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Abstract
This thesis focuses on mass transfer behavior, i.e., tailing, in solute transport, and on

hydraulic conductivity heterogeneity. Macrodispersive theory, generally used to incorporate
heterogeneity into solute transport, does not account for this tailing and makes assumptions about
the structural characteristics of the heterogeneity, specifically that the field is multivariate
gaussian.

We move away from the multigaussian assumption to focus on the concept of connected
pathways of high or low conductivity. We first motivate the importance of connected extreme
conductivity values through the numerical creation of two-dimensional conductivity fields with
nearly identical univariate conductivity distributions and covariances, but with varying
connectedness of extreme values. We simulated flow and transport through these fields, using a
particle tracking approach that incorporates advection and diffusion. We demonstrate that
connectedness impacts flow by influencing the effective conductivity of the field, and connected
high conductivity fields with relatively high variance displayed mass transfer behavior, driven by
both advective and diffusive processes.

We then conducted laboratory experiments to study three flow situations demonstrated by
the first part of the work - classic dispersion, diffusion-driven mass transfer, and advection-
driven mass transfer. By simultaneously measuring outflow concentration and the spatial
distribution of solute in the tank, we demonstrate different breakthrough characteristics driven by
different small-scale processes. Outflow concentrations match excellently with established
models in the case of diffusive mass transfer and dispersion, and relatively well with a model we
developed for the advective mass transfer scenario. We generalized the experimental results by
creating connected binary conductivity fields, delineating the conditions of connectedness and
conductivity contrast that drive the various transport.

Finally, we examine the implications of our earlier work, particularly the interplay
between advection and diffusion in mass transfer. The presence of both processes creates late-
time concentrations that are complex, but partially dependant on hydraulic gradients. We apply
this to a hypothetical scenario of a pump-and-treat remediation - the existence of advective mass
transfer creates situations in which solute mobilization can be sped up by pumping rate choices,
and the complex interaction between mass transfer processes leads to more complex pumping
rate decisions.
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Figure 3-4: Coefficient of variation in velocity for the three different spatial
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is the theoretical prediction of the coefficients of variation. The left figure shows 62
the variation in the direction of flow (x-direction) and the right-hand figure shows
the variation perpendicular to the direction of flow (y-direction).

Figure 3-5: Comparison of breakthrough curve fits using the advective-
dispersive model and the single-rate mass transfer model. The breakthrough
curve was simulated in the connected conductivity field with a variance of 9 and 63
no diffusion. The breakthrough curves are shown in the form of cumulative mass
fraction breakthrough. The mass transfer model provides a better fit, especially in
the tail.

Figure 3-6: A simulated breakthrough curve, the best fit using the complete
model equation (equation 9), and two fits made without considering a
noncontributing immobile domain - one fits the peak of the breakthrough curve,
one matches the tail. Neither do both, whereas the complete model better fits the
curve at all times.

Figure 3-7: Breakthrough curves for the three different patterns of hydraulic
conductivity with variance of 9 and no diffusion present. Demonstrates different 65
mean arrival times.
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Figure 3-8: Cumulative breakthrough curves for the three different patterns of
hydraulic conductivity after normalizing time by mean fluid travel time.
Breakthrough curves are plotted for combinations of differing normalized 66
diffusion coefficient (columns) and § (rows) for each of the three patterns of
hydraulic conductivity.

Figure 3-9: Estimated transport parameter values for each of the three different
patterns of hydraulic conductivity. Each plot shows contours of an estimated

2parameter as a function of the C (y-axis) and the normalized diffusion 67
coefficient d'(x-axis).

Figure 3-10: Estimated rate coefficients (cc) as a function of the diffusion
coefficient for the base conditions compared with estimated rate coefficients
where the velocity (hydraulic gradient) is doubled. For zero diffusion the 68
estimated rate coefficient doubled with a doubling of the velocity indicating
advective mass transfer.

2 =Figure 3-11: Normalized breakthrough curves for the connected field with GY=9
and a normalized diffusion coefficient (d') equal to 1, with initial particle 69
positions evenly spaced and proportional to velocity.

Chapter 4

Table 4-1: Comparison of the bead sizes and light filters used in the three tanks.
The large bead size indicates the mean bead diameter of the beads outside of the
emplacements, the small bead size indicates the mean diameter inside. The 91
approximate conductivity ratio between these two regions is calculated, with edge
effects incorporated. The filter column indicates the percentage of light that was
allowed to enter the large bead area outside of the emplacements (100% was
allowed to enter inside the emplacements).

Figure 4-1: View of experimental tank at various stages of construction. IA
shows a side view of the tank prior to the addition of the screw plates. lB shows
a top view of the tank after it has been secured with pressure bars and the screw 92
plate. The flow area for the experiment is the open space between the two side
rails, as noted on the figure. IC shows a front view of the tank with the manifolds
added, i.e., the completed tank.

