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Abstract

In this paper we develop an algebraic approach to the multiple time scale
analysis of perturbed linear systems based on the examination of the Smith
form of the system matrix viewed as a matrix over a ring of functions in the
perturbation parameter. This perspective allows us to obtain a strengthened
version of the results of [3] and to provide a bridge between these complex
but general results and previous explicit, conceputally simple, but somewhat
restrictive results such as described in [1], [2]. In addition, our algebraic
framework allows us to investigate a variety of other problems. In this paper
we study the problem of developing valid time scale decompositions in cases in
which weak damping terms discarded in the approaches in [1] - [3] must be
retained. Also, our approach exposes the role of the invariant factors of the
system matrix in determining its time scales. This leads naturally to the
problem of time scale modification, i.e. invariant factor placement, via state
feedback. We present a result along these lines.

1Work of the first three authors supported by the Air Force Office of
Scientific Research under Grant AFOSR-82-0258, and by the Army Research Office
under Grant DAAG-29-84-K-0005.

2Department of Electrical Engineering and Computer Science and Laboratory for
Information and Decision Systems, MIT, Cambridge, MA. 02139.

3Department of Electrical Engineering and Computer Science and Laboratory for
Electromagnetic and Electronic Systems, MIT, Cambridge, MA. 02139.



2

I. Introduction

This paper is concerned with the multiple time scale analysis of the

perturbed N-dimensional linear system

k(t) = A(e)x(t) (1.1)

where A(e) has a Taylor expansion in the small parameter e. If there is a

drop in the rank of A(e) at e = 0, the system (1.1) is termed singularly

perturbed and can exhibit multiple time scale behavior. The analysis of such

behavior has been the subject of a number of previous investigations. In

particular several researchers [1], [2], [6], [610], [10], [11], [12] have made

numerous important contributions by investigating systems in what we will call

explicit form4:

Xl(t) A12 A1(t)

2(t) A21 eA22 X2(t) (1.2)

Let

A ll A12
A = (1.3)

~A21 A22

and let A22 denote the Schur complement of All in A:

-1

A22 = A22 - A21A11 A12 (1.4)

4he forms actually considered in [1], [2] have 6 appearing on the left-hand
side rather than the right-hand side. There is no significant difference in
considering the form (1.2), since the systems in [1], [2] can be brought to
this form by the change of time scale T = t/6.
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It is known that if A11 and A22 are nonsingular, the eigenvalues of (1.2)

occur in two groups, one being of order 1 and lying "close" to the eigenvalues

of A1l, and the other being of order e and close to the eigenvalues of EA22.

If both the latter matrices are Hurwitz, then the system exhibits well-behaved

two-time-scale structure, in the following sense:

[x1(t) = xf(t) + Xls(t) + O() t (1.5)

[x2 (t) x2s(Et) + 0(6) 

where

klf(t) = Allxlf(t), X lf(O) = Xl(O) + All-1 A 12x2 (O)

Xls(t) =- A 11-1A12X2st), (1.6)

and

x2s(t) = A2 2 X2s(t), X2 s(O) = x 2 (0).

The subcripts s and f denote slow and fast subsystems.

The 0(6) terms in (1.3) are uniform in t > O, so that (1.5), (1.6)

provide a uniform approximation of the state transition matrix of (1.1). That

is,

lim sup IleA(e)t - T-le Ad()t T = (1.7)
eO0 t>O

where

Ad(e) = diag (A1ll' A2 2) (1.8)

and
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T = A11l 12 (1.9)

The decomposition provided in (1.5) - (1.6) or, equivalently, in (1.7) -

(1.9) has found significant applications. One important limitation of these

results, however, is the assumption that the system is given in the explicit

form (1.2) or its obvious generalizations (e.g. by expanding the A-matrix in

(1.2) to include a third row of blocks, each of which is multiplied by 2).

On the other hand, there are several advantages if the system has the form in

(1.2). Specifically, there is a simple check to see if the system has a time

scale decomposition in the sense of (1.7), (1.8) (namely All and A2 2 must both

be Hurwitz), one immediately knows what the time scales are, and the

subsystems describing the behavior at each time scale are easily obtained.

In contrast to the results just described, we have the work of Coderch,

et al. [3] which had as its principal objective the development of a general

procedure for determining if the system (1.1) has well-defined time scale

structure and for constructing a decoupled time-scale decomposition as in

(1.7) with

k 1 k2 k

Ad(e ) = diag (e A1, e A 2'''' - mAm) (1.10)

(and with an appropriate choice for T) without assuming that the system is in

the special form of (1.2). This objective is achieved in [3] through a rather

elaborate sequence of operations on the Taylor series coefficients of A(e),

involving cascaded projections onto progressively slower subspaces. A major

advantage of this result is its generality -- with it we can analyze general

systems as in (1.1) without assuming some special form. A price that is paid
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for this, however, is that the results and procedures developed are rather

complicated, involve the computation of numerous pseudo-inverses, and

generally do not lend themselves to easy interpretation or computation.

The work presented in this paper bridges the gap between the intuitively

and computationally simple but somewhat restrictive results of [1], [2] and

the quite general but rather complicated ones in [3]. The key to constructing

this bridge is an examination of the algebraic structure of A(e) considered as

a matrix over the ring W of functions of e that are analytic at e = O. In

particular, by considering the Smith form of A(e) we not only provide the

basis for transforming a general system (1.1) to its explicit form, but also

make clear the role of the invariant factors of A(e) in specifying the time

scales present in the dynamics (1.1), a role that is suggested but not

developed in [3]. This approach provides some valuable additional

perspectives on the results in [1] - [3], and it also allows us to consider

and solve a number of additional problems. Several of these are presented in

the later sections of this paper, while others will be the subject of future

papers. We note here that another approach to the main results of [3] is

described in [6], which proceeds by transforming A(e) to a block-diagonal form

that is similar to it. There is a clear point of contact between our work and

the results in [6], as our proof in Section 4 of the sufficiency of certain

conditions for the existence of a time scale approximation is much in the

spirit of the methods in [1], [2], and [6]. On the other hand, our results go

significantly farther than previous efforts in that we, for the first time,

make clear the role of the Smith form and the invariant factors of A(e) and

present a procedure that minimizes the number of e-dependent computations
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required by identifying and discarding non-critical e-dependent terms in A(e)

and in its explicit form.

In the next section we introduce a new definition of what we call a

strong time scale decomposition. Based on this, we present a new result that

allows us to state a strengthened version of the main result in [3] and to

obtain a criterion for identifying higher-order terms in a system matrix A(e)

that can be discarded without affecting the investigation of the existence of

strong time scale behavior. In Section 3 we then introduce the Smith form of

A(e) and use it to transform (1.1) to explicit form. We also perform some

initial analysis that allows us to focus subsequent discussions on the case in

which A(e) is Hurwitz for 0 < e < e0 for some e0 > O. In Section 4 we develop

what can be viewed as a generalization of the procedure in [1], [2] to analyze

systems in explicit form. This produces both a set of necessary and

sufficient conditions for a system to have a strong time scale decomposition

and a procedure for constructing the corresponding strong multiple time scale

approximation.

