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Abstract

Modern engineering problems require accurate, reliable, and efficient evaluation of quantities of
interest, the computation of which often requires solution of a partial differential equation. We
present a technique for the prediction of linear-functional outputs of elliptic partial differential
equations with affine parameter dependence. The essential components are: (i) rapidly convergent
global reduced-basis approximations - projection onto a space WN spanned by solutions of the
governing partial differential equation at N selected points in parameter space (Accuracy); (ii) a
posteriori error estimation - relaxations of the error-residual equation that provide inexpensive
bounds for the error in the outputs of interest (Reliability); and (iii) off-line/on-line computational
procedures - methods which decouple the generation and projection stages of the approximation
process (Efficiency). The operation count for the on-line stage depends only on N (typically very
small) and the parametric complexity of the problem.

We present two general approaches for the construction of error bounds: Method I, rigorous a
posteriori error estimation procedures which rely critically on the existence of a "bound conditioner"
- in essence, an operator preconditioner that (a) satisfies an additional spectral "bound" require-
ment, and (b) admits the reduced-basis off-line/on-line computational stratagem; and Method II,
a posteriori error estimation procedures which rely only on the rapid convergence of the reduced-
basis approximation, and provide simple, inexpensive error bounds, albeit at the loss of complete
certainty. We illustrate and compare these approaches for several simple test problems in heat
conduction, linear elasticity, and (for Method II) elastic stability.

Finally, we apply our methods to the "static" (at conception) and "adaptive" (in operation)
design of a multifunctional microtruss channel structure. We repeatedly and rapidly evaluate
bounds for the average deflection, average stress, and buckling load for different parameter values
to best achieve the design objectives subject to performance constraints. The output estimates
are sharp - due to the rapid convergence of the reduced-basis approximation; the performance
constraints are reliably satisfied - due to our a posteriori error estimation procedure; and the
computation is essentially real-time - due to the off-line/on-line decomposition.

Thesis Supervisor: Anthony T. Patera
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

The optimization, control, and characterization of an engineering component or system requires the
rapid (often real-time) evaluation of certain performance metrics, or outputs, such as deflections,
maximum stresses, maximum temperatures, heat transfer rates, flowrates, or lifts and drags. These
"quantities of interest" are typically functions of parameters which reflect variations in loading or
boundary conditions, material properties, and geometry. The parameters, or inputs, thus serve
to identify a particular "configuration" of the component. However, often implicit in these input-
output relationships are underlying partial differential equations governing the behavior of the
system, reliable solution of which demands great computational expense especially in the context
of optimization, control, and characterization.

Our goal is the development of computational methods that permit rapid yet accurate and
reliable evaluation of this partial-differential-equation-induced input-output relationship in the limit
of many queries - that is, in the design, optimization, control, and characterization contexts. To
further motivate our methods and illustrate the contexts in which we develop them, we consider
the following example.

1.1 Motivation: A MicroTruss Example

Cellular solids consist of interconnected networks of solid struts or plates which form cells [16]
and may, in general, be classified as either periodic (as in lattice and prismatic materials, shown
in Figure 1-1(a)) or stochastic (as in sponges and foams, shown in Figure 1-1(b)) [11]. Numerous
examples abound in nature - for instance, cork, wood, and bone - but recent materials and
manufacturing advances have allowed synthetic cellular materials to be designed and fabricated for
specific applications - for instance, lightweight structures, thermal insulation, energy absorption,
and vibration control [16]. In particular, open cellular metals have received considerable attention
largely due to their multifunctional capability: the metal struts offer relatively high structural load
capacities at low weights, while the high thermal conductivities and open architecture allow for the
efficient transfer of heat at low pumping costs.

We consider the example of a periodic open cellular structure (shown in Figure 1-2) simultane-
ously designed for both heat-transfer and structural capability; this structure could represent, for
instance, a section of a combustion chamber wall in a reusable rocket engine [12, 19]. The prismatic
microtruss consists of a frame (upper and lower faces) and a core of trusses. The structure conducts
heat from a prescribed uniform flux source q" at the upper face to the coolant flowing through the
open cells; the coolant enters the inlet at a temperature to, and is forced through the cells by a
pressure drop AP = Phigh - Plow from the inlet to the outlet. In addition, the microtruss transmits
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(a)

Figure 1-1: Examples of (a) periodic
(Photographs taken from [16]).

(b)

(honeycomb) and (b) stochastic (foam) cellular structures
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coolant Phigh, iO -f

Figure 1-2: A multifunctional (thermo-structural) microtruss structure.
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a force per unit depth fit uniformly distributed over the tip "N through the truss system to the
fixed left wall fD- We assume that the associated Reynolds number is below the transition value
and that the structure is sufficiently deep such that a physical model of fully-developed, laminar
fluid flow and plane strain (two-dimensional) linear elasticity suffices.

1.1.1 Inputs

The structure, shown in Figure 1-3, is characterized by a seven-component nondimensional param-
eter vector or "input," /yz = (W, p2, II. I A7), reflecting variations in geometry, material property,
and loading or boundary conditions. Here,

S= f = thickness of the core trusses,

2 = ft = thickness of the upper frame,
A = = thickness of the lower frame,

= H = separation between the upper and lower frames,
= = angle (in degrees) between the trusses and the frames,

A = I = thermal conductivity of the solid relative to the fluid, and

A = = nondimensional pressure gradient;
furthermore, yt may take on any value in a specified design space, DA c R 7 , defined as

DA = [0.1, 2.0]3 x [6.0,12.0] x [35.0,70.0] x [5.0 x 102, 1.0 x 104] x [1.0 x 10-2, 1.1 x 102],

that is, 0.1 < t,tt,tb 2.0, 6.0 <H < 12.0, 35.0 < d 70.0, 5.0 x 102< k I 1.Ox i0 4 , and
1.0 x 10-2 p < 1.1 x 102. The thickness of the sides, t., is assumed to be equal to tb-

ib

Figure 1-3: Geometric parameters for the microtruss structure.

1.1.2 Governing Partial Differential Equations

In this section, (and in much of this thesis) we shall omit the spatial dependence of the field
variables. Furthermore, we shall use a bar to denote a general dependence on the parameter; for
example, since the domain itself depends on the (geometric) parameters, we write ! = (1) to
denote the domain, and t to denote any point in !. Also, we shall use repeated indices to signify
summation.

Heat Transfer Model

The (nondimensionalized) temperature, 9, in the fluid satisfies the parametrized partial differential
equation

-V2V + fiVi _=- 0, in Qf,(.)
at
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with boundary conditions

9 = 0, on rf (1.2)

= 0, on Pout (1.3)

V]
note that the velocity field V = [0 0 3] , where 13 satisfies

V3=i- (1.4)

Here, - denotes the unit outward normal, Qf denotes the fluid domain, and r" (respectively, rout)
denotes the fluid inlet (respectively, outlet). The temperature in the solid is governed by

-I2 =0, in Q,

with

k = 1 on fux , (1.6)

o-in
ei = 0 on s, (1.7)

reflecting the uniform flux and insulated boundary conditions, respectively. Continuity of temper-
ature and heat flux along the interface fint between the solid and fluid domains requires

t9, - on F"i, (1.8)

--k e - e on If"t. (1.9)a24*Oj * f

Structural (Solid Mechanics) Model

The (nondimensionalized) displacement, i, i 1, 2, satisfies the parametrized partial differential
equation

_ (Oijk =ik 0, in Q8, (1.10)

where 0, denotes the truss domain, and the elasticity tensor Cijkl is given by

Cijkl = E1 (6ikil + 6 il6 jk) + C26iJ6 kl; (1.11)

here, J&j is the Kronecker delta function, and El, E2 are Lame's constants, related to Young's
modulus, E, and Poisson's ratio, P, by

E1 = , (1.12)
2(1 + 1)3

E2 =i . (1.13)
(I + F/)(1 - 2I)'
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The displacement and traction boundary conditions are

ii = 0 on rD, (1.14)
ie = fte on -, (1.15)

&ie = 0 on PS\(FD UN (1.16)

where the stresses, &ij are related to the displacements by

&ij = -ij i'_k (1.17)aijkIax1

Elastic Buckling

Furthermore, it can be shown [18] that the critical load parameter A' E R, and associated buckling
mode 0 E Y, are solutions to the partial differential eigenproblem

O ijkk) + A _ mk - 0, (1.18)aj7j atl O.j (7 atj a-k

with boundary conditions

Cijkliz + -- +A fney = 0 onI7" (1.19)

Cijkl e6 + A-f e = 0 on -. (1.20)
ij l t kN

(The derivation of the equivalent weak form of (1.18)-(1.20) is presented in Chapter 6.)

1.1.3 Outputs

In the engineering context - i.e., in design, optimization, control, and characterization - the
quantities of interest are often not the field variables themselves, but rather functionals of the
field variables. For example, in our microtruss example the relevant "outputs" are neither the
temperature field, V, the fluid velocity field, V, nor the displacement field, i; rather, we may wish

to evaluate as a function of the parameter 1L the average temperature along pflux,

'9ave(A) = pjux , d , (1.21)

the flow rate,

) V3 d , (1.22)
royut

the average velocity at the outlet,

Vave =V-out V3 d , (1.23)
rout I frut
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the average deflection along IN,

Jave(A) = - 2 f dI , (1.24)
]FIN IrN

and the normal stress near the support averaged along P7,

0ave(GL) = - I J (). (1.25)

In addition, one may also be interested in eigenvalues associated with the physical system; for
example, in our microtruss example the buckling load

fbuckie(I) = A: (p)f t , (1.26)

where A' is the smallest eigenvalue of (1.18)-(1.20), is also of interest. Note that evaluation of these
outputs requires solution of the governing partial differential equations of Section 1.1.2.

1.1.4 A Design-Optimize Problem

A particular microtruss design (corresponding to a particular value of [L) has associated with it (say)
operational and material costs, as well as performance merits reflecting its ability to support the
applied structural loads and efficiently transfer the applied heat to the fluid. Furthermore, a design
must meet certain constraints reflecting, for example, safety and manufacturability considerations.
The goal of the design process is then to minimize costs and optimize performance while ensuring
that all design constraints are satisfied.

For example, we could define our cost function, J(p), as a weighted sum of the area of the
structure, A(p), (reflecting material costs), and the power, P(M) required to pump the fluid through
the structure (reflecting operational costs); that is,

J(p) = avV(p) + apP(p), (1.27)

where

H t ~
V(I) = 2 (tt +tb) + . +tb + H . tb), (1.28)

1 (tan c sina sina _

P = Q(), (1.29)

and av, ap are weights which measure the relative importance of material and operational costs in
the design process.

Furthermore, we require that the average temperature be less than the melting temperature of
the material:

Oave(A) ail9max, (1.30)

the deflection be less than a prescribed limit,

6ave(A) 5 a26max, (1.31)

the average normal stress near the support be less than the yield stress,

0-ave(i) as3y, (1.32)
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and the magnitude of the applied load be less than the critical buckling load, so that

1 < a 4 A1 (p) . (1.33)

We then define our feasible set, F, as the set of all values of p E DA which satisfy the constraints
(1.30)-(1.33).

Our optimization problem can now be stated as: find the optimal design, M*, which satisfies

M* = arg min J(p); (1.34)
pIEF

in other words, find that value of M, p*, which minimizes the cost functional over all feasible designs
I C F.

1.1.5 An Assess-Optimize Problem

The design of an engineering system, as illustrated in Section 1.1.4, involves the determination of
the system configuration based on system requirements and environment considerations. During
operation, however, the state of the system may be unknown or evolving, and the system may be
subjected to dynamic system requirements, as well as changing environmental conditions. The sys-
tem must therefore be adaptively designed and optimized, taking into consideration the uncertainty
and variability of system state, requirements, and environmental conditions.

For example, we assume that extended deployment of our microtruss structure (for instance,
as a component in an airplane wing) has led to the developement of defects (e.g., cracks) shown in
Figure 1-4. The characteristics of the defects (e.g., crack lengths) are unknown, but we assume that
we are privy to a set of experimental measurements which serve to assess the state of the structure.
Clearly, the defects may cause the deflection to reach unacceptably high values; a shim is therefore
introduced so as to stiffen the structure and maintain the deflection at the desired levels. However,
this intervention leads to an increase in both material and operational costs. Our goal is to find,
given the uncertainties in the crack lengths, the shim dimensions which minimize the weight while
honoring our deflection constraint.

rD

ft

Figure 1-4: A "defective" microtruss structure. The insert highlights the defects (two cracks) and
intervention (shim).

More precisely, we characterize our system with a multiparameter L = (pcrack, ishim) where

pcrack = (L 1, L 2 ) and pshim = (Lshim, tshim). As shown in Figure 1-5, L1 and L 2 are our "current
guesses" for the relative lengths of the cracks on the upper frame and truss, respectively, while shim
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ishim

Lshim

Figure 1-5: Parameters describing the defects, (L1 and L 2 ), and the intervention, (Lshim and tshim)-

and Lshim denote the thickness and length of the shim, respectively; we also denote by Pcrack
(L*, L) the (real) unknown crack lengths. We further assume we are given Mexp intervals [6

LB 6U]
m = 1,... , Mexp representing experimental measurements of the deflection such that

6ave(4im, ,tc*rack) E [6 LB, 6 UB ], - - - , Mexp . (1.35)

From these measurements, we then infer the existence of a set L* such that (14, L*) E *. We then
wish to find the y,*him which satisfies

ps*him = arg min Vshim(/shim), (1-36)
Ishim

where Vshim (ktshim) = tshimLshim is simply the area of the shim, such that

Pshim E shim (1.37)

max 6 ave(-tshim, I-tcrack) 6 max (1-38)
Acrack *

In words, we wish to find the shim dimensions which minimizes the area of the shim such that
the maximum deflection (over all crack lengths consistent with the experiments) is less than the
prescribed deflection limit Jmax.

1.2 Goals

Our first goal is the development of computational methods that permit accurate, reliable, and
rapid evaluation of input-output relationships induced by partial differential equations in the limit
of many queries. In particular, we seek to develop, especially for problems in elasticity, methods
for (i) accurate approximation of the relevant outputs of interest; (ii) inexpensive and rigorous
error bounds yielding upper and lower bounds for the error in the approximation; and (iii) a
computational framework which allows rapid on-line calculation of the output approximation and
associated error bounds.

Our second goal is the application of these computational methods to problems requiring re-
peated evaluation of these input-output relationships. In particular, we seek to use these compu-
tational methods to solve representative problems involving the design, optimization, and charac-
terization of engineered systems.
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1.3 Approach

1.3.1 Reduced-Basis Output Bounds

The difficulty is clear: evaluation of the output, s(p), requires solution of the partial differential
equation; the latter is computationally very expensive, too much so particularly in the limit of many
queries. The "many queries" limit has certainly received considerable attention: from "fast loads"
or multiple right-hand side notions (e.g., [10, 13]) to matrix perturbation theories (e.g., [1, 48]) to
continuation methods (e.g., [3, 41]). Analytical "substructure" methods ([30]) which provide rapid
on-line calculation of exact solutions to parametrized partial differential equations have also been
developed; however, these techniques have limited applicability, relevant only to problems in which
the parameters are the material properties, and are inapplicable even in the case of very simple
geometric variations.

Our particular approach is based on the reduced-basis method, first introduced in the late 1970s
for nonlinear structural analysis [4, 32], and subsequently developed more broadly in the 1980s and
1990s [7, 8, 14, 36, 37, 42]. Our work differs from these earlier efforts in several important ways: first,
we develop (in some cases, provably) global approximation spaces; second, we introduce rigorous
a posteriori error estimators; and third, we exploit off-line/on-line computational decompositions
(see [7] for an earlier application of this strategy within the reduced-basis context). These three
ingredients allow us - for the restricted but important class of "parameter-affine" problems -
to reliably decouple the generation and projection stages of reduced-basis approximation, thereby
effecting computational economies of several orders of magnitude.

We note that the operation count for the on-line stage - in which, given a new parameter value,
we calculate the output of interest and associated error bound - depends only on N (typically
very small) and the parametric complexity of the problem; the method is thus ideally suited for the
repeated and rapid evaluations required in the context of parameter estimation, design, optimiza-
tion, and real-time control. Furthermore, theoretical and numerical results presented in Chapters 3
(for heat conduction), 5 (for linear elasticity), and 6 (for elastic stability) show that N may indeed
be taken to be very small and that the computational economy is substantial. In addition, timing
comparisons presented in Chapter 7 for the two-dimensional microtruss example show that a single
on-line calculation of the output requires on the order of a few milliseconds, while conventional
finite element calculation requires several seconds; the computational savings would be even larger
in higher dimensions.

Furthermore, the approximate nature of reduced-basis solutions (as opposed to the exact solu-
tions provided by [30]) do not pose a problem: our a posteriori error estimation procedures supply
rigorous certificates of fidelity, thus providing the necessary accuracy assessment.

1.3.2 Real-Time (Reliable) Optimization

The numerical methods proposed are rather unique relative to more standard approaches to par-
tial differential equations. Reduced-basis output bound methods are intended to render partial-
differential-equation solutions truly useful: essentially real-time as regards operation count; "black-
box" as regards reliability; and directly relevant as regards the (limited) input-output data required.
But to be truly useful, these methods must directly enable solution of "real" optimization problems
- rapidly, accurately, and reliably, even in the presence of uncertainty. Our work employs these
reduced-basis output bounds in the context of "pre"-design - optimizing a system at conception
with respect to prescribed objectives, constraints, and environmental conditions - and adaptive
design - optimizing a system in operation subject to evolving system characteristics, dynamic
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system requirements, and changing environmental conditions.

1.3.3 Architecture

Finally, to be truly usable, the entire methodology must reside within a special framework. This
framework must permit the end-user to, off-line, (i) specify and define their problem in terms of
high-level constructs; (ii) automatically and quickly generate the online simulation and optimization
servers for their particular problem. Then, on-line, the user must be able to (i) specify the output
and input values of interest; and to receive - quasi-instantaneously - the desired prediction and
certificate of fidelity (error bound); and (ii) specify the objective, constraints, and relevant design
variables; and to receive - real-time - the desired optimal system configuration.

1.4 Thesis Outline

In this thesis we focus on the development of reduced-basis output bound methods for problems
in elasticity. In Chapter 2 we present an overview of reduced-basis methods, summarizing earlier
work and focusing on the (new) critical ingredients. In Chapter 3 we describe, using the heat con-
duction problem for illustration, the reduced-basis approximation for coercive symmetric problems
and "compliant" outputs; we present the associated a posteriori error estimation procedures in
Chapter 4 . In Chapter 5 we develop the reduced-basis output bound method (approximation and
a posteriori error estimation) to the linear elasticity problem and extend our methods to "noncom-
pliant" outputs. In Chapter 6 we consider the nonlinear eigenvalue problem of elastic buckling; and
in Chapter 7 we employ the reduced-basis methodology in the analysis, design (at conception and
in operation) of our microtruss example. Finally, in Chapter 8 we conclude with some suggestions
for future work, particularly in the area of a posteriori error estimation.

1.5 Thesis Contributions, Scope, and Limitations

In this thesis, we improve on earlier work on reduced-basis methods for linear elasticity in two ways:

(i) we exploit the sparsity and symmetry of the elasticity tensor to substantially reduce both the
off-line and on-line computational cost; and (ii) we extend the methodology to allow computation
of more general outputs of interest such as average stresses and buckling loads.

Furthermore, we also introduce substantial advances to the general reduced-basis methodol-
ogy. First, the challenges presented by the linear elasticity operator led us to achieve a better
understanding of reduced-basis error estimation, and subsequently develop new techniques for con-
structing rigorous (Method I) bounds for the error in the approximation. Second, we also develop
simple, inexpensive (Method II) error bounds for problems in which our rigorous error estimation
methods are either inapplicable or too expensive computationally.

Finally, we apply our methods to design and optimization problems representative of appli-
cations requiring repeated and rapid evaluations of the outputs of interest. We illustrate how
reduced-basis methods lend themselves naturally to existing solution methods (e.g., interior point
methods for optimization), and how they allow the development of new methods (e.g. our assess-
predict-optimize methodology) which would have been intractable with conventional methods.

We note that the goals presented in Section 1.3 are by no means trivial, and the variety of
problems (i.e., partial differential equations) that must be addressed is extensive. Indeed, this work
on linear elasticity is merely a small part of a much larger effort on developing reduced-basis output
bound methods.
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This thesis deals with methods that are generally applicable to linear coercive elliptic (second-
order) partial differential equations with affine parameter dependence, and focuses on developing
such methods for linear elasticity; in addition, this work also presents preliminary work on the

(nonlinear) eigenvalue problem governing elastic stability, as well as some ideas for future work on
the thermoelasticity and (noncoercive) Helmholtz problem. This thesis builds on earlier work on
general coercive elliptic problems [43] and on linear elasticity [20].

However, reduced-basis methods have also been applied to parabolic problems [43], noncoercive
problems [43], and problems which are (locally) non-affine in parameter [46]. These problems are
not addressed in any great detail in this thesis, save for a short summary in Chapter 2 and a
discussion of future work in Chapter 8.

Furthermore, in this thesis we assume that the mathematical model - particularly the parametriza-
tion of the partial differential equation - is exact. A discussion reduced-basis output bounds for
approximately parametrized elliptic coercive partial differential operators may be found in [38].
Some preliminary ideas based on [38] for problems with approximately parametrized data or "load-
ing" (as opposed to the partial differential operator) are presented in Chapter 8.

Next, the discussion in Chapter 7 on reduced-basis methods in the context of optimization
problems is decidedly brief; a more detailed discussion may be found in [2, 34]. A related work [17]
applies reduced-basis methods to problems in optimal control.

Finally, detailed discussions of the computational architecture in which the methodology resides
may be found in [40].
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Chapter 2

The Reduced Basis Approach: An
Overview

2.1 Introduction

As earlier indicated, our goal is the development of computational methods that permit rapid and
reliable evaluation of partial-differential-equation-induced input-output relationships in the limit
of many queries. In Chapter 1 we present examples of these input-output relationships, as well as
problems illustrating the "many-queries" context.

Our particular approach is based on the reduced-basis method, which recognizes that the field
variable is not, in fact, some arbitrary member of the infinite-dimensional solution space associated
with the partial differential equation; rather, it resides, or evolves, on a much lower-dimensional
manifold induced by the parametric dependence [39]. In this chapter, we provide an overview of
the reduced-basis approach, introducing key ideas, surveying early work, highlighting more recent
developments, and leaving more precise definitions and detailed development to later chapters. We
focus particularly on the critical ingredients: (i) dimension reduction, effected by global approxi-
mation spaces; (ii) a posteriori error estimation, providing sharp and inexpensive upper and lower
output bounds; and (iii) off-line/on-line computational decompositions, effecting (on-line) compu-
tational economies of several orders of magnitude. These three elements allow us, for the restricted
but important class of "parameter-affine" problems, to compute output approximations rapidly,
repeatedly, with certificates of fidelity.

2.2 Abstraction

Our model problem in Chapter 1 can be stated as: for any p E DA C RP, find s(p) E R given by

s(p) = L(p), v), (2.1)

where u(L) C Y is the solution of

(A(p)u(p), v) = (F(p), v) , V v E Y. (2.2)

Here, p is a particular point in the parameter set, DA; Y is the infinite-dimensional space of
admissible functions; A(jt) is a symmetric, continuous and coercive distributional operator, and
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the loading and output functionals, F(p) and L(M), respectively, are bounded linear forms.1 In the
language of Chapter 1, (2.2) is our parametrized partial differential equation (in weak form), p is
our input parameter, u(p) is our field variable, and s(p) is our output.

In actual practice, Y is replaced by an appropriate "truth" finite element approximation space
Yg of dimension M defined on a suitably fine truth mesh. We then approximate u(p) and s(p) by
u((p) and sg(p), respectively, and assume that Yg is sufficiently rich such that ug(p) and sN(p)
are indistinguishable from u(p) and s(p).

The difficulty is clear: evaluation of the output, s(p), requires solution of the partial differential
equation, (2.2); the latter is computationally very expensive, too much so particularly in the limit
of many queries.

2.3 Dimension Reduction

In this section we give a brief overview of the essential ideas upon which the reduced basis approx-
imation is based. For simplicity of exposition, we assume here and in Sections 2.4-2.5 that F and
L do not depend on the parameter; in addition, we assume a "compliant" output:

(L, v) = (F, v), V v E Y. (2.3)

2.3.1 Critical Observation

The difficulty in evaluating the output, s(p), stems from the necessity of calculating the field
variable, u(p), which is a member of the infinite-dimensional solution space, Y, associated with the
partial differential equation. However, we can intuit that the possible values of u(p) do not "cover"
the entire space, Y; if we imagine Y to be reduced to a three-dimensional space, then u - as a
function of p - can be conceived as lying on a curve or surface; this is depicted in Figure 2-1(a).
For example, in our model problem of Chapter 1, we expect that the the displacement field which
satisfies the governing equations ((1.10), (1.14)-(1.16)) does not vary randomly with the parameter

p (defined in Section 1.1.1), but in fact varies in a smooth fashion.

U( U new)
u(9)u()

.t&2)

(a) (b)

Figure 2-1: (a) Low-dimensional manifold in which the field variable resides; and (b) approximation
of the solution at pnew by a linear combination of pre-computed solutions u(pi).

In other words, the field variable is not some arbitrary member of the high-dimensional solu-
tion space associated with the partial differential equation; rather, it resides, or "evolves," on a
much lower-dimensional manifold induced by the parametric dependence [39]. This observation is
fundamental to our approach, and is the basis for our approximation.

'See Chapters 3 and 5 for more precise definitions.
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2.3.2 Reduced-Basis Approximation

By the preceding arguments, we see that to approximate u(p), and hence s(p), we need not rep-
resent every possible function in Y; instead, we need only approximate those functions in the
low-dimensional manifold "spanned" by u(p). We could, therefore, simply calculate the solution u
at several points on the manifold corresponding to different values of A; then, for any new param-
eter value, Anew, we could "interpolate between the points," that is, approximate u(pnew) by some
linear combination of the known solutions. This notion is illustrated in Figure 2-1(b).

More precisely, we introduce a sample in parameter space,

"N = {p,., PNJ (2.4)

where tn E DI', n = 1,..., N. We then define our Lagrangian ([37]) reduced-basis approximation
space as

WN = span{(n = u(pn), n = 1,. . . , N}, (2.5)

where u(pAn) E Y is the solution to (2.2) for P = Pn Our reduced-basis approximation is then: for

any It E D, find
SN((p) = (L, UN(P)) (2-6)

where uN(P) is the Galerkin projection of u(p) onto WN.

(A(p) UN(AP),V) = (F,v), V v E WN- (2.7)

In other words, we express u(p) as a linear combination of our basis functions,

N

UN(W = E UNj(P) (j ; (2.8)
j=1

then, choosing the basis functions as test functions (i.e., setting v = -, = 1, ... , N, in (2.7)), we
obtain

AN W UN W = - N, (2.9)

where

(AN)ij(AP) = (A(t)(jj, (i) , l , j= 1,-. N, (2.10)

(FN) i = (F, (i) , i = 1, ... ., N. (2.11)

Our output approximation is then given by

SN(P) = !N(p)TLN, (2.12)

where LN =EN from (2.3).
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2.3.3 A Priori Convergence Theory

We consider here the rate at which UN(p) and SN(P) converges to u(p) and s(p), respectively. To
begin, it is standard to demonstrate the optimality of UNGL) in the sense that

1U(/) - UN(p) I Y < A inf I1UGI)-wNI1Y- (2.13)
A00 WNEWN

where I I y is the norm associated with Y, and 73 and 3 are p-independent constants associated
with the operator A. Furthermore, for our compliance output, it can be shown that

s(A) - SN(P) = 7YA(A)IIU(P) - UN(A)I , (2.14)

It follows that sN (y) converges to s (p) as the square of the error in UN(p)
At this point, we have not yet dealt with the question of how the sample points, Pu, should

be chosen. In particular, one may ask, is there an "optimal" choice for SN? For certain simple
problems, it can be shown [28] that, using a logarithmic point distribution, the error in the reduced-
basis approximation is exponentially decreasing with N for N greater than some critical value
Nrit. More generally, numerical tests (see Chapter 3) show that the logarithmic distribution
performs considerably better than other more obvious candidates, in particular for large ranges of
the parameter. A more detailed discussion of convergence and point distribution is presented in
Chapter 3.

These theoretical considerations suggest that N may, indeed, be chosen very small. However,
we note from (2.11) and (2.12) that ANUp) (and therefore UN(p) and SN(p)) depend on the basis
functions, (,, and are therefore potentially computationally very expensive. We might then ask:
can we calculate sN(p) inexpensively? We address this question in Section 2.4.

2.4 Off-Line/On-Line Computational Procedure

We recall that in this section, we assume that F and L are independent of the parameter, and that
the output is compliant, L = F. Nevertheless, the development here can be easily extended (see
Chapter 5) to the case of p-dependent functionals L and F, and to noncompliance, L f F.

The output approximation, sN(tt), will be inexpensive to evaluate if we make certain assump-
tions on the parametric dependence of A; these assumptions will allow us to develop off-line/on-line
computational procedures. (See [7] for an earlier application of this strategy within the reduced-
basis context.) In particular, we shall suppose that

QA

(A(y)w, v) = E 61(p) (Aqw, v) , (2.15)
q=1

for some finite (preferably small) integer QA. It follows that

q=1

where

AqNM=(4y ) 1 < ij :! N, I < q < (2.17)
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Therefore, in the off-line stage, we compute the u(pu) and form the AN; this requires N (expensive)
"A" finite-element solutions, and O(QN 2 ) finite-element-vector inner products. In the on-line stage,
for any given new p, we first form A(p) from (2.16), then solve (2.9) for _UN(P), and finally evaluate

SN(P) ~ !N(p)TLN; this requires O(QN 2 ) + O(2N 3 ) operations and O(QN 2 ) storage.
Thus, as required, the incremental, or marginal, cost to evaluate sN(p) for any given new p -

as proposed in a design, optimization, or inverse-problem context - is very small: first, because
(we predict) N is small, thanks to the good convergence properties of WN; and second, because
(2.9) can be very rapidly assembled and inverted, thanks to the off-line/on-line decomposition.

These off-line/on-line computational procedures clearly exploit the dimension reduction of Sec-
tion 2.3. However, apart from the discussion on the a priori convergence properties of our approx-

imations, we have not presented any guidelines as to what value N must be taken. Furthermore,
once sN(p) has been calculated, how does one know whether the approximation is accurate? We

address these issues in Section 2.5.

2.5 A Posteriori Error Estimation

From Section 2.4 we know that, in theory, we can obtain sN(p) very inexpensively: the on-line

computational effort scales as O( N 3 ) + O(QN 2 ); and N can, in theory, be chosen quite small.

However, in practice, we do not know how small N can (nor how large it must) be chosen: this will

depend on the desired accuracy, the selected output(s) of interest, and the particular problem in

question. In the face of this uncertainty, either too many or too few basis functions will be retained:
the former results in computational inefficiency; the latter in unacceptable uncertainty. We thus

need a posteriori error estimators for sN(P). Surprisingly, even though reduced-basis methods

are particularly in need of accuracy assessment - the spaces are ad hoc and pre-asymptotic,
thus admitting relatively little intuition, "rules of thumb," or standard approximation notions

- a posteriori error estimation has received relatively little attention within the reduced-basis

framework [32].
Efficiency and reliability of approximation are particularly important in the decision contexts in

which reduced-basis methods typically serve. In many cases, we may wish to choose N minimally

such that

Is(P) - sN(P) I Emax, (2.18)

we therefore introduce an error estimate:

AN Is I ) - sN(I) , (2.19)

which is reliable, sharp, and inexpensive to compute. Furthermore, we define the effectivity of our
error estimate as

rN(A) AN(I) (2.20)
s() - SN(P)I

and require that

1 77N(P) p, (2.21)

where p - 1. The left-hand inequality - which we denote the lower effectivity inequality -
guarantees that AN(P) is a rigorous upper bound for the error in the output of interest, while the

right-hand inequality - which we denote the upper effectivity inequality - signifies that AN(p)

must be a sharp bound for the true error. The former relates to reliability; while the latter leads

to efficiency. Our effectivity requirement, (2.21), then allows us to optimally select - on-line - N
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such that

sp) - SN(P) I < AN(P) "=" Emax- (2.22)

In addition to the constraint on the output approximation error (2.18), we may also prescribe
contstraints on the output itself; that is, we may wish to ensure that

smin < s(P) < Smax. (2.23)

We therefore require not only an error bound, AN(p), but also lower and upper output bounds:

s-(p) s(A) 5 s,(,0); (2.24)

we likewise require that s--y) and s+(IL) be reliable, sharp, and inexpensive to compute. We then
require that

smin 8k (p) , s(P) Smax, (2.25)

thereby ensuring that the constraint, (2.23), is met. In many applications, satisfaction of con-
straints such as (2.23) is critical to performance and, more importantly, safety; for example, the
constraints on temperature, deflection, stress, and buckling in (1.30)-(1.33) must clearly be satisfied
to ensure safe operation. Output bounds are therefore of great importance for the reduced-basis
approximations to be of any practical use.

In this work we present rigorous (or Method 1) as well as asymptotic (or Method I) a posteriori
error estimation procedures; the former satisfy (2.21) and (2.24) for all N, while the latter only as
N -- oo. We briefly describe these error estimators in Sections 2.5.1 and 2.5.2. A more detailed
discussion may be found in Chapters 4 and 5.

2.5.1 Method I

Method I error estimators are based on relaxations of the error-residual equation, and are derived
from bound conditioners [21, 37, 47] - in essence, operator preconditioners C(p) that satisfy (i) an
additional spectral "bound" requirement:

1 < (A(p)v, v) < p; (2.26)
(C G)v,v)-

and (ii) a "computational invertibility" hypothesis:

C- 1 (p)= E a (p)C7 (2.27)
iEI(Ai)

so as to admit the reduced-basis off-line/on-line computational stratagem; here, I(p) C {1, ... , I}
is a parameter-dependent set of indices, I is a finite (preferably small) integer, and the Ci are
parameter-independent symmetric, coercive operators. In the compliance case (L = F), the error
estimator is defined as

A N p) =(E~p, C )R~p) ,(2.28)
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where the residual R(p) is defined as

(R(p),v) = (Fv) - (A(p)UN(P),v), (2.29)

- (A(p) (u(p) - UN(1)), v), V V E Y , (2.30)

the output bounds are then given by

s-(P) sN(p) (2-31)

sN(P) SN(P) + AN(I). (2-32)

A more detailed discussion of the bounding properties of our Method I error estimators and the
corresponding off-line/on-line computational procedure, as well as "recipes" for constructing the
bound conditioner C(p), may be found in Chapter 4. The extension of the bound conditioner

framework to the case of noncompliant outputs is addressed in Chapter 5. Numerical results are

also presented in Chapters 4 and 5 for simple problems in heat conduction and linear elasticity,
respectively.

The essential advantage of Method I error estimators is the guarantee of rigorous bounds.
However, in some cases either the associated computational expense is much too high, or there is
no self-evident good choice of bound conditioners. In Section 2.5.2 we briefly describe Method II
error estimators which eliminate these problems, albeit at the loss of absolute certainty.

2.5.2 Method II

In cases for which there are no viable rigorous error estimation procedures, we may employ simple
error estimates which replace the true output, s(p), in (2.19) with a finer-approximation surrogate,
sM(p). We thus set M > N and compute

1
AN,M(P) = - (sM( ) - SN(p)) , (2-33)

T

for some T E (0, 1). Here sM(p) is a reduced basis approximation to s(p) based on a "richer"
approximation space WM D WN. Since the Method II error bound is based entirely on evaluation
of the output, the off-line/on-line procedure of Section 2.4 can be directly adapted; the on-line
expense to calculate AN,M(P) is therefore small. However, AN,M(L) is no longer a strict upper
bound for the true error: we can show [39] that AN,M(P) > 1s0) - sN(Ip) only as N -- oo. The
usefulness of Method II error estimators - in spite of their asymptotic nature - is largely due to
the rapid convergence of the reduced basis approximation.

