, departure time) alternative

(p, t) for class m users traveling between O-D pair (r,s)

W () systematic component of utility common to all (path, departure time) alternatives

using departure time t for class m users traveling between O-D pair (r,s)

Y path index

Z(q) total network travel time

a logit scale parameter

a, d disutility coefficient of a unit of travel time for user class m

cxniq disutility coefficient of a unit of toll for user class m
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A parameter used in the C-logit route choice model

Y parameter used in the C-logit route choice model

Ar' indifference band for travel between O-D pair (r,s)

£g (p, t) total unobserved component of utility of (path, departure time) alternative (p,t)

for class m users traveling between O-D pair (r,s)

s(p) unobserved component of utility common to all (path, departure time)

alternatives using path p for class m users traveling between O-D pair (r,s)

Zs(p, t) unobserved component of utility specific to (path, departure time) alternative

(p, t) for class m users traveling between O-D pair (r,s)

(t) unobserved component of utility common to all (path, departure time)

alternatives using departure time t for class m users traveling between O-D pair

(r,s)

o value of time of user class m

pa scale parameter of the utilities in the nested logit model at the path choice level

Pt scale parameter of the utilities in the nested logit model at the departure time

choice level

rs / t arrival time at the entrance of link a if one departs path p connecting O-D pair

(r,s) at time /

As discussed in Section 5.1, congestion pricing aims at maximizing net social benefit

or minimizing total travel time. In this section, we focus on the latter objective. Before

presenting the formulation of the problem, we make two assumptions. First, O-D travel

demand is inelastic (to the prices). We study two separate cases: (i) O-D demand is

known as a function of time. Commuters can then react to the prices by adjusting their

route choice only. (ii) O-D demand is unknown a priori as a function of time. In this

context, a given fixed number of users demand travel between every O-D pair over a

period of time. Commuters can react to the prices by adjusting both their route and

departure time choices. The allocation of demand to the departure times in the period of

interest is captured in a departure time choice model. In the second assumption, users are

unguided during their trips. Thus, the users' reaction function (user equilibrium) can be

modeled using an offline dynamic traffic assignment (DTA) model. The problem can
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then be formulated as the following bi-level program, which will be referred to as

program (A):

Min Z(q)=JJJEd"(p,t)* h"*(p,t) (5.1)

Subject to:

O5q,(m)q"ax V (a, t); (5.2)

h,;;* (p, t) is a solution to a DTA model. (5.3)

The upper level of this bi-level program consists of minimizing the total travel time

Z(q), which is the sum over all departure times t, user classes m, O-D pairs (r,s), and

paths p. The toll qa(t) charged at the entrance of link a at time t must be less than or

equal to a given upper bound q ax. Note that qmx could also be made time-dependent.

The path flows are the solutions of a DTA model, which is the lower level program. This

latter model captures the users' reaction (user equilibrium) to tolls. In principle, any DTA

model with the following functionalities can be used to find user equilibrium: (1) the

ability to represent multiple user classes; this is especially important when users have

varying values of time which imply different sensitivities (in terms of route and departure

time choices) to the levied tolls, and (2) the route and departure time choice models used

in the DTA should possess a general utility function, as the perceived cost of traveling

should account for the levied tolls (among other costs such as travel times and/or

schedule delays).

Before presenting the analytical properties and solution algorithms for the congestion

pricing model, we review the literature and the behavioral assumptions underlying the

route and departure time choice problems as these will be needed in the analysis later in

the chapter. The developments in this chapter as well as most of the reviewed models

assume a stochastic user behavior (in terms of route and departure time choices) since it

provides a more realistic representation of user behavior than its deterministic

counterpart, and it simplifies the derivations of the analytical expressions later in this

chapter.
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5.2.2 Route and Departure Time Choice Models

The random utility approach is one popular type of decision rules for modeling consumer

behavior (Ben-Akiva and Lerman (1985)). Under this approach, a utility or attractiveness

measure is associated with every alternative in the choice set of an individual, and the

probability of choosing an alternative is equal to the probability that the alternative has

the largest utility. In the most general case, the choice set of an individual traveling

between an O-D pair (r,s) is multi-dimensional, and consists of all combinations of

routes, departure times, and modes that are available or known to the individual. In this

research, mode choice is not considered. To evaluate the attractiveness of the various

alternatives for travel between an O-D pair (rs), one then needs an expression for the

total utility of every path p e R", where R' is the set of routes connecting O-D pair

(r, s), at every departure time t e T, where T is the set of departure times, and for every

user class m. We first review modeling practices for route choice only. Then we discuss

models of departure time choice as well as of the joint choice of route and departure time.

5.2.2.1 Route Choice Only

If users are assumed to react to the levied tolls by adjusting their route choice but not

departure time choice, the choice set of an individual traveler has a single dimension,

namely the choice of a path p from a subset of paths R." connecting O-D pair (r,s) at a

certain departure time t. For simplicity, we assume that we can aggregate users with

similar characteristics into homogeneous groups and apply the same utility specification

within a group, which is referred to as a class. The utility of a path p at departure time t

for user class m is denoted as U" (p, 1). Its expression is:

U,(p,t)= V,(p,t)+e,"(p,t), (5.4)

where V,' (p,t) is the systematic component of utility and c,"(p,t) is a random error

term that represents unobserved effects.

In the numerical results reported later in this chapter, we adopt a simple specification

of the utility of a path p at departure time t that includes the path travel time and toll as

follows:
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Unp t) ,d,t+q(p, t) +,(p, t), (5.5)

where 0,M is the value of time of user class m and qr(p,t) is the total toll levied if one

departs path p at time t. It is given by:

q"s(p,t)= Nq,(-r' it), (5.6)
ae p

where -r / t is the arrival time at the entrance of link a if one departs path p at time t.

r" /t is given by the following recursive relationship:

r" /, = I if a is the first link on path p
=p (5.7)

ri /t = r /t + d (rY /t) if a is after link a' on path p.

Examples of stochastic models of route choice based on random utility theory are

logit, probit, C-logit, and PS-logit (Ben-Akiva and Bierlaire (1999)). The C-logit model,

proposed by Cascetta et al. (1996), is a modified multinomial logit (MNL) model that

retains the computational properties of MNL and at the same time overcomes its main

shortcoming of predicting unrealistic probabilities for highly overlapping paths. This is

done by adding a commonality factor to the systematic component of utility. One

specification of the commonality factor is:

L
CF r(p)=A)ln , (5.8)

where L, is the length (measured in units of distance) of path p , L,~v is the length of

links common to paths y and p , and 80 and ;/ are parameters that need to be

calibrated. The probability of choosing a path p at departure time t is then given by:

exp(V"(p, t)- CFF (p))

.exp(V"(y, t)- CFy)) (5.9)
yE R'

5.2.2.2 Route and Departure Time Choice

Modeling the departure time choice of users is important in the context of congestion

pricing as there is evidence that most of the anticipated benefits of pricing are the result
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of departure time shifts (Arnott et al. (1990), van Vuren et al. (1998)). When users are

assumed to react to the levied tolls by adjusting both their route and departure time

choices, the choice set of an individual traveling between O-D pair (rs) is multi-

dimensional and consists of all possible combinations (p,t)e RIs x T of paths and

departure times. Note that in this chapter we study the choice of departure time as a

reaction to the levied tolls rather than the change in departure time, which arises for

instance in the context of traveler information systems (Ben-Akiva and Bierlaire (1999))

and is more relevant in a real-time context as compared to an offline application. In other

words, we do not model deviations from an assumed habitual behavior in departure time

decisions but rather allocate a given total O-D demand to the departure time alternatives

in the period of study. Moreover, we do not consider "macro" shifts between the peak

and off-peak periods but rather focus on the rescheduling of trips within the peak period.

Most departure time choice models found in the literature are based on the concept of

schedule delay, defined as the difference between the desired and actual arrival times at

the destination. Let [t rS* - A, t * +AIY] be a preferred arrival time (PAT) window for

travel between O-D pair (r, s), where tr-* is a preferred arrival time and A represents an

indifference band or a measure of work start time flexibility. Arrivals outside this

window incur schedule disutilities, and late arrivals are generally considered more

onerous than early arrivals. Moreover, there exists a trade-off between scheduling

disutility and travel time incurred. That is, a traveler who arrives within his PAT window

incurs a larger travel time delay (corresponding to travel during congested peak periods)

than one who arrives early or late.

Early efforts in departure time choice modeling include the works of Vickrey (1969),

Hendrickson and Kocur (1981), and Mahmassani and Herman (1984) who used a

deterministic user equilibrium approach and Cosslett (1977), Abkowitz (1980), Small

(1982), de Palma et al. (1983), and Ben-Akiva et al. (1986) who used a stochastic user

equilibrium approach. See Alfa (1986) for a review of these models. The basic cost or

utility specification in these models considers travel time, early schedule delay, and late

schedule delay. Variations to this specification include the probability of being late

(Cosslett (1977)), reliability terms (Abkowitz (1980)), socioeconomic factors and dummy
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variables for lateness (Small (1982)), and out-of-pocket costs (Ben-Akiva et al. (1986)).

Mahmassani and Chang (1985, 1986, 1987) used the boundedly rational principle to

model the dynamics of departure time choice. More recently, the UK Department of the

Environment, Transport, and the Regions (DETR) has recognized the importance of

departure time choice modeling and has been active in commissioning research on this

topic (see for example Bates (1996), Hyman (1997), van Vuren et al. (1998), and Hague

Consulting Group et al. (2002)).

In this work, to generate a feasible set of departure times, the continuous time is

discretized. Next, if a stochastic user equilibrium approach is adopted, a model must be

chosen to predict the probabilities of various departure time intervals. The multinomial

logit model (MNL) has been a common approach to model departure time choice (e.g.

Small (1982), Cascetta et al. (1992)). However, the possible correlation among adjacent

departure time intervals casts doubt on the validity of the MNL probabilities. For

instance, in Small (1987), an Ordered Generalized Extreme Value model is proposed,

which captures the correlation among adjacent periods.

The joint choice of route and departure time has been studied in Mahmassani and

Herman (1984) for an idealized situation of two parallel routes, using speed-density

relationships to model link travel times and using a deterministic equilibrium model to

represent route choice. In Ben-Akiva et al. (1986), the day-to-day evolution of departure

time patterns on a network with parallel routes connecting a single O-D pair is modeled

through a set of difference equations. The within-day route and departure time choices

are given by a nested logit model, with the decision of whether to use the network or not

at the upper level, the departure time choice at the middle level, and the route choice at

the lower level. In Cascetta et al. (1992), the joint choice of route and departure time is

modeled as a function of travel time, safety, and comfort. In Antoniou (1997), a nested

logit model is developed to predict deviations from habitual travel choices under the

provision of information. Given that a traveler has decided to change both route and

departure time, the choice of a certain route and departure time combination is modeled

by a joint logit model under the assumption that both choices are made simultaneously. In

Ran et al. (1996), a deterministic user optimal route and departure time choice model is

formulated using a link-based variational inequality for a general network. A probit
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model is used in Liu and Mahmassani (1998) for modeling departure time change where

day-to-day correlation is assumed.

In general, different tree structures are possible for modeling the joint choice of route

and departure time depending on the behavioral assumptions made and the significance

of unobserved effects (Cascetta (2001)). For this purpose, we rewrite the utility

expression of a path p at departure time I for user class m as follows:

U" (p,) =v," (p,t) +s, (p,t)
M (5.10)

=," (P) + V" (t) + V," (p, t + ; (p) +" ( ) + z (p, t),

where VV(p) is the systematic component of utility common to all alternatives using

path p, 1/J(t) is the systematic component of utility common to all alternatives using

departure time t, V ,'(p,t) is the systematic component of utility specific to the

combination (p,t), and zn(p), sn-(t), ,r (pt) are the unobserved components of total

utility attributed to path, departure time, and (path, departure time) combinations,

respectively.

As an example of these specifications, the systematic component of utility 7,'(p)

specific to a path p can include attributes such as path length, number of signalized

intersections, number of left turns on the path, etc. The systematic component of utility

(, (t) specific to a departure time t can include variables such as early or late departures

in the context of departure time change modeling. The systematic component of utility

"7 (p, t) specific to the combination (p, t) can include variables such as travel time, toll,

and schedule delay (early and late arrivals) when departing path p at time t. In the

numerical results reported in this chapter, we adopt the following utility specifications

(see Ben-Akiva and Bierlaire (1999) for a discussion of the most relevant attributes in the

context of route and departure time choices):
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JV7I-S(p)= -CF r(p)
I,'; (t)=0

IF "(p, )= a, (d (p, 0)+ q"--(p, t) +a t*-K -(+d (p ))
(5.11)

I+ a (t + dr(p, t) (tr* +'))+,

where x+ = max{O, x}.

If the shared unobserved effects of alternatives sharing a common path or a common

departure time, z; (p) and z,(t), respectively, are negligible, one can use a joint logit

model which implies that users choose their routes and departure times simultaneously

from a choice set R' x T (see Figure 5.1). If however, the variance of either zQ(p) or

ci; (t) is different from zero, then a nested logit model can be used (Ben-Akiva and

Lerman (1985)). The case where var(, (p)) = 0 corresponds to the tree structure shown

in Figure 5.2, which implies that users choose their departure times first and then choose

a path conditional on departure time. Alternatively, var("'; (t)) = 0 corresponds to the tree

structure shown in Figure 5.3, which implies that users choose their paths first and then

their departure times conditional on the chosen path.

Route and departure time
choice

(p1, t) (p2, t2) (p3, t3)

Figure 5.1. Joint logit model of route and departure time choice.

118



ti t2 t3

Pi P2

Departure time choice
(scale parameter p,)

Route choice (scale
parameter pp)

P3

Figure 5.2. Nested logit model I of route and departure time choice with
departure time choice at the upper level and route choice at the lower level.

P2 P3.

t2

Route choice (scale
parameter p,)

Departure time choice
(scale parameter pt)

t3

Figure 5.3. Nested logit model 2 of route and departure time choice with
route choice at the upper level and departure time choice at the lower level.

Table 5.2 shows the joint, marginal, and conditional probabilities corresponding to

the joint logit (Table 5.2 a) and the two nested logit models (Table 5.2 b) depicted above.

For simplicity, the indices referring to user class and O-D pair are dropped in Table 5.2.

In the probability expressions given in Table 5.2, the terms V'(p) and V'(t) have been

referred to as measures of inclusive value (McFadden (1978)) or accessibility (Ben-Akiva

and Lerman (1979)), and they represent the expected maximum utility of alternatives in

nests p and t, respectively. Their expressions are:
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V (p)= in exp(-(t)+ 1(p, t))

= In Yexp(fF(p)+ 7(p, t))

V'(t) - In Iexp(up, (F(p)+ i7(p,t)))
p

V'(p) = In Iexpp,(V(t)+ i(p,t)))

for joint logit model

for nested logit model I

for nested logit model 2.

The parameters ,u and p are scale parameters of the utilities associated with path

and departure time alternatives, respectively. Only the ratio (or ') is identifiable,
P, P,

and so it is common practice to normalize either p, or p, to one. Moreover, for nested

logit model 1, the scale parameters should satisfy 0 < 1, since P can be shown to
,u, p,

be equal to VI - corr(U(p,t),U(p',t)) (Ben-Akiva and Lerman (1985)) (and hence less

than or equal to one), where corr(U(p,t),U(p',t)) is the correlation of the total utilities of

alternatives (p,t) and (p',t) that share a common departure time. Similarly, for nested

logit model 2, pu,0 - l <.
Pt

Table 5.2. Probability expressions predicted by the joint logit (part a) and
nested logit models (part b) for the choice of route and departure time.