Figure 4-2: A detailed side view of the two manifolds, both specially designed
for this experiment. The top manifold is designed to minimize mixing volume of
the outflow and to prevent stagnation zones or heterogeneities along the outflow 93
boundary. The bottom manifold has a reservoir that can be flushed without
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boundary condition.

12



Figure 4-3: The completed experimental setup from two different perspectives.
Shown at the top is the view, as seen by the camera, of the system, with the
lightbox behind the tank. The valve system is used to flush the reservoir in the 94
inflow manifold clean of dye prior to the experiment (see step #6 in the
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outflow sent to the photometer. The bottom figure shows a side view of the path
that light follows from the light box to the camera.

Figure 4-4: Experimental methodology checks. 4A shows mean estimated
concentrations using the Beer-Lambert assumption versus the known actual
concentration for several small areas in one of the tanks. Although linearity is
maintained, the slope differs slightly from Beer-Lambert assumption. A best fit to
our data is shown. 4B shows the coefficient of variation of the concentration 95
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measurement. 4C shows the percent error in total dye mass remaining calculated
by tank image as compared to the actual dye mass (using known flow rates and
volumes), for the three tanks. Errors tend to increase with time, in part due to
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Figure 4-5: Series of color images representing solute concentration as a function
of time for each of the three tanks, all run with the same flowrate. Concentration
is represented as fraction of initial, as noted on colorbar to the right. Close up of a 96
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Table 4-2: Parameter estimates for the six breakthrough curves from the
experiment. For all six, a mobile domain velocity and dispersivity were
calculated. For the advective-diffusive and diffusive mass transfer experiments, a
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own model, estimating instead the (slow) velocity inside the emplacement, and
the longitudinal dispersivity of this slow advection. Experiments were done by
flow rate rather than hydraulic gradient, but the gradient for all experiments was
on the order of 0.1.

Figure 4-6: Advective-dispersive experiment breakthrough curve data and best
fits. Shape of the curves (and parameter estimates) indicates little mass transfer
(tailing) is occurring. Sporadic data and noisy data was caused by air in outflow, 98
necessitating use of hand samples instead of continuous flow cell reading in
photometer.
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Figure 4-7: Diffusive mass transfer experiment breakthrough curve data and best
fits using cylindrical diffusion model. The model fits both curves with great 99
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Figure 4-8: Advective mass transfer breakthrough curves. A and B show the
advective mass transfer breakthrough curve as compared to the diffusive mass
transfer experiment with identical flow rate. For the case where the time scale of
advection through the emplacement is significantly lower than diffusion 100
(q=1.32m1/min), the two curves show significant qualitative differences (8A). As
the time scale of advection increases (8B), the breakthrough curve tends to look
more like the diffusive mass transfer case (q=0.66ml/min). 8C shows a
comparison of the breakthrough curve for the 1.32ml/min experiment with a fit
using our model compared with a best fit using the cylindrical diffusion model.

Chapter 5

Figure 5-1: Illustration of binary conductivity field. All black locations have one
value, all white locations have one (different) value. Black areas are the most 116
connected, forming thin channels that span the conductivity field. White areas
tend to form isolated blobs.

Figure 5-2: Sample breakthrough curves shown in form of mass fraction
remaining, plotted with best estimates using single-rate mass transfer model. The 117
model provides good fits both in a case with mass transfer (d'=0.01) and a case
without mass transfer (d'=3).

Figure 5-3: Effective conductivity of field expressed in form of p-value. Positive
p-value indicates bias in effective conductivity toward the arithmetic mean, 118
negative indicates bias toward the harmonic mean. Non-layered fields are usually
assumed to have an effective conductivity equal to the geometric mean (p-value
of 0).

Figure 5-4: Estimated normalized dispersivities for fields with negative Yc'
Dispersivity tends to increase with increasing contrast between channel and blob 119
conductivity, and also increases as normalized diffusion coefficient increases,
counter to conventional methods of incorporating diffusion.

Figure 5-5: Normalized estimated parameters for fields with positive Ye.
Dispersivity shows complex behavior similar to negative Y, case. Rate
coefficients (c') increase as diffusion increases and conductivity contrast 120
decreases. Large estimates of P indicate significant regions of mass transfer,
supported by estimates of v' that approach 2. Low P estimates and v' estimates of
1 for high Yon, high d' cases suggest equilibrium mass transfer.
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Figure 5-6: Dispersivity as a function of normalized diffusion coefficient for
binary connected conductivity field with Ycon of 6. Dispersivity shows a complex
behavior of rising, falling, and then rising again. The dashed line with question 121
mark is speculative, and the curve is a smoothed fit to the data (shown as black
dots).