In Chapter 4 we consider Method II error estimators in greater detail: the formulation and prop-
erties of the error estimators are discussed, and numerical effectivity results for the heat conduction
problem are presented. Numerical results for the linear elasticity and elastic stability problems are
also presented in Chapters 5 and 6, respectively. Method II estimators are also used for numerical
tests in the specific application (microtruss optimization) problems of Chapter 7.

2.6 Extensions

2.6.1 Noncompliant Outputs

In Sections 2.3-2.5 we provide a brief overview of the reduced-basis method and associated error
estimation procedure for the case of compliant outputs, L = F. In the case of more general linear
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bounded output functionals (L f F), we introduce an adjoint or dual problem: for any p E DP,
find O(p) E Y such that

(A(p)v, (p)= -(L, v) , V v E Y . (2.34)

We then choose a sample set in parameter space,

N/ = {, .. , PN12 , (2.35)

where pi E Dt, i = 1,..... , N (N even) and define either an "integrated" reduced-basis approxima-
tion space

WN = span f(U(pn), 0 (pn), n = 1,.. .,N/2} (2.36)

for which the output approximation is given by

SN(p) = (LUN(P)) (2-37)

where uN(p) E WN is the Galerkin projection of u(p) onto WN,

(AAp)uN(p), v) = (F, v) , V v E WN ; (2.38)

or a "nonintegrated" reduced-basis approximation space

WN = span{r=u(pn),n=1, ... , N/2} (2.39)

= span { = '(p), n = 1,..., N/2} (2.40)

for which the output approximation is given by

SN(p) = (L(p), UN(p)) - ((F(p), ON (p)) - (A(p)uN(p),bN (p))) , (2.41)

where uN(p) E WN[ and ON(p) E WNu are the Galerkin projections of u(p) and O(p) onto WNr

and WU, respectively, i.e.,

(A(p)UN (p), v) = (F(i), v), V v E W , (2.42)

(A(p)v,ON(p)) = -(L(p), v), V v E W . (2.43)

As in the compliance case, the approximations uN(p) and 4N(p) are optimal, and the "square"
effect in the convergence rate of the output is recovered. Furthermore, both the integrated and

nonintegrated approaches admit an off-line/on-line decomposition similar to that described in Sec-
tion 2.4 for the compliant problem; as before, the on-line complexity and storage are independent of
the dimension of the very fine ("truth") finite element approximation. The formulation and theory
for noncompliant problems is discussed in greater detail in Chapter 5.

2.6.2 Nonsymmetric Operators

It is also possible to relax the assumption of symmetry in the operator A, permitting treatment of a
wider class of problems [43, 39] - a representative example is the convection-diffusion equation, in
which the presence of the convective term renders the operator nonsymmetric. As in Section 2.3.2,
we choose a sample set SN = Ap1, I.. ,PN}, and define the reduced-basis approximation space WN =

span{(n U(pn),n = 1,..., N}. The reduced-basis approximation is then SN(/) = (L,uN(P))
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where uN(P) E WN satisfies (A(p)UN(P),v) = (Fv), V v E WN, and L = F. Here, uN(p) is
optimal in the sense that

IJU(-) - UN(/L)IJy< i+ i(A) wi~n I~u(,t) -wJIy. (2.44)
a(p) ) WEWN

The off-line/on-line decomposition for the calculation of the output approximation is the same as
for the symmetric case, with the exception that AN and the A' are no longer symmetric.

The a posteriori error estimation framework may also be extended to nonsymmetric problems.
In the Method I approach, the bound conditioner C(p) must now satisfy

(A' (p)v, v) (2.45)
- (CAp)v, v)

where As -- A AT (p)) is the symmetric part of A(p); the procedure remains the same as
for symmetric problems. In the Method II approach, since sN(P) is no longer a strict lower bound

for s(p), the error estimators and output bounds for noncompliant outputs (see Chapter 5) must

be used.

2.6.3 Noncoercive Problems

There are many important problems for which the coercivity of A is lost - a representative example

is the Helmholtz, or reduced-wave, equation. For noncoercive problems, well-posedness is now

ensured only by the inf-sup condition: there exists a positive OA, 13(p), such that

0 <( A (p)w )
0 < / A /3 (p) = inf sup , V p E 'DP. (2.46)

wEY I|w||Y ||v||Y

Two numerical difficulties arise due to this "weaker" stability condition.

The first difficulty is preservation of the inf-sup stability condition for finite dimensional ap-

proximation spaces. Although in the coercive case restriction to the space WN actually increases
stability, in the noncoercive case restriction to the space WN can easily decrease stability: the rel-
evant supremizers may not be adequately represented. Loss of stability can, in turn, lead to poor
approximations - the inf-sup parameter enters in the denominator of the a priori convergence
result. However, it is possible to resolve both of these difficulties by considering projections other
than standard Galerkin, and "enriched" approximation spaces [26, 43]. The second numerical diffi-
culty is estimation of the inf-sup parameter, important for certain classes of Method I a posteriori
error estimation techniques. In particular, 3A(p) can not typically be deduced analytically, and
thus must be approximated. However, some ideas presented in Chapters 4 and 5 may be used to
obtain the necessary approximation (more specifically, a lower bound) to the inf-sup parameter;
this is discussed briefly in Chapter 8.

Method II techniques are also appropriate [39]: in particular, Method II approaches do not

require accurate estimation of the inf-sup parameter, and thus one need be concerned only with

stability in designing the reduced-basis spaces [39].

2.6.4 Eigenvalue Problems

The eigenvalues of appropriately defined partial-differential-equation eigenproblems convey critical

information about a physical system: in linear elasticity, the critical buckling load; in the dynamic
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analysis of structures, the resonant modes; in conduction heat transfer, the equilibrium timescales.
Solution of large-scale eigenvalue problems is computationally intensive: the reduced-basis method
is thus very attractive.

We first consider the extension of our approach to (weakly nonlinear) symmetric positive definite
eigenvalue problems of the form

(A(t) (p), v) = A(p)(M(p)(p), v) , V v E Y , (2.47)

where A and M are symmetric, continuous, and coercive; these assumptions on the operators imply
that the eigenvalues A are real and positive. We suppose that the output of interest is the minimum
eigenvalue s(p) = Ai(p).

One approach [23, 39, 43 utilizes a reduced-basis predictor and "Method I" error estimator
similar to that for compliant symmetric problems except that (i) the reduced-basis space includes
eigenfunctions associated with the first (smallest) and second eigenvalues A1(p) and A2 (1p), respec-
tively, and (ii) the error estimator is only asymptotically valid. However, in practice, there is very
little uncertainty in the asymptotic bounds such that the output bounds are valid even for N = 1.
Furthermore, the effectivities are shown to be very good both in theory [23] and in numerical tests
[39, 431.

A second approach [39] makes use of Method II error estimators, and no longer requires an
estimate for the second eigenvalue. The reduced-basis space therefore includes eigenfunctions asso-
ciated with only the smallest eigenvalue. The resulting bounds are asympotic, and the effectivity
can be proven [39] to be bounded from above and in fact approach a constant as N -- oo.

In Chapter 6, we consider a (strongly nonlinear) eigenvalue problem (in weak form)

(A(p) (p), v) = A(p)(B(p; u(p)) (p), v) , V v E Y, (2.48)

where u(p) satisfies

(A(p)u(p), v) = (F, v) , V v E Y ; (2.49)

(2.48)-(2.49) represent the equations governing the stability of elastic structures. Here, A(p) is
symmetric, continuous, and coercive, while B(p; v) is linear in v for v E Y, and is symmetric,
continuous, positive semi-definite. The output of interest is the smallest eigenvalue s(P) = A1 (A)
which corresponds to the critical buckling load; we formulate in Chapter 6 the reduced-basis ap-
proximation and Method II error estimation procedures for computing the output bounds.

2.6.5 Parabolic Problems

It is also possible to treat parabolic partial differential equations of the form (M (p)ut(p), v) =

(A(p)u(p), v); typical examples are time-dependent problems such as unsteady heat conduction
- the "heat" or "diffusion" equation. The essential new ingredient is the presence of the time
variable, t.

The reduced-basis approximation and error estimator procedures are similar to those for non-
compliant nonsymmetric problems, except that now the time variable is included as an additional
parameter. Thus, as in certain other time-domain model-order-reduction methods [5, 45], the basis
functions are "snapshots" of the solution at selected time instants; however, in [43] an ensemble of
such series is constructed corresponding to different points in the non-time parameter domain D.
For rapid convergence of the output approximation, the solutions to an adjoint problem - which
evolves backward in time - must also be included in the reduced-basis space [43].
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For the temporal discretization method, many possible choices are available. The most appro-

priate method - although not the only choice - is the discontinuous Galerkin method [23]. The

variational origin of the discontinuous Galerkin approach leads naturally to rigorous output bounds

for Method I a posteriori error estimators; the Method II approach is also directly applicable. Un-

der our affine assumption, off-line/on-line decompositions can be readily crafted; the complexity

of the on-line stage (calculation of the output predictor and associated bound gap) is, as before,
independent of the dimension of Y.

2.6.6 Locally Nonaffine Problems

An important restriction of our methods is the assumption of affine parameter dependence. Al-
though many property, boundary condition, load, and even geometry variations can indeed be

expressed in the required form (2.2) for reasonably small QA, there are many problems - for

example, general boundary shape variations - which do not admit such a representation. One

simple approach to the treatment of this more difficult class of nonaffine problems is (i) in the

off-line stage, store the (, = u(p,), and (ii) in the on-line stage, directly evaluate the reduced-

basis stiffness matrix as (A(p)Cj, Ci). Unfortunately, the operation count (respectively, storage) for
the on-line stage will now scale as O(N 2 dim(Y)) (respectively, O(N dim(Y)), where dim(Y) is the

dimension of the truth (very fine) finite element approximation space: the resulting method may no

longer be competitive with advanced iterative techniques; and, in any event, "real-time" response

may be compromised.
In [46], an approach is presented which addresses these difficulties and is slightly less general

but potentially much more efficient. In particular, it is noted that in many cases - for example,
boundary geometry modification - the nonaffine parametric dependence can be restricted to a

small subdomain of Q, Q1 1 . The operator A can then be expressed as an affine/nonaffine sum,

(A(p)w,v) = (Ai(up)w,v) + (Aii(p)w,v) . (2.50)

Here AJ, defined over Qb - the majority of the domain - is affinely dependent on A; and Aii,
defined over QJJ - a small portion of the domain - is not affinely dependent on P. It immediately

follows that the reduced-basis stiffness matrix can be expressed as the sum of two stiffness matrices
corresponding to contributions from AI and AII respectively; that the stiffness matrix associated
with A, admits the usual on-line/off-line decomposition described in Section 2.4; and that the
stiffness matrix associated with AII requires storage (and inner product evaluation) only of (j n
(Cj restricted to QII). The nonaffine contribution to the on-line computational complexity thus
scales only as O(N 2 dim(Yq 1 1 )), where dim(YQ1 1 ) refers (in practice) to the number of finite-
element nodes located within QJH - often extremely small. The method is therefore (almost)
independent of dim(Y), though clearly the on-line code will be more complicated than in the
purely affine case.

As regards a posteriori error estimation (see [46]), the nonaffine dependence of A (even locally)
precludes the precomputation and linear superposition strategy required by Method I (unless do-

main decomposition concepts are exploited [22]); however, Method II directly extends to the locally
nonaffine case.
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Chapter 3

Reduced-Basis Output
Approximation:
A Heat Conduction Example

3.1 Introduction

In Chapter 2 we observed that the field variable is not some arbitrary member of the infinite-

dimensional solution space, but rather resides on a much lower-dimensional manifold induced by the

parametric dependence; this, we noted, is the essence of the reduced-basis approximation method.

In this chapter, we present a more detailed discussion of the reduced-basis output approximation

method for linear, coercive problems, illustrated in the context of steady-state heat conduction.

We focus particularly on the global approximation spaces, a prior convergence theory, and the

assumption of affine parameter dependence. Numerical results for several simple problems illustrate
the rapid convergence of the reduced-basis approximation to the true output, as predicted by the

a priori theory. For simplicity of exposition, we consider only the compliance case in which the

inhomogeneity (loading) is the same as the output functional; noncompliant outputs are addressed
in Chapter 5.

We begin by stating the most general problem (and all necessary hypotheses) to which the
techniqes we develop will apply.

3.2 Abstraction

We consider a suitably regular (smooth) domain Q C lRd, d = 1,2, or 3, and associated function
space Y C (H 1 (Q))P, where

H'(Q) ={v I v E L 2 (Q), Vv E (L2(q))d}, (3.1)

and

L2(Q) E v j v2 < oo. (3.2)

The inner product and norm associated with Y are given by (-, -)y and 11-|1y = (., .)Y, respectively.

The corresponding dual space of Y, Y' is then defined as the set of all functionals F such that the
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dual norm of F, defined as,

F y/ SUP(F, v)(3)

is bounded; here, (, -) y/ ( -, .)y is the associated duality pairing. As in the previous chapters,
we also define a parameter set DT1 c RP, a particular point in which will be denoted p. Note that
Q is a reference domain and hence does not depend on the parameter.

We now introduce a distributional (second-order partial differential) operator A(P) : Y -+ Y';
we assume that A(p) is symmetric,

(A(/A)w, v) = (A(p)v, w), V w, v E Y, V pAE D1', (3.4)

continuous,

(A(p)w,v) -yA(p)|Iw||yI|vj|y -yAi|wjy|Ivjy, V w,v E Y V M E Dt, (3.5)

and coercive,

0<f3A I3A(p)= inf (A( 2)w,w), VwEY, Vp E1DP. (3.6)
WEY I1wIIY'

We also introduce the bounded linear forms F(p) E Y' and L(I) E Y', and assume that they are
"compliant,"

(L(p), v) = (F(p), v), V v E Y; (3.7)

noncompliant outputs are considered in Chapter 5.

We shall now make certain assumptions on the parametric dependence of A. In particular, we
shall suppose that, for some finite (preferably small) integer QA, A may be expressed as

QA

A(A) = E0( p ) A' , V p E D, (3.8)
q=1

where &q: D' -+ R and Aq: Y -+ Y'. As indicated in Section 2.4, this assumption of "separability"
or affine parameter dependence is crucial to computational efficiency.

We shall also suppose that, for some finite (again, preferably small) integer QF, F(p) may be
expressed as

QF

F(p) = E (PF(p) Fq VA E D11, (3.9)
q=1

where the (p q: DA --+ R and Fq E Y'. However, for simplicity of exposition we shall assume in
Sections 3.4 and 3.5 that QF = 1 and 4FVQ) 1.

For simplicity of exposition, we shall (at present) assume that F - and therefore L - is inde-
pendent of /A; affine dependence of the linear forms is readily admitted, however, and is addressed
in Chapter 5.

Our abstract problem statement is then: for any / E D1 C RP, find s(p) E R given by

s(p) = (L,u(p)), (3.10)

'The reference domain formulation is discussed in greater detail in Section 3.4.

26



where u(p) E Y is the solution of

(A(p)u(p), v) = (F, v), V v E Y. (3.11)

In the language of Chapter 1, (3.11) is our partial differential equation (in weak form), p is our
parameter, u(p) is our field variable, and s(p) is our output.

In actual practice, Y is replaced by an appropriate "truth" finite element approximation space
YK of dimension A/ defined on a suitably fine truth mesh. We then approximate u(p) and s(p) by

Ur(p) and sg(p), respectively, and assume that Yg is sufficiently rich such that ug(p) and sg(p)
are indistinguishable from u(p) and s(p).

3.3 Formulation of the Heat Conduction Problem

In this section we present the strong form of the equations governing heat conduction, from which
we derive the weak statement; we then reformulate the problem in terms of a reference (parameter-
independent) domain, thus recovering the abstract formulation of Section 3.2. In this and the
following sections, repeated indices imply summation, and, unless otherwise indicated, indices take
on the values 1 through d, where d is the dimensionality of the problem. Furthermore, in this
section we use a bar to signify a general dependence on the parameter p (e.g., O Q(p), or f - p)
particularly when formulating the problem in a "non-reference" domain.

3.3.1 Governing Equations

We now present the governing equations and derive the weak statement for the case of a homoge-
neous body; we merely state the weak statement for the more general case of an inhomogeneous
body.

Strong Form

We consider the transfer of heat in a homogeneous body 0 C Rd with boundary F and symmetric
thermal diffusivity tensor Rij. The field variable t - which here represents the temperature -
satisfies the partial differential equation

a (ijkL, +I=0 in(Q, (3.12)

with boundary conditions

U = 0 , on PD, (3-13)

r__ 6 = f , on PN , (3.14)

here, b is the rate of heat generated per unit volume, f is the prescribed heat flux input on the
surface FN, and eg is the unit outward normal.

27



Weak Form

We now derive the weak form of the governing equations. To begin, we introduce the function
space

V = { E (H 1 (0))P=' I = 0 on D} ,

and associated norm

I ; I IfY- = if
d 2 d2 1/2

z(t) dO

(3.15)

(3.16)

Multiplying (3.12) by a test function V E Y and integrating over 0, we obtain

fn bdQ , (3.17)
- _ __dQ=

Integrating by parts and applying the divergence theorem yields

aI d + J v uV~ij i'j O ij L Ox VEY. (3.18)

Substituting (3.18) into (3.17), and using (3.13), (3.14), and the fact that iJ = 0 on PD, we obtain
as our weak statement

(Aii) = (P, ) , V i E Y , (3.19)

where

('Afh, ) =i -fn at _ atj
(P, )

(f,)= i;-

S(Ff, ) + (Fb,)

V f dr,

(3.20)

(3.21)

(3.22)(Pb, V) = fi i dO .Q

We now generalize (3.19)-(3.22) to the case in which 0 is inhomogeneous.
consists of R homogeneous subdomains nY such that

Q= U '
f=1

Assuming that 0

(3.23)

(here, Q denotes the closure of Q) the weak statement takes the form of (3.19) where

( w,;) = E. dQ

(F7,) = (Ff,V) + (Fb V) ,

and
R

(F =1

_
D f7 dP,

R

r=1
_ dO;
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Ri a dQ= -

here,

(3.24)

(3.25)

(3.26)



here, R - is the thermal diffusivity tensor in Q', and ]p is the section of FN in Q . The derivation of

(3.24)-(3.26) is similar to that for the homogeneous case, but for the use of additional temperature
and flux continuity conditions at the interfaces between the Qr.

3.3.2 Reduction to Abstract Form

In this section, we reformulate the problem defined by (3.24)-(3.26) so as to recover the abstract

formulation of Section 3.2.

Affine Geometric Mapping

To begin, we further partition the subdomains 0', f = 1,... , R, into a total of R subdomains
r = 1,..., R such that there exists a reference domain Q = UrUf1if where, for any Er

r = 1, ... , R, its image x E qr is given by

S 1<r<R; (3.27)

we thus write
S- - -GjI(A) (3.28)

and

_= g(1; t) = QP) + g(i), (3.29)

where x E Q, f E Q, GQ() E ]Rdxd is a piecewise-constant matrix, g(p) E Rd is a piecewise-
constant vector, and 9(p): Q -+ Q is a piecewise-affine geometric mapping. We then denote the
boundary of Q as F, where F = (pt; F).

Reference Domain Formulation

We now define the function space Y as Y(Q) = Y(g(z; Q)) = Y(Q) such that

Y = {v E (H())P l I v = 0 on FD} , (3-30)

and for any function Fv E Y, we define w E Y such that w(x) = v(9-(p; x)). Furthermore, we
have

dO = det G-1() dQ , (3.31)

df = I-2() e' dF, (3.32)

where et is a unit vector tangent to the boundary F, and

d e 1/2

GQ()el K= (Gije) (3.33)
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It then follows that (A(u)w, v) = (Ai-D, Ji) for A as in (3.24) and A(p) given by

R

r=1

R

r=1

(Gii
(Dw Yr

i/j

OW(
det(G a)) v dQ

(3.34)

V W, v E Y , (3.35)

and (F(jt)w, v) = (Fm, iv) for P as in (3.25) and F(p) given by

(F(p), v) = (Ff, v) + (Fb, v) (3.36)

R

(Ff, V) =
r=1 N

R

(Fb, v) =
r=1

v dQ . (3.37)

The abstract problem statement of Section 3.2 is then recovered for

R aw av d
= j x -,'(p) dQ

r= 1 ( )xi ( xi

-(Fb (A), V) + (F1 (p),v)

V w,v Y ,

where

R

= = fo(Fb Q),v)

(Ff(p), v)

br (p)v dQ

R

= zifr (p)v dI;
r=1 N

here K, (p) is given by

(y) = G j,(p) ij Gjrj,(tL) det(Cr( I))-,l

and bT(A), f'(p) are given by

br ([) = br det (Gr(p))-

fr(P) = y r (p))- le t

Furthermore, clearly we may define

(A0(ijr)w, v) =
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(A(p)w, v)

where

(A(p)w, v)

(F(p), v)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

Dv aw
__dQ

D9xi D9xi
(3.45)

G g- (p) 9Vdet (Gr -1dQ,

Rri1jIG (1A)it ji,

(r T,)-1et )v A' , Ifr det (!2r (,)) - 1

E)q(ijr) r' .([1))



for 1 <i,j' d, 1 <r<R, andq:{1,...,d}2 x {1, ..., R}- {1, ... , Q}; and

q'(rX) br(p) for x =1, fj v forX=1, (3.46)

fr(p) forX=2, v for X = 2 ,

for 1 Kr R, and q': {1, ... , R} x {1, 2} -+ {1,..., QF}. Note however that due to the symmetry

of Kij (P), QA can in fact be taken to be d(d + 1)R/2 rather than d2 R; furthermore, QA and QF
can be further reduced by eliminating elements which are identically zero.

3.4 Model Problems

We indicate here several examples which serve to illustrate our assumptions and methods. Examples

1 and 2 are simple one-dimensional instantiations of the abstract problem formulation of Section 3.2,
while Examples 3 and 4 are two-dimensional instantiations of the heat conduction problem of

Section 3.3.

3.4.1 Example 1

lateral heat loss/gain

du/dx = -1 _ _= 0

x=0 x=1

Figure 3-1: Example 1: Heat diffusion in a rod with lateral heat loss/gain.

We consider the flow of heat along the rod shown in Figure 3-1 with both diffusion d2u/dx2

along the rod and heat loss (or gain) across the lateral sides of the rod. A constant heat flux is

applied at x = 0, and the temperature is zero at x = 1. The steady-state temperature distribution,
u, satisfies

d 2 + pu = 0 (3.47)

on the domain Q - (0, 1) with Neumann and Dirichlet boundary conditions

dx

u = 0, at x = 1,

respectively. Our output of interest is

s(p) = u(bt)Ixo for p E DY = [0.01, 104]. (3.49)

Our problem can then be formulated as: given a p E D1' C RP=l, find s(p) = (L, u(p)), where

u(p) E Y = {v E H 1 (Q) I vIx=1 = 0} is the solution to (3.11); for this example, (L, v) = (F, v) for
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(A(p)w,v) =
J1 dv dw 1S--+L ] vw,
0 dxdx 0I

V w,V E Y

and
(F, v) = vlx=o, V v E Y.

The abstract problem statement of Section 3.2 is then recovered for QA = 2, and

61(p) = 1,

=2 P7

(Alw, v) =
J01

dv dw
dx dx

(A2w, v) = V W.

3.4.2 Example 2

lateral heat loss/gain

du/dx = - I
X = 0

I u =O
X = I

Figure 3-2: Example 2: Heat diffusion in a rod with lateral heat loss/gain and convective cooling.

We now consider a problem similar to Example 1 but with convective cooling, as shown in
Figure 3-2, but with convective cooling at x = 1. The temperature distribution, u, satisfies

d2 U
dX2 + ILU = 0 (3.54)

on the domain Q = (0, 1) with Neumann and Robin boundary conditions

du = -1,
ax

d0

at x = 0,

at x = 1,

(3.55)

respectively. Our output of interest is

sGp) = u(P)IX= 0 for p = (p , 2) E D" [1, 1000] x [0.001, 0.1].

Our problem can then be formulated as: given a p E D" C RP=2 , find s(p) = (L, u(p)), where
u(p) E Y = H1(Q) is the solution to (3.11); for this example, (L, v) = (F, v) for all v E Y,

(A(p)w, v) = I 1 dv dw0 dx dx 0 V W + p2 (Vw)I| 1 ,

and
(F,v)=vIx o, VvEY
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all v E Y,

(3.50)

(3.51)

(3.52)

(3.53)

(3.56)

V w, V E Y, (3.57)

(3.58)



The abstract problem statement of Section 3.2 is then recovered for Q = 3, and

61(p)= 1,

( -(, Itl,

E)(2 t [12

(A' w, v)

(A2 w, v) =

I 1 dv dwo dx dx

Iv w,

(3.59)

(3.60)

(3.61)(A3W,v) = (Vw)I_ .

3.4.3 Example 3

rD r

1

(a)

Figure 3-3: Example 3: (a) Parameter-dependent
and (b) a reference domain.

(b)

rectangular domain with internal heat source;

We now consider the flow of heat in a rectangular region containing an internal heat source,
shown in Figure 3-3(a). In particular, we consider the problem

-1
-V2 _I

t '
V2 = a

a,
a (3.62)

in a domain f Q (0, 1) x (0, t) with homogeneous Dirichlet conditions on the boundary,

ii = 0, on I'D - (3.63)

Our output of interest is

)= 1 d
t ina~i

for yjt {f} E D1 - [Tmin, 1.0] = [0.1,1.0].

Our problem can then be formulated as: given a p E DPI C

(E Y= {i E H 1 (0) I ;-pD = 0} is the solution to

(A f-, f)) = (F, V) , V E Y ;

(3.64)

RP=1, find s(p) = (L,ii) where

(3.65)

here, (L, v) = (F, ;) for all V E Y,

a+ ai dQ ,
+ aJ2 a822d V 17, i3 E Y,
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and

= d, V E . (3.67)

We now map our parameter-dependent domain Q onto a reference domain Q = (0,1) x (0, 1),
shown in Figure 3-3(b). The affine mapping G( )(p): Q -* Q is then given by (3.27) for R = 1,

91(p) = 0, and

1 0~
_G1GL) - I 1 (3.68)

Furthermore, we have

M = detG-1(p) dQ = TdQ, (3.69)

d' = j_- 1(pL) ttdF =dF . (3.70)

We may now re-formulate our problem in terms of our reference domain. Our problem is then:
find s(p) = (L,u(pt)) where u(p) E Y = {v E H1(Q) I virD = 0} is the solution to (3.11); for this
example, (L, v) = (F, v) for all v E Y,

-r Dv if Dv Ow
(A(1I)w, v) = 9 dQ + d, V w, v E Y (3.71)k &xi Ox1  t aOx 2 0X2

and

(F, v)= v dQ, V v E Y. (3.72)

The abstract problem statement of Section 3.2 is then recovered for P = 1, Q = 2, and

W(p) = , (Alw, v) = Ow (3.73)
f D x xi'

2 _ 2W, V) = Ow (3.74)
pA09X2 0X2

3.4.4 Example 4

Figure 3-4: Example 4: Parameter-dependent domain undergoing both "stretch" and "shear."

In this example, we again consider the homogeneous rod and loading of Example 3, but in
addition to the thickness f, we allow the angle 5 to vary, as shown in Figure 3-4. The output of
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interest is again the average temperature in the domain Q:

s(IL) = , for p = {f, } E D11 = [0.1, 1.0] x [00, 450] . (3.75)

Our problem can then be formulated as: given a p E D1' C RP=2 , find s(p) = (L,ii), where

U E = {IV E H 1 (Q) 1 Vlp, = 0} is the solution to (Aii, v) = (P, v), V V E I; here, (L, i) = (i)
for all V E Y, and A, F are given by (3.66), (3.67), respectively.

We again map our parameter-dependent domain f onto a reference domain Q = (0, 1) x (0, 1).
The affine mapping 9(z)(p): Q -+ Q is then given by (3.27) for R = 1, gl(p) = 0, and

1 
0 .!21(P) = tan a 1 .(3.76)

Furthermore, we have

dO = det G- 1(p) dQ = i dQ,

dI' = Ig-1 (ft) d' = i d'

(3.77)

(3.78)

We may now re-formulate our problem in terms of the reference domain. Our problem is
then: find s(p) = (L, u(p)) where u(p) E Y = Hod(Q) is the solution to (3.11); for this example,
(L, v) = (F, v) for all v E Y,

(A(p)w, v) = 4 2

V v E Y ,

and the effective diffusivity tensor rij (p) = Gii (p) Rkiy Gjj, (p) det G- (p) is given by

-tan a

- tan 1
1 + tan2 5J

t-

The abstract problem statement of Section 3.2 is then recovered for P = 2, QA = 3,

E)1 (p) = f ,

E 2 1 + tan2 a,

E3( = -tan a,
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V w, v E Y ,

(F,v) = - j v dR,

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)

(3.84)

09 ij (p-) awdG,
09xi 09xj



and

(Alw,v) = j v w dQ (3.85)

f2X1 D_ om

(A 2w,v) = a/ w dQ, (3.86)
f 09X2 X2

(A3W, V) = v + Ow vw . (3.87)
= \x1x2 aX2OX 1

3.5 Reduced-Basis Output Approximation

We recall that in this chapter, we assume that A(M) is continuous, coercive, symmetric, and affine
in y. We also assume for simplicity that L and F are independent of parameter, and L = F.

3.5.1 Approximation Space

As indicated in Chapter 2, to approximate u(p), and hence s(p), we need not represent every
possible function in Y; instead, we need only approximate those functions in the low-dimensional
manifold "spanned" by u(p). We therefore introduce a sample in parameter space,

SN = fp1, -- - , PN 1(3.88)

where Pn C D" E RP, n = 1, ... , N. We then define our Lagrangian [37] reduced-basis approxima-
tion space as

WN = span{(n u(pn), n = 1, ... , N}, (3.89)

where u(pA) E Y is the solution to (2.2) for p = Pn. In actual practice, Y is replaced by an
appropriate "truth" space - a finite element approximation space defined on a suitably fine truth
mesh - of dimension Ar, where P1 is generally quite large.

Our reduced-basis approximation is then: for any [z E D', find

SN((p) = (L, uN (P)), (3.90)

where uN(p) E WN is the Galerkin projection of u(p) onto WN,

(A(p)UN(M), v) = (F, v), V v E WN- (3.91)

3.5.2 A Priori Convergence Theory

Optimality

We consider here the rate at which uN(g) and SN(p) converges to u(p) and s(p), respectively. To
begin, it is standard to demonstrate the optimality of uN(P) in the sense that

Iu(,) - UN(/)y Y ) inf Iu(P) - WNIY (3.92)3A(A) WNEWN
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To prove (3.92), we first note that since (Au(), v) = (L, v), Vv E Y and WN c Y, it follows that

(Au(p), v) = (L, v), Vv c WN. (3-93)

Subtracting (3.91) from (3.93), we obtain

(A(u(p) - UN(P)),V) = 0, V v E WN, (3.94)

which states that the error, u(p) - UN(P), is orthogonal to all members of WN. We then note that
for any WN = UN + VN E WN where VN # 0,

(A(p)(u - wN), (u - wN)) = (A(p)((u - UN) - VN), ((u - UN) - VN)) (3.95)

= (A(p)(u - UN), (U - UN)) - 2(A(p)(u - UN), VN) + (A(P)VN, VN)

= (A(p)(u - UN), (U - UN)) + (A(p)VN, VN)

> (A(p) (u - UN), (U -UN))

from symmetry, Galerkin orthogonality, and coercivity; note that the [-dependence has been omit-
ted. It then follows that

(A(p)(u(p) - UN(p)), (U([) - UN(P))) = inf (A(1)(u(p) - VN), (U(P) - VN))- (3.96)
VNEWN

Furthermore, from (3.5) we have

(A(p)(u(p) - UN(A)), (U(u) - UN(p)))1/2 yA(I) inf IIU(II) - VNI Y (3-97)
VNEWN

and from (3.6) we have

/3fA(/)IIU(p) - UN()Iy (A(p)(u(pt) - UN(P)), (U(P) - UN()))1/2(

optimality ((3.92)) then follows from (3.97) and (3.98). Furthermore, for our compliance output,

s(A) - sN(A) = (L, u () - UN(p)) (3-99)
= (A(p)u(tt),u(p)-UN(P)) (3.100)

= (A(p)(u(p) - UN(p)), (U(P) - UN(P))) (3-101)

YA(P)|IU(I) - UN(pA)I 2 (3.102)

from (3.10), (3.11), symmetry, Galerkin orthogonality, and (3.5). Therefore, not only is UN(I) the
best approximation among all members of WN (in the sense of (3.92)), but the output approxima-
tion, SN(p), converges to s(p) as the square of the error in UN(I)-

Best Approximation

It now remains to bound the dependence of the error in the best approximation as a function of
N. At present, the theory [27, 28] is restricted to the case in which P = 1, DP = [0, pmax], and

(A(p)w, v) = (A~w, v) + p(Alw, v) (3.103)
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where A0 is continuous, coercive, and symmetric, and A' is continuous, positive semi-definite
((A'w, w) > 0, V w E Y), and symmetric. This model problem (3.103) is rather broadly relevant,
for example to variable orthotropic conductivity, variable rectilinear geometry, variable piecewise-
constant conductivity, and variable Robin boundary conditions.

Following [27, 28], we suppose that the it, n = 1,..., N, are logarithmically distributed in the
sense that

n -
In (An+ 1) = N - . In (A max + 1), n = 1, ... , N, (3.104)

where \ is an upper bound for the maximum eigenvalue of A' relative to A 0 . It can be shown [27]
that, for N > Ncrit - e ln(A /max + 1),

inf I||u(pt) - wN Y ly:! (I + pmax AI u( I lY exp ,V pz E Dt . (3.105)
WNEWN INcrit -1)

We observe exponential convergence, uniformly (globally) for all p in D, with only very weak
(logarithmic) dependence on the range of the parameter (pmax). (Note the constants in (3.105) are
for the particular case in which (-, -)y = (A0 -, -).)

The proof [27, 28] exploits a parameter-space (non-polynomial) interpolant as a surrogate for
the Galerkin approximation. As a result, the bound is not always "sharp": we observe many
cases in which the Galerkin projection is considerably better than the associated interpolant; op-
timality (3.92) chooses to "illuminate" only certain points pu, automatically selecting the best
approximation among all (combinatorially many - i.e., N!) possibilities, whereas conventional in-
terpolation methods are "obligated" to use all of the points p,,. We thus see why reduced-basis
state-space approximation of s(p) via u(p) is preferred to simple parameter-space interpolation of
s(p) ("connecting the dots") via (p, s(pn)) pairs. We note, however, that the logarithmic point
distribution (3.104) implicated by our interpolant-based arguments is not simply an artifact of the
proof. We present in Figure 3-4 the maximum relative error EN(t.) over D , i = 1, .. . , 4, for SN(A)

calculated using the logarithmic distribution (3.104), a uniform distribution,

/t = n max 1 < n < N (3.106)N - 1

and a Chebychev distribution,

-=max 1 + cos 2n 1 )7r ; (3.107)

we observe that the logarithmic distribution performs considerably better than the other more
obvious candidates.

The results presented in Figure 3-5 for Example 1 (P = 1) were obtained using "deterministic"
grids; however, we expect that as P increases, tensor-product grids become prohibitively profligate.
Fortunately, the convergence rate is not too sensitive to point selection: the theory only requires a
log "on the average" distribution [27]. We present in Figure 3-6 the maximum relative error EN(p)
over Dl, i = 1, ..., 4, for SN() calculated using the logarithmic grid (3.104), a random logarithmic
distribution, and a random uniform distribution. We observe similar exponential behavior even
for the random point distributions. We also observe that, for large ranges of the parameter, the
"log-random" distribution generally performed better than the logarithmic grid; this will prove
particularly significant in higher dimensions (P > 1).

