Models and Algorithms for the Optimization of
Traffic Flows and Emissions Using Dynamic
Routing and Pricing

by
Maya Abou Zeid

Bachelor of Engineering in Civil and Environmental Engineering
American University of Beirut, 2001

Submitted to the Department of Civil and Environmental Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Transportation
at the
Massachusetts Institute of Technology

June 2003 MASSACHUSETTS INSTITUTE
OF TECHNOLOGY
© 2003 Massachusetts Institute of Technology
All rights reserved JUN 02 2003

LIBRARIES
Author ... [
Department of Civil and Environmental Engineering
May 9, 2003
Certified DY «oveeeeeeeeeeeee Lo
/ Ismail Chabini
Associate Pm{fessor, Civil and Environmental Engineering
/Thesis Supervisor
Accepted by ... e,

Oral Buyukozturk
Chairman, Departmental Committee on Graduate Studies

BARKER .

Models and Algorithms for the Optimization of
Traffic Flows and Emissions Using Dynamic
Routing and Pricing

by
Maya Abou Zeid

Submitted to the Department of Civil and Environmental Engineering
on May 9, 2003, in partial fulfillment of the requirements for the degree of
Master of Science in Transportation

Abstract

The research documented in this thesis is centered on the development and evaluation of
models and algorithms for the optimization of traffic flows and emissions via routing and
pricing in dynamic traffic networks. A set of problems that arise in this context are studied.
These include: (1) the development of a probabilistic approach to model acceleration, (2) the
study of the dynamic capacitated minimum cost flow problem, (3) an experimental analysis
of improvements in shortest path algorithms, and (4) the study of dynamic congestion and
emission pricing.

We propose a probabilistic approach for modeling accelerations and decelerations in traffic
networks as random variables that are a function of speed and road type. We use the
approach to integrate a non-microscopic dynamic traffic model and an instantaneous
emission model.

We develop routing algorithms that can be used in the context of traffic flow optimization.
First, we study the capacitated minimum cost flow problem in dynamic traffic networks, and
develop two solution algorithms for the problem. The developed algorithms are shown
experimentally to be more efficient than an existing algorithm in the literature. Second, we
perform experimental testing to assess the computational performance of a new approach to
solve the shortest path problem in static and dynamic FIFO networks, that tries to overcome
some of the limitations in traditional comparison-based label-setting algorithms.

Finally, we develop a second-best link-based dynamic congestion pricing model and
formulate it as a bi-level program. We develop solution algorithms based on sensitivity
analysis, and model both route and departure time choices as users’ reaction to the prices.
We extend the model and algorithms to study emission pricing. Finally, we formulate the
model with additional travel time or emissions constraints, and evaluate the effectiveness of
the pricing methods on small hypothetical network examples.

Thesis Supervisor: Ismail Chabini
Title: Associate Professor, Civil and Environmental Engineering

Acknowledgements

Many thanks to a highly talented and energetic Professor Ismail Chabini, my research
supervisor, for providing guidance and insights throughout all stages of my research. Thanks
for continuously following up on my research, for patiently explaining to me a lot of
concepts, and for giving me the opportunity to work on topics that I like.

I owe a lot of where I am today to Professor Isam Kaysi, my undergraduate advisor. I thank
him for introducing me to the transportation field, for his confidence in me, and for all the
invaluable advice and support that he offered to me.

Thanks to Ford Motor Company, MIT Presidential office, MIT Civil and Environmental
Engineering Department, and the National Science Foundation for funding my research and
studies.

Thanks to Dr. Edward Nam from the Ford Scientific Research Laboratory for helping me in
several parts of my research, and for his friendship. Thanks to Alessandra Cappiello for
taking the lead in our research project, for explaining to me all about her research and
helping me in mine, and for being a great friend. Thanks also to my research colleagues in
the ACTS group, especially to Hai Jiang. Thanks to Marwan Abou-Zeid for his help and
advice. Thanks to Dr. David Chock for his wise technical counsel.

Thanks to my friends at MIT for cheering up my days: Alejandro & Tania, Ale & Alex,
Miguel, Akhil, Michael, Phani, Ging Ging, Biova, Costas, Hai, Ramsay, Eva; to my
Lebanese friends for always being there: Carol, Lara, Bassel, Fadi, Cesar & Laura,
Christian, Asmahan & Ivan, Rayan, Walid, Elsa, Ziad, Elie, and Nisrine; and to my
wonderful roomies: Lara, Anne, Elsa, and Erisa.

Thanks to my dear family George, Aida, and Marwan for their love.

Contents

1 INTRODUCTION 17
1.1 TRAFFIC CONGESTION AND EMISSIONSoiiiiiiiiiiiiiiiiiiiiitiee et 17
1.2 THESIS OBJECTIVES AND CONTRIBUTIONSceotitiiiiieeriiiiiiieeeseeiieece e e 21
1.3 THESIS ORGANIZATIONeeiititiatiiiitiattee et e etee e ettt ee e e e e e et e e eeaeeesaeeeeseereannee 22

2 PROBABILISTIC MODELING OF ACCELERATION IN TRAFFIC

NETWORKS AS A FUNCTION OF SPEED AND ROAD TYPE 25
2.1 INTRODUCTION ..ottt et e e e e eaat e e e saaeee e e e eananeseennnns 25
2.2 DIATA e e 27
2.3 CALIBRATION ...ttt et e e e aa e e e e e e s s s aaaan s aeaeae s e saaeas 29
2.4 ANALYSIS OF RESULTS ...utiiiiiiiiiiiiiiieiit ettt st e 33

2.4.1 Comparison of Observed Distributions to Fitted Half-Normal Distributions.. 33
2.4.2 VQIAQUON ...t et 36
2.4.3 Variation of Standard Deviation of the Distributions with Speed Range and
ROGA TYDC .. 38
2.5 MODEL APPLICATION ...otiiiiiiiitiiieeaiiiee ettt e et et e et e e e esieee e e emeee s s e eanne e sneeeeneeeens 39
2.5.1 General PrOCEAUTEccc..comvuieeeieieaeieieeeis e 40
2.5.2 Application Example.................cccccoccoiiiiiiiiiiiiiiiiiiieeiees e 41
2.6 CONCLUSIONS ...iiiitieee e eetteeee e ettt eee e e et e e e teaa e e s ta s e e ttaaesaaeesaansassassnaseerssnnnesessnnnnanenn 46

3 THE MINIMUM COST FLOW PROBLEM IN CAPACITATED DYNAMIC

NETWORKS..........cueeu.. .49
3.1 INTRODUCTION ...ttt et ettt st s s e s 49
3.2 NOTATION AND DEFINITIONS ...co.ouiiiiiiiiiiieiie ettt ettt s 52

32,1 NEtWOFK DUoooeiieeeee ettt 52
3.2.2 Time-Space NeIWOFKccuuaouuiiiiiiiiiii ettt 52
3.2.3 Dynamic Time-Dependent Residual Networkc..cc.cocevviiiiiinnninn. 53
3.3 FORMULATIONciiitiiiitiititt ettt sttt et 54
3.4 SOLUTION ALGORITHMS ...coiiiiiiiiie i iie e e ettt ee e e e ettt aeeeaeasraaaeeaseaaeaasnneasaaaseaans 54
341 AIGOFIIRI Ao 58
342 AIGOFItRIN B e 60
3.4.2.1 Description of Algorithm B ... 60
3.4.2.2 Pseudocode of Algorithm B........o..cooiiiii, 61
3423 Implementation Details..........ccoocoiiiiiiiiiiiiiiiice 62
3.4.3 AIGOFIthm Ccccooiiiiiiiiiiiiiiiiiiii it 63
3.4.3.1 Description of Algorithm Cccccooiiiiiiiiiii e 64
3.4.3.2 Pseudocode of Algorithm C.......ccooiiiiiiiiiiiiii e 65
3.4.3.3 Correctness of AlIgorithm Ccoooiiiiiiiiiiic e 67
3434 Implementation Details..........cooooiiiiiiiiiiiii e 69

3.5 SPECIAL CASES AND EXTENSIONS.....ccoitiiiiiiiiniiieiiiee ettt 70

3.5.1 The Case of the Minimum Travel Time Problem.....................c..ccocemvrvceennnnn... 70
3.5.1.1 Algorithm B Specialized for the Minimum Travel Time Flow Problem...71
3.5.1.2 Algorithm C Specialized for the Minimum Travel Time Flow Problem...72

3.5.1.3 Other AIZOTIthMSoooiiiiiiiiiiiii e 73
3.5.2 Waiting POLICIESccccoviiiiiiiiiiiiiiiiiiiiieiee e 74
3.5.3 Multiple Sources, Destinations, and Departure Times.................cccccccoooo........ 75

3.6 COMPUTER IMPLEMENTATIONS AND NUMERICAL RESULTScocoiiiiniiiiiiiienine. 76
3.6.1 Computer IMplementationsccccccceiviieieeeoneieeeeciiee e 76
3.6.2 TSt INCIWOFKS....c...oeeoiiiiiiit ettt 77
3.0.3 RESUILS . e aans 77

4 EXPERIMENTAL RESULTS USING IMPROVED SHORTEST PATH
ALGORITHMS 85

4.1 INTRODUCTION ...cuiiiiiiiiiitiitiettes et ettt sttt ettt e sttt eetetenataeesaeaeenaneeeseeaenseeenseens 85

4.2 A NEW APPROACH FOR SOLVING THE SHORTEST PATH PROBLEM IN STATIC

NETWORKS ...ootttiieiitiitet ettt oot ete e et e e e e e e e e e e e et e e et e e e e e e e e e e e eenaans 86
4.2.1 DESCHIDIION ...t ettt 86
4.2.2 Pseudocode of the Lazy-Sorting Label-Setting Algorithm for Static Networks 92
4.2.3 Experiment@l ReSUILSccccccoocveviiiiiiiiiiniiiaiiii it 93

4.3 APPLICATION OF THE LAZY-SORTING LABEL-SETTING ALGORITHM TO DYNAMIC FIFO

INETWORKS ..ottt ettt e et e e e et b e e easseeeanenes 99
.31 DESCHIDIION ...ttt ittt ettt e e e e e e 99
4.3.2 Pseudocode of the Lazy-Sorting Label-Setting Algorithm for Dynamic FIFO

INEIWOTKS ..ttt 100
4.3.3 Experimental ReSUILScccocooiviiiiiiiiiiiiiiece e 101

5 CONGESTION AND EMISSION PRICING IN DYNAMIC TRAFFIC
NETWORKS....rereerennneieranenneninisieisssessessseessisssasssscssssssssssssssasssassssssssssssossassassesss 103

5.1 INTRODUCTION L.uuutiiiiiiiieeee et e e e et e e e e e e e e et e e e e e e e e e et e e e e e e anns 103
5.1.1 Background........................... e e e e 103
51,2 TAXOPIOMIY ..ottt ettt e e e e e e 104
5.1.3 Literature ReVIieW..............cccooviiiiiiiiiiiiiiiiiiieite et 105
5.1.4 Objectives and CONIFIDULIONS................ccovviiiiuenieeiieaeie e 106
5.1.5 Chapter OFganiZQtiONcccoeeiiiiiieceiiaaiiee i eeeeeeiee e e 108

5.2 DYNAMIC CONGESTION PRICING MODEL....c.cciiiiiiiiiiiiiiiiiiiieeeeiie et 108
52,1 FOFMUIQEION ...ttt e e e et 108
5.2.2 Route and Departure Time Choice Models..................ccc.occvvvveveiveennnnnn.. 113

5.2.2.1 Route Choice Only.......ccoooiiiiiiiiiiiiiiiiicce e 113

5.2.2.2 Route and Departure Time ChoiCe...........ccoovuerriiirriiieeiieeiiee e 114
5.2.3 Analytical PrOPEFIIESccccoceiiieiiiiieieeiie e, 122

5.2.3.1 Gradient Expression for Route Choice Only..............ccoooooiiiiiiiiiiii.n. 123

5.2.3.2 Gradient Expressions for Route and Departure Time Choice 126
5.2.4 Solution AlIgorithmsc..cccccioviiiiiniiiiei. e 128

5241 Algorithm T ..o e 130

5242 AlOrIthm 2. . i 130

5243 Algorithm 3. .ot 131

5244 AlOrithm 4. ...t 132

5.3 EMISSION PRICING ..ottt e eeeee e 133

5.4 CONGESTION PRICING WITH ENVIRONMENTAL CONSTRAINTS ...ccvvveiniieniiieeaninene 138
5.4] TAXOFOMIY.......inniiiiriiiiei et e ettt e e e e e e e e e e e e e raaae s 138
5.4.1.1 Scenario 1: Minimize Total Travel Time (Emissions) Subject to an Upper

Bound on Total Emissions (Total Travel Time)..........cccccccooeeiiniienn.. 138

5.4.1.2 Scenario 2: Minimize Total Travel Time (or Total Emissions) Subject to
Hot Spot ConStraintscoovieiiriiiiieiieie et 139

5.4.1.3 Scenario 3: Minimize Total Travel Time (or Total Emissions) Subject to
Air Quality Standardscocoiiiii 139

5.4.1.4 Scenario 4: Minimize Total Travel Time (or Total Emissions) Subject to
Equity of Emissions Distributionscoccoviiiiiiiiiniiiee e 141
542 FOFMUIQUONS ...ttt et 141
5.4.2.1 Formulation of Scenario ©1............cccoiiiiiiiiiiiiiei e 141
5422 Formulation of SCENArio 2.......c.ccooviiiiiiiiiiiiiieiiececiie e eees 144
5.5 EXPERIMENTAL RESULTS.....oiiiiiiiiiiiiiiiiiiie ettt e 146
551 The DTA Model..............c..ccccooviieiiiiiiieeeieie e eee et 146
5.5.2 Congestion Pricing with Route Choice Only: a Three-Link Example............ 147
5.5.2.1 Network DeSCription.........c..ccoiviiiiiiiiiiiiiiieeiciee ettt 147
5.52.2 Scenario DesCriPtioncc.oooiiiiiiiiiiieiir et 148
5.5.2.3 0 RESUILS oottt e e 149
5.5.2.4 Convergence of the Algorithm...........ocoooviiiiiiiinii 152
5.5.3 Emission Pricing with Route Choice Only: a Twelve-Link Example 153
5.53.1 Network Descriptionocoiiiiiiiiiiieiii et 153
5.5.3.2 Scenario DesCription............cooviiiiiiiiiiiiiie et 154
5.5.3.3 0 RESUILS ooeeiieiie e e e 155
5.5.3.4 Convergence of the Algorithm...........cccoiiiiiiiiiiiie e 166
5.5.4 Congestion Pricing with Both Route and Departure Time Choices: the Twelve-
Link EXAMPLE ...t 167
5.54.1 Network Descriptionccoociiiiiiiiiiieiiiiiiiece et 167
5.542 Scenario DeSCIiPtioncccvviiiiiiiiiiiiee et eeiie e abee e 167
5543 RESUILS cciiiiiiiiie et 168
5.54.4 Convergence of the Algorithm.................ooooiiii 170
5.6 CONCLUSIONS, LIMITATIONS, AND EXTENSIONS.coitioiiiiii e 171
6 CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH............c..c.... 175
6.1 CONTRIBUTIONS AND MAJOR RESULTS.....ovtiiiiiiiiieiieeeeieeeee e 175
6.2 DIRECTIONS FOR FUTURE RESEARCH........cccoiuiiiiiiiiiiiiiieaiec et 177
REFERENCES ..ccoiniininiiniinicstecssenisssaissesssscsssssesssasssssessssssssessessassssessasssess 181
APPENDIX A 191
APPENDIX B........... 193
APPENDIX C 197
APPENDIX D cestessseesstessesssserstssnatesstsantessnsssanes 199
APPENDIX E.uucouiieiinninnninsninnciscsisssesessssssasssssissssssaseassssessassssssossasssssssnssssssessassssssessasss 201

10

d” N
E.1 DERIVATION OF THE TERM ——l—)— 201

Y P B

E.2 DERIVATION OF THE TERM a—f———(p’—ll ... 203
V.o (v.k)

E2.1 Joint Logit MOdelccccocoooviioiiiiiiiiiiiiiiiiciiieeeee et 203

E.2.2 Nested Logit Model 1.................ccccccooviuiiiiiiiiiiiiiniiiii ettt 204

E.2.3 Nested Logit Model 2.................cccccoooiiiimiiiiiiiiiiiiiiiiieeiic et e 207

List of Figures

Figure 1.1. Components of a traffic-emissions-air quality simulation laboratory.