With these results established, we can then consider two important

extensions. In Section 5 we consider a generalization of the definition of a

time scale approximation that allows us to construct such approximations for a

large class of systems violating the conditions of Section 4. In Section 6 we

address the problem of modifying and controlling the time scales of the system

i(t) = A(e)x(t) + B(e)u(t) (1.11)

through the use of feedback

u(t) = K(e)x(t) (1.12)
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2. Well-Defined Multiple Time Scale Behavior

To begin this section we give two different definitions of what one might

mean by well-defined multiple time scale behavior. The first of these is

essentially the standard definition that is stated or implied in previous

treatements. The seond, stronger definition is new, as it requires the

consideration of an entire family of systems. By introducing this definition

we can make several new observations concerning time scale decompositions and

can give a stronger interpretation of the results in [3].

Definition 2.1: The system (1.1) has a multiple time scale
decomposition if there exist constant matrices Al, A2 ...., An, T

and integers 0 ( k 1 ( k2 (... k such that

lim sup ieiA(e)t - T-lexp {diag 6 e 2A, nA t}T = 0

(2.1)
In this case we say that [{Ai},{ki},T] defines a multiple time

scale decomposition of (1.1) or of A(e).

To introduce the second definition we first need the following:5

Definition 2.2: The perturbed family 9{A(e)} associated with the
matrix A(e) is defined as follows:

({A(e)} = {U(e)A(e)V(e)IU(O) = V(O) = I} (2.2)

Definition 2.3: The system (1.1) has a strong multiple time scale
decomposition if there exist constant matrices A 1, A2 ,.... An , T

5Throughout this paper we assume that all matrix functions of e are analytic
at zero.
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and integers 0 < k < k 2 <...<k nsuch that

lim sup IleF(e)t-T-lexp {diag [6 1A1 ..... nAnt}T = 0 (2.3)
64O t0 L >O

for all F(e) E ({A(e)). In this case we say that [{Ai}),ki),T]

defines a strong time scale decomposition of (1.1) or of A(e).

Clearly the second of these definitions is significantly stronger that

the first. Intuitively the elements of ({A(e)} should be thought of as mild

perturbations of A(e), and the strong-sense definition requires that any such

perturbation must result in a system that has the same time scale

decomposition as (1.1). More precisely, an immediate consequence of

Definition 2.3 is that if A(e) has a strong time scale decomposition, then any

G(e) E 9{A(e)} is asymptotically equivalent to A(e), i.e.

lim sup IleA(e)t _ eG(e)t ll= 0 (2.4)
640 t>O

To illustrate these ideas let us consider several examples. First, note

that the scalar system

k(t) = x(t) (2.5)

trivially has a time scale decomposition according to Definition 2.1. but not

according to Definition 2.3 since (1+&) C {(1) is not asymptotically

equivalent to 1. On the other hand, it is not difficult to check (and is

immediate from the results in several papers) that

k(t) = - x(t) (2.6)

does have a strong time scale decomposition.

Consider next the system matrix
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A() = [ 1] (2.7)
1 0

This matrix has a trivial time scale decomposition, but it does not have a

strong time scale decomposition, since it is not asymptotically equivalent to

the matrix

=F( -e] ] [1] [1+2] (2.8)

Finally, we note that

A(e) = (2.9)

does not have a strong time scale decomposition since it is not asymptotically

equivalent to

F(e) = = (2.10)
is 0 O 1 ,0 0. O 1

These examples indicate that there are problems when there are

eigenvalues that are in the right-half plane, are purely imaginary, or are

zero with nontrivial Jordan blocks. To see that these examples span all

possible cases, we need to briefly re-examine and strengthen the main result

in [3]. In particular, although it is not discussed, [3] in fact provides the

basis for determining if a system has a strong time scale decomposition and
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for constructing that decomposition. The system considered in [3] is the

singularly perturbed LTI system (1.1) with a slight change in notation whose

purpose will become clear shortly.

k(t) = Ao(e)x(t) (2.11)

where the matrix AO(E) is an analytic function of 6 at e = O. Suppose A(E6)

has eigenvalues X1(e) ........ Xn(e) where Xi(e) - 0, e - O, i=l ....... m < n.

Then the total projection for the zero-group of eigenvalues of AO(6), PO(6),

is the projection onto the subspace spanned by eigenvectors and generalized

eigenvectors corresponding to Xi(e)....... Xm() of AO(6) [7].

Since AO(6) is analytic at e=O, it has a series expansion of the form

Ao(6) = 6PFop (2.12)AO(E) = IX OF OP(2.12)p=O

It can be proven [3, 7] that if F0 0 has semisimple nullstructure (SSNS) --

i.e. if its zero eigenvalue is semisimple, that is, has geometric multiplicity

equal to its algebraic multiplicity -- then the matrix

A1(e) = PO(e)Ao(e)/e (2.13)

has a series expansion of the form

lp(e) IOF 6 p (2.14)
p=O

(otherwise Al(e) will have 6 terms). If F10 also has SSNS we define A2 (6)

as

A 2(e) = P 1 (e)A 1 (e)/e = Pl(6)Po(6)Ao(6)/6 2

= I ePF (2.15)
p=O 2p

where P1(6) is the total projection for the zero-group of eigenvalues of

A1(e). This process can be continued until it terminates at
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A (6) = Pl(E)An-l(e)/ = Pn1(e) .... Po (e)Ao(e)/e = 2 ePF (2.16)
n n p=O np

if the matrix FnO does not have SSNS or if rankF o+rankF1o+....+rankFno equals

the normal rank of Ao(e), i.e. the constant rank that AO(e) takes on some

interval (0, E0]. A matrix AO(e) is said to satisfy the multiple semisimple

null structure (MSSNS) condition if the latter of these conditions holds. If

in addition, all Fko are semistable -- i.e. if for each k Fko has SSNS and all

of its nonzero eigenvalues have strictly negative real parts -- then we say

that AO(e) satisfies the multiple semistability (MSST) condition.

The main result of [3] is that if A(e) satisfies MSST, then (i)

1F ~~~~1 ~~(2.17)Fk 0 T diag(o,...,o,Ai,....... , k = k'kO = 0 otherwise

for some nonsingular T, semistable A., and uniquely determined integers ki;

and (ii) A(e) has a time scale decomposition in the sense of Definition 2.1.

On the other hand, as our examples (2.5), (2.7), (2.9) show, MSST is not

necessary for A(e) to have a time scale decomposition. What we show in

Theorem 2.1 is that MSST is necessary and sufficient for A(e) to have a strong

time scale decomposition.

In order to prove our strengthened version of the main result in [3] we

need two results.

Proposition 2.1: Let G(e) 6e {A(e)}. Then

FG FF Vk (2.18)
kO kO

where the superscripts "G" and "A" denote the sequences defined in
(2.12) - (2.16) for G(e) and A(e), respectively.
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Proof: See Appendix A.

Proposition 2.2: Suppose that [{Ai}),ki),T ] defines a multiple

time scale decomposition of AO(6) and suppose further that

Al,...,A are semistable. Then (2.17) holds and hence A(e)

satisfies the MSST condition.

Proof: See Appendix B

We can now state:

Theorem 2.1: The system (2.11) has a strong time scale
decomposition if and only if Ao(e) satisfies the MSST condition.

Proof: As stated previously, it is proved in [3] that the MSST condition is

sufficient to satisfy the weaker Definition 2.1. That this condition is

sufficient for the stronger definition follows directly from Proposition 2.1.

The proof of necessity is also straightforward. Specifically if AO(6) has a

strong time scale decomposition as in (2.1), then, thanks to Proposition 2.2,

all we need to show is that the A. must be semistable. This can be done by

contradiction. Specifically, if Ai is not semistable, then it has a

right-half plane eigenvalue, a pair of purely imaginary eigenvalues, or a

nontrivial Jordan block corresponding to the 0 eigenvalue. Showing that any

of these conditions preclude the existence of a strong time scale

decomposition is a minor variation on our previous discussion of the three

examples (2.5), (2.7), (2.9).