The result (3.105) is certainly tied to the particular form (3.103) and associated regularity of
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u(p). However, we do observe similar exponential behavior for more general operators; and, most
importantly, the exponential convergence rate degrades only very slowly with increasing parameter

dimension, P. We present in Figures 3-7, 3-8, and 3-9 the maximum relative error EN(p) as a
function of N, at 100 randomly selected points p in D, for Examples 2, 3, and 4, respectively. In
all three cases, the M, are chosen "log-randomly" over D: we sample from a multivariate uniform
probability density on log(p). This is particularly important for problems in which P > 1 (such as
Examples 2 and 4) since tensor-product grids are prohibitively profligate as P increases. We observe
that the error is remarkably small even for very small N; and that very rapid convergence obtains
as N -+ o0. We do not yet have any theory for P > 1, but certainly the Galerkin optimality plays

a central role, automatically selecting "appropriate" scattered-data subsets of SI and associated
"good" weights so as to mitigate the curse of dimensionality as P increases. Furthermore, we observe
that the log-random point distribution is important, as evidenced by the faster convergence (versus
the non-logarithmic uniform random point distribution) shown in Figures 3-7, 3-8, and 3-9.
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3.5.3 Off-Line/On-Line Computational Procedure

The theoretical and empirical results of Sections 3.5.1 and 3.5.2 suggest that N may, indeed, be
chosen very small. We now develop off-line/on-line computational procedures that exploit this
dimension reduction.

We first express our approximation uN(p) to be a linear combination of the basis functions,

N

UN(A) = UN j () (j (3.108)
j=1

where uN(p) E RN; we then choose for test functions v = (j, i = 1,... ,N. Inserting these
representations into (3.91) yields the desired algebraic equations for uN(I) E RN

AN (A) !kN (A) = , (3-109)

in terms of which the output can then be evaluated as

SN(A) = N (p)N . (3-110)

Here AN(#) ]RNxN is the symmetric positive-definite (SPD) matrix with entries

ANij0J0 =(A(1_)(j, (), 1 i,j N , (3.111)

EN E RN is the "load" (and "output") vector with entries

FNji a(F, (i), 1<5i<iN , (3.112)

and LN = EN. We now invoke (3.8) to write

Q
ANij(1u) = (A(p)(j, i) L 6 (p) (AI(j, (i) , (3-113)

q=1
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or
Q

AN (P) S E NQ() , (3.114)
q=1

where the 4 E RNxN are given by

A , 1 i, j N, 1< q Q . (3.115)

The off-line/on-line decomposition is now clear. In the off-line stage, we compute the u(Pn) and
form the A q and EN: this requires N (expensive) "A" finite element solutions and O(QN 2 ) finite-
element-vector inner products. In the on-line stage, for any given new P, we first form AN(I)
from (3.113), then solve (3.109) for UN 0p), and finally evaluate SN(I) = kN(p)FN: this requires
O(QN 2 ) + O(2N3 ) operations and O(QN 2 ) storage.

Thus, as required, the incremental, or marginal, cost to evaluate sN(p) for any given new
p -- as proposed in a design, optimization, or inverse-problem context - is very small: first,
because N is very small, typically 0(10) - thanks to the good convergence properties of WN; and
second, because (3.109) can be very rapidly assembled and inverted - thanks to the off-line/on-line
decomposition (see [7] for an earlier application of this strategy within the reduced-basis context).

For the model problems discussed in this chapter, the resulting computational savings relative to
standard (well-designed) finite-element approaches are significant.
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Chapter 4

A Posteriori Error Estimation:
A Heat Conduction Example

4.1 Introduction

In Chapter 3 we ascertained that sN(p) can, in theory, be obtained very inexpensively, and that N
can, in theory, be chosen quite small. However, in practice, we do not know how small N can (nor

how large it must) be chosen: this will depend on the desired accuracy, the selected output(s) of

interest, and the particular problem in question. In the face of this uncertainty, either too many or

too few basis functions will be retained: the former results in computational inefficiency; the latter

in unacceptable uncertainty. We thus need a posteriori error estimators for sN([t)-

In this chapter we develop methods for the a posteriori estimation of the error in reduced-basis

output approximations. We present two general approaches for the construction of error bounds:

Method I, rigorous a posteriori error estimation procedures which rely critically on the existence
of a "bound conditioner" - in essence, an operator preconditioner that (i) satisfies an additional
spectral "bound" requirement, and (ii) admits the reduced-basis off-line/on-line computational
stratagem; and Method II, a posteriori error estimation procedures which rely only on the rapid
convergence of the reduced-basis approximation, and provide simple, inexpensive error bounds,
albeit at the loss of complete certainty. The general Method I approach and several "recipes" for
the construction of bound conditioners are presented in Section 4.2. The Method II is presented in

Section 4.5.

As in Chapter 2, we introduce an error estimate

AN L Is(,) - sN()I , (4.1)

and define the effectivity of our error estimate as

s(M) - sN)(

we recall that for reliability and efficiency, the effectivity must satisfy

1 < TIN() p , (4.3)
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where p is 0(1). In addition, we require lower and upper output bounds

sN N -

which are reliable, sharp, and inexpensive to compute. In this chapter, we continue to assume that

A is continuous, coercive, symmetric, and affine in p; and that F and L are p-independent, and
(L, v) = (F, v) for all v E Y.

We now present the general error estimation (and output bound) procedure for both Method I
and Method II.

4.2 Method I: Uniform Error Bounds

The approach we describe here is a particular instance of a general "variational" framework for a
posteriori error estimation of outputs of interest. However, the reduced-basis instantiation described
here differs significantly from earlier applications to finite element discretization error [24, 25] and
iterative solution error [35] both in the choice of (energy) relaxation and in the associated computa-
tional artifice; furthermore, the "bound conditioner" formulation presented here is a generalization
of more recent work [39, 43] on a posteriori estimation for the reduced-basis method.

4.2.1 Bound Conditioner

To begin, we define the error e(p) E Y and the residual R(p) E Y' as

e(P) - u(A) - uN(A) (4.5)

(7Z(p), v) (F, v) - (A(1A)uN(P), v), (4.6)

from which it follows that
(A(p)e(tt), v) = (R (y), v). (4.7)

We then introduce a symmetric, continuous, and coercive bound conditioner [21, 37, 47] C(IA): Y -

Y' such that the minimum and maximum eigenvalues

Pmini(p) mi (A(p)v,v) (4.8)
vEY (CQP)v, v)

p (A (p) v, v)
Pmax(p) max , (4.9)

vY(CiP)v, v)

satisfy

1 Pmin (), Pmax(P) P, (4.10)

for some (preferably small) constant p E R.

In addition to the spectral condition (4.10), we also require a "computational invertibility"

hypothesis [38, 47]. In particular, we shall require that C 1 (p) be of the form

C-( j a=i()CT-1  (4.11)
iEI(p)

where I(p) C {1,..., I} is a parameter-dependent set of indices, I is a finite (preferably small)
integer, and the C2 : Y -* Y', are parameter-independent symmetric, coercive operators.
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4.2.2 Error and Output Bounds

We now find (p) E Y such that

(C(ft) (), v) = (7Z(/p), v), V v E Y , (4.12)

and define our lower and upper output bounds as

sN (P) = sN (F) , (4.13)

s ) = SN(A) + AN(Y) , (4.14)

where the error estimator is given by

AN(Y) = (C(P) (p),A(i)) (4.15)

= (R(pt), C- 1(p)R(p)) (4.16)

= (R (p), (AG)). (4.17)

It remains to demonstrate our claim that s-(p) _ s(p) + s(/) for all N > 1, and to investigate

the sharpness of our bounds.

4.2.3 Bounding Properties

To begin, we first note that for any A: Y -- Y' and any C: Y -+ Y' such that

(Avv)
Pmin - ' max, V v E Y, (4.18)

(Cv, v)

and for any U E Y, W E Y such that

(AU, v) = (G, v), V v E Y , (4.19)

(OW, v) = (G, v), V v E Y , (4.20)

where C E Y', we can show that

(CW, W)
Pmin < UU <max. (4.21)

(AZU, U) Pa

To prove the lower inequality in (4.21) we note that (AU, v) = (OW, v) for all v E Y and choose
V = U to obtain

(AU, U) = (CW, U)

< (OW, W) 1/ 2(OU, U) 1/2

< ,/2 (OW, W) 1/ 2 (AU, U)1/ 2 (4.22)
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from the Cauchy-Schwarz inequality and (4.18); thus pmin(AU, U) (dW, W) as desired. To prove
the upper inequality in (4.21) we choose v = W to obtain

(OW, W) = (AU, W)

< (AU, U) 1 /2 (AW, W)1 /2

< /(gW, W) 1/ 2 (AU, U)1/ 2 , (4.23)

from the Cauchy-Schwarz inequality and (4.18); thus (dW, W) < pmax(AU, U) as desired.

We can now prove the bounding and sharpness properties of our bounds. We first prove that
sN(p) < s(p). We note that

s(P) - sN(P) = (A() (u(p) - UN(p)) , U(A) - UN(P)) (4.24)

> 0 (4.25)

from (3.95) and the coercivity of A, respectively. This lower bound proof is a standard result in
variational approximation theory. We now turn to the less trivial upper bound.

To show that s( (p) s(p), we note that

7N(pA) = AN( ) (4.26)
SO- SN(/1)

_ s'N(P) - sN(p) - (4.27)
sGI) - sN(p) '

it thus only remains to prove that 77N(p) is greater than unity. From (4.24), and the definitions of
e(p) and R(p), we obtain

s(P) - sN(A) = (A(p)e(p), e(p)) (4.28)

(R(p), A pRp)(4.29)
= ((p), e(p)) , (4.30)

and therefore

'IN(A) = (C(W ) (A), 6(W) (4-31)
(A (p) e(p), e (p))

from (4.15) and (4.28). Taking A = A(p), O = C(p), and O = R(p) in (4.18)-(4.21), it then follows
that

Pmin (A) ?7N (P) Pmax(A) , (4.32)

from (4.7), (4.8), (4.9), and (4.12). Furthermore, by construction, Pmin(p) > 1 for all p E 'DP and
therefore

'7N(A) > 1, (4.33)

and s+ (p) s(p), as required. Note that the result (4.32) also indicates the sharpness of our
bounds: it follows from (4.10) that

7N(P) < p . (4.34)

The result (4.32) also provides insight as to the properties of a good bound conditioner. Clearly,
we wish pmax (/) to be as close to unity, and hence as close to Pmin(p), as possible. We thus
see that good bound conditioners are similar to good (iterative) preconditioners - both satisfy
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Pmax(I)/Pmin(P) a 1 - except that bound conditioners must satisfy the additional spectral re-

quirement pmin(p) > 1.

4.2.4 Off-line/On-line Computational Procedure

We indicate here the off-line/on-line calculation of AN(P). We recall from (4.16) that AN(P) =

(R(p), C 1(L)1Z()). From the definition of the residual (4.6), the separability assumption (3.8),
and the expansion of uN(P) in terms of the basis functions (3.108), we have

= (F, v) - (A(p)uN(P), V)
QA N

= (F,v) -5 5 E)(P)UN n(P) (A In,v),
q=1 n=1

We now invoke the "computational invertibility" hypothesis on C([L), (4.11), to write

E ai(p)
iel(p)

= 5 ai(p)
iEI(pt)

(R(i), C-. 1R(i))

F
QA N

-E ( q(L) uNn(p) Aq(n,
q=1 n=1

QA N

CJ1 F - E E
q'=1I n'= I

=5(
QA

-E

(4-37)

N

5 ~(p) UN n(Ap) ((F,C -i 'AR) + (A*CnC-lF))
q=1 n=1

QA4 Q.4 N N

q=1 q'=1 n=1 n
(4-38)I

Thus, in the off-line stage, we compute the p-independent inner products

ci = (F, C-1F)

At, = -(F,Cj- Aq~n) = -( AGnC-'F)

Fi I~nn, = ( n,C I A('n,) ,

(4.39)

(4.40)

(4.41)

1 <i <I, 1 q, q' _ QA and 1 n, n' <N; note that (4.40) follows from the symmetry of C2 .
This requires QN Aq(n multiplications, I(1+QN) C-solves, and I(Q2 N 2 + QN+ 1) inner products.
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AN(P)

V v E Y, V y E D'I . (4.35)

(4-36)

E)" W UN n'(pt A (n' )

E9q(A) E9 (pt) UN n (pL) UN n' (P) (Aq(n, C A(n,

ai (p) (F, CEi'F)



In the on-line stage, given any new value of p, we simply perform the sum

QA N

AN (P) = ai (p) Ci +2 E)[)UN n (tt) n

iET(p) q =1 n=1

+ GI > p~~) eQp) UNn(I) UN n/(I) Fq nn -4-2
q=1 q1=1 n=1 n=

The on-line complexity is thus, to leading order, O(II(p)IQ2 N 2 ) - and hence, independent of .V

(the dimension of Y).

Apart from the spectral condition and invertibility requirement of Section 4.2, we have not

yet specifically defined, or provided methods for developing, the bound conditioner C(p); we shall

address this issue in Sections 4.3 and 4.4.

4.3 Bound Conditioner Constructions - Type I

We recall from Section 4.2 that a bound conditioner is defined as a symmetric, continuous, and
coercive distributional operator C(p): Y - Y' which satisfies (i) a spectral condition -

.(A(pu)v, v) (A____,__)
Pmin(L) = min ;> 1 Pmax(P/) = max (A( ( v, v) (4.43)

vEY (C(p)v, v) vEY (C(p)v, v)

for some (preferably small) constant p E R; and (ii) a computational invertibility condition -

C- = >3 ai(p)C;-1 , (4.44)
iEl(p)

where I(t) C {1,.. . , I} is a parameter-dependent set of indices, I is a finite (preferably small)
integer, and the Ci: Y -- Y', i = 1, ... , I, are parameter-independent symmetric, coercive operators.

In this section, we consider several classes of bound conditioners for which IIQ/) I = 1, such that
(4.44) takes the simpler form

C-1 (p) = aI(I)([L) Ci) ; (4.45)

here, I(p) E {1, . . , I} is a parameter-dependent indicator function. In this case, the problem
of constructing good bound conditioners then reduces to finding [I-independent operators Ci, i =

1, ... , I, and associated pt-dependent coefficients aj(tt) such that the spectral condition (4.43) is
satisfied.

We note from (4.43) that the Ci must be "equivalent" to A in the sense that the norms II-cI =
(Ci-, -) and I I -IA = (A., -) are equivalent - there exists positive constants a and b such that [31]

a||vjIci IIVIA b||v|Ici , V v E Y . (4.46)

Furthermore, if we define p'in(p) and pa.(p) as

mm (A(p)v, v) i (A(p)v, v)
Pmin~p i Pma(p) max ,(.7

VEY (CjV, V) VEY (CiV, V)
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then for C(p) = a(p)-'Ci, Pmin and Pmax are given by

pmin(/) = Pii.(p)ai(p) , Pmax(P) = PMax ozi(p) (4.48)

Therefore, given any "A-equivalent," p-independent Ci, ac(p)-IC is a bound conditioner if and
only if aj(p)- 1 is a lower bound to the minimum eigenvalue:

ay (p)-1 < Piin() , V [I E D1' ; (4.49)

furthermore, since the effectivities are bounded from above and below by pmax(P) and Pmin(A),
respectively, ai([)-l must be a sharp lower bound to p'm.(p), and p ax(p) must be as close to

pmin(p) as possible.

We now consider several methods for choosing the Ci and the associated ai(pu).

4.3.1 Minimum Coefficient Bound Conditioner

To begin, we recall our separability assumption on A(p):

QA

A(p) =7 1 (p) A',
q=1

V p E DA (4.50)

where the E6([t) : DI -> R and the Aq: Y - Y'. We now define

QA

A() yoq Aq
q=1

(4.51)

where 0 E ]RQA, A(6): Y -+ Y', and A4 - A . We may then write

(4.52)

where E: DA --+ Do, and Do = Range(E) C RQA. We now assume that A(6) is coercive for any
0 E Do, and the Aq (and therefore the Aq) are symmetric, positive semi-definite, i.e.,

(AqV, v) > 0 , V V E Y, 1 < q QA;

and DO C RQA, where R+ refers to the positive real numbers.

Bound Conditioner

We then choose I points #, ED, i ,.. .,1, and define aj(p), Ci, and C(p) as

( i[ 1 QA

Ci = iA
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(4.54)

A (E(p)) = A (p) ,I

ai( P) = min
(1<g<O



and C(p) = aI()(A)~ 1Cr(), respectively, where 1 (p) selects the "best" among all the points 6i.
The effectivity then satisfies

1 TIN(p) < max - 2 , VvEY,VPED. (4.55)
I<m<I J-(0min -q

1<qL<QA t /

We note that if O(p) = 6j, then ai(p) = 1, (Civ,v) = (A(p)v,v), and therefore qN(p) -1. We
also note that given any new p E D', there are, in fact, I possible choices for I(y); we can either
establish a definition of closeness and choose I(p) such that is closest to E(pu); or, alternatively,
consider all possible candidates and select that which yields the best effectivity.

Proof of Bounding Properties

To prove (4.55), we note that for any p E DP, i E {1,.. ., I},

(A(A)v, v) = (A(E(p))v, v) (4.56)

-9 (p)Aqv, V (4.57)

<A ( Avv (4.58)
q=1

1 () 6A) V , (4.59)

= (a () C v, v), V v E Y . (4.60)

Furthermore, for any p E DP, i E {1, ... , I}, we have

(A(p)v,v) < max 6 AG V) / (4.61)

max (~(t
1<q !QA /
= Q z -(ai()- Civ, v) , V v E Y. (4.62)

min -i

The result (4.55) directly follows from (4.59) and (4.62).

Remarks

We present in Figure 4-1, Table 4.1, and Figure 4-2 the effectivities for Examples 1-3, respectively,
and 6 = po for different values of po. Note that ?1N(A) - 1 > 0 in all cases, and, as illustrated in
Figures 4-1 and 4-2, 77N(to) = 1

Numerical tests also confirm that the sharpness of the resulting bounds does depend on the
choice of 0. In particular, we present in Figure 4-1(a) the effectivities for Example 1, calculated
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as a function of p for the entire range DI'. For this example we choose 0 = E(po) for different
values of Mo. We present similar data in Figure 4-1(b) also for Example 1 but for a smaller range
(p E [102, 103]), and in Figure 4-2 for Example 3. We observe that in all three cases the effectivities
increase as |y - pol -+ oo, and the rate of increase is greater for p < /1o. Nevertheless, the
results show that even for I = 1 - if po is chosen "optimally" - the resulting effectivities are
remarkably low over large ranges of p (qN(p) - 1 < 20 V p C DI for po - 1.0). The existence of
an "optimal" choice of po is made evident in (i) Figure 4-1(b) - for Example 1 and A C [102, 103],
po~ 2.5 x 102 yields the best effectivities; (ii) Table 4.1 - for Example 2 and t = {/,2} E

[m4i, m4a] x [ mnax4 , tcO - {p in, in} yields the best effectivities; and (iii) Figure 4-2 -

for Example 3 and /p E [0.1, 1.0], po ~ 0.1 yields the best effectivities.
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Figure 4-1: Effectivity as a function of i for Example 1 and (a) p E [0.01, 104], and (b) IL E [102, 103]I
calculated using the minimum coefficient bound conditioner with 9 = e(/o) for different choices of
/o.

/o = { ,o} min (yN(p) -A
max (UN(A) - 1)

A
ave (rN(p) - 1)
A

{ , } 0.04 4.19 0.65

{p1i, Amax } 0.24 259.87 25.37

{piax, p2} 0.75 333.96 40.34

{/Iax, M2pax} 1.58 325.49 45.87

{pmin + Amax Amin + /max 0.79 210.66 30.24

Table 4.1: Minimum and maximum effectivity for Example 2 calculated using
ficient bound conditioner with 9 = e(po) for different choices of yo.

the minimum coef-

The numerical results presented for Examples 1-3 illustrate that the minimum coefficient bound
conditioner guarantees rigorous bounds, and yields good effectivities. There is, however, one disad-
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Figure 4-2: Effectivity as a function of p for Example 3 and p E [0.1, 1.0] calculated using the
minimum coefficient bound conditioner with 6 = e(po) for different choices of po.

vantage: the method is restricted to problems for which the Aq are positive semidefinite, as stated
in (4.53). Although many property, boundary condition, load, and some geometry variations yield
Aq's with the required properties, there are many problems which do not admit such a representa-
tion. For example, while the "stretch" geometry variation of Example 3 yields Aq's which satisfy
(4.53), the addition of a "shear" parameter in Example 4 does not. We therefore need to consider
other bound conditioner constructions - particularly for more general geometry variations.

4.3.2 Eigenvalue Interpolation: Quasi-Concavity in t

In this section, we investigate the possibility of constructing bound conditioners based on obser-
vations on the behavior of the relevant eigenvalues with respect to the parameter. In particular,
given some C1 (preferably chosen "optimally," such that pn/p in is small), we wish to find a lower
bound cel(p)-- to p' based on the behavior of P as a function of [.

We first consider Example 3, and plot in Figure 4-3(a) the eigenvalues pmm as a function of the
stretch parameter T, calculated using C1 = A(po) for several values of Po = {to}. We note that
for this example, and for all choices of C1 , the eigenvalues appear to be quasi-concave in [ - a
function f(s) is quasi-concave in , E DE C R 1 if, for any :i E Di and :2 C D' such that l < J2,

f(s) ; min[f ( f), f(22 )1 , V -[ -i, 22 . (4.63)

Furthermore, the plot of pi /p ii Figure 4-3(b) again illustrates the existence of an "optimal"
[o: the ratio of the maximum and minimum eigenvalues is smallest for to ~ 0.25.

We present similar results in Figures 4-4 and 4-5 for Example 4 for which we take C1 = A(po)
with po = {fo, ao} = {0.25, 0.0} (as suggested by the results for Example 3). We observe that pmi
appears to be quasi-concave with respect to f and d. Furthermore, the ratio pi/pin as plotted
in Figures 4-4 and 4-5 are not too large, indicating that our choice of C1 is relatively good.

We now construct a bound conditioner based on these observations.
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Figure 4-3: Plot of (a) the eigenvalues p and (b) the ratio pi/ as a
Example 3, with C1 = A(pO), po = {fo}, and fo = 0.10, 0.25, 0.50, 0.75, and 1.00.
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Figure 4-4: Contours of the eigenvalues pmi, as a function of i for Example 4, with C1 = A(p0),

10 = {fo, do} = {0.25, 0.0}. The contours are calculated at constant a, for a = 00, 150, 300, and
450
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Figure 4-5: Contours of the eigenvalues pi as a function of a for Example 4, with C1 = A(po),
Po = {fo, do} = {0.25, 0.0}. The contours are calculated at constant t, for f = 0.10, 0.25, 0.50, 0.75,
and 1.0.

Bound Conditioner

To begin, we introduce a sample S = {-i,, - --,p}, where pm E D1, m T.
assume that, given any p E DA, we can find a simplex S(y) such that p e S(p), where

/2A = m amlm}
mET(p)

We also

(4.64)

here, the &m are weights -

and

0 < am < 1 , V m E T(A) ,

E
MET(Au)

am = I .

Given any p-independent symmetric, continuous, coercive norm-equivalent operator C1, we then
define the minimum eigenvalues pi , m = 1, . .., T, as

Smi (A(Im)V, V)
min = min .m

vCY (Civ,v)
(4.67)

We now make the hypothesis that pi',(A) is quasi-concave with respect to 1L
- that is,

Pmin(/') > Mm Pmin
mGT(po)

our empirical results indicate that this hypothesis is certainly plausible for the
duction; however, we have no theoretical proof at present.

for p c DA C RP

(4.68)

case of heat con-
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To each p E DA, we then define al(pt) and C(p) as

ai (M) = Pmin)
(mET(p) -

(4.69)

and C(I) = ai(p)-lC1, respectively. Note that if (4.68) is true, it directly follows that ali(p)~ is
a lower bound to p.(p), as required.

Remarks

We present in Figure 4-6 the effectivities for Example 3 obtained using a uniform sample ST with
T = 2 and 4; we present similar results in Table 4.2 for Example 4 obtained using a uniform sample
SI with T = 4, 9, and 25. We note that we obtain good effectivities (and therefore sharp bounds)
even for small T, and, as expected, the effectivities improve as the sample size T is increased.

3.5

3

2.5

2

1.5

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4-6: Effectivity as a function of p for Example 3, obtained using the quasi-concave eigenvalue
bound conditioner with C1 = A(po), [o = fo = 0.25, and a uniform sample SIT with T = 4 (Trial
1) and T = 4 (Trial 2).

T min 7N(p)
it

maXIN(P)
A

ave7N(A)

4 0.6075 13.0946 2.4175
9 0.2483 7.5051 1.3841

25 0.2357 6.8562 1.2175

Table 4.2: Minimum, maximum, and average effectivity over [ E D for Example 4, obtained using
the quasi-concave eigenvalue bound conditioner with C1 = A(po), [to = {fo, do} = {0.25, 0.01, and
a uniform sample ST.

The main disadvantage of this method is in the (current) lack of rigor: the bound conditioner
is constructed based on empirical observations of the behavior of the relevant eigenvalues. We thus
turn to more rigorous approaches.
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4.3.3 Eigenvalue Interpolation: Concavity in 6

To begin, we define A(O) for any 0 E IRQA as

QA

A(O) = Y9qAq (4.70)
q=1

where A(O): Y -> Y', and Aq Aq, such that A(E((p)) = A(p) for E: DA c RP -+ DO c IRQA.
We shall also define Omin(;> 0), Omax (assumed finite), and Do c IRQA as

Oq sup q{ I eq)>, v } q = 1, - - (4-71)

nax a inf I GEq(t): .<, V ytD!} q 1,.-., QEA. , (4.72)

and

QA

bOox T[ q Omax] (4.73)b l min' (473
q=1

respectively. We assume that A(E((p)) is continuous, symmetric, and coercive for all [i E D1'. We
further assume that the Aq, q = 1, ... , QA, are symmetric and continuous (but not necessarily
coercive); note that A(6) will be coercive in some neighborhood of Do, and symmetric for all
SE IRQA.

02. . Q = 2

'Do

Figure 4-7: Mapping (9) between DM E RP to Do E RQA, for P = 1 and Q 2.

We now consider a class of bound conditioners based on direct approximation to the minimum
eigenvalue. For simplicity of exposition, we shall consider I = 1 and I(A) = {1}. The extension to
I > 1 is straightforward.

Bound Conditioner

We now introduce a "0" sample S0 = {O1 . .., Or}, where 0m c Do m = 1, ... ,T, and T>Q+1.
We assume that, given any 0 E Do we can find a simplex S(0) such that 9 E S(O), where

S(O)= 01,0 S= E &mo6m ;(4.74)mer0) }
here, the &m are weights

&m>0, VmET(O), (4.75)

58



and

&,(=mI. (4.76)

We implicitly assume that SO is chosen such that, for all 0 E Do, such a construction is possible;

a deficient sample S0 can always be rendered compliant simply by replacing one point with Omin.
Given any p-independent symmetric, continuous, coercive norm-equivalent operator Ci, we

define the minimum eigenvalues pl, i = 1, ... , T, as

p = min (A()v, v) (4.77)vEY (Civ,v)

To each p E D", we then define a1(p) and C(fL) as

-1

a1(p) =am (0()) pTin ,(4.78)
(meT(E())

and C(p) = ai(p)--Ci, respectively.

Proof of Bounding Properties

To prove that our bound conditioner satisfies (4.43), we need only show that

ai1(p)-- pMin (E)(A)) , V p1 E D" , (4.79)

where we recall p in(9) is defined (in (4.47)) as the minimum eigenvalue

I~ m (A(0)v, v)
pmin(0) = min .(4.80)

veY (Civv)

To begin, we note that if a function f(0) E R is concave in the set be, then for any 01, .. , ot E

f(di1 + - - -+ &tot) ;> if(01) + - -+ af(o) , (4.81)

where the weights dm, 1 < m < T satisfy (4.158) and (4.159) [6]. We now claim that the eigenvalue

pin (6) given by (4.80) is concave for all 6 E RQA; (4.79) then follows from the choice of the am
and the definition of a1 i(p). It thus remains only to demonstrate the concavity of pinin(9).

We first define Ase(T;0 1 ,0 2 ): Y -+ Y' for any two points 01 E RQA, 02 E RQA as

Aseg(T; 0 1 , 0 2 ) = A(01 + T(02 - 1)) (4.82)

QA QA

= A+_ E(oq - o) , (4.83)
q=1 q=1

= se(1, 2) + TAse(, 2)(4.84)

for T E [0, 1]. We then define pseg(-r 01, 02) as the eigenvalue and seg(T; 01, 92) as the corresponding

eigenvector of

(Aseg(T; 01, 02 )seg(T; 01, 02), V) = Aseg(T; 01, 02 )(Clseg(T; 0 1, 02 ), v) , V v E Y , (4.85)
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such that the eigenvectors are normalized with respect to C1:

(ClSeg(T; 01 , 02 ), se (,; 0 1 ,0 2 )) = 1

Defining pme to be the minimum eigenvalue of (4.85), we can then write

P seg (T; 01, 02) = P 1in (0l+(20
W mier k s th , for = 01in(1 + R(02 - 01)).

We would therefore like to show that for any 01 E RQA, 1 2 E RQAI

d2se 0

dr2 P min (T; 01, 02) :!; 0 , V T E [0, 1] ,

from which it follows that pmg (0) is concave for all 0 E RQA.

For brevity, we shall henceforth omit the dependence on (01, 02).

We first differentiate the normalization (4.86) with respect to r to obtain

C (_r) =se, (T) 0

since C1 is symmetric and independent of r. We then differentiate (4.85) with respect to r to obtain

Aseg(T) d seg (T),dT - pse (r) C1 dseg(
d-r

d
+ (A pSe(T)(C1 seg(T), v) = 0

se d-r
V v E Y . (4.90)

We now choose v = sg(*r) in (4.90) and exploit symmetry, (4.85), and (4.86), to obtain

d-s r (A' g(Tr) e,(T), Se (_r))
pseg seg se sg

dEi

We then choose v = d~ses(r)/dT E Y in (4.90), and exploit symmetry and (4.89) to obtain

(7 -ps)e() (C 1  ((r), -(T) )dr \dT dT/

We now differentiate (4.91) with respect to T to obtain

d22

since A1e is symmetric and independent of r. We then obtain from (4.92)

d2
- d d T

-2 (ps"e(T) C1d () dT (r) (4.94)rK d (T)(T) , - (T)dT dT

Finally, we note that
(Ase(T)v, v)

Pmin (C1 V, V)
V v E Y , (4.95)

(4.86)

(4.87)

(4.88)

(4.89)

KAsegR'N

(4.91)

+ Aeg - (T),()
dT

(4.92)

(4.93)
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and therefore

d2 Pse() 2 p (T) C1 d+((), +(T)d - Aseg(T) d((), +( (() ) (4.96)

< 0 . (4.97)

Remarks

We present in Figure 4-8, Table 4.3, and Figure 4-10 the effectivities for Examples 1-3, respectively,
with C1 = A(O0 ) for different values of 00. Note that in all cases, rN(I) - 1 > 0 - we obtain
rigorous bounds.

However, as in the minimum coefficient bound conditioner, the numerical tests also show that
the sharpness of the resulting bounds depends on the choice of 0. In particular, we observe in
Figure 4-8 (Example 1) that taking 00 = po < 102 yields 7N([) < 20, but taking 00 = po > 10 3

yields T - 100 - in the latter, the error is overestimated by two orders of magnitude. In Table 4.3,
a good choice of 00 yields rN(i) 5, while a bad choice yields effectivities as high as 200.

In Figure 4-9 we show the points 0m which form the convex hull S(6), and in Figure 4-10 we
plot the effectivities as a function of A calculated using C1 = A(0 0 ) for different choices of 0o (= po):

0o = {[tmin, 1/[min} for Trial 1, 0= {=ptmin, 1/Pmax} for Trial 2, 00 = {pmax, 1/Amax} for Trial 3,
and 0o = {Pmax/2, 2/max} for Trial 4. Better samples for the convex hull can certainly be used
(e.g., using the tangent to the 9 1 - 0 - 2 curve), however the resulting effectivities with our rather
simple choice are exceptionally good for all the trials.

The concave eigenvalue bound conditioner shows great promise - the method is general, and
we obtain sharp bounds even for I = 1. While the numerical results show that C1 must be chosen
well, the resulting effectivities seem less sensitive to the choice of C1 than in the minimum coefficient
bound conditioner. Perhaps the biggest disadvantage of the approach is that it requires, on-line
(for any new [), the search for a simplex S(((p)) that contains 9(p). However, the problem of
finding the optimal simplex - that yielding the largest lower bound to the minimum eigenvalue -
may be stated as a linear programming problem:

T -1

c'1(p) = max ampn (4.98)
am=

s.t. am > 0 (4.99)
T

E am = 1 . (4.100)
m=1

Note that feasibility of (4.98) requires that T be at least 2QA; however there is otherwise little a
priori guidance for the choice of T or of So. Furthermore, the off-line stage may be expensive and
complicated, particularly for large QA.

4.3.4 Effective Property Bound Conditioners

We now consider a problem which, after affine mapping, is described by

R R

(A(p)w,v) = ](p) -= Dw ] L ([) Dv] (4.101)
r=1 r1
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Figure 4-8: Effectivity as a function of 1L for Example 1, calculated using the concave eigenvalue
bound conditioner with C1 = A(O0) for different choices of 60 (= po).

6
=-= {p, } min (TN(i) - 1) max (r/N p) - 1) ave (rlN() - 1)

{pIin 0.0379 4.1912 0.6447

{/Min, p2 } 0.7467 236.6623 34.4212

pI . 0.7859 230.7950 33.7431

Ia, M } 0.0279 3.8670 0.5852
(1 1 2 . ,+2IL

--mm + i .max Pm ±max 0.9724 149.2957 22.3509
2 2

Table 4.3: Minimum, maximum, and average effectivity for Example 2, calculated using the concave
eigenvalue bound conditioner with T = 16, a uniform sample S, and C1 = A(6o) for different
choices of 00.
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Figure 4-9: Sample S.4 and the convex hull, S(O) Figure 4-10: Effectivity as a function of p for Ex-
for all 0 c ' 9 . ample 3, calculated using the concave eigenvalue

bound conditioner with C1 = A(0 0 ) for different
choices of 00.

where ? = UR_1 7 is the domain (Q2ifnl =0, and Q denotes the closure of Q), tor(p) c Rdxd, d -

1, 2, or 3, is the symmetric, positive definite effective diffusivity tensor (e.g., due to geometric
mapping or non-isotropic properties), and

8w
Di[w] = - 1 <i <d . (4.102)

9xi

We now present a class of bound conditioners based on approximations to the diffusivity tensor.
For simplicity of exposition, we shall again consider I = 1 and I(p) = {1}. The extension to I > 1
is straightforward.