(a)

Probability Joint Logit

expV (p)+ IF(t) + F(p, t))
P(p, ) Y exp(F(P,') + (t') V(p', t'))

(P't')

P(p)

P(t)

exp(i(p)+ V'(p))

Iexp(v(,') +r'('))

exp(V(t) + V'(t))

exp( + V'(t'))

120

F'
V'(t)
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exp ( (p) + IV(p, 0))
P(p / t) Yexp(17(0' + V(p', 0))

exp(f(t)+ V(p, t))
P(t / p) exp i(t') + V(p, t'))

(b)

Nested Logit I (Upper level: departure time
choice)

ex p (f7(p, 0 + F W) + p,7(t))
+ (P, - P. )00

exp(p, (17(t')+ V'(t'

e x p P P (O P t) + + I F
+ p, -,U) )v(t)

exp(p, (7(t')+ V'(t')-

exp(p, ((t)+ t

exp(P, (iV(t')+ V'(t')

exp(p (V(p) + IV(p, t)))

I exp p(p,((p') + 17(p', 0))
P

Nested Logit 2: (Upper level: route choice)

P p,)t)+ 7(t))+ p f(p
+( p J p)

exp(p, ()7(p,)+

exp(p, (P (p) + V'(p)))

I exp(p, ( +(p') +V(p)))
P

Probability

P(p,t)

P(p)

P(t)

P(p / t)

The probability expressions corresponding to the joint logit model (Table 5.2 a) are

derived in Ben-Akiva and Lerman (1985) in a context of mode and destination choice.

For the nested logit models, the expressions of the marginal probabilities of choices at the

upper level (P(t) for nested logit model 1 and P(p) for nested logit model 2) and the

expressions of the conditional probabilities of choices at the lower level (P(p /t) for

nested logit model I and P(t / p) for nested logit model 2) are also derived in Ben-Akiva

and Lerman (1985) in a context of mode and destination choice. The joint probabilities

P(p, t) in Table 5.2 b are obtained using the following expressions:
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exP +( - 'U, )V'(p)

I exp(p, ((')+ V(p)))

P(p t)

P(t)

exp(u, (( )+ 7(p, t)))

exp(, ((') + f(p, ')))
P(t / p) P(p t)

P(p)



p(,t)* P(p / t)

P(p)* P(t / p)
for nested logit model I

for nested logit model 2.

The marginal probabilities P(p) in nested logit model 1 and P(t) in nested logit model 2

are obtained using the following expressions:

P(p)= ZP(p,t), (5.14)

and

P(t)= P(p,t).

5.2.3 Analytical Properties

(5.15)

Solution algorithms for bi-level optimization problems where traffic equilibrium arises as

a subproblem can be developed by conducting a sensitivity analysis (Yang (1997)). Let

q = {q'(l)} be an initial feasible vector of prices (i.e. satisfying the lower and upper

bounds on the link prices). Program (A) can then be approximated by the following

program (B):

Min Z(q) = Z(q')+ (q - q' )T Z(q)
qa q

Subject to:

0 ! q,(t) quX

(5.16)

(5.17)

In program (B), the objective function is a first-order Taylor series approximation of

total travel time, at q = q1 . Z(q1) represents the total travel time corresponding to price

3 Z(q)vector q', and can be computed by solving for a user equilibrium given q'. q q 1 is

the gradient of the total travel time function with respect to the price vector, evaluated at

q'. Since Z(ql) and Z(q)

aqq

can be evaluated by solving the dynamic traffic

assignment problem using the price vector q], program (B) is then equivalent to solving

the following linear program (C):
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S3 Z(q)Min Z(q)= q T?3q)

q a3 q qq

Subject to:

0:q (t)!q "ax V (a, t).

The gradient expression Z(q)
q, (1)

(5.18)

(5.19)

can thus be utilized to predict changes in the total

travel time Z(q) when the prices q() are altered slightly. In this section, we first

develop the gradient expression for the case where users are assumed to react to the

prices by adjusting their route choice only. Then we extend the analysis to cases where

users adjust both their route and departure time choices. Note that it is implicitly assumed

that the gradient
Z(q) exists. The validity of this assumption is
q,(l)

a question for future

research.

5.2.3.1 Gradient Expression for Route Choice Only

Since Z(q)= Z Z dr" (p, t)*h, * (p,t), we have:
m rn r p

d" h, * (p,t)
(p,1 '" +

a q, (1)

, )d"(p,t)

a q, (1)
(5.20)

h,* (p, t)
First we find an expression for the term . The flow

a q,(Q)
on path p (connecting

O-D pair (r,s)) at time t is a function of the utilities of all paths between O-D pair (r,s)

at time t. Therefore, we have:

.h,"*(p,t)
a q, (1)

ah,"(p, t) ,(y' t)

y, 
i (5.21)

3v;;(y,t).
The term ' is such that:

Sq,(l)
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J v," (y,t) * q" (y,t

aq I"(y, t) a q, (1)

r V,'H(y t)

= aqrs(yt)

0

if aE y and t+d' (t)=l

otherwise,

where a is the disutility of a unit toll as perceived by class m users and d "(t) is the

time needed to travel from origin r to link a if one departs path y at time t . Since

D;n (t), the demand of class m users for travel between O-D pair (r,s) at time t, is

fixed, the term is given by:
aV" (yt)

(5.23)
S;"* (p,) (D'(t),

n (,';~ 0 V,: (y't 0

In the above expression, it is assumed that the probability P,;-(p,t) of choosing path p at

time t for class m users is equal to the proportion of class m users choosing path p at

time t , which is a reasonable assumption if the demand D'; (p, t) is sufficiently large.

Substituting expressions (5.22) and (5.23) in expression (5.21), we obtain:

ihn ()p,0 D') an (P,(p, t)

q,(Q) Ye R' and te>:>O and z+d (+ 1 -,t)
(5.24)

For users with stochastic dynamic user-optimal behavior, and for a logit or C-logit

a PI' (") -route choice model, the term ' is given by:
aV"(y,t g

if p y

if p # y.
(5.25)

Next we consider the term , (1) which represents the change
a q, (1)

in travel time on a

path if the toll on a certain link changes slightly. At the beginning of the writing of this

thesis, we have assumed that the term h,"*(p,t) '(pt) is approximately zero, and we
hqs(l)

have based the numerical results in Section 5.5 (except for the first example) on this
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Sq, (~)
(5.22)

, ,- a P,,'. (p,t 0
fnW V,: (y't )

a P"S ( p, t)j P" ( p,t 0[1 - P,," ( p,t o ,

a v," (yt 0 -P," ( p, t)P,' (y t), 1



assumption. Towards the end of the writing of this thesis, we have tried to develop an

expression for
a d'"(pt)

the tem a , which we conjecture to be correct, but whose validity
a q, (1)

is subject to further verification. Even though the term h,,* (pt) a dS. (pit)
a q,(l)

has been

neglected in some of the experiments conducted, the results reported in Section 5.5

indicate that the proposed pricing methods can still achieve savings in total travel time as

compared to the no-toll situation.

a d "(p, t)
Below we present the expression that we have derived for the term . Since

t qt if)

the travel time of a path p (connecting O-D pair (r,s)) at time t is a function of all path

flows between all O-D pairs and at all times, we can express

d rq(p)

Sq,(l)

zd " (p, t) h'''*(p', t')
r's' (, * ,I

r, s,, t P ah' ('t') a q,(1 )

a d" (P,t )
d (l) as follows:

a q, (1)

(5.26)

where hr'*(p,t') is the total equilibrium flow of path p' between O-D pair (r',s') at

departure time t'. h' *(P,t') is given by:

h '*(p',)= h; (P, t'). (5.27)
in

Therefore, we have:

h q, (1)

h, (p', 
'

a q,( M, q,(

Substituting expression (5.24) in expression (5.28), we obtain:

Sh r''* (P ',t')
=Ia,g D'S

qo (l) o

The derivation of the

(t') (5.29)i' ' 
P ',, ' (Pyt')

ye s's ~ ! and -e22on z+&_ " ()=l} VW ,t

t d" ( pt)
term . , I .is provided in Appendix E. Here we only

summarize the final result given by the following expression:
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if t' = t, (r',s') = (r,s)
a d*r (P, t )

Sh' rl, V, 0
Z a,fdD r (t)a r ( Iit

in ,,

undefined, otherwise,

where a,,d is the disutility of a unit of travel time for user class in'.

Substituting expressions (5.29) and (5.30) in expression (5.26), we obtain:

3dr"(p,t)

aq,(l)

ad r(p, t) Bh"s*V,t)

a h *(p',t) aq,()

(_____

YZ
p

n'd D' (tIn

PQ. (p',i )

D v,' (P, t)

* Z a,,qD, '(t)
m' ve R" and te lz:z!O and z+d'

":" (p',t)

Therefore, the gradient a can be computed by substituting
a q,(l)

expressions (5.24)

, drs(p,t)
and (5.31) in (5.20). If the term h,* (p, t) is assumed to be approximately zero,

a q,(l)

one could then approximate the gradient expression given in (5.20) as follows:

SZ(q)

q, ()
= d" (p,t)D' r(t)

I in ris pI

5.2.3.2 Gradient Expressions for Route and Departure Time Choice

As in Section 5.2.3.1, we have:

DZ(q) a hS*(p,t) hs
ld(p,0. + h,

3qu t in, , r , , a q-()
(p 0ad"r'(p, 0(ptt)j

d q,(l)
aq

(5.32)

We have assumed that the term h (p, 0 ) is approximately zero. If users adjust
in a q, (1)

both their route and departure time choices, the flow on path p at time t is a function of

the utilities of all paths between O-D pair (r,s) at all times k e T since all (path,

departure time) combinations (p, t) are competing alternatives. Therefore, we have:
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(5.31)

(P " ( p,t 0-

'E R r" and te lz>O and -+ dt "(--)=/I IZ rs( t



3hi* ( p,*) - h"* ( p, ) , Y, (y, k)

e R" k'Tn(Yk) II In

a fl((y k)
The term ' ' can be determined using expression (5.34):

a q,()

17,nr (y,k)

a q,()

_17 ," (y, k), q "(y, k)

q r" q(y, k) q, (1)

a 1frs(y k)
= sq (y, k)

0

(5.34)
if ae y and k +d',"(k)=l

otherwise.

a h,*(p, t)The term ~ 'n can be obtained using expression (5.35):
a V,,s (y, k)

nh*(p,t)
1,"(y,k)

_(D * p(pt))

SV"(y,k)
=V (p,t)

'" a V,"'(y, k)
(5.35)

Note that the total demand Dr of user class m for travel between O-D pair (r, s) is

assumed to be fixed.

The mathematical expressions of the joint probabilities pr(p,t) depend on the

structure of the model used to represent the joint route and departure time decisions.

Consequently, different behavioral model structures result in different gradient

expressions. Below we present the results for each model; the derivations are given in

Appendix E.

Joint Logit Model

{," (p, 4  - P," (p,t)

- P (p,t )PQ (y,k)

if (p,t = (y, k)

if (p,t) t (y,k).

Nested Logit Model 1

[p ( t "Vrs (Prs p

,- -, k , r ( Y / ,(y (t) " t)

- p,P," v(p,kP, .( p1t)

-" (y k )P,"111 )

if p = y,t = k

if p~y,i=k

if p = y,t k

if p y,i t k.

(5.33)

in r," (P )
PV, (y, k )

PS" (p,t)

17,n" (y, k)

(5.36)

(5.37)
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Nested Louit Model 2

+ (,u -p,: P) -;( /' (pf')]pns (p,) if p = y, t = k

3 P,," ( p~~t ) U- ,, (Y s ( PIt fpty

(yk) -p A ,pr,"(p)]Prs(k/ p)Pr"(pt) if p=y,t k (5.38)

Pr (y, k)Pr' ( p, t if p # y, t k.

In summary, an approximation of the gradient expression in the presence of route and

departure time choices is given by:

aJZ(q) =Y Zacid"(p,t) D * ' pt) ,(539)

3q, (l rs P yeR" ke {Z:Z>0 and z+d "( )=I rs(yk)

a P" (i pwhere ~"(yk) is given by expression (5.36) for the joint logit model, expression

(5.37) for nested logit model 1, and expression (5.38) for nested logit model 2.

5.2.4 Solution Algorithms

Various algorithms can be developed to solve the above models. We first outline a master

iterative algorithm for solving the congestion pricing model. Let q"n denote the price

vector obtained in the nth iteration. The algorithm starts with an initial feasible price

vector q' (satisfying lower and upper bounds on the prices), and in every iteration the

algorithm finds a user equilibrium solution and computes the gradients to find new prices

that can potentially decrease the objective function Z(q). The algorithm terminates after

a prespecified number of iterations. The main steps of the algorithm are described below:

Step 1: Initialization

- N = maximum number of pricing iterations; q' = 0; n = 1.

Step 2: DTA

- Given the prices q", find dynamic user equilibrium.
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Step 3: Compute gradients

Compute the gradient Z(q) V(al).
aq,(l) qq

if a Z(q) > 0, then a slight increase in q"(() results in an increase in total
Sq, (1) qq

Ia Z(q)travel time, so we set q"(/) = 0. If ) <0, then a slight increase in q"()
Sq, (I) _

results in a decrease in total travel time, so we set q""(/) q'"". Otherwise, if

a Z~q) qmax

a Z(q) = 0, we set q".(i) 2

Step 4: Update link tolls

- Update link tolls (through the method of successive averages)

I

n +1

q7" (I) = q" (l)+ a" (q"a" (1)- q" (i)).

Step 5: Stopping Criterion

- If n = N , then stop. Otherwise, n = n+I, and go to Step 2.

Note that this algorithm is a heuristic. That is, the computed prices are not guaranteed

to be (global as well as local) optimal since the objective function is non-convex.

Moreover, the solution obtained by the algorithm might be dependent on the initial vector

of prices. From a practical standpoint, the numerical results shown later in the chapter

indicate that the application of the algorithm to small network examples resulted in

savings in total travel time (total emissions) for congestion (emission) pricing as

compared to the no-toll situation.

One can develop different specializations of the master algorithm that differ in the

computation of the path flows (Step 2) and their derivatives with respect to the tolls since

they correspond to different mathematical programs (Step 3) each corresponding to a

formulation based on a different DTA model. For instance, the computation of flows and

of gradient expressions is dependent on whether route choice only or both route and
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departure time choices are modeled. Below we describe these computations for four such

specializations of the master algorithm. The first specialization, denoted as Algorithm 1,

solves the congestion pricing model with route choice only. The input to Algorithm 1

consists of a network topology, a given time-dependent O-D matrix, a route choice

model, and link travel time functions. The three other specializations, denoted as

Algorithms 2, 3, and 4, solve the congestion pricing model with both route and departure

time choices. The input to Algorithms 2, 3, and 4 consists of a network topology, a given

fixed total number of travelers for every O-D pair, a joint route and departure time choice

model, and link travel time functions.

5.2.4.1 Algorithm I

In Algorithm 1, since only route choice but not departure time choice is modeled, path

flows (Step 2) are computed according to h" (p, t)= D "(t) *P,'(p, t), where P'; (p, t) is

a Z(q)computed using a C-logit model (expression (5.9)). The gradient ) (Step 3) is
a q, () _

computed using expression (5.32) (as an approximation). Moreover, we assume that if

there is no demand that can reach a certain link a at time t, then it is desirable in

practice to set the toll charged at the entrance of link a at time t to zero. Therefore, in

BZ(q)
the computation of the gradient, if =0 and if there is demand that can

a q, (1) q

max

potentially reach link a at time t', we set q""(=) 1" , otherwise we set q "e(/)= 0.
2

5.2.4.2 Algorithm 2

In Algorithm 2, the choice model of the DTA is structured as follows. We start with a

given total number of travelers for each O-D pair, and we use the expressions of the joint

probabilities of choosing (path, departure time) combinations to assign travelers to these

combinations in the DTA model. Path flows (Step 2) are computed according to

(p, t)= D" * P'(p,t), and P (p,t) is computed using the expressions given in

130



D Z(q)Tables 5.2 a and 5.2 b. The gradient (Step 3) is computed using expression
a q"(l) _

(5.39) (as an approximation). Moreover, when a Z(q) =0, then if link a can be
a q,(1) q ,~

reached at time t, we set q""( , otherwise we set q"'(1) = 0 since there is no
2

need to charge links during time periods when those links cannot be reached.