Figure 5-7: Comparison of u' estimates in original case divided by a' estimates in
case where velocity has been reduced by a factor of 2 but diffusion coefficient
stays the same. A ratio close to 2 indicates that advection is the dominant mass 122
transfer process, a ratio close to one indicates that diffusion is dominant. The x-
axis is shown as the mean d' value of the two runs, since keeping diffusion
coefficient constant but varying velocity changes d'.

Figure 5-8: Figure mapping out regimes of transport and conditions under which
they occur. Location of visualization experiments relative to our scales of Y0,1
and d' are marked as well. The transition between advective and diffusive mass 123
transfer is dependent on aquifer and solute parameters, and thus is not a concrete
line - the one shown is appropriate for our particular case (isotropic field, k
approximately 2.5 percent of domain length, 50/50 division between two
domains, etc.).

Chapter 6

Figure 6-1: Memory function, g(t), as a function of hydraulic gradient, shown for
the binary fields with Yc.. = 6 and Y, = 8. The memory function is equal to the
normalized late-time breakthrough concentration when the domain has
equilibrium initial conditions. Both the magnitude and "slope" of g(t) are clearly 140
gradient-dependent, contrary to the usual assumption of g(t) as a fixed aquifer

parameter.

Figure 6-2: Normalized memory function, g*(t), as a function of hydraulic
gradient, for same gradients and fields as figure 1. The function g*(t) is equal to
g(t) divided by P, allowing for a comparison between mass transfer scenarios
where the total size of the immobile domain, as indicated by b, differs. Normally, 141

g*(t) is not considered to have significant dependence on advective properties of
the domain.

Figure 6-3: Memory function (g(t)) for a simulation with both advective and
diffusive mass transfer, compared with simulations with only one of the two
processes (advective case calculated by simulation with no diffusion, diffusive
case by simulation of in field with Y 0,, of 15, insuring almost no slow advection).
The slope of the combined case is substantially sharper than either process
individually, suggesting that the two processes tend to be reinforcing.
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Figure 6-4: Slope of g(t) as a function of normalized hydraulic gradient for the
binary fields with Yc equal to 6 and 8. One line represents the (absolute value)
slope of g(t) for the case with advective and diffusive mass transfer, one
represents the case where only diffusive mass transfer occurs, and one indicates 143
the sum of the slopes of the advection-only and diffusion-only cases. The results
suggest that the two processes tend to be reinforcing, in some situations
reinforcing to a degree that they drive overall mass transfer that is faster than sum
of its components.

Figure 6-5: Memory function (g(t)) for our earlier experiments with slow
advection and diffusion through cylinders. Also plotted are g(t) for diffusion-only
mass transfer in the cylinder and g(t) for advection-only mass transfer (no
longitudinal dispersion/diffusion). Unlike the case of the binary fields, g(t) does 144
not appear to be easily predicted by a simple linear combination of the two
processes. This suggests that our conclusions from the binary field simulations
are not necessarily applicable to more complex mass transfer scenarios. It does,
however, display a behavior found in our binary fields - g(t) is partially
dependent on the hydraulic gradient.

Figure 6-6: Prediction of late time concentration using memory function method
compared to actual concentration. Prediction utilized g(t) (see figure 1) to predict
the late-time concentration when a dirac-impulse is introduced into the system,
using the time derivative of g(t). Actual late-time concentration is from particle- 145
tracking simulations done with a flux-proportional line of particles introduced into
the field. The memory function appears to, overall, provide a very good
prediction of the breakthrough curve of the dirac-input at late time.

Figure 6-7: Costs incurred from a hypothetical pump-and-treat system. The
aquifer (binary field with Ycon = 8) is initially equilibrium-saturated with
contaminant, and the remediation requirement is that 95% of the total mass must
be removed. Maintenance costs decrease as pumping rate increases because total 146
time to remediate decreases. Treatment costs increase with the pumping rate,
because more of the solute is in the tail of the plume. The optimal pumping rate
falls between the maximum and minimum pumping rates, whereas standard
theory would dictate pumping as slowly as feasible.

Figure 6-8: Total remediation costs for two binary fields (Ye0. = 6 and 8) as a
function of pumping rate. Aquifers begin equilibrium-saturated, and goal is to
clean up 95% of total contaminant mass. Optimal rates are indicated by the
dashed line. The x-axis indicates pumping rate, while the y-axis shows the ratio 147
of the maintenance cost coefficient (Am) to the treatment cost coefficient (A,)
(units of money divided by time). The existence of mass transfer that can be
driven by changes in head gradient creates a more complex decision than usually
considered.