Bound Conditioner

We assume that we can find a set of p-independent, symmetric, positive-definite matrices _r
r = 1,..., R, such that such that

V ,.r(,) > 0 V v c R 2 , V p c D , 1 < r < R . (4.103)

We then choose a 1(p), C1 , and C(p) such that

VTnr(p) v
< a1(p) ,. -A 2 <p , V vE R2 ,V A DI, , 1 < r < R , (4.104)

v 7 'kr V

R

(Ciw,v) =E _[w rD[v , (4.105)
r=1
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and C(p) = al(p)-Ci. It then follows that

1 < "7N(I) <p. - (4.106)

Proof of Bounding Properties

We note that, by construction,

DT[v]Lr'() D[v] > aj(Ip)-DT[v r R[v] , V v Y ,V p D 1 < r < R; (4.107)

it therefore follows that

R

(A( p )v, v) r=1 ( (4.108)

a a1 (p) -'D T [v D[ v]
r=1

> 1, VvEY. (4.109)

Furthermore, since
DT [VEr(,i)D[v] < p (aj(1)-DT[V k r D[ v]) , (4.110)

it follows from (4.108) that

R

(A(pA)v, v) r=1 Jr7 < r=1(4.111)
(C(p)v,v) - ft

E a1lp- D % r
r=1

< p. (4.112)

The result (4.106) directly follows from (4.108) and (4.112).
Finding the k' and associated a, (p) that satisfy (4.104) and minimize p is not so trivial, but it

is not difficult to find suboptimal solutions. We shall illustrate this with two general examples.
We first consider the case R = 1 and

K [a(p) b0p) (4.113)

with amax a(p) amin > 0, and bmax > b(p) bmin > 0; these conditions ensure that the 0t(p)
is symmetric, positive-definite. We then define a, (p) = 1, and choose

k amin ] (4.114)

Clearly, our choices satisfy (4.104) since

min aI(p) V=_ - mm ,b(p) (4.115)
v>R2 VTk'V amin (1bmin

> (4.116)
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max a 1 0) vT, WE
vElR 2 vT kv

m a(p) b(p)1
= max , I

Iamin' bminj

< max max [a(p) b(p)])
AEGt \ .amin' bmin_

(4.117)

(4.118)

We now consider the case R = 1 and

= a(p) c(p)
.c(p) b(p)]

(4.119)

with amax > a(p) > amin > 0, bmax > b(p) > bmin > 0, and a(p)b(p) - C(P)2 > 0 > 0 for all p in
D"; these three conditions ensure that the j,'(P) is symmetric, positive-definite. We then define

ali(A) = (p) - (4.120)
a( p)b( p) - C(/_p)2

and choose

Al -1 amin br.in] (4.121)

To verify that our choices satisfy (4.104), we let emin and fmax be the minimum and maximum
eigenvalues given by

emin(A) = l1(A) fmax(p) = max1 (v) K1 (I(I') -Ok

The characteristic equation for the eigenvalues f(p) is given by

(a(p) -

or

f (P)2- f(P) (2ai(p)

It then follows that

amin f(p) b(p)
2a(p) )

+b(p)
bmin

a(p)
amin

-bmin f C(p)2 = 0
2a I(ft)

+ 4cl1(,) 2 a (/-)b (m) - C(pl)2 = 0.
aminbmin

£min (P) + fmax(P)

£min(P)fmax(P)

= 2a,(p) a(p) + b(p)
\amin bmin

= 4 a1(,)2 a(p)b(p) _- C(P)2
aminbmin

To prove the left-hand inequality in (4.104), we note that

emin (P)emax (P) £min (P) (Emin (P) + emax (P)), V p E DA ,
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(4.124)
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fmin(P) > £min (P)emax (P)

emin(P) + fmax(P)

> 2a ( a(p)b(p) - c(P) 2

- a(p)bmin + aminb(p)

= 2a1(,) (

2 bmin

> 1.

a(p)b((p) - C(p)2

a(,p)b(p) J
amin

a(/-t)-

Also, we have

£max(p) emin(P) + imax(II)
=2 (~a~i) b(pu)\

a2a (p) + bamin bmin

< 2 amax
amin

< 2 amax

\ amin

+ bmax'\
bmin I
bmax'\
bmin I

amaxbmax)

On )

We shall now apply our Effective Diffusivity Bound Conditioner to Examples 3 and 4.

Example 3

As a first example we consider the case of Example 3 of Section 3.4 in which R = 1, P = 1, y =

DA = [0.1, 1.0], and

(4.137)

We therefore choose a1(p) = 1 and

[min 0
_10 

i.
- ~ twalxJ

(4.138)

The effectivity then satisfies

1 5 77N(p) i tmax
tmin

V AEDA ; (4.139)

this is confirmed in Figure 4-11, in which we plot the resulting effecivity as a function of M.
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so that

(4.128)

(4.129)

(4.130)

(4.131)

(4.132)

a(p)b(p) 
pAvE a (p yb (-t) - C(tp)2

(4.133)

(4.134)

(4.135)

(4.136)V A E DA

a(p)b(p) )
a ( p)bmin + amin b (1p)
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Figure 4-11: Effectivity as a function of p for
Example 3 obtained using the effective property
bound conditioner.

Example 4

As a second example, we consider Example 4 of S
DA = [0.1, 1.0] x [00, 45], and

-tan d

We therefore choose

and

ection 3.4 in which R = 1, P = 2, = a)

- tan d 1
1 + tan2 a (4.140)

t -

ce(,) = 1 + tan2 a

1tmin 0

-2 _0 _
. max.

(4.141)

(4.142)

The effectivity then satisfies

I <_ 7N Up) :4 tmax
tmin

V p E D" ; (4.143)

this is also confirmed in Figure 4-12, in which we plot the resulting effecivity as a function of M.

Remarks

The effective property bound conditioner presents several advantages: numerical tests show that
the effective property conditioner yields good effectivities and, unlike the concave eigenvalue bound
conditioner, the computational cost is independent of QA. Furthermore, although the method is
restricted to problems of the form (4.101), unlike the minimum coefficient conditioner it is applicable
even for general geometry variations. However, in Chapter 5 we shall see that the requirement that
n be positive-definite proves very restrictive - the relevant material property tensor is no longer
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positive-definite.

4.4 Bound Conditioner Constructions - Type II

We recall from Section 4.2 our "computational invertibility" assumption:

C- 1(p) = (p)Cf (4.144)

where 1 (p) C {...f , I} is a parameter-dependent set of indices, I is a finite (preferably small)
integer, and the Cj: Y -+ Y', are parameter-independent symmetric, coercive operators.

We now consider a particular class of bound conditioners in which C 1 (p) is constructed as a
direct approximation to A-1(t).

4.4.1 Convex Inverse Bound Conditioner

To begin, we recall our separability assumption (3.8) on A(p), and assume that A(p) takes the
particular (slightly different) form

.A(p) =A' + 1: 01(p) Aq , V pEDp (4.145)
q=1

where the W%(P) : DA - R+,o, q 1,.. . , Q.4; here, IR+,o refers to the non-negative real numbers.
We also assume that A0 : Y -+ Y' is symmetric, continuous, and coercive, and that the Aq: Y --+ y'
q = 1,... , QA are symmetric, continuous, and positive-semidefinite, i.e.,

(Aow, w) > 0 , V w E Y , (4.146)

(Aqw,w) ;> 0, VwCY, 1 q<QA ; (4.147)

it follows that A(M) is symmetric, continuous, and coercive for all p E DA.
For any 9 E RQ , we now define A(0): Y -+ Y' as

QA

A(O) = A0 + E 9 q q , (4.148)
q=1

where Aq = Aq, 0 < q < QA. We may then write

A(6(y)) = A(p) , (4.149)

where 8: D11 c RP -+D c IRQA, and DO is the range of E. We shall also define Omin(> 0), Omax
(assumed finite), and Do C R as

min sup V{sR+ I e4(i)>&, v LEDE} , q = 1, - - -, QA (4.150)

m7ax inf V sE]R+ I eq(p)<;0 , V pEE)/} 'q - -- ' A,(41)
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and

Q-A

Dox 171 [6i, On] , (4.152)
q=1

respectively. It follows that A(O) is symmetric, continuous, and coercive for all 0 E Do.
Finally, we note that our compliance output can be expressed as an energy:

s(p)= (L, u()) (4.153)

= (F, u([u)) (4.154)

= (A(E(p))u(pt), u(p)) , (4.155)

or, equivalently,
s(p) = (F, A- 1 (E(p))F) , (4.156)

where A- 1 (9) is the (symmetric, coercive) inverse of A(O).

Bound Conditioner Formulation

We now introduce a "9" sample SO = { OT,.. ,OT}, where 2 E Do , i = 1,..., T. We assume that,

given any 9 E Dbo , we can find a simplex S(O) such that 0 E S(O), where

S(}) - V I = di ; (4.157)

here, T(9) C {1, ... , T} is an index set of cardinality QA, and the &j are weights -

0 < i < 1, V r E T(O) , (4.158)

and

di = 1 .(4.159)
iET(O)

In words, the simplex S(6) is a polyhedral set, defined by IT(9) I vertices T(O) chosen such that S(9)
contains 9. We implicitly assume that SO is chosen such that, for all 0 E D e , such a construction
is possible; a deficient sample SO can always be rendered compliant simply by replacing one point
with Omin-

To each p in D" we then associate (i) a point #(/p) E DOO , such that

0q(p) () , 1 < q < QA , (4.160)

(ii) an index set I(pL) given by
ZLa) = T(O(pu)) , (4.161)

and (iii) a set of weights a((p)), such that

0(p) = a3 (#(p)) 9i . (4.162)
icT(p)
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We then choose the az(p) and Cm as

M) = aj(#(p))

Ci = A'(0j)

so that C(p) is given by

C(,) = E
iEI(A)

S(L)C,-1 = (7
(iET(JL)

a(p)A-1(9i) -

(Clearly, C- (p) (and therefore C(p)) is symmetric positive-definite.) In words, C-1(p) is an ap-
proximation to A' (6(p)) constructed as a convex combination of A- at "neighboring" 0.

Proof of Bounding Properties

To prove that the bound conditioner (4.163) provides uniform bounds, we shall need to demonstrate
certain properties of the quadratic form associated with A-' (). To begin, we define J: DI x Y'
IR as

J(0, O) = (G, A-1(0) G) ,

Also, given 91 E De , 02 E DO0 X ,and r E [0, 1], we define

(4.166)

(4.167)jseg(T; 01, 62; 0) = j(01 + r(02 - 91), 0)

We also define Aseg(T; O1, 02) = A(01 + T(02 - 91)). We can then write

QA QA

q=1 q=1

seg(; 01, 02; O) = (G, (Ase9(T; 01, 02 ))-16) C)

and

(4.168)

(4.169)

We now consider the monotonicity and convexity of j(9) in the parameter 9; in particular, we
can prove [47] that:

(A) (', O) is a non-increasing function: for any 9, E D , 62 E D0 , such
(A > O ,q 

1 b ox' b o.' 
,uch

V6 E Y';

that 02 01 (i.e.,

(4.170)

(B) 3(9, d) is a convex function of 9: for any 91 E DiOs, 62 E D9o, and for all T E [0, 1,

J(01 + T(02 - 61), G) (1 - r) J(01, O) + T(2, C) , V E Y'. (4.171)

We shall refer to (4.170) and (4.171) as Propositions (A) and (B), respectively.

Assuming that Propositions (A) and (B) are indeed true (we shall present the proofs subse-
quently), we can prove that our bound conditioner satisfies the spectral condition. We recall from
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Section 4.2 that the effectivity may be written as

From thdf(R(jo), C((p4)wi())

From the definitions (4.163) and (4.145) we immediately note that

E
77N0-) = icI-p)

(4.172)

(4.173)
T(O(p), R(pt))

But from the construction of the aj (p), the choice of I(p), Proposition (B), classical results in
convex analysis, and Proposition (A), it directly follows that, for any G E Y' (and therefore for

E
iEI(Ai)

ai(p) j (i, C) > ((p), O) g(E(p)1, ) , (4.174)

which concludes the proof. It now remains only to prove Propositions (A) and (B).

Proof of Proposition (A)

To prove Proposition (A), we need only demonstrate that, for any (fixed) 01,02 such that 02 61,
and any (fixed) C E Y',

d-jse (T; 0 1 , 0 2 ; G) 0,
dt

To evaluate djses/dr, we note that

V T E [0, 1] . (4.175)

dT

it thus remains only to show that d(Aseg(T; 01, 92 ))- 1 /dr is symmetric negative-semidefinite.

To this end, we note that (Aseg(r; 01, 2))- 1 Ase(-r; 01,62) = I (the identity), and thus

(4.176)

dd
- (Ase( ; 1 , 2 ))1 Aseg (';T 1 , 0 2 ) + (Ase (7; 01 , 12 )) d

d-r T; 0, 02) 1 02))dT

Application of (4.168) then yields

d (QA

d (A (T; ,1, 02)) = -(Ase (T; 01,2)) E (08 - 01)
q=1

Aq) (Aseg (T; 01, 02))~1 ;

the desired result then directly follows, since 0'> 9 7, and the Aq are symmetric positive-semidefinite.

Proof of Proposition (B)

To prove Proposition (B), we need only demonstrate that, for any 01 E Do 02 E V and
T E [0, 1],

seg (T; 01, 02, G) (1 -T) Jseg (0; 01, 02; $) + jseg(1; 01,02; G) V G E Y'. (4.179)
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(Aseg(T; 01, 02)) = 0 . (4.177)

(4.178)

Ce (p) f(0i, Rp))

dr ((A seg)-'(T; 01, 02)) , 5 ;



From standard results in convex analysis [6] it suffices to show that, for any (fixed) C E Y',

(4.180)
d 2 se

dr2 ~ -Gsr;6, 2 ) > 0, V TE [0, 1] .

From the definition of Jse(r; 01, 02; C), it thus remains only to show that d2 ((Aseg)-1(r; 01, 02 ))/dr2

is symmetric positive-semidefinite.
To this end, we continue the differentiation of (4.178) to obtain

d (Ase (; 01, 02))-1

The desired result then di

QA

=- (Ase(,; 01 , 02 ))- 1
dTr

(q=1

- (Aseg(T; 01, 62))-1 (6

( q=1

= 2(As'g(-r; 01, 02))- (2
(q=1

x E

(q=1

(oq _ Oq )Aq (A"9s (-r; 0 1,062))~l

2 - OA) (Ase(; 01, 02))

- 0j) A ) d (Asr; 1, 2))-

(0- _q) A (As(-r; 01,02))-2 1 ) 

(4.181)
rectly follows since (Aseg(T; 01, 02))-1 is symmetric positive-definite.

Remarks

We shall consider three different bound conditioners.
The first is a single-point conditioner, and will be labelled SP. Here we set T = 1, SO = {Omin},

11(p) I = 1, 1(p) = { 1}, and O(p) = Omin. This bound conditioner is a special case of our earlier
Type I bound conditioner formulation. In particular, SP is equivalent to the minimum coefficient
conditioner (with I = 1 and 61 = Omin).

The second bound conditioner we develop here is piecewise-constant, and will be labelled PC.
Now we set T > 1, ST = {1 = Omin, 0 2, . . ., 0i}, and II(p)I = 1, and choose I(p) = {i1(p)} such
that 6(p) = 0 i(o) <; 6(p). There will often be many possible choices for ii(p); we can either

establish a definition of closeness, or alternatively consider all possible candidates and select the
best (in the sense of yielding the lowest effectivities).

The third bound conditioner we develop here is piecewise-linear, and will be labelled PL. Now
we set T > QA + 1, SO = {01, . .. , OB}, |I(p)I = QA + 1, and choose 1(p) such that the 0j, i E 1(p),
form a (QA + 1)-simplex containing 0(p) = 0(p). Again, there will often be several choices for the
index set 1(p) and associated simplex; we can either establish an a priori criterion for goodness

(e.g., related to simplex size), or instead evaluate all candidates and select that yielding the best
effectivities. Note that, for p for which SZ contains no 0(p)-containing (QA + 1)-simplex, we must
accept a lower-order simplex and 9(p) < 0(p) (e.g., in the worst case, we revert to PC).

We present in Figure 4-13 the effectivity as a function of p for Example 1 obtained using the
SP, PC, and PL bound conditioners; similar results are present in Figure 4-14 for Example 3. We
also present in Tables 4.4 and 4.5 the minimum, maximum, and average effectivity over p E t'
for Example 2. In all three cases, the PC conditioner performs considerably better than SP; and
the PL conditioner is even better than PC. Of course, the purpose of these higher-order bound
conditioners is to achieve some fixed accuracy (measured by AN(p)) at lower computational effort;
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considering only the on-line complexity, no doubt PC requires the lowest cost at fixed accuracy.
However, in practice, we must also consider the off-line complexity and on-line storage.

Our numerical tests show that higher-order constructions do yield very good effectivities. How-
ever, an important restriction of these methods is the assumption that the operator A must be of
the form (4.145), and, in addition, the Aq must be positive semi-definite. There are many problems
which cannot be expressed in the required form (for instance, Example 4), or for which the Aq are
indefinite (for instance, the elasticity operator).
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Figure 4-13: Effectivity as a function of it for Example
(T = 2, 3), and (b) PL (T = 2, 3, 4, 5).
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(b)

1 obtained using (a) SP (T = 1), PC

T min (rN (A) - 1) max (/N (p) - 1) ave (?IN (A) - 1)

1 0.0379 4.1932 0.6450
9 0.0109 2.3677 0.3345

Table 4.4: Minimum, maximum, and average effectivities for
PC conditioners.

Example 2 obtained using the SP and

T min (q/N() - 1) max (,/N(p) - 1) ave (r/N(() - 1)

4 0.0133 2.4546 0.3788
16 0.0027 1.6437 0.1892

Table 4.5: Minimum, maximum, and average effectivities for Example 2 obtained using the PL
conditioner.
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Figure 4-14: Effectivity as a function of 1L for Example 3 obtained using (a) SP (T = 1), PC
(T = 2, 4, 8), and (b) PL (T = 2, 3, 5).

4.5 Method II: Asymptotic Error Bounds

The essential point is that Method I error estimators guarantee rigorous bounds: in some cases,

the resulting error estimates are quite sharp - the effectivity is close to (but always greater than)

unity. However, in other cases, either the necessary bound conditioners can not be found or yield

unacceptably large effectivities; or the associated computational expense is much too high due to

the O(Q 2) on-line scaling induced by (4.42). These disadvantages are eliminated in Method II to be

discussed in the next section; however, Method II provides only asymptotic bounds as N - oc. The

choice thus depends on the relative importance of absolute certainty and computational efficiency.

As already indicated, Method I has certain disadvantages; we discuss here a Method II which

addresses these limitations, albeit at the loss of complete certainty.

4.5.1 Error and Output Bounds

To begin, we set M > N, and introduce a parameter sample

Sm' = {pi, . . M I (4.182)

and associated reduced-basis approximation space

Wm = span (i =_u(pi), m = 1, . - . , M}I (4.183)

for both theoretical and practical reasons we require SN c S9 and therefore WN c WM. The

procedure is very simple: we first find uM(p) E WM such that

(A(p)uM(p), v) = (F, v), V v E WM ; (4.184)

we then evaluate
sM (p) (L, uM(p)); (4.185)
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finally, we compute our upper and lower output estimators as

sNM(Y) = sN0) , (4.186)

sN, MO1) = sN(P) + AN,M(/), (4.187)

where AN,M(u), the error estimator, is given by

1
AN,M(P) - (sM(A) - SN(A)) (4.188)

for some T E (0, 1). The effectivity of the approximation is defined as

?7N,M0() AN,M0()
s(O) - SN(')

For our purposes here, we shall consider M = 2N.

4.5.2 Bounding Properties

As in Section 4.2, we would like to be able to prove the effectivity inequality 1 q 7N,2N() p, for
all N > 1. However, we can only demonstrate an asymptotic form of this inequality [39].

As in [39], we shall require the hypothesis that

SN,2N() s1) - s2N0) -+ 0, as N -- oo. (4.190)
s(A) - SN(I)

We note that the assumption (4.190) is certainly plausible: if the (a priori) exponential convergence

of (3.105) in fact reflects general asymptotic behavior of the reduced basis approximation, then

s(A) - sN(f) _ c~ 1e , (4.191)

s(A) - S2N(A) - c 1 e -2c 2 N (4.192)

and hence

EN,2N(P) ec 2N, (4.193)

as desired.
We first prove the lower effectivity inequality, r/N,M() > 1, which is equivalent to

sN,2N(P) + S01) N ,2N(['), N -+ o. (4.194)

The lower bound property sN,2N() < s(p) directly follows from (4.25); indeed, this result still
obtains for all N. To demonstrate the upper bound, we write

8+1 1 415

N,2N(1) -+ - 1(S(P) - SN ()) - (S(1) - S2N(A)) (4.195)

= s 1 (1 - EN,2N(f)) - 1 (s(A) - sN (A))- (4.196)

Since s(A) - SN(A) > 0, and 0 < r < 1, it follows from (4.190) and (4.196) that there exists a finite
N*(T) such that

1 - SN,2N(Y) > T ,V N > N*; (4.197)
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it follows that

sN,2N() s~) , V N > N* . (4.198)

We therefore obtain asymptotic bounds.

We now investigate the sharpness of our bounds by proving the upper effectivity inequality,
I1N,2N(I) < p. From the definitions of TN,2N(p), AN,2N(A), and &N,2N(p), we directly obtain

?7N,2N (A) 1 S2N(I) - SN(I) (4.199)
T s(p) - sN(p)

1 (s2N(A) - s()) - (SN(A) - s(A)) (4.200)
T (s(p) -sN(A))
1

S-( - N,2N(is)) - (4.201)

We know from (4.25) that 8 N,2N (p) is strictly non-negative; it therefore follows that

1
7N,2N() < -, V N. (4.202)

T

Also, since WN C W2N, it follows from optimality (3.92) and (4.31) that

s(p) s2N(A) sN(P), (4.203)

and hence EN,2N(A) 1. It therefore follows that

?7N,2N(p) > 0, V N. (4.204)

Furthermore, from our hypothesis (4.190), we know that

1
rlN,2N(P) -- - , N - oo. (4.205)

T

4.5.3 Off-line/On-line Computational Procedure

Since the error bounds are based entirely on the evaluation of the output, we can directly adapt
the off-line/on-line procedure of Section 3.5.3. Note that the calculation of the output approxi-
mation SN(pu) and the output bounds are now integrated: AN(p) and EN(p) (yielding SN(p)) are
a sub-matrix and sub-vector of A 2N(p) and E2N(P) (yielding s2NOp), AN,2N(P), and s,
respectively.

In the off-line stage, we compute the u(p,) and form the A N and E2N. This requires 2N

(expensive) "A" finite element solutions and O(4QAN 2 ) finite-element-vector inner products. In
the on-line stage, for any given new p, we first form AN([), EN and A 2 N(p), E2N, then solve for

kN (/) and 22N(), and finally evaluate s,2N(-) This requires O(4QAN 2 ) + O(12N 3 ) operations

and O(4QAN 2 ) storage. The on-line effort for this Method II predictor/error estimator procedure
(based on sN(p) and 82N(P)) will thus require eightfold more operations than the "predictor-only"

procedure of Section 3.5.
Method II is in some sense very naive: we simply replace the true output s(p) with a finer-

approximation surrogate s2N(L). (Note there are other ways to describe the method in terms
of a reduced-basis approximation for the error [20].) The essential computation enabler is again
exponential convergence, which permits us to choose M = 2N - hence controlling the addi-
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tional computational effort attributable to error estimation - while simultaneously ensuring that

SN,2N(P) tends rapidly to zero. Exponential convergence also ensures that the cost to compute both

SN(p) and S2N(P) is "negligible." In actual practice, since s2N(p) is available, we can of course
take S2N(p), rather than sN(p), as our output prediction; this greatly improves not only accuracy,
but also certainty - AN,2N(P) is almost surely a bound for S(P) - S2N(p), albeit an exponentially
conservative bound as N tends to infinity.

4.5.4 Numerical Results

From our discussion in Section 4.5.2, we observe that the essential approximation enabler is expo-
nential convergence: we obtain bounds even for rather small N and relatively large r. We thus
achieve both "near" certainty and good effectivities. These claims are demonstrated in Tables 4.6
and 4.7; the results tabulated correspond to the choice r = 1/2. In all cases, we clearly obtain
bounds even for very small N; and we observe that ?N,2N(p) does, indeed, rather quickly approach
1/T.

N minJN(P) max 7N,M(P) N min 7N(IP) max 77N,M(P)
A' A~ Pit

1 0.28 1.43
2 1.44 2.00
3 1.99 2.00
4 1.99 2.00
5 1.99 2.00

1 1.26 1.99
2 1.84 2.00
3 1.95 2.00
4 2.00 2.00
5 2.00 2.00

Table 4.6: Minimum and maximum effectivities for the Method II error estimators for Examples 1
and 2.

N mMin N(P) max ?IN,M(A) N min TN(P) max 17N,M(P)
A A 11 IV

1 0.01 2.00
2 0.24 2.00
3 1.21 2.00
4 1.71 2.00

Table 4.7: Minimum and maximum effectivities for the Method II error estimators for Examples 3
and 4.

The choice between Method I and Method II error estimators depends on the relative impor-
tance of absolute certainty and computational efficiency. There are certainly cases in which the
loss of complete certainty is acceptable; however, there are many cases - for instance, when the
output s(p) must satisfy constraints critical to performance and safety - in which certainty in
the approximation is crucial, so that Method I error estimators are strongly preferred. However,
the ability to calculate rigorous uniform bounds hinges on the availability of a bound conditioner
which satisfies the spectral condition (4.10) and the computational invertibility hypothesis (4.11);
in some cases either the necessary bound conditioners cannot be found, or the computational and
algorithmic complexity is much too high. In these cases, Method II error estimators provide a
simple and effective alternative.
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1 0.81 2.00
2 1.55 2.00
3 1.68 2.00
4 1.82 2.00
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Chapter 5

Reduced-Basis Output Bounds for
Linear Elasticity and Noncompliant
Outputs

5.1 Introduction

In Chapter 3 we present the reduced basis method for approximating compliant linear functional
outputs associated with elliptic partial differential equations. In Chapter 4, we develop two general

approaches for a posteriori error estimation: Method I, which provides rigorous uniform error
bounds obtained from relaxations of the error residual equation; and Method II, which provides

asymptotic error bounds obtained from "finer" reduced basis approximations. In both chapters,
we utilize several simple problems in steady-state heat conduction to illustrate our methods and

numerically verify our claims.

In this chapter, we apply reduced basis approximation and error estimation methods to linear
elasticity. The problem of linear elasticity brings about some challenging but important issues:

first, a decidedly more complex parametric dependence - related to the affine decomposition of
the operator - causes an increase in the required computational expense and storage; and second,
singularities in the elasticity tensor associated with pure-rotation modes - related to the coercivity
constant of the operator - causes the effectivity of the error estimators in certain cases to be
unacceptably high.

Furthermore, in Chapters 3 and 4 the methods are restricted to compliant parameter-independent
outputs, L = F. We formulate here the reduced-basis method and associated error estimation pro-
cedures for more general linear bounded output functionals.

5.2 Abstraction

As in Chapter 3, we consider a suitably regular (smooth) parameter-independent domain Q C
lRd, d = 1, 2, or 3, and associated function space Y C (H1(Q))P with inner product (., .)y, norm

I|y = (-,)V, dual space Y', and duality pairing (.,/) = y, -)y; as before, we define a
parameter set DP C RE, a particular point in which will be denoted p.

We now consider the symmetric, continuous, and coercive distributional (second-order partial

differential) operator A(p) : Y -- Y', and introduce the bounded linear forms F(p) E Y' and
L(p) E Y'; note we no longer assume that L = F. We shall again make certain assumptions on
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the parametric dependence of A, F, and L. In particular, we shall suppose that, for some finite
(preferably small) integers QA, QF, and QL, A(p), F(p), and L(p) may be expressed as

QA

A(p) = 1 0 1(p) A, V p E D1, (5.1)
q=1

QF

F(p) = o'([) F1 , V E D11 (5.2)
q=1

Q L

L(u) = 4 (p) L L, Vp E D, (5.3)
q=1

where the EW(pI): DI - IR, p F(p): Dm -+ IR, P(/t): D11 -+ R, A: Y -+ Y', Fq E Y', and Lq E Y'.
As earlier indicated, this assumption of "separability" or affine parameter dependence is crucial to
computational efficiency.

Our abstract problem statement is then: for any [t E DP C RP, find s(t) E R given by

s(p) = (L(p), u(p)), (5.4)

where u(p) E Y is the solution of

(A(p)u(p), v) = (F(p), v), V v E Y. (5.5)

Thus, (5.5) is our partial differential equation (in weak form), /p is our parameter, u(p) is our field
variable, and s(li) is our output.

In actual practice, Y is replaced by an appropriate "truth" finite element approximation space
Yg of dimension M defined on a suitably fine truth mesh. We then approximate u(p) and s(p) by
ug(p) and sg(p), respectively, and assume that Yg is sufficiently rich such that ug(p) and sg(pi)
are indistinguishable from u(p) and s(p).

5.3 Formulation of the Linear Elasticity Problem

In this section we present the strong form of the equations of linear elasticity, from which we
derive the weak statement; we then reformulate the problem in terms of a reference (parameter-
independent) domain, thus recovering the abstract formulation of Section 5.2. In this and the
following sections, repeated indices imply summation, and, unless otherwise indicated, indices take
on the values 1 through d, where d is the dimensionality of the problem. Furthermore, in this
section we use a bar to signify a general dependence on the parameter [L (e.g., 0 Q(p), or E - p)
particularly when formulating the problem in a "non-reference" domain.

5.3.1 Governing Equations

For simplicity of exposition, we present the governing equations for the case of a homogeneous
body, and merely state the weak statement for the more general case of an inhomogeneous body.
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Strong Formulation

We consider the deformation of a homogeneous body Q C Rd with boundary 17 subjected to external

body forces, surface tractions and homogeneous displacement boundary conditions. We assume that
the displacement gradients are sufficiently small that a linear elasticity model adequately describes
the deformation; in particular, we assume that the equations of equilibrium are satisfied in the
undeformed configuration

+Ii = 0 in Q , (5.6)

and the stresses &ij are related to the linearized strains i7j by the constitutive equations

Cij= Cijklik1 , (5.7)

where the linearized strains are related to the displacements i by

1 (ak + 9iI
E = 1 _ + (5.8)

2 a8xi ax4

Assuming the material is isotropici, the elasticity tensor has the form

Cijkl = Clijokl + E2 (6 ikojI + 6 ijk) ; (5.9)

we note that from the symmetry of &ij and ki, and from isotropy, the elasticity tensor satisfies

Cijkl = Cjikl = Cijik = Cklij , (5.10)

from which it follows that
19Uk

&iy = Oijkl _ , (5.11)

Here, Ei and E2 are Lame's constants, related to Young's modulus, E, and Poisson's ratio, 0, by

E1 =P (5.12)
(1 + P) (1 - 20)'

E2 = . (5.13)
2(1 + P)

The displacement and traction boundary conditions are given by

ii, = 0, on IT, (5.14)

= 0, on l, (5.15)

'Note the assumption of isotropy is introduced only for simplicity - the methods we develop are similarly appli-
cable to general anisotropic materials so long as the spatial and parametric dependence of the elasticity tensor are
separable, i.e., Cjkl(t;.P) = f(-)CijkI(1).
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0

0

on

on F\(7n Ufn)

on N
N -

on P\ (t U IN)

(5.16)

(5.17)

respectively, where 87 and el are the unit normal and tangent vectors on F.

Weak Formulation

We now derive the weak form of the governing equations. To begin, we introduce the function
space

Y = {E E (H1(f))p Is = 0 on Pn, Vj = 0 on },

and associated norm

(5.18)

d 1/2

II If = ( i () in
d )2 )( a

1/2

(5.19)

Multiplying (5.6) by a test function V E Y and integrating over 0, we obtain

- j a d= bii dO, V; E W . (5.20)

Integrating by parts and applying the divergence theorem yields

V = - f iiji
-iJ j ~, dr + C ij dO, V f E Y (5.21)

Substituting (5.21) into (5.20), and using (5.14), (5.16), and the fact that V- E Y, we find that

I & d=
&r iibj dO + Sifws d + Vi t6' dr . (5.22)

Finally, using (5.11), we obtain as our weak statement

(Aft, ) = (F, V) , (5.23)

where

= ijkI

= (Ff ,I ) + (Fb, V)

V Ite dF, (Pb, V) = JibI dQ .

We now generalize (5.23)-(5.26) to the case in which 0 is inhomogeneous. Assuming that Q
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(AiD, V)

(F, V-)

(F, V) =) Vi nEn dY +
1P N

(5.24)

(5.25)

(5.26)



consists of R homogeneous subdomains Q4 such that

Q U Qr, (5.27)
F=1

the weak statement takes the form of (5.23) where

(wi)= V R ___ 0 dO (5.28)

(, V)= (f, V) + (Fb, D) , (5.29)

and

(Pb, ~~~ ~D ff / j dQ F,' ( n dIP + Vif[ dF) (5.30)
_ r ft f

r=1 =1 Nr N

here, Q is the closure of , 0 *kl is the elasticity tensor in , and isthesectionof'N in Q . The

derivation of (5.28)-(5.30) is similar to that for the homogeneous case, but for the use of additional

displacement and traction continuity conditions at the interfaces between the nQ.

5.3.2 Reduction to Abstract Form

In this section, we reformulate the problem defined by (5.28)-(5.30) so as to recover the abstract

formulation of Section 5.2.

Affine Geometric Mapping

As before, we further partition the subdomains Q', f = 1,... , , into a total of R subdomains

fr, r = 1,..., R such that there exists a reference domain Q = U'= 1U where, for any t E or
r = 1, ... , R, its image x E Qr is given by

r= (1_(; 2 G(,)_+ gr( (5.31)

we write

S -X -- - (5.32)

and

X (A; 0) = )+ g(/) (5.33)

where x E Q, i E Q, !2(p) E RExd is a piecewise-constant matrix, gr(tL) E ]Rd is a piecewise-

constant vector, and !9(p): Q -+ Q is a piecewise-affine geometric mapping.

Reference Domain Formulation

We now define the function space Y as Y(Q) = Q(g-1(p; Q)) = Y(n), i.e.,

Y = {v E (H'(Q))pd vie = 0 on F, vie' = 0 on I'}, (5.34)
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and for any function Cv E Y, we define w E Y such that w(x) =(g- 1 (p;x)). Furthermore, we
have

dO = det G- 1 (p) dQ,

dr = t I dF
(5.35)
(5.36)

where et is a unit vector tangent to the boundary IF, and

d 1/2

(Gie )2 ) (5.37)

It then follows that (A(p)w, v) = (.A2i, 0) for A as in (5.28) and A(p) given by

EiikI G'1,(p)
det(Gr

i E,- 1 OX

(/p))-1 dQ,

V wv E Y ,

and (F(M)w, v) = (PF'z, T)) for P as in (5.29) and F(p) given by

R (f

r=1

I det (Gr)- o dQ + (fIE (Gr([))-let 1) vi dF

± r ~~ ~~ I(r[) 1 ) vi
N

The abstract problem statement of Section 5.2 is then recovered for

(A(p)w,v) =

(F(p), v

where

(Fb([), v)

(Ff (p), v)

R aW i r t9 Vk
Ex ijkl(GL)r=1 0, j 09X 1

= ((Fb(P), V) + (Ff (p), v))

R

= b r(tp)v V

fjn'(p)vi dF +
r= N Ir tr

V w,V EY,

here C ,kl(P) is given by

Cijkl(I') = G -'(p) EirjT , G'i,(p) det(Gr(p))- 1
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(A(y)w, v)
R

r=1

R

r=1

(F((p), v)

(5.38)

(5.39)

d) (5.40)

(5.41)

(5.42)

f r(/)vi d r)

(5.43)

(5.44)

(5.45)

(Gj , Op)



and b[i(p), f r(p), and f2 '(p) are given by

bi(p) = b det (_Gr ()) , (5.46)

ffn(p) = fr in (_Gr (/ )-1_d1 t , (5.47)

fit r() = fret (Gr(p))-le t / (5.48)

Furthermore, we define

(,J,k,1,r)()= CizjkI(P), (Aq(iJ,k,1,r)W, v) j OVi aWk (5.49)
Dxj Dx

for i,j,k,l E {1, ..., d}, 1 r <R, and q: {1,...,d} 4 x {1,..., R} - {1, ... , QA}; and

b (p) for X = 1 , rVi for X = 1 ,

Opqi,r,x) fi( ) for x = 2 , Fq(i,r,x) vi for X = 2 , (5.50)
N

fi r() for X = 3 ftr vi for X = 3 ,
N

for 1 < i < d, 1 < r < R, and q': {1,..., d} x {1,..., R} -+ {1,...,QF}. Note however that
due to the symmetry of Cijkl(P), QA can in fact be taken to be d2 (d 2 + 1)R/2 rather than d4 R;

furthermore, QA and QF can be further reduced by eliminating the elements of Cijkl(p) which are

identically zero. This is illustrated in the model problems to be discussed in the following section.