(from Cappiello (2002)) ..cciiiiiiiieeee et

Figure 2.1. Acceleration distribution for the calibration data set on arterials for
the speed ranges 21-30 km/h (part a), 51-60 km/h (part b), and 81-90

KIN/I (PAIT C)evieeiii ettt et e e e e et a e e e e e aneeeens

Figure 2.2. Cumulative sample and half-normal distribution functions for the
acceleration data (part a) and the deceleration data (part b) used for

calibration on arterials for the speed range 0-10 km/h. ...

Figure 2.3. Cumulative sample and half-normal distribution functions for the
acceleration data (part a) and the deceleration data (part b) used for

validation on arterials for the speed range 0-10 km/h. ...

Figure 2.4. Variation of standard deviation of acceleration distributions (part a)
and deceleration distributions (part b) among different speed ranges and

TOAA EYPS. 1eeiiriiiieeiiieeit ettt ettt e e e e ettt e e e e et e e e e e e neaaeeeeeeeannatbeeannntneeeean

Figure 2.5. Category 9 - FTP bag 2. Second-by-second engine-out (EO) and
tailpipe (TP) emission rates of CO; and CO. Thick light line:
measurements (calibration data); dark line: EMIT predictions; thin line:
CMEM predictions. The top plot represents the speed trace. (from

(CapPillo (2002)))-..ee ettt e

Figure 2.6. Expected emission rates in g/s (on the left) and in g/km (on the right)
for road type arterial and vehicle category 9. The expected emission rates
in g/lkm of CO, HC, and NOx are compared with the facility-specific

emission rates from MOBILES (thin line). (from (Cappiello (2002)))..............

Figure 2.7. Expected emission rates in g/s (on the left) and in g/km (on the right)
for road type highway and vehicle category 9. The expected emission
rates in g’km of CO, HC, and NOx are compared with the facility-specific

emission rates from MOBILES (thin line). (from (Cappiello (2002)))..............

Figure 3.1. Running times of the successive shortest path algorithm employing
Algorithms A, B, and C as a function of network size. The number of arcs
is three times the number of nodes. The number of time intervals is 100.

The flow that should be sent is 20 units. d, e [15], ¢, € [1,7] U, e [1,10] . e

Figure 3.2. Running times of the successive shortest path algorithm employing
Algorithms A, B, and C as a function of the number of nodes in the
network. The number of arcs is 10000. The number of time intervals is
100. The flow that should be sent is 20 units. 4, e [1,5], ¢, € [1,7],

U, € L1100 - ottt et

Figure 3.3. Running times of the successive shortest path algorithm employing
Algorithms A, B, and C as a function of the number of arcs in the
network. The number of nodes is 100. The number of time intervals is

...... 36

...... 37

...... 39

...... 82

11

100. The flow that should be sent is 20 units. 4, € [1,5], ¢, € [1,7],

Figure 3.4. Running times of the successive shortest path algorithm employing
Algorithms A, B, and C as a function of the number of time intervals. The
number of nodes is 1000. The number of arcs is 3000. The flow that
should be sent is 20 units. 4, e [15], ¢, €[1,7]s U, € [1L10]- coovvriiiiniii 83

Figure 3.5. Running times of the successive shortest path algorithm employing
Algorithms A, B, and C as a function of the demand of flow units at the
destination. The number of nodes is 1000. The number of arcs is 3000.
The number of time intervals is 100. &, e [1,5], ¢, € [1,7], U, € [L10]- evovoveiriiiiinn 84

Figure 4.1. Dijkstra’s algorithim.c..cocoiiiiiiiiiii e 87

Figure 4.2. Percentage of nodes in P as a function of network size for
implementation 1 and implementation 2 of the Lazy-Sorting Label-
Setting algorithm for static networks. The number of arcs is three times
the NUMDET Of NOAES. ..o..eiiiiiiiii et 96

Figure 4.3. Percentage of nodes in P as a function of the number of nodes for
implementation 1 and implementation 2 of the Lazy-Sorting Label-
Setting algorithm. The number of arcs is held constant at 15000. 97

Figure 4.4. Percentage of nodes in P as a function of the number of arcs for
implementation 1 and implementation 2 of the Lazy-Sorting Label-
Setting algorithm for static networks. The number of nodes is held
constant at TOO0. e e 98

Figure 4.5. Percentage of nodes in P as a function of network size and cost range
for implementation 2 of the Lazy-Sorting Label-Setting algorithm for

static networks. The number of arcs is three times the number of nodes................. 98
Figure 5.1. Joint logit model of route and departure time choice.ccoccceiriiiiiennennn. 118
Figure 5.2. Nested logit model 1 of route and departure time choice with........................ 119

departure time choice at the upper level and route choice at the lower

TEVEL ettt e e e e e et e e e e e eaneaeeeeneae 119
Figure 5.3. Nested logit model 2 of route and departure time choice with........................ 119

route choice at the upper level and departure time choice at the lower

TEVEL. -ttt e et st e eae 119
Figure 5.4. Scenario 2 for a two-route example.co.coooceiiiiniiiiiiiinii e 144
Figure 5.5. Network topology for a three-link example.c.ccocoocciniinniiiinnie. 147
Figure 5.6. Toll on the bridge (1ink 3).ccociiiiiiiiiii e 150
Figure 5.7. Path flows for O-D pair b-c and users with low value of time (part a)

and high value of time (Part b). ..o 151
Figure 5.8. Path travel times for O-D pair a-c with and without the tolls. 152
Figure 5.9. Path travel times for O-D pair b-c with and without the tolls.......................... 152

12

Figure 5.10. Total travel time as a function of the number of iterations used in

ALZOTITRIM 1. oo 153
Figure 5.11. A twelve-link network example. ..., 153
Figure 5.12. Total emissions levels by O-D pair summed over all departure times

with and without tolls. ... 156
Figure 5.13. Path flow rates for O-D pair 5-9 for low emitters (part a) and high

EMILLETS (PATT D). 1ottt ettt ettt e 157
Figure 5.14. Emissions per vehicle for low emitters (part a) and high emitters

(part b) on O-D pair 5-9. ..o 158
Figure 5.15. Tolls for low emitters (part a) and high emitters (part b) on O-D pair

500 ettt e h ettt 159
Figure 5.16. Path travel times for O-D pair 5-9.......... 160
Figure 5.17. Tolls for link 1. ..o 160
Figure 5.18. Tolls for link 2. ... 161
Figure 5.19. Tolls for link 3. ..o 161
Figure 5.20. Tolls for link 4. ..o 162
Figure 5.21. Tolls for HnK 5. ..ottt 162
Figure 5.22. Tolls for link 6.cccooiiiiiiiiiiiiieec e 163
Figure 5.23. Tolls for Ink 7. ... 163
Figure 5.24. Tolls for Hnk 8.ccooiiiiiiiii e 164
Figure 5.25. Tolls for TNk 9.oooiiii e 164
Figure 5.26. Tolls for link 10. ... e 165
Figure 5.27. Tolls for Iink T1. ..ot 165
Figure 5.28. Tolls for Hnk 12.cooiiiiiiie e 166
Figure 5.29. Total CO emissions as a function of the number of iterations used in

an adaptation of Algorithm T. ... 167
Figure 5.30. Path flows for O-D pair 5-9. ..o 169
Figure 5.31. Path travel times for O-D pair 5-9..........oooiiiiic 169
Figure 5.32. Path tolls for O-D pair 5-9. . ..o 170
Figure 5.33. Total travel time as a function of the number of iterations used in

ATZOTTTRIM 2. .o e 171
Figure A.1. Hlustrative figure to prove the lower bound property...........ccccooviecieicnnnnn. 192
Figure D.1. Marginal COSt PIICING.occeioiiieiiiiiiiieiiieitc e e 199

13

14

List of Tables

Table 2.1. Number of observations of acceleration and deceleration by road type.

Table 2.2. Error terms of half-normal distributions fitted to the sample
acceleration and deceleration distributions, obtained from calibration

on all road types (part a) and validation on arterials (part b).c.............

Table 2.3. R-square (R?) between the measured and the predicted emission (or
fuel consumption) rates from EMIT. Part a: results for calibration. Part b:

results for validation. (from (Capiello (2002))). ...oooovrireiiiriieeiieeee e

Table 3.1. Running times (reported in seconds) of the successive shortest path
algorithm employing Algorithms A, B, and C as a function of various
network parameters. The ratios of running times of the three solution
algorithms, with respect to that employing Algorithm C, are reported in

parentheses. 4, € [1,5), ¢, € [1,7], and U, € [110]. -ooevvvvniiiinniii

Table 3.2. (a) Number of node-time pairs selected and added in Algorithms B
and C per augmentation. (b) Average number of selections and additions
(in %) made in Algorithms B and C per augmentation relative to the total
number of node-time pairs as a function of network size. In (a) and (b),
the number of arcs is three times the number of nodes, the number of time
intervals i1s 100, the flow that should be sent is 20 units, d, e [1,5]

¢, €17, a0 U, € [110]-ovvimiiiiciiii

Table 4.1. Summary of results as a function of network size for implementation 1
(part a) and implementation 2 (part b) of the Lazy-Sorting Label-Setting
algorithm for static networks. The number of arcs is three times the

NUMDET OF NMOAES. .o et e e e e e e e e eee e e e

Table 4.2. Summary of results as a function of the number of nodes for
implementation 1 (part a) and implementation 2 (part b) of the Lazy-
Sorting Label-Setting algorithm for static networks. The number of arcs

1s held constant at 15000, ..o e

Table 4.3. Summary of results as a function of the number of arcs for
implementation 1 (part a) and implementation 2 (part b) of the Lazy-
Sorting Label-Setting algorithm for static networks. The number of nodes

1s held constant at 1000, .. .o e

Table 4.4. Summary of results as a function of network size for the Lazy-Sorting
Label-Setting algorithm for FIFO dynamic networks. The number of arcs

is three times the NUMDBETr Of NOAES. ...eeneiieee e

Table 4.5. Summary of results as a function of the number of nodes for the Lazy-
Sorting Label-Setting algorithm for FIFO dynamic networks. The number

of arcs 1s held constant at 15000,coom i

....... 28

....... 34

....... 42

....... 79

....... 95

...... 96

...... 97

...102

15

Table 4.6. Summary of results as a function of the number of arcs for the Lazy-
Sorting Label-Setting algorithm for FIFO dynamic networks. The number

of nodes is held constant at 1000.ccoooiiiiiiiiii e 102
Table 5.1, NOTAtION. ...c..iiiiiiiiie et ettt eae e 108
Table 5.2. Probability expressions predicted by the joint logit (part a) and

nested logit models (part b) for the choice of route and departure time................. 120
Table 5.3. Expected tailpipe CO emission factors for vehicle category 9 and

arterials. (from Cappiello (2002))...c..oovieiiiiiiiiiiiieie e 149
Table 5.4. Attributes of the TINKS.coooiiiiiiiii e 154
Table 5.5. O-D pairs and paths.cccoooiiiiiiiii e 154
Table 5.6. Values of the parameter 777c.oocooviiiiieiiiii e 155
Table 5.7. Total O-D demand.............coooiiiiiiiiiiieceee e 167

16

Chapter 1

Introduction

This thesis presents models and algorithms for the optimization of traffic flows and
emissions in dynamic (time-dependent) traffic networks via routing and pricing. This
chapter provides a motivation for and a context in which congestion and emissions are
modeled and managed, and presents the objectives, contributions, and organization of the

thesis.

11 Traffic Congestion and Emissions

Traffic congestion has been a problem facing urban commuters for several decades, but has
been lately intensified by the growth in automobile ownership and changes in land-use and
development patterns. The economic inefficiencies due to congestion, manifested in the
form of extended travel delays, wasted fuel, and adjustments to activity patterns, have led
communities worldwide to devise measures that aim at its mitigation.

Congestion relief measures have generally been classified into supply and demand
measures. Supply measures are those that adapt the network capacity to the existing demand,
by investing in infrastructure (such as building more roads), enhancing public transport
services, or improving the utilization of the existing network (such as by traffic signal
control, ramp metering, driver information systems, etc.). Demand measures, on the other
hand, are those that adapt the demand to the existing road capacity by influencing users’
travel behavior. Examples of these strategies include using fiscal measures (such as road

pricing, parking pricing, fuel taxes, etc.), adopting alternative work schedules (staggered

17

shifts, flextime policies, compressed workweek), encouraging ridesharing, and
telecommuting.

Although congestion relief strategies might vary in their short-term effectiveness, their
long-term consequences should be carefully analyzed. It has been argued that urban
highways have a tendency to achieve peak congestion levels irrespective of supply and
demand (Downs (1992), Small (1992 a)). Most congestion relief strategies might reduce the
duration of peak-hour traffic congestion but not its intensity as commuters would change
their routes, trip times, and modes of travel to occupy any road space freed by such
strategies — a phenomenon referred to in Downs (1992) as the principle of triple
convergence'.

Besides congestion, road transportation is a major source of mobile-source emissions. It
is estimated that motor vehicles in the Unites States are responsible for about 90 % of
carbon monoxide in the air and 50 % of smog and hazardous air pollutants (EPA’s website:
www.epa.gov). The accumulation of emissions leads to the concentration of pollutants in the
atmosphere, which are also affected by meteorology, topography, and further chemical
reactions. Vehicular emissions and pollutant concentrations are governed by emission and
air quality standards, set by regulatory agencies such as the U. S. Environmental Protection
Agency. Vehicle emission standards define the maximum allowable tailpipe emissions given
a vehicle’s age and mileage. Air quality standards set upper limits on the concentrations of
pollutants in the atmosphere, using various temporal aggregations. In order to achieve
environmental objectives and/or comply with environmental standards, there is need to
implement adequate policies.

In general, reductions in congestion are believed to be positively correlated with
reductions in emissions and subsequent improvements in air quality. One could then apply
the methods previously described for congestion relief to reduce emissions. It should be
noted though that in certain instances, paradoxes could exist between traffic-improving

measures and subsequent emission levels (see for instance Nagurney (2000 a)). For

' Triple convergence is defined in Downs (1992) as a combination of (1) spatial convergence, where travelers
formerly using congested roads switch to the faster route on which improvements have been made, (2) time
convergence, where travelers previously traveling before or after the congested period switch their departure
times to the peak period, and (3) modal convergence, where some travelers previously using public transit now
switch to using the private auto as driving has become faster. The result of the three types of convergence is
that traffic conditions prior to the improvement would continue to prevail after the improvement.

18

example, in Liu (2003) the emission level consequences of ramp metering, signal
coordination, and demand management are investigated. It is demonstrated that although at a
network level total emissions might decrease, this need not be the case at a local level (such
as in the proximity of the traffic signals). Other policies that specifically aim at reducing
emissions include vehicle technology measures (such as using cleaner fuels or more
effective catalytic converters), inspection and maintenance programs, market-based
incentives such as emission pricing, etc.

Consequently, traffic management strategies should be assessed through multi-criteria
analysis methods that consider both congestion and emissions, and possibly other criteria
such as safety and equity. In order to support the development and evaluation of such
strategies, mathematical models of traffic flows, emissions, and dispersion are needed.
Traffic models simulate the reaction of users to a given management method and, together
with emission and air quality models, send back indicators of congestion, emissions, and air
quality. A traffic-emissions-air quality laboratory consists of the modules shown in Figure
1.1.

Traffic models determine an equilibrium between supply and demand given a network
topology, a matrix of origin-destination demands, user behavioral models (e.g. route and
departure time choices), and link performance functions. They can be classified as static or
dynamic (time-dependent). The reader interested in a review of traffic models is referred to
Cascetta (2001) and Hoogendoorn and Bovy (2001). The outputs from a traffic model,
namely vehicle speeds and accelerations (if available), are fed into an emission model.
Emission models can also be classified as static average speed-based models or dynamic
models that take both speed and acceleration as input. An overview of emission models is
provided in Cappiello (2002). Given a vehicle’s technology specification, operating
conditions (speed and acceleration), and external environmental conditions, an emission
model outputs the amounts of emissions (by emission species) generated. These constitute
the input to dispersion and photochemical models, which predict further reactions of the
emitted species, model their dispersion in the air, and eventually output pollutant
concentrations as indicators of air quality. Readers interested in a review of dispersion and

air quality models are referred to Barratt (2001).