16



Figure 6-9: Total remediation costs for two binary fields (Y,,, = 6 and 8) as a
function of pumping rate. Aquifers begin with an instantaneous injection of
solute, and goal is to clean up 95% of total contaminant mass. Optimal rates are
indicated by the dashed line. The x-axis indicates pumping rate, while the y-axis 148
shows the ratio of the maintenance cost coefficient (Am) to the treatment cost
coefficient (Ar). Conventional theory suggests either pumping very quickly or
very slowly, but we see some pumping choices that fall between the extremes.

Appendix A

Figure Al: Spatial correlation after absolute value transformation as a function
of the original spatial correlation. The dashed line indicates the non-transformed 156
case (p=p') for comparison.
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Chapter 1

Introduction

1.1 The Importance of Groundwater and Remediation

Groundwater is a resource of vital importance, as the vast majority of the planet's fresh

water (in liquid form) is stored in the subsurface. Groundwater also interacts significantly with

surface water bodies, and thus the health of groundwater has substantial implications for the

health of rivers and lakes. With water demand increasing throughout the world, the importance

of groundwater quality will continue to grow commensurately. Conflicts over groundwater

allocation already occur in many arid parts of the world. In most places these conflicts are

confined to the legal system, rather than violent struggle, but groundwater quality and allocation

rights do play a role in violent conflicts, as well (e.g., the Gaza Strip).

Groundwater quality can be adversely affected by numerous sources. In some cases,

contamination comes from accidental or negligent actions in a single location. In other cases, the

contamination is caused by low-level effects from numerous sources (for example, pollution

from lawn or crop fertilizer). Pollutants can take several different forms, ranging from NAPL's

(non-aqueous phase liquids), which are not generally water-soluble, to contaminants that react

with soils (e.g., arsenic), to conservative contaminants - chemicals that dissolve readily in water

and are not generally reactive. Society must develop effective means to predict the fate and

transport of solutes (contaminants that are dissolved into the groundwater) in order to predict the

potential threat and pathways of dangerous chemicals in the subsurface.

Unfortunately, fate and transport in groundwater can be difficult to study, because, to

state the obvious, it occurs underground. In the field it is often difficult to observe flow and

transport at anything but large scales with sparse data, despite the fact that the subsurface in
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highly heterogeneous at a wide range of distance scales. This necessitates what are generally

referred to as 'upscaled' models - because we are unable to explicitly describe undetectable

small-scale variations in the subsurface, we try to incorporate the small-scale heterogeneity into a

framework that successfully describes overall behavior at the large scale, which is generally our

practical concern.

Remediation of groundwater is heavily reliant on upscaled models, as data about the

details of the subsurface are usually limited. Estimated costs for remediating contaminated

groundwater in the United States alone vary from tens of billions of dollars to more than one

trillion dollars. Much of the variability in these cost projections stem from our uncertainty about

the hydraulic characteristics of contaminated aquifers. In some cases, these characteristics can

lead to a significant problem that has been observed at many remediation sites - the presence of

rate-limited, or nonequilibrium, mass transfer. This creates what is commonly referred to as

'plume tailing', a long period of moderate to low concentrations of contaminant behind the main

body of the contaminant plume. These tails can dramatically increase remediation time and

costs. Further, the most commonly used upscaled solute transport model, macrodispersion, does

not generally predict the occurrence of this behavior. In some cases, this nonequilibrium

behavior is driven by particular characteristics of the contaminant, such as chemical interaction

(e.g., sorption) between the contaminant and the soil or slow dissolution of nonaqueous phase

liquids. However, many field sites have observed this behavior with conservative solutes,

including the MADE site in Mississippi [Harvey and Gorelick, 20001 and the Livermore site in

California [LaBolle and Fogg, 2001]. Clearly something must be occurring relatively small

scales in the aquifer that the assumptions of macrodispersion do not account for. Sometimes this

behavior is accounted for by grain-scale processes, such as intragranular diffusion, but this

cannot explain all systems. In this thesis, we attempt to determine what kinds of heterogeneous

structures might cause mass transfer behavior, and what some of the implications of these

heterogeneities are. We restrict our study to conservative solutes, that is to say, contaminants

that dissolve completely into the groundwater and do not react with any chemical components of

the soil or groundwater, nor degrade or chemically change over time. This assumption may not

be true for many (indeed most) contaminants, but the results from such studies allow for the

greatest general applicability.
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1.2 Thesis Structure - Aquifer Heterogeneity, Solute Transport

Models and Our Work

Many researchers have considered how spatial heterogeneity in hydraulic conductivity

affects fluid flow and solute transport through porous media. This heterogeneity is often

characterized by a distribution, or histogram, of conductivity values, combined with a

covariance, or variogram, function of separation distance. The histogram can be summarized by

its mean and variance, and the spatial covariance can be described by its integral scale. When

these statistics differ between two conductivity fields, the flow and transport behaviors through

the two fields may be very different, while fields with similar first and second-order statistics are

assumed to have similar flow and transport behaviors. In chapter 2, we detail background on the

subject of aquifer structure and solute transport modeling. We discuss the multigaussian model

of aquifer conductivity structure and the stochastic theory that derives from it. We also discuss

the mass transfer model of solute transport, as well as the memory function method of describing

tailing and late-time concentration. We also briefly discuss previous experiments in flow

visualization, and how our experiments detailed in this thesis differ from them.