5.4 Model Problems

We indicate here several simple instantiations of the linear elasticity problem; these examples will
serve to illustrate our assumptions and methods, and show ways in which the affine parameter

dependence may be further simplified.

5.4.1 Example 5

We consider the compression of the prismatic bi-material rod shown in Figure 5-1; the physical
model is simple plane-strain linear elasticity. The rod has a Poisson's ratio of v = 0.25, and

a Young's modulus of E' = 1 in Q1 , and E 2 = p in Q2 , where Q 1 = (0, 2) x (0.0, 0.5) and
q2 = (0, 2) x (0.5, 1.0)). The structure is clamped (u = 0) along FD = , and subjected

to a compressive unit load (per unit length) uniformly distributed along F; the remainder of the

boundary is traction-free. The output of interest is the displacement in the negative xi-direction
averaged along Q7:

s() =- ul i(p) for p E D = [0.1, 1]. (5.51)

Our problem can then be formulated as: given any p E D" C IRP 1 , find s(p) = (L, u(p)),
where u(y) E Y - (H'(Q)) 2 is the solution to (A(p)u(p),v) = (Fv), V v E Y, Y = {v E
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J n

N

x

Figure 5-1: Bi-material rectangular rod under compressive loading.

(Hl(Q))2 I v~rD = 0}. For this example, (L,v) = (Fv) for all v E Y,

j vi DV DWkdQ

1 x xijkl 52

(F,v) = -

1
C2

v1 d' ,

2(1+ v)

Dvi Cl DWk dQ
Dx i ,XJ

V v E Y ,

for El = 1 and v = 0.25. The abstract problem statement of Section 5.2 is then recovered for

QA = 2, and

61(p)= 1,

() = ,

(Alfv) = DvC d ,
W A ,V J D jklD d .

\WV/f02 DXj zjkl DX1 dQ

(5.57)

(5.58)

Note that F and L are compliant (L = F) and independent of p.

5.4.2 Example 6

We now consider a homogeneous rod of variable thickness, as shown in Figure 5-2. The rod has
a Young's modulus of E 1 and Poisson's ratio v = 0.25 in the domain Q = (0, 1) x (0, t). The
structure is clamped along ID(= Ij = I'), and subjected to a compressive load (per unit length)
with magnitude

- 1
fn = -,t
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(5.59)

(A(p)w,v) =

and,

V wV E Y,

where

(5.52)

(5.53)

(5.54)Chili = c164jJkl + c1 (6 ik6 fl + '5 I60jk)

l ( Elv
C1 (1 + v) (I - 2v)'

(5.55)

(5.56)
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(a)

Figure 5-2: (a) Homogeneous rectangular rod with variable

load; and (b) parameter-independent reference domain.

FD

1 Q

rn

L
x

(b)

thickness subjected to a compressive

uniformly distributed along Qg. The output of interest is the displacement in the negative zi-
direction averaged along r':

s(P) = - I ii dr for p = {t} E D - [0.03125,2.0]
N

(5.60)

The problem can then be formulated as: given a p EC- c C RP=1, find s(p) = (L,ii), where

ii E = (H'(0))2 is the solution to (A(p)ft, V) = (F,ii), V V E Y; here, (L, D) = (F,5) for all

J E Y,

and Cijkl is given by (5.9).

We now map our parameter-dependent domain 0 onto
(z)(ji): 0(p) -+ Q is given by (5.31) where g = 0 and

, V tiF, V E YP, (5.61)

(5.62)

a reference domain Q. The affine mapping

Ot)= [I0 1

(5.63)

Furthermore, we have

dO = det G-1 (p)dQ = t dQ

dr= 1 (i) et dI = tdf .

(5.64)

(5.65)

We may now re-formulate our problem in terms of the reference domain. Our problem is then:

find s(y) = (L, u(p)) where u(p) E Y = (Ho(Q)) 2 is the solution to (A(p)u(p), v) = (F, v) V v E Y;
for this example, (L, v) =(F, v) for all v E Y,

(A(p)w,v) = i Cijkl(P) dQ, V w,v E Y,
f2 axj Ox1

(5.66)
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V v E Y ; (5.67)

the effective elasticity tensor Cijkl i) = G. (p) Cij'kI C11G (p) det G- (p) is given in Table 5.1, where
cl and c2 are given by (5.55) for E = 1, v = 0.25. The abstract problem statement of Section 5.2

21

0
C2

t(c2)

22

Cl

0
0

t (cl + 2c2)

Table 5.1: Elements of the effective elasticity tensor.

is then recovered for P = 1, QA = 3,

)1(p) = 1, 1
2 E3(/,) =- , 1

and

= ciJ f (vi W2

Oxi 9x2

8v2 ewi
+ Dx ~

= (c1 + 2C2) f av1 .aw1 dQ + C2

= (c1 + 2 c2 ) jV2 aW2 dQ + C2
fJrl x2ax2

dQ +c 2
JU

(V1 w2

aX2 X1
+ VWl

9x1 aX2 )

aV2 aW2 d,
Ox 1 Ox1 dQ,

4o
0v1 aw1 dQ.
aX2 0X2

rt
rD

YL k-T-
x

(a)

F'D

IT H--H ft

x

(b)

Figure 5-3: (a) Homogeneous rectangular rod with variable thickness subjected to a shear load;

and (b) parameter-independent reference domain.

We again consider the homogeneous rod of Example 6, but with rD as illustrated in Figure 5-3,
and subjected to a uniform shear load per unit length with magnitude

-1
ft

88

(5.72)

and

(F,v) = -j v, d' ,

11

t (ci + 2c 2 )

ij\kl

11
12
21
22

12

0

}(c2)

(Alw, v)

(A 2w, v)

(A3 w,v )

(5.68)

dQ

5.4.3 Example 7

(5.69)

(5.70)

(5.71)



along FN. The output of interest is the displacement in the negative z 2-direction averaged along

s(pu) =- 2 for y = {t} E D1 = [0.03125, 2.0] . (5.73)
y N

The problem can then be formulated as: given a [t E D 'C RP=1, find s(I) = (Li), where
1 E - (H1 (0))2 is the solution to (A(4)i, V) = (F, 9), V V E Y; here, (L, D) = (F, i) for all

, E ,

(Acv, D) = Oijkl_ V F,;v E ,(5.74)

(F,) =- 2, V E , (5.75)
p N

and 0 ijkl is given by (5.9).
Upon application of the affine mapping of Example 6, the problem may then be re-formulated as:

find s(/t) = (L, u(p)) where ui(p) E Y = (Hd(Q)) 2 is the solution to (A(pt)ii,) = (P, D), V ' E Y;
for this example, (L, v) = (F, v) for all v E Y,

(A(p)w, v) = I Cijkl(A) ,Wk VWoEY (5.76)

and

(F,v) = j v2, V v E Y; (5.77)

the effective elasticity tensor CijkI(p) is given in Table 5.1. The abstract problem statement of

Section 5.2 is then recovered for QA = 3, where the E'(p) and Aq are given by (5.68)-(5.71).

5.4.4 Example 8

rt

I-

Figure 5-4: Homogeneous rectangular rod with variable thickness and angle subjected to a uniform
shear load.

In this example, we again consider the homogeneous rod and loading of Example 7, but in

addition to the thickness t, we allow the angle oz to vary, as shown in Figure 5-4. The output of

interest is again the displacement in the negative x2 -direction averaged along I'xt:

s(P) U2 , for / = {t, a} E D" = [0.03125, 1.01 x [0', 450] . (5.78)
t t

Our problem can then be formulated as: given a pt G DA C RP-,,2 , find s(ft) =(,7) where
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'i E Y = (H'(Q)) 2 is the solution to (((p)i, ) =(F, ), V V E Y; here, (L, V) = (F, D) for all
V E Y, and A, P are given by (5.74), (5.75), respectively.

We again map our parameter-dependent domain Q onto a reference domain Q = ]0, 1[ x ]0, 1[,
shown in Figure 5-3(b). The affine mapping g(0)((): Qp) -Q Q is given by (5.31) where g = 0 and

Gtt)= 0 a 1 (5.79)

Furthermore, we have

dO = detG-1 (p) dQ = t dQ, (5.80)

dr = 7-1(p)etldr=tdf. (5.81)

We may now re-formulate our problem in terms of the reference domain. Our problem is then:
find s(tL) = (L, u(p)) where u(p) E Y = (Ho(q)) 2 is the solution to (5.5); for this example,
(L, v) = (F, v) for all v E Y,

(A(p)w, v) = Cijki(p) ,V w,v E Y, (5.82)

and

(F,v) = - vi, V v E Y; (5.83)

the effective elasticity tensor Cijkl (A) = Gjy (I) Cij'kl, Gi (,v) det G-- 1(pz) is given in Table 5.2, where
ci and C2 are given by (5.55) for E = 1, v = 0.25.

ij\kl 11 12 21 22

11 t (c, + 2C2 + tan2 ac2) (tan a)(c2) (t tan a)(cl + C2) Cl
1

12 - (c2) C2 0
t

21 - - t(c 2 + tan2 a(ci + 2c2)) (tan a)(c, + 2c2)
1

22 - (cl + 2c2)
t

Table 5.2: Components of the effective elasticity tensor of Example 7.

The abstract problem statement of Section 5.2 is then recovered for P = 2, and QA = 6, where the
(p() are the unique elements of the elasticity tensor in Table5.2, and the Aq are the associated

operators.

5.4.5 Example 9

In this example, we again consider the rod of Example 6, but remove Dirichlet conditions and
instead apply homogeneous traction conditions on the top surface. We then take as our output of
interest

S f (1- x)&-ijj dI for p = {t, a} E' [0.03125, 1.0] x [0', 450] . (5.84)
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Our problem can then be formulated as: given a y E DJ' C IRP= 2, find s(p) = (,i(), i), where

U E Y = (Hol(f)) 2 is the solution to (A(p)ii, i) = (F, 7), V V E Y for this example, A, F are given

by (5.74), (5.75), respectively, and

(L(p), v) = (A(pu), f)

V Oijk 0 ,-J 9;Cijk df. (5.85)

where ( E Y, x1 (x) = 1 - x, and 5 2 (x) = 0. We note that s(y) = i(L(i),i ) since

O ijkl a, dQf

S Oijkl Oxi1 d
f0 (-Ojk' d0 9( _

09 /7 aik 9 Oijk
- iCijk 0  dO - Vi Cig dO (5.86)

-J &D a dJ + J tVjj dr (5.87)
Dr N

(1 - x)NI dr + dr (5.88)

- J (1-x)&ij dF . (5.89)

We also note that (5.85) is bounded for all V e YE while the more obvious alternative (5.84) is not.

5.5 Reduced-Basis Output Approximation: Compliance

The theoretical basis and general computational procedure presented in Chapter 3 for the reduced-

basis approximation of compliant linear functional outputs of interest applies to all problems de-

scribed by the abstract formulation of Section 5.2 (or Section 3.2) for the case L = F. We review the

computational procedure here - this time allowing F to be p-dependent - and present numerical
results for the linear elasticity model problems of Section 5.4.

5.5.1 Approximation Space

We again introduce a sample in parameter space,

S PN = {i, ... , AN} (5.90)

where An E D1 C RP, n = 1, ... , N, and define our Lagrangian ([37]) reduced-basis approximation

space as
WN = span{(n u(Pn), n = 1,... ,N}, (5.91)

where u(Pn) E Y is the solution to (5.5) for P = Pn.

Our reduced-basis approximation is then: for any p E D', find

SN(p) = (L(p), UN(P)), (5.92)
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where UN(A) E WN is the Galerkin projection of u(p) onto WN,

(A(p)nN(p), v) = (F(1a), v), V v E WN. (5.93)

5.5.2 Off-line/On-line Computational Procedure

We express our approximation uN(p) ~ u(p) to be a linear combination of the basis functions,

N

UN(A) = 1 UNj(P) (j (5.94)

j=1

where uN(p) E RN; we then choose for test functions v =i, i = 1,.. . , N. Inserting these
representations into (5.93) yields the desired algebraic equations for UN(P) E RN,

AN (A) ! N(P) = EN(), (5.95)

in terms of which the output can then be evaluated as

SN(P) = (N Ip'LN(J). (5.96)

Here AN(1-) E RNxN is the symmetric positive-definite (SPD) matrix with entries

AN i,j(P) = (A(p) (j, i), 1 < i, j < N (5.97)

EN (p) E RN is the "load" vector with entries

FN i(p) = (F(),), 1 < i < N , (5.98)

and LN() EN ). We now invoke (5.1) and (5.2) to write

QA

AN i,j(P) = /) (A(j ) (5.99)
q=1

QF

FNi(p q PF(p) (F4,) , (5.100)
q=1

or

QA

AN(P) N , (5.101)
q=1

QF

EN W FN)N, (5.102)
q=1

where the AN E IRNxN and EN are given by

ij= , 1ijN, 1 q QA, (5.103)

F q i = (Fq, (I) , < i < N, 1 < q QF -(5.104)
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The off-line/on-line decomposition is now clear. In the off-line stage, we compute the u(pn) and
form the AN and FN: this requires N (expensive) "A" finite element solutions, and O(QAN 2 ) +
O(QFN) finite-element-vector (O(K)) inner products. In the on-line stage, for any given new
IL, we first form AN(p) and FN(I) from (5.101) and (5.102), then solve (5.99) for pN(I), and
finally evaluate SN(p) = uN(A)TFN(p): this requires O(QAN 2 + QFN) + 0(2N3 ) operations and

O(QAN 2 + QFN) storage.
Thus, as required, the incremental, or marginal, cost to evaluate sN(p) for any given new p is

very small: first, because N is very small - thanks to the good convergence properties of WN (see
Chapter 3); and second, because (5.99) can be very rapidly assembled and inverted - thanks to
the off-line/on-line decomposition. We shall now demonstrate the former by applying our methods
to the compliant model problems of Section 5.4.

5.5.3 Numerical Results

We present in Figures 5-6 to 5-8 the maximum relative error EN(p) as a function of N for IL E D,
for Examples 5 to 8, respectively. In all four cases, the y" are chosen "log-randomly" over DA:
we sample from a multivariate uniform probability density on log(p), as described in Chapter 3.
We note that the error is monotonically decreasing with N (as predicted by our a priori theory),
and even for cases (such as Example 8) for which P > 1, the error is remarkably small even
for relatively small N. Furthermore, we again observe that the log-random point distribution
is important, as evidenced by generally faster convergence (versus the non-logarithmic uniform
random point distribution), particularly for large ranges of parameter.

110
10 . . - -

1...... -.... - -2

10 - 10 -... -..

10 - . - -.

10 

1 0 -. ...- ... .. -.. .-.

2 4 6 8 10 12 14 2 4 6 8 10
N N

Figure 5-5: Convergence of the reduced-basis ap- Figure 5-6: Convergence of the reduced-basis ap-
proximation for Example 5. proximation for Example 6.

5.6 Reduced-Basis Output Approximation: Noncompliance

In Section 5.5, we formulate the reduced-basis method for the case of compliant outputs, L(p) =

F(p). We briefly summarize here the formulation and theory for more general linear bounded
output functionals.
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Figure 5-7: Convergence of the reduced-basis ap- Figure 5-8: Convergence of the reduced-basis ap-
proximation for Example 7. proximation for Example 8.

As before, we define the "primal" problem as in (5.5); however, we also introduce an associated
adjoint or "dual" problem: for any p c DA, find (p) c Y such that

(A(p)v, =(p)) -- (L(p),v) , V v E Y ; (5.105)

recall that L(p) is our output functional.

5.6.1 Approximation Space

To develop the reduced-basis space, we first choose, randomly or log-randomly as described in
Chapter 3, a sample set in parameter space,

N/2 A ,--, N/2} (5.106)

where ,, E DA C RP, n = 1, . . . , N/2; we now consider two approaches - "nonsegregated" and
"segregated" - for defining our Lagrangian ([37]) reduced-basis approximation.

Nonsegregated Approach

We define the nonsegregated reduced-basis approximation space as

WN = spanf{u(pn), 0(p),n= 1,... , N/2} (5.107)

span{(n,n=1,...,N} (5.108)

where u(Pn) E Y and 0(/pL) E Y are the solutions to (5.5) and (5.105), respectively, for A = p.
Our reduced-basis approximation is then: for any M E DA, find

SN(p) = (L(p), UN()), (5.109)

where uN(A) e WN and ON(A) c WN are the Galerkin projections of u(p) and O(M), respectively,
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(A(p)uN(A), v) = (F(p), v), V V E WN , (5.110)

(5.111)(A(p)N(), ) = -(L(p),v), V v E WN.

Turning now to the a priori theory, it follows from standard arguments that uN(p) and ONOA)

are "optimal" in the sense that

IuP) - UN(I1)LY

I10(p) - ON(A) II Y

7A(" inf 1JU(P) - WNNY ,
A(A) WNEWN

7A (/-L) - WN Y .
A(A) inf I[ P )
aA/)WNEWN

The proof of (5.112) and the best approximation analysis is similar to that presented in Section 3.5.2.
As regards our output, we now have

js(P) - SN(p)I = (L(p),u(1A)) - (L([t),uN(A))Ij

= I(A(p)(u(p) - UN(P)), 0 (P)) I

S (A(p)(u(p) -UN() , 1'(A) - ON(P)) I

< -YAIlU(pt)- UN(P)IIY 09(I-)~- N(t) NY

(5.114)

(5.115)

(5.116)

(5.117)

from Galerkin orthogonality, the definition of the primal and adjoint problems, and (3.5). We now

understand why we include the '(pi) in WN: to ensure that ['(P) - 'N([ IIY is small. We thus

recover the "square" effect in the convergence rate of the output, albeit at the expense of some

additional computational effort - the inclusion of the O(/p1A) in WN; typically, even for the very

rapidly convergent reduced-basis approximation, the "fixed error-minimum cost" criterion favors

the adjoint enrichment. However, there are significant computational and conditioning advantages

associated with a "segregated" approach; this approach (and the corresponding advantages) is

discussed in the next section.

Segregated Approach

In the segregated approach, we introduce separate primal and

and 0(p), respectively. In particular, we define

dual approximation spaces for u(p)

WNr = span {(r = u(tn),n = 1, ..., N/2}

span {dU = ) = 1, . .. ,N/2}

Our reduced-basis approximation is then: for any p E D1, find

SN(A) = (L(p), UN(A)) - ((F(p), ONW(p)) - (A(P)uNC([), "N(P))),
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where UN(P) E WN and ?N(P) E WA" are the Galerkin projections of u(p) and O(p) onto WN'

and WNu, respectively,

(A(p)uN(P), v) = (F(p), v), V v E W' , (5.121)

(AWu)4N(W),v) = -(L(AL),v), V v E WNu. (5.122)

Turning once again to the a priori theory, it follows from standard arguments that UN(p) and

/N(p) are "optimal" in the sense that

7A~p -~(P))Y inf I U(P) - N I Y ,(5.123)
A(P) WNEWg

I'(Ip) -N(')IIY & inf I00b) -wN IIY (5.124)
A(#A) WNEWU

The proof of (5.123) and (5.124), and the best approximation analysis is similar to that presented
in Section 3.5.2. As regards our output, we now have

I(pA) - sN(P)I = I(L(I),u(l)) - (L(p),uN(P)) + ((F(pI), ON(P)) - (A(t)UN(i),IN(v-)))I(5.125)

= I(A(p)(u(p) - UN(p)), 4()) - ((A(p)(u(p) - uN(tu)),4'N(tu)))I (5.126)

~ u)(ui) - UN u)), 4u) - 'N~))I (5.127)

< 70||U(pt) - UN(I-)IIY 0 (p) - N(P)IIY (5.128)

from (5.120), the definition of the primal and dual problems, and (3.5). Note in this case we are
obliged to compute /N(p), since to preserve the output error "square effect" we must modify our
predictor with a residual correction ((F(p), ON W)) - (A(p)uN(t(), ON(P))) [26].

5.6.2 Off-line/On-line Computational Decomposition

Both the nonsegregated and segregated approaches admit an off-line/on-line decomposition similar
to that described in Section 5.5.2 for the compliant problem; as before, the on-line complexity and
storage are independent of the dimension of the very fine ("truth") finite element approximation.

Nonsegregated Approach

The off-line/on-line decomposition for the nonsegregated approach is, for the most part, similar to
that described in Section 5.5.2. As before, the output is given by sN(P) = UN )TLNG); however,
in this case the output vector LN(p) is given by

LN i(p L(p), (i), 1 < i < N . (5.129)

We then invoke (5.4) to write
QL

LNi(P) q(/_t) ( , ) , (5.130)
q=1
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or
QL

LN) = <p AL) LN, (5.131)
q=1

where the Lq E RN is given by

LN q (Lq, (,) , 1<5i<5N, 1<5 $QL-(.32

Thus, in the off-line stage, we compute u(pAt) and 'b(pu,) for n = 1,..., N/2 and form A q, F, and

Lq: this requires N (expensive) "A" finite element solutions, and O(QAN 2 ) + O(QLN + QFN)
finite-element-vector (O(N)) inner products. In the on-line stage, for any given new P, we first

form AN EN(p), and LN(P) from (5.101),(5.102) and (5.130), solve (5.99) for UN(M), and finally
evaluate SN(A) = !±N(11) LN(A): this requires O(QAN 2 + QFN + QLN) + O(2N 3 ) operations and

O(QAN 2 + QFN + QLN) storage.

Segregated Approach

In the segregated approach, we express UN(jt) and 'ON(p) to be linear combinations of the appro-

priate basis functions:

N/2

UN (P) = ZUNj() ( (5.133)
j=1
N/2

ON (P) = Z bN j (1A) (du (5.134)
j=1

Then, choosing for test functions v = (ir in (5.110) and v =(id in (5.111) yields the desired

algebraic equations for UN(p) E RN and ON(IL) E RN,

Ap(Pt) IN(A) F N(1), (5.135)

AV(A) N(A) -LN(p) , (5.136)

in terms of which the output can then be evaluated as

SN - uT (L + N(A) - -Prdu (A) (5.137)

Here A((p) E IRNxN, Ad (p) E IRNxN, and A'du(p) E IRNxN are the symmetric positive-definite
matrices with entries

A (p) = (A(p)Cr (pr), 1 < i,j < N/2 , (5.138)

AdNu() (A(p) qu (0u) 1 < i, N/2 , (5.139)

A " (p) = (A(p)rru), 1 ij N/2, (5.140)

E(At) E RN and Ed(A) E RN are the "load" vectors with entries

FNr (p) = (F(p), (qr), 1 < i N/2 , (5.141)

Fdui(t) = (F(p),C(du), 1 i < N/2 , (5.142)
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and Lp(p) and Ldu(p) are the vectors with entries

LN;(p) =L p r),

Li;(P)= (L(p), ( u),

1 < i < N/2

1 < i N/2.

We again invoke (5.1)-(5.4) to write

QA

q=1

QA=
q=1

QA

q=l

Fj"(p)

,)LN(p

L up)r

=q4F( (Fq , (ipr) ,
q=1

QF

=) (F , (u)
q=1

QL=
q=1

QL

-=
q=1
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(5.143)

(5.144)

(5.145)

(5.146)

(5.147)

(5.148)

(5.149)

(5.150)

(5.151)

6() (A (,pr , pr) ,

6( q(du, (du) ,

8() (Aq(jpr (iu) ,

q p (Lq , (ipr) ,

q p (Lq , (idu) ,



or

QA

_AS (P) = ~ O(A) ANpr (5.152)
q=1

QA

Ad ) E q )qdu (5.153)
q=1

QA

AWrdu q q pr~du , (5.154)
q=1

QF

Ep; 4FL) (1 F , ( 5.155)
q=1

QF

N F (Ap) Fqdu (5.156)
q=1

QL

( = 5 q( )q _Lpr (5.157)
q=1

QL
() ( ) du, (5.158)
q=1

where the A qpr Aq du q pr,du q pr q du Lq pr and Lqdu are given by' -N '-:LN '-N ' z-N I r -Nd-N

A q pr ( , r) 1 i,j < N/2 1q QA , (5.159)

A qdu q du du) , 1 < ij < N/2 1 < q < QA (5.160)
A qpr,du q r , 1 < ij 5 N/2 1 < q QA (5.161)

Frj = (F, Pr) , 1 i N/2 1q QF , (5.162)

F~ - (F,I (u) , 1 < i N/2 1 < q QF (5.163)

Lp (L4q, (r) , 1 i N/2 1 q QL, (5.164)

Ldu- Ldu), 1 i N/2 1 q QL. (5.165)

Thus, in the off-line stage, we compute the u(pn), 0 (An), and form the A qpr Aqdu q pr,du q pr

Ndu qpr, and L4du: this requires N (expensive) "A" finite element solutions, and O(IQN2 ) +

O(QFN + QLN) finite-element-vector (O(N)) inner products. In the on-line stage, for any given
new yu, we first form Ag(1 ~(p) u Apdu(p), Fp(A), Fd(p), L;(p), and LV)u(p) from (5.152)-
(5.158), then solve (5.135) and (5.136) for uN(p) and 'N(M), respectively, and finally evaluate

sN(ip): this requires O(IQAN 2 +QFN+QLN)+O(4N 3 ) operations and O(4QAN 2 + QFN+QLN)
storage.

5.6.3 Numerical Results

We present in Figure 5-9 the maximum relative error EN(p) as a function of N for p E DA for
Example 9. For this example, reduced-basis space is nonsegregated, and the An are chosen "log-
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randomly" over D". We note that, unlike in the compliance case, the error no longer decreases
monotonically with N; nevertheless, the approximation converges relatively rapidly. Furthermore,
the error is remarkably small even for relatively small N - we obtain approximations which are
accurate to within 1% for N ~ 25. Furthermore, we again observe that the log-random point
distribution is important, as evidenced by generally faster convergence (versus the non-logarithmic
uniform random point distribution).

We again note that although our reduced-basis approximations are accurate and inexpensive
to calculate, it is important to assess the accuracy of our predictions. In Sections 5.7 and 5.8 we
extend the a posteriori Method I and Method II error estimation methods developed in Chapter 4
to the more general case of noncompliant problems.

10-1

10-2

10 -

z

10o- 4

10 20 30 40 50
N

60 70 80

Figure 5-9: Convergence of the (noncompliant) reduced-basis approximation for Example 9.

5.7 A Posteriori Error Estimation: Method I

The methods presented in Section 4.2 still apply to the compliance case, and the extension to pL-
dependent linear functionals (F(p) = L(p)) is straightforward. In this section, we extend the bound
conditioner constructions of Sections 4.3 and 4.4 to more general linear functionals (F(p) $ L(p)).
We then apply our methods (for compliance and noncompliance) to the linear elasticiy model
problems of Section 5.4; we conclude with numerical results.

To begin, we define the primal and dual error, epr (z), edu (pt) E Y, as well as the primal and
dual residual Rpr(,) Rdu(M) c Y as

epr (_) U (A) - UN (A)

edu(A) ) -( - N -

(RPr(p), v) (F(p), v) - (A(p)UNI), v) ,
du -(L(pv) - A(p)vN())

from which it follows that

(A(p)epr(u), v) = (Rpr(t,), v)

(A(p)v,eI(A)) = (Rdu(A), v)

100

(5.166)
(5.167)

(5.168)
(5.169)

q q

..... ...... .... ... .. ........... ...... ........
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5.7.1 Bound Conditioner

We again introduce a symmetric, continuous, and coercive bound conditioner [21, 37, 47] C(p): Y

Y' such that the eigenvalues

pmin(P) = min (A(p)v,v) (5.170)
vEY (C(piv,v)

Pmax(p) = max(C(p)vv) (5.171)

satisfy

1 pmin(P), Pmax() <_ p, (5.172)

for some (preferably small) constant p E JR. As before, we also require an additional "computational

invertibility" hypothesis [38, 47]: we require that C-1(p) be of the form

C-1(p) = E ai(p)C-1  (5.173)

iEI(A)

where I(p) c {1,... , I} is a parameter-dependent set of indices, I is a finite (preferably small)

integer, and the Ci: Y -+ Y', i = 1, . . , I, are parameter-independent symmetric, coercive operators.

5.7.2 Error and Output Bounds

We now find epr(p) E Y and Bdu(M) E Y such that

(C(A) pr(1), v) = (Rpr(p), v), V v E Y , (5.174)

(C(p) u(1A),v) = (Rdu(I),v), V v E Y . (5.175)

We then define our lower and upper output bounds as

s()= sN(P) - AN(A) (5.176)

s(P)= SN() + AN(I) (5.177)

where AN (A) is given by

AN(A)= (C (A) pr 6pr (/,)1/2 (C(A du d/ut) 1/2 (5.178)

= (Rpr - pr 1/2 7 du(p), C-I(p)Rdu 1/2 (5.179)

- (Zpr(A),8prr( ))1/ 2 (kduQ ), duQ ))1/2 . (5.180)

5.7.3 Bounding Properties

It remains to demonstrate that

N= N(P) > 1 V N > 1 (5.181)
s) - sN()I -

and to investigate the sharpness of our bounds; note that from (5.176), (5.177), and (5.181) it

directly follows that that s-(p) < s(p) s(A) for all N > 1.

To prove (5.181), we first note from (5.117) for the nonsegregated case, and (5.127) for the
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segregated case, that

Is(p) - SN(A) (A(p)epr (p),edu W))I. (5.182)

It then follows that

77N(A) (C(pA)6pr(p) ,p 1/2(C([t)8du() 6du ,)1/2(513
1N() (A(p)epr(,), edu ())I(5.183)

" (C(IL) &r p, 6pr (,)1/2 (C (A)adu (1) du (1,)1/2 (5.184)(A([t)epr(/), epr~p)) 1/2 (A(p)edu (1A), edu (,)) 1/2

Pmin(A) (5.185)

> 1 , (5.186)

from the triangle inequality and (4.21).

We now turn to the upper effectivity inequality (sharpness property). We note from (5.183) that
if the primal and dual errors are A-orthogonal, or become increasingly orthogonal as N increases,
such that I(A(p)epr(/_), edu(p))I -+ 0, then the effectivity will not be bounded as N -+ oc. However,
if we make the (plausible) hypothesis [39] that

Is(p) - SN(I)I = (A (p) epr (P),edu(/)) 1 e pr y I IIedu(/)I|y , (5.187)

then it follows that

77N(/I) (C 6~pr &r ,,)1/2 (C 6)du ,) du 1/2(518
((N(t pr (,P, , edu (()) I

" (Cp 6pr pr ,,)1/2 (C (pA)8du 1A, du 1/2 (5.189)
Ac I|Iepr (1)IIy edu (t

" Y0(C(p_)6pr(l_),8pr l,)1/2(C(p) du t),du l)1/2 (5.190)
C (A(p)epr(I), epr ()) 1/2 (A(p)edu(j), edu (/A)) 1/2

A

60

< p . (5.192)
CA

5.7.4 Off-line/On-line Computational Procedure

We indicate here the off-line/on-line calculation of AN(A) for the nonsegregated cases; the segre-
gated approach admit a similar computational decomposition.

Nonsegregated Case

We recall from (5.179) that

A N(A) = (JZprQ -1), C-i(A)kprQ 1))l/
2 (Rdu) C-i A du 1/2 (5.193)
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From the definition of the residual (5.166)-(5.167), the separability assumption (5.1), and the

expansion of UN(/u) and ?/N(p) in terms of the basis functions, we have

= (F(p), v) - (A(p)uN(A), v)
QF QA N

= q F(p) (Fq, v) - 5 (5 /,) Un(p) (A4(n, V),
q=1 q=1 n=1

= -(L(pz),v) - (A(p)4N([I),v)
QL QA N

= -4(n)(LIv) -5(A (n, V),
q=1 q=1n=1

V V E Y, V pz E D ,

We now invoke the "computational invertibility" hypothesis on C(ft), (5.173), to write

(RPr(_), C-1(/_)1Zpr(,,)) -=5 ay (p) ()r(,), C -IPr(p))

iEI(pi)

QF QA N

= oziGLp (P9FpF -

i EI( p) q=1 q=1 n=1

QF QA N

C7-1 5 f( p)F' - 5'(,p) uNn'(p)
(q=1 q'=1 n'=1

F QF

-d Fd F~+ FV)V-'F'
=1 q1=1

F UN n (A) ((F 'CI14n

Q

=z 0(1)
iE-T(p) q

QA QF N

q=1 q'=1 n=1

QA QA N N

+ (AnlCI1Ff ))

N ) U n (AL) UNn' (it) (A ,

q=1 q'=1 n=1 n'=1

similarly, we have

(Rdu(), C- 1 (,)Rdu ()) E ai)
ie(zp(/) _
QA QL N

+ 55 EE Eq(
q=1 q'=1 n=1

QA QA N N

+ ES S= n'
q=1 q'r1 n=1 n'=1

QL QL
q (1t(q'[Z (Lq, Ci-'Lq')

q=1 ql 1

L ( )Nn(P) ((L ',C;-1AGn)+

' P)N n1A) VN n' (P) ( A')
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and

(lZdu(P), v)

V v E Y, VpE D/.

(5.194)

( P) UN n(t) Aqin,

(4n C 1 Lq')

A q (n /'



Thus, in the off-line stage, we compute the p-independent inner products

C priqq
du

ciqq,

Aq

Aiqq'n

and

= (F q, C , Fqq QQF,
= L, C -I L ') , 1 < 1 , 1 < q, q' <_ Q L

1 %q' QF 1< Cn< 'N,

(Li', C2 A) = (A(,,CylL4') 1 <i <I, 1 q QA,

1 <q' < QL, 1 n < N,

I'qq'nn/ = (n, C-'A'(n) , 1 < q,q' QA, 1 rfl' <N

(5.195)

(5.196)

(5.197)

(5.198)

(5.199)

(5.200)

(5.201)

where (5.197) and (5.199) follow from the symmetry of Ci. Calculation of (5.195)-(5.201) then
requires QAN Aq(n multiplications, I(QAN+QF+QL) C-solves, and I(Q2N 2 +QAN+QFQAN+
QLQAN + Q2 + Q2) inner products.

In the on-line stage, given any new value of 1L, we simply the compute

AN(p)

QF QF QAQ F N

Cei) I 0 (P q(PCr + 25[qi 1q'= F F qq

_q=1 q'=1 q=1 q 1l n=1

(5.202)
QA QA N N

+ E E E E
q=1 q'=1 n=1 n'=1

QL

O zi (p) 1

QA QA N N

q=1 q'=l n=1 n1=1

QL

1 L() L (/1)cjqq, + 2
1 q'=1

The on-line complexity is thus, to leading order, O(tIj()IQ2N 2 ) - and hence, independent of .
We note from Section 5.7.1 that the guidelines presented in Chapter 4 for constructing and

choosing the bound conditioner C(p) are the same for noncompliance as for the compliance case.
We therefore need not repeat here the formulation of the different bound conditioner constructions.
We present in Sections 5.7.5 to 5.7.9 numerical results for the examples of Section 5.4 if applicable,
and remark on the limitations of the restrictions of each bound conditioner construction.