Note that if A(e) is invertible for e E (0, eO], the Ak in the strong

time scale decomposition are all Hurwitz.
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Finally, it is also shown in [3] that if A0(e) does not satisfy MSST,

then for some q the limit as 610 of

exp [Ao()t/6 q ] (2.19)

does not exist. This indicates that a failure of the MSST condition does

correspond to some type of noncovergent behavior. However, the precise

meaning and interpretation of this could not easily be exposed without the

concept of a strong time scale decomposition. Indeed, in addition to

providing us with Theorem 2.1, this machinery makes it far simpler to prove

the nonexistence of the limit of (2.19). Furthermore, we now see that to

verify the MSST condition and to construct a time scale decomposition for

A(e), we can equivalently examine these questions using any element of S{A(e)}

-- i.e. any such element must generate the same sequence Fko if a strong time

scale decomposition exists. Of course we can equivalently consider any

element of 9{SA(e)S - 1 } where S is any constant invertible matrix. We make

use of these facts in the next section to transform an arbitrary A(e) to its

explicit form.
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3. Explicit Form

As mentioned in Section 1, our new approach employs the Smith

decomposition of A(e) over the ring W of functions of e that are analytic

at e = 0 (see [4], [5]). The units of W are elements that do not vanish at

e = O. That is, since any element of W can be expanded in a Taylor series,

ao + ale + a + .(3.1)

we see that the set of units are those elements with ao0 O. It is also

easily seen that W is a Euclidean domain, with the degree or order, O(d(e)),

of any element d(e) e W being defined as the order of the first nonzero term

in its Taylor expansion. Therefore A(e) has a Smith decomposition

A(e) = P(e)D(e)Q(e) (3.2)

where P(e) and Q(e) are unimodular, i.e. IP(e)I and IQ(e) are units (and thus

P 1(e) and Q 1(e) are matrices over W) or, equivalently

IP(O) I O IQ(O) I O (3.3)

and

k~ k
D(e) = diag (e I... , 0) (3.4)

where 0 < k1 < k2 < ... < k are integers, the identity matrices I may have--2 n

different dimensions, and the 0 matrix is only present if A(e) is singular in

k.
a neighborhood of e = O. The 6e are called the invariant factors of A(e)

Actual computation of such Smith decompositions is discussed in [4] and [5]

(in the terminology of [5], what is required is to transform A(e) to the

matrix D(e)Q(e) which is "row-reduced at 0" through row operations embodied in
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p (e)). Without loss of generality we assume from here on that k 1 = 0; this

can always be obtained by a change of time scale in (1.1).

Rather than working with the system (1.1), we consider an e-independent

change of variables

y(t) = P- 1 (O)x(t) (3.5)

so that

k(t) = P -1()P(e)D(e)Q(e)P(O) (3.6)

Next we note that if we define the constant matrix

A = Q(O)P(O) (3.7)

then

D(e)A eC (P 1(O)P(e)D(e)Q(e)P(O)} (3.8)

(premultiply P- 1(O)P(e)D(e)Q(e)P(O) by P-l(e)P(O) and postmultiply by

P- (0)Q-1(e)Q(O)P(O)). Therefore, we arrive at the explicit form of (1.1):

i = D(e)Az (3.9)

which, if we express A in block form with blocks compatible with those in

(3.4), can be written as

1 A11 A12 ... A1,n+ z

k2 k k* -2 k2 .. 2
z2 A21 A22 e A2,n+l 2

k k k
*'n n n
z 6 e 6 A ... A z

n nl n2 n,n+1 n

Lzn+l(10 0 0 ... 0 zn+1

(3.10)
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Let us make several comments about the previous transformations. First

of all, note that every element of 9 {A(e)) has the same explicit form.

Secondly, if A(e) does not have a strong time scale decomposition, then, as in

the examples in Section 2, there is no reason to expect that (3.9) is a good

approximation of (3.6) (and therefore of (1.1)) in that the two systems need

not be asymptotically equivalent. However, if any of the systems (1.1),

(3.6), or (3.9) has a strong time scale decomposition, then they all do, and

(3.9) is asymptotically equivalent to (3.6). Therefore, we can focus on the

explicit form if we are interested in strong time scale decompositions.

Finally, note that the system (3.10) is an obvious generalization of (1.2),

and this observation provides the basis for our development in the next

section. Before doing this, however, we first conclude this section by

showing how we can deal with the 0 diagonal block in D(e) so that hereafter we

can focus attention on the case in which there is no such block, i.e. the case

in which A(e) is Hurwitz for e £ (0, e0].

Specifically, let us write D(e) in (3.4) as

D(E) = diag (D1(6), 0) (3.11)

(so that D1 (e) consists of all of the nonzero invariant factors), and let us

express A in (3.7) in blocks compatible with (3.11).

_ 11 G12
A = [G 1 l (3.12)

G21 G22

We then have that

D1 (£)G 1 1 D1 (6)G 1 2

D(e))A= (3.13)

Note that (G11 G12) has full row rank since A is invertible. In fact, it is

immediate from the development in the next section that D(e)A has MSSNS only
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if G1l is invertible. Therefore, as a first step in our overall procedure, we

check the invertibility of G1 1. If it is not invertible, then we immediately

know that (3.9) and hence (1.1) do not have strong time scale decompositions.

If G1l is invertible, we perform the following 6-independent transformation of

(3.9)

ll1 12
so = t ] z (3.14)

so that

= [D (e)GA ]W (3.15)

0 O

From this point on we can focus completely on the lower-dimensional, explicit

form matrix D1(6)Gll which is invertible for e E (0, 01]. If this has a

strong time scale decomposition, then so do (3.9) and (1.1), and the

construction of the time scale approximations for these systems from the one

for (3.15) involves the obvious reversal of the steps taken to obtain (3.15)

from (1.1).
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4. Strong Multiple Time Scale Decompositions of Systems in Explicit Form

Based on the development and discussion in the previous section, we now

focus attention on the following system in explicit form

i(t) = D(e)Az(t) (4.1)

k k
where D(e) = diag (I, 2.. nI) and

All A12 .... n A R

A =A.A21 A .1. A (4.2)21 , 22 .... A2nW Z1

LAnl An2 .... nn

is invertible. The reasons for the notation introduced in (4.2) will become

clear shortly (here the dashed line in both matrices are in the same

locations, so that All = All, R1 = [A1 2 ... An]. etc).

One direct approach to determining necessary and sufficient conditions

under which (4.1) (and thus (1.1)) has a strong time scale decomposition is to

identify explicitly the projections and similarity transformations used in [3]

to check for MSST and to obtain the multiple time scale decomposition

described in Theorem 2.1. This is done in detail in [8]. What we do in this

section is to follow an approach that makes use of the results in Section 2 to

obtain a set of necessary and sufficient conditions and a procedure for

constructing a multiple time scale decomposition that is much more in the

spirit of [1] and [2]. Based on our initial review of the analysis of (1.2),

it should not come as a surprise that successive Schur complements of A play

an important role in our development. Also, since we are focusing on strong
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time scale decompositions, we have the luxury of throwing away many of the

e-dependent terms that arise as we proceed. Specifically, whenever we run

into a unimodular matrix U(e) multiplying our system matrix on the left or

right, we can replace it by U(O) and continue. Either both of these systems

have the same strong time scale decompositions or neither one has such a

decomposition.