In chapter 3 of this work, we demonstrate that substantially different flow and transport

behaviors can occur in isotropic log-conductivity fields. These fields share the same Gaussian

histogram and the same covariance functions, and possess identical integral scales that are a

small fraction of the total domain length. Thus, conductivity fields with the same conventional

spatial statistics may produce very different groundwater fluxes, solute travel times, and solute

spreading, because of spatial patterns that are not characterized by these conventional statistics.

In other words, the full univariate distribution of conductivity values and the spatial covariance

function for these values may not provide sufficient information to estimate effective flow and

transport parameters. This can be particularly problematic for field characterization, where data

is often quite sparse and first and second-order spatial statistics are the only characteristics easily

ascertained. The reason behind this marked difference in behavior is due to the connectedness of

extreme conductivity values, as we describe in detail in subsequent chapters of this work. Fields

in which high values of conductivity are most connected possess effective conductivities that are

higher than the multigaussian field, while fields with low conductivities most connected tend to

have lower effective conductivities than multigaussian fields.
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The primary focus of the work in this thesis is on those characteristics of conductivity

fields that cause nonequilibrium mass transfer behavior, i.e., tailing. As noted in the previous

section, mass transfer is often not considered for conservative solutes in smooth conductivity

fields, but we demonstrate that it is possible simply by virtue of the structure of a field. We

show that mass transfer can occur in conductivity fields that have the same histogram and

covariance as a traditional multigaussian field, even though the multigaussian field does not

demonstrate significant mass transfer behavior. The essential component for mass transfer is that

the high values of conductivity are well-connected, and that the field possesses a relatively high

conductivity variance. We also show that mass transfer behavior can be caused by both diffusion

and advection in low velocity regions, and these processes produce solute tailing that appears

qualitatively similar. Distinguishing between the two processes is important because tailing

caused by slow advection will be affected by changes in hydraulic gradients, such as increased

gradients induced by higher pumping rates from remediation wells.

Having used smooth, theoretical fields to motivate the importance of connectedness in

causing tailing, we transition in chapter 4 to studying an actual, albeit artificial, porous medium

with binary conductivity distribution in order to examine quantitative and qualitative behaviors

predicted for connected fields. The experimental setup enables us to observe the processes

occurring in a physical system and examine its output, i.e., we can simultaneously measure both

the small-scale and upscaled transport behavior. This creates a real "aquifer" that confirms

predictions from strictly numerical work. Our ability to control the conductivity structure and

visualize the solute plume in fine detail marks a departure from field work, where even highly

detailed field sites require a great deal of extrapolation from limited data points. Our ability to

control the conditions of the experiment also allowed us to perform experiments under a

relatively large range of scenarios, such as modifying head gradients and the conductivity

contrasts. The experimental visualization successfully demonstrated the existence of three

regimes of solute transport - traditional advection and dispersion, diffusion-dominated mass

transfer, and advection-dominated mass transfer. The experiments further demonstrated that

these different small-scale behaviors led to substantially different upscaled behaviors, which

were able to observe in the breakthrough curves produced by the experiments. The design of the

experiments also allowed us to check upscaled results for some experiments against known

analytical solutions, and we found good agreement between analytical models and our results in
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such cases. In the case of the advective mass transfer scenario, we developed our own simple

model to fit the breakthrough.

In Chapter 5, we extend the results of the specific system used in chapter 4 to more

generalized conclusions. This is done with numerical simulations performed on binary

conductivity fields in which one of the two conductivity values was more connected that the

other. The results of these simulations agreed well with the results of the experiments.

Numerical simulations allowed us to create more complex structures and control solute and

aquifer characteristics more easily, and such simulations are much less time intensive than

laboratory experiments. From these simulations (with support from the experimental

visualizations), we were able to draw conclusions regarding the approximate conductivity

contrasts and process timescale ratios required to drive the various behaviors associated with

connected fields.