5.7.5 Minimum Coefficient Bound Conditioner

We present in Figure 5-10 the effectivities for Example 5 and = Lo for different values of Po.
Note that r)N(p) - 1 > 0 in all cases, and 7IN(PO) = 1 (as expected). The results also confirm
our observations in Chapter 4: the sensitivity of the resulting effectivities to the choice of 0, and
the increase in effectivities as lit - pol -+ oo. (Note, in this case the rate of increase is greater
for p > po.) Nevertheless, the results show that even for I = 1 - if po is chosen "optimally" -
?N(P) < 3 for all p E D"4 for po - 0.1.
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q=1 q1=1 n=1

(5.203)

Fp_ UN n (/-) Aiqq'n

Eq (A) Wq (IL) dNnp u

- 1/2

W4(P) 0"'(A) UN n (A) UN n' (A ]qq'nn'

- 1/2

G(),P) E@q'(p) ON n(4) ON n' G)]qq'nn'



However, the disadvantages alluded to in Chapter 4 are even more restrictive in the case of lin-

ear elasticity. We recall that the minimum coefficient bound conditioner applies only to problems

in which the Aq are positive semidefinite. Unlike in the case of the Laplace operator (heat conduc-

tion), the linear elasticity operator does not admit such a representation even for simple geometry
variations. This particular technique - although it performs well for the property variation in

Example 5 - is therefore only limitedly applicable to linear elasticity.

9-

8-

7-

4

3 -

10~ 10 10~, 10*

Figure 5-10: Effectivity as a function of y for Example 5 calculated using the minimum coefficient
bound conditioner with 0 = e(po) for Mo = 0.001, 0.01, 0.1, 1.0.

5.7.6 Eigenvalue Interpolation: Quasi-Concavity in y

We again consider the possibility of constructing bound conditioners based on observations on
the behavior of the relevant eigenvalues with respect to the parameter. We plot in Figures 5-11
(Example 6) and 5-12 (Example 7) the eigenvalues p'. as a functions of the parameters calculated

using C1 = A(po) for po = 0.2. We note that in both cases, the eigenvalues again appear to

be quasi-concave with respect to the parameter. The slight "bump" in the curve for Example
7 (at M - 0.65) causes some concern, however, and potentially indicates that our hypothesis of
quasi-concavity may in fact be false.

Furthermore, we observe that although the operators associated with Examples 6 and 7 are very
similar, the eigenvalues for Example 7 are much worse in the sense that they approach zero much

more rapidly. The difference lies in the boundary conditions: the Dirichlet boundary conditions

applied in Example 6 eliminate the near-pure rotation modes which cause pi to become very
small.

We present in Figure 5-11 the effectivities for Examples 6 and 7 ; we present similar results
in Table 5.3 for Example 8. We note that we obtain very good effectivities ((and therefore sharp
bounds) except in Example 7 for small values of p. The latter is due to the fact that the eigenvalues

become very small for small thicknesses (due to near-pure rotation modes) in Example 7.

5.7.7 Eigenvalue Interpolation: Concavity 0

We plot in Figure 5-14 the resulting effectivities for Example 5. We note that with the proper
choice of C1 (e.g., A(po) for po = 1.0), the effectivities are very good even for T = 2. A substantial
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Figure 5-11: Plot of the
and yo = {Ifo} = 0.2.

eigenvalues pm as a function of f for Examples 6 and 7, with C1 = A(po),

0.2

0.15-

0.1

0.05

0.2 0.4 0.6 0.8

Figure 5-12: Contours of the eigenvalues pn as a function of f for Example 8, with C1 = A(po),

Io = {fo, do} = {0.2, 0.0}. The contours are calculated at constant d, for d = 00, 15', 30', and 450

Trial 1
Trial 2
Trial 3
Trial 4

0.3
0.3
0.9
0.9

do

5.0
40.0
5.0
40.0

?7N (Ap) - 1

29.99
195.58

15.78
40.90

Table 5.3: Minimum, maximum, and average effectivity over p c D" for Example 8, obtained using
the quasi-concave eigenvalue bound conditioner with C1 = A(po), Ao = {fo, ao} = {0.2, 0.0}, and
T = 9.
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Figure 5-13: Effectivity as a function of p for Examples 6 and 7, obtained using the quasi-concave
eigenvalue bound conditioner with C1 = A(po), yo = fo = 0.2.

decrease can also be observed for T = 4.

We also plot in Figure 5-15 the range D", and in Figures 5-16 and 5-12 the eigenvalues over the
three lines shown in Figure 5-15. These results agree with our theoretical results that the eigenvalues
are concave with respect to 0. We also note that, particularly for Example 7, the eigenvalues become
negative rather rapidly for the linear elasticity case. We then present in Figures 5-18 and 5-19 the
resulting effectivities. We note that the effectivities for Example 6 are relatively high, and are
even higher for Example 7 due to the speed with which the eigenvalues go to zero. However, it
must be noted these effectivities are still quite good considering the fact that among all our bound
conditioners, the concave eigenvalue bound conditioner is the only completely rigorous technique
which is applicable even for general geometry variations.
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Figure 5-14: Effectivity as a function of y for Example
bound conditioner with C1 = A(9o) for different choices

5, calculated using the concave eigenvalue
of 0o (= po), and for T = 2 and T = 4.
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5.7.8 Effective Property Bound Conditioner

We note that the effective property bound conditioner of Section 4.3.4 can be extended to problems
involving property variations in the linear elasticity operator: instead of an effective diffusivity
tensor, we now consider seek an effective elasticity tensor. We plot in Figure 5-20 the effectivity as
a function of p for Example 5. The results show that for I = 3, the effective property yields good
effectivities - r/N(p) < 10 for all p e DA.

However, we recall that the effective property bound conditioner requires that there exist an
effective tensor (here, an effective elasticity tensor) which satisfies (4.103) for all p c D11. In the case
of geometry variations in the linear elasticity operator, however, the elasticity tensor is singular,
with a nullspace that is parameter-dependent. It is therefore impossible for linear elasticity problems
with geometry variations to find an effective elasticity tensor which satisfies our requirements.
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Figure 5-20: Effectivity
bound conditioner.

as a function of p for Example 5 obtained using the effective property

5.7.9 Convex Inverse Bound Conditioners

We recall that the convex inverse Bound conditioners require that A(p) be of the form

QA

A(p) = AO + E E (tL) Aq, V p E D1q
q=1

(5.204)

where the Oq(L) : D- R±,o, q = 1, ... , QA; A0 : Y --+ Y' is symmetric, continuous, and coercive;

and the A: Y - Y', q = 1, ... , QA are symmetric, continuous, and positive-semidefinite.

We note that in all our model problems - Examples 5 to 8 - the operator cannot be expressed

in the required form: either the Aq are all positive-semidefinite (as in Example 5), or the Aq are

indefinite (as in Examples 6 to 8).

5.8 A Posteriori Error Estimation: Method II

We discuss here the extension of Method II of Chapter 4 to noncompliant outputs.
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5.8.1 Error and Output Bounds

Nonsegregated Approach

Following [39], we set M > N, and introduce a parameter sample

S' = {I, . . ., PM/2} (5.205)

and associated reduced-basis approximation space

WM = span fu(pum), (pm),m = 1,... ,M/2} (5.206)

where u(pm) E Y and 0(pm) E Y are the solutions to (5.5) and (5.105), respectively, for p = ym.

For both theoretical and practical reasons we require S' c S' and therefore WN C WM. The

procedure is very simple: we first find uM(u) E WM such that

(A(p)uM(p), v) = (F(p), v), V v E WM ; (5.207)

we then evaluate
SM(p) = (L(p), uM(p)) . (5.208)

Segregated Approach

We again set M > N, and introduce a parameter sample

Smt = IP- -. .. PM/2} (5.209)

and associated segregated reduced-basis approximation spaces

WPr = span {( = U(pm), m = 1, .. ., M/2} (5.210)

W u = span {nf'= 4(pm), m = 1,..., M/2} , (5.211)

where u(pm) E Y and 4'(p'm) E Y are the solutions to (5.5) and (5.105), respectively, for = Pm. As

before, we require S' c S' and therefore WNr c WMJ and Wdu c Wadu. We first find uM (p) E WMj?

and 4M(p) E Wdu such that

(A(p)uM(p), v) = (F(p), v), V v E Wk , (5.212)

(A(p)M(p), v) = -(L(pu), v), V V E Wu (5.213)

we then evaluate

SM(p) = (L(p),uM(p)) - ((F(p),ioM(p)) - (A()uM(p),0M([t))) - (5.214)

Output Bounds

Given SN(p) and sM(p) calculated using either the nonsegregated or segregated approaches, we

evaluate the "improved" estimator 9N(p) given by

1
9N(A) = SN(P) - I (SM(P) - SN(P)) ; (5.215)

2T
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our lower and upper output bounds are then

+1\ 1SN (A) = SNL) - AN(P) (5.216)

21
S+' (A N (A) + AN (A) (5.217)

where AN W) is given by

AN,M(/) - ISM(P) - SN([)f (5.218)
T

for some T E (0, 1). The effectivity of the approximation is defined as

?7N,M W N, N() (5.219)

We shall again only consider M = 2N.

5.8.2 Bounding Properties

As in Section 4.5, we would like to prove the effectivity inequality 1 - ?JN,2N() < p, for sufficiently
large N; as in Section 4.5, we must again make the hypothesis (4.190). We first consider the lower
effectivity inequality, ?N,M(I) > 1, and prove the equivalent statement

SN2N(I) N, SG) 2 N ), N -> oc. (5.220)

Following [39], we write

1
SN,2NI0 S 1 N,2N I SN(Y) - S2N (A)

X 1 S2N() > SN(L) (5.221)
(1 - EN,2N) - S2N() < SN(/)

1
SN 2N( W s() + 1SNU) - S2N(I)IN 2N W1 -EN,2N

}1(1 - EN,2N) - S 2N(P) > SN(A) (.2)
1 S2N(A) < SNGO)-

From our hypothesis on eN,2N, (4.190), and the range of T, there exists an N* such that for N > N*,
(1 - EN,2N) > 1; the result (5.220) directly follows.

We now consider the upper effectivity inequality (sharpness property). As in Section 4.5, we
write

-IS2N - SNI _ IS2N - S + S - SNI
N,2N( IS - SN IS - SNI (5.223)

1
= -11 -eN,2NI; (5.224)

from our hypothesis (4.190) we may thus conclude that qN,2N(t) -> as N -> oo. Note that unlike
in the compliant case, 7?N(p) no longer approaches 1/T strictly from below.

As before, the essential approximation enabler is exponential convergence: we obtain bounds
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even for rather small N and relatively large T. We thus achieve both "near" certainty and good
effectivities. These claims are demonstrated in Section 5.8.4.

5.8.3 Off-line/On-line Computational Procedure

Since the error bounds are based entirely on evaluation of the output, we can directly adapt the off-
line/on-line procedure of Section 5.6. As before, the calculation of the output approximation sN(p)
and the output bounds are integrated: the matrices and vectors which yield sN(p) are sub-matrices
and sub-vectors of those yielding S2N([t), AN,2N(II), and sN,2 NQL).

5.8.4 Numerical Results

As in Chapter 4, the essential approximation enabler is exponential convergence: we obtain bounds
even for rather small N and relatively large T. The rapid convergence in the reduced-basis ap-
proximation allows us to achieve both "near" certainty and good effectivities, as demonstrated in
Tables 5.4, 5.5, and 5.6; the results tabulated correspond to the choice T = 1/2. In all cases,
we clearly obtain bounds even for relatively small N; and we observe that 7N,2N(p) does, indeed,
rather quickly approach 1/r. Furthermore, the results presented in Table 5.6 illustrate the fact
that, in the noncompliance case, the effectivities are no longer bounded from above by T = 1/2.

N

min N(I)
AI

max TN,M( )
AU

1 1.98 2.00
2 1.96 2.00
3 2.00 2.00

min UN(I1)
P1

maxlqN,M(P)
A

1 0.32 2.00
2 1.55 2.00
3 1.44 2.00
4 1.18 2.00
5 1.93 2.00
6 1.97 2.00

Minimum and maximum effectivities for the Method II error estimators for Examples 5

N

N min TN(P)
AI

max ?N,M(it)
AI

1 0.18 1.99
2 0.92 1.99
3 1.55 2.00
4 1.56 2.00
5 1.96 2.00
6 1.92 2.00
7 1.78 2.00

min TIN(P) max 7N,M()

1 0.01 2.00
2 1.25 1.97
3 1.47 1.99
4 0.37 2.00
5 1.06 2.00
6 1.57 2.00
7 1.54 2.00
8 1.71 2.00
9 1.60 2.00

10 1.70 2.00

Minimum and maximum effectivities for the Method II error estimators for Examples 7
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min TIN(A)

4
8

12
16
20
24
28
32
36
40

0.30
0.16
1.63
1.43
1.81
1.54
1.93
1.96
1.96
1.97

Table 5.6: Minimum and maximum effectivities for the Method II error estimators for Example 9.
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MaX 77N,M(I)

3.60
2.00
2.01
2.00
4.15
2.04
2.01
2.06
2.44
2.00
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Chapter 6

Reduced-Basis Output Bounds for
Eigenvalue Problems: An Elastic
Stability Example

6.1 Introduction

There are many applications in which the posibility of unstable equilibria must be considered.

Applied forces which exceed the critical loads may cause structures to buckle, resulting in large

(and potentially dangerous) deformations; structural stability considerations must therefore be

included in any design.

While analytical formulas exist for the critical loads of relatively simple geometries, they are of

limited applicability particularly for more complex structures. However, exact (finite element) solu-

tion of the partial differential equations governing elastic stability is computationally too expensive,
especially in the "many queries" context of design and optimization.

We consider here the reduced-basis approximation and (Method II) error estimation for the

problem of elastic buckling. The output of interest is the critical buckling load, calculation of which
requires solution of a nonlinear (partial differential) eigenvalue problem. Note the nonlinearity
presents significant difficulties: the computational and storage requirements for the reduced-basis
approximation are greater, and our rigorous error estimation procedures are currently inapplicable.

6.2 Abstraction

As in Chapter 5, we consider a suitably regular (smooth) parameter-independent domain Q C

iRd d 1, 2, or 3, the associated function space Y C (H1 (Q))d, with inner product (., -)y, norm

|y = (-,)V, dual space Y', and duality pairing (-,-) = y/( ,-)y; as before, we define a

parameter set DP E RP, a particular point in which will be denoted A.

We now introduce a symmetric, continuous, and coercive distributional operator A(p) : Y - Y';
a symmetric, continuous, and semi-definite distributional operator B(P; w) : Y -+ Y'; and bounded
linear form F(p) E Y'. We shall again make certain assumptions on the parametric dependence of
A, B, and F. In particular, we shall suppose that, for some finite (preferably small) integers QA,
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Q1, and QF, we may express A([), B(I), and F(ta) for all p E D/ as

QA

q=1

QA

B p; w) = E )'(y) BI (w), (6.2)
q=1

QF
F(p) = E F(p Fq (6.3)

q=1

where E4(p): Dp - IR, poF(p): Dth -- R, and eq((p): D1' -- R. Here, Aq: Y -+ Y', Fq E Y', and
Bq(w): Y -+ Y'. We further assume that the Bq are linear in w such that for any 61, &2 E IR, and

I1, 72 E Y, Bq(hl1b1 + &2 CV2 ) = &1Bq(?b1) + &2 Bq(7b 2 ). As before, the assumption of "separability"
or affine parameter dependence is crucial to computational efficiency.

Our abstract problem statement is then: for any At E D" C IRP, find s(pt) E JR given by

s(A) = A1(A), (6.4)

where Al(p) is the eigenvalue with the smallest magnitude satisfying

(A(p)((p), v) = A(At)(B(p; u((p))((p), v) , V v E Y ; (6.5)

here, (p) E Y is the eigenvector associated with A([t), and u(pt) E Y is the solution of

(A(p)u(pt), v) = (F(p), v) , V v E Y . (6.6)

Calculation of s(p) thus requires solution of the partial differential equation (6.6) and the eigenvalue
problem (6.5) - both computationally intensive.

6.3 Formulation of the Elastic Stability Problem

In this section we derive the eigenvalue problem for elastic bifurcation, using the weak form and
the equivalent minimization principle as our point of departure. We then reformulate the problem
in terms of a reference domain, thus recovering the abstract formulation of Section 6.2. We again
use a bar to denote a general dependence on the parameter [1.

6.3.1 The Elastic Stability Eigenvalue Problem

Linear Elasticity

To begin, we consider a problem in linear elasticity described by

(Aij V) = (F, V), V V E Y (6.7)
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where Y = {i E H 1(Q) |8= 011 n , sII =on It}, A: Y -+ Y' is a symmetric, continuous,
and coercive operator given by

(CCkV) =l dQ, (6.8)

and the "loading" F E Y' is given by (5.25). We now introduce a load parameter A and define

(F'(A), v) = A(F, v), V - E Y . (6.9)

such that (6.7) may be written as

(Aii, ) = (F'(1), 1), V E Y. (6.10)

Furthermore, for any A E ]R,

(A(Ai), V) = (F'(A), I), V V E Y . (6.11)

We note that (6.11) may also be written as a minimization principle: the solution AU to (6.11)
is the argument which minimizes the strain energy

Aii= arg min J(C; A) (6.12)

where the strain energy J(zii; A) is defined as

J(fv-; A) = ±Jij(W)CigkIeI(C) dO - A ( iJ i dO + J i fnB' dI + N dI(6.13)

1-
2(AGv, i) - (F'(A), iv) .(6.14)

To prove (6.12), we first note that any 77v E IP can be expressed as 7-v = Ai + V where V E Y.

Substituting this expression for ei into (6.13) yields

J( ; A) = (A(A + V), (A- + V)) - (P'(A), (Ai + V)) (6.15)

1 l(M)())-('(A), (Mi))

1- 1
+ (A(AU)I ) + -(Au, (Af)) - (P'(A),V)2 2

1 -
+2 (AIv) (6.16)

= J(AM; A)

+ (A(A), If) - (F'(A), V)
1-

+ 2 (A , v)(6.17)

= J(Ai; A) + 1(AIf) . (6.18)
2
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Since (Af, -) > 0 for all V E Y, V f 0, it follows that

J(D; A) > J(Aii; A) V CE , E ,4 ;

this concludes the proof.

The equivalence of (6.11) and (6.12) is then clear: (6.11) is in fact the stationarity condition of
(6.12). In other words, if we define JvjJ(C; A) to be the first variation of J(b; A) with respect to
perturbations V, i.e.,

-J (v; A) = (Aiv-, V) - (F'(A), V) (6.20)

then the argument Ai which minimizes J(fv, A) over all F E Y renders the first variation zero for
all perturbations V:

61-J(fv; A) _ = (A(AXi),i ) - (P'(A),v) = 0
W=U

V i E Y . (6.21)

We shall now generalize our statements to the case in which the displacements and rotations may be
large; we shall use the minimization principle as the point of departure for our stability formulation.

Nonlinear Elasticity and Stability

We let Z( Fv) denote the

is then given by
(general) nonlinear strains associated with the displacement field v; Z(m)

1 (&wi OW N 1 c9m tWm
-ij (i) = _ + + - _ _ , (6.22)

2 axj a .f 2 axi axj

and the corresponding strain energy is

1 -
J(; A) = - Ei j )C jkiEk1(t) dO - A

2 J J bi Fi dO + Vilfjsn dr- + r fvij dF)

In the case in which the strains and rotations induced by iD are small, the nonlinear term in (6.22)
may be neglected so that Z(s) ~ i() and J(itv; A) ~ J(; A).

We now consider bifurcations from the solution to the linearized equations. In particular, we seek
values of the load parameter A and corresponding perturbations i to the linearized displacements
Aii such that j(Aii + ; A) is stationary:

j (=; A) 0 V EY . (6.24)
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Taking &i' = ii + + iv (and after much manipulation) we obtain

J(w9;A) = J(Ai; A)

+ A af~Cijklo dO - bifi df +

+ J o klk d +A
Dxi a&i f

aiii Oijk m D9 m d
Cijkl dt

DX) D5k Oxj

+A (J Cijk ar n dO +
( f a tj a-k a-tl

+h.o.t.

= J(Ai; A)

+ In aV ijklakd + A in

f Cijkla8tj a k D5

&'iii jk Dm Diim dO
09 j tk 49;

+h.o.t.

Following classical
arity condition

elastic buckling theory [18], we neglect higher-order terms to obtain the station-

_ D ijkl dO
atxj axt 1

+ A _ 0 ijkl _ _ dQ = 0,
xtj Dxk i

Numerical tests (see Section 6.4) confirm that the effect of higher order terms on the eigenvalues
of interest is indeed minimal.

Our problem is then to find the "buckling load parameter" A1 (,u) at which bifurcation first
occurs; in particular, given the solution i! to

V ; E Y, (6.28)

we wish to find (A', 1) where A' is the eigenvalue with the smallest magnitude and (1 is the
associated eigenvector satisfying

(Ai, ) = ((),), ViI E Y; (6.29)

here, A is given by (6.8), P'(1) is given by (6.9) and

= -f 0i"" -Dm Diim dQ.
Jn 08CijlDsi D21

(6.30)

Note that (6.29)-(6.30) is equivalent to the strong form given in Chapter 1.

6.3.2 Reduction to Abstract Form

In this section, we reformulate the eigenvalue problem defined by (6.28)-(6.30) so as to recover the
abstract formulation of Section 6.2.
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(6.25)

(6.26)

V v E Y (6.27)

(Ai, ID) = (P'(1) 0), 1



Affine Geometric Mapping

As before, we assume Q may be subdivided into R sub-domains Q' such that there exists a reference
domain Q = UR"= where, for any iJ E r, r = 1,..., R, its image x E Qr is given by

x = = Gr (I)?+ gr(j); (6.31)

we again write x = p(p) + g(p), where x E O, E E Q, !Q() E IRdxd is a piecewise-

constant matrix, gr(p) E Rd is a piecewise-constant vector, and 9(/t): Q - Q is a piecewise-affine
geometric mapping.

Reference Domain Formulation

We also define the function space Y = Y(Q)= Y(g- 1 (A; Q)) = Y(Q), and for any function C E Y,
we define w E Y such that w(x) = Gi(g- 1 (x)). Furthermore, we recall that dO = det G- 1 (I) dQ,
and dI = IG- 1 (p) eI dr, where et is the unit vector tangent to the boundary IF, and Q-1(p) et I =

(E_1 (Gije )2)1/2. It then follows that (A(p)w, v) = (AfZ-,V) for A as in (6.8) and A(p) given by

(A(p)w, v)
r__ (/,) ()OVk ~)det(!2r (I))>l dQ

\\fl'IA ax3,) 0 ij'k1' (Gl' ax/

R awi ( / r, \ -\ OVk

r=1 ~ ~
V wv c Y ;

(B(p; z)w, v) = (8( ,) i) for 8 as in (6.30) and B (p) given by

= G (p 09 i gg , G r awp G r ,(p ) V det (!T p) d Q
r=1 forl ((k ([1) awrn) (Gi) ax1)dQ

-x[ G ,,( 'P)Cijk', Gikk (p)Gil, (Ip) det (2(( awm avm dQ

V w, v, z E Y;

and (F'(p; A), v) = (P'(A), V) for P'(A) as in (6.9), F'(p; A) given by

(F'(p; A), v) = A(F(p), v) ,

and F given by (5.40). The abstract problem statement of Section 6.2 is then recovered for

(6.32)

= C a(p)V dQ
r=1 1 2 8xj 09X1

V wv E Y , (6.33)

(6.34)= 1 xw) ax1 dQ ,V wvzEY,
r=1 gr 09xj 09Xk 09X1
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where Cijkl(p) and UijklI(p) are given by

Cik1(it)

Cigki(Ap)

(6.35)

(6.36)
= GjyI,(p) C0ir1,j G/,( p) det(_G'(rp))-- , -

= Gig, tk11 r)Cgsg Gn( p)Gi,( p) det(G2r /_))--1

Furthermore,

(6.37)(Aq(i~i~k)1r), --) 8 Vi OW d,
49xj x9xJ

for 1 i,j,k,l<d, 1 <r R, andq: {1,...,d}4 x {1,..., R} - {1,...,QA}; and

(Bm'(i J,k,1,r)(Z)W, V) =Vzi 9M B9m dQ
Jr &x 0Xk 4X1

(6.38)

for 1 i,j,k,l d, 1 r KR, and q' {1,...,d} 4 x {1, ... , R} -- {I,..., Q1} (summation over
M = 1, ... , d is implied). Note the affine decomposition of F'(p; A) follows directly from the affine
decomposition of F(p) in Section 5.3.

6.4 Model Problem

In this section we consider a simple problem upon which we shall apply our reduced-basis approx-
imation and error estimation methods.

6.4.1 Example 10

We again consider the homogeneous rod of Example 6, with Young's modulus E 1 and Poisson's
ratio v = 0.25 in the domain Q = (0, 1) x (0, J. The structure is clamped along rD, and subjected
to a compressive unit load uniformly distributed along Qg; the remainder of the boundary is stress-
free. The equilibrium equations are given by

- 0 
, in Q , (6.39)

with displacement boundary conditions

ii = 0, on iD , (6.40)

and traction boundary conditions

on F,

0 o\ej =UJn)0, on r\(rD

di et = 0, on \(D) - (6.41)

Our output of interest is the critical load parameter

s(p) = A1 (p) for [ = {fi} e D -- [0.03125, 0.2] . (6.42)

Our problem can then be formulated as: given a p E D1 C RjP1, find s(p) = Al([) where
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A' (p) is the eigenvalue with the smallest magnitude satisfying

(Au, ) = p) (), ), V V i ,

where i c Y = {ff E (H,(O))2 I V = 0 on FID} is the solution to

here, A is given by (6.8), and P' is given by

dP )I V V E Y.

Finite Element Solution

We present in Figure 6-1 the buckling modes (eigenvectors) corresponding to the smallest three
eigenvalues of (6.43) calculated using a finite element approximation with K = 600. We also present
in Table 6.1 the critical load parameter obtained by a finite element approximation of (6.43) for
f = 0.1. The results show good qualitative and quantitative agreement with the analytical results
obtained using beam theory (for which A'(p = 0.1) = 7r2EI/4L

2 = 2.056 x 10-4) (see, for example,
[44]).

Figure 6-1: Buckling modes corresponding to the smallest three eigenvalues (Example 10).

Element size Al

0.250 4.54 x 10-4

0.150 2.47 x 10-4

0.100 2.45 x 10-4

0.075 2.20 x 10-4

Table 6.1: Critical load parameter A'(p = 0.1) obtained using a finite element approximation
(Example 10).

Note the smallest eigenvalues are "uncontaminated" by the continuous spectrum induced by
the partial differential nature of the problem. Furthermore, inclusion of the higher order terms in
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(6.43)

(6.44)

(6.45)

A , )=(P'1) V) V Y7 i;

(-If i.-
(PI (A), V) - A - V,
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(6.26) seem to affect only the continuous part of the spectrum, and the latter seems well separated
from the smallest discrete eigenvalues. This is illustrated in Figure 6-2, in which the eigenvalues
calculated using (6.26) (with higher order terms) are compared with those calculated using (6.27)
(without the higher order terms).

0.07

0.06

0.05

0,04

0.03

0.02

0.01

1 2 3 4 5 6 7 8 9 10

n

Figure 6-2: Plot of the eigenvalues An, n = 1,..., showing the effect of higher order terms on the
spectrum.

Reduction to Abstract Form

Upon affine mapping onto a reference domain Q = (0,1) x (0, t0 ), our problem may be reformulated
as: find s(p) = A'(p), the smallest eigenvalue satisfying

(A(p) (p), v) = A(p)(B(u(p);[)() v) , V v E Y ,

where u(p) E Y = {v E (Hi(Q)) 2 I v = 0 on FD} is the solution to

(A(p)u(p), v) = (F'(p; A = 1), v), V v E Y ;

(6.46)

(6.47)

here, A(p) is given by (6.33), B(p) = 8 is given by (6.34), and P'(A) is given by

(F'(p; A), v) = A (- jvi dF) VvEY,

respectively.

The abstract problem statement of Section 6.2 is then recovered for P = 1, QA = 3, QF = 1,

1
8()= 1, e2(1 )=T e3( _=, (6.49)
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= c I 9W + 2 9W I dG + C2
C' f.0X1 aX2 aX2 X1 )

= (c1 + 2c 2 ) jOVdOWi - + C2
Ox xo9X d

I Ov 1 Ow 2 + 0v 2 Ow 1 d-, (6.50)

AOX 2 Ox 1 x 1 OX2 )

0v 2 Ow 2

O8x 1 Ox 1

09V2 0W2 avv1lw1
= (c, + 2c 2 ) fd2 OW2 dO + C2f 09X2 O dQ.J8 x2 Ox2 n Ox2 Ox2

In the case of the operator B, the effective elasticity tensor Cijkl (A) is no longer symmetric. However,
for this example (in which G(M) is diagonal), Cijkl(P) maintains the sparsity structure of Cikl ();
we therefore obtain QB = 10 (the number of nonzero entries in Ciik(p)), and the Bq are the
corresponding operators. (Note that for general G(M), Cikl (P) is neither sparse nor symmetric,
and Q3 = d2 = 16 for two-dimensional problems.)

6.5 Reduced-Basis Output Approximation

We consider here the extension of our reduced-basis approach to the eigenvalue problem described
by Section 6.2. We recall that A(p) is continuous, coercive, symmetric, and affine in P; and that
B(pt; w) is continous, symmetric, positive semi-definite, affine in P, and linear in w.

6.5.1 Approximation Space

We again sample our design space D11 to create the parameter sample

we then introduce the reduced-basis spaces

WK = span{(n=u(pA),n=1,...,N}

o= span{#2 =W(p),n= 1,...,N}

(6.53)

(6.54)

(6.55)

where we recall i(At) is the eigenfunction associated with A' (A).
Our reduced-order approximation is then: for any p E DA, find UN(A)

(AuN(A), v) = (F(p), v) ,

G W such that

V V E W ,

and (AN(A), N(A)) such that

(A(p) N (W, v) = AN (A) (8(P; UN(4)) N(A), v) , N I

the output approximation is then

SN (A) = A'y (p) -

The dimensions of the reduced-basis spaces for u(p) and ((t) need not be the
that the solution to (6.57) is the Galerkin projection onto W of the solution to

(6.57)

(6.58)

same. We note

V V E Y ; (6.59)

we have effectively approximated B(t;u(pt)) in (6.5) with B(P;uN(A)) - AN(A) is therefore an

124

(Alw, v)

(A42w, v)
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(6.51)

(6.52)

(6.56)

(A(p) 'y (p), v) = A'N (P)(B(P; UN(P)) ' (P),V) ,



approximation to A'N(p), which in turn approaches A(p) only as uN(P) -+ u(P) (and therefore

N -oc).
We also note that A(p) may, in general, be negative since B is not strictly positive-definite. For

instance, structures under pure shear may have "negative" critical load parameters - this implies

that the buckling occurs when a load reaches the critical value and is applied in the direction

opposite to that originally prescribed. In this case, it is not known a priori whether the critical

load parameter is positive or negative; we must therefore approximate both A' + and A' -, the

(respectively) positive and negative eigenvalues with the smallest magnitude. We then introduce

(in place of W ) the reduced-basis spaces

WNj =span{+ (), n =1,...,N}, (6.60)

and calculate (A'(p), (j(p)) such that

(A(p)((p), v) = A±(P)(B(p; uN(P))N(), v) , Vv E Wk; (6.61)

the output approximation is then

SN(Ip) = A .y Z) - (6.62)

6.5.2 Offline/Online Computational Decomposition

We now develop off-line/on-line computational procedures that exploit this dimension reduction.

We first express our approximation UN(P) E Y to be a linear combination of the appropriate

basis functions,
N

UN(P) Ep UNj(P) (j (6.63)
j=1

where UN(p) E RN; we then choose for test functions v = (i, i = 1,... , N. Inserting these

representations into (6.56) yields the desired algebraic equations for UN(p) E RN,

A"(,') !N(A) = EN - (6.64)

Here AN(bt) E RNxN is the symmetric positive-definite (SPD) matrix with entries

A(Aj( (p)(j,(i), 1 < i,j N , (6.65)

and FN E RN is the "load" vector with entries

FN i - (F(p), (j), 1 < i < N . (6.66)

We also express our approximation N(A) E Y to be a linear combination of the corresponding

basis functions,
N

EN(I Nj(P) j, (6.67)
j=1

where N(P) E RN. Then, in (6.57), we choose for test functions v = 0i, i = 1,...,N, and

approximate u(p) by UN(I1), yielding

A N() N(P) = ftN(wp;N(I)) (6-68)
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Here _A(p) E RNxN is the symmetric positive-definite (SPD) matrix with entries

A ( =(A(y) Oj, Oi), 1 i, <N (6.69)

and BN(I'kN(O-)) E IRNXN is the symmetric positive semi-definite (SPSD) matrix with entries

BN i,j( IN W) All;i UN(A)Nj, Oi),
N

n=1

(6.70)

(6.71)1 <i j < N.

We now invoke (6.1)-(6.3) to write

A(p)

BN i,j (A kN 0-0)

FN i()

Q.A

q=1

QA4

=5[
q=1

N

n=1

QF

q=1

(6.72)

(6.73)

(6.74)

(6.75)

or, more concisely,

QA

q=1
Q) ,

q=1

BN (N )

_FNOp-

(6.76)

(6.77)

(6.78)

(6.79)

(6.80)

N B

B(P UN n ([I)B4N
n=1 q=1

QF

q=1
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where the _Au (E IRNxN IA E IRNXN, B4N E ]RNxN, and Fq E RN are given by

AVN , (A ) , 1 i,< j N, 1 q < QA , (6.81)

Ni j_AN (Aqoj, #,) ,1 < i, j < N, 1 < q:! Q ,N (6.82)
B qn (13q((n)Oj, #1 0, 1 1 i, j, n<iN, 1 5q $Q ,(.3

F (Fq,(i) , 1 i <N, 1 q QF , (6-84)

Hence, in the off-line stage, we compute the u(Pu) and (Pn), and form the AN AN -N,

and FN: this requires N (expensive) finite element solutions of the equilibrium equation and

the generalized eigenvalue problem, as well as O(QBN 3 ) + 0(2QaN 2 ) + O(QFN) finite-element-
vector inner products. In the on-line stage, for any given new p, we first form Au (p) and FN(A)

from (6.76) and (6.80), respectively, then solve (6.64) for UN(p); we subsequently form A N(p) and

BN(P; N(p)) from (6.77)-(6.79), then solve (6.68) for N(/t), and finally evaluate SN(P) - A' (p):
this requires O(Qr3N 3) + O(QAN 2 ) + O(QFN) + 0(N 3 ) + O(N 3 ) operations and O(QBN 3) +
O(QAN 2 ) + O(QFN) storage.

N maxjs(,P) - SN(P)IS(I)

3 0.129
4 0.055
5 0.053
6 0.054
7 0.042

Table 6.2: Maximum error in the reduced-basis approximation for the critical load parameter

calculated over 20 samples (Example 10).

We present in Table 6.2 the maximum error in the reduced-basis approximation for the critical
load parameter for Example 10. The convergence for this simple problem is rather slow, perhaps

due to the additional error introduced by approximating B(pu;u(pi)) with B(P;uN(p)). Note also

that the error does not necessarily decrease monotonically with N.

6.6 A Posteriori Error Estimation (Method II)

Due to the strong nonlinearity of the eigenvalue problem (6.68), we consider only Method II error

estimators. We thus set M > N, and introduce a parameter sample

S = {,(6.85)

and associated reduced-basis approximation spaces

W = span {(m u(m), =,..., M} ,(6.86)

W 1 =span {m u(lm), m =1, ... ,M} ; (6.87)

we again require S' C S' and therefore W c WA, WN c W . We first find uM(pi) E Wr such

that
(A(p)um(p), v) = (F, v), V v E W , (6.88)
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and (AM(p),M(()) E IR x Wm, 2 = I,..., M, such that

(A(I) M(y), v) = AM(p) ((i uM(IA))M (y), v), V v W . (6.89)

Letting
SM(p) = A'(p) (6.90)

we then evaluate the "improved" estimator §N(Q) given by

1
SN(P) = SN(A) - (SM(A) - SN(I)) ; (6.91)

2-r

our lower and upper output estimators are then

1
-N(A) = §N(A) - -AN(II) (6.92)

2
1

S+N(A) = 9N (A) + - AN (P) (6-93)

where AN (P), the estimator for the error 1 8(P) - §N(A) is given by

AN,M(I) = - SM(P) - SN()I (6.94)
T

for some r E (0, 1). The effectivity of the approximation is defined as

?JN,M(I) ANM(IA) (6.95)
SUP) - SN(P)

We shall once again consider M = 2N.