19

Transportation Transportation
Demand Model Supply Model

Traffic
Model
|
Operating

condittons

4

Emission Meteorological
Model Model
I

Emissions

!

Dispersion and
Photochemical g
Model

|

Pollutant
Concentrations

Figure 1.1. Components of a traffic-emissions-air quality simulation laboratory. (from Cappiello (2002))

Considerable attention from the research community has been devoted for enhancing the
prediction accuracy of traffic models and emission models separately. Recently, there has
been an interest in the integration of these models at various levels of detail, a review of
which is provided in Cappiello (2002) and Liu (2003). For instance, a microscopic traffic
simulator can easily be integrated with an instantaneous emission model as the former
generates both speed and acceleration as input to the latter. The integration of a non-
microscopic traffic model, which generates speeds but not accelerations as output, with an
instantaneous emission model is not as straightforward. We describe later in this thesis a
method that aids in this integration.

In addition to the modeling requirements of traffic management strategies, there is need

to develop algorithms that solve the models. Although the development of algorithms is

20

usually motivated by the need to solve a particular problem, the algorithms can often be
used in a variety of application settings. Moreover, if the algorithms are used in a real-time
context, such as in Intelligent Transportation System applications, they should be efficient to
meet the running time requirements of the sub-problems in which they arise. In this thesis,
the algorithms that we develop will be aimed at solving dynamic routing and pricing

problems for the optimization of travel times and/or emissions in dynamic traffic networks.

1.2 Thesis Objectives and Contributions

The research documented in this thesis has the following main directions: (1) the
development of methods that enable the enhanced representation of traffic flows and
emissions and that aid in the integration of non-microscopic dynamic traffic models and
instantaneous emission models, (2) the development of models and management algorithms
for congestion and emissions in dynamic traffic networks, (3) the implementation of the
developed models and algorithms in a simulation laboratory, and (4) the assessment of the
effectiveness of the proposed methods by testing them on hypothetical network examples.

More specifically, the main contributions of this thesis with respect to enhancing the
modeling requirements of traffic flows and emissions are: (1) the development of a
probabilistic approach to model accelerations as a function of speed and road type in traffic
networks, with applications in the integration of instantancous emission models and non-
microscopic traffic models, and (2) the addition of a departure time choice model to an
existing analytical dynamic traffic assignment model.

In the area of management models and algorithms, the main contributions are: (1) the
study of the minimum cost flow problem in capacitated time-dependent networks and the
development of efficient solution algorithms for this problem, (2) the experimental study of
a new approach for solving the shortest path problem in static and dynamic First-In-First-
Out (FIFO) networks that is different from traditional comparison-based label-setting
algorithms, and (3) the formulation of a second-best link-based model of congestion and
emission pricing in dynamic traffic networks as a bi-level program and the development of

solution algorithms for this problem.

21

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 provides a methodology for modeling
accelerations in traffic networks as random variables that are functions of speed and road
type. The probabilistic approach is applied to a data set, for which an acceleration and a
deceleration distribution is developed for every speed range and road type. The
methodology, results, and applications of the acceleration model are presented. Results from
this research have been reported in Abou Zeid et al. (2002).

Chapter 3 provides an in-depth treatment of the minimum cost flow problem in
capacitated time-dependent networks, where a given amount of flow should be sent from a
source node to a sink node at a certain departure time subject to link capacities. Solution
algorithms are developed and computational tests are performed to assess the efficiency of
the developed algorithms. The case of the minimum travel time flow problem is also
addressed. The discussion is further extended to allow for waiting at nodes and for multiple
origins, destinations, and departure times. Results from this research have been reported in
Chabini and Abou Zeid (2003).

Chapter 4 presents a new approach developed in Chabini (2002) for solving the shortest
path problem in static and dynamic FIFO networks, and provides experimental testing of the
algorithms. The approach is based on defining optimality conditions for detecting whether a
label is optimal, and utilizing these conditions to reduce the work needed for sorting labels,
which is a bottleneck operation in traditional comparison-based label-setting algorithms.

Chapter 5 develops methods for congestion and emission pricing in dynamic traffic
networks. A second-best link-based dynamic congestion pricing model is formulated as a bi-
level program with the objective of minimizing total travel time subject to upper bounds on
the link prices and to the users’ reaction to the implemented prices. Solution algorithms are
developed, and both route and departure time choices are modeled in the process of finding
uses’ reaction (equilibrium). The methodology is extended to study dynamic emission
pricing in general traffic networks, where the prices vary additionally by vehicle category.
Finally, both congestion and emissions are accounted for in the optimization process by

adding total emissions (total travel time) constraints and hot spot environmental constraints

22

to the basic congestion (emission) pricing model. Several experiments are conducted to
assess the effectiveness of the proposed pricing methods.

Chapter 6 concludes the thesis and gives directions for future research.

This thesis addresses a set of problems in the context of traffic flows and emissions
optimization. These problems are studied separately in each of the chapters, and can be read

independently of each other.

23

24

Chapter 2

Probabilistic Modeling of
Acceleration in Traffic Networks
as a Function of Speed and Road

Type

2.1 Introduction

Characterizing travel behavior and vehicle activity has been an important research topic that
has numerous applications in traffic and emission modeling. Current travel demand models
give average speeds as outputs, which are not sufficient for the increasing data needs of
emission modelers. Recent emission research recognizes that the engine mode of operation
will be a significant variable in new modal emission models (Barth (1998), Guensler et al.
(1998), Washington et al. (1998), Roberts et al. (1999)). When modal activity exceeds
specific thresholds of variables such as power, positive kinetic energy, acceleration, or idle
mode, emission levels can rise significantly. Thus, there is a need to understand how driving
behavior and dynamic vehicular activity affect the proportion of driving spent in different
modes (idling, cruising, acceleration, deceleration, etc.). Sierra Research (Carlson and
Austin (1997)) developed representative driving cycles for different facility types and

congestion levels after analyzing instrumented and chase car data. While this research was a

25

valuable addition to the literature, it does not present a statistical methodology for
generating speed and acceleration distributions, which may be necessary for applications
where specific driving cycles are an insufficient tool. Moreover, driver interaction with the
vehicle in terms of acceleration and (to a lesser extent) deceleration patterns is important for
emission modeling. For example, high-speed, high-acceleration, and heavy braking activities
are typically exhibited by young male drivers, and this in turn increases emissions, while
older drivers might drive more conservatively than younger drivers (Wolf et al. (1999),
Fancher et al. (1998)). Driving patterns might also be dependent on the particular city and
the nature of its transportation network, i.e. whether it is mostly dominated by local streets
or freeways (LeBlanc et al. (1995)), and on the traffic and control conditions (Special
Report: Highway Capacity Manual (1998)). For these reasons, it is important to study those
aspects of driving behavior and road characteristics that may influence the statistics of
acceleration and deceleration events for a given speed.

We develop a novel approach for the quantification of acceleration and deceleration
events in a traffic network. The approach models acceleration as a random variable whose
distribution varies as a function of speed and road type. The basic motivation of this
research is to integrate non-microscopic dynamic traffic models and instantaneous emission
models, though there are other applications as well. Non-microscopic dynamic traffic
assignment models are fast, applicable on a regional scale, and generally easier to calibrate
than their microscopic counterparts. Their basic limitation is that they describe network
conditions in terms of average link speeds, but do not provide accelerations. Load-based
emission models, however, require both speed and acceleration as input. Therefore, a
probabilistic acceleration model is an efficient method of overcoming the shortcomings of
non-microscopic traffic models and providing the necessary link to emission models. Even
in the absence of a traffic model, the acceleration model is also useful when only speed data
are available in a given city from field measurements. This leads, for instance, to more
accurate emission modeling using instantaneous emission models rather than average speed-
based emission models (such as EPA’s MOBILE6), which in principle do not properly
quantify emissions from vehicles under dynamic conditions (National Research Council

(2000)) and are thus an approximation at best.

26

Several approaches for the quantification of acceleration and deceleration events can be
found in the literature. TRANSIMS, a traffic simulator based on cellular automata modeling,
uses aggregate real-world frequencies of power factor (2*speed*acceleration) to model the
accelerations. The power factor is then used to estimate emissions (Williams et al. (1999)).
Microscopic traffic models assign accelerations to individual vehicles based on the
interaction among vehicles and the traffic regimes. Examples of these regimes are car-
following and free-flowing. Therefore, in these models, acceleration is a function of
parameters such as headway distribution, the relative difference in speed between adjacent
vehicles, and driver reaction time (Ahmed (1999)).

In this research, however, the focus is to develop a probabilistic approach to estimate
acceleration and deceleration activity from the mere knowledge of speed, without modeling
vehicular interactions at the microscopic level. The analysis is conducted using data for four
main road types: interstate highways, state highways, arterials, and collectors. It is well
known that the potential for accelerating or decelerating decreases as speed increases
because of power and traction limitations of the vehicle. However, these limitations are
usually insufficient to describe the dynamics of vehicles. It is also necessary to determine
the statistical distribution of accelerations and decelerations within a given speed range on a
link, which is defined by the state variables of density and flow (or average speed).

This chapter is organized as follows. In Section 2.2, we describe the data for which we
develop an acceleration model. In section 2.3, we present the approach that we developed to
calibrate the model. In Section 2.4, we provide an analysis of the results. In Section 2.5, we
describe an application of the model. Finally, in Section 2.6, we conclude the chapter and

give future research directions.

2.2 Data

The data sets of this research are obtained in conjunction with an intelligent cruise control
study sponsored by the U.S. Department of Transportation and conducted in South Eastern
Michigan from July 1996 to September 1997 by the University of Michigan Transportation
Research Institute (Fancher et al. (1998)). The developed model is built on real-world
driving data collected during the first week of the study, during which the intelligent cruise

27

control was not functional. 108 randomly-chosen drivers from eight counties of South
Eastern Michigan were selected to drive in metropolitan and rural areas of the state, using
the same type of vehicle: an instrumented 1996 Chrysler Concorde.

Drivers were classified into five categories according to their driving behavior: (1)
ultraconservative: means an unusual tendency towards far (‘far’ means large gap between
leading and following vehicle) and/or slow driving, (2) planner: means an unusual tendency
towards far and/or fast driving, (3) hunter/tailgater: means an unusual tendency towards fast
and/or close driving, (4) extremist: means that the driver satisfies more than one of the
above tendencies, and (5) flow conformist: means that the driver satisfies none of the above
tendencies. A flow conformist tends to travel at the same speed as other cars and at
approximately the median headway time-gap.

A sub-sample of eighteen drivers, each conducting 20 to 60 trips, was used to develop
the model presented in this chapter. Most trip durations were less than 30 minutes. The
eighteen drivers belong to the following categories: two planners, three extremists, five
hunters, four ultraconservatives, and four flow conformists. The model does not capture
differences in driver aggressiveness because the intent is to isolate road type as the only
independent variable.

Roads were classified into the following types: high-speed ramp, interstate highway,
state highway, arterial, collector, light duty, alley or unpaved, unknown, and low-speed
ramp. Only four road types (interstate highways, state highways, arterials, and collectors)
are considered in the present study because of data availability. Moredver, these road types
cover most road types in a transportation network (except for on-ramps and off-ramps).

The distribution of acceleration and deceleration data points, aggregated from all drivers
on every road type, is shown in Table 2.1. These observations correspond to second-by-

second combinations of speed and acceleration.

. Table 2.1. Number of observations of acceleration and deceleration by road type.
Road Type Interstate Highway State Highway Arterial Collector

leration 5,597 3633 20580 5804
Deceleration 12,569 6,074 31,586 11,043

28

2.3 Calibration

In this section, we describe the approach that we followed to develop an acceleration model
corresponding to the data described above. The same procedure can be used in general to
derive statistical acceleration distributions from any given acceleration data set though the
fitted distributions might vary from one data set to another.

The first five trips have been eliminated from every driver’s record to remove some of
the "novelty factor" bias that might be present at the beginning of the test since drivers might
not be accustomed to their new vehicles. The remaining data are divided into four subsets,
one for each considered road type, to see whether acceleration and deceleration distributions
are dependent on road type. The data in each subset are further divided into two groups:
acceleration data (strictly positive values) and deceleration data (zero or negative values).
Acceleration and deceleration are considered separately since in general they may not be

similarly distributed. In the case of arterials, we have divided the data into two subsets, S,
for calibration and S, for validation. For the other road types, we did not validate the model

because of the lack of a sufficient number of observations for those road types.

Consider one data group, for example, accelerations (strictly positive values) on road
type r. The statistical distribution analysis is conducted for 10 km/h speed ranges. For each
speed range v, we would like to find a probability distribution that fits the acceleration
distribution obtained from the sample for that particular speed range. Plotting the sample
acceleration values suggests a distribution similar (with a scale factor) to the density of a

half-normal distribution with zero mean (1 = 0), and a standard deviation to be determined

(see Figure 2.1).

29

T

T

T

T

éggﬁﬁnmma

T

_ ,‘ _ _ _
mmmmmo
(o] N — —

SUOTIBAIOS(() JO JOqUINN]

Acceleration (m/s 2)

(a)

s85888°

SUONBAIDSQ) JO IAQUINN

2

Acceleration (m/s”)

(b)

30

250 A

ué
M)

2201 |

o

£,

'%::150*

=

o 100

B

=

g 50

Z
0 T | B e T |) S N B R | GRS i e T
T TN T T P N T G

Acceleration (/s 2)

(c)

Figure 2.1. Acceleration distribution for the calibration data set on arterials for the
speed ranges 21-30 km/h (part a), 51-60 km/h (part b), and 81-90 km/h (part ¢).

Let N/, be the total number of acceleration observations aggregated from all drivers

driving on a road type r in a speed range v. Let O, (a) be the sample probability of

observing a certain value of acceleration a, where a belongs to an acceleration interval of

length 0.2 m/s’ (e.g.(0.2,0.4],(0.4,0.6],...). If a belongs to an acceleration interval [al,az],

we define 7' (a) as the total number of acceleration observations that are in the interval

T

la,,a,].Then O/ (a) is given by:

0; (a)="—. 2.1)

The sample standard deviation is given by the expression:

o). = ‘/Z(a 1)), (a) = J;(a— 0) 0, (a) = \/ZaEQ:.V (), (22)

ae A

where A consists of all the acceleration values in the data set, taken at 0.2 m/s’ intervals.

The half-normal probability density function, fitted to the acceleration data, is given by:

9

2 2
) a—u 2 a
* (a)=——=———exp| 0.5 =———exp|—0.5| —| |, 2.3
f;‘ () 27[0—:.\" p { o-:.* J 27”-0-:—\) p (O-:.VJ ()

31

where o, is the standard deviation obtained from the acceleration sample, as given by

expression (2.2).
The half-normal distribution is truncated at some maximum acceleration value a, so as

to avoid predicting unrealistic high accelerations. The truncated distribution is then
normalized so that the area under the resulting density function is one. The resulting density

function is given by:

f(a)
f nJ;rmaIized, rovo —

[(a)ea o

An error term g, , defined as the sum of the squares of the difference between the

rw?

cumulative sample probability F* (a) and the cumulative truncated and normalized half-

1Lrov

normal distribution function F,, (a) is used to test the goodness-of-fit of the obtained

2.r.v

distribution:

6‘:‘, = Z [F;.r'.v (a)— Pvlfr,v (a)}z . (25)

ac 4

Low values of the error term & indicate a good fit, while high values suggest that the

proposed distribution does not explain well the variation in acceleration. This procedure was
applied for every road type and speed range in the acceleration data.
The maximum acceleration values at which the distributions are truncated are

approximately equal to the maximum experimental values of acceleration and deceleration

for every speed range, and they are given by: a, =5 m/s* for speed ranges from 0-10 to 71-
80 km/h, a! =2.5 m/s* for speed range 81-90 km/h, @' =1 m/s® for speed range 91-100

km/h, a’ =0.75 m/s* for speed range 101-110 km/h, and @’ = 0.5 m/s* for speed range
111-120 km/h.