5.2.4.3 Algorithm 3

In Algorithm 3, the choice model of the DTA is structured as follows. We start with a

given total number of travelers for each O-D pair. We use the expressions of the marginal

departure time probabilities to create an O-D matrix. Given the O-D matrix, for every

departure time we use the expressions of the path probabilities conditional on the given

departure time to assign users to all paths at all departure times. Let I denote the

maximum number of departure time model iterations. The various computations within

Step 2 of the algorithm can be summarized as follows:

Step 2 a:

- i=l.

- Given the prices q" and free-flow network conditions (if n = 1) or latest network

conditions obtained from the DTA (if n > 1), compute the marginal departure

time probabilities PI2)(t) V(r,s),m,t e T (corresponding to iteration i).

Step 2 b:

* Compute an O-D matrix Dj) (t)= D *P (t).

- Given the prices q" and the O-D matrix D()(t), find dynamic user equilibrium

(route choice only, where h"(p,t)=D()(t)* P (p/t), and Pf;(p / t) is

computed using the expressions given in Tables 5.2 a and 5.2 b).

- Compute the new marginal departure time probabilities ().

" Update the marginal departure time probabilities (through the method of

successive averages)
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,1
I

62n)(t)= P (t) + a'(Pg ()-P ().

Step 2 c:

If i > I, then go to Step 3. Otherwise, i= i+1, and go to Step 2 b.

%+ Z(q)As in Algorithm 2, the gradient I q (Step 3) is computed using expression

(5.39) (as an approximation), and if = 0, then q""(1) = q"x if link a can be
oq, (i) qq 2

reached at time t, otherwise q " (1) =0.

5.2.4.4 Algorithm 4

In Algorithm 4, the choice model of the DTA is structured as follows. We start with a

given total number of travelers for each O-D pair. We use the expressions of the marginal

route probabilities to predict the total flow on every path (summed over all departure

times). For every path, we use the expressions of the departure time choice probabilities

conditional on the given path to allocate the total path flow to different departure time

periods. Let I' denote the maximum number of route choice model iterations. The

various computations within Step 2 of the algorithm can be summarized as follows:

Step 2 a:

- i=1.

- Given the prices q" and free-flow network conditions (if n =1) or latest network

conditions obtained from the DTA (if n > 1), compute the marginal route

probabilities iPg") (p) V (r, s), p e R mn (corresponding to iteration i).

Step 2 b:

- Compute total (summed over all departure times) path flows for each O-D pair:

hi)i(p)n= D,' * P ')(p).
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" Given the prices q" and the total path flows h,3)(p), find dynamic user

equilibrium (departure time choice only, where h "(p, t)= h,') (p)* PQ (t / p), and

Ps (t / p) is computed according to the expressions given in Tables 5.2 a and 5.2

b).

" Compute the new marginal route probabilities Pnew) (P)

- Update the marginal route probabilities (through the method of successive

averages)

i =
1+1

P (i+0 (p)= P,) (p) + a'(P,ne)(P)- n (p))

Step 2 c:

- If i > I', then go to Step 3. Otherwise, i= i+1, and go to Step 2 b.

The same observations made in Algorithms 2 and 3 regarding the gradient apply to

Algorithm 4 as well. Finally, it is an interesting question to investigate whether each of

Algorithms 2, 3, and 4 is applicable to all three models of route and departure time choice

that we have described before (the joint logit and two nested logit models). We

conjecture that the hierarchy of actual choices made (i.e. path before departure time, or

vice versa, or simultaneous) need not coincide with the order in which the probabilities

are computed in the algorithms. The essential issue in the algorithms is to achieve

convergence to a solution consistent with the behavioral assumptions. Thus, for instance,

it might be possible to use Algorithm 2, 3, or 4 to solve the congestion pricing model

where route and departure time choices are modeled using a joint logit model.

5.3 Emission Pricing

Mobile source emissions continue to be a major contributor to air quality degradation in

the U.S. despite several regulatory efforts to reduce emissions, such as stringent emission

standards and inspection and maintenance programs (Harrington et al. (1996)). Market-

based policies to reduce emissions are receiving more attention from policy-makers since
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they offer more flexibility as compared to rigid regulatory programs. Mobile source

pricing is believed to be a promising method for reducing pollutant emissions by means

of travel demand management (Nagurney (2000 b)).

Pricing aimed at reducing vehicular emissions can take several forms: fuel taxes, pay-

at-the pump charges, VMT fees, and emission fees (EPA (1997)). The effectiveness of

these pricing strategies varies as they tend to induce different behavioral responses. For

instance, fuel taxes might cause a shift to cleaner vehicles or encourage ridesharing.

VMT fees impact emission levels by encouraging drivers to drive less. Emission fees

charge drivers based on the amount of pollutants their vehicles emit, which is mainly a

function of the vehicle type and operating conditions (speed and acceleration). Drivers

would react to those prices by improving their vehicles' emission control technology,

shifting to less-polluting vehicles, and/or driving less (Deakin and Harvey (1996), EPA

(1998)).

Several studies have suggested emission pricing and/or tried to evaluate the potential

benefits that can be accrued from a system of emission fees (Harrington et al. (1995,

1996), Kessler and Schroeer (1993), White (1982), Eskeland and Devarajan (1996),

Deakin and Harvey (1998), Victoria Transport Policy Institute (2003)). In static

networks, the computation of emission fees has been addressed in Nagurney (2000 b),

where an environmental standard is also included to ensure a "sustainable" transportation

network. However, there has been no systematic study that addresses the computation of

those fees in a time-dependent network. In this section, we address the problem of

dynamic emission pricing by extending the methodology developed for congestion

pricing. Optimizing the levels of all pollutants simultaneously, although desirable in

principle, is difficult due to the varying degrees of correlation between speed and

pollutants (Emmerink (1998)), and requires a multi-criteria analysis. One way to account

for multiple pollutants in the optimization procedure is to transform the emissions due to

every emission species to a monetary equivalent, and then minimize the total costs due to

all emission species. For a review of estimates of emission costs, the reader is referred to

Delucchi (2000). For simplicity, our model will be concerned with the optimization of

one generic emission species. Moreover, in our model the prices vary by vehicle category

to account for differences in emissions between low and high emitters. The latter can be

134



accountable for the majority of emissions although they constitute a relatively small

proportion of vehicles (Wenzel and Ross (1996)). The problem can be formulated as the

following program (D):

Min E(q)= e,"(p,t)*h"*(Pt) (5.40)
t in rs p

Subject to:

0 ! q,W 5 q ma V (a, t); (5.41)

hi*(p, t) is a solution to a DTA model. (5.42)

The upper level of this bi-level program consists of minimizing the total emissions

mass (grams) E(q) summed over all departure times t, vehicle categories m, O-D pairs

(r,s), and paths p , where e" (p, t) denotes the emissions mass per vehicle of category

m on path p at departure time t. We impose an upper bound qm"x on the link toll

q,n, (t) that varies by vehicle category at entry time t to the link. The lower level is the

DTA model.

The emissions e' (p, t) (in grams per vehicle) on a path p at time t can be computed

as follows:

e" (pt) EF,(rK / t)* d 1(z" / ), (5.43)
in ppU (.3

where rs /t is the arrival time at the entrance of link a if one departs path p at time t

and EFrna' It) is the emission factor (in grams/second) for vehicle category m if one

enters link a at time tr It. r/It is given by expression (5.7). Emission factors can be

obtained using a dynamic emission model (see Cappiello (2002) for a review) integrated

with a dynamic traffic model.

3 E(q)
The gradient can be expressed as follows:

aq,,(1)

aE(q) a hin'*(pV0)_ . e"(p,t)]
r( e(P, (. + h (p, t) (5.44)

qt,, ,q,(,1l) qnI.
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a e"-,(p,t)The term represents the change in total emissions on a path if the toll on a
a q"' (1)

certain link increases slightly. The increase in tolls affects the utilities of the paths, and

hence may affect the path flows, which in turn may affect the path emissions (due to

changes in speed and associated estimated accelerations). Similarly to the assumption that

a der'(p, )
was made in the congestion pricing model, we will approximate h,* (p, ) to

be zero. Even though this term is neglected, the experimental results on emission pricing

reported in Section 5.5 indicate that the proposed emission pricing methods can still

achieve savings in total emissions as compared to the no-toll situation.

a h"r*(p, t)Next we find an expression for the term ' h . We consider first the case of
aq,, (1)

route choice only. For given values of path utilities (for all O-D pairs), the flow on path

p at time t is a function of the utilities of all paths between O-D pair (rs) at time t.

Therefore, we have:

a h"*(pt I) Y h",* ( p, 0 a, DV,7 (y't
a q ( ) ',y aq -(5.45)

SV, (y, t)The term is such that:
3q,g.al

YV,"(y, t Vin _V,(y,t), aqM, (y'0
aq,,,l 3q',",(y, t) aqglIV,(y,t) )(5.46)

*Y 01=-a, if M =m',a(= y, and t+d"a(t)= I
= q, (y, t) m

0 otherwise.

Theter h" ( p,t )
The term ' , is computed using expression (5.23), which we restate for clarity of

presentation:

ah',s*(p,t) a (D,(t)*P"(p,t) D( P /,"(p,t)
=D "(1) . (5.23)

3Vy: 0 V,"y: '" i Vnyt)
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a hS*(P t
Note that 'n is equal to zero if m # m' (see expression (5.46)).

a qnU (1)

Consequently, substituting (5.23) and (5.46) into (5.45) and substituting (5.45) into

(5.44), the gradient expression for the case of route choice only is then approximated by:

I E(q ) z a,,e",(p,t)D , 1 (5.47)
ia , (rs p YeR' and { >z and 24,; (z)=1} Vi (y,

where for users with stochastic dynamic user-optimal behavior, and for a logit or C-logit

route choice model, the term is computed using expression (5.25).
aVny

When both route and departure time choices are modeled, a similar analysis shows

that the term ahrs*(p,t) is given by:
3 q,, (1)

Dh2*(pt) a fD" '""(p,t) if M = ,
eR" ({: >)and zad'(z )=/ V ' (y,k) (5.48)

,a~ ! () 0,a otherwise.

3 E(q)
Finally, the gradient can be approximated by the following expression:

~3q,,,(l)

a E(q ) = .( ,,D",e 's t ) I pv(p , (5.49)
i Q,, t ,rs p Ye R" e{ 7O and .. d _ V, (y, k)

a Pr" (P 0where ~ is given by expression (5.36) for the joint logit model, expression
a V,'Q (y,k)

(5.37) for nested logit model 1, and expression (5.38) for nested logit model 2.

The solution algorithms (Algorithms 1 to 4) described for the congestion pricing

model can also be adapted to solve the emission pricing model. Finally, we note that the

extension of the congestion pricing model and algorithms to the case of emission pricing

can also be carried out to the case where both congestion and emission are priced in a

manner to minimize a weighted sum of total travel time and emissions. It suffices to use

the objective function: Z(q)= 3 (A d(" (t) + (I - A)e '(p,t))h"* (p, t), where A is
i a rb p

a parameter between zero and one.
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5.4 Congestion Pricing with Environmental Constraints

In the previous sections of this chapter, we have developed pricing methods to manage

congestion, emissions, or a combination of the two criteria. The objective function was to

minimize some criterion, and the only constraints were lower and upper bounds on the

prices. In this section, we extend the basic framework to include congestion or emission-

related constraints that are desirable from a system or a societal point of view. First, we

provide a discussion of some of the scenarios that might arise. Then we formulate two

variants.

5.4.1 Taxonomy

In Abou Zeid and Chabini (2002), different scenarios for the combined problems of

mobility and emissions have been discussed for routing applications from the

perspectives of the users of the transport system, the system operators, and the general

public. In this section, we discuss some of the scenarios that are relevant for the pricing

problem.

5.4.1.1 Scenario 1: Minimize Total Travel Time (Emissions) Subject to an Upper
Bound on Total Emissions (Total Travel Time)

The relationship between total travel times and emissions is non-linear and non-

monotone. Thus, it is useful to model a case where the objective function is as before,

which is to minimize total travel time (total emissions) with one additional constraint: the

total emissions (total travel time) summed over all users and times should not exceed a

certain upper bound. This problem has been studied in Nagurney (2000 b) for static

networks. A system-optimized solution that meets the emissions constraint (referred to as

an environmental quality standard in Nagurney (2000 b)) results in a "sustainable"

transportation network (Nagurney (2000 b)). In this chapter, we restudy the problem for

timc-dependent networks and dynamic pricing. The mathematical representation of these

additional constraints can be written as follows:
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E(q) = Illye" (pl)*h (p,) E, (5.50)
, in in (P (550

and

Z(q) = ZZZ d" (p,t)* h ' (p,t ) Z. (5.51)

t m rs p

Expression (5.50) is an environmental constraint stating that the total emissions

should be less than or equal to an upper bound denoted as f. Expression (5.51) is a total

travel time constraint stating that total travel time should be less than or equal to an upper

bound denoted as Z .

5.4.1.2 Scenario 2: Minimize Total Travel Time (or Total Emissions) Subject to
Hot Spot Constraints

While the solution generated to the model described in Section 5.4.1.1 ensures that the

total network emissions are below a threshold, the solution does not guarantee that the

emissions at a local level (e.g. at a link level) are within tolerable limits. We define hot

spots as locations in the network where the emission rate exceeds a certain threshold H .

In Scenario 2, the objective function is to minimize total travel time (or total emissions)

such that there are no hot spots at any link and at all times. The mathematical

representation of this fact translates into adding the following constraint:

Z En') H V t, (5.52)
in

where E, (t) denotes the sum of emissions rate of all vehicles of category m that are

present on link a at time t.

5.4.1.3 Scenario 3: Minimize Total Travel Time (or Total Emissions) Subject to
Air Quality Standards

Air quality standards are defined differently from hot spot constraints. The former are

specified using various temporal aggregations. To ensure that these standards are met, the

pollutant concentration on every link, averaged over a period of time, should not exceed

the upper limit set by EPA for the pollutant. Assume that the standard for the pollutant

considered is defined as the average concentration over a period of time of duration W

(W depends on the type of the pollutant). This means that at every time t the ambient
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pollutant concentration over every link a, averaged over a period of duration W

extending from t - W to t, should not exceed the air quality standard. The duration W

varies as a function of pollutant type. For instance, for carbon monoxide (CO) and ozone

(03) the duration over which the standards are defined is typically less than 24 hours to

protect against short-term health effects. Longer durations are designed for other

pollutants such as sulfur dioxide (SO 2 ), nitrogen dioxide (NO2 ), lead (Pb), and

particulate matter with diameters of 10 micrometers or less (PM 0 ) to protect against

chronic health effects. For more details about air quality standards, the reader is referred

to the website of the Environmental Protection Agency (EPA)'s Office of Air Quality

Planning and Standards (http://www.epa.gov/oar/oaqps/). We assume that an average

pollutant concentration measured over a time period W for every link a can be

transformed into an equivalent average emission rate on a, denoted as Ea and expressed

in grams/sec. That is, E, is the average emission rate of all vehicles traveling on link a

during the period W. Air quality standards would then be met at every time t by

bounding the emission rate Ea due to all flows on link a aggregated over all times from

t - W to t, to an upper limit K given a knowledge of the emission factor EF,,, (t) of

vehicle category m on link a at every time t. The mathematical representation of this

constraint can be stated as follows:

SY (f,,, (y) * EF ,(y * d (y)) (y)) (5.53)
0<E = '' K V(a, t).