We found from these simulations that solute transport in these binary fields can

fundamentally be divided into fields with mass transfer (requiring high conductivity variance and

that the larger conductivity be the most connected), and fields without mass transfer (all other

combinations of variance and connectedness). Within the fields that display mass transfer

behavior, the type of mass transfer depends on the ratios of various process time scales. If the

average time to advect through the mobile domain is larger than both the characteristic time to

advect through low velocity regions and the characteristic time to diffuse through low velocity

regions, equilibrium mass transfer dominates. If the characteristic time to advect and diffuse is

smaller than mobile domain advection time, then either advective or diffusive mass transfer will

occur, with whichever process is faster dominating the overall mass transfer.

This regime delineation that we develop has significant applicability for solute transport

in connected conductivity fields with approximately bimodal conductivity distributions. We

demonstrate this by showing agreement between our results and the detailed studies and

simulations performed at the Livermore site [LaBolle and Fogg, 2001].

Finally, in Chapter 6, we examine our work in the context of the memory function model

of mass transfer, as well as the practical meaning of our work in the previous three chapters. We

demonstrate that the memory function can be partially dependent on the hydraulic gradient of a

system. This goes against the general assumption that the memory function is an inherent

property of an aquifer, unaffected by outside forcing. Despite this, we find that the memory
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function model is a relatively good predictor of late-time concentrations for alternate initial

conditions, despite the fact that it does not account for advective mass transfer.

We also examine the implication of mass transfer that is controlled by both advection and

diffusion and draw conclusions about the effect on late-time concentrations when both processes

occur, as opposed to one process by itself. We find that overall rates of mass transfer are

substantially higher when both processes are operating than either process by itself, and in some

cases, they actually act to accelerate each other. However, we are confined to only general

conclusions due to the fact that the specific breakthrough characteristics are highly dependent on

the geometry of low velocity regions.

Lastly, we examine some practical applications to the presence of both advective and

diffusive mass transfer. Because we can affect advective rates of mass transfer through

pumping, the presence of advective mass transfer has important implications for remediation

strategies, particularly in the case of pump-and-treat decisions. We attempt to minimize

remediation costs that are a function of constant maintenance costs plus costs associated with

treating solute-laden water. We find that optimal decisions can run counter to conventional

decisions - in the case of an aquifer beginning saturated with solute, we sometimes find optimal

pumping rates higher than the lowest possible rate. This is driven by the fact that we can control

an aspect of the tailing to some degree, via our pumping choice, which introduces a complexity

not usually accounted for.

In chapter 7, we close with general conclusions from the thesis. We also suggest several

potential avenues of future study. Lastly, we include two appendices. One details our derivation

of the change in covariance from the absolute value transform of a multigaussian field (discussed

in Chapter 3), the other describes the simple used to fit the case of slow advection through a

cylinder (Chapter 4).

1.3 Notation

We try throughout this work to be relatively consistent with notation, but it is impossible

to avoid some changes as we change models, correlation lengths, or processes modeled. We

have generally tried to at least keep parameters consistent in terms of what process they describe

- for example, the Peclet number always relates macrodispersivity, not diffusion, to some length
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scale. The normalized diffusion coefficient is always represented by d', though the length of

normalization changes from field to field. Hopefully, the variable choices are sensible and self-

evident, and we have tried to make sure each one is explicitly described within the text.

1.4 A Nota Bene About This Work

It will be abundantly clear, when reading through this thesis, that the issues we discuss in

this work cover a huge amount of intellectual territory. This is mostly a product of the topics

that our work touches on, rather than epic pretensions or aspirations of the work itself. Because

of this, we try to keep the work focused with a combination of simplicity and pragmatism.

Stochastic methods could be applied to our fields. Using multi-rate mass transfer models would

give more complete descriptions of breakthrough tails. It would be helpful to apply this work to

reactive transport. There are numerous avenues of research that are that are left open for study.

But these things distract from the basic questions we want to answer - does the

advective-dispersive model best explain solute breakthrough in all conductivity fields, or should

we use the mass transfer model? If both models have some degree of applicability, under what

conditions would we want to choose one or the other? What processes fundamentally drive

tailing in a conservative solute, and can we actually demonstrate their existence? What are the

basic implications of having multiple processes drive mass transfer?

These questions tend not to have answers than can be summarized with a single number

or ratio. We have not developed some master equation that accurately characterizes all solute

transport scenarios. We cannot use the results of this work to characterize the breakthrough

characteristics of a particular aquifer with an R-squared of 0.95. Our results are simply too

general for that.