The basic idea behind the approach we use here is to block-diagonalize

D(e)A. We do this in stages, "peeling off" one time scale of (4.1) at a time,

starting with the fastest. To begin, let us introduce some notation.

Specifically, let D1(e) = D(e), Al = A, and

RA ]
D(e)A = D1(e)A1 = ----------------- (4.3)

We Sl(e) 6 F1(e)

S 1 (6) = D2 (6)W1 (4.4)

F1(6) = D2 (E)Z1 (4.5)

k3-k kn-k2
D2(e) = diag(I, e 32 n2 (4.6)

(here the dimensions of the (n-l) identity matrices in (4.6) are the same as

the last (n-I) blocks in D(e)).

As a next step we prove the following:

Lemma 4.1: Consider the constant matrix

M = (4.7)

where (N, L) has full row rank and N is square. Then M has SSNS if and only

if N is invertible.
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Proof: Suppose N is invertible. Then

f -l l [I -N L N 0
L M L= (4.8)

0 I 0 I0 0 (4.8)

which clearly has SSNS. On the other hand, if N is not invertible, then there

exists x X 0 so that Nx = 0. Furthermore, since (N, L) has full row rank, we

can find x1 and x2 so that Nx1 + Lx2 = x. If we then define

z = (4.9 )
2

we have that Mz X 0 but M2z = 0, showing that M does not have SSNS.

Letting e = 0 in (4.3), we have

D1(O)A1 = | ] (4.10)

Since Al is invertible, [All, R1] has full row rank. Consequently, from Lemma

4.1 we see that the system matrix (4.10) describing evolution at the fastest

time scale has SSNS if and only if All is invertible. Suppose, then, that All

is invertible. Consider the similarity transformation

-1R1
I A11 RlI -AA1 1RA 1

G(e) = D1 (e)A I

I k

A 2- -1 k2- -1
A11 + e A11 R 1D2 (e)Wl e A 1 R1D2(e)A2

(4.11)

k2 k_
6 D

2 (e)W1 6 2(a)W2
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where

A2 = Z1 - W1All R1 (4.12)

which is invertible (since Al and All in (4.2) are both invertible). Note

further that

All 0
G(e) = U(6) k ] V(6) (4.13)

where U(O) = V(O) = I (see Appendix C).

Since we are interested in strong time scale decompositions, we can

discard U(e) and V(e). From Proposition 2.2 and Theorem 2.1 we can

k
immediately conclude that for diag (All, 2DI2(e)A2) to have a strong time

scale decomposition, All must be Hurwitz. Furthermore, we have now reduced

the problem to the examination of the explicit form matrix D2(£)A2 with one

fewer time scale.

Consider now the following recursion beginning with A1 in (4.2) and

defined recursively as follows

A. = (4.14).

1i i

Ai+l = Zi - WiAii R (4.15)

Here the block size of each A.. is the same as that of the ith block in the
11

original explicit form systems (4.1), (4.2)6. Using the results of Section 2

6Note that at the last step A = An nn'
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then yields the following:

Theorem 4.1: The explicit form system (4.2) has MSSNS if and only

if each A.. is invertible. Furthermore, the system (4.2) satisfies
11

the MSST condition, and hence has a strong time scale.decomposition

if and only if each of the A.. is Hurwitz. In this case
11

D(e)At k21 k
lim sup lie - T exp {diag[All,6 A22 . nA ]t}TII = 0

(4.16)
where

T = n_1 T1 (4.17)

I A11 R1
T1 = (4.18)

I:, 0

* I A~ -1R-
T.= I A.. R. i > 1 (4.19)
i 11 1

0 I

(here the upper left-hand identity block is of dimension equal to
the first (i-1) blocks of (4.1), (4.2)).

We close this section with several final comments. First, note that the

recursive procedure just described for peeling off successively slower time

scales actually yields a sequence of approximations over successively longer

time intervals, i.e.

lir sup li D(e),~ _ k
lim supek -T 1exp {diag[Al. rA ....]tT = 0

te[0,6 )
(4.20)
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(see [3, 6] for similar comments). Secondly, we note that an alternate

approach to showing the sufficiency of the conditions in Theorem 4.1 is

presented in [9] using an approach much in the spirit of [6]. Specifically,

consider the following equations

~~ k2
R 1 + A11l 1(6) - e L1(e)[Fl(e) + S1(e)Ll(e)] = 0 (4.21)

k 2 k2

Hl(er)[All) -6 [F(e) + Sl(6)L1 (6)]H1 (6) + S1(e) = 0

(4.22)

It is straightforward to check that these equations have solutions L1 (6) and

H1(e) for e small enough, that

L1(0) = - All 1 H(O) -S1()A11 (4.23)

that

T1)I -L1(6) ]
Tl(e-)= | k k (4.24)

is unimodular, and that the similarity transformation specified by T1(e)

block-diagonalizes D1(e)A1, i.e.

T1(e)D1(e)A1T (6) = (4.25)

° eF6 G2 (e)

where
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~ k 2
G1(e) = A1 1-6 L1(l)S1(c) G2(e)=F1(6)+SL1()L 1 () (4.26)

Noting then that G1(O) = All and that G2(e) = D2(e)A2C(e) where C(O) = I, we

can conclude that D1(e)A1 has a strong time scale decomposition if and only if

T1(0) T1(0) (4.27)

does, where

rI A11 R

T1 1(0) = I (4.28)

This process can then be iterated to consider the next time scale.

Comparing this procedure to that described previously, and in particular

to (4.11) and the subsequent development, we see that, thanks to Theorem 2.1,

we do not have to do quite so much work (although, as described in Appendix A,

we actually use this full block-diagonalization procedure in the proof of

Proposition 2.1). Rather, instead of fully block-diagonalizing D1(e)A1 using

the full T1(e), we simply use T1(O), the key being that we have raised the

order of the upper right-hand element of (4.11) sufficiently so that (4.13)

holds. In a sense what we have done in (4.11) is a first step in an iterative

approach to block-diagonalizing D1(e)A1 . Specifically, think of the

transformation in (4.11) as an attempt to approximately null out the (1, 2)

block of D1(e)A1 by raising its order. If we then attempt to approximately
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null out the (2, 1) block of G(e) (using a lower-block-triangular similarity

transformation), we will raise the order of this term. Carrying this process

on for a number of steps we obtain better and better approximate block

diagonalizations and hence have a series expansion for T1(e). What we have

shown here is that when looking for strong time scale decompositions, we can

stop after the first term in the series. In the next section we describe a

procedure for constructing a weaker form of a time scale decomposition for

systems not satisfying the MSST condition. This procedure requires keeping

additional terms of the series or, equivalently, performing the iterative,

approximate block-diagonalization procedure for more than one iteration.



26

5. Time Scale Decompositions for Systems Without MSST

In this section we describe a procedure for constructing a somewhat

weaker time scale decomposition for systems that do not satisfy the MSST

condition. To motivate and illustrate the essential ideas behind this

procedure, we begin with an example. Specifically, consider the system matrix

A(e) = [| (5.1)

Since A(O) is not semistable we immediately see that this matrix does not have

a strong time scale decomposition. In fact, it is not difficult to see that

it does not even have a time scale decomposition in the sense of Definition

2.1. The reason for this stems from the requirement that the system matrices

A1l A2 .... in (2.1) be independent of e. Examining A(e) in (5.1) we see that

its eigenvalues (- e + j) have the property that their real parts are of

higher order in e than their imaginary parts. Consequently, when we attempt

to use a constant system matrix to approximate (5.1) we throw away the crucial

damping. From this perspective it seems evident that what one should seek to

do in this case is to keep at least some of the e-dependent terms in A(e) in

order to preserve its principal damping characteristics. The procedure we

develop in this section does exactly that.