The steps described above to estimate accelerations are applicable to the deceleration

data for every road type and speed range.

32

The density function f; (a) of the combined distribution of acceleration and

deceleration corresponding to road type » and speed range v is obtained by weighing the
truncated and normalized distribution with the probability of occurrence of acceleration and

deceleration, respectively:

F, —()———f’—‘——— fora<0
[/. (a)da
fila)=y " P (2.6)
P, u——rl— for a >0,
I £ (a)da
Q0

.

where P, and P’ are the probabilities of a deceleration realization and an acceleration

realization, respectively, obtained from the sample data for road type r and speed range v.
The other terms in expression (2.6) are as previously defined.
In the remainder of this chapter, we refer to the truncated normalized distribution as the

“half-normal distribution.”

24 Analysis of Results

2.4.1 Comparison of Observed Distributions to Fitted Half-Normal

Distributions

The error terms & obtained upon fitting halt-normal distributions (with zero mean and
standard deviations obtained from the sample) to the observed values of acceleration and
deceleration are shown in Table 2.2 (part a) for the four road types. These error values are
satisfactorily low. They support the validity of the hypothesis that accelerations and
decelerations are probabilistically distributed, with the fitted distribution in this case being
half-normal with zero mean and a standard deviation that decreases as the speed increases.
Note that the error term values of deceleration distributions are in most cases lower than
those of acceleration distributions because of the availability of more deceleration data and

the absence of any acceleration value in the interval (0,0.2]. However, error term values are

33

similar among different road types although there is an uneven distribution of data points

among the road types.

Table 2.2*. Error terms of half-normal distributions fitted to the sample acceleration and deceleration
distributions, obtained from calibration on all road types (part a) and validation on arterials (part b).

a

Speed Acceleration = Deceleration
Range Interstate State Arterial Collector Interstate State Arterial Collector
(km/h) Highway Highway Highway Highway

0-10 0.00895 0.00891 001106 001063 000146 0.0120 0.00061 0.00087
11-20 0.00588 0.00844 0.00707 0.00549 0.00560 0.00169 0.00403 0.00218
21-30 0.00374 0.00419 0.00413 0.00601 0.00227 0.00097 0.00102 0.00115
31-40 0.01215 0.01068 0.01507 0.00834 0.01325 0.00934 0.00448 0.03372
41-50 0.01061 0.01659 0.00853 0.02681 0.01494 0.04996 0.03702 0.06297
51-60 0.02055 0.02580 0.02469 0.03926 0.02932 0.04295 0.02982 0.03373
61-70 0.03146 0.03268 0.04044 0.04829 0.02863 0.01082 0.01034 0.01195
71-80 0.04769 0.05109 0.04163 0.05967 0.01719 0.01333 0.00390 0.00350
81-90 0.06232 0.07095 0.07390 0.08689 0.00164 0.00036 0.00129 0.00135
91-100 O0.11171 0.10081 0.09852 0.09267 0.00164 0.00132 0.00134 N/A
101-110 0.13349 N/A N/A N/A 0.00050 N/A N/A N/A
111-120 0.15056 N/A N/A N/A 0.00047 N/A N/A N/A

* N/A indicates that not enough data were available to calibrate a model for the corresponding speed range and

road type.

34

(b)

Speed Range (km/h) "7 Acceleration Deceleration
[1-20 0.01018 0.00265
21-30 0.03033 0.00927
31-40 0.04087 0.04906
41-50 0.05469 0.09007
51-60 0.05512 0.03233
61-70 0.05648 0.00599
71-80 0.07844 0.03284

81-90 0.10668 0.06501

Figure 2.2 shows the cumulative sample probability F| (a) and the cumulative modeled
distribution function F,(a) for accelerations (part a) and decelerations (part b), respectively,
on arterials in subset S for the speed range 0-10 km/h. The goodness-of-fit is better for the

deceleration data than for the acceleration data due to lack of a sufficient number of

observations in the interval (0,0.2], as stated above.

—
J

>
% 08 - Cumulative sample
< probability
£
S 06
% A Cumulative modeled
2 0.4 - distribution function
= .
E
g 02+
O .
0 T T T T T T T T T 1

0 0.5 1 1.5 2 25 3 35 4 4.5 5
Acceleration (m/s™)

(a)

35

————— Cumulative sample
probability

------- Cumulative modeled
distribution function

Aniqeqord sanenun))

r T T T I T - T T T T O
-5 -4.5 -4 -35 -3 -2.5 -2 -1.5 -1 -0.5 0

Deceleration (nmv/ sz)

(b)

Figure 2.2. Cumulative sample and half-normal distribution functions for the acceleration data (part a) and the
deceleration data (part b) used for calibration on arterials for the speed range 0-10 km/h.

2.4.2 Validation

Validation of the half-normal distributions was done only for the data of arterials because it
contained enough observations to allow for both calibration and validation. For every speed

range, the same half-normal distribution that was fitted to the acceleration data in subset S
was compared to the acceleration data of subset S, to test whether the distributions

developed from a certain sample can be applied to another sample for the same road type.
Validation was also done for the deceleration data on arterials. In both cases, the error terms
obtained were acceptable, supporting the adoption of probabilistic models to estimate
accelerations and decelerations. Figure 2.3 shows the cumulative sample probability of the

acceleration data (part a) and deceleration data (part b) in subset S, and the cumulative

distribution corresponding to the modeled density function (which was derived from the

calibration data set S.) on arterials for the speed range 0-10 km/h. The error terms for all

speed ranges are shown in Table 2.2 (part b).

36

Cumulative sample
probability

------- Cunwlative modeled
distribution function

Cumulative probability

O : T T T T T T T T T 1
0 05 1 5 2 25 3 35 4 45 5

Acceleration (nv sz)

(@)

Cumulative sample
probability

------- Cumulative modeled
distribution function

Annqeqoid aAne[nWIng

-5 -4.5 -4 -3.5 -3 2.5 -2 -1.5 -1 -0.5 0

Deceleration (/s 2)

(b

Figure 2.3. Cumulative sample and half-normal distribution functions for the acceleration data (part a) and the
deceleration data (part b) used for validation on arterials for the speed range 0-10 km/h.

37

2.4.3 Variation of Standard Deviation of the Distributions with Speed

Range and Road Type

Figure 2.4 shows the variation of standard deviation of acceleration (part a) and deceleration
(part b) distributions among speed ranges for the four road types. Beyond a certain speed
threshold, the standard deviations decrease with speed because at lower speeds, there is a
higher probability of achieving high values of acceleration and deceleration than at larger
speeds. This diversity of acceleration and deceleration at lower speeds is an important
phenomenon in estimating emissions related to engine load or power enrichment. This
phenomenon is violated for the first speed range, where the standard deviation increases
when moving from 0-10 km/h to 11-20 km/h. The reason for this phenomenon could be that
the maximum power available to vehicles at very low speeds is lower than what drivers
desire as acceleration. This observation might also be due to the common "lurch" (sudden
positive variation in acceleration) that follows a light change, or stop and go traffic, and
might be made pronounced by the inexperience of the drivers with a new vehicle throttle.
This effect was also observed in LeBlanc et al. (1995).

Road type is seen to have little effect on the variation of acceleration and deceleration
distributions, as shown in Figure 2.4. While it is expected that stop and go conditions,
characteristic of collectors and arterials, might lead to higher acceleration and deceleration
values, the results actually indicate that highways have similar standard deviations to those
of arterials and collectors, and in some cases have even higher variations. Note that higher

speeds can be reached on highways than on arterials and collectors.

38

S
E @ Interstate highway
E @ State highway
«é o Arterial
>
2 2% Collector
i
5]
.=
=]
8
]

- - D N N
S H OSSO NSNS SP

N AT AN YT WY YAy Y N >
\Q\\Q\Q’Q‘@\?Q\‘@Q\\\Q\Q\\
Velocity (knvh)
(a)

B Interstate highway
@ State highway
o Arterial

i1 Collector

Standard Deviation (m/s)

> S \n'@ \?@ \’@\ \fj@ \'@ \:\ 3 \'@\ \9@ \Q’® \\@ "9\
N A OO AU MO N
Q" & o

Velocity (knvh)

(b)

Figure 2.4. Variation of standard deviation of acceleration distributions (part a) and deceleration distributions
(part b) among different speed ranges and road types.

2.5 Model Application

In this section, we describe a general procedure for a possible application of the acceleration

model. Then we depict one instance where the procedure has been applied. This application

39

has been motivated by the integration of a non-microscopic dynamic traffic model and an

instantaneous emission model.

2.5.1 General Procedure

The probabilistic nature of the acceleration model leads to a novel approach for emission
modeling. Since accelerations are modeled as random variables, emission factors which are
functions of speed and acceleration will themselves be random variables. Therefore, an
instantaneous emission model combined with a probabilistic acceleration model can
generate, for every road type and speed range, a probabilistic emission distribution from
which one can obtain multiple moments of emissions (expected value, standard deviation,
etc.).

The approach summarized in the previous paragraph is documented in more details in
Cappiello (2002). For a given emission species i, vehicle category ¢, speed range v, and

road type 7, an expected emission factor e, is calculated based on the probability of

Le.r,v

occurrence of every acceleration and deceleration, and is given by:

Zern= E le va)=["c.va) /" (a)da. 2.7)

aelay.ay]
In expression (2.7), e, .(v,a) is the emission factor, obtained from any instantaneous

emission model, for emission species i, vehicle category ¢, speed v, and acceleration a.

a, and a, are the highest deceleration and acceleration realizations, respectively, in speed
range v, as obtained from the sample data. f, (a) is given by expression (2.6).

The expected emission factor is obtained by discretizing acceleration and deceleration

values in the interval [a1 ,a,]. Tts expression is:

Ei‘c‘r.v = Zei‘c (V, a)) ”r,v (a) : (28)

ae S,
In the latter expression, S, ={a, +h/2,a +3h/2,---,a,—3h/2,a,—h/2} is the

discretization interval, and 4 can be set to any desired value. Here it is set to 0.1 m/s.

a+hf2
z, (a)= J' /.., (x) dx, which is the probability that the acceleration belongs to the interval
a—hf2

40

(a—h/2,a+h[2).

This general procedure can be employed in two types of applications. First, it is useful
for the integration of non-microscopic traffic models and emission models. In this case, the
expected emission factors can be applied to the average speeds which are output by the
traffic model in order to predict emissions. A specific application of this type is shown
below. Second, the procedure can be used to enhance the accuracy of emission models’
predictions in cases where speed is obtained from field measurements, for example through
loop detectors, and used as input to the acceleration model which would generate
acceleration distributions for a given road type. Any instantaneous emission model would
then be able to predict emission distributions (or moments of emissions), given the speed
and acceleration (as well as other vehicle and roadway-related factors). Therefore, the
acceleration model allows the deployment of more refined and detailed emission models in
practice, as it allows the determination of acceleration, which is a quantity not measured in

practice, via the measurement of speed only.

2.5.2 Application Example

Below we describe a specific application where expected emission factors have been
generated based on speed data obtained from field measurements. The acceleration model
has been used in Cappiello (2002) in conjunction with EMIT (EMlssions from Traffic), a
recently developed emission and fuel consumption model. We provide a brief description of
EMIT, show results of expected emission factors derived from EMIT, and describe the
integration of EMIT with a non-microscopic dynamic traffic model.

EMIT is a simple statistical model for instantaneous tailpipe emissions (CO,, CO,
HC, and NO,) and fuel consumption of light-duty composite vehicles. In order to

realistically reproduce the behavior of the emissions, the explanatory variables in EMIT
have been derived from the load-based approach, using some simplifying assumptions. The
model is calibrated for a set of vehicles driven on standard as well as aggressive driving
cycles, and is validated on another driving cycle in order to assess its estimation capabilities.
The preliminary results indicate that the model gives reasonable results compared to actual

measurements as well as to results obtained with CMEM, a well-known load-based emission

41

model (see Fig. 2.5). The goodness-of-fit of EMIT varies with different emission species
(see Table 2.3), but the model has in general a reasonable predictive accuracy. Furthermore,
the model, due to its simple structure, is relatively easy to calibrate and requires less
computational time than detailed load-based models. A detailed description of EMIT can be
found in Cappiello (2002) and Cappiello et al. (2002).

Table 2.3. R-square (R?) between the measured and the predicted emission (or fuel consumption) rates from
EMIT. Part a: results for calibration. Part b: results for validation. (from (Capiello (2002))).

(2)
CO, CcoO HC NOx FR
Engine-out module, category 7 0.98 0.87 0.58 0.86 0.97
Tailpipe module, category 7 0.98 0.84 0.53 0.79
Engine-out module, category 9 0.97 0.90 0.63 0.87 0.97
Tailpipe module, category 9 0.97 0.88 0.58 0.67
(b)
CO, co HC NOx FR
Engine-out module, category 7 0.96 0.46 0.25 0.83 0.94 '
Tailpipe module, category 7 0.96 0.36 0.22 0.63
Engine-out module, category 9 0.95 0.50 0.22 0.83 0.95
Tailpipe module, category 9 0.95 0.43 0.32 0.53

Expected emission factors have been calculated in advance (offline), according to the
general procedure outlined above. The speed data used to compute expected emission
factors are obtained from the data set described in this chapter. Figure 2.6 and Figure 2.7

show the calculated expected emission factors of CO,, CO, HC, and NO, as well as fuel

rates for vehicle category 9 (defined in Cappiello (2002)) as a function of speed on arterials
and highways, respectively. In general, the expected emission factor (g/s) increases with
speed because of the increase in fuel consumption rate. The expected emission factors are
also compared with the facility-specific emission rates from MOBILE6. Note also that

expected emission factors would in general be different for different vehicle categories.

42

60 -

NA ANV NN

5 0 et Ao A A ettt e et ke Atk e e S S ke el e e e et 802418 e ettt et e e e B e e e £

Speed (kmvh)

EOco2 (g/s)
ro
n
1
—
- I—
gl
S
. TR
A
-
—
v
-
&r
S
T —

0.0 T T T T T T T

5_0 _‘ e et e S — i s e £ e At £ et e e e e e e e et e e e e e e e e e e e

254 |/

TPcoz (g/s)

0.0 T T T T T T T T
014 e At A A o 0 s e e 0 i S R 8 S PR O e e 2R e P et e e e e e e e e e e e et

0071 X / f M

EOco (g/s)

TPco (g/s)

Time (s)

Figure 2.5. Category 9 - FTP bag 2. Second-by-second engine-out (EO) and tailpipe (TP) emission rates of CO, and CO. Thick light line: measurements
(calibration data); dark line: EMIT predictions; thin line: CMEM predictions. The top plot represents the speed trace. (from (Cappiello (2002))).

43

24 300
1.5 4 Aoy
) £ 200 1
5 £ 20
= O o
o I~
0.5 - e Tk
L
0 = T r T ' L 0 T e S T T 1
0 20 40 60 80 100 0 20 40 60 80 100
Speed (km'h) Speed (knvh)
6 800
— = 600
& 4 2
S 2 400
S 2 S
~ 200 A
0 - T T T T | 0 ; . ' . ,
0 20 40 60 80 100 0 20 40 60 80 100
Speed (knvh) Speed (km/h)
0.06 34
= 004 g 24
E E) A e
o) S ~-.__#«W__.//,/""
0 0.02 8 1 -
0 T T T T | 0 T T T T |
0 20 40 60 80 100 0
Speed (km'h)
0.0009 0.08
= 0.06 +
= 0.0006 + g
= &]
o = 0.04
= 0.0003 - o
0.02
03 : ; ; ; 0 ; . , .
0 20 40 60 80 100} 0 20 40 60 80 100
Speed (km'h) Speed (kmvh)
0.006 0.3 1
Z 0004 02 L
& = TN
o K —
Z 0.002 & 0.1 -
Z.
0 T T T T 1 O T T T T 1
0 20 40 60 80 100 0 20 40 60 80 100|
Speed (km'h) Speed (km'h)

Figure 2.6. Expected emission rates in g/s (on the left) and in g/km (on the right) for road type arterial and
vehicle category 9. The expected emission rates in g/lkm of CO, HC, and NOx are compared with the
facility-specific emission rates from MOBILEG (thin line). (from (Cappiello (2002))).