But the generality of the results is what makes them useful, in concert with effective site

characterization. We can use the results to predict, for example, whether a certain aquifer might

display significant tailing or not (as we do in the case of the Livermore site). We can guess

whether advection or diffusion would dominate the tailing. And the results could be useable in

reverse, i.e., we could determine aquifer characteristics from tracer tests, and whether they

display tailing.
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Ultimately, the specifics of any geologic site are unique to that location, and our work

simply cannot incorporate that. Hopefully, though, when future hydrogeologists try to predict

solute transport behavior in a specific aquifer, our work can provide some helpful hints as to

what upscaled model will best describe the behavior.
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Chapter 2

Background

Because the work detailed in this thesis is built atop a rather lengthy foundation of

previous work, we have chosen to separate the background into it's own chapter. We further

subdivide the background, covering conductivity structure and variability, solute transport

modeling (macrodispersion and mass transfer), and experimental visualization of flow and

transport in porous media.

2.1 Hydraulic Conductivity Structure and Variability

2.1.1 Multigaussian Fields and Connectedness

The multigaussian distribution is the standard statistical model used to describe spatially

heterogeneous hydraulic conductivity. Our use of the term multigaussian is shorthand for a

multivariate Gaussian distribution, which is detailed at length in numerous sources (e.g.,

Anderson, 1958). Conductivity values are lognormally distributed, described entirely by a mean

and variance, and the structure of the field is described entirely by its covariance function. The

multigaussian model is relatively tractable, and is the basis of analytical solutions for effective

conductivity and macrodispersion fluxes [e.g., Gelhar, 1993; Dagan, 1989; Cushman, 1990].

While such solutions do not explicitly require multigaussian conductivity structure, the assume a

field structure that is explained entirely by its mean and covariance, requiring a multigaussian

structure if the correlation length is finite and significantly smaller than the size scale of the field.

One characteristic of multigaussian fields is that extreme values in the field are the least

connected [e.g. Journel and Deutch 1993], which is to say that extreme values tend to cluster in

isolated blobs, rather than form channels or structures that span the entire length of the field.
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These characteristics have been quantified by Journel [1983], Journel and Alabert [1989], and

Gomez-Hernandez and Wen [1998] using indicator variograms. Xiao [19851 showed that the

integral scale for the median indicator is maximal, and symmetrically decreases at higher or

lower values. This motivates our study of connectedness - we attempt to discern differences in

flow and transport properties when the extreme values of conductivity form field-spanning

structures instead of the median values.

2.1.2 Earlier Studies that Deviate from the Multigaussian Assumption

As mentioned in the introduction, the primary method of describing aquifer heterogeneity

is through the univariate distribution of conductivity values and the covariance of these values.

Although the multigaussian structural assumption is common, there are several scenarios that are

known to deviate from it:

(1) Conductivity fields with a bi-modal distribution of values. Solute transport through these

fields may display behavior best modeled by mass transfer, creating solute plumes with longer,

more dilute tails than plumes transported through unimodal conductivity fields. [Desbarat, 1990;

Dagan and Lessoff, 2001; LaBolle and Fogg, 2001; Guswa and Freyberg, 20001

(2) Conductivity fields that are described by covariance functions with long integral scales

relative to the domain length. Such fields exhibit large-scale structures, flow barriers and/or

channels, that may control flow and transport, driving behaviors that differ from flow and

transport in conductivity fields with short integral scales. [e.g., Di Federico et. al., 1999]

(3) Conductivity fields that are composed of aligned layers. These fields have effective

conductivity values and solute spreading behavior that differs from statistically isotropic fields.

[Matheron and de Marsily, 1980]

As we demonstrate in this thesis, all of these behaviors can actually occur in a continuous

conductivity field of gaussian univariate distribution and short correlation length, with tortuous

instead of layered pathways. Thus these models may not necessarily be the explanation of mass

transfer behavior in an aquifer - it may be connectedness that is driving the tailing.

2.1.3 Aquifers with Connected Pathways and Large Conductivity Variance

Conductivity fields with connected paths of extreme values may occur in a variety of

geological formations. Several papers address the occurrence of flowpaths at both the small and
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large scales, as well as methods for characterizing such heterogeneity [e.g., Anderson, 1989;

Koltermann and Gorelick, 1996; Western, et al., 2001]. Fogg [1986], found that large scale

structures in the Wilcox aquifer in Texas consisted of interconnected bodies of sands and clays,

with flow controlled by the "continuity and interconnectedness" of the sands. Labolle and Fogg

[2001] determined that high conductivity channels dominated the flow behavior at the Livermore

site. Connectedness also has a clear presence in fracture flow, where, for example, Silliman and

Wright [1988] concluded that connected higher conductivity channels existed in fractured granite

in Arizona. On smaller scales, Journel and Alabert [1989] found connected channels in Berea

Sandstone, as did Tidwell and Wilson [1999]. Connectedness may be an important feature in

many conductivity fields, and therefore an important, if not dominant, control on solute

transport.