N min 77N() maX nN(/A)

1 1.9773 2.0099
2 1.7067 2.3395
3 1.8811 2.8151
4 1.9772 2.2783

Table 6.3: Minimum and maximum effectivities for Method II error estimators (with r = 0.5)
calculated over 20 samples (Example 10).

The analysis of the bounding properties of Method II estimators presented in Section 5.8.2 also
applies here. However, the necessary hypothesis (4.190), while still plausible, is now less so than in
Chapters 4 and 5. Nevertheless, the effectivity results presented in Table 6.3 show that 77N(p) still
tends to 1/T.
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Chapter 7

Reduced-Basis Methods for Analysis,
Optimization, and Prognosis:
A MicroTruss Example

7.1 Introduction

In Chapters 3 through 6 we present the reduced-basis method - a technique for the rapid and
reliable prediction of linear-functional outputs of partial differential equations with affine parameter
dependence. Reduced-basis output bound methods are intended to render partial-differential-
equation solutions truly useful: essentially real-time as regards operation count; "blackbox" as
regards reliability; and directly relevant as regards the (limited) input-output data required.

In this chapter we revisit the microtruss example presented in Chapter 1, focusing on the struc-
tural (solid mechanics) aspects of the problem. We apply reduced-basis methods to the prediction
of the relevant outputs of interest; we then illustrate how these methods directly enable rapid and
reliable solution of "real" optimization problems - even in the presence of significant uncertainty.
In particular, we employ reduced-basis output bounds in the context of (i) design - optimizing
a system at conception with respect to prescribed objectives, constraints, and worst-case environ-
mental conditions - and (ii) prognosis - optimizing a system during operation subject to evolving
system characteristics, dynamic system requirements, and changing environmental conditions.

7.2 Formulation

We begin with the formulation of the microtruss problem, focusing particularly on the structural
aspects. In Sections 7.2.1 and 7.2.2, the circumflex (^) denotes dimensional quantities, and indices
take the values 1, ... , d.

7.2.1 Dimensional Formulation

We consider the periodic open cellular structure shown in Figure 7-1. As indicated in Chapter 1,
the structure is simultaneously designed for heat-transfer as well as structural capability; we shall
focus on the latter. The prismatic microtruss consists of a frame (upper, lower, and lateral faces)
and a core of trusses. The structure transmits a force per unit depth F uniformly distributed
over the tip ft through the truss system to the fixed left wall tD. We assume that the structure
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is sufficiently deep such that a physical model of plane strain (two-dimensional)
suffices.

Flow

heatl1 heat, flux

rs

Vload

coolant \Ahih

linear elasticity

Figure 7-1: A microtruss structure.

The topology of the structure (see Figure 7-2) is characterized by several geometric parameters:
the thickness it of the top frame, the thickness tb of the bottom and side frames, the thickness i of
the core trusses, the separation H between the top and bottom frames, the angle & between the
trusses and the frame, and the depth L of the structure. The structure is further characterized by
the Young's modulus C and Poisson's ratio v.

is(= ib)

Figure 7-2: Geometry

Assuming that f/tL < 1, the displacement ft satisfies the partial differential equation

(ic& )= 0,
in n, (7.1)

where f denotes the truss domain (see Figure 7-2), and Oijkt is the elasticity tensor. The displace-
ment and traction boundary conditions are

(7.2)i 0 , on fD ,

and

on f,

On f(D U fN
&,,6 = 0 on f\fD (7.3)

respectively, where V and 6 are the unit normal and tangent vectors on the boundary F, and
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= (0, 1) on t.

7.2.2 Nondimensional Formulation

We now introduce the following nondimensional quantities:

Cil = 0j0kl (7.4)
E

(7.5)
H

Ht= f (7.6)
F

S= -U; (7.7)
F

in addition, we let ft, ti, and f, denote the thicknesses of the top frame, bottom frame (and sides),
and core trusses, respectively, nondimensionalized relative to the separation H. We also let H (= 1)
denote the separation between the top and bottom frames; note that a = 6.

The nondimensional displacement ii then satisfies the partial differential equation

_ Oija f = 0, in , (7.8)

where Q denotes the truss domain. The displacement and traction boundary conditions are

ii = 0 , on ID, (7-9)

and

-fe on

0 on f \( t = 0 on I\(FD (7.10)

respectively, where FV and e are the unit normal and tangent vectors on P, and Ei = (0, 1) on Fn.
Our problem is then: given p = {t, ti, f, d}, find the average deflection along ]FtN

Jave(/) = -12 diF, (7.11)

the average normal stress along Fs,

0-ave(p) = - 1M() dQ, (7.12)
ttop ifs

and the critical load parameter A' (p). Here, ii is the solution to

(A,)= (P'(1),0) , e ED , (7.13)

and Al(p) is the smallest eigenvalue of

(A,= A (p)(B(), 0) , V V E Y , (7.14)
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= f C, &W d ,

= 2 (9t atigni aC d ,

-f a -4 
&o m d

at OTijkl a; 9Xk i Ox

(F(A), 'I)

(7.15)

(7.16)

(7.17)ftv2 dl' )

7.2.3 Reduction to Abstract Form

In this section, we reformulate the problem defined by (7.11)-(7.17) so as to obtain the affine
parameter-dependence required by the reduced-basis method.

Affine Geometric Mapping

7

1 2 3 3 2 11

Figure 7-3: Subdomains and Reference Domain

We now partition the domain (2
We take for the reference domain Q

=(p) into R = 9 subdomains 0' as shown in Figure 7-3.

= 2(po), where po = {ttoP, toot, to, 'o}. The affine mappings
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gr Q, -, Qr are then given by gr r)i + br(i), where

to 0 M

0

top

h 01G 2=[ th I

0 LL
tbot _

0
5 th 0

0 I
ttop J

G t,
~ 0

L 0

06[ t
G6 L

[O0
. top.

ol
H _

G 1

G10

01 [1
-tan a ] LtOh H][

1tanflI H]20

tand

- tan

I I I

(7.21)

(7.22)

where the Ts = tbot is the thickness of the side trusses; th = f/ sin a is the horizontal thickness of
the diagonal trusses; and L = HI/ tan d; similar formulas apply for to , to, and Lo.

We recall that the affine decomposition of the linear elasticity operator is related to the number
of elements in the elasticity tensor. It would therefore seem that for our microtruss example QA
might be very large - as large as 144, or the number of elements in Cijkl(p) (16) times the number

of subdomains (9). However, as illustrated in Examples 1-9 of Chapters 3 and 5, the symmetry and
sparsity of the elasticity tensor may be exploited to reduce QA. In particular, we consider only the
nonzero, unique elements of the CjklW (), thus reducing QA to [(3 x 7) + (10 x 2)] = 41; the first term
corresponds to the 7 subdomains undergoing only "stretch" transformations (r = 1, ... ,7) while the
second term coresponds to the 2 subdomains undergoing both "stretch" and "shear." Furthermore,
we can further reduce QA by consolidating those terms among all the (unique,nonzero) elements
of the C[gkI (it) which are the same. For example, we consider subdomains 1 through 7 for which
the elements of the elasticity tensor are given in Table 7.1, where we a,. = G11 and ay = G22
are the diagonal (nonzero) elements of the mapping matrix G. We then note that C122() = ci
and C122 1 () = c2 for r = 1,...,7. Taking this into consideration, QA is further reduced to

[1 + (2 x 7) + (10 x 2)] = 35. Further reductions can be obtained by making similar observations
for r = 8, 9.

Reference Domain Formulation

Using the results obtained in Chapters 5 and 6, our problem may be reformulated as: for any given
t - {t, tb, f, a} E ' = [0.22, 2.2]3 x [00, 4501, find

6ave(P) = - 1- - U2G-1(p)tl dI,
tt +tb + H rt

(7.23)
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ij\kl 11 12 21 22

11 -(c + 2c2) 0 0 1(ci)
ay

12 ay (c2) l(c 2 ) 0

21 - (C2) 0
ay

22 a (ci + 2c2)ax

Table 7.1: Elements of the effective elasticity tensor for subdomains undergoing a "stretch" trans-
formation.

the average normal stress along rs (near the support),

gave (A) = 011(u) dri, (7.24)
ttop I'rs

and the critical (positive and negative) load parameters, Al±(pL). Here, u is the solution to

(A(p)u(p), v) = (F'(p;1), v) , V v E Y , (7.25)

and Al:(tL) are the smallest positive and negative eigenvalues satisfying

(A(p) (p), v) = A(1A)(B(u(p); p)(p), v) , V v E Y , (7.26)

where

R f w OW t) o Vk
(A(p)w, v) = C] ax irk(') v V w,v E Y, (7.27)

(B(z)w, v) = - j z j Ci &Wm &Vm di, (7.28)
r=1 &Xk Ox1

R 
f

(F'(p; A), v) = A ( ftr()v 2 dF . (7.29)
r=1 N

Here Cikl (A) = Cijk( L) = G ,(p) i0 'kl, Gr,(jp) det(Gr(tp))-, f _ti) is given by

f t r (1_,) = ftr (_Gr(p))-' et (7.30)

and Y(Q) = {v E (H1(Q)) 2  vjeO = 0 on F, vje = 0 on Ftg}.

7.3 Analysis

In this section we (i) examine the convergence of the reduced-basis approximation and the effectivity
of the (Method II) error estimator for the microtruss example; and (ii) investigate the behavior of
the microtruss structure using a reduced-basis model, focusing particularly on the dependence of
the various outputs of interest on the parameters. Due to the relative complexity of the problem,
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application of Method I error estimators is currently not feasible.

7.3.1 Average Deflection

Figure 7-4: Example of a displacement field calculated using a finite element approximation (K =

13,000)

We present in Figure 7-4 the resulting displacement field for several values of the parameter
p calculated using a finite element approximation (with K = 13, 000). Quite often in engineering
problems, the entire displacement field is not of primary importance, but rather certain characteris-
tics of the solution such as the average deflection. Furthermore, exact (i.e., finite element) solution
of the partial differential equations is arguably very expensive, particularly when repeated solution
(for many different values of the parameters) is required. The reduced-basis method is thus very
attractive.

We present in Tables 7.2 and 7.3 the error in the reduced-basis approximation to the average
deflection with respect to N for two representative values of p. We also present in Table 7.4
the maximum error calculated over 20 randomly selected values of P. We note that the error is
indeed very small even for relatively small N, and observe the rapid convergence of the reduced-
basis approximation. However, in practice an approximation is generally insufficient by itself -
the approximation must also be certified, and its accuracy assessed. We therefore present in in
Table 7.5 the minimum and maximum effectivities (over 20 randomly selected samples) of the
Method II error estimator. We note that for N > 10 the effectivity is greater than unity (signifying
valid bounds). Furthermore, since the output is compliant the effectivity is indeed bounded from
above by 1/r (signifying sharp bounds) for all N; we also note that the effectivity approaches 1/r
as N increases.

N TIN (A)

10 5.49e-02 8.10e-02 1.48
20 1.44e-02 2.48e-02 1.72
30 4.84e-03 9.00e-03 1.86
40 2.00e-03 3.90e-03 1.94
50 9.57e-04 1.84e-03 1.92
60 3.51e-04 6.58e-04 1.87
70 1.19e-04 2.08e-04 1.75
80 5.39e-05 9.20e-05 1.71
90 4.15e-05 7.56e-05 1.82

100 3.38e-05 6.26e-05 1.85

Table 7.2: Error and effectivities for the deflection for p = -t (the reference parameter).
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AN(P)/S(P) I 77N(p)

10
20
30
40
50
60
70
80
90

100

3.67e-01
1.64e-02
7.89e-03
4.46e-03
2.16e-03
1.41e-03
5.85e-04
3.50e-04
1.21e-04
1.10e-04

7.02e-01
2.38e-02
1.30e-02
8.22e-03
4.10e-03
2.70e-03
1.10e-03
6.66e-04
2.22e-04
2.06e-04

1.91
1.45
1.64
1.84
1.90
1.92
1.89
1.91
1.83
1.88

Table 7.3: Error and effectivities for the deflection for a randomly selected value of p.

max(s(p) - SN(Y))/S(A)

4.80e-01
2.80e-01
1.40e-02
6.80e-03
1.50e-03
1.10e-03

Maximum error in the deflection
over 20 randomly selected values

Table 7.5: Minimum and maximum effectivi-
ties for the deflection calculated over 20 ran-
domly selected values of p.
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N

10
20
40
60
80

100

N

10
20
40
60
80

100

min'rqN(9)

0.66
1.36
1.52
1.26
1.55
1.64

Table 7.4:
calculated
of ft.

maXJN(A)

1.87
1.98
1.97
1.99
2.00
2.00

i I

, ,

|s(P) - SN(OWs(P)N



With a reduced-basis model at our disposal, we can now easily explore the parameter space -
i.e., investigate the dependence of the average deflection on the different parameters. In Figure 7-5
we plot the average deflection with respect to ftop and Tbot. While the fact that the deflection
decreases with ftop and tbot is rather obvious, we also observe the less intuitive result that the de-
flection is more sensitive to changes in ftop than to ibot. Furthermore, since the volume (and weight)
increase with ftp and fbot, the results also indicate a trade-off between weight and deflection: the
values of ftop and tbot which are of greatest interest in design are those occuring at the "knee" of
the trade-off curves (around ftop = 0.06 and tbot = 0.05).

400
Finite Element Solution (n=13,000)

350 -Reduced Basis Solution (N=30)

300 - -

~250--
C

250-

M 150 - -... -. - .-.- .

100-

50

0.05 0.1 0.15 0.2
ttop

400
Finite Element Solution (n=13,000)

350 - Reduced Basis Solution (N=10)

300
Cq

0
250 

-

8 2 0 0 - - - -.. ...... -. -.. -. ... .

4 150 --.....

100- - -

0
0.05 0.1 0.15 0.2

bot

Figure 7-5: Plots of the average deflection as a function of ftop and tbot.

7.3.2 Average Stress

We now apply the reduced-basis method for noncompliant outputs (see Chapter 5) to the calculation
of the stress averaged along 's-

To begin, we apply a scheme similar to that used in Example 9 of Chapter 5 to express (7.24)
as a bounded linear functional. We thus choose a function X E H'(Q') such that Xlrs = 1, and

Xjr, = 0; here, Qs and Ps and rQ are defined as in Figure 7-6. In general, x must be chosen to
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be any member of H 1 (Q') such that Xrs = 1, Xlr' = 0, and X = 0, where F' is the boundary

of Q', rs C r' is the surface over which the average stress is to be evaluated, F' (rD fs,
and qInt (Fint n F')\Fs. For simplicity, we shall also define x = 0 on (\)'.

i' t

Ps

Figure 7-6: Geometry

We then let
(L(p), v) --- ((A(p)x, v) - (F(), v)) , V v c Y . (7.31)

ttop

Integrating by parts, and using the definition of x and the boundary conditions, it can be shown
that o-ave(p) = (L(bt),u(p)). We note that as in Example 9, (L(p),v) defined as in (7.31) is a
bounded linear functional, while the more obvious alternative in (7.24) is not.

We now take for SN and WN a log-random sample and an integrated primal-dual approximation
space. We present in Tables 7.6 and 7.7 the error and effectivities at two representative values of

I; we also present in Table 7.8 the maximum error, and in Table 7.9 the minimum and maximum

effectivities for the Method II error estimator, calculated over 20 randomly selected values of p.

We note that even in this noncompliant case, the error is again very small even for relatively small

N, and the reduced-basis approximation converges rapidly to the exact solution. For the particular
values of p taken in Tables 7.6 and 7.7, we obtain valid output bounds for N > 10, and the

effectivities approach 1/r as desired. Since the output is noncompliant, the effectivity is no longer

bounded from above by 1/r (= 2); however it still approaches 1/r as N increases. However, the
"worst-case" effectivities in Table 7.9 show that valid bounds are in some cases still not obtained

even for N = 120. While this can be remedied by simply taking a smaller value for T, these results

reflect the need for developing rigorous (rather than asymptotic) error bounds.

N |S() -sN(p IS) ANwip)/S() I'N(P)

10 5.44e-02 1.09e-01 2.01
20 5.93e-05 2.21e-04 3.72
30 2.09e-04 4.36e-04 2.08
40 1.99e-04 3.69e-04 1.85
50 1.07e-04 1.89e-04 1.78
60 1.43e-05 2.27e-05 1.60
70 2.41e-05 4.57e-05 1.90
80 1.47e-05 2.99e-05 2.03
90 2.01e-05 4.06e-05 2.02
100 1.19e-05 2.43e-05 2.04

Table 7.6: Error and effectivities for the average stress for A = /0 (the reference parameter).

In Figure 7-7 we plot the average normal stress with respect to ftop. The results also indicate

a trade-off between weight and the stress. In this case, the values of ftop which are of greatest
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|s(P) - sN(P) 1S(()

10
20
30
40
50
60
70
80
90

100

9.84e-02
9.43e-03
1.14e-03
6.85e-05
1.18e-04
1.20e-04
4.61e-05
1.58e-05
1.73e-05
1.40e-05

1.78e-01
1.87e-02
2.52e-03
1.75e-04
2.63e-04
2.36e-04
9.34e-05
3.46e-05
3.57e-05
2.80e-05

1.81
1.99
2.20
2.55
2.24
1.96
2.03
2.19
2.07
1.99

Table 7.7: Error and effectivities for the average stress for a randomly selected value of p.

N

10
20
40
60
80
100
120
140
160
180
200

s(P) - SN(A)|/S(,V)

8.40e-01
2.50e-02
2.10e-02
2.30e-03
4.50e-04
1.90e-04
1.10e-04
3.97e-05
3.21e-05
3.22e-05
2.66e-05

Table 7.8: Maximum error in the average
stress calculated over 20 randomly selected
values of p.

N minTN(I)

10
20
40
60
80

100
120
140
160
180
200

0.55
0.03
0.58
0.31
1.57
0.09
0.62
0.30
1.35
1.01
1.47

max'qN(A)

2.14
4.94
12.57
4.86
3.34

24.70
5.18
3.49
7.64
2.82
5.69

Table 7.9: Minimum and maximum effectiv-
ities for the average stress calculated over 20
randomly selected values of M.
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interest in design are those occuring at the "knee" of the trade-off curve (around ftop = 0.06);
taking stop < 0.06 decreases the weight but causes a rapid increase in the stress, and taking

ttOp > 0.06 increases the weight but with very little effect on the stress.

12
Finite Element Solution (n=13,000)
Reduced Basis Solution (N=30)

10 -- -

Cp

E
z

0 0.05 0.1 0.15 0 .2
ttop

Figure 7-7: Plot of average stress as a function of ftop.

Note that calculating the average stress at certain critical points in the structure allows us to
ensure that the material does not yield. Predictions of the average stress may also be used in a
stability analysis along with analytical formulas for the critical loads of beam-columns. However,
such an analysis takes into account only local buckling modes within one member or truss, and

requires the (sometimes inaccurate) approximation of the boundary conditions for the particular
member (e.g., clamped-clamped, clamped-free, etc.). It is therefore desirable to be able to calculate
the critical loads directly, without resorting to potentially oversimplified models.

7.3.3 Buckling Load

In this section we apply the methods presented in Chapter 6 to the calculation of the critical
load parameter. We first note that for this particular problem, the operator B is indefinite, and

the corresponding eigenvalues may take both positive and negative values. We illustrate this in
Figure 7-8 which shows the eigenmodes associated with the smallest positive and the smallest
negative eigenvalues (we recall that a negative eigenvalue means that the loading is applied in the
direction opposite (in this case, upwards) to that prescribed (in this case, downwards)).

We therefore create reduced-basis spaces WK, W + and W - using a log-random sample SN.N' N
We present the error and effectivities in Tables 7.10 and 7.11 for A'+(A), and in the Tables 7.12
and 7.13 for A'- (), at two representative values of M. We note that the error is again small
for relatively small N - in all cases the error is approximately 1% for N = 50. Although the
errors are considerably larger than those for the average deflection and stress approximations, the
slower convergence rate is probably due to additional error introduced by approximating B(p; u(p))
with B (A; uN(II))- We also note that in most cases (Tables 7.11-7.13 in particular) the effectivities
are greater than unity for relatively small N and approach 1/r rather quickly. In Table 7.10,
however, 'qN(p) < 1 even for N = 50. The inferiority of the effectivities are certainly related to the
relatively slower convergence of the reduced-basis approximation for the buckling load: we recall
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(a)

(b)

(c)

Figure 7-8: Buckling modes associated wi
ative eigenvalues for different values of y.

(d)

(e)

(f)

ith the (a)-(c) smallest positive and (d)-(f) smallest neg-

from Chapter 4 that for Method II output bounds, exponential convergence of the reduced-basis
approximation is essential for good bounds.

We now investigate the dependence of the minimum (positive and negative) eigenvalues on
certain parameters. We plot in Figure 7-9 the smallest positive eigenvalues versus 4top and tbot. The
plots reflect the intuitive fact that the critical positive load parameter is more sensitive to changes
in tbot. Furthermore, for small values of tbot (relative to the other dimensions) the eigenvalue is
very sensitive to tbot, while for large tbot the eigenvalue increases very slowly with fbot. Similar
results are presented in Figure 7-10 for the smallest negative eigenvalue.

Knowledge of such trends and features are very important in the analysis and design of struc-
tures whether against yielding, elastic buckling, or other types of failure. Plots such as those
presented in this and the previous sections also indicate to which parameters the behavior of the
structure is most sensitive. However, in the design of structures with respect to many parame-
ters and constraints, such plots are clearly insufficient - exploration of the entire design space
and simultaneous consideration of all constraints is required. We therefore consider more general
methods for design and optimization.

7.4 Design and Optimization

A particular microtruss design (that is, a particular value of v) has associated with it operational
and material costs, as well as performance merits reflecting its ability to support the applied
structural loads. Furthermore, a design must meet certain constraints reflecting, for example,
safety and manufacturability considerations. The goal of the design process is to minimize costs
and optimize performance while ensuring that all design constraints are satisfied.
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|1,0) - SN(W1)S(I)

9.35e-02
3.53e-02
1.79e-01
1.39e-01
1.02e-01
3.92e-02
2.70e-02
9.36e-03
9.70e-04
2.33e-03

1.16e-01
2.07e-01
2.80e-01
2.59e-01
1.99e-01
7.60e-02
5.57e-02
1.63e-02
5.53e-03
1.46e-03

1.25
5.87
1.56
1.87
1.95
1.94
2.06
1.75
5.70
0.62

Table 7.10: Error and effectivities for the smallest positive eigenvalue for [ = PO (the reference
parameter).

Sp - SN()M/S(J)

3.52e 01
6.71e-02
2.92e-01
2.88e-02
4.11e-02
2.08e-02
2.99e-02
2.44e-02
1.26e-02
1.22e-02

7.05e 01
9.43e-02
6.10e-01
8.88e-03
5.78e-02
3.40e-02
5.25e-02
4.85e-02
2.47e-02
2.42e-02

IN (A)

2.00
1.41
2.09
0.31
1.41
1.64
1.75
1.99
1.96
1.99

Table 7.11: Error and effectivities for the smallest positive eigenvalue for a randomly selected value
of p.

IS (- SN( W)I/S()

2.21e 00
6.14e-01
7.57e-02
3.96e-02
3.00e-02
2.00e-02
1.85e-02
2.26e-02
1.10e-02
5.00e-03

Table 7.12: Error and
parameter).

effectivities for the smallest negative eigenvalue for p = p 0 (the reference
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N

5
10
15
20
25
30
35
40
45
50

N

5
10
15
20
25
30
35
40
45
50

N

5
10
15
20
25
30
35
40
45
50

3.19e 00
1.15e 00
1.11e-01
3.40e-02
5.OOe-02
3.81e-02
3.41e-02
4.86e-02
2.47e-02
1. 12e-02

T|N(A)

1.44
1.87
1.47
0.86
1.67
1.90
1.85
2.15
2.24
2.25

, ,

IANW/)S(P) I 'N(A)

AN(A)IS(A)



|s(M) - SN(IS()

6.46e 00
5.23e 00
3.84e-01
8.33e-02
2.97e-02
2.25e-02
3.09e-02
2.92e-02
6.81e-03
4.38e-03

2.46e 00
1.03e 01
7.22e-01
1.08e-01
5.07e-02
4.86e-02
6.83e-02
6.19e-02
1.37e-02
9.09e-03

;'N(A)

0.38
1.97
1.88
1.30
1.71
2.16
2.21
2.12
2.02
2.08

Table 7.13: Error and effectivities for the smallest negative eigenvalue for a randomly selected value
of A.

7 x 10-'

C',

? 2- .. ..

1 -
- Finite Elemert Solution (n=1$,000)

Reduced Basis Solution (N=30)

0.05 0.1 0.15
ttop

0.2

.x 10-

0.05 0.1
tbot

0.15 0.2

Figure 7-9: Plots of the smallest positive eigenvalue as function of ftop and tbot.
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-_Finite Element Solution (n=1$,000)
- Reduced Basis Solution (N=30)
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Figure 7-10: Plots of the smallest negative eigenvalue as function of ttop and tbot.

In this section we formulate the design-optimize problem and apply reduced-basis output bound
methods to the solution of the optimization problem.

7.4.1 Design-Optimize Problem Formulation

We consider the following optimization problem:

find /p* = arg min J()A
(7.32)

fi(A) > 0,
subject to gi(p) > 0,

hk(p) 0,

j = 1,..., Kg,

where p E RP, the inequality constraints fi (p) > 0 and (for simplicity) the equality constraints
hi(p) = 0 involve "simple" functions of p - for instance,

flQP) = Amax - P > 0

f 2() = P - Amin 0,

(7.33)
(7.34)

and the inequalities gi(p) > 0 are constraints on outputs s(p) = (L(p), u(p)) - for instance,

= Sma - s(A) 0

= s(A) - smin 0,

(7.35)
(7.36)

where u(p) is the solution to a partial differential equation. Note the cost function J(p) may in
general be of the form

i=1
where the as are weights and the Ji are different cost metrics.

(7.37)
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Microtruss Design-Optimize Problem

We now consider a particular instantiation of our abstract optimization formulation. We consider

here a simpler version of the optimization problem posed in Chapter 1 involving only outputs related

to the structural aspects of the problem; the full multifunctional (thermo-structural) problem is

addressed in [33].

As indicated in Chapter 1, one of the main advantages of the truss design is that it offers

relatively high structural load capacities at low weights, making it useful for weight-sensitive ap-

plications such as next-generation rocket engines and unmanned autonomous vehicles (UAVs).

Furthermore, the weight of the structure is directly related to the amount of material utilized,
which in turn is related to material costs; in the case of rocket engines and UAVs, the weight is

also directly related to fuel consumption (operational costs). We may thus define our cost function

to be the area of the structure, j(p) = V(p), where p = {ftop, ibot, f, a}, and

=2 tfb) + . _ b) +H . + b . (7.38)
tan a sin sin

Furthermore, we require that (i) the parameter p be in the design set, i.e., p E D" C RP, where

DA = [0.022, 0.22]3 x [00, 45], (ii) the length of the structure be equal to to,

f(p) = 2 ft + . f- + fb) = to ;(7.39)
stan a (7.3

(iii) the deflection be less than a prescribed limit,

3 ave() < aiomax, (7.40)

and (iv) the average stress near the support be less than the yield stress,

0Uave(tt) _ a29Y ; (7.41)

for this simpler formulation we shall not consider stability (buckling).
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Our optimization problem can then be stated as: find p* = f , *, *}, which satisfies

find p* = arg min J(P) (7.42)

fDP) = f~p - to = 0,

f1 (IL) = top - 0.022 > 0,

f 2 (/t) = 0.22 - ftop > 0,

f3(IL)= Tbot - 0.022 > 0,

f4(t) = 0.22 - fbot > 0,

subject to f 5 _) - 0.022 > 0,

f6 (/) = 0.22 - f > 0,

f 7 (p) = > 0,

f 8 (1t) = 45 - d > 0,

g'(P) = CiOmax - 6ave(A) > 0,

2(/t) = C2UY - -ave(P) > 0,

hl(L) = e(p) - to = 0,

7.4.2 Solution Methods

We now consider methods for solving general optimization problems of the form (7.32). In par-
ticular, we focus on interior point methods, computational methods for the solution of constrained
optimization problems which essentially generate iteratetes which are strictly feasible (i.e., in the
interior of the feasible region) and converge to the true solution. The constrained problem is re-
placed by a sequence of unconstrained problems which involve a barrier function which enforces
strict feasibility and effectively prevents the approach to the boundary of the feasible region [9].
The solutions to these unconstrained problems then approximately follow a "central path" to the
solution of the original constrained problem; this is depicted in Figure 7-11. We present here a
particular variant of IPMs known as primal-dual algorithms.

A o central path

S

Figure 7-11: Central path.

To begin, we introduce the modified optimization problem

find y* = arg min J.(p) , (7.43)
AL
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where the modified cost functional is given by

Kf

J (A) =J() - b ln fi()
(i=1

K
9

+ E In g (P))
j=1

I K (

+ 2Eh ([)2.
VPk=1

it can then be shown [15] that as v (Vb, vp) -> 0, the solution to (7.43) approaches the solution

to the original constrained optimization problem (7.32) - that is,

pL* = lim /I.*V-0
(7.45)

We therefore wish to find 1* such that

VJV(p*) = VAJ(p*) - Vb (Kf
fi ( *)

K9

+ E
j=1 gj (/p*) )

VoP
hk(P)V,1hk() = 0 (7.46)

k=1

in the limit as v - 0.

We now introduce the "slack" variables F E RKh and G E RK9 given by

V
F

G V
gj (P)'

i = 1,. .. ,Kf, (7.47)

i=1,..., K (7.48)

and define z = (p, F, G) and

Kf

VwJ(t) +5
i=1

Kg

F Vpfi(p) + GiVgj(p) +
i=1

Fifi(p) - v

FKffKf (P) - V

Gig1 (p) - v

GK, 9Kg(p) - v

VP

Kh

hi(p) thi(p)

(7.49)

The optimizer z* = (/1*, F*, G*) then satisfies

F(z*; V) = 0, as v -+ 0. (7.50)

Applying Newton's method to (7.50) and letting v - 0, the primal-dual interior point algorithm

may thus be summarized as follows:
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(7.44)

.F(z; v) =



Set v > 0, 0 < E < 1
for i = 1,.. .,max-iter do

while |IF(z; v)I > tol do
Az = [VzF(z; v)]-l F(z);

Set Y=min 1, 0.95 min;
S-Azi

z = z + 'YAz;
end while
V = EV

end for

Note the factor -y is chosen such that the iterate z + -yAz is strictly in the interior of the feasible
set.

Clearly, solution of the full optimization problem is computationally very expensive since it
requires repeated evaluation for many different values of the parameter IL of the outputs of interest.
However, this is precisely the type of situation in which reduced-basis methods are most useful; we
therefore pursue a reduced-basis approach.

7.4.3 Reduced-Basis Approach

To begin, we again consider the optimization problem (7.32) but replace gt (p) with the "appropri-
ate" reduced-basis approximation such that feasibility is guaranteed,

find AN = arg min J(p) (7.51)
A

subject to-'' ' '

9( ) ;>!, i = 1,..., Kg.

For example, in place of the gi(p) defined in (7.35)-(7.36) we would take

9NWO = Smax - S' (), (7.52)

)= s}p) - Smin . (7.53)

Note if s- (p) s(p) 5 s+ (p), and if the gN(p) are appropriately defined (as in (7.52)-(7.53)), the
solution p* to (7.51) is guaranteed to be feasible in the sense of (7.32)

The advantage of using reduced-basis methods in solving our optimization problem is twofold:
(i) the low computational cost of evaluating (online) the outputs of interest allow for fast and
efficient solution of the optimization problem; and (ii) rigorous error estimators and output bounds
guarantee feasibility of the solution obtained from (7.51).

7.4.4 Results

We present in Table 7.14 the results of our optimization procedure for several scenarios. For this
example we take the yield stress to be 30MPa, and the maximum deflection to be 0.03mm. Note
that in this case the angle effectively serves only to ensure that the equality constraint e(t) = to(p)
is satisfied. In Scenario 1, we obtain an initial guess which satisfies all the constraints but is not
necessarily optimal. In Scenario 2, we minimize the area of the structure while allowing ttp to
vary. We then find that the optimal value is itop = 0.507, resulting in a 30% reduction in the cost
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function (area) compared to the results of Scenario 1. We also note that in this case, the yielding
constraint on the stress is active. In Scenario 3, we allow both itop and tbot to vary. We then find
that the cost can be reduced further by 30% compared to the results of Scenario 2. Finally, we
allow itop, ibot, and t to vary, and find that the cost can still be reduced by another 10%; note that
in this case, both the deflection and stress constraints are active.

Scenario tt0 p(mm) ibt(mm) i(mm) ce( ) V(MM2) 6'(mm) a'(MPa) time (s)
1 1.500 0.500 0.500 54.638 50.04 0.0146 09.227 0.680
2 0.507 0.500 0.500 54.638 35.14 0.0200 30.000* 1.020

3 0.523 0.200* 0.500 53.427 25.65 0.0277 30.000* 1.050
4 0.521 0.224 0.345 52.755 23.02 0.0300* 30.000* 1.330

Table 7.14: Optimization of the microtruss structure (for fH = 9mm) using reduced-basis output
bounds. (These results were obtained in collaboration with Dr. Ivan Oliveira of MIT, and are used
here with permission.)

The solution of the optimization problem for each scenario requires 0(10) deflection and stress
calculations. As shown in Table 7.14, our reduced-basis solution method therefore effectively solves
- on-line - 0(10) partial differential equations within a single second. In contrast, matrix assem-
bly and solution (using non-commercial code) of the finite element equations for a single value of

p takes approximately 9 seconds. The online computational savings effected by the reduced-basis
method is clearly no small economy.

7.5 Prognosis: An Assess- (Predict) -Optimize Approach

The design of an engineering system, as illustrated in Section 1.1.4, involves the determination of
the system configuration based on system requirements and environment considerations. During
operation, however, the state of the system may be unknown or evolving, and the system may be
subjected to dynamic system requirements, as well as changing environmental conditions. The sys-
tem must therefore be adaptively designed and optimized, taking into consideration the uncertainty
and variability of system state, requirements, and environmental conditions.

For example, we assume that extended deployment of our microtruss structure (for instance,
as a component in an airplane wing) has led to the developement of defects (e.g., cracks) shown in
Figure 7-12. The characteristics of the defects (e.g., crack lengths) are unknown, but we assume
that we are privy to a set of experimental measurements which serve to assess the state of the
structure. Clearly, the defects may cause the deflection to reach unacceptably high values; a shim
is therefore introduced so as to stiffen the structure and maintain the deflection at the desired
levels. However, this intervention leads to an increase in both material and operational costs. Our
goal is to find, given the uncertainties in the crack lengths, the shim dimensions which minimize
the weight while honoring our deflection constraint.

7.5.1 Assess-Optimize Problem Formulation

More precisely, we characterize our system with a multiparameter p = (Acrack, Ashim) where Acrack =

(Li, L 2 ) and Ashim = (Lshim, tshim). As shown in Figure 1-5, L, and L2 are our "current guesses"
for the relative lengths of the cracks on the upper frame and truss, respectively, while fshim and
Lshim denote the thickness and length of the shim, respectively; we also denote by t*rack (L , L)
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Figure 7-12: A "defective" microtruss structure. The insert highlights the defects (two cracks) and
intervention (shim).