44

5) 3
21 300
. 1.5 4 'E’m
< e
2 3
! & 100 4
0.5
0 T T T T T 1 0 T T T T T 1
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Speed (knvh) Speed (km'h)
6 800 1
—_— fé‘ el
E =
S o4
o 2 o
© 200 +
0 T T T T T 1 0 5 : ; . . "
0 220 4 6 & 100 120 0 20 40 60 80 100 120
Speed (km'h) Speed (km'h)
0.06 1 3
% 004 - E 2
o)
S 004 S <
0 T T T T T - 1 0 U T T T T T 1
0 20 40 &0 80 100 120 0 20 40 60 80 100 120
Speed (km'h) Speed (knvh)
0.0009 0.08
3
7 0.0006 g 006
= 0,04
= 0.0003 2 T
0.02 4
0 T T T T T 1 0 . . - : = ;
0 20 4 60 80 100 120 0 20 40 60 80 100 120
Speced (knv'h) Speed (kmv'h)
0.006 0.3 -
E" 0.004 A § ;
ah)
é 0.002 A &0.
Z
0 T T T T T 1 0 T T T T T 1
0 20 40 60 80 100 120 0 20 40 &0 80 100 120
Speed (kav'h) Speed (knvh)

Figure 2.7. Expected emission rates in g/s (on the left) and in g/km (on the right) for road type highway and
vehicle category 9. The expected emission rates in g/km of CO, HC, and NOx are compared with the
facility-specific emission rates from MOBILES (thin line). (from (Cappiello (2002))).

45

An integration component is designed to apply the expected emission factors to the
output (i.e. time-dependent link speeds) of a mesoscopic traffic model, developed in
Bottom (2000), to predict total emissions as well as their spatial and temporal variations.
The combined model allows the evaluation of various traffic management strategies and
their effectiveness in reducing traffic congestion, air pollution, and fuel consumption. For
instance, in Cappiello (2002) various scenarios of traffic conditions (with and without an
incident) are considered to assess the impact of dynamic route guidance (an Intelligent
Transportation Systems traffic management method) on travel time, emissions, and fuel

consumption.

2.6 Conclusions

In this chapter, a probabilistic approach that models acceleration activity as a random
variable has been developed. Statistical acceleration and deceleration distributions have
been developed as a function of real-world data of vehicle speeds and road types. As the
speed range increases, the standard deviation of the acceleration and deceleration
distributions decreases because at higher speeds only a limited range of accelerations and
decelerations can be achieved due to power and traction limitations. This observation was
consistent among all road types. Moreover, the standard deviations are similar among
road types, which might suggest that road type has little effect, if any, on acceleration and
deceleration variation. However, this effect should be studied further with more data from
other cities, since there is reason to believe that driving behavior differs from city to city,
especially those that have more hills (LeBlanc et al. (1995)).

For every road type and speed range, and for both acceleration and deceleration, a
half-normal distribution having the same mean and standard deviation as the original data
was fitted to the observations. The fitted distribution was truncated at some maximum
acceleration value in order to consider only physically feasible accelerations. In almost
all cases, the fit was very close as indicated by low error term values. This implies that
the half-normal distribution well approximates the acceleration and deceleration activity
distributions for the given data. The specific parameters of the distribution might have to

be calibrated separately for each city since there might be other factors, not captured by

46

our model, that affect these distributions. Moreover, the distribution that would fit other
acceleration and deceleration data from different regions might not be half-normal.
However, the same methodology developed in this research can be used to develop other
acceleration probability distributions.

A general procedure was given to illustrate an application of the probabilistic
modeling approach. Then specific results were provided where the acceleration model
was used in conjunction with EMIT (Cappiello (2002), Cappiello et al. (2002)), an
instantaneous emission model, to generate expected emission factors for the purpose of
integration with a non-microscopic traffic model.

For further research, it would be useful to apply the methodology developed in this
research to other data sets (namely the Sierra chase car data) to investigate further the
nature of the fitted distributions as well as the effect of road type on these distributions. It
would also be important to quantify the activity from freeway ramps. Moreover, it would
be interesting to disaggregate this model to assess the impact of driver aggressiveness and

vehicle type on the variation of acceleration and deceleration distributions.

47

48

Chapter 3

The Minimum Cost Flow
Problem in Capacitated Dynamic
Networks

31 Introduction

The minimum cost flow problem is the problem of sending flows in a network from
supply nodes to demand nodes in minimum total cost such that link capacities are not
exceeded. This problem has been studied extensively in the context of static networks
(Ahuja et al. (1993)). In this chapter, we study the minimum cost flow problem in
dynamic (or time-dependent) networks, where link travel times, costs, and capacities are
time-varying quantities that depend on the entry time of the link.

The minimum cost flow problem has numerous applications in transportation,
logistics, and telecommunication. For instance, in transportation the problem arises in air
traffic flow management with enroute (airspace) capacities (Bertsimas and Stock
Patterson (1998)) or in road traffic networks with physical or environmental capacities.
An application that motivated the work of this chapter has been the optimization of
vehicular emissions to meet air quality standards set by regulatory agencies such as the
US Environmental Protection Agency (EPA’s website: www.epa.gov). These standards
mandate that ambient pollutant concentrations in any area of the United States do not

exceed a certain threshold beyond which the public and the environment are endangered.

49

Pollutant concentrations over a link are directly related to the emission rate (emissions
mass per unit time) on that link. The emission rate is in turn dependent on the amount of
flow on the link. Therefore, by imposing upper bounds on the link flows, one can ensure
that no excessive pollutant concentrations (hot spots) are prevalent over any link in the
network.

Link cost can be defined in several ways, such as travel time, travel distance, out-of-
pocket cost, or emissions generated or inhaled along the link. If link cost is equal to its
travel time, for instance, one can exploit some properties of the link travel times as cost
functions to develop specialized efficient algorithms for that purpose, as shown later in
the chapter. In this chapter, we study the general dynamic minimum cost flow problem,
where cost can be equal to any defined criterion. We address one variant of the problem
where a given amount of flow needs to be sent from an origin node at a certain departure
time, say zero, to a destination node. This is referred to as the one-to-one dynamic
minimum cost flow problem. This problem has been studied in Cai et al. (2001), where
solution algorithms are developed that consider three particular waiting policies at nodes:
no waiting, unbounded waiting, and bounded waiting. Moreover, in Miller-Hooks and
Stock Patterson (2002) a solution algorithm that solves the time-dependent minimum
time flow problem with unlimited waiting allowed at nodes is given. The main objective
of restudying the dynamic minimum cost flow problem in this chapter is to develop more
efficient solution algorithms that are obtained by exploiting some properties of the
problem.

The approach that we use to solve the minimum cost flow problem is the computation
of successive shortest paths in residual networks. We note that in the shortest path
problem, which is a particular case of the minimum cost flow problem, link capacities
can be viewed as infinite; thus, all the flow can be sent on a shortest path. However, in
the general capacitated minimum cost flow problem, a series of shortest path problems
should be solved since a single shortest path might not have enough capacity to carry all
the flow. For each of the successive shortest paths, an amount of flow equal to the path
capacity is augmented until all the flow has been sent from the origin to the destination.
Moreover, while dynamic shortest path problems can be viewed as static shortest path

problems in a static acyclic time-space network (defined in Section 3.2.2), the residual

50

time-space network (defined in Section 3.2.3) in which the minimum cost flow problem
is solved is not acyclic along the time dimension. Thus, to solve the minimum cost flow
problem, there is need to develop solution algorithms that are not specific for acyclic
time-space networks, as opposed to classical dynamic shortest path algorithms in
dynamic networks. The reader interested in the latter topic is referred to Grier and
Chabini (2002), Chabini and Lan (2002), Pallottino and Scutella (1998), Chabini (1998),
Cai et al. (1997), Ziliaskopoulos (1994), Kaufman and Smith (1993), Orda and Rom
(1990), Dreyfus (1969), and Cooke and Halsey (1966).

We present two algorithms, denoted as Algorithm B and Algorithm C, for the shortest
path computation involved in the solution of the dynamic minimum cost flow problem.
We also review an algorithm, due to Cai et al. (2001), which we denote as Algorithm A.
Algorithms A, B, and C were implemented, and their computational efficiencies were
assessed by using large-size capacitated dynamic networks. The computational results
indicate that Algorithms B and C are more efficient than Algorithm A. Moreover, for the
test networks used, the successive shortest path algorithm employing Algorithm C
achieved significant time savings, compared to that employing Algorithm A (by up to a
factor of 113) and that employing Algorithm B (by up to factors of 25, 39, and 72 for
three different implementations of Algorithm B).

The remainder of this chapter is organized as follows. In Section 3.2, we provide
definitions and notation. In Section 3.3, we review a formulation of the dynamic
minimum cost flow problem. In Section 3.4, we describe a generic solution algorithm and
present some properties that will be useful for developing solution algorithms. We review
an algorithm developed in Cai et al. (2001) for the computation of minimum cost paths in
the residual network, and develop two efficient minimum cost path algorithms. In Section
3.5, we discuss the case where link travel cost is equal to its travel time and describe
specialized algorithms that compute paths which minimize total travel times in
capacitated dynamic networks. Then we describe how the developed algorithms can be
used or extended to account for various waiting policies, multiple sources, destinations,
and departure times. Finally in Section 3.6, we provide experimental results for the

solution algorithms presented in this chapter.

51

3.2 Notation and Definitions

3.2.1 Network Data

Let G = (N, 4) be a directed network. N ={l,...,n} is the set of nodes and 4 =1{l,...,m} is
the set of arcs. Let A(i) represent the set of nodes after node i, 1i.e. A(})={;:(i, j)e 4}.
We refer to A(i) as the forward star of i. Let B(;) represent the set of nodes before node
j,ie. B(j)={i:(i,j)e A}. We refer to B(j) as the backward star of j. We associate
with every arc (i, j) a positive travel time d; (), a travel cost c; (¢), and a non-negative
capacity U, (t) where te T = {0,1,2,.'.,M —1} is the entry time of the link, and M is a
time horizon beyond which travel is prohibited. The capacity U, (¢) refers here to the

maximum flow that can be admitted at the entrance of arc (i, /) at time 7. In certain
applications though, the capacity of an arc might refer to its storage capacity, i.e. the
maximum number of flow units that can be present on the arc at any time. Every arc

1,

(1,/) has a residual capacity r,(z) defined as: r,(t)=U (1)~ f,(¢), where f£,(z) is the
flow measured at the entrance of arc (i, /) at time ¢. Denote the source node by s and the

destination node by ¢. Let v be the amount of flow that should be sent from s to g. We

assume that all network data is deterministic and that no waiting is allowed at nodes in
the general model. Later in the chapter, we show how the solution algorithms that we
develop for the no-waiting case can be extended to allow for general waiting policies at

the nodes.

3.2.2 Time-Space Network

The time-space network is a useful tool for implicitly studying the minimum cost flow
problem. Note that although we exploit the concept of time-space network to illustrate
how the different solution algorithms operate, none of the algorithms presented in this
chapter was implemented by explicitly constructing the time-space network.

The time-space network is a static network constructed by expanding the original

network in the time dimension by making a separate copy of every node i€ N at every

time 7€ T, called a node-time pair (i,¢). Let G* = (N*,A*) represent the time-expanded

52

network of the original dynamic network. Set N~ denotes the nodes of G, which are
given by N* ={(i,¢): (i,t)e NxT}. The set of arcs 4" consists of arcs from every node-
time pair (i,z)e N* to every other node-time pair (j,t+d,-j(t)), where je A(i) and
t+d, (¢)< M . The cost of an arc connecting (i,¢) to (j,t +d; (t)) is equal to ¢; (t). We

note that the time-space network is acyclic along the time dimension.

3.2.3 Dynamic Time-Dependent Residual Network

We rely on the concept of residual networks to develop solution algorithms for the
minimum cost flow problem. A definition of residual networks is provided in Ahuja et al.
(1993) for static networks and in Cai et al. (2001) for dynamic networks. The dynamic

residual network corresponding to a feasible flow f can be viewed as the static residual
network of the time-space network corresponding to the dynamic network, and is derived

as follows. We denote the reverse arc of an arc (7, j) as (Js i> . Every arc in the time-space
network, connecting node-time pair (i,u) to node-time pair (j,¢), and on which £, (u)
flow units depart its beginning at time u, has a corresponding reverse arc connecting
(j,t) to (i,u) such that: d(j,i,t,u)z —d,.j(u), c(j,i,t,u) =-c; (1), and
r(j,i,t,u>=—igj(u), where d(j,i,t,u), c(j,i,t,u), and r(j,i,t,u) are the travel time,
travel cost, and residual capacity of the reverse arc connecting (j,¢) to (i,u), if one
“departs” along this reverse arc at time ¢ and arrives at its end at time « . Sending flow
on a reverse arc is equivalent to reducing flow on its corresponding forward arc which
carried flow in a previous iteration.

We define an augmenting path P from source node s to destination node ¢ in the
residual network as a path which has positive residual capacity U(P), which is equal to
the minimum residual capacity of its constituent arcs. Assume that an augmenting path P

connects the nodes s =i,,i,...,i, =¢ . Let 7, denote the arrival time at a node i, which is

also equal to the departure time from i if waiting is not allowed at nodes. We define the

following recursive relationship: 7, =0, ¢, =¢, +d, (tfk,.) if (i, ,,i,) at time t, 1s

i /s Ty

53

not a reverse arc, and 7, =7, + d(ika, st st > otherwise. We denote the predecessor

node-time pair {/ (st) of node-time pair |i (A,) along path P as p(‘, t,)

l

3.3 Formulation

In this section, we review a formulation of the minimum cost flow problem in discrete

dynamic networks. This formulation is given in Cai et al. (2001).

Min Z ch

(i.j)ed teT
Subject to:
ZAf (3.1
200 2 0)=0 VjeN\isqhteT (3.2)
(i,j)eA,t'+d,j(t')=t (jk)eA .
f,6)=v
(i,q)eA{lJOStSM.Hd s M} (3.3)
0< f,(t)sU,(t) Vi j)e AteT (3.4)

The objective function is to minimize the total travel cost of the flow traveling on all
the links of the network before the time horizon M . Constraints (3.1), (3.2), and (3.3) are
the flow conservation constraints. Constraint (3.1) ensures that the total flow departing
the origin node s at time zero is equal to its supply v. Constraints (3.2) ensure that the
total flow arriving at an intermediate node ;j at time ¢ is equal to the flow that departs ;

at time #. Constraint (3.3) states that the total flow arriving at the destination node ¢ is

equal to its demand v. Finally constraints (3.4) are the flow bound constraints for each

link at each time.

3.4 Solution Algorithms

In this section, we present solution algorithms that solve the one-to-one dynamic
minimum cost flow problem. Extensions to the problem, including multiple sources,
destinations, and departure times and various waiting policies, are addressed in Section 5

of this chapter.

54

We use the well-known successive shortest path approach, which we adapt to the
dynamic residual network, to develop solutions algorithms for the formulation presented
above. As noted previously, the time-space network serves as an implicit tool for
studying the problem and interpreting the various algorithms, but is not explicitly
constructed. The successive shortest path approach is a classical approach that can be
found in textbooks on network flow algorithms (see for instance Ahuja et al. (1993)). The
approach adapted to the dynamic residual network is based on solving a series of
successive shortest path problems, where each is solved in a residual time-space network.
An amount of flow equal to the capacity of each minimum cost path obtained is
augmented, until all the flow has been sent from the origin to the destination. Algorithms
developed for the dynamic minimum cost flow problem are specializations of this
approach. The main difference among the algorithms is the algorithm used to solve a
shortest path problem in the dynamic residual network. Below we describe the steps used
in the successive shortest path algorithm adapted to solve the dynamic minimum cost
flow problem. Then we define some properties that will be useful to develop various
solution algorithms with various levels of efficiency.