We begin our development with the following

Definition 5.1: Let A(e) be Hurwitz for e6 (0, 6O] and let the

Smith form of A(e) be as in (3.2) with D(e) =
n-l

diag (I, eI6...6en I). Then A(e) has a weak multiple time scale
decomposition if
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lim suplleA(i)t-T-l exp{diag[AO(() 6 }Al(T)I..Icn-lA (e)]t}Tll = O
E10 t>O

(5.2)

where T is a constant matrix and each of the Ai(e) has the

properties that Ai(O) is invertible and each of its purely

imaginary eigenvalues is semisimple (i.e. has algebraic
multiplicity equal to its geometric multiplicity).

Let us make several comments about this definition. First, using the

procedure described at the end of Section 3 we can actually weaken the

assumption that A(e) is Hurwitz by assuming only that A(e) is semistable for

e E (0, eO] (so that there may be a 0 block in D(e)); however for simplicity

here we use the stronger assumption. Also, the assumption that D(e) has the

particular form stated in the definition is no real restriction and again we

include it here for convenience only (if some power of e between 0 and n-1 is

not an invariant factor, then the corresponding step of our procedure is

simply dropped). Finally, let us discuss the assumptions on A.(O). Note

first that requiring Ai(O) to be invertible is equivalent to assuming that

A(e) has MSSNS, while the further semisimplicity assumption eliminates

matrices such as

6- 1 1 0

1 - 0 1

F(e) 0 0 -6 1

0 0 -1 -L i~~



28

which are Hurwitz for e > 0 but for which

sup Ijexp{F(e)t} 
t>O

grows without bounds as e $ O. In essence what we are considering in this

section is the extension of our theory of time scale decompositions to include

A(e)'s with eigenvalues that converge to points on the imaginary axis other

than the origin. Consequently, it is not surprising that the multiple

semisimplicity condition is extended to include all eigenvalues converging to

the imaginary axis.

Definition 5.2: A matrix A(e) has multiple semisimple imaginary
eigenstructure (MSSIES) if it has MSSNS and if each of the purely

imaginary eigenvalues of each of the A.. defined in Theorem 4.1 is

semisimple.

Essentially by definition we have that MSSIES is necessary for A(e) to have a

weak time scale decomposition. In fact, the procedure we describe in this

section proves the following:

Theorem 5.1: Let A(e) be Hurwitz for e C (0, 60]. Then A(e) has a

weak multiple time scale decomposition if and only if it has
MSSIES.

7Indeed if this is not the case, then (5.2) leads to a contradiction, since

lim sup lleA(6)tll =
610 t>0

but exp{diag[A0(E),. 6,6n A, 1(E)]t} is uniformly bounded.
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For the remainder of this section we assume that A(e) is Hurwitz and has

MSSIES. As a first step in our procedure, we transform the dynamics of (1.1)

in a manner similar to that used in Section 2. Specifically, let A(e) have

the Smith form given in (3.2) and define

y(t) = P- (6)x(t) (5.3)

so that

y(t) = D(e)A(e)y(t) (5.4)

where A(e) = Q(e)P(e). In Section 3 and 4 we performed a slightly different

similarity transformation and also replaced A(e) by A = A(O). In the present

context we cannot throw away the e-dependent terms in A(e). However, as the

following result shows, we can do so in the similarity transformation relating

x(t) and y(t).

Lemma 5.1: Suppose that (A1(e),...,. An(6); T) defines a weak time

scale decomposition of D(e)A(e). Then (A1(e),...,An(e); TP (0))

defines one for A(e).

Proof: See Appendix D

Let us introduce some notation. Specifically, let

D(A() 11(e) RlO (e)

AlO(e ) = D~e),i(e ) = C5.5)
e10(e) eF1 0(e)

where, as in (4.3), the partition indicated is compatible with that of

D(e) = diag(I, eI ..... ) = diag(I, eD2(e)) (5.6)

By assumption AlO(e) has MSSNS, so AllO(e) is unimodular. Consider next an
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arbitrary (possibly e-dependent) matrix

F = 1 FL12 ] (5.7)

F F21 F221

and define two similarity transformations on F:

= [I F11 F] F2 [I -F11 F12OFO 1 = Fll F12 (5.8)

1 S I ° I (

-F21F11-1 I L21F 1-1

We also define a thrid similarity transformation, F obtained by first applying

the 0-transformation to F and then applying the P transformation to OFO 1

(i.e. we construct ' using the blocks of OFO ). We can now state the

following.

Lemma 5.2: Define the following sequences of matrices:

i i
rl(e) = F-transformation for A1l(e) (5.10)

A i+1(6 ) = rl i i (E)r, (e) (5.11)
where(A1 (6) 1 (6)- h(5.11)

where A1
0 (6) is given in (5.5). Then Ali( 6 ) has the form
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A 'e eARle e )

A11(e) =i6 1 ( i=] (5.12)
i+1

S1 (e) eF 1 ()

where A1 li(e) is unimodular. Furthermore, A1li(e) and eFli(e) converge to the

matrices appearing in the block-diagonalization of Al(e ) obtained as in

(4.21) - (4.26).

Proof: Equation (5.12) can be verified by direct calculation. See [6,10,13]

for the convergence result (which is not used in what follows).

In Section 4, we contented ourselves both with replacing A(e) in (5.5)

with A(O) = A and with performing only the first step of the iteration. In

the present context we can do neither of these. On the other hand, it is

still not necessary to go to the limit. To make this precise, we begin with

some notation. Specifically, let N denote the dimension of A(e); Xi(e)) the

eigenvalues of A(e); and M an upper bound on the maximum order of the real

parts of the Xi(A(e)), i.e.

O(Re[Xi(A(e))]) < M, i=l,...,N (5.13)

Since we have assumed that A(e) is Hurwitz such a bound can be found. For

example, if A(e) is a polynomial matrix, we can take M equal to the

highest-order power of e appearing in IA(e)I.

Given N and M, let

K = NM + 1 (5.14)

and consider carrying out K steps of the iteration described in Lemma 5.2.

This produces
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K IA1 1 (e) 6 R1 (6)
A1 (6) = I 11 eKR K~e~l (5.15)

i K+1 sK+i eA20(e )

where we have introduced the notation A1 1(e) = A11K(e) and A2 (e) = F1 ().

Next, we perform the same procedure at the next time scale. That is, write

0 · A2 2 () R20(e)
A2 (6e) = L (5.16)

eS0(e) eF20(e)

and perform K steps of the interaction in Lemma 5.2 involving the sequence

-~ 0
F2 (e) and producing A2 2 (e) and A3 (e). Continuing this process we obtain a

complete sequence A1 1(e),....Ann(e) and can state the following

Theorem 5.2: Suppose that A(e) is Hurwitz and has MSSIES. Then

D(e)A(e) has a weak time scale decomposition as in (5.2) with A.(e)

= Aii(e) and T as in (4.17) - (4.19).