-+- L 9

Lshim

Figure 7-13: Parameters describing the defects, (L 1 and L2), and the intervention, (Lshim and

tshim)-
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the (real) unknown crack lengths. We further assume we are given Mexp intervals [L5 B, 6 UB],

m = 1, ... , Mexp representing experimental measurements of the deflection such that

6ave(PsIim, /<crack) E [6m7I, 6 mB], m =1, ... , Mexp . (7.54)

From these measurements, we then infer the existence of a set L* such that (Lt, L) E *. We then
wish to find the p*him which satisfies

ts~him = arg min Vshim(Pshim), (7-55)
Pshim

where Vshim(/shim) = fshimLshim is simply the area of the shim, such that

Pshim E pshim (7.56)
max 6 ave(pshim, I'crack) 6 max (7.57)

Acrack t*

In words, we wish to find the shim dimensions which minimizes the area of the shim such that

the maximum deflection (over all crack lengths consistent with the experiments) is less than the

prescribed deflection limit 6max-

7.5.2 Solution Methods

Unfortunately, the set L* is very costly to construct. However, we can readily calculate a conser-

vative approximation to L*, C*, by (i) applying our sharp yet computationally inexpensive output

bounds, and (ii) exploiting the readily proven monotonicity (increasing) property of 6 (p) with

respect to L1 and L 2.
By construction, the surrogate * contains C*; we may thus replace (7.55) by:

Ishim = arg min Vshim (Ishim) (7.58)
Ashim Epshim

s.t. max- 6 (pshim, Acrack) 3 max,
Pcrack 0*

since if Ashim satisfies max crackE* 6 (Icrack, shim) Jmax then it follows that maxpcrackeC* 6 (crack, /shim

6max. By once again exploiting the monotonicity of 6([t) with respect to PIrack, we can readily find

the maximizer of 6 over C*; to wit, we define

P'rack = arg max_ 6 (crack, Ishim),
[IcrackEC*

where P'rack (which is independent of Pshim) is calculated by a simple binary chop or bisection

algorithm (see [2]). We may then write (7.58) as

shim = arg min shim(/shim) (7.59)
11shim Elshim

s.t. 6(pcrack, ishim) 6max-

Finally, we again apply our sharp yet inexpensive a posteriori output bounds to arrive at

Ashim = arg min Vshim(Pshim) ( Lshimtshim). (7.60)
Ashim EDshim

s.t. (ILcrack, Pshim) < 6max.
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The formulation (7.60) has several advantages. First, satisfaction of the constraints is guar-
anteed: if 6+( 1 ) > 6N(P), and pb*him satisfies ' (p4rack''shim 6max, then it follows that
6 (Ierack' Pshim) < Jmax. Second, 6j(p) can be calculated efficiently: the online complexity to
calculate 6k(p) is only O(N 3 ) - independent of the very high dimension of the truth finite el-
ement space, K. Finally, the constrained minimization problem (7.60) is readily treated by the
interior point methods presented in Section 7.4.2.

We present in Table 7.15 the solution to the optimization problem (7.60) for several scenarios.
The inputs to the algorithm are: the crack lengths (L*, L) E [0.1, 0.75]2, which are "unknown"
(to the algorithm); the error in the measurements, E E [0.1, 51%; and the upper bound on the
deflection, 6max, "typically" chosen to be between (say) 6400 and 6600. The outputs are: the upper
bound tk(p) and the shim volume Vshim(Pshim) at optimality. We also present the computation
time required to solve the complete optimization problem.

As a first test case, we assume that after several missions our truss structure has developed
cracks of lengths (L*, L*) = (0.5,0.5). The plane is immediately needed for a new mission which
requires 6 (p) 6 max = 6600.0; a few crude deflection measurements (c = 5.0%) are performed, from
which we conclude that a shim of (optimal) dimensions (Lashim, shim) = (15.0,0.84) (and volume
12.6) is required to ensure feasibility.

Next, we assume that for the next mission, the constraint on the deflection is now tighter,
6
max = 6400.0; (I*, IL, and E are unchanged.) Measurement and optimization confirm that, as

anticipated, a larger shim with a volume of 20.9 is needed, with (I*him ts*him) = (15.0,, 1.4). When
the plane returns, more accurate measurements (E = 0.1%) can now be afforded. (We assume that
L*, L*, and 6 max are unchanged.) On the basis of these new measurements, it is found that a shim
of volume 8.5 and dimensions (15.0,0.57) actually suffices.

After a subsequent mission, we assume that the crack length L* has increased to 0.7. Upon
taking new measurements (6 = 0.1%), it is found that for the same deflection limit, 6max = 6400.0,
an (optimal) shim of volume 8.62 and dimensions (Ls*himI tshim) = (15.0, 0.57) is now required.

Next, we assume that the crack length I* has increased to 0.7. New measurements and opti-
mization reveal that a much bigger shim of volume 16.1 and dimensions (Ls*him shim) = (15.0, 1.1)
is now required. The analysis automatically identifies these defects which most strongly affect
performance.

Lastly, we assume that, for a final mission, the constraint on the deflection can be relaxed,
6max = 6500.0. Measurement (6 = 0.1%) and optimization confirm that, as anticipated, a smaller
shim is sufficient, with volume 12.4 and (L*himifs*him) = (15.0, 0.82).

We note that solution of a single optimization problem (for a given set of constraints) requires
solution of roughly 300 partial differential equations and associated sensitivity calculations (at
different parameter values).
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L* L (im) Time (s)

0.5 0.5 5.0 6600 6600 12.6 9.4
0.5 0.5 5.0 6400 6400 20.9 7.1
0.5 0.5 0.1 6400 6400 8.5 7.6
0.5 0.7 0.1 6400 6400 8.6 7.5
0.7 0.7 0.1 6400 6400 16.1 9.5
0.7 0.7 0.1 6500 6500 12.4 10.1

Table 7.15: Solution to the assess-optimize problem with evolving (unknown) system characteristics

and varying constraints.

153



154



Chapter 8

Summary and Future Work

8.1 Summary

The main goal of this thesis is to develop reduced-basis methods for problems in elasticity. The
essential components are (i) rapidly convergent global reduced-basis approximations - projection

onto a space WN spanned by solutions of the governing partial differential equation at N selected

points in parameter space; (ii) a posteriori error estimation - relaxations of the error-residual

equation that provide inexpensive bounds for the error in the outputs of interest; and (iii) off-

line/on-line computational procedures - methods which decouple the generation and projection

stages of the approximation process. The operation count for the on-line stage - in which, given

a new parameter value, we calculate the output of interest and associated error bound - depends

only on N (typically very small) and the parametric complexity of the problem; the method is

thus ideally suited for the repeated and rapid evaluations required in the context of parameter

estimation, design, optimization, and real-time control.

Perhaps the biggest challenge in applying reduced-basis output bound methods to problems in

linear elasticity lies in developing rigorous (Method I) and inexpensive a posteriori error estimators.

The need for rigorous output bounds is clear: in many real-world applications, certifiability of

approximations is required so as to rigorously satisfy the prescribed application constraints.

In this thesis, we find that our Method I a posteriori error estimation procedures rely critically
on the existence of a "bound conditioner" - in essence, an operator preconditioner that (i) satis-
fies an additional spectral "bound" requirement, and (ii) admits the reduced-basis off-line/on-line
computational stratagem. This improved understanding of reduced-basis a posteriori error estima-
tion allows us to develop new techniques - in fact, recipes - for constructing the required bound
conditioners.

To investigate the effectivity of these bound conditioner constructions, we first apply them in
Chapter 4 to the problem of heat conduction, and in Chapter 5 to the problem of linear elasticity.
Problems in heat conduction serve as a good test bed for our methods prior to application to
linear elasticity: the Laplace operator is a "simpler version" of the linear elasticity operator. These
theoretical and numerical tests show that our bound conditioners perform remarkably well - we
achieve good effectivities, and therefore sharp output bounds; and enable a better understanding
of the strengths and limitations of each of technique.

Although some of our Method I techniques have been found to be generally applicable, in some
cases - particularly for linear elasticity - the computational cost is still relatively high, and the
implementation difficult. We therefore also develop Method II error estimators - bounds which
are simple and inexpensive, albeit at the loss of complete certainty. Nevertheless, numerical tests
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show that these simple bounds perform quite well.

There are also many applications in which the posibility of unstable equilibria must be con-
sidered. While analytical formulas exist for the critical loads of relatively simple geometries, they
are of limited applicability particularly for more complex structures. However, exact (finite ele-
ment) solution of the partial differential equations governing elastic stability is computationally
too expensive, especially in the "many queries" context of design and optimization. We therefore
consider in Chapter 6 reduced-basis approximation and (Method II) error estimation methods for
the problem of elastic buckling.

Finally, in Chapter 7 we apply our reduced-basis approximation and (Method II) error esti-
mation methods to the structural aspects of the microtruss example put forth in Chapter 1. The
advantages of the reduced-basis method in the "many queries" context of optimization is clear: we
achieve substantial computational economy as compared to conventional finite element solution.

It must be noted that there are still many aspects of reduced-basis methods which must still
be investigated and improved, some of which are briefly discussed in Chapter 2. In this chapter we
present two areas which are related to the methods and problems presented here. First, we consider
the problem of thermoelasticity, important for creating a full (linear) thermo-structural model of
the microtruss example of Chapters 1 and 7. This problem is difficult due to the "propagation"
of the reduced basis error: the temperature, which must also be approximated using reduced-basis
methods, enters the linear elasticity equations as "data." Second, we consider the Helmholtz or wave
equation, important in nondestructive evaluation, structural health monitoring, and prognosis -
contexts for which our Assess-Predict-Optimize methodology of Chapter 7 is relevant. This problem
is difficult since the operator is no longer coercive. We present initial ideas for these problems in
the following sections.

8.2 Approximately Parametrized Data: Thermoelasticity

In this section we explore the situation in which the parametrized mathematical model is not ex-
act. In particular, we permit error or imprecision in the data that define the linear functionals
in our problem. In the case of thermoelasticity, for instance, this error is introduced by reduced-
basis approximation of the temperature which couples into the linear elasticity equations through
the linear functional. The ideas presented here extend the methods put forth in [38] for approxi-
mately parametrized operators to the simpler case in which the data (or loading) is approximately-
parametrized; we develop these ideas for the particular case of thermoelasticity.

8.2.1 Formulation of the Thermoelasticity Problem

There are many important applications in which the changes in temperature may significantly affect
the deformation of a structure - the multifunctional microtruss structure of Chapters 1 and 7 is
one example, as are sensors and actuators.

When an isotropic body is subjected to a temperature change T from the uniform reference
state temperature, it may develop thermal stresses such that the (linearized) stress-strain relations
[29] become

&ij = - _ + OijkIkIr , (8.1)1 - 20

where d, is the linear coefficient of thermal expansion, the strains Egj are related to the deformation
u by (5.8), Oijkl is the elasticity tensor, and the temperature T satisfies the partial differential
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equation

(AoT, f)) = (Fo, V) , V -D E Yo (8.2)

Here, Ao: YV -+ Y and Nv E Y, are given by (3.20) and (3.21), respectively. Note we assume that

d,9 is constant and the Cijkl independent of temperature change. Substituting (8.1) into (5.22), we

find that the deformation satisfies the partial differential equation

(A=, ) = (F7,) (-TI) , VV O Y , (8.3)

where A: k -+ Y' and F E Y' are given by (5.24) and (5.25), respectively, and 7H is given by

(K,) =JE T dQ , V b E Y. (8.4)
(H 1 - 29 Pxvi

Upon application of a continuous piecewise-affine transformation from 0 to a fixed (p-independent)
reference domain Q we obtain from (8.2)

(Ao(p)V(p), v) = (F (p), v) , V v Ee , (8.5)

where AV: Y --+ Y and FV E Yj are given by (3.34) and (3.36), respectively; and (8.3)

(A(p)u(p), v) = (F(p), v) + ('H(p)O(p), v) , V v E Y , (8.6)

where A: Y -+ Y' and F E Y' are given by (5.38) and (5.40), respectively. Here,

(H4)W(p), v) = j ij (0) a% O(p) dQ , (8.7)
J 2 0xj

where

ij) = -20 Gjj (det G(p))-l .(8.8)
1 -2F

We note that H(p) is affinely dependent on the parameter since

(H([L)w, v) Za (w, v) , (8.9)
q=1

where Q7- = d2 , and for q(i, j): {1,. .. ,d}2 _

kq () = ij(1A) , (7jw, v) = j wdQ ; (8.10)

we recall from Chapters 3 and 5 that A[(p), Fo(pt), A(p), and F(p) are also affine in the parameter.

8.2.2 Reduced-Basis Approximation

Temperature Approximation

As before, we sample our design space DA to create the parameter sample

S = {P, .. , PM (8-11)
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we then introduce the reduced-basis approximation space for the temperature

W j = span{ m=T(M), m = 1,. .. ,M}.

Our reduced-order temperature approximation TM(p) E WT then satisfies

(Av(jt)Tm(tt),v) = (Fe(tz),v), V V EWJ. (8.13)

Deformation Approximation

We now introduce a "model-truncated" problem: given p E 'D', we find

(8.14). (p) = (L(p), f(p)) ,

where fi([t) E Y satisfies

V V E Y . (8.15)

We again sample the parameter space to create

(8.16)

and introduce the reduced-basis approximation space for the deformation

(8.17)

Our output approximation is then

sN(A) = (L(p), fN (P)) 7

where UN(P) E WK satisfies

(AiN(A), v) = (F(p), v) + (K(1A)M(p), v), VvEW .

The offline/online computational procedure to find LM(p), uN(p), and sN(A) is similar to that
described in Chapters 3 and 5.

A Priori Theory

In this section, we find an a priori bound for Is(p) - s (p) 1. By way of preliminaries, we shall suppose
that any member w of the temperature space Y,9 may be expressed as

(8.20)W = q
q=1

where the Wq are basis functions of Y, and Q may be quite large. We may then write

(8.21)9(L) - OM(/t) = 3q(Lp)q -
q=1
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(A(p)fi(p), v) = (F(p), v) + (R()'IM(p), v) ,

(8.18)

(8.19)



Note that replacing (8.5) and (8.6) with a "truth approximation" defined over a finite element space

Yg of dimension M (as we do in actual practice) ensures that Q may be presumed finite without

loss of generality; we may, for instance, take Q = M and the Oq to be the finite element nodal

basis functions. (Recall that we assume Yg is sufficiently rich such that ug, sg, fW, and sg are

indistinguishable from u, s, U, and s.)

Following [38], we also introduce Q suitably regular open subdomains, Dq C Q, I < q < Q,
and assume that a given subdomain Dq intersects only finitely many other subdomains Dq, (as

Q -- oc). We next define parameter-independent inner products and norms over Dq, ((, .))q and
1q ((- -))q/2 respectively. We assume that III - ||Iq is uniformly equivalent to II - |H1(Dq) for

all functions in H 1 (Dq) in the sense that the relevant constants may be bounded independent of

p and Q. It then follows from our assumptions that there exists a positive finite constant -

independent of p and Q - such that

SIIVID q 2  v (8.22)
q=1

We now define
1/2

SL2 (/t) 2 (8.23)
(q=1 q 

P

and require that
EL2 (P) < 5(8.24)

for £ E R+ independent of p and Q (and preferably small). We next define -yq c R, 1 < q Q, as

Igp IIIqIa (8.25)-Yq (A)1/

and require that

ay"x(p) max -y (p) < , (8.26)
qE{1,...,Q}

for ~ independent of p.

We can now show that

Is(p) - s()| < |ILIyi C1 inf |Y p E DA (8.27)
VN E Wl IIIA N Y+C i

where C1 and C2 depend only on coercivity and continuity constants.

To prove (8.27), we first introduce e(At) = u(p) -iNp), and further define (p) = f(t)-flN(p),
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and a(p) = u(p) - £(p), such that e(p) = (p) + E(p). We can thus write

(L (p), e () y

Ie (p)|

(L, v)
< sup || II 1 60-)| + |()|Iy

VEYIil

(8.28)

(8.29)

(8.30)

(8.31)

by the triangle inequality.

Furthermore, it immediately follows from standard Galerkin theory that

116(1p)1 y C1 inf Ii(P) - vN IIy (8-32)

where C1 depends only on the coercivity and continuity constants associated with A.

To bound II (p)y, we note that

VvEY. (8.33)

Expanding V(p) - 'M(tt), and choosing v = (pt), we obtain

= 1q(p)(N()<pq, e(p))
q=1

SUVY(H([I) q, ' ))
supvey (~ )1/2 )

1/

q=1

Finally, we have

C0 < inf v E Y (A(p)v, v)

- ||(p)2

from which it follows that
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q=1

q=1

(8.34)

(8.35)

|0Iq (p)i
1/2

Pq (
1/2

(8.36)

2

(8.37)

(8.38)

(8.39)

(8.40)

V A E D" (8.41)

Is(A) - sN(1)|

(A (p) (p), v) = (H (A) (d (P) - 'dm W) , V),

(A(p) (p), 6(p))

< i
(q=1

Oq (A) f O

:! i I 4Pr |() I y .

(A(pt) (p), E(IL)) < C2 PE5 ,

|,8q (P)|I-( (P EGp) | |||11- q



where C2 = 1/C%.

The bound (8.27) then follows from (8.31), (8.32), and (8.41). Note that we can, in fact, improve
our bound to be quadratic (and not linear) in 116(p) Iy by introduction of the reduced-basis adjoint
techniques described in Chapter 5.

8.2.3 A Posteriori Error Estimation: Method I

We develop here the necessary a posteriori error bounds - a necessity for both efficiency and
reliability.

Preliminaries

As in Chapters 4 and 5, we introduce a symmetric, coercive, continuous bound conditioner C(tu): Y

Y' that satisfies the spectral condition

< (A (p)v, v) pV v E YV [t E DA, (8.42)
(C([)v, v)

for some preferably small constant p E R, as well as the computationally invertibility hypothesis
C 1 (y) = ZzET(,) oa([)C71 . It then follows from the coercivity of C(pI) and our assumptions in

Section 8.2.2 that there exists a bound fi"([t) which is independent of Q, such that

|I|IVIDq < (i)) 2 (C p)vv) , V v E Y . (8.43)
q=1

We also introduce a symmetric, coercive, continuous bound conditioner for the thermal problem
Co([t): Yd -+ Y that satisfies the (analogous) spectral and computational invertibility conditions.
We then define

A )= (Ro (p), C - 1(p)Ri(p)) (8.44)

where (R(p), v) = (Au(p) (t 9(p) - dM(p), v)) for all v E Yo. From the results of Chapters 4 and
5, it follows that the error in the reduced-basis approximation for the temperature in the energy
norm is bounded by A* 1(t):

(Ao(p) (,O(p) - OM(p) , (V(OQ) - i 9M(p))) - (8.45)

We next define the operator D as

(DwV) = VQ " pdQ, Vw,vEY, (8.46)
q=1

where the <pq are the nodal basis functions and w , o the nodal values of w, v, respectively; andQQ
the eigenvalue A)<H 1 (jt as

AL 2 H 1  (vv) (8.47)min veY,, (Pv, v)
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Furthermore, we have

Q7-H

= k sup
k=1 vEY

Defining zqk E Yq as

it follows that

Zqk = arg sup ,k
vEY IIIVIDqjjIq

((ZqkVIDq)) = (Rk Pq, v), V EYq .

We then have

sup (H (p qv) 2

VEY IIVDqjIg
E K_ H II kzqk IIq
k=1 zqk 2

EaHqk, zqk))/2
k=1

QH~ Q'i-

SZE 'H((Zqk, zqk)
k=1 k'=1

= a(P)_Zqa_(A) )

where a(p) E RQI and Zq E RQX"Q are given by

and

Zakk = ((zqk, zqk))1((Zqk, Zqk))
1

Finally, we let Amax be the maximum eigenvalue of Z

vTZ V
max

VEIRQ TV

max
qE{1,...,Q}

Amjax )
Error Bound

Our error estimator for Is(P) - sN(P) is then given by

AN(A) - YjILI'Iy 5(A) + (p)),
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(Rk (pq, V)

IfIVIDqIjjq
(8.48)

(8.49)

(8.50)

(8.51)

(8.52)

(8.53)

(8.54)

(8.55)

(8.56)

AZ =
max

and define

Az =

(8.57)

(8.58)

(8.59)

sup (~) )

VEY IJ V D q

) 1/2 ((Z qk', Zqk' ))1/2

_( ) = ak ) . .. aQ ( T)



where

ILIjy/ = sup (L(p), v)

VEY (C([L)v, v)1/2

(p) = (C(p)E(p), (p)) 1/ 2

p (Az( () ))
AL -Hl

(8.60)

(8.61)

(8.62)

Here t(p) E Y satisfies

(C(tz)E(p), v) = (H(p) (d(p) - dm(p)) V), V v E Y . (8.63)

Clearly, 6(p) measures the error due to the reduced-basis approximation of fi(p), and 6(p) measures

the error due to model truncation - the error due to the reduced-basis approximation of d(p) in

the data.

We now show that our estimator AN(A) is, in fact, a rigorous upper bound for Is(O) - sN(P)I-
To begin, we note that

= I(L(p), e(p))l

( sup (L(p), v)

VEX (A (p)v,v)17

(8.64)

(8.65)) (A()e(I), e ([1))1/2

S(sup (L(p), v) 1/2

veX (A(p)v,v) 1/j
+ (A(1m)(AL), E 1/2) (8.66)

We next note from the results of Chapters 4 and 5 that

(8.67)

(8.68)
It follows that

Is(p) - sN(I)II I |ILI Ily (p) + (A())(+i), E(t))1/2) ;

it thus remains only to show that (A(p)j(p), (bt)) 1/ 2 < S

We first define E(p) E Y as the solution to

I(C(p)E(p), V) = MA~) (00p) -- Vup)), V), VvEY; (8.69)

(8.70)
it thus follows that
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We now note that

(C(P)E(p), k()) = (Nft ) (1(9t) - OM(pi)) , p))

(|(p)| Oq E( |))

I I') I I pq=1

2\1/2

|3q (1A)| I
q=1

( 2)1/ 2  
q(p)1,3q(/-) (|| 5O y 1 (p)ll D ~

q=1

1/2 D 1 1/2

q=1

and therefore

From (8.21) and (8.46) we have

2(J

q= )

('Dv, v)1/2(Ao(p) ( t) - dM(m)) , (19(p) -

(C(p)v, v) 1 /2 )
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(8.71)

(8-72)

IIq (8.73)IIIVIDqIIq 
()

( )1/2 ) Dq

7 y (p ) 2()

(q=1

~2/

(8.74)

(8.75)

(8.76)

(8.77)

£L2 (P)

sup

Y

AL 2 H

(8.78)

(8.79)

(8.80)

(8.81)

(8.82)

< g ()L2()9p (C (p)p) ()/

(Cp)E(1p), 5(p))'/2 < g ()L(p#().



We next note that

Tax max (-y'q(y)) 2  
(8.83)

qe{1 ,..., Q}

= max aT (P)Zq a(p) (8.84)
qe{1,..Q}

= max 1 (aT(a)a(p) (8.85)
qE{1,.,} j Pq

1 V Z8V
< &"(P)a(p) max_ max (8.86)

qE{1,...,Q} I2 EIRQN _ V TV

1J 'Pq -

< aT(p)a(p) max_ 1 A (8.87)
qE{1,...,Q} 2

= aT (p,)a(p)AZ (8.88)

Finally, we have

(Ap) (P p))1/2 < Cp5p,5p)/ (8.89)

p'(p)At (p)Az (jT(P)j(p_))1/2 (.0
< E M A L 2 Hl (8.90)

min

= e(i) . (8.91)

We note that A ; 1 and Az can be calculated offline, while A"(p) and aT(p) may be calculated

online.

8.3 Noncoercive Problems: The Reduced-Wave (Helmholtz) Equa-
tion

There are many important problems for which the coercivity of A is lost - a representative example

is the Helmholtz, or reduced-wave, equation. For noncoercive problems, well-posedness is now

ensured only by the inf-sup condition. This "weaker" stability condition presents difficulties in both

approximation and error estimation; we shall address the latter in this section. In particular, we

present some preliminary ideas for constructing approximations to the inf-sup parameter IA(p) for

(i) noncoercive problems in general, through application of certain bound conditioner constructions

presented in Chapter 3; and (ii) the Helmholtz problem in particular, through

8.3.1 Abstract Formulation

We again consider a suitably regular (smooth) domain Q C ]Rd, d = 1, 2, or 3, and associated

function space Y c (H 1 (Q))P with associated inner product and norm (-, -)y and | -y (-, -)/2Y
respectively. We recall that the dual space of Y, Y', is defined as the set of all linear functionals F
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such that the dual norm of F, defined as IFIly',

fIF|Jy1 = sup (F,v) (8.92)
VEY Ilvijy

is bounded.

We then consider the problem: for any /t E D", find s(p) = (L(p), u(p)) where u(p) satisfies

(A(p)u(p), v) = (F(p), v), V v E Y , (8.93)

where the operator A(p): Y -> Y' is symmetric, (A(p)w, v) = (A(p)v, w), continuous,

(A(p)w,v) yA(p)||w||y||v||y ||1JIw||y||v||y, V w,v E Y V p E DA, (8.94)

and depends affinely on the parameter

QA

A(p) = E ®(p)AI; (8.95)
q=1

we further assume that F(p) E Y', L(p) E Y', and that F, L also depend affinely on the p. In
addition to the primal problem (8.93), we shall again require the dual problem

(A(=)v,O(p)) (L(p), v), V v E Y , (8.96)

where 'b(p) E Y.

In this section, we no longer assume that A(p) is coercive, but instead ensure well-posedness
by the inf-sup stability condition

0 <,3A 1A(P) = inf sup (Ap)w,v) V p E DiL (8.97)
WEYVEy |Wf|yI|VI|y'

Several numerical difficulties arise due to this "weaker" stability condition. The first difficulty is
preservation of the inf-sup stability condition for finite dimensional approximation spaces. Although
in the coercive case restriction to the space WN actually increases stability, in the noncoercive case
restriction to the space WN can easily decrease stability: the relevant supremizers may not be
adequately represented. Furthermore, loss of stability can lead to poor approximations - the inf-
sup parameter enters in the denominator of the a priori convergence result (3.92). Nevertheless,
it is posssible to resolve these issues by considering projections other than standard Galerkin, and
"enriched" approximation spaces [26, 43]. The second numerical difficulty - which we shall address
here - is estimation of the inf-sup parameter fA(Qp), important for certain classes of Method I a
posteriori techniques. Since 3A(p) can not typically be deduced analytically, it must therefore be
approximated. To motivate our methods, we first consider an example.

8.3.2 Formulation of the Helmholtz Problem

There are many important applications in which the Helmholtz equation takes a central role -

nondestructive evaluation, structural dynamics, and electromagnetics, for example.

We consider an isotropic body subjected to a harmonic loading such that the harmonic response
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u is governed by the partial differential equation

V 2 u + W2 u = b, in Q , (8.98)

with boundary conditions

U = 0 on FD (8-99)
Du

e, = f on FN - (8-100)

Furthermore, we assume that the output of interest is a linear functional of the response,

s(p) = (L(p), u(p)), for p = {w} E D" . (8.101)

The problem may then be (weakly) formulated as: find s(p) = (L(), u([t)), where u(p) EE

Y = {v E H1(Q) I v = 0 on FD} is the solution to

(A(p)u(p), v) = (F(p), v), V v E Y ; (8.102)

for this example,

(.A(p)w, v) = dQ + 2 ] w v dQ , (8.103)
fo axi 0xi f

and

(F(p),v) b v dQ + jfv d . (8.104)

Affine parameter dependence of A(p) is then obtained for QA = 2, and

)= 1, (A v),v) = j d , (8.105)
jo 0xi 09xi

E2 =2, (A2w, v) = w v dQ . (8.106)

8.3.3 Reduced-Basis Approximation and Error Estimation

Following [43], we assume that we have the reduced-basis approximations uN(p) E WN and 'N (p) E

WN given by

. (A~p(u~p)- w), v)
UN(p) = arg inf sup , (8.107)

WEWN VEVNVIly

,ON(P) = arg inf sup (A(j)v, (?$([) w)) (8.108)WEWN VEVN IlVI ly

where WN and VN are the appropriate infimizing and supremizing spaces, respectively. Our output

approximation is then

SN(/) = (L(p), UN(U)) , (8-109)

and the associated upper and lower bounds are s'N(A) SN(P) ± AN4L) where

AN(A) 11 Rpr(/_)IIyIIIRdu)Iy, (8.110)
OA B
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and
0 < #LB

we assume for the moment that a lower bound A B(p) can be readily found.

We now show that AN(P) is indeed an error bound, that is,

1 s(P) - sN (P) I < AN (P) -

To begin, we define T,w as

it then follows that T,,w satisfies

T w = arg sup (A(p)w, v)
veY IvIy

(Tw, v)y = (A(y)w, v), VvEY,

and therefore

||Rpr(P)jy, = sup (RPr(I),v)
VEY vfy

=sp(A(p) (u (pi)- UN (AJ)), V)

VEY I|viy
(A(p)(u(p) - UN(ft)), Tp (u (A) - UN(p-)))

IITy(u(A) - UN(p)) Y

(Tp(u(p) - UN(A)), T (U(A) - UN(p-t)))Y

||ITy (U(Ay) - UN pA) Y

IITt(u(P) - uN())Y -

Furthermore, we have

AW(p) - bN[t)IY@Tpp) - VN(PD)IIY

- (A(p)Tp(O(p) - N()) N(P)))

=(R"' (p), T,( b(p) - ON (A))

(du 
_ pp

||TNI - N (A)))
I I Tp(0(P) - ObN(0-)11Y'

< sup (Rdu(p),v) II T (0 (A) - N (P))I Y'
VEY I|I|yiT

- R IAuI~yIT(V)(,) - OVN 0-)11Y'

and therefore

1100p0 - ON(A)IY

- 'bN (A))II Y'

1 j du(/_t||Y, .O 1A
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(8.111)

(8.112)

(8.113)

(8.114)

(8.115)

(8.116)

(8.117)

(8.118)

(8.119)

(8.120)

(8.121)

(8.122)

(8.123)

(8.124)

(8.125)



Finally, we have

Is~() - sN(I'p))((p) - UN(f)), )- NNU))) (8.126)

(Rpr(p), (4' (p) - (8N1(P)
I I(t((), (P~T) - N((()))Y ITp (0 (A) - /N(PI)) IY (8-128)

<sup ||p (AV 1(P) - ON(P Y (8-129)

jIRprP)IIYjIO([) _ ON N(A IIY (8-130)

< I- IRpr (/_) jy |Rd"(p)jjy, (8.131)

1
< 1 jRpr (/L)|jy, |Ra(/-)jjyr ; (8.132)

this completes the proof.

Approximation of the Stability Constant: Eigenvalue Interpolation

Since the stability constant IA(p) can not typically be deduced analytically, an approximation -

more precisely, a lower bound - must be calculated. We present here a method for calculating the

requisite lower bound based on the the concave-eigenvalue interpolation methods of Chapter 4.

To begin, we assume that the inner product associated with the function space Y is given by

(w, v)y =(dw, v) , (8.133)

where d: Y -> Y' is a p-independent, symmetric, continuous, and coercive operator; the associated

norm is then |lvity = (dv, v)I/2 . It then follows from (8.114) that

(C(T w), v) = (A(y)w, v) , V v E Y , (8.134)

and therefore T,1 w = d 1 A(p)w. We then note that

(OA(p))= inf (8.135)

= inf (A(p)w,T,1 w) (Tyw,TIw)y (8.136)
wEY (w,w)y(Tpw,Tpw)y

inf (A (p)w,CdA(p)w) (8.137)
weY (Cvv)

= inf (C(P)W, W) (8.138)
wEY (Cv,v)

where
L(p) =- (dA(p))T A(y) = A(p)d- 1A(p). (8.139)

We also note from our assumption of affine parameter dependence (8.95) that C(p) is also affine
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(p)A
q=1

(p)Aq

A1Y 1A1 + (20 (P)(2 (p)) [1-1A 2 +±---]
E< (L)

+ (2eQA-lEQA) [AQA-1d-1AQA1

LQIL-1

+ (0 QA) 2 AQAd-1AQA

LQL

q=1

where Q: = QA(QA + 1)/2. We now define

L(O) L #q Lq
q=1

where $E IRQC, L(O): Y -+ Y', and the Lq = L are symmetric and continuous

V w,V E Y .

We may then write

It then follows that the stability constant fA(p) is related to the eigenvalue problem

In particular,

(L(#) (#), v) = A(q)(d(#), v)

OA(p) = (Al(<D(P)))1/2 ,

where A1 is the smallest eigenvalue satisfying (8.120). Furthermore, we know from Chapter 4 that
A1 is concave in 0. We can thus construct a lower bound ALB(<()) to Ai(<b(p)) as the convex
combination of A1(k):

AiLB (b (8.149)kET ak (( k
kET(<b(p))

such that the cek > 0, and

k

kET(<b(p))

kET(4<(p))

= 1 , (8.150)

(8.151)

The problem of finding the best (largest) convex combination AF~Q<b()) is again a linear program-

ming problem (which may or may not be feasible). Clearly, the choice /3LB() B1/2
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in p since

(8.140)

(8.141)

(8.142)

(8.143)

(8.144)

(8.145)

(8.146)

(8.147)

(8.148)

= (p 2

(DWL - 1

L(<b(y)) = L(p) .

= 4Db(A) ;

(LqW' V) :! -YLq(P j~jy||Vjy < -Lqjjyjjjy,



then satisfies (8.111).
The potential difficulty with (8.149) is that the off-line stage may be expensive and also com-

plicated, and relatedly, that there is little a priori guidance (for the q#k or T(<D(p))). Note in

this noncoercive case the relevant operator yields QC = O(Q ) coefficients, thus aggravating the

problems already identified in Chapter 4 - negative lower bounds, fine lookup tables, large Q.
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Appendix A

Elementary Affine Geometric
Transformations

We consider the case ), O Rd, d = 2; the extension to d = 1 and d = 3 is straightforward.

Stretch

We consider the mapping from O(p) - Q shown in Figure A-1(a) and A-1(f). The forward and

inverse affine mappings are then given by (here, a is the angle of Q(p), and the angle of Q is 0.)

=[
=[G-1(pI)

ti

tl

t 2

t2 (u)

2 (A)

t2

I
I

g(A) = 0 ,

g(p) = 0 .

(A.1)

(A.2)

Horizontal Shear

We now consider the mapping from 0(p) -+ Q
and inverse affine mappings are then given by

~v(bL)

~- 
1Q~)

- [
= [

1

shown in Figure A-1(b) and A-1(f). The forward

-tana ,

1 tan a

g('") = 0,

g'(A) = 0.

(A.3)

(A.4)
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aa

(d)

Figure A-1: Elementary two-dimensional affine transformations - (a) stretch, (b) horizontal (xi-
direction) shear , (c) vertical (x 2 -direction) shear, (d) rotation, and (e) translation - between Q,
shown in (a)-(e), and Q, shown in (f).
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Vertical Shear

We consider the mapping from O(p) -+ Q shown in Figure A-1(c) and A-1(f). The forward and

inverse affine mappings are then given by

_G- 1(p)
= [

1
- tan a

1
tan a

1

1
1~
1~

g(p) =0,

g'(p) =0.

(A.5)

(A.6)

Rotation

We now consider the mapping from O(p) -+ Q
and inverse affine mappings are then given by

G cos a
- - - sin a

G-'(p)
-cos a
sin a

Translation

We now consider the mapping from 0(p) - Q
and inverse affine mappings are then given by

_G(p) = 0 ,

shown in Figure A-1(d) and A-1(f). The forward

sin a
cos a

- sin a
cos a

I
I

g(P) =0 ,

9(1) = _.

(A.7)

(A.8)

shown in Figure A-1(e) and A-1(f). The forward

g (A) = I

= 0 9'(0)=

-Cl

~C2

C2

C2

I
I

(A.9)

(A.10)
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