W

In expression (5.53), f,,, (t) represents the flow into link a at time I of category m

vehicles. Note that there are no documented values in the literature for the allowable

emission rate x. However, equivalent concentrations that define air quality standards,

expressed in units of parts per million (ppm) by volume or milligrams per cubic meter of

air (mg/m3 ), can be obtained for instance from the website of the Environmental

Protection Agency (EPA)'s Office of Air Quality Planning and Standards

(http://www.epa.gov/oar/oaqps/).
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5.4.1.4 Scenario 4: Minimize Total Travel Time (or Total Emissions) Subject to
Equity of Emissions Distributions

Compliance with air quality standards ensures that public health is protected in all areas,

but might result in some areas being relatively more polluted than other areas due to

higher traffic volumes. For instance, heavily traveled corridors might invoke public

complaints (due to the associated emission and noise levels) resulting in the closure of

certain streets. It is, therefore, useful to model a scenario where the traffic flow pattern

that minimizes total travel time (or emissions) also results in an equitable temporal and/or

spatial distribution of emissions in the network. Equity can be enforced by maintaining

the difference in emission levels between any two zones within a certain threshold p

(Gopalan et al. (1990)). If equal emission shares were desired, this threshold would be set

to zero. Assume that the traffic network can be divided into Q mutually exclusive zones.

Let ,,,(t) represent the damage (e.g. health damage, amount of emissions, etc.) caused

to zone v due to the flow that travels on link a at time t. The damage function , (t)

depends on the traffic volume on link a at time 1, the proximity of zone v to link a, and

the dispersion rate of the pollutant under consideration. The equity of emissions

distribution constraint can then be expressed as follows:

,p Vv,w=1,2,...,Q. (5.54)

5.4.2 Formulations

5.4.2.1 Formulation of Scenario 1

Extending program (A) to include a constraint on the total emissions generated, we obtain

a modified program (A):

Min Z(q)= d"(p,t)* h,(p,t) (5.55)
t rn rs p

Subject to:

0 ! q, (t) < qax V (a, t); (5.56)

h,"*(p,t) is a solution to a DTA model; (5.57)
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E(q)= Y I Z e'; (p, t)* h *(p,t) ! E. (5.58)
t in r,s p

To obtain a tractable program, as before we linearize the objective function by using a

first-order Taylor series approximation of total travel time, at some initial feasible price

vector q = q'. Note that obtaining an initial feasible price vector is not trivial in this case,

as the resulting path flows should satisfy the total emissions constraint given by

expression (5.58). We assume that a feasible solution is known. A method to

systematically find a feasible solution, should the feasible domain be non-empty, is a

useful topic of research. Extending the linear approximation program (C) to include the

total emission constraint, we obtain a modified program (C):

7a Z(q)Min Z(q)= q ) (5.59)
q q I

Subject to:

0 !! q, (t) q q'"" V (a, t); (5.60)

E(q) . (5.61)

E(q) can be approximated by a Taylor series expansion in the vicinity of the vector

q as follows: E(q)=E(q1)+(q-q1 )Ta E(q) , where E(ql) represents the total
a q q

emissions generated given the price vector q', and is computed after solving for a user

Ia E(q)equilibrium given q'. aEq is the gradient of the total emissions function with
aqq

respect to the price vector, evaluated at q', and can be approximated using expressions

(5.47) or (5.49), for route choice or route and departure time choices, respectively. Since

E(qg) and a E(q) can be evaluated by solving the dynamic traffic assignment
a q=q

problem using the price vector q', program (C) is then equivalent to solving linear

program (D):
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Min Z(q) = qT aZ(q)(
qiaq qeq (5.62)

Subject to:

0:! q, (t):! q "ax V (a, t); (5.63)

r a E(q) - ____3 ~qq a E -E(q)+q =T E(q) E . (5.64)
aq q~q a q=1

We rewrite program (D) in the following form, which we denote as program (E'):

Max Z(q) = q - aZq
Mq9 q qj (5.65)

Subject to:

O q m(t)aq7x V (a, t); (5.66)

q TE(q) E. (5.67)
q q q q

Program (E) is a linear program that can be solved using any linear programming

algorithm. Program (E) can also be interpreted as a knapsack problem with a knapsack of

capacity k. The aim is to maximize the value of the objects placed in the knapsack while

respecting its capacity constraint. There are K =|AIx T1 types of objects corresponding

to the total number of decision variables (prices for all links and all network time

intervals), where JAI is the number of links and ITi is the number of network time

intervals. The weight of an object of type (a,l) (i.e. link a and time 1) is equal to

o E(q) a Z(q)
and its value is equal to - Moreover, there is a limit q'ax on the

3q, (1) q , q, (1) ,~

amount q,(l) of each type of object (a,l) that can be placed in the knapsack. This

knapsack problem is different from the traditional knapsack problem in the sense that an

object can have a negative weight and/or a negative value.
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5.4.2.2 Formulation of Scenario 2

Extending program (A) to include a hot spot constraint, we obtain a modified program

(A"):

Min Z(q)= (5.68)n d'(p,t)*h' I*(p,t)

Subject to:

0 5 q,()5 q"max V (a, t);

h,"* (p,t) is a solution to a DTA model;

Z E H(t) I
in

Vt.

(5.69)

(5.70)

(5.71)

We further develop program (A") for a case of a simple network consisting of two

parallel routes (Figure 5.4). For simplicity, we assume that there is one vehicle category.

12

2

Figure 5.4. Scenario 2 for a two-route example.

The total emission rate on link 1 at time t is given by:

(5.72)E,l )= I [hi(t) * EF, (t)]ai HI,
tcjk:k+dj (k)!!V and k>!O}

where hi (t) and EF (t) are the flow rate and emission factor, respectively, on link 1 at

time t. Assuming route choice only, the path flow h, (t) on link 1 at time t can be

expressed as follows:
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h, (t)=h (q ,,q,,t) = D12 W* P(t)

exp( -a d, (t) + q (t))
= Dp (0)* (5.73)

exp- -ad,(t) + q(t) + exp -a d2 (t)+ q 2 (0

where D 2 ) is the travel demand for O-D pair 1-2 at time t, P (t) is the probability of

choosing route I at time t, a is a logit scale parameter, 9 is the value of time, and d' (t)

and q, (t) are the travel time and toll, respectively, on route I at time t.

To render the analysis tractable, we use a Taylor series expansion of h, (q, ,q2 t) in

the vicinity of a feasible price vector q0 , as follows:

h, (ql,,q2,t)= h, (q(), qO ,1)+ (q, (t) - q( )(t))* a h, (qj, q2, 5)

Sq,(t) q

(5.74)

+ (q2(t)-q (t))* a h,(q,q 2,t)

Sq 2 (t)

We have:

a h, (q, q2,t) = D2 (t)q* PI(q, q), t)[ -P (q 0, q0,t

and

a h, (q , ,2 It) = D2 (W)* P (q'", q 0, t) * P2(qi" q, t). (5.76)

Similarly, we have:

a h2(q, q2 ,t) = aD(t) *P(q',q(,t)*P2(qoq ,t), (5.77)
a q,(t) qO 9

and

a h2(q,q2,t) = - aD12 P2(q,",t,[1 ~P2(q , (5.78)
a q 2 (t) qtJ 9 2(.8

Substituting expressions (5.75) and (5.76) into expression (5.74), we can then express

h, (t) as a linear function of the prices: h (t) = h, (q, q2,t)= A + Bqj (t)+ Cq 2 (t), for some

constants A , B, and C. Substituting the flow rate h, (q, q2,t) into expression (5.72), we
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would then obtain a linear relationship linking several prices (at different time intervals)

and binding them by a capacity constraint, as follows:

2

<H)*q, (/)! H , (5.79)

for some constant 1,a (1). Since the hot spot constraint should be satisfied for every link

and time interval, the number of constraints in the form of equation (5.79) is equal to the

number of links times the number of network time intervals. Similarly to program (E)

above, the linear approximation congestion pricing model with hot spot constraints can

be stated as the following program, denoted as (E), for a two-link example:

Max Z(q)= qT -a(q) (5.80)
q aq q~q

Subject to:

05 q q'ax ; (5.81)

ZZ ()* q*,() H for every link and time. (5.82)

Since the hot spot constraint should be satisfied for every link and time, program (E)

can be interpreted as a multiple knapsack problem. As in the previous knapsack problem,

the weights and values of objects included in the knapsack can possess negative values.

5.5 Experimental Results

In this section, we report results from several experiments that were conducted on small

hypothetical network examples to assess the effectiveness of congestion and emission

pricing on total travel times and emissions. We first give a brief overview of the DTA

model used to simulate users' reactions to the tolls. Then we present three examples on

congestion pricing with route choice only, emission pricing with route choice only, and

congestion pricing with both route and departure time choices.

5.5.1 The DTA Model

We adopt the analytical dynamic traffic assignment model described in He (1997) to

simulate users' reaction to the implemented prices. This model consists of three main

146



modules: a user behavioral model, a dynamic network loading model, and a link

performance model. Three user classes are modeled: (1) users with fixed route choices,
(2) users with stochastic route choices, and (3) users that follow a shortest path. In

addition, we have added to the model the option of having different user classes

distinguished by different values of time or different vehicle categories. We have also

added a departure time choice model. The utility function in the route and departure time

choices of users with stochastic behavior is a general utility function that can account for

travel time, tolls, and schedule disutility. The dynamic network loading model consists of

a set of equations expressing link dynamics, flow propagation, flow conservation, and

boundary constraints.

5.5.2 Congestion Pricing with Route Choice Only: a Three-Link
Example

5.5.2.1 Network Description

The network used in this example is shown in Figure 5.5. It consists of two O-D pairs: a-

c and b-c. O-D pair a-c is connected by one path (link 1), and O-D pair b-c is connected

by two paths (path 1: link 2 and path 2: links 3-1). Links I and 2 have the same capacity,

but link 2 is longer. Thus, several users traveling from b to c use the bridge (link 3)

followed by link 1, causing delays to users of O-D pair a-c who have only one travel

alternative. In this example, therefore, we investigate the potential savings in travel time

from a toll imposed on the bridge (link 3). The link travel time functions are also shown

in Figure 5.5 (in minutes, as a function of the link volumes (number of vehicles)).

a d = 5 + 0.1*x p

d3 = 1+0.2* X3 3 2

d2=-2 0+ 0. 1 * X 2

b

Figure 5.5. Network topology for a three-link example.
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5.5.2.2 Scenario Description

The O-D travel demands for O-D pairs a-c and b-c are 1800 veh/hr and 600 veh/hr,

respectively. The demand interval is 20 minutes. We let the maximum toll that can be

charged on the bridge be equal to $ 3. We assume that all users belong to the stochastic

user class. That is, users base their route choices on the perceived rather than the actual

travel costs. Within this class, we assume that there are two subclasses of users: one with

a high value of time (10 $/hr) and one with a low value of time (3 $/hour). The

percentages of users in the two subclasses are 70 % and 30 %, which might be

representative of travel during the morning peak period (most trips are home-to-work). In

this example, we model users' reactions to the prices in terms of route choice but not

departure time choice. The following utility specification is used in the route choice

model:

U';(p,t)= a, d (pt)+ Iq(p,) +,"(p,t), where a, = -0.106 min-' (obtained

from Small (1982)). The parameters used in the C-Logit model are: A= 1.0 and

=2.0.

In this example, we also evaluate the impacts of the congestion tolls on the total

levels of tailpipe CO emissions. The emission factors that we use are shown in Table 5.3.

They represent expected emission factors for vehicle category 9 (defined in Cappiello

(2002)) and arterials, derived from the integration of EMIT, an instantaneous emission

model developed in Cappiello et al. (2002), and a probabilistic acceleration model,

developed in Abou Zeid et al. (2002). The emission and acceleration models have been

described in Chapter 2 of this thesis.
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Table 5.3. Expected tailpipe CO emission factors for
vehicle category9 and arterials. (from Cappiello (2002)).

Expected Tailpipe
Speed Range CO Emission Factor
(km/h) (g/s)
0-10 0.0012331
11-20 0.003766
21-30 0.0066965
31-40 0.0095818
41-50 0.0095226
51-60 0.0075375
61-70 0.0087029
71-80 0.011866
81-90 0.0185575
91-100 0.0288626

5.5.2.3 Results

We note that the results shown for this example only correspond to using the full gradient

expression (i.e. without neglecting the effect of a slight change in toll on a change in

travel time). The results were the same using the exact expression of the gradient or its

, drs(p,t)
approximation given by expression (5.32). It appears that the term h* (pt) a qr (/)

a q, (1)

was not zero for this example (but was rather significant), but that the terms

h (p,t) ad(p, and d"(p,t) (P) had the same sign, and thus the sign of the
in a q(1) q(1)

gradient (and the subsequent toll setting) was not affected by assuming that the term

, d"(p, t) , d(pt
hs a(p,t) was zero. The significance of the term hs*(p, t) should be

a q,() ma q,(l)

a subject for future research. Figure 5.6 shows the time-dependent tolls on the bridge

(link 3). These tolls cause the total travel time to decrease from 430 veh-hr to 417 veh-hr,

which corresponds to a 3 % saving. The total emissions, on the other hand, increase from

6331 grams of CO to 6748 grams (6.6 %). This might be attributed to the improved

traffic flow conditions, which lead to higher speeds and higher aggregate emissions

(since the expected emission factors in g/s, shown in Table 5.3, are generally a non-

decreasing function of speed range). Note that for most of the departure time period the
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toll on the bridge approaches its maximum possible value ($ 3). This might suggest that a

system-optimal solution can be obtained by diverting most of the users of the bridge (path

2) to path 1 of O-D pair b-c. Setting the toll as large as possible has the effect of

decreasing the utility of the bridge as much as possible and hence the probability of using

it.

3.5

3

2.5

2

P 1.5

1

0.5

U 4 - 1

0 500 1000 1500

Departure Time (s)

Figure 5.6. Toll on the bridge (link 3).

Next we show the effect of the toll on the path flows. For users of O-D pair a-c, the

only available path is link 1, and so the path flow does not vary with the toll on the

bridge. For O-D pair b-c, we show the change in path flows separately for users with low

value of time ($ 3) and high value of time ($ 10). Figure 5.7 shows the path flows with

and without the tolls for users with low (part a) and high (part b) values of time. For both

types of users, the flow on path 1 increases and the flow on path 2 decreases after

implementing the tolls. However, the sensitivity to the tolls of users with low value of

time is higher than that of users with high value of time; the flow rate of users with low

value of time drops almost to zero on path 2, while it remains greater than zero for users

with high value of time.
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Figure 5.7. Path flows for O-D pair b-c and users with low value of time (part a) and high

value of time (part b).

Finally, Figures 5.8 and 5.9 show the path travel times for O-D pairs a-c and b-c,

respectively, with and without the tolls. As expected, the travel time on path 1 of O-D

pair a-c decreases in the presence of the tolls. The travel time of path 1 of O-D pair b-c

increases in the presence of the tolls due to its larger flow rate, while the travel time of

path 2 of O-D pair b-c decreases in the presence of the tolls.
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Figure 5.8. Path travel times for O-D pair a-c with and without the tolls.
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Figure 5.9. Path travel times for O-D pair b-c with and without the tolls.

5.5.2.4 Convergence of the Algorithm

The above problem has been solved using Algorithm I described in Section 5.2.4 because

only route choice is modeled in the user behavior model within the DTA. We monitor the

convergence of the algorithm by plotting the total travel time as a function of the number

of iterations, as shown in Figure 5.10. The total travel time starts at 430 veh-hr and

converges to 417 veh-hr after the first few iterations, thus verifying the validity of the

algorithm.
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Figure 5.10. Total travel time as a function of the number of iterations used in Algorithm 1.