Proof: A straightforward calculation shows that

2(e)D(6e)X(e)- (e) = G(e) + H(e )

where

n- n(e)) (5.17)
G(6) = diag(A1 1(e), 6A 2 2 (6)' . 6e Ann ()) (5.17)
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O(H(e)) = K, and8

~2(e) = (6 ) ... 20 K)2 K .... 0(e ) ... 0e (5.18a)

where

.ki) =k (5. 18b)

2- =k [i ] (5.18c)

As in Lemma 5.1, we can replace 2(e) by 2(0). However 2(0) = T, since

ri(e) = I for k > 0 and

i A 0 -1 0
r(e) = A=ii(O) Ri(O) (5.19)

with A.i(0) and R.O(0) equal to A.. and R., respectively, from (4.14), (4.15).

What remains to be shown, then is that G(e) and G(e) + H(E) are

asymptotically equivalent. This is done in Appendix E.

The key idea behind this result is that we must approximate the

eigenstructure of A(e) accurately up to at least the order of the damping in

each eigenmode. For example, the matrix

-
6
-

6 2
1 ]

-1 -e-e 2

8Here O(H(e)) denotes the minimum order of all elements of H(e). As an aside,
note that the diagonal blocks of H(e) are zero.
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is asymptotically equivalent to the matrix in (5.1) -- i.e. it is allowable to

neglect the higher order (e2) damping. On the other hand, the two matrices

2 ' _ 2

are not asymptotically equivalent since, compared to the order of damping, the

difference in frequency (between 1 and 1+e) is very significant.

What the procedure we have described does is to perform a sufficient

number of iterations to guarantee that the difference between the eigenvalues

of A(e) and its approximant are of higher order than the real (i.e. the

damping) part. Admittedly the procedure is conservative -- typically one can

get by with fewer iterations and can discard additional higher-order terms

retained by the procedure -- but it is guaranteed to work.
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6. Assignment of Time Scales by State Feedback

The results of Sections 3 and 4 establish the role of the invariant

factors of A(e) in determining the time scales of the undriven system (1.1).

For the driven system (1.11), it is then natural to pose the question of time

scale or invariant factor assignment. Specifically it is of interest to

determine what freedom there is in assigning the invariant factors of

k(t) = F(e)x(t), F(e) = A(e) + B(6)K(e) (6.1)

by application of state feedback as in (1.12). The following is a result in

this direction.

Theorem 6.1: Assume that A(e), B(e) are left coprime, i.e. that
[A(O) B(O)] has full row rank. Let b denote the rank of B(O).
Then

1. F(e) can have no more than b non-unit invariant factors.

2. There exists a K(e) such that F(e) has e ... e as its
invariant factors, for arbitrary non-negative integers

i1 .... 3b (with the convention that e = 0).

Proof: We first show that we can further assume that

k k
A(e) = diag (1. 1, e ) , k. > 0 (6.2)

and that B(e) is upper triangular. Specifically, suppose that A(e) has the

Smith form given in (3.2). We can then write

F(e) = P(e)[D(e) + P-1(6)B(e)K(e)Q-l(e)]Q(6) (6.3)

Thus we can equivalently consider the invariant factors of D(e) + B(e)K(e),

where B(e) = P-1 (e)B(e), K(e) = K(e)Q (e). Furthermore, using elementary

column operations we can show that B(e)U(e) = B(e) where U(e) is unimodular
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and B(e) is upper triangular. Consequently we have the equivalent problem of

A A ^-1

invariant factor assignment for D(e) + B(e)K(e), where K(e) = U (e)K(e).

Suppose then that A(e) is given by (6.2) and B(e) is upper triangular.

Furthermore, for notational simplicity and without loss of generality we

assume that both A(e) and B(e) are NxN. Let us first prove the second part of

the theorem statement. Note first that for [A(O), B(O)] to have full row rank

it must be ture that L < b, and B must have the form9

1 *

B(E) = . L (6.4)
0

where * represents an aribtrary element in W.

Assume first that L = b. Than we can construct a unimodular matrix V(e)

so that

B(e)V() = ' 1 (6.5)

o I }b

and let

Jl kl Jb kb
K(e) = V(e)diag (0,...O.., - 1 ..... -b b) (6.6)

9Actually what we can conclude is that the last L diagonal elements of B(O)
are nonzero. By right-multiplications we can make these values unity.
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It is straightforward then to show that A(e) + B(e)K(e) has the desired

invariant factors. If L < b, we are in essence replacing some of the unit

invariant factors of A(6) with nonunit invariant factors. Since rank B(O) =

b, b - L of the first N - L columns of (6.4) are linearly independent at e =

O. Then, just as in constructing (6.5), we can construct a unimodular matrix

V(e) so that

0 .... 0 1 0 .0

B(e)V(6) = 0..0 1 0 ......... 0 (6.7)

0 I

i.e. so that b-L of the first N-L rows are zero except for a single entry of

unity, and so that these rows and the last L rows are linearly independent.

In this case, it is then simply a matter of performing a permutation

similarity transformation so that the transformed versions of A(e) is as in

(6.2) with some of the k. = O, while the transformed version of B(e)V(e) is

given by (6.5). From this point on the construction is the same as before.

To prove the first statement in the theorem, let M = rank(A(O) +B(O)K(O))

= number of unit invariant factors of F(e). Also, assume that V(6) has been

constructed so that (6.5) holds (perhaps after the permutation similarity

transformation described previously if L < b). Letting K(e) = V -(e)K(e), we

see that

A(O) + B(O)K(O) =
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N-L 1 0 * *'10 + 0 0 K(O) (6.8)

L

where the * terms may be zero or nonzero; however, since b > L, there are b-L

independnet column vectors in the first n-L columns of the matrix multiplying

K(O) in (6.8). Consequently, adding B(O)K(O) to A(O) can reduce the rank of

A(O) by at most b-L. Thus

M > N - L - (b-L) = N-b (6.9)

Some results are also available for the case of non-coprime A(e),B(6).

In this case F(e) is of the form

F(e) = W(e)F(6) (6.10)

where

F(e) = A(e) + B(e)K(6) (6.11)

Here W(e) is a greatest common left division of A(e),B(e), and A(e),B(e) are

left coprime. If the invariant factors of F(e), W(e), and F(e) are denoted by

fi(e), wi(e), and fi(e) and ordered such that the i
t h one divides the (i+l)th

we have (thanks to the Binet-Cauchy formula [14])

w.i(6)Ifi() and fi(6)lfi(e) (6.12)

The first divisibility condition in (6.12) shows that every invariant factor

of F(e) must contain the corresponding invariant factor of W(e). The fi(e)

are governed by Theorem 6.1, and conclusions about the fi(e) can then be drawn

from the second divisibility condition in (6.12).
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7. Conclusions

In this paper we have developed an algebraic approach to time scale

analysis of singularly perturbed linear systems that exposes the role played

by the Smith form of A(e) viewed as a matrix over the ring of functions

analytic at e = O. This approach bridges the gap between previous easily

interpreted but restricted results [1], [2] and more recent results [3] that

are completely general but quite intricate. Our work not only provides a

simple interpretation of the MSSNS condition introduced in [3] in terms of the

invertibility of successive Schur complements of a particular matrix but also

allows us to state and prove a strengthened and more precise version of the

main result of [3] using the new concept of a strong multiple time scale

decomposition.