Let z be the amount of flow which has been sent so far by the algorithm. Initially z
is set to zero, as no flow has been augmented yet. When z is equal to the given amount

of flow v that should be sent from s to g, the algorithm is terminated. Let 7(q)
represent the cost of a minimum cost path from s to g obtained in a certain
augmentation iteration, and let 7(g) represent the travel time of this path. If 7(g) is

greater than the time horizon M, the problem is infeasible and the algorithm is
terminated. Let U '(P) denote the minimum of two terms: the residual capacity of path P
and the amount of flow that still needs to be sent from s to ¢ . The generic structure of
the successive shortest path algorithm which solves the problem is described as follows:
Step 1: Initialization

z=0

Step 2: Compute a minimum cost path with positive residual capacity from the origin to
the destination

(Algorithms to perform this step are given later in this section).

55

Step 3: Find the capacity U(P) of the augmenting path

If 7(¢) > M, return, problem is not feasible, and stop.

Otherwise, U(P)= min{({p)igl}) r (), ({rjl)lel}n r<i, Jotist >} ,and U’(P)=min{v - z,U(P)}.

Step 4: Augment flow and update the dynamic residual network

For every arc on the augmenting path connecting node-time pair (i,7,) to node-time pair
Uit

If ¢, >1,, then ;;.j(ti):r,.(ti)—U'(P) and r<j,i,t/.,ti>:r<j,i,t

y

t,)+U’(P)

i

Otherwise, ,(t,)=r,(t,)+U’(P) and r<i,j,t,.,tj> = r(i,j,t,.,tAl.>—U'(P)

Ji
z=z+U'(P)

If z=v, then stop. Otherwise, go to Step 2.

Finding the capacity of a minimum cost path, augmenting the flow, and updating the
residual network (Steps 3 and 4) are standard procedures common to all solution
algorithms presented in this chapter and the solution algorithms known in the literature.
The method of computing minimum cost paths is however peculiar to every solution
algorithm. We present three such algorithms for minimum cost path computations. As
mentioned previously, the first algorithm for minimum cost path computations, denoted
as Algorithm A, is an existing algorithm, developed in Cai et al. (2001). Algorithm A is
interpreted in this chapter differently than in Cai et al. (2001). The second and third
algorithms, denoted respectively as Algorithm B and Algorithm C, are more efficient
solution algorithms developed by progressively exploiting some properties of the time-

space network. Let 7(i,#) denote the minimum travel cost from the source (s,0) to node-

time pair (i,z), and let 7z(i,) denote an upper bound on this cost. That is, 7z(i,¢) is the
cost of a minimum cost path found so far by the algorithm from node-time pair (s,0) to
node-time pair (i,7). Before presenting the three approaches, we make some observations

that will be useful in the development of the solution algorithms:

56

We note that the residual time-space network is composed of two subnetworks: a
forward network, denoted as G*, consisting of the set of forward arcs, denoted as
A", that have positive travel times; and a reverse network, denoted as G, consisting
of the set of reverse arcs, denoted as 4, that have negative travel times. Each of the

two subnetworks G and G, alone, is acyclic. There are two approaches to visit the
residual time-space network to compute minimum cost paths. The first approach is to
visit the two subnetworks successively, making use of the acyclicity property. In this
approach, the forward subnetwork G" is visited first, and minimum cost labels at the
nodes are computed. Next the reverse subnetwork G~ is visited to update the
minimum cost labels at the nodes, using as initial values the labels computed from the
subnetwork G*. The forward and reverse subnetworks are visited successively until
the minimum cost labels at all nodes, as obtained from both subnetworks, are equal.

At this point a minimum cost path with positive residual capacity has been found. The
second approach to compute minimum cost paths is to visit the two subnetworks G*

and G~ simultaneously rather than using the results of one subnetwork to initialize
the labels in the other subnetwork. We present one algorithm that follows the first
approach and two algorithms that follow the second approach later in this section.

In general, a node-time pair (/,z) might be visited more than once by a solution
algorithm because different paths reaching (i,z) will in general produce different cost

labels at (i,¢). For example, suppose that the cost label of (i,7) obtained from a path
P that reaches i at time ¢ is equal to Zri.). And suppose that after (i,t) is visited,

its cost label decreases to 7}}3(1‘,) due to another path P, that reaches i at time 7.
Then (i,t) should be revisited by the algorithm as its decreased cost label could
potentially update the cost labels of nodes in its forward star. Consequently, an arc
connecting node-time pair (i,z,) to node-time pair (J,t j) might be visited more than

once in every minimum cost path computation. Note the difference here between the
general minimum cost flow problem and one of its variants, the minimum time flow

problem, where a link cost is equal to its travel time. In the latter case, a node-time

57

pair (/,2,) needs to be visited at most once because if it can be reached, its cost label,
which is the travel time from (s,0) to (i,t,.), will always be equal to 7, irrespective of
the path through which (i,z,) is reached. Therefore, every arc connecting node-time
pair (i,¢,) to node-time pair (Jt j) needs to be visited at most once in every minimum

time path computation. The latter problem is a connectivity problem between the
source node and all nodes that correspond to the destination node in the time-space
network.

3. We note that it is not necessary to visit all nodes in the time-space network. Only the
relevant node-time pairs that can be reached (or a subset of these, as will be shown

later in the chapter) along paths departing node-time pair (s5,0) need to be visited.

Below we describe the procedures of exploring the network and finding a minimum

cost path in Algorithms A, B, and C (i.e. Step 2 of the generic algorithm).

3.4.1 Algorithm A

We review an existing algorithm, developed in Cai et al. (2001), for minimum cost path
computations involved in the solution algorithm to the dynamic minimum cost flow
problem. We present below an interpretation of this algorithm that is different from the
description given in Cai et al. (2001), which we refer to as Algorithm A, in the time-
space network, and according to the properties that were discussed above. Algorithm A
employs the first approach outlined above to compute minimum cost paths. That is, the
two acyclic subnetworks G* and G~ are explored separately. In each subnetwork, the

algorithm visits all node-time pairs (j,#) and computes the estimated minimum cost

labels 7Ar(j,t) according to the following optimality conditions:

AN ST DA . . AN
ﬂ'(],t) B mln{”(],t) ’ {1|(fr/l)ler}i+ }{uu+dﬁ(g—32r,,~(u)>0}{ﬂ(l’ u) + C{/ (ll)}} (35)
" . K+l . N k . . i k+1 ..

7[(],1) - mln{ﬂ-(J’ t) ’ {l\(rljl)lel‘}f }{uu+1,/(i‘j.u.{)Il}gr<i.j.u,t)>()}{7r(l’ u) + C<l’ J>Us t>}}’ (36)

58

where k denotes the iteration number, i.e. the number of subnetworks explored so far (&

is referred to as a section index in Cai et al. (2001)). Equations (3.5) and (3.6) are used in
subnetworks G* and G, respectively. Exploration of subnetwork G is done in

increasing order of time as G* is acyclic (Chabini (1998), Pallottino and Scutella

(1998)). The estimated minimum cost label JAZ'(j,t)* in iteration k is initialized to the
value it had in iteration (k —1), and is updated by exploring all the node-time pairs (i,)
in the backward star of (/,7), even though some of these node-time pairs may never be
reached from (s,0). When all node-time pairs in subnetwork G* have been visited, a

new iteration (k +1) begins, and subnetwork G~ is explored in decreasing order of time

(corresponding to the reverse arcs), using 7Az'(Jj,t)* as initial values of the cost labels of all
nodes (j,z). Equations (3.5) and (3.6) are applied successively until all cost labels

obtained from one subnetwork are equal to the cost labels obtained from the other

subnetwork. When the algorithm terminates, 7(i,z)= 7A1'(i,t), V(i,t)e NxT . The travel

cost of a minimum cost path is given by 7(q)= miTn{zz'(q,t)}, and its travel time is given
e

by 7(q) = Arg min{r(g,¢)}. The running time complexity of the dynamic minimum cost
teT

flow algorithm based on Algorithm A is in O((an :)v), since at most v augmentations
are done by the algorithm. In each augmentation, at most »M iterations (sections) are
done, and in each iteration mM arcs are explored (which corresponds to the number of
arcs in the time-space network).

To argue the correctness of Algorithm A, we note that Algorithm A applies an
identical logic as that used in Yen’s implementation (1970) of Bellman-Ford’s shortest
path algorithm, and whose run time is equal to half that of Bellman-Ford. Yen’s
algorithm divides the network G into two subnetworks, G, and G,. G, consists of all
arcs directed from a node i to a node j, where i< j, and G, consists of all remaining
arcs, i.e. those connecting a node i to anode ;j, where i > j . Note that both subnetworks
G, and G, are acyclic. The algorithm computes estimates of minimum cost labels in one

subnetwork and uses these estimates to initialize the cost labels in the other subnetwork.

59

This procedure is repeated successively until all the estimated minimum cost labels from

both subnetworks converge to the same value. It can thus be seen that Algorithm A that

operates on the two acyclic subnetworks G* and G~ is identical to the algorithm

developed in Yen (1970).

3.4.2 Algorithm B

Algorithm B differs from Algorithm A in several respects. First, the minimum cost labels
of the nodes are obtained by simultaneously exploring the forward and reverse arcs,
rather than exploring the two subnetworks separately. Second, instead of computing the
minimum cost labels of all nodes in the time-space network, only the relevant nodes that
could be reached from the origin node at departure time zero are visited. Third, the nodes
are visited in increasing order of time (as illustrated next) which leads to a smaller

number of arc explorations. Next we describe the algorithm and provide its pseudocode.

3.4.2.1 Description of Algorithm B

We maintain a set of candidate nodes C which initially includes only the source node at

departure time zero, i.e. (5,0). The set C holds all node-time pairs (/,¢) which have been

reached so far by the algorithm, and which are to be visited. Note that a node-time pair

(i,¢) might be inserted in the set C more than once, as explained previously. We
initialize the cost labels ﬂ'(i,t) of all node-time pairs (i,t) to infinity, and the minimum

cost label ;z(s,O) (which is equal to 7(s,0)) of (s,0) to zero.

The algorithm visits nodes in increasing order of time, taking into consideration the

existence of reverse arcs with negative travel times. We define a time-bucket B, as an

array or a list that stores the nodes which have been reached at time 7, i.e. node-time

pairs (i,¢). Therefore, we maintain (M +1) buckets each corresponding to one arrival
time ¢ at the nodes, 0 <7< M . We always select elements from the minimum time

bucket B,. When the minimum time bucket B, is empty, we check if any elements have
been inserted at a lower time bucket B, , where ¢ <7 (due to the reverse arcs). If so, we

next select those elements in the minimum non-empty time bucket B, . Otherwise, we

60

select elements from the next non-empty time bucket B., where ¢”>r. The rationale

behind this selection strategy is to achieve computational time savings by visiting those
node-time pairs that are reached along reverse arcs as soon as they are reached, as these
can potentially update the cost labels of node-time pairs in higher time buckets. Delaying
their visit, on the other hand, could result in revisiting several node-time pairs in higher
time buckets.

For every node-time pair (i,) selected from B,, we explore the arcs with positive
residual capacity that connect (i,7) to node-time pairs (j,u), where 0 <u =¢+ d; ()< M

if the arc connecting (i,¢) to (j,u) is a forward arc and 0 <u =¢ —-d, (u)< M ifitisa

reverse arc. We update the cost label 7(j,u), if necessary, and add (/,u) to bucket B, of
the candidate set C if it is not already in B,. We repeat this process until there are no
more candidate nodes in C. When the algorithm terminates,
z(i,t)= 7Az'(i,t), V(i,t)e NxT . The travel cost of a minimum cost path is given by
z(g)= rgiTn{ﬂ:(q,t)}, and its travel time is given by 7(g) = Ari Irpin{f[(q,t)}.

Note that other implementations of the candidate set C and other selection functions

are also possible. Below we provide the pseudocode of Algorithm B for a general

implementation of the candidate set C .

3.4.2.2 Pseudocode of Algorithm B
Step 1: Initialization
#(i,t) = o0, ¥ (i,t)e NxT; 1(s,0)=0

7(q) =03 C ={(s,0)}
Step 2: Node selection
Select (i,¢,) from C; C=C\{(i,¢,)}

61

Step 3: Explore forward and backward star
For all je A(i) such that 7 (¢,)>0 and j#s

t,=t,+d(t)
If (tj < Mand(;z(i,t,.)+e,(t)< ;r(j,tj))j then

7(j,t,) =70t)+ ¢, (2,)
plint;)=(i.t,)
if (j,¢,)e C, then C=CU(jr,)}
For all je B(i) such that j # s
Forall 7, such that #, =¢, +d (¢,) and r,(t,)<U ,(¢,)

If(A(zt) ()<7r],jjthen
w(j,)= 1), (t,)
plist;)=(ist,)
if (j,7,)e C, then C=CU{(j.z,)}

Step 4: Stopping criterion

If C = ¢, STOP; otherwise, go to Step 2.

Note that in Step 3, if the origin node s is reached, it is not added to the candidate set

so0 as to restrict the departure time at s to 1 =0.

3.4.2.3 Implementation Details

The selection function in Step 2 of the pseudocode of Algorithm B will lead to multiple
implementations of the candidate set C, such as a time-bucket, a queue, or a dequeue.
The number of node-time pairs visited by the algorithm (and inserted in set C') will in
general be different for different data structures since the order of node additions and
selections is not the same for all data structures, and the number of label revisions before
convergence is a function of this order. Consequently, the theoretical running time

complexity of the algorithm depends on the data structure used to implement the

62

algorithm. When the candidate set is implemented as a queue or a dequeue, Algorithm B
can be viewed as a direct application of a static label-correcting shortest path algorithm to
the residual time-space network, and hence upper bounds can easily be established on its
running time. Note that the running time complexity of Algorithm B with a time-bucket
implementation of the candidate set is still under investigation as this implementation
differs from all known label-correcting implementations in the literature. However, as the
numerical results in Section 3.6 indicate, the time-bucket implementation is more

efficient in practice than both the queue and the dequeue implementations.

3.4.3 Algorithm C

Algorithm C aims at reducing significantly the number of node-time pairs that need to be
visited in Algorithm B by employing special node addition and selection procedures. The
basic idea is to compute lower bounds on the minimum travel cost from any node-time
pair to the destination, and utilize these bounds to achieve computational time savings by

reducing the search area in the dynamic residual network. Let e, (i,7) be the minimum
travel cost from node i to destination node ¢, if one departs node i at time ¢ after the n™

augmentation and update of the residual network. We first state a property related to the
lower bounds, which will be needed in developing the solution algorithm.

Lemma 3.1: The function e, (i,t) is a non-decreasing function of the number of
augmentations. That is. e, _, (i,t) <e, (i,t).

The proof of Lemma 3.1 is given in Appendix A.]

Let e(i,7) be a lower bound on the minimum travel cost from node-time pair (i,#) to
the destination node ¢. Since the minimum cost labels e, (i,z) are non-decreasing

functions of the number of augmentations, one can use e, (i,) (the minimum cost from
(i,1) to g obtained before augmenting any flow) as an estimate of e(i,z). The lower

bounds e(i,#) can be used to improve the node selection and label update procedures as

follows.

63

Let A(i,t) be the minimum travel cost among all paths from origin node s at

departure time zero to the destination ¢ constrained to go through node-time pair (i,7).

For an estimate /Al(z’,t) of A(i,z), one can use the sum of travel cost from (s,0) to (i)

A A A

and the lower bound on the travel cost from (i,t) to g, i.e. /Al(i,t) = ﬂ(i,t)+e(i,t)‘ /?.(i,t)

could then be updated if the cost label 7Ar(i,t) is updated. We note that if ﬁ,(i,t) 1s greater
than or equal to the minimum cost label 7(g) at the destination found by the algorithm so
far, it is not useful to explore the forward and backward star of node-time pair (i,t), since

the minimum cost label at the destination from all these elements is greater than or equal

to /AI(i,t)‘ That is, for all (j,u) in the forward star or backward star (along reverse arcs
with positive capacity) of (i,z): A(j,u)=A(i,7) and since i(i,t)Zn’(q), then

ﬁ(j,u)>7(q). Therefore, none of the nodes in the forward or backward star of (i,7) can

improve the minimum cost label at the destination. The use of this observation
considerably reduces the number of nodes that are visited by the algorithm, which is

described next.