5.5.3 Emission Pricing with Route Choice Only: a Twelve-Link

Example

5.5.3.1 Network Description

This example is taken from Xu et al. (1999). The network, shown in Figure 5.11, consists

of 9 nodes, 12 links (whose attributes are shown in Table 5.4), and 7 O-D pairs (whose

paths are given in Table 5.5).

3 5 6

2 5 8

8 9 10

Figure 5.11. A twelve-link network example.
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Table 5.4. Attributes of the links.

Length (miles) Free-Flow SpeedLink

2
3
4
5
6
7
8
9
10
11
12

(miles/hour)
60
60
60
60
60
60
60
60
60
60
60
60

Jam Density
(vehicles/mile)
210
210
210
210
210
210
210
210
210
210
210
210

Table 5.5.
O-D Pair

(1,9)

(1,5)

(5,9)

(3,9)
(, 7),
(7,9)

O-D pairs and paths.
Path
1,2,6,10
1,5,7,10
1,5,9, 12
3,4,7, 10
3,4,9, 12
3,8, 11, 12

1,5
3, 4
7, 10
9, 12
3, 8
11, 12
1,2
6, 10

5.5.3.2 Scenario Description

The demand interval is [0,300] seconds. The time-dependent O-D demand is given by the

following formula:

( t 
,

150)
te [0,300]

where qr is given in Table 5.6.
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Table 5.6. Values of the parameter .

O-D Pair (1,9) (1,5) (5,9) (1,3) (3,9) (1,7) (7,9)

)I 1.7 0.6 0.6 0.25 0.2 0.2 0.7

We assume that all users belong to the stochastic user class with a uniform value of

time equal to $ 7. Moreover, we assume that there are two vehicle categories representing

low and high emitters. The emission species for which the pricing is done is CO. The

emission factors for the first vehicle category (low emitters) are those used in the

previous example (Table 5.3). The emission factors of the high emitters are assumed to

be four times the emission factors of the low emitters. Moreover, the fleet of vehicles is

assumed to consist of 80 % low emitters and 20 % high emitters. The maximum toll is

uniform among all links, and it is set to $ 1 and $ 2 for low and high emitters,

respectively. The coefficients of the variables used in the utility functions are the same as

those used in the previous example. Moreover, departure time choice is not modeled here

as well.

5.5.3.3 Results

For the network and scenario shown above, emission pricing resulted in a reduction of

total emissions from 9253 (50 % of which is attributable to low emitters and 50 % to high

emitters) to 8645 grams (52 % of which is attributable to low emitters and 48 % to high

emitters). This corresponds to a saving of 6.6 %. The savings due to low and high

emitters are 28 % and 72 %, respectively. This is indicative that most of the reductions in

emissions accrued from the rerouting of traffic due to pricing are attributable to high

emitters, even though they represent a small proportion in the vehicle mix. Figure 5.12

shows the total CO emission levels for each O-D pair summed over all departure times

with and without tolls.
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Figure 5.12. Total emissions levels by O-D pair summed over all departure times with and without tolls.

The results indicate that the emission levels for O-D pairs with multiple paths

decrease whereas emissions increase for O-D pairs with only one path. This is intuitively

correct since O-D pairs with multiple paths would allow the users to shift from highly

polluted paths to less polluted paths where they would pay less, thus resulting in a net

decrease in emissions.

Below we show the results for O-D pair 5-9 which is connected by two paths (path I

consisting of links 7-10 and path 2 consisting of links 9-12). Figure 5.13 shows the path

flow rates before and after the tolls. For both low and high emitters, both path 1 and path

2 have almost the same flow rate without the tolls since their travel times are

approximately equal (see Figure 5.16). In the presence of the tolls, the flow rate on path 2

becomes very small compared to that on path 1. We explain this shift in flow rates by

examining the emission levels and tolls on the two paths. Before implementing the tolls,

the emissions per vehicle on path 1 are less than those on path 2 (see Figure 5.14). Thus,

we expect the tolls to be higher on path 2 so as to shift vehicles to the less polluted path

1. Indeed, this is verified in Figure 5.15, where the toll on path 1 is set to zero while that

on path 2 is set to the maximum. The larger flow rate on path 1 causes its travel time to

increase and its emission levels per vehicle to decrease (since its average speed decreases,

and the expected emission factors we are using in this example tend to increase with

speed), and the smaller flow rate on path 2 causes its travel time to decrease and its

emissions per vehicle to increase (see Figures 5.14 and 5.16).
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Figure 5.13. Path flow rates for O-D pair 5-9 for low emitters (part a) and high emitters (part b).
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Figure 5.14. Emissions per vehicle for low emitters (part a) and high emitters (part b) on O-D pair 5-9.
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Figure 5.15. Tolls for low emitters (part a) and high emitters (part b) on O-D pair 5-9.

159

+4Path 1

-a- Path 2

0

-+-Path I

-U- Path 2

in- --- NML- -4M



500 -

450 -
400 -

350 - --- Path 1(with tolls)

~-7,s- Path 2 (with tolls)

250 -- +- Path l(without tolls)
;> 200

150 - Path 2 (without tolls)

100-
50-
0 -

0 50 100 150 200 250 300

Departure Time (s)

Figure 5.16. Path travel times for O-D pair 5-9.

The resulting pattern of emission prices causes the total travel time to increase by

11.3 %. This might be explained by the fact that for the pollutant used in this example,

the emission factors (in g/s) increase with speed. Reductions in emissions might thus be

achieved through reductions in speed, and hence increases in travel time. However, this

effect might not be general since decreasing speed implies spending more time on the

network, which would also generate more emissions. For the example and scenario

shown above, it appears that the first effect of speed reductions dominates the second.

The time-dependent tolls for all links are given in Figures 5.17- 5.28.
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Figure 5.17. Tolls for link 1.
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Figure 5.18. Tolls for link 2.
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Figure 5.19. Tolls for link 3.
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Figure 5.20. Tolls for link 4.
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Figure 5.21. Tolls for link 5.
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Figure 5.22. Tolls for link 6.
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Figure 5.23. Tolls for link 7.

163

2.5

2

0
H

1.5

1

0.5

0

0 500 1000

1.4 -

1.2 -

1 -

0.8 -

0.6 -

0.4 -

0.2 -

0

60 7
a

10000 500

Time (s)



2.5

2

1.5

1-

-+* Low emitters

-- m- High emitters

500

Time (s)

1500

Figure 5.24. Tolls for link 8.
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Figure 5.25. Tolls for link 9.
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Figure 5.26. Tolls for link 10.
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Figure 5.27. Tolls for link 11.
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Figure 5.28. Tolls for link 12.

We have also investigated the effect of changing the maximum tolls that can be

charged for every vehicle category. When the maximum toll charged for high emitters is

permitted to increase from $ 2 to $ 4 while fixing the maximum toll for low emitters at $

1 (i.e. making the ratio of maximum tolls proportional to the ratio of emission factors),

the total emissions savings increased from 6.6 % to 6.8 %. When the maximum toll

charged for high emitters is further increased to $ 6 (to allow for more than a proportional

toll to emissions factor ratio), the total emissions savings increased to 7.5 % compared to

the base case (which corresponds to maximum tolls of $ 1 and $ 2 for low and high

emitters, respectively). Thus, the total emissions savings from emission pricing are

sensitive to the maximum tolls that can be charged to different vehicle categories, which

is a policy question that needs to be addressed.

5.5.3.4 Convergence of the Algorithm

The above problem has been solved using an adaptation of Algorithm I described in

Section 5.2.4 (the difference is that gradient expressions and tolls are computed for each

vehicle category separately) because only route choice is modeled in the user behavior

model within the DTA. We monitor the convergence of the algorithm by plotting the total

CO emissions as a function of the number of iterations, as shown in Figure 5.29. The

figure shows that total emissions decrease as the number of iterations increases beyond
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40 iterations, and oscillates afterwards in a small range (8500 to 8700 grams), which

might be considered to be acceptable from a convergence standpoint.
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Figure 5.29. Total CO emissions as a function of the number
of iterations used in an adaptation of Algorithm 1.

5.5.4 Congestion Pricing with Both Route and Departure Time Choices:
the Twelve-Link Example

5.5.4.1 Network Description

The network used for this example is the same as that used for emission pricing in

Section 5.5.3.

5.5.4.2 Scenario Description

The departure time period is [0,3600] seconds. We assume that the preferred arrival time

window is [2700,3600] seconds for all O-D pairs. The total demand by number of

vehicles for every O-D pair is shown in Table 5.7:

Table 5.7. Total O-D demand.

O-D Pair (1,9) (1,5) (5,9) (1,3) (3,9) (1,7) (7,9)

Demand 1400 700 700 400 250 250 400
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We assume that all users belong to the stochastic user class with a uniform value of

time equal to $ 7. The maximum toll is constant among all links, and it is set to $ 2. In

this example, we model both route and departure time choices using a joint logit model.

We use the following utility specifications:

Jr (p) = -CF" (p)

i"(t)=o

iVrs(p,t)=a, d"(pt)+ q"(p,t) + a,(t* - A" - (t d"(P, ok

+ a ,(t + dr(p,t) -(tI* + A").,

The model was not estimated in part due to lack of data. We use the coefficients

estimated in Small (1982) for the disutility of travel time, early arrivals, and late arrivals:

a, = -0.106min- 1 , a2 = -0.065min-', and a3 = -0.254 min-'. These coefficient values

have often been used in the literature (see van Vuren et al. (1998) and Ben-Akiva et al.

(1986)). In this example, we also evaluate the impacts of the congestion tolls on the total

levels of tailpipe CO emissions. The emission factors that we use are shown in Table 5.3.

We use Algorithm 2 to solve the congestion pricing model with route and departure time

choices.

5.5.4.3 Results

The application of the time-dependent tolls to the network links for the given network

parameters and user behavior models resulted in a decrease of total travel time from 472

to 402 veh-hr, corresponding to a saving of 14.8 %. As in the example presented in

Section 5.5.3, we present the results for O-D pair 5-9. Figures 5.30 and 5.31 show the

path flows and travel times with and without the tolls. Without the tolls, travel times are

almost constant because the network is not very congested, except for an increase in

travel times in the departure time period extending from 2358 to 3240 seconds. This

corresponds to an increase in flow in the period [2358,3240], since departures in this

period lead to arrivals within the PAT window. To decrease total travel times, the total

tolls levied on the paths of O-D pair 5-9 are largest in the period [2358,3240], as shown
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in Figure 5.32. This results in a more even spreading of the flows among the departure

time intervals, as seen in Figure 5.30, and almost constant travel times, as seen in Figure

5.31.
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Figure 5.30. Path flows for O-D pair 5-9.
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Figure 5.31. Path travel times for O-D pair 5-9.
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Figure 5.32. Path tolls for O-D pair 5-9.

As to the effect of the congestion tolls on total network emissions, we observe a

similar effect to that in the first congestion example presented, namely a 4.4 % increase

in total emissions from 25,925 to 27,059 grams of CO.

5.5.4.4 Convergence of the Algorithm

As mentioned previously, the above problem has been solved using Algorithm 2

described in Section 5.2.4. We monitor the convergence of the algorithm by plotting the

total travel times as a function of the number of iterations, as shown in Figure 5.33. The

figure shows that total travel time decreases as the number of iterations increases and

stabilizes at a value of 402 veh-hr, thus verifying the validity of Algorithm 2.
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Figure 5.33. Total travel time as a function of the number of iterations used in Algorithm 2.

5.6 Conclusions, Limitations, and Extensions

In this chapter, we presented a dynamic pricing model for congestion and/or emissions in

dynamic traffic networks. The pricing method is a second-best link-based approach that

sets upper bounds on the link prices and takes users' reaction into account to compute the

prices. The impacts of the prices on users' travel behavior have been modeled in terms of

route and departure time choices. The model allows for multiple users classes

distinguished for instance by value of time or vehicle category. The model has been

solved using a sensitivity analysis. Gradient expressions, for the change in total travel

time or emissions as a function of the change in prices, have been derived for four

different behavioral assumptions: route choice only, and joint choice of route and

departure time using a joint logit and two nested logit models. Iterative solution

algorithms that utilize the gradient expressions to improve the solution from one iteration

to another have been presented.

The framework has been extended to allow additional constraints in the model. A

taxonomy of possible scenarios of interest that can arise in the combined optimization of

congestion and emissions was given. Two scenarios have been formulated: the first

includes an upper bound on the total emissions or total travel time, and has been

formulated as a knapsack problem with arbitrary signs allowed for the values and weights
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of the objects that can be included in the knapsack; the second adds a hot spot constraint

to the congestion/emission pricing model, and has been formulated as a multiple

knapsack problem for a simple network consisting of two parallel routes.

Various experiments were conducted on small hypothetical network examples to

assess the effectiveness of the proposed pricing methods on the subsequent levels of

congestion and emissions. For the network examples used and scenarios considered,

congestion pricing resulted in savings in total travel times. Similarly, emission pricing

(for CO) resulted in savings in total emissions. The results further indicate that decreases

in total travel time do not necessarily correspond to decreases in total emissions, and vice

versa, which might be the result of a trade-off between changes in speed and changes in

time spent on the network. However, this effect should be studied further on other

network topologies and demand scenarios.

Future research should be directed at studying how the methodology developed in this

chapter can be extended or possibly modified to address the following issues:

1. The analysis in this chapter assumed that the demand is inelastic to the implemented

prices. In reality, travelers might react to the prices by canceling their trips or shifting

to other modes of travel such as public transit. In this context, minimizing total travel

time or total emissions could be achieved by setting the tolls large enough to drive the

demand to zero. As this is not practical in reality, the objective function in this case

should be to maximize net social benefit. The same framework can be used to study

this problem, but the gradient expressions should be modified for the new problem.

2. The developed models are useful in an offline (planning) context. If route guidance is

provided to users, a route guidance generation model (see for instance Bottom

(2000)) should be used instead of a dynamic traffic assignment model to find user

equilibrium.

3. In the developed models, the link prices were assumed to depend on the entry time of

the link. While a time-dependent link price pattern would provide a benchmark

solution (in terms of least travel times or emissions), in reality travelers might be

generally reluctant to unpredictable prices. It is an interesting question to study how

the time-dependent price vector can be used to derive a vector of uniform (static) or

stepwise tolls, that is "robust" to time-dependent changes in network conditions.
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4. An interesting application of the congestion pricing model is to adapt it to a cordon

pricing scheme which is a popular pricing method in practice (such as in Singapore

and Norway (Emmerink (1998))). This can be done within the algorithms presented

earlier by imposing zero upper bounds on prices for links that are outside the cordon

and non-zero upper bounds for links that belong to the cordon.

5. The emission pricing model presented in this chapter has assumed that one emission

species is being optimized. In spite of the difficulties associated with accounting for

multiple emission species in the optimization procedure, the impact of the pricing on

the levels of those emission species should not be ignored. One way to include

multiple emission species in the model is to associate a monetary cost with a unit

mass of each emission species and use these costs to transform the total emissions per

vehicle into a monetary equivalent.

6. In some of the derivations of the gradient expression, it was assumed that a slight

increase in a link toll has a negligible effect on the changes in path travel times and

path emissions, namely that the terms h,, (p, t) and h,0, a m (t) are
a q, (1) a q~na (1)

approximately zero. While the numerical results have indicated savings in total travel

times or total emissions for congestion or emission pricing, respectively, the

, ad"(p e ) "(p, t)significance of the terms h, *(P,t) d(Pt ) and h1"(p*t) ' should be
aq,(1) a q,a (1)

revisited in future research. Moreover, one has to investigate the existence of the

gradients of total travel time and total emissions with respect to link tolls.