The framework and concepts introduced in this paper also open the way for

the investigation of additional questions. Several of these we have

considered here as well. In particular, we have investigated the relaxing of

the so-called MSST condition by developing a procedure involving iterated

Schur complementation in order to guarantee that weak but essential damping

terms are retained. In addition, we have investigated the problem of

time-scale modification via state feedback, which in our context corresponds

to changing the invariant factors of the system matrix. Another question that

can be asked concerns the fact that the Smith decomposition is not unique. As

shown in [8], while the use of different Smith decompositions leads to

different time scale approximations, the successive Schur complements in these

approximations are similar. Also, there is the problem of computing the Smith
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decomposition of A(e). Some ideas related to this are given in [8], but these

remain to be developed. In a sense we have traded the difficult tasks of

computing e-dependent projections and pseudo-inverses that are needed in the

approach in [3] for the Smith form computation in our approach. However, in

our work this computation is identified as a separate task which need not be

carried through the remaining analysis and therefore does not obscure the

intuition behind our results.

Finally, note that in [3] the orders of the various time scales of (1.1)

are shown to correspond to the orders of the eigenvalues of A(e). On the

other hand, in this paper we have shown that the orders of the invariant

factors determine the time scales. It should not come as too much of a

surprise that there is a relationship between the orders of eigenvalues and

invariant factors and that the MSSNS condition plays a central role in this

relationship. This is the subject of a forthcoming paper.
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Appendix A: Proof of Proposition 2.1

This proof of (2.17) uses several of the ideas introduced and developed in
Sections 3 and 4. We first need the following

Lemma A.1: Let H(e) be obtained form A(e) by a similarity
transformation

H(e) = S(e)A(e)S- 1(e) (A.1)

where S(e) is unimodular. Then

kO = S(O)kOS (0 ) (A.2)

This result follows easily from the fact that the sequence of eigenprojections

and successive system matrices defined as in (2.12) - (2.16) for A(e) and H(e)

are all related by the same similarity transformation. Equation (A.2) then

follows on examination of the leading-order terms of the successive system

matrices.

Consider next any G(e) e 9{A(e)}, i.e.

G(e) = U(e)A(e)V(e) (A.3)

with

U(O) = V(O) = I (A.4)

Then by performing similarity transformations, it is straightforward to check

that Proposition 2.1 will be proved if we can verify

Lemma A.2: Proposition 2.1 holds if

A(e) = D(e)A (A.5)

G(e) = D(e)A(e) (A.6)

with A(O) = A, which is invertible.
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The proof of this lemma is a straightforward variation on the development

in Section 4. As in Section 3, let us assume, without loss of generality that

k 1 = 0 (since otherwise we can divide (A.5), (A.6) by e ). The result is

then proved by induction on n, the number of time scales. For n=1 the result

is immediate, since

A11 A12
A(e) = diag(I, O)A = (A.7)

0 0

G(e) = diag(I, O)A(e) = (A.8)
0 0

Clearly

F A 00G = 11 12F (A.9)

0 00

Furthermore, thanks to Lemma 4.1, F00 = Foo00 has SSNS if and only if All is

invertible. If All is singular, the procedure stops. If All is invertible,

we have already achieved the normal rank of A(e) (and G(e)) so that all

subsequent FkO's are equal to 0. In either case the lemma is verified.

If n > 1, then
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All A1 2

A(e) = k (A.10)
e (D.(e)A21 e 2Dx(e)A22

with

k3-k2 k-k2i
Dx(e) = diag (I, 6 -k ... -k2I, 3) (A.11),

and G(e) has a form analogous to (A.10) wiht A ij(e) replacing Aij. Again

(A.9) holds, and, as before, the procedure stops if All is singular. If All

is invertible, we can use the same procedure as sketched at the end of

Section 4 to block diagonalize A(e) and G(e). Specifically, consider

equations (4.21) and (4.22), where, we replace A 11 by All, R1 by A12, S1 (e) by

D,(e)A21, and Fl(e) by D*(e)A2 2. Again because of the invertibility of All,

solutions LA1() and H 1(e) exist to these equations, with

L1A() = - All A12 HiA(O) = DX(O)A 2 1A 11
1 (A.12)

Similarly, we can solve (4.21), (4.22) with analogous replacements but with

Ai (e) substituted for A... This yields solutions L1G(e), H1 (e). Applying
13 13

the corresponding diagonalizing similarity transformations (4.24), (4.25) to

A(e) and G(e), and noting that T1A(O) = T1G(0), we see that, thanks to Lemma

A.1, we have reduced the problem to one with one fewer time scale -- i.e. we

are left to examine

G2 A(6) = D(6)[A2 2 + A21 L1A(e)] (A.13)

G2 () = D*(6)[A22(a ) + A21(6)L1G(6)] (A.14)

From the invertibility of A and All we can immediately deduce the

invertibility of [A2 2 + A2 1L1A(e)] and [A2 2(e) + A2 1(6)L1 G ()] in a

neighborhood of e = O. Since these matrices are equal at e = 0, the result is

proved by induction.
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Appendix B: Proof of Proposition 2.2

Without loss of generality we assume that the similarity transformation T

in (2.1) is the identity -- if this is not the case we can simply perform an

initial e-independent similarity transformation on Ao(e). Furthermore, since

A1 ... An are assumed to be semistable, we can perform another e-independent

similarity transformation so that what we are given are Hurwitz matrices

G1 ... .G so that

k k
lim suplle -exp{diag (0, e 1 nGn)t}I O (B.1)

O10 t>O

and what we would like to show is that

diag (0,...,0, Gi,O,...,O) k=ki

Fko = (B.2)

0 otherwise

As a first step, note that (B.1) implies that for any integer r

AO(e)t k k.
lim sup r le -exp{diag = (B.3)
ElO te6O,e )

where

kj < r < k j=O,...,n (B.4)
i - j+1 '

(here, for completeness k = 0, kn+1 = o). Note also that, since FO0 = Ao(O )

Ao(e;)0tn F 0 At
lim sup lie -()t eFt II = O (B.5)

O10 te[O,1)
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From (B.3) - (B.5) we can conclude that if k 1 ) O, F00 = O, PO(e) = I, and

Al(e ) = Ao(e)/e. Consequently, we can simply replace Ao(e) in (A.1) with

Al(e) and reduce each of the ki by 1. Continuing in this fashion we find that

Fko = O, k < k1 . From [3] we then have

lim sup Ie - expF kll = 0 (B.6)
6a10 -_k -""Pkl1

te[O,e )

and from (B.3), (B.6) we conclude that

Fk 0 = diag(0, G1iO .... O) (B.7)
1

The remainder of the proof proceeds by induction on n. The case of n=l

is essentially complete, since in this case the sup on the left-hand side of

(A.6) can be taken over [0, l/er) for any r > k1. Consequently an argument

identical to the one used in the preceding paragraph shows that Fko = 0 for

all k > k1. To consider the case of n > 1, we assume, without loss of

generality, that k1 = 0 (since as we have seen, if k1 > 0 then AO(e) is

k 1
divisible by e so we can rescale time to eliminate this factor). Next,

write AO(6) as the sum of two commuting matrices

A(Ao() = PO(e)Ao(e) + [I-PO(6)]AO(e)

= eA1(e) + [I - PO(e)]Ao(e) (B.8)

Note that, from [3] and (B.7)

[I-Po(e)]Ao(e)t
lim suplie - exp{diag(O, G1, 0,.....,O)t} = 0 (B.9)
e10 t>O
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Then, using (B.8) and performing several standard manipulations we obtain the

following

A0 (e)t k2 k
lie - exp{diag (O,G1,6 G2 ... Gn)t)}l

Al(e)et k2 k I)(e)t
< Ile 1 _- exp{diag(O,O,e G2 .... 6 nG)}ll .i e EI - P° (|]Ao I 