3.4.3.1 Description of Algorithm C

To compute the lower bounds e(i,#) on the minimum travel costs for all (i,r)e NxT,

one can use any dynamic all-to-one shortest path algorithm, such as algorithm DOT

developed in Chabini (1998). In this case, e(i,/)= e,(i,7), which is the minimum cost

obtained before augmenting any flow. Note that the efficiency of Algorithm C depends

on the quality of the lower bounds g(i,t) chosen. Values of g(i,t) smaller than e, (i)

can be used. The computation of those lower bounds will take less time than that of

e, (i,1), but they would not reduce the set of node-time pairs searched by the algorithm as
would e, (i,z). For example, static lower bounds can be obtained from a virtual static

network where link travel costs are defined as: ¢, = MiTn{c,./. (t)} In the extreme case, one
i er Ui

64

can use 2(1',1‘):0, V(i,t)e NXT, in which case Algorithm C would correspond to
Algorithm B with the candidate set implemented as a cost-bucket (where nodes are

selected from the candidate set in increasing order of cost).

After computing the lower bounds, we set the labels /Al(i,t) and 7At(i,t) of all node-

time pairs (i,7) to infinity, and we set 7Az'(s,0) to zero and /Al(s,O) to g(s,O). We initialize

the minimum cost label at the destination 7z(g) to infinity. The algorithm stores the node-

time pairs in the candidate set C as a priority queue where the smallest A(i,7) label is

selected. Initially, C includes only the source node s at time zero, i.e. (s,0). The

algorithm selects a node-time pair (7,¢) with minimum label ﬁ(i,t). If the label ﬁ«(i,t) is
less than the minimum cost label 7z(g) at the destination found so far, which means that
the destination node g has not been visited yet (i.e. i # ¢), the arcs with positive residual

capacity in the forward star and backward star (reverse arcs) of node i are explored (as

before). Otherwise, if the selected node i is the destination node ¢, the algorithm is
terminated since all node-time pairs in the forward and backward star of (g,7(q)) as well

as the remaining node-time pairs in C cannot lead to a cost at the destination lower than

(q).

3.43.2 Pseudocode of Algorithm C

Step 1: Computation of lower bounds

Obtain é(i,t) V(i,t)e NxT (e.g. from DOT)

Step 2: Initialization

72(i,t) = 0o, Aliy1) = o0, ¥ (i,)€ NXT'; 7(s,0)=0; A(5,0) = e(s,0)
7(q)=c0; C={(s.0)}

Step 3: Node selection

(i,t,)= Arg min ﬁ(j,tj)

Ji;eC

65

C=C\{(i,1,)}

Step 4: Stopping criterion

If i = g, then stop. Otherwise, go to Step 5.
Step 5: Explore forward and backward star

Forall je A(i) such that v (¢,)>0 and j2s
t,=1,+d,(t,)

If f < M then

If((Ve, (f)«%(,-,;,)j and((1) 4+ (i)}g(j,tj)<7t(q)) then

N

;L-(j,tj):ﬂ(i,ti)+cy.(t,.)

ﬁ(j,t‘;)z;[("tj)+2(j’tj)

p(bt,):(l,tz)

if (j,t,)e C, then ¢ =CU{j1,)

If j =g, then 7(q)=7().1,)
Forall je B(i) and j#s

Forall ¢, such that 7, =¢, +a’ﬁ(z‘j.) and ri,.(t/)<U.i(t.)

If(A(It) Nenliv, jand[eyt elin)< x (q)j then

;[(j’tj) /l(tj

;1(1',) (J»)+e(/,1)

plit;)=(it;)
if (j,¢,)e C, then C=CU{(j1,)}

If j =g, then z(q)=7(j.1,)

Step 6: Check if candidate set is empty
If C = ¢, then stop; problem is infeasible. Otherwise, go to Step 3.

66

Note that although the pseudocode given above corresponds to Step 2 of the generic
algorithm, the computation of lower bounds (Step 1 in the pseudocode) is not repeated
for every augmentation. Moreover, for multiple minimum cost flow problems having the
same destination, the computation of lower bounds would be done only once. Although it
is not done in the current implementation, one can obtain tighter lower bounds on the
travel costs. Since the minimum travel cost from any node-time pair to the destination is a
non-decreasing function of the number of augmentations, one can update after every

augmentation the lower bounds of those node-time pairs (i,¢,) that are on a shortest path

(the augmenting path), as follows: é(i,t,):ﬂ(q)—;t(i,tf), which is the difference

between the minimum cost label at the destination and the minimum cost label at (i,,)

(since 7(i,7,)=7(i,z,) when the algorithm terminates) obtained in the given

augmentation iteration.

3.43.3 Correctness of Algorithm C

Let 7" be the cost of a minimum cost path from (s,0) to the destination ¢ in the residual
network. Before proving the correctness of Algorithm C, we state the following lemma.

Lemma 3.2: Before Algorithm C terminates, there exists always a node-time pair (i,,)

in the candidate set C such that: (1) n(i,t,)+eli,t,)<n", and (2) (i,t,) is on a shortest
path to q.

The proof of Lemma 3.2 is given in Appendix B. |

Corollary 3.3: Every node-time pair (j,t j) selected from C is such that:

wlj1,)+elje,)<n.
The proof of Corollary 3.3 is given in Appendix B. [
To argue the correctness of Algorithm C, we prove the following three properties:

(1) Algorithm C stops after a finite number of iterations.

67

*

. . . r
Let A be the minimum cost of an arc. Any node-time pair (i,#,) further than K = -

arcs from (s,0) is such that: A(i,z,)> JAr(i,ti)>7(i,t,)> K.A=n". By Lemma 3.2, there is

a node-time pair (j,tj) in C such that /Al(j,tj)s . (j,tj) would then be selected from
C before (i,2,). Therefore, any node-time pair further than K arcs from (s,0) is never
visited by Algorithm C.

Let u(K) be the set of node-time pairs that are within K arcs from (s,0). Failure of
Algorithm C to terminate could then only be due to continued revisiting of node-time
pairs in (K). Any node-time pair (i,,) in z(K) is revisited at most a finite number of
times @(i,?,) as there is a finite number of paths from (s,0) to (i, .) passing only through

nodes within K arcs from (s,0). Let @ = n)1a>(<[\)w(i,tl.) denote the maximum number of
it Je (K

times any node-time pair in #(K) is revisited. Then, after at most a).l,u(K)(selections,
none of the node-time pairs in u(K) will be revisited. Since node-time pairs outside
u(K) are not visited, Algorithm C must terminate.

(2) If the problem is feasible (i.e. there exists at least one path connecting (s,0) to ¢),

Algorithm C stops when the destination is selected (Step 4 of the algorithm).
Assume that the problem possesses a non-empty feasible domain. We prove by
contradiction that the algorithm cannot exit at Step 6 (i.e. when the candidate set is

empty). By Lemma 3.2, the last node-time pair (i,¢,) selected from C (where i #q)

before C becomes empty must be on a shortest path P to the destination. Since there is

at least one more node-time pair after (i,¢,) on P, one can invoke the same argument as
in the proof of Lemma 3.2 to conclude that one of those node-time pairs after (i,z,) on P
must be in C after (i,7,) is selected from C. Therefore, (i,z,) cannot be the last node-

time pair to be selected from C. Hence, the destination node will eventually be added to
C, and the algorithm terminates when the destination node is selected (Step 4 of the
algorithm).

(3) When Algorithm C terminates, the cost label at the destination is optimal.

68

By Corollary 3.3, when the destination node (q,tq) is selected from C,
/Al(q,tq):;r(q,tq)+2(q,tq)£7t" But g(q,tq)=0. Therefore, f:(q,tq)s 7", and the cost

label JAt(q,tq) is optimal. n

3.43.4 Implementation Details

The implementation of Algorithm C corresponding to the numerical results of this
chapter uses a binary heap data structure to implement the list of candidate nodes C.

Other priority queue data structures can be used. Let N, and N, be respectively the

number of nodes added to and selected from the heap during the course of Algorithm C.

At most N, nodes are stored in the heap at any one time. The number of selected nodes

is less than or equal to the number of added nodes (N, < N,) because the algorithm can

be terminated before all nodes in the heap are visited. The nodes are organized by

estimated minimum cost labels to the destination from each node.

1. The initialization of the labels A(i,) takes O(nM).

2. Selecting and removing the minimum element from the heap is done N, times, and
each time it takes @(log N,).

3. Adding an element to the heap is done N, times, and each time it takes 8(log N ,).

4. Assuming that the average number of outgoing arcs from every node is equal to —,
n

exploring the forward star and backward star of all selected nodes is done at most

2m
~—* N times (counting also the reverse arcs). Exploring an arc can be done in O(1)
n

but might lead to updating the label of a node that is already in the heap and
consequently to a percolate operation, which can be done in 8(log N).

Therefore, the theoretical running time complexity of the specialized version of

Algorithm C is G[nM + N, log N, + Ng }—ﬂ—log N Aj. Note that the computation of the
n

lower bounds eAe(z',t) can be done in O(nM +mM) through algorithm DOT and is done

69

only once. If a static shortest path algorithm is used to compute lower bounds, then the

run time of this step is in O((n + m)logn). One can in principle establish upper bounds on

the numbers of selections and additions from the heap. However, those upper bounds
would be too loose to assess the efficiency of the algorithm. Experimental results

(Section 3.6) are a better tool in this case.

3.5 Special Cases and Extensions

In this section we revisit the assumptions that were made in the model formulation, and
show how to extend the solution algorithms that we have developed for the new cases of
interest. We specifically address the following issues: (1) the case where link travel costs
are equal to their travel times, (2) the waiting-is-allowed policy at nodes, and (3) the case

of multiple sources, multiple destinations, and multiple departure times.

3.5.1 The Case of the Minimum Travel Time Problem

A particular case of the time-dependent minimum cost flow problem is the time-
dependent minimum travel time flow problem, which is obtained by setting the link costs
equal to their travel times. Therefore, Algorithms A, B, and C described above can be
directly used as shortest path algorithms in the solution algorithm to the minimum travel
time flow problem. The efficiency of the adaptation of Algorithm A to the minimum time
problem will not be discussed as the algorithm was originally developed to solve shortest
paths in the general minimum cost flow problem. Its adaptation to the minimum time
problem would lead to a less efficient algorithm. However, for Algorithms B and C, one
can develop specialized versions that determine shortest paths in the solution algorithm to
the minimum travel time flow problem more efficiently than the original versions by
exploiting properties of link travel times as cost functions to reduce the number of
operations performed by these algorithms. Below we briefly describe these specialized
algorithms and provide their running time complexities. For a detailed description of
these algorithms, the reader is referred to Chabini and Abou Zeid (2002). Moreover, we
describe another algorithm in the literature that was proposed to solve the time-dependent

minimum travel time flow problem.

70

3.5.1.1 Algorithm B Specialized for the Minimum Travel Time Flow Problem

The computation of shortest paths involved in the solution of the time-dependent
minimum travel time flow problem can be viewed as a connectivity problem between the
source node and all nodes that correspond to the destination node in the time-space
network. As demonstrated in Section 3.4, a node-time pair needs to be visited at most
once in every minimum time path computation. This would lead to a significant reduction
in the number of node additions and selections, as compared to the general minimum cost
flow problem, and consequently, to a decrease in running time. The running time of the
specialized version of Algorithm B is independent of data structures used which allow for

node additions, updates, and selections in O(1) run time, as the order of node additions

and selections does not affect the number of times the reachable nodes are visited.
Therefore, the maximum number of nodes which could be visited by the algorithm is
equal to nM , which is the total number of nodes in the time-space network. For every
node visited, all forward and reverse arcs which have positive residual capacity are
explored only once. Thus, the maximum number of arc explorations is equal to 2mM
(mM forward arcs and mM reverse arcs). Consequently, when the specialized version of
Algorithm B is used to compute shortest paths, the theoretical running time complexity of

the time-dependent minimum travel time flow algorithm is in O((nM +mM)v).

Moreover, the specialized version of Algorithm B implemented using a time-bucket
data structure can be terminated when the destination node is selected. To show this, we
first provide a lemma whose proof is given in Appendix C.

Lemma 3.4: For any augmenting path, the arrival time at the destination is greater than
the arrival time at any intermediate node-time pair on the augmenting path.

To exploit this property, one can visit nodes in increasing order of time, taking into
consideration the existence of reverse arcs with negative travel times. The
implementation of an increasing order of time algorithm can be done by means of a time-
bucket data structure, as described previously. When the destination node is selected from

a bucket B,, there is no need to explore higher time buckets as there exist no reverse arcs

emanating from any node-time pair in a higher time bucket (see the proof of Lemma 3.4),

and the algorithm can be terminated. Therefore, the specialized version of Algorithm B

71

applied in an increasing order of time would result in significant computational time
savings as compared to the initial version of Algorithm B where all reachable node-time

pairs are visited.

3.5.1.2 Algorithm C Specialized for the Minimum Travel Time Flow Problem

As the computation of shortest paths involved in the minimum time flow problem is a
connectivity problem between the source node at a certain departure time and the
destination node corresponding to the earliest arrival time, one can reduce the number of
node-time pairs visited by the specialized version of Algorithm B. This is the main idea
behind the specialized version of Algorithm C, which tries to direct the search towards
the destination node, by using lower bounds on the minimum travel times from node-time
pairs to the destination node. In the specialized version of Algorithm C, any node-time
pair cannot enter the heap more than once, as explained before. We next analyze the
running time complexity of the algorithm.

As before, let N, and Ny be respectively the number of nodes added to and selected
from the heap during the course of the specialized version of Algorithm C. The same
running time analysis that was given for Algorithm C applies here as well. Note that for
the specialized version of Algorithm C, N, is less than or equal to the total number of
node-time pairs in the time-space network, 1.e. N, < nM, since a node-time pair is added
to the candidate set at most once. In practice, the number of additions N, to the heap is
much lower than nM due to the lower bound property which reduces the search area in
the network. The number of explored arcs is at most 2mAM which is the maximum
number of arcs in the residual time-space diagram. Note that an update operation does not
lead in this case to the percolation of any node in the heap, and can thus be done in O(1).
Therefore, the theoretical running time complexity of the specialized version of
Algorithm C is in O(nMlog(nM)+mM). In practice, however, this upper bound is
almost never reached because of the low number of node selections and additions. When
the specialized version of Algorithm C is used to compute shortest paths, the theoretical
running time complexity of the time-dependent minimum travel time flow algorithm is in

O((nM log(nM)+ mM)v) since at most v augmentations will be done.

72

The specialized versions of Algorithms B and C were implemented, and their
computational efficiencies were assessed by using large-size capacitated dynamic
networks. The computational results indicate that the specialized version of Algorithm C
is more efficient than the specialized version of Algorithm B due to the lower bound
property used in the former algorithm. For the test networks used, the successive shortest
path algorithm employing the specialized version of Algorithm C achieved significant
time savings, compared to that employing the specialized version of Algorithm B by up
to a factor of 15. For more details, the reader is referred to Chabini and Abou Zeid

(2002).

3.5.1.3 Other Algorithms

As noted above, the specialized versions of Algorithms B and C can be used to compute
shortest paths in the solution algorithm to the time-dependent minimum travel time flow

problem, leading to running time complexities of O((nM +mM)v) and
O((nM log(nM)+mM)v), respectively. Below we provide a brief description of an

existing algorithm in the literature which can solve the time-dependent minimum travel
time flow problem and show its running time complexity.

In Miller-Hooks and Stock Patterson (2002), an algorithm which can solve the time-
dependent minimum travel time flow problem where unlimited waiting is allowed at all
nodes is developed. As is the case of the earlier algorithms described in this chapter, the
algorithm in Miller-Hooks and Stock Patterson (2002) is also a particular case of the
generic flow augmentation algorithm. It differs from the other algorithms in its way of
computing minimum time paths. The shortest path algorithm developed in Miller-Hooks
and Stock Patterson (2002) uses a dynamic adaptation of a label correcting algorithm

which performs at most O(nm) steps. Each of these steps involves an evaluation of the
minimum travel time D, (¢) (see Chabini (1998), D, (t)=min,, s s —1+d,(s)),
where ubw(i,?) is the maximum waiting time allowed at node i at departure time 7)
corresponding to an arc (i, /) and a departure time 7, which can be done in O(M) time.
Therefore, each shortest path computation is done in O(nmM). Since at most v

augmentations will be done, the theoretical running time complexity of the overall

73

solution algorithm developed in Miller-Hooks and Stock Patterson (2002) is in
O((nmM)v).