7. Finally, we make some comments on the departure time choice model. First, the

discretization of the departure time alternatives in the departure time choice model

was assumed to be identical to the discretization used within the DTA. If the

departure time intervals are very small and network conditions do not change

instantaneously, travelers might not be able to perceive differences between adjacent

departure time alternatives. Thus, the models and algorithms should be modified to

allow for departure time alternatives in the departure time choice model that are

larger in duration than those used in the DTA. Second, different tree structures for the

joint choice of route and departure time that allow for more flexibility in the error
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structure could be investigated. Third, in the analysis, departure time choice rather

than departure time change (which arises in an ATIS context) has been studied. It is

useful to investigate whether the developed models and algorithms could be modified

to model deviations from habitual departure time behavior as a response to pre-route

or en-route information.
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Chapter 6

Conclusions and Directions for

Future Research

6.1 Contributions and Major Results

The major theme of this thesis has been the development of models and algorithms for

the optimization of traffic flows and emissions in dynamic traffic networks. The

developed methods fall in two categories: methods for the enhanced representation of

traffic flows and emissions, and methods for their management via routing and pricing.

Below we summarize the main contributions of this thesis as well as major results that

have been obtained from this research.

In Chapter 2, a probabilistic approach was developed to model acceleration in traffic

networks as a random variable that is a function of speed and road type. The approach

was applied to trip data collected in South Eastern Michigan. For every speed range and

road type, an acceleration distribution and a deceleration distribution were plotted. Half-

normal distributions were fitted to the statistical sample distributions, and the goodness-

of-fit was shown to be acceptable in most cases, justifying the validity of the probabilistic

approach. The standard deviation of the distributions was shown to decrease as the speed

range increases, and little variation was seen among road types. The acceleration model

was used in conjunction with an instantaneous emission model to model emissions as
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random variables and generate expected emission factors. The model thus has

applications related to the integration of non-microscopic dynamic traffic models, that

generate speed but not acceleration as output, and instantaneous emission models that

require both speed and acceleration as input.

Routing algorithms, which arise as sub-problems in dynamic traffic assignment

models as well as in other applications, were developed in Chapters 3 and 4 of the thesis.

Specifically, in Chapter 3, we studied the minimum cost flow problem in capacitated

dynamic networks where a given supply should be sent from an origin node to a

destination node at a certain departure time in minimum cost while satisfying the link

capacities and assuming no waiting is allowed. We used the well-known successive

shortest path algorithm to solve the problem. We developed two algorithms, denoted as

Algorithm B and Algorithm C, for the shortest path computation involved in the solution

of the dynamic minimum cost flow problem. We also reviewed an algorithm, due to Cai

et al. (2001), which we denoted as Algorithm A. Algorithms A, B, and C were

implemented, and their computational efficiencies were assessed by using large-size

capacitated dynamic networks. The computational results indicated that Algorithms B

and C are more efficient than Algorithm A. Moreover, for the test networks used, the

successive shortest path algorithm employing Algorithm C achieved significant time

savings, compared to that employing Algorithm A (by up to a factor of 113) and that

employing Algorithm B (by up to factors of 25, 39, and 72 for three different

implementations of Algorithm B). We extended the analysis to study the case of the

minimum travel time problem, which is a special case of the minimum cost flow

problem, but with additional properties that could be exploited in the solution algorithms.

We also discussed the cases of waiting, multiple origins, multiple destinations, and

multiple departure times.

In Chapter 4, we conducted experimental analyses of a new approach developed in

Chabini (2002) for solving the shortest path problem in static and dynamic First-In-First-

Out (FIFO) networks. The new algorithm is similar in terms of the basic steps to label-

setting comparison-based algorithms, such as Dijkstra's algorithm, but tries to reduce the

number of nodes that need to be sorted, which is the bottleneck operation in Dijkstra's

algorithm. This is done by introducing optimality conditions that detect whether a node
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has been permanently set, in which case the node does not get inserted in the heap, and

by delaying the entry to the heap of those nodes that are not yet label set hoping that they

would satisfy the optimality conditions at a later stage of the algorithm. The numerical

results indicated that a significant percentage of nodes are known to be optimal without

entry to the heap, and that this percentage increases as the optimality conditions become

stronger.

In Chapter 5, we studied dynamic pricing methods for congestion and emissions in

dynamic traffic networks. We formulated a dynamic link-based second-best congestion

pricing model as a bi-level program, where the upper level is to minimize total travel time

subject to upper bounds on the link prices and the lower level is the users' reaction

function (different user classes were allowed). We studied the analytical properties of the

model and used a sensitivity analysis method to solve it. We derived gradient expressions

for the change in total travel time as a function of the change in prices under two

assumptions: users react to the prices by adjusting their route choice only, and users react

to the prices by adjusting both their route and departure time choices. We used the

gradient expressions in the development of iterative solution algorithms to solve the

model. We extended the congestion pricing model and algorithms to study dynamic

emission pricing, where the prices vary also by vehicle category. Finally, we provided a

taxonomy of emission or congestion-related constraints that could be included in the

model. We formulated two variants: congestion (emission) pricing subject to constraints

on the total emissions generated (total travel time), and congestion/emission pricing

subject to hot spot environmental constraints. The experimental analyses conducted on

small hypothetical network examples indicate that the pricing methods could achieve

reasonable reductions in the criterion (total travel time or emissions) being optimized,

and that the effect on the other criterion is not always positive or negative.

6.2 Directions for Future Research

In this section, we summarize directions for future research as related to each chapter of

this thesis.

For the probabilistic acceleration modeling approach in Chapter 2, it would be useful

to investigate the nature of the fitted acceleration and deceleration distributions and their
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variation with road type by applying the developed methodology to other data sets

(namely the Sierra chase car data). It would also be important to quantify the activity

from freeway ramps. Moreover, it would be interesting to investigate the effects of driver

aggressiveness and vehicle type on the variation of acceleration and deceleration

distributions.

For the dynamic minimum cost flow problem studied in Chapter 3, one direction for

future research is to evaluate the empirical performance of the developed algorithms

when applied to cases involving waiting and/or multiple origins, destinations, and

departure times. Particularly, for Algorithm C, it would be interesting to investigate to

what extent the lower bounds utilized in the algorithm remain effective when the number

of destinations with positive demand increases. If this latter number is close to n, then

Algorithms B and C would have the same performance.

The new approach for solving shortest path problems described in Chapter 4 leads to

a promising avenue of research, namely how one can detect the optimality of node labels

without the need for costly sorting operations used in traditional comparison-based label-

setting algorithms. The use of optimality conditions, other than those used in Chapter 4,

and the development of enhanced implementations of the algorithms that could result in

more savings in running times are left for future work. The latter is especially important

given the large percentage of nodes that are detected to be optimal by the algorithm and

are thus saved entry to the heap.

For the dynamic congestion/emission pricing methods developed in Chapter 5,

several directions can be identified for extending or modifying the basic framework.

Regarding the tolls, it would be useful to apply the developed methodology to a cordon

pricing scheme which is a common pricing method in practice. Moreover, since travelers

might be uncomfortable with time-dependent tolls or since those tolls might be difficult

to enforce in practice, one future research direction is to investigate whether one could

derive a static or step toll pattern that is "robust" to changes in network conditions.

Regarding the model of the joint choice of route and departure time used to predict users'

travel adjustment to the levied tolls, behavioral models other than joint and nested logit

could be investigated; the departure time choice model should be modified to allow for

different discretizations in departure time alternatives than the discretizations used for the
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assignment; and the analysis could be extended to model departure time change rather

than departure time choice, as has been assumed in this thesis. Finally, other extensions

include relaxing the assumption of inelastic demand, including the effect of information,

and extending the emission pricing model to optimize the levels of multiple emission

species.

179



180



References

Abkowitz, M. (1980). The impact of service reliability on work travel behavior, Ph.D.
Thesis, Massachusetts Institute of Technology, Cambridge, MA.

Abou Zeid M., I. Chabini, E. K. Nam, and A. Cappiello (2002). Probabilistic modeling of
acceleration in traffic networks as a function of speed and road type. Proceedings
of the IEEE 51h International Conference on Intelligent Transportation Systems,
Singapore, September 2002, pp. 472-478.

Abou Zeid, M., and I. Chabini (2002). Combined mobility and emissions problems in
dynamic traffic networks: taxonomy, formulations, and solution algorithms.
Internal paper, Massachusetts Institute of Technology.

Agneiv, C. E. (1977). The theory of congestion tolls. Journal of Regional Science, Vol.
17, pp. 381-393.

Ahmed, K. 1. (1999). Modeling drivers' acceleration and lane changing behavior. Ph.D.
Thesis, Massachusetts Institute of Technology, Cambridge, MA.

Ahuja, R., T. Magnanti, and J. Orlin (1993). Network flows: theory, algorithms, and
applications. Prentice Hall, Englewood Cliffs, NJ.

Alfa, A. S. (1986). A review of models for the temporal distribution of peak traffic
demand. Transportation Research B, Vol. 20B, No. 6, pp. 491-499.

Antoniou, C. (1997). Demand simulation for dynamic traffic assignment. Master's
Thesis, Massachusetts Institute of Technology, Cambridge, MA.

Arnott, R., A. de Palma, and R. Lindsey (1990). Departure time and route choice for the
morning commute. Transportation Research B, Vol. 24B, No. 3, pp. 209-228.

Barratt R. (2001). Atmospheric dispersion modelling: an introduction to practical
applications. Earthscan Publications, London, United Kingdom.

Barth, M. (1998). Integrating a Modal Emissions Model into Various Transportation
Modeling Frameworks. Transportation Planning and Air Quality III, Emerging
Strategies and Working Solutions (S. Washington, ed.), ASCE, New York, pp. 38-
50.

Bates, J. J. (1996). Time period choice modeling: a preliminary review. Final report for
the Department of Transport, John Bates Services, Oxford.

Ben-Akiva, M., and M. Bierlaire (1999). Discrete choice methods and their applications
to short term travel decisions. In R. Hall (ed.), Handbook of Transportation
Science, International Series in Operations Research and Management Science,
Vol. 23, Kluwer. http://roso.epfl.ch/mbi/handbook-final.pdf.

Ben-Akiva, M., A. de Palma, and P. Kanaroglou. (1986). Dynamic model of peak period
traffic congestion with elastic arrival rates. Transportation Science, Vol. 20, No.
2, pp. 164-181.

181



Ben-Akiva, M., and S. R. Lerman (1979). Disaggregate travel and mobility choice
models and measures of accessibility. In Behavioral travel modeling. D. Hensher
and P. Stopher, eds. Croom Helm, London.

Ben-Akiva, M., and S. R. Lerman (1985). Discrete choice analysis. The MIT Press,
Cambridge, Massachusetts.

Bertsimas, D., and S. Stock Patterson (1998). The air traffic flow management problem
with enroute capacities. Operations Research, Vol. 46, pp. 406-422.

Bottom, J. A. (2000). Consistent Anticipatory Route Guidance. Ph.D. Thesis,
Massachusetts Institute of Technology, Cambridge, MA.

Braid, R. M. (1996). Peak-load pricing of a transportation route with an unpriced
substitute. Journal of Urban Economics, Vol. 40, pp. 179-197.

Brotcorne, L., M. Labb6, P. Marcotte, and G. Savard (2001). A bilevel model for toll
optimization on a multicommodity transportation network. Transportation
Science, Vol. 35, No. 4, pp. 345-358.

Cai, X., T. Kloks, and C. K. Wong (1997). Time-varying shortest path problems with
constraints. Networks 29 (3), pp. 141-149.

Cai, X., D. Sha, and C. K. Wong (2001). Time-varying minimum cost flow-problems.
European journal of operational research, Vol. 131, pp. 352-374.

Cappiello, A. (2002). Modeling traffic flow emissions. Master's Thesis, Massachusetts
Institute of Technology, Cambridge, MA.

Cappiello A., 1. Chabini, E. K. Nam, A. Lub, and M. Abou Zeid (2002). A statistical
model of vehicle emissions and fuel consumption. Proceedings of the IEEE 5th

International Conference on Intelligent Transportation Systems, Singapore,
September 2002, pp. 801-809.

Carey, M., and A. Srinivasan (1993). Externalities, average and marginal costs, and tolls
on congested networks with time-varying flows. Operations Research, Vol. 41,
pp. 217-231.

Carlson, T. R., and T. C. Austin (1997). Development of speed correction cycles. Draft
report prepared for the Environmental Protection Agency.

Cascetta, E. (2001). Transportation systems engineering: theory and methods. Kluwer
Academic Publishers, Dordrecht, Boston, Massachusetts.

Cascetta, E., A. Nuzzolo, and L. Biggiero (1992). Analysis and modeling of commuters'
departures and route choices in urban networks. Proceedings of the Second
International CAPRI Seminar on Urban Traffic Networks.

Cascetta, E., A. Nuzzolo, F. Russo, and A. Vitetta (1996). A modified logit route choice
model overcoming path overlapping problems. Specification and some calibration
results for interurban networks. Proceedings of the 13th International Symposium
on the Theory of Road Traffic Flow, Lyon, France.

182



Chabini, 1. (1998). Discrete dynamic shortest path problems in transportation
applications: complexity and algorithms with optimal run time. Transportation
Research Record 1645, pp. 170-175.

Chabini, 1. (2002). A note on improved shortest path algorithms. Massachusetts Institute
of Technology.

Chabini, I., and M. Abou Zeid (2002). The minimum travel time flow problem in
capacitated dynamic networks. Internal paper, Massachusetts Institute of
Technology.

Chabini, I., and M. Abou Zeid (2003). The minimum cost flow problem in capacitated
dynamic networks. Presented at the 8 2nd annual meeting of the Transportation
Research Board, Washington, D.C.

Chabini, I., and B. Dean (1998). Shortest path problems in deterministic discrete-time
dynamic networks: complexity, algorithms and efficient implementations. Internal
paper, Massachusetts Institute of Technology.

Chabini, I., and S. Lan (2002). Adaptations of the A* algorithm for the computation of
fastest paths in deterministic discrete-time dynamic networks. IEEE Transactions
on Intelligent Transportation Systems, Vol. 3, Issue 1, pp. 60-74.

Clegg, J., M. Smith, Y. Xiang, and R. Yarrow (2001). Bilevel programming applied to
optimising urban transportation. Transportation Research B, Vol. 35, pp. 41-70.

Cooke, L., and E. Halsey (1966). The shortest route through a network with time-
dependent internodal transit times. Journal of Mathematical Analysis and
Applications, Vol. 14, pp. 492-498.

Cosslett, S. (1977). In Demand model estimation and validation, Vol. V, Urban Travel
Demand Forecasting Project, D. McFadden et al. (eds.), Institute of
Transportation Studies, University of California, Berkeley.

Dafermos, S., and F. T. Sparrow (1971). Optimal resource allocation and toll patterns in
user-optimized transport networks. Journal of Transport Economics and Policy,
Vol. 5, pp. 184-200.

Deakin, E., and G. Harvey (1996). Transportation pricing strategies for California: an
assessment of congestion, emissions, energy, and equity impacts. Final report for
California Environmental Protection Agency, Air Resources Board.
http://www.arb.ca.gov/research/abstracts/92-3 16.htm#Abstract.

Deakin, E., and G. Harvey (1998). Transportation pricing strategies for California: an
assessment of congestion, emissions, energy, and equity impacts. Research notes.
Available on-line: http://www.arb.ca.gov/research/resnotes/notes/98-1.htm.

Delucchi, M. A. (2000). Environmental externalities of motor-vehicle use in the US.
Journal of Transport Economics and Policy, Vol. 34, Part 2, pp. 135-168.

De Palma, A., M. Ben-Akiva, C. Lefevre, and N. Lithinas (1983). Stochastic equilibrium
model of peak period traffic congestion. Transportation Science, Vol. 17, pp. 430-
453.