+ li e - exp{diag(O,GlO ....o O)t}ll.

k! kn
Ilexpldiag(O ,O,2 . ..nG )t) II (B.10)

Note that since n > 1, (B.9) implies that

[I-P0 o(e)]Ao(e)t

is bounded away from zero uniformly in t. Consequently (B.1), (B.9), (B.10),

and the semistability of G .... Gn imply that

Al (e)t t k-i k -1
lim supl e -exp(diag (0,0,2 G 2' kn G )t}ll = O (B.11)
e10 t>O

and consequently (B.2) follows by induction.
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Appendix C: Verification of Equation (4.13)

Let us rewrite (4.11) as

Gll(e) G1 2 (6)

G(e) 6:(E;>(E;)= j12G22(E;>() I(C.1)
G2 1 (e) G2 2 (e)

where

k2" -1
G11(e) = All + e A11 R1D2(6)W1 (C.2a)

k2z -1

G12(e) = e A11 R 1D2(e)A2 (C.2b)
k

G21 (e) = 6 D2(F6)W1 (C.2c)

G22(e) = e D2(e)A2 (C.2d)

Note that G1 1(e) is invertible in a neighborhood of e = O. Let

I O0

G21(6)G11 (e) I

E(e) = [ (C.4)

E) I -G 2 (C4)

From (C.2) we see that C1(O) = E(O) = I, and a straightforward calculation
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yields

Gll((e) 0

H(e) = CI(e)G(e)E(e ) = (C.5)

0 G2 2 (e)-G 2 1(e)Gll (e)G1 2 (e) (5)

Note that

G2 2 (6)-G 2 1(6) 1
1 (E)G 1 2(e) = [I-6 2D2(6)WG11 (e)A11 R1] G22(e) (C.6)

and the quantity in brackets on the right-hand side of (C.6) is obviously

invertible in a neighborhood of e = O. Let

11Gl 0 1
C2(&-) = -G ( l)A11 R(C.7)

A 0 [I-Ec 2D2(h)Wlie-l(c)Ajjl R1]
1J

Again we can check that U2 (0) = I and

11
C2 (e)H(e) = k ] (C.7)

so that (4.13) is verified with U(e) = C1() -1C 2- (e) and V(e) = E- ().
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Appendix D: Proof of Lemma 5.1

We have that

lim sup IleD(e )A(e)t -Tl1 exp{diag[AO(e),eAl(e) ... enlAtT = 
610 t0O

(D.1)

Therefore

lim supileA()t-P(e)T-lexp{diag[Ao(e),eAl(e)...6.en-l An 1 (e)]t}Tp- (e)ll = O
elO t>O

(D.2)

What we must show is

lim sup IIP(e)T .exp{diag[AO(e).e....F An 1 (6)
6sO0 t)O

- P(O)T 1exp{diag[Ao(6),...,en- An 1 (e)]t}T - 1 P()) | = 0 (D.3)

A simple triangle inequality argument shows that the left-hand side of (D.3)

is bounded above by

lim sup I(P(e)-P(O))T1 exp{diag[A()o(.....,6 An_(6)]t}TP 1 (6) [ +
e60 t>O

lim sup IIP(O)T-l1exp(diag[AO(e)...6n-A (e)]t}T(P- (e)-P- (o))lI (D.4)
.1O0 t>O

The first term in (D.4) is in turn bounded above by

lim{I IP(6)-P(O) III 1P-1 (6) I 11 ITI |1 |IT11 I
6e10

* supllexp{diag[AO(e),... nlA 1 (6)]t}ll (D.5)
t>0O

From the construction in Section 5, we know that each Ai(e) is Hurwitz

for e > 0 and, since A.(O) has MSSIES, we know that

Ilexp{diag[AO(O)_..e n-1 iA 1(o)]t}lI is bounded. From this we conclude that

n- ~ ~ ~ ~ ~ ~ ~ - ~ --- -- ""-~-~-R~--
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the limit in (D.5) is zero. Obviously a similar argument works for the other

term in (D.4), and the lemma is proved.
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Appendix E: Completion of the Proof of Theorem 5.2

The result we need to prove is the following

Proposition E.1: Suppose that the NxN matrix G(e) is Hurwitz. Suppose

further that

O[Re(;i(G(e))] < M i=l1...,N (E.1)

and let K = MN + 1. Then G(e) is asymptotically equivalent to G(e) + H(e),

where H(e) is any matrix with O(H(e)) = K.

Proof: The proof is a variation on the methods in [3, 7, 8]. First from [7]

we have the following

Lemma E.1: Let A(e) = B(e) + ePC(e) be an NxN matrix. Then

min O[Xi(A(e)) - Xi(B(e))] Ž p/N (E.2)
i

Consequently in our case

O[Xi(G(e)) - Xi(G(e) + H(6))] > O[Re(Xi(G(6)))] (E.3)

Next, recall the definition of the resolvent of a matrix A(e)

R(X,A) = [A(e) - I]- 1
(E.4)

so that

eA(e)t = - FI et R(X,A)dX (E.5)

k k

where the rk are positively-oriented contours enclosing disjoint portions of

the complex plane and all of the eigenvalues of A(e). Consider, then

2i[ [G(e)+H(e)]t _ eG)t = e [R(X,G) - R(A,G+H)]dX (E.6)

k k

where we choose the rk carefully. Specifically F1 is a circle centered at
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Xi(G(e)), of radius of order O[Re(X1(G(e)))], and completely contained in the

left-half plane {Re(X) < 0}. More precisely, we require the maximum value of

Re(X) on Fk to also be of order O[Re (X1 (G(e)))]. Also, for e small enough

(E.3) guarantees that this circle includes X1 (G(e) + H(e)). The circle may

also include other pairs of eigenvalues, but for e sufficiently small this

happens only if

O[X1(G(6))-Xj(G(-))] < min {O[Re(X1(G(6)))], O[Re(Xj(G(E)))]} (E.7)

Consider next a single term in (E.6) and suppose that the radius of Fk is

of order m. If we let X' = X/em we can rewrite this term as

e Xt[R(emX',G) - R(emX ', G+H)]emdX ' (E.8)

k

where Fk', the image of rk under this mapping, has radius of order 1, is

completely contained in the left-half plane, and in fact consists of points

with negative real parts of order 1. Consequently, the norm of (E.8) is

bounded above by

Fr I IR(mX' ,G) - R(amX',G+H) ImdX' (E.9)

'k

Also, we can write

R(X,G) - R(X,G+H) = R(X,G){I - [I+HR(X,G)] - } (E.10)

Note that, thanks to (E.3) and (E.7), R(X,G) is of order 1/em on Fk.

Consequently (since m < M) HR(X,G) is of order at least m(N-1) + 1, and we can

write the series

10For example, the circle {X:jX-X 1(G(e)) = 2 Re(X1(G(e)))} will due unless

another singularity lies on it.
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R(X,G) - R(X,G+H) = R(X,G) I (-1)n [HR(X,G)]n (E.11)

n=l

which converges uniformly for X e Fk. Obviously the same statements can be

made for R(emX', G) and HR(emx', G) on Fk'. and therefore we conclude that

O(IIR(emX' ,G) - R(emX' ,G+H)ll1em) > m(N-1) + 1 (E.12)

uniformly on rk . Since Fk has perimeter of order 1 in length, (E.9)

converges to 0 as elO, and the result follows.