Note that if unlimited waiting is allowed at nodes, the specialized versions of
Algorithms B and C can still be used to compute minimum time paths with the same
running complexities as in the no-waiting case. We discuss waiting policies in the next

section.

3.5.2 Waiting Policies

We refer the reader to Chabini and Dean (1998) for a comprehensive discussion of
waiting policies and solution algorithms for shortest path problems where waiting is
allowed. Here we briefly summarize some concepts and properties of waiting policies
that will be useful in extending Algorithms B and C to allow for the possibility of waiting
at nodes. In order to fully characterize a waiting policy, one needs to specify the structure
of three time-varying waiting attributes: the time window of allowed waiting, the waiting
cost, and the waiting capacity of a node i at time /. By time window, we refer to upper
and lower bounds on the amount of waiting allowed at node i at time ¢, denoted
respectively as ubw(i,¢) and Ibw(i,). The waiting cost can be general if it is a function of
the amount of waiting that has already occurred, or it can be memoryless otherwise. Let

cw,(z,7) denote the cost of waiting at node i for 7 units of time, if waiting starts at time
t. Waiting capacity, denoted as U, (¢), controls the amount of flow units that can be held

atnode i at time ¢.
For simplicity, assume that the lower bound on waiting is zero. To express the
presence of a bounded waiting policy in the time-space network, one needs to add for

every node time pair (i,#) vertical arcs connecting (i,z) to (i,r+7), where
0 <7 <ubwli,t). The cost of every such arc is given by cw,(¢,7), its travel time is equal
to 7, and its capacity is equal to U,(¢). This transformation of the time-space network

results in the addition of O{nM?) arcs.

We discuss a waiting structure for which the specialized versions of Algorithms B

and C can be used to solve the problem efficiently. Consider the minimum travel time

74

flow problem with unlimited waiting allowed at nodes and infinite waiting capacity. If
unlimited waiting is allowed at nodes, the specialized versions of Algorithms B and C
can be used with the same running time complexities as in the no-waiting case. To see
this, note that unlimited waiting can be represented by adding for every node-time pair

(i,¢) in the time-space network a vertical arc from (i,#) to (i,z +1). This transformation

results in nM additional arcs in the time-space network, and thus the total number of
arcs in the time-space network is nM +mM instead of mM . Therefore, the running time
complexities of the time-dependent minimum travel time flow algorithms with the
specialized versions of Algorithms B and C used to compute shortest paths and with

unlimited waiting allowed at nodes are still in O((nM+mM)v) and

O((nM log(nM)+ mM)v), respectively.

3.5.3 Multiple Sources, Destinations, and Departure Times

In this section, we describe how Algorithms B and C (or their specialized versions) can
be used as minimum cost (time) path algorithms in the successive shortest path algorithm
in a network with multiple supply nodes and/or multiple demand nodes. Examples of
network flow problems involving multiple sources and/or sinks are the evacuation
(multiple destinations) and quickest transshipment problems (multiple sources and
destinations). In the case of multiple sources, we also allow for multiple departure times.
One technique to solve these problems is to transform the given network and
supply/demand structure into an equivalent network with one source and one destination,
and then apply the minimum cost flow algorithms developed in this chapter to the
transformed network. To transform a network with muiltiple sources into one with an
equivalent single source, we create a supersource node S. We connect S to every

source-time pair (s,7) with positive supply v(s,) by an arc that has a travel time equal to
t, a travel cost equal to zero , and a capacity equal to v(s,t) at time zero and equal to

zero at all other times. Note that this transformation preserves the supply structure of the
original problem as it ensures that the right supplies are available at the corresponding

sources at the right departure times.

75

To transform a network with multiple destinations into one with an equivalent single

destination, we similarly create an artificial superdestination node Q. In addition, we
create a copy ¢, of every destination node g, with positive demand v(q,.). We connect
g, to g, by an arc that has zero travel time, zero travel cost, and infinite capacity.
Additionally, we connect ¢, to Q by an arc that has zero travel time, zero travel cost,
and capacity equal to v(g,) at time M and equal to zero at all other times. We allow for
waiting at ¢, without any penalty. This transformation ensures that the amount of flow
that departs ¢, attime M to the superdestination Q is exactly equal to the demand v(g,)

of destination node g,.

3.6 Computer Implementations and Numerical Results

We have implemented the various solution algorithms discussed in this chapter for the
purpose of experimental testing. The objectives of the experimental study were the
following: (1) analyze the running times of the solution algorithms for the dynamic
minimum cost flow problem, where Algorithms A, B, and C are used to compute shortest
paths, as a function of the following input parameters: the size of the network, the
number of nodes, the number of arcs, the number of time periods, and the amount of flow
that should be sent from the origin to the destination, (2) analyze the number of node-
time pairs in the time-space network that are visited per augmentation by Algorithms B
and C as a function of the size of the network, and (3) assess the practical computational

performance and the time savings of Algorithm C as compared to Algorithms A and B.

3.6.1 Computer Implementations

We have developed computer implementations for Algorithms A, B and C. For
Algorithm B, we have tested three implementations corresponding to three data
structures: a time-bucket (as described previously), a dequeue, and a queue.

All the algorithms are coded in C++. The codes are available upon request. The tests

were performed on a DELL Pentium Il 933 megahertz computer with 256 megabytes of

76

RAM. The running times of the algorithms are reported in seconds, and they represent the
average running time over 10 trials of each algorithm, where each trial corresponds to a

different origin-destination pair.

3.6.2 Test Networks

Test networks were generated using a pseudo random network generator. Input to this
network generator consists of: number of nodes, number of arcs, number of time
intervals, range of link travel times, range of link travel costs, and range of link
capacities. The topology networks are generated in two stages. First a cycle involving all
nodes is created to ensure strong connectivity. Then the remaining number of links is

added randomly.

3.6.3 Results

Table 3.1 shows the running times of the successive shortest path algorithm, using
Algorithms A, B, and C to compute shortest paths, as a function of the size of the
network, the number of nodes, the number of arcs, the number of time periods, and the
amount of flow that should be sent from the origin to the destination. The ratios of the
running times of the three algorithms to that where Algorithm C is used are reported in
parentheses. For the test networks used, the solution algorithm employing Algorithm C to
compute shortest paths achieved significant time savings compared to the other
algorithms. The successive shortest path algorithm using Algorithm C was faster than
that using Algorithm A by up to a factor of 113, and faster than that using Algorithm B
by up to factors of 25, 39, and 72 for the time-bucket, dequeue, and queue
implementations, respectively.

Table 3.2 (a) shows the number of node-time pairs N, added to the candidate set C
and the number of node-time pairs N selected from C, per augmentation, for

Algorithm C as a function of network size. Table 3.2 (a) also shows the number of node-
time pairs that are selected in Algorithm B for the time-bucket, dequeue, and queue
implementations (In Algorithm B, the number of nodes added is equal to the number of

nodes selected). In Algorithm A, all node-time pairs are visited, and so they are not

77

shown in the table. The computational time savings of the successive shortest path
algorithm employing Algorithm C that will be reported below are due mainly to the small
number of node-time pairs visited by Algorithm C. Table 3.2 (b) shows the average
number of selections and additions (in %) per augmentation relative to the total number
of node-time pairs. The results indicate that in Algorithm B a considerable part of the
time-space network is explored. Moreover, as expected, different implementations of
Algorithm B lead to different number of node visits. The results indicate that fewer nodes
are visited using the time-bucket data structure than the dequeue and the queue data
structures. Moreover, fewer nodes are visited using the dequeue than the queue. The
effect of the number of node visits on running times is illustrated in Figures 3.3-3.7.
Figure 3.1 shows the variation in running times of the algorithms as a function of
network size, with the number of arcs being three times the number of nodes. Figure 3.2
shows the running times as a function of the number of nodes. The number of arcs is held
constant at 10000. Figure 3.3 shows the running times as a function of the number of
arcs. The number of nodes is held constant at 100. Figure 3.4 shows the running times as
a function of the number of time intervals. Finally, Figure 3.5 shows the running times as
a function of the amount of flow that should be sent from the origin to the destination.
Figures 3.1-3.5 indicate that the running times of the three algorithms increase as a
function of all network parameters. As network size, number of nodes, number of arcs, or
number of time intervals increases, the size of the time-space network also increases.
Thus, more node-time pairs could be reached by the algorithms. As the demand of flow
units at the destination increases, more augmentation procedures could be done, and
therefore the running time increases. However, note that for the successive shortest path
algorithm employing Algorithm C, the marginal rate of increase in running time is small.
The increase can be attributed to the fact that most of the work done in this algorithm is
in the initialization phase and the computation of lower bounds, and these procedures are
done only once irrespective of the amount of flow to be sent. The successive shortest path
computations and augmentation procedures are very fast in comparison. In the solution
algorithms where Algorithms A and B are used to compute shortest paths, the

computation of shortest paths is the most time-consuming part of the algorithms, as in

78

each shortest path computation all nodes are visited in Algorithm A and all reachable
nodes are visited in Algorithm B.

Based on above numerical results, it is seen that Algorithm C is more efficient than
both Algorithms A and B. Moreover, the solution algorithm based on Algorithm B yields
lower running times than that based on Algorithm A.

Numerical results that measure the effectiveness of the minimum travel time flow
algorithm using the specialized versions of Algorithms B and C are reported in Chabini
and Abou-Zeid (2002). The ratios of running times of the minimum cost flow algorithm
to those of the minimum time flow algorithm were in the range of 2 and 1.2 for
Algorithms B and C, respectively (and their specialized versions). As expected, the
minimum cost flow algorithm has a higher run time than the minimum time flow
algorithm because a node-time pair might be visited more than once in the shortest path
algorithm (i.e. Algorithm B or C). However, for Algorithm B, the ratio is higher than for
Algorithm C since in Algorithm C the most time-consuming part is the computation of
lower bounds which is done only once, while in Algorithm B the time-consuming part is

the exploration of the network.

Table 3.1. Running times (reported in seconds) of the successive shortest path algorithm employing
Algorithms A, B, and C as a function of various network parameters. The ratios of running times of the
three solution algorithms, with respect to that employing Algorithm C, are reported in parentheses.

d,elLs]. ¢, ell.7],and U, € [110].

m=3n,T=100,v=20

n 500 1000 2000 3000 4000
Alg. A 2.678 6.324 18.507 36.380 41.614
(56.5) 67.3) (87.3) (113.8) (95.3)
Alg. B (Queue) 1.770 4.929 12.767 19.909 27.074
(37.4) (52.4) (60.2) (62.3) (62.0)
Alg. B (Dequeuc) 0.847 2.497 6.887 11.624 16.368
(17.9) (26.6) (32.5) (36.3) 37.5)
Alg. B (Time- 0.463 1.116 3.375 6.934 10.879
Bucket) 9.8) (11.9) (15.9) 21.7) 24.9)
Alg. C 0.047 0.094 0212 0.320 0.437
(1) (1) 9] (1) (1)
n. 1000 2000 3000 4000
Alg. A 23.487 30915 34,788 34.2062
(86.9) (109.5) (108.7) (86.8)
Alg. B (Queue) 5.554 14.583 20.578 23.219
(20.6) (51.7) (64.3) (58.8)

79

Alg. B (Dequeue) 3.758 9.081 12.351 13.581
(13.9) 32.2) (38.6) (34.4)
Alg. B (Time- 2.834 5.260 7.643 8.463
Bucket) (10.5) (18.6) 23.9) (21.4)
Alg. C 0.270 0.282 0.320 0.395
1) M (1) (M
0 =100, T=100,v=20
m 500 1000 2000 3000 4000 5000
Alg. A 0.549 1.053 1.791 2.991 3.886 4.859
(46.2) (47.7) (44.4) (50.2) (50.6) (50.0)
Alg. B (Queue) 0.150 0.207 0.256 0.350 0.415 0.472
(12.7) 9.4) (6.4) 5.9 5.4 (4.9)
Alg. B (Dequeue) 0.101 0.175 0.242 0.350 0416 0.479
(8.5) (7.9) (6.0) 5.9) (5.4) (4.9)
Alg. B (Time- 0.092 0.182 0.256 0.376 0.455 0.495
Bucket) (7.8) (8.2) (6.3) (6.3) 5.9 5.1)
Alg. C 0.012 0.022 0.040 0.060 0.077 0.097
1 (1) (1) M (1) 1)
n = 1000, m = 3000, v=20 -
T 30 60 90 100 150 200
Alg. A 1.770 3.636 6.334 6.294 10.936 14.264
(67.8) (60.9) (74.1) (66.7) (79.9) (79.2)
Alg. B (Queue) 0412 1.852 3.984 4.897 8.773 14.379
(15.8) (31.0) (46.6) (51.9) (64.1) (79.8)
Alg. B (Dequeue) 0.341 1.314 2.307 2.569 3.898 5.289
13.1) (22.0) (27.0) (27.2) (28.5) (29.4)
Alg. B (Time- 0.215 0.568 0.968 1.104 1.712 2.397
Bucket) (8.2) 9.5) (11.3) a7 (12.5) (13.3)
Alg. C 0.026 0.060 0.085 0.094 0.137 0.180
(H 1) 1) (1) e)) (1)
1 =1000, m = 3000, T =100 e
v 1 5 10 15 20 25
Alg. A 0.583 1.610 2.679 4.557 6.294 9.012
6.7) (18.0) (29.5) (49.1) (66.7) (94.0)
Alg. B (Queue) 0.383 1.280 2.172 3.650 4.897 6.860
4.4) (14.3) (23.9) (39.3) (51.9) (71.6)
Alg. B (Dequeue) 0.232 0.728 1.208 1.994 2.569 3.663
2.7 (8.2) (13.3) (21.5) (27.2) (38.2)
Alg. B (Time- 0.116 0318 0.515 0.833 1.104 1.516
Bucket) (1.3) (3.6) 5.7 9.0) (1.7 (15.8)
Alg. C 0.087 0.089 0.091 0.093 0.094 0.096
(1) (1) (1) 1) (1) 1)

80

Table 3.2. (a) Number of node-time pairs selected and added in Algorithms B and C per augmentation. (b)
Average number of selections and additions (in %) made in Algorithms B and C per augmentation relative
to the total number of node-time pairs as a function of network size. In (a) and (b), the number of arcs is
three times the number of nodes, the number of time intervals is 100, the flow that should be sent is 20

units, d, € [1,5]. ¢, e [1,7], and U, € [1,10]-

(a)
Number of Nodes 5001000 2000 3000 4000
Number of Node Selections Ny 20.39 25.28 28.75 34.64 31.26
Made in Alg.C
Number of Node Additions N, 63.31 79.95 95.22 112.29 99.45

Made in Alg. C

Number of Node Selections Made in 38723.01 7672728 152885.50 223721.80 304651.50
Alg. B (Time-Bucket)

Number of Node Selections Made in 43068.06 83892.27 173449.10 252432.60 339040.90
Alg. B (Dequeue)

Number of Node Selections Made in 73956.72 14822320 31717690 431749.80 563987.50
Alg. B (Queue)

Number of Nodes 500 1000 2000 3000 4000
Avg. Number of Selections Made in 0.041 % 0.025 % 0.014 % 0.012 % 0.008 %
Alg. C Relative to Total Number of

Node-Time Pairs

Avg. Number of Additions Made in 0.127 % 0.080 % 0.048 % 0.037 % 0.025 %
Alg. C Relative to Total Number of

Node-Time Pairs

Avg. Number of Selections Made in = 77.446 % 76.727% 76.443 % 74.574% 76.163 %
Alg. B (Time-Bucket) Relative to

Total Number of Node-Time Pairs

Avg. Number of Selections Made in = 86.136 % 83.892% 86.725 % 84.144 % 84.760 %
Alg. B (Dequeue) Relative to Total

Number of Node-Time Pairs

Avg. Number of Selections Made in 147913 % 148223 % 158.588% 143917 % 140.997 %
Alg. B (Queue) Relative to Total

‘Number of Node-Time Pairs

RS S —

81

45

40
35
§ 30 A —o— Algorithm A
E 25 —#— Algorithm B (Queue)<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>