183



Downs, A. (1992). Stuck in traffic.: coping with peak-hour traffic congestion. The
Brookings Institution, Washington, D.C., and the Lincoln Institute of Land Policy,
Cambridge, Massachusetts.

Dreyfus, S. E. (1969). An appraisal of some shortest-path algorithms. Operations
Research, Vol. 17, pp. 395-412.

Emmerink, R. H. M. (1998). Information and pricing in road transportation. Springer-
Verlag, New York.

Environmental Protection Agency, Regional and State Programs Division, Office of
Mobile Sources. (1997). Opportunities to improve air quality through
transportation pricing programs. http://www.epa.gov/otag/market/pricing.pdf.

Environmental Protection Agency (1998). Technical methods for analyzing pricing
measures to reduce transportation emissions. EPA 231-R-98-006, Washington,
D.C. http://www.epa.gov/otaq/transp/anpricng.pdf.

Eskeland, G. S., and S. Devarajan (1996). Taxing bads by taxing goods: pollution control
with presumptive charges. The International Bank for Reconstruction and
Development / The World Bank, Washington, D. C.

Fancher P., R. Ervin, J. Sayer, M. Hagan, S. Bogard, Z. Bareket, M. Mefford, and J.
Haugen (1998). Intelligent cruise control field operational test. Final Report,
volume 1, United States Department of Transportation.

Gomez-Ibanez, J, and K. Small (1994). NCHRP synthesis 210 of highway practice: road
pricing for congestion management: a survey of international practice. Rep.,
National Research Council, Washington, D.C.

Gopalan, R., K. Kolluri, R. Batta, and M. Karwan (1990). Modeling equity of risk in the
transportation of hazardous materials. Operations Research, Vol. 38, pp. 961-973.

Grier N., and I. Chabini (2002). A new approach to compute minimum time path trees in
FIFO time dependent networks. Proceedings of the IEEE 5 th International
Conference on Intelligent Transportation Systems, Singapore, pp. 485-490.

Guensler, R. S., S. Washington, and W. Bachman (1998). Overview of the MEASURE
modeling framework. Transportation Planning and Air Quality III, Emerging
Strategies and Working Solutions (S. Washington, ed.), ASCE, New York, pp. 51-
70.

Hague Consulting Group, Halcrow Fox, and Imperial College (2002). Modelling peak
spreading and trip retiming - phase II. Final report for the Department of the
Environment, Transport and the Regions, Cambridge.

Harrington, W., V. McConnell, and A. Alberini (1996). Economic incentive policies
under uncertainty: the case of vehicle emission fees. Resources for the Future,
discussion paper 96-32, Washington, D.C.
http://www.rff.org/CFDOCS/disc papers/PDF files/9632.pdf.

Harrington, W., M. Walls, and V. McConnell (1995). Driving our way to cleaner air.
Issues in Science and Technology, Winter 1994/1995.

184



He, Y. (1997). A flow-based approach to the dynamic traffic assignment problem:
formulations, algorithms and computer implementations. Master's Thesis,
Massachusetts Institute of Technology, Cambridge, MA.

Henderson, J. V. (1974). Road congestion: a reconsideration of pricing theory. Journal of
Urban Economics, Vol. 1, pp. 346-365.

Hendrickson, C., and G. Kocur. (1981). Schedule delay and departure time decisions in a
deterministic model. Transportation Science, Vol. 15, No. 1, pp. 62-77.

Hoogendoorn, S. P., and P. H. L. Bovy (2001). State-of-the-art of vehicular traffic flow
modelling. Journal of Systems and Control Engineering, special issue on road
traffic modelling and control, Vol. 215, No. 4.
http://cttrailf.ct.tudelft.nl/T&E/papers course IV 9/state-of-the-art.PDF.

Huang, H. J., and H. Yang (1996). Optimal variable road-use pricing on a congested
network of parallel routes with elastic demand. Proceedings of the 13th
International Symposium on the Theory of Traffic Flow and Transportation, pp.
479-500.

Hyman, G. (1997). The development of operational models for time period choice.
Department of the Environment, Transport and the Regions, HETA Division,
London.

Kaufman, D. E., and R. L. Smith (1993). Fastest paths in time-dependent networks for
intelligent-vehicle-highway systems application. IVHS Journal, Vol. 1, pp. 1-11.

Kessler, J., and W. Schroeer (1993). Meeting mobility and air quality goals: strategies
that work. U.S. Environmental Protection Agency, Office of Policy Analysis.

Knight, F. H. (1924). Some fallacies in the interpretation of social cost. Quarterly
Journal ofEconomics, Vol. 38, pp. 582-606.

Labbd, M., P. Marcotte, and G. Savard (1998). A bilevel model of taxation and its
application to optimal highway pricing. Management Science, Vol. 44, No. 12,
Part 1 of 2, pp. 1608-1622.

LeBlanc, D. C., F. M. Saunders, M. D. Meyer, and R. Guensler (1995). Driving pattern
variability and impacts on vehicle carbon monoxide emissions. Transportation
Research Record 1472, pp. 45-52.

Levy-Lambert, H. (1968). Tarification des services a qualit6 variable: application aux
peages de circulation. Econometrica, Vol. 36 (3-4), pp. 564-574.

Liu, L. N., and D. E. Boyce (2002). Variational inequality formulation of the system-
optimal travel choice problem and efficient congestion tolls for a general
transportation network with multiple time periods. Regional Science and Urban
Economics, Vol. 32, pp. 627-650.

Liu, Y., and H. S. Mahmassani (1998). Dynamic aspects of departure time and route
decision behavior under ATIS: modeling framework and experimental results.
Presented at the 7 7th annual meeting of the Transportation Research Board,
Washington, D.C.

185



Liu, L. N., and J. F. McDonald (1998). Efficient congestion tolls in the presence of
unpriced congestion: a peak and off-peak simulation model. Journal of Urban
Economics, Vol. 44, pp. 352-356.

Liu, L. N., and J. F. McDonald (1999). Economic efficiency of second-best congestion
pricing schemes in urban highway systems. Transportation Research B, Vol. 33,
pp. 157-188.

Liu, T. G. (2003). Modeling and experimental studies of network traffic emissions using
a microscopic simulation approach. Master's Thesis, Massachusetts Institute of
Technology, Cambridge, MA.

Lo, H. K., and M. D. Hickman (1997). Toward an evaluation framework for road pricing.
Journal of Transportation Engineering, Vol. 123, No. 4, pp. 316-324.

Mahmassani, H. S., and G. L. Chang (1985). Dynamic aspects of departure time choice
behavior in a commuting system: theoretical framework and experimental
analysis. Transportation Research Record 1037, pp. 88-101.

Mahmassani, H. S., and G. L. Chang (1986). Specification and estimation of a dynamic
departure time acceptability model in urban commuting. Presented at the 6 5 th

annual meeting of the Transportation Research Board.

Mahmassani, H. S., and G. L. Chang (1987). On boundedly rational user equilibrium in
transportation systems. Transportation Science, Vol. 21, pp. 89-99.

Mahmassani, H. S., and R. Herman (1984). Dynamic user equilibrium departure time and
route choice on idealized traffic arterials. Transportation Science, Vol. 18, No. 4,
pp. 362-384.

Marchand, M. (1968). A note on optimal tolls in an imperfect environment.
Econometrica, Vol. 36 (3-4), pp. 575-581.

McDonald, J. F., E. L. d'Ouville, and L. N. Liu (1999). Economics of urban highway
congestion andpricing, Kluwer Academic Publishers.

McFadden, D. (1978). Modelling the choice of residential location. In Spatial interaction
theory and residential location. A. Karlquist et al., eds. North Holland,
Amsterdam, pp. 75-96.

Miller-Hooks, E. (corresponding author), and S. Stock Patterson (2002). On solving
quickest time problems in time-dependent, dynamic networks. Unpublished data.
Corresponding author: Department of Civil and Environmental Engineering, the
Pennsylvania State University, e-mail: edm3 Cd)psu.edu.

Nagumey, A. (2000 a). Congested urban transportation networks and emission
paradoxes. Transportation Research Part D 5, pp. 145-151.

Nagurney, A. (2000 b). Sustainable transportation networks. Edward Elgar Publishing,
Inc., Massachusetts.

National Research Council Committee to Review EPA's Mobile Source Emissions Factor
(MOBILE) Model (2000). Modeling mobile-source emissions. National Academy
Press.

186



Orda, A., and R. Rom (1990). Shortest-path and minimum-delay algorithms in networks
with time-dependent edge length. Journal of the A CM, Vol. 37 (3), pp. 607-625.

Pallottino, S., and M. G. Scutell' (1998). Shortest path algorithms in transportation
models: classical and innovative aspects. In (P. Marcotte and S. Nguyen, eds.)
Equilibrium and Advanced Transportation Modelling, Kluwer, pp. 245-281.

Patriksson, M., and R. T. Rockafellar (2002). A mathematical model and descent
algorithm for bilevel traffic management. Transportation Science, Vol. 36, No. 3,
pp. 271-291.

Pigou, A. C. (1920). Wealth and welfare. Macmillan, London.

Ran, B., R. W. Hall, and D. E. Boyce (1996). A link-based variational inequality model
for dynamic departure time/route choice. Transportation Research B, Vol. 30, No.
1, pp. 31-46.

Roberts, C. A., S. Washington, and J. D. Leonard II (1999). Forecasting dynamic
vehicular activity on freeways: bridging the gap between travel demand and
emerging emissions models. Transportation Research Record 1664, pp. 31-39.

Small, K. A. (1982). The scheduling of consumer activities: work trips. The American
Economic Review, Volume 72, Issue 3, pp. 467-479.

Small, K. A. (1987). A discrete choice model for ordered alternatives. Econometrica 55
(2), pp. 409-424.

Small, K. A. (1992 a). Trip scheduling in urban transportation analysis. The American
Economic Review, Vol. 82, Issue 2, pp. 482-486.

Small, K. A. (1992 b). Urban Transportation Economics. Harwood Academic Publishers,
Chur, Switzerland.

Special Report 209: Highway Capacity Manual, 3rd ed. (1998). TRB, National Research
Council, Washington, D.C.

van Vuren, T., A. Daly, and G. Hyman (1998). Modelling departure time choice.
Colloquium Vervoersplanologisch Speurwerk, Amsterdam.
http://www.contram.com/TECH/PAPER02.HTM.

Verhoef, E. T. (2002). Second-best congestion pricing in general static transportation
networks with elastic demands. Regional Science and Urban Economics, Vol. 32,
pp. 281-3 10.

Verhoef, E. T., P. Nijkamp, and P. Rietveld (1996). Second-best congestion pricing: the
case of an untolled alternative. Journal of Urban Economics, Vol. 40 (3), pp. 279-
302.

Vickrey, W. (1969). Congestion theory and transport investment. The American
Economic Review, Vol. 59, Issue 2, pp. 251-260.

Vickrey, W. (1994). (edited by R. Arnott, A. B. Atkinson, K. Arrow, and J. H. Dreze).
Public Economics: Selected Papers by William Vickrey. Cambridge University
Press (www.uk.cambridge.org).

187



Victoria Transport Policy Institute (2003). Online TDM Encyclopedia.
http://www.vtpi.org/tdm/.

Viti, F., S. F. Catalano, M. Li, C. Lindveld, and H. van Zuylen (2003). An optimization
problem with dynamic route-departure time choice and pricing. Presented at the
82"d annual meeting of the Transportation Research Board, Washington, D.C.

von Stackelberg, H. (1934). Marktform und gleichgewicht. Vienna: Julius Springer.
English edition: The theory of the market economy. Oxford University Press,
Oxford, England, 1952.

Walters, A. A. (1961). The theory and measurement of private and social cost of highway
congestion. Econometrica, Vol. 29, pp. 676-699.

Washington, S., J. D. Leonard Ii, C. A. Roberts, T. Young, D. Sperling, and J. Botha
(1998). Forecasting Vehicle Modes of Operation Needed as Input to 'Modal'
Emissions Models. International Journal of Vehicle Design, Vol. 20, Nos. 1-4
(Special Issue), pp. 351-359.

Wenzel T. and M. Ross (1996). Emissions from modern passenger cars with
malfunctioning emissions controls. SAE paper 960067.

White, L. (1982). U.S. mobile source emissions regulation: the problems of
implementation. Journal ofPolicy Studies, Vol. 11, pp. 77-85.

Wie, B., and R. L. Tobin (1998). Dynamic congestion pricing models for general traffic
networks. Transportation Research B, Vol. 32, No. 5, pp. 313-327.

Williams, M. D., G. Thayer, M. J. Barth, and L. L. Smith (1999). The TRANSIMS
approach to emissions estimation. Los Alamos National Laboratory.

Wolf, J., R. Guensler, S. Washington, W. Sarasua, C. Grant, S. Hallmark, M. Oliveira,
M. Koutsak, R. Thittai, R. Funk, and J. Hsu (1999). Development of a
comprehensive vehicle instrumentation package for monitoring individual
tripmaking behavior. Georgia Institute of Technology, Final Report GTI-R -
99005.

Xu, Y. W., J. H. Wu, M. Florian, P. Marcotte, and D. L. Zhu (1999). Advances in the
continuous dynamic network loading problem. Transportation Science, Vol. 33,
No. 4, pp. 341-353.

Yang, H. (1997). Sensitivity analysis for the elastic-demand network equilibrium
problem with applications. Transportation Research B, Vol. 31, No. 1, pp. 5 5-70.

Yang, H., and M. G. H. Bell (1997). Traffic restraint, road pricing, and network
equilibrium. Transportation Research B, Vol. 31, No. 4, pp. 303-314.

Yang, H., and H. Huang (1998). Principle of marginal-cost pricing: how does it work in a
general road network? Transportation Research A, Vol. 32, No. 1, pp. 45-54.

Yen, J. Y. (1970). An algorithm for finding shortest routes from all source nodes to a
given destination in general networks. Quarterly ofApplied Mathematics, Vol. 27,
No. 4, pp. 526-530.

188



Ziliaskopoulos, A. (1994). Optimum path algorithms on multidimensional networks:
analysis, design, implementation and computational experience. Ph.D. Thesis,
University of Texas at Austin.

189



190



Appendix A

Lemma 3.1: The function e,(i, t) is a non-decreasing function of the number of

augmentations. That is. e,_- (i, t) e, (i, t).

Proof of Lemma 3.1

Assume without loss of generality that node-time pair (i,t) does not belong to the nth

augmenting path P4 . We prove the lemma by contradiction. Assume that e,_,(i,t)

decreases after the nth augmentation iteration, i.e. en-1 (i,t)> en (, t) (by augmentation

iteration, we refer to the process of computing a minimum cost augmenting path,

augmenting flow on the path, and updating the residual network). Then (i,t) should be

connected to at least one node-time pair (j, u) e P, (see Figure A. 1), for otherwise the nth

augmentation iteration does not affect the minimum travel cost from (i,t) to q and

e,(i,t)= e,,(i,t). Suppose that en(i,t) is the length of a path P' from (i,t) to q which

passes through at least one arc created after the nt augmentation iteration (this arc could

be a reverse arc created after augmenting flow on P, or it could be a forward arc that

restored capacity after augmenting flow on its corresponding reverse arc). Let P' be

composed of three subpaths: a subpath of cost a connecting (i,t) to (j,u), a subpath

consisting of arcs (created after the nth augmentation iteration) of total cost - b and

connecting (j,u) to another node-time pair (k,w) on P, and a subpath of cost c

connecting (k, w) to the destination q. Thus, ej(i,t) = a - b+ c. Let d be the travel cost

of the subpath from (j,u) to q along path P1 . We have:

(1) en_ (i,t): a +d , since e4 - (i,t) is by definition the minimum travel cost from (it) to

q before the nth augmentation iteration.
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(2) b + d c -> d < c - b, for otherwise P, would have used the subpath of length c to

reach q.

From (1) and (2), e, 7 (i,t)! a - b+ c . Hence, e,_(i, t) e, (i,t).

Timet

C

d
b.

,U)

Path P, (k, w)

en(i(,, 0)

(0, 0)

q Node

Figure A. 1. Illustrative figure to prove the lower bound property.
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Appendix B

Lemma 3.2: Before Algorithm C terminates, there exists always a node-time pair (i,t )

in the candidate set C such that. (1) z(i,t )+ e(i, t,) r* and (2) (i, t ) is on a shortest

path to q.

Proof of Lemma 3.2

We prove the lemma by induction.

(1) Iteration 1: Initially, the candidate set C contains node-time pair (s,0). Since

A(s,O)+e(s,O)=0+e(s,0) rz* and (s,0) is on a shortest path to q, the lemma is

satisfied for the first iteration (i.e. first selection from the candidate set).

(2) Assume the lemma is satisfied up to iteration k. We show that the lemma is also

satisfied at iteration k +1. Denote the node-time pair that satisfied this lemma at iteration

A A

k by (i,t,). Therefore, at iteration k, we have r(i,ti)+ e(i,t.) < * and (it) is on a

shortest path to q. We distinguish two cases:

(i) If (i,t) were not selected from the candidate set C at iteration k, (i,t)

would still be in C at iteration k + 1. Since its cost label z(i,t,) cannot

increase, the lemma is still satisfied at iteration k + 1.

(ii) If (i,t) were selected from the candidate set C at iteration k, (it,)

would try to update the cost labels of all node-time pairs in its forward star

(and backward star, corresponding to reverse arcs with positive residual

capacity). Since (i,t) belongs by assumption to a shortest path P to q,

one of the nodes in the forward star (or backward star) of (i,t,) is a node-
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time pair (j,t) that belongs to P as well. If k( /,t)= ff(j,t1 ) before the

update procedure from (i,t) (which means that there is another minimum

cost path to q) and if (1,1. ) were selected before (i, t,) is selected, then

(j, t,) would not be added to C after (i,t) is removed from C. However,

when (j,tj) was selected from C, one of the nodes in the forward star (or

backward star) of (j,tj) is a node-time pair (I,t) that belongs to P as

well. If z(i,t, )=r(i,t,) before the update procedure from (j,t1 ) and if

(i, t,) were selected before (j,t1) is selected, then (l,t,) would not be

added to C after (j,tj) is removed from C. Since there is a finite number

of node-time pairs on P after (i,ti), one could apply this argument

consecutively for those node-time pairs after (i,t) on P until one

eventually reaches a node-time pair (p,t,) whose cost label Z(p,t,) is or

gets updated to ff(p,t,) and (p't) is in C when (i,t) is selected from

C. This must be true for otherwise this implies that the destination node

q was selected (since the path P ends at q) and the algorithm would

have terminated. Therefore, at iteration k +I there is a node-time pair

(p,z,) such that (p,t,)+e(p,t,) <* and (p,t,) is on a shortest path to

q, and the lemma is still satisfied at iteration k +1.

Corollary 3.3: Every node-time pair (j,tj) selected from C is such that:

i~t )+eA(j, tj sr*
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Proof of Corollary 3.3

When a node-time pair (j,tj) is selected from C, there exists a node-time pair (i,t1 ) in

A A

C such that: ff7(i,ti ) + e(i,t1) ,&. Since Algorithm C selects nodes by increasing order

A(i,t) A (i,t A)+e(iti)! r* N
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Appendix C

Lemma 3.4: For any augmenting path, the arrival time at the destination is greater than

the arrival time at any intermediate node-time pair on the augmenting path.

Proof of Lemma 3.4

We prove the lemma by induction.

(1) First augmenting path: Since all link travel times are initially positive before

augmenting any flow, the first augmenting path consists of links with positive travel

times. Hence, ff(q) > ,r(i, t,)= ti, where (i, t1 ) is any intermediate node-time pair on the

first augmenting path.

(2) kh augmenting path: Assume the lemma is satisfied up to the kl1 augmentation. We

prove that the lemma is satisfied for the (k + 1)" augmenting path.

By Lemma 3.1, the arrival time at the destination is a non-decreasing function of the

number of augmentation iterations. Thus, ,k+l (q) ! z,) (q) ... z, (q), where Z,, (q)

denotes the arrival time at the destination for the nth augmenting path. By the induction

hypothesis, for n = 1,...,k , 17n(q) is greater than the arrival time labels fr(i,t1 ) = t of all

intermediate node-time pairs (i,ti) on the n' augmenting path. Thus, for n = 1,..., k,

r, (q) is also greater than the arrival time labels ir(i, t ) = t, of all intermediate node-time

pairs (i,t,) on the first n augmenting paths. Since 1 ck,+(q) Z(q), z, (q) is greater

than the arrival time labels fr(i, t,) = t of all intermediate node-time pairs (i, t,) on the

first k augmenting paths. This means that at the beginning of the (k + 1)" augmentation,

all reverse arcs in the residual network emanate from node-time pairs (jpt) such that

t < k+l (q). Therefore, all node-time pairs (i, t ) belonging to the (k + I)ft augmenting

path are such that r(i,t1 ) = ti < rcI (q), and the lemma is proved for the (k + 1)f

augmenting path. U
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Appendix D

In this appendix, we discuss in some detail the theory of marginal cost pricing. The

marginal social cost of traveling due to an additional user is equal to the sum of an

internal cost (the average cost perceived by the user, which is also called the marginal

private cost) and an external cost (the delay costs incurred by all other users due to an

additional trip). The theory of marginal cost pricing, dating back to Pigou (1920) and

further explored by Walters (1961) and Vickrey (1967), postulates that in order to

maximize the economic efficiency of trip-making, a toll equal to the difference between

the marginal social cost and marginal private cost at the optimal volume of traffic should

be levied. Let TC, MSC, and AC denote the total cost, marginal social cost, and

average (private) cost, and let V denote the volume of traffic. Then:

TC = VxAC

MSC= d(TC) - AC + Vxd(AC)
d V Internal cost d V

Marginal social cost External cost

Cost
Demand MSC

AC

toll

V2  V, Volume

Figure D.I. Marginal cost pricing.
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The no-toll situation corresponds to an equilibrium volume Vi, at which average cost

is equated to marginal benefit as given by the height of the demand function. It can be

seen that at V the marginal social cost exceeds the marginal benefit, thus resulting in

economic inefficiencies. At volume V2, marginal benefit is equal to marginal social cost,

and thus a dead-weight loss equal to the shaded area can be eliminated by moving from

Vi to V2. The optimal toll that can establish equilibrium volume V2 is thus equal to the

difference between marginal social cost and average cost at traffic volume V2. The reader

is referred to Yang and Huang (1998) for more information about the theory of marginal

cost pricing as applied to a general road network.

Marginal cost pricing is a first-best solution to congestion provided the following

assumptions are satisfied (Emmerink (1998)): rational individual behavior, full

information on all costs involved, applicability of prices to all network links, technical

feasibility of pricing, and low transaction costs.
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Appendix E

a d" (P t)In this appendix, we present the derivations of the expression , ' , that was used

to derive the gradient expression in Section 5.2.3.1 (for route choice only) and the

3P,,"(p t)expression P, (y'k) that was used to derive the gradient expression in Section 5.2.3.2
a V,,(y, k)

(for route and departure time choices) for the joint logit and two nested logit models of

route and departure time choices.

E.1 Derivation of the Term ad '(pt)
a h '*( p',')

To derive the term a ',t we first derive its inverse

expressed as follows:

h/ (p ' ,) which can be
a d ",t 

(E.1)
ads(P, 0

(,' ) I h' ',

a d"t ,n' ad "(p, )

The term a hi'*(PIt) can be expressed as follows:
a d" (p,t )

hm~,' (P ) ,) (
a d"(p,) a d"(p, i) a d"(,t)

(E.2)
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where the demand D'(t') is fixed, and for a C-logit route choice model P;'(p',t') is

given by:

(,,t') xp(v (' t')-F r' ('))

Zexp(v,' (y, t')- CF )I
ye R

SP' I S ',t')Therefore, ' can be expressed as follows:
ad (p,t)

if y = p, 6'= t, (r',s') = (r,s)

otherwise.

Substituting expression (E.5) in (E.4), we obtain:

dp' ') _

a d'(p, t)

I3 P (p',t) * a
0 , (Pt)

0,

if 6 = t, (r',s') = (r, s)

otherwise.

Substituting expression (E.6) in (E.2), we obtain:

D"0*1' ) (,=1 D V,,'(p, t)

10,

if t' = t, (r',s') =(r,s)

otherwise.

(E.7)

Substituting expression (E.7) in (E.l), 'h(P"t can then be expressed as follows:
a d(p, t)

D,,(t)*

0,

if t' = t, (r',s') = (r, s)
(E.8)

otherwise.

is given by:

(E.3)

drvP(p',t')

d d" G, pt )

We have:

Y'(yt) a ,
d d"S(p, t) 0,

(E.4)

(E.5)

(E.6)

h hr(p', t')

ad (p,t)

adrv(p,t)
Finally, ,a d

a h' (P','
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a d (p,t)

a h '' ( p't'7)=

a d n, (IndefinD,
undefined,

if t' (r' ' (r s)

(p, t)

E.2 Derivation of the Term

(E.9)

otherwise.

3 P"s (p, t)

a V,," (y, k)

For simplicity, in what follows we drop the indices referring to user class and O-D pair.

E.2.1 Joint Logit Model

For a joint logit model,

(E.10)) xp (P)+F W)+ F(p,t))P(P'0 Yexp(V(p') + IF(t') + IF(p ',t')

We consider two cases separately:

Case 1: (p, t)= (y,k)

is then given by the following expression:

exp(PF(p) + 17 (t) +

- [exp(7(p)+ (t)

+ 7(t') + (p', t(p, t)) exp((p')

+Y (p_ t)

ep2 +

exp(p')+V7(t')+V(p',1))]

= P(p, t)- [P(p, t)]2 = P(p, t)[I - P(p, t)].

Case 2: (p, t)# (y,k)

P(p' t) Ia P(p,) is then given by the following expression:
~3i/(y,k)

a P(p t)

a IV(y,k)

a P(p,t)

3Y(y,k)

a P(p,t )

af1(p,t)

(E.11)
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II
a P(p, 1) -exp (P) + 17(t) + (p, )* exp(17(y) + V(k) + F(y, k)) = -P(p, t)P(y, k).

a V ( , k)exp(V(p') + 17(t') + V(p' t'))
(p',t')

(E. 12)

In summary, ' is given by the following
a3F/(y, k)

expression:

if (p,t) =(y, k)

if (p,t) (y,k).
(E.13)

E.2.2 Nested Logit Model 1

For nested logit model 1, the joint probability P(p, t) can be derived as follows:

P(p,t)= P(p /t )*
exp u)(p,t)+V(p))) exp( t (V(t) + V'(t)))

P(t)=

exp(p (i(p,t) + (p))),
exp(pV'(t)

exp(p, (v(t) + V'(t)))

Zexp(p, (I7(t')+ V'(t')))

We consider four cases separately:

Case 1: t=kandp=y

In this case, ' can be expressed as follows:
a JF(y, k) cnb xrse sflos
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(E.14)

ap P'pt ) P(pt)1 -P(p"t)]
aIF (y, k) - P(p, t)P(y, k)

exp(PP('7(P"t)+V(P'))) Yexp 1,(J7(/')+V'(t')))
t

_ex pp, ( p, t )+YI( p)) +' pF(t) + (, -,p, )V'00)

exp, (t') + V'(t')))



Yexpp, Y(t')+ V'(t')))- exp p, (Y(p,t)+Y(p))+ *,

+(p, - pV'(t )

[
)

exp(p, (i7t') + V(t')2

(E.15)

IkIn Yexp(pp (Y(p') + Y(p',t))). Therefore,
pUp p'

Sv '(t) can be expressed as

follows:

p exp( 1 ((y) +(yt =

Yexp(p,(1(p')+ (p', )))
p

P(y/t), if t = k

otherwise

Therefore, we have:

/iP(p / t )exp( 1 ((t) +V'(t)))

I exp(, (Y(t')+ V(t )))

P + (fl, - p,)P(p / t))P(p,t - P(p,t )* p,P(p / tP(t)

p [ + (P, - p, )P(p t)- pU,P(p,t ) P(p,t ).

Case 2: t = kand p # y

In this case, aP(y' k) is given by the following expression:

(Pp

a P(pt)

a Y(y,k)

aP(p,t)

But V'(t)=

aV (t) =

37(y,k)

Kr
lp

0,

3 P(pt) _

a 1(y,k)

BP(pt)

17 (p,t)

(E.16)

( + ,

(E.17)
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+ f-li) aV'(f ) epP(YF(p, t)+YI( p)) + P,0(

SY(P pt )) +(fl, - p,)V'(t )

-,p ( / )p(, t)- MPPt) )*



a P(p, t)

a 7(y, k)

_ P(p, t)

1\

/ 'PP ) p(, ( (p, t) + (p))+ P, (t)

3Y ~(y +(pu, - p,)V'(t)

exp(, (1(t')+V'(t')))- exp (,(Y , t +Y(p))+ p,7(t 1 *

+(fl, -'U, ) Ot )

*,*0V'(t) exp(u,F(t)+v'(t)))

s iY(y, t)

I~ exp p, (17(t') + V'(t')))

= (U, -,p )P(y / t)P(p,t- P(pt )* p, P(y / t)P(t)

=u, -, -'UP(t)]P(y / t)P(p,t).

Case 3: t#kandp=y

In this case, ' is given by the following expression:
a IF(y, k)

- ,Up )V'(t))*

JP(pt) _

a 1(y, k)

a P(pt) _

a J(p, k)

(-expp ( ( p,t )+1( p ))+ fl, P(/)+ (P,

u,* aV'(k) exp(,7(k)+V'(k)))
a 17(p,k)

= -P(p,t)* pP(p / k)P(k)=- u, P(p,k)P(p,t).

Case 4: t # k and p # y

In this case,

a P(pt)

a 17(y, k )

a VP' ) is given by the following expression:

- exp p(I (p,t)+Y (p))+ PY (t)+(pu, -- p,(t))

P,* aV'(k) exp(u, ((k) + V'(k)))
a V (y, k )

L xp- p, , ex')

2

+ V'(t')))]

= -P(p, t)* 4u, P(y / k)P(k) = -pU, P(y, k)P(p, t).
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(E.19)

(E.20)

( t

_

expp,( (17')+ V'(t')))-2



3P(p t)
In summary, ~ ' is given by the following expression:

a IF (y, k)

(PP + p, -,p, P( p / t) - p, P(P pt ))P(P pt )

(Ut -P, - pP(0)P(y10P(p'0

l- ,P(p, k)P(p, t)

-p, P(y, k)P(p, t)

if p = y,t = k

if p t y,t = k

if p = y, t k

if p y, t #k.

E.2.3 Nested Logit Model 2

For nested logit model 2, the joint probability P(p,t) can be expressed as follows:

(p, exp(, (7(p,t) + Y(t)- +,Up (P)+ (p - p, )V'(p))P~p f) ' 'f
4

(E.21)

(E.22)

By symmetry to the derivations in nested logit model 1, we have:

[(P, +(P, -P,JP(t1p)- PP(pt ))P(pt)

-'UP(y't)P(p't )
(P-, - ,P(p))P(k / p)P(p,t )I- P ,P(y,k)P(p, t)

if p = y,t = k

if p y,it = k

if p = y,t k

if p y,t k.

a P(pt)

aV 7(y, k )

exp/p, ( (p )+ V p)))

a P(p,t)

a 7(y, k)
(E.23)

207