In addition to connected conductivity structures, our results suggest that mass transfer

behavior also requires large variance in hydraulic conductivity, variances that are higher than

generally considered in macrodispersive stochastic theory. However, large variances in ln(K) are

often found in nature. An aquifer composed of equal volumes of silt regions with K=1076 m/s

and sand regions with K=10 3 m/s, would have a ln(K) variance of 12. The MADE site in

Mississippi, which has both small silt and sand regions, may have a centimeter-scale ln(K)

variance as large as 20 [Harvey and Gorelick, 2000], although variance at the meter-scale

(which averages out small-scale variability) is considerably smaller, -4 as measured by borehole

flowmeters [e.g., Feehley, et al., 2000]. The Wilcox aquifer in Texas [Fogg, 1986] has high

variance (ln(K) variance ~ 10), as does the Livermore site (ln(K) variance > 20), but at a large

scale [LaBolle and Fogg, 2001]. Well tests on the Culebra Dolemite, a key facies at the WIPP

site, showed a variation in hydraulic conductivity of six orders of magnitude [Meigs and

Beauheim, 2001]. Our results agree in general terms with results from these sites, suggesting

that our general conclusions about connectedness and high variance in conductivity fields are

applicable to these field sites, and probably others.

It is important to note that although many aquifers do show connectedness and high

variance, these characteristics are not present in all aquifers. For example, the Cape Cod and

Borden sites display relatively low variance in hydraulic conductivity, and there are certainly

aquifers in which lognormal distributions of conductivity seem accurate (e.g., Hoeksema and

Kitanidis, 1985). It is also important to keep in mind the question of scale, as the variance of
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conductivity in an aquifer is highly dependent on the scale at which it is studied. The work by

Tidwell and Wilson 119991 suggests that as the scale of measurement increases, the variability of

conductivity decreases. This also seems to be the case at the MADE site, where large-scale

ln(K) variance is approximately 4, but the centimeter-scale variance is closer to 20. We do not

claim that higher or lower variance fields are inherently more accurate, only that one must be

careful in assumptions about variance and distance scale. Fortunately, our work in this thesis

covers a range of variance scales and multiple formulations of conductivity structure, so the

results can describe many (though certainly not all) aquifers in the real world.

2.1.4 Previous Study of Connected Conductivity Fields

Both Wen and Gomez-Hernandez [19971 and Western, et al. [20011 compared transport

through two-dimensional conductivity fields that had similar spatial statistics but where some

fields contained large-scale connected features. Wen and Gomez-Hernandez 119971 modified an

isotropic multigaussian field to create anisotropic non-multigaussian fields with layered

structures of high or low conductivity. They showed that advective transport in these anisotropic

fields differed from advective transport in the isotropic multigaussian conductivity field, despite

identical histograms and non-directional covariance functions (which averaged out anisotropy in

the field with connected structures). Western, et al. [2001] constructed two continuous fields

with similar non-directional covariance functions; one with disordered statistically isotropic high

conductivity regions, and one crossed by two large flow channels that created quick solute

breakthrough. They characterized the difference between the two fields with connectivity

statistics, a function that charts the probability that a certain subset of conductivity values are all

connected to one another by values within that same subset (similar to the concept of percolation

thresholds). Both of these studies, which consider solute advection but not diffusion, best

describe transport through large-scale heterogeneity where the effects of small scale mixing can

be ignored.

To our knowledge, this is the first study to compare upscaled flow and transport behavior

in fields with the same Gaussian log-conductivity histogram and second order statistics including

the same directional covariance functions with no artificially imposed large structures. We

compare behavior among statistically isotropic fields, rather than between an isotropic field and
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an anisotropic field. This study also differs from previous studies in that it considers diffusion,

allowing the work to be applied to both small and large scales.

2.2 Modeling of Flow and Transport in a Multigaussian Field -

Macrodispersion

2.2.1 Effective Conductivity

The effective hydraulic conductivity of a multigaussian field appears to be well described

by Matheron's [1965] conjecture [e.g., Dagan, 1989; Gelhar,1993; Renard and de Marsily,

1997], which, for an isotropic two-dimensional log-conductivity field, reduces to the geometric

mean. This holds true even for high variance mulitgaussian fields, but does not hold true for

other isotropic fields such as blobs of one conductivity embedded in a matrix of a different

uniform conductivity. Upper and lower bounds can be set on the effective conductivity of any

heterogeneous collection of conductivity values. The upper bound of the effective conductivity is

the arithmetic mean, and the lower bound is the harmonic mean, which correspond to flow

through a perfectly layered system, parallel and perpendicular to the layering, respectively.

2.2.2 Velocity Variability and Macrodispersion Coefficients

Solute transport in porous media is often described with the advective-dispersive model:

aC -
a= -vvc +V(bvc)

Where C is the solute concentration, v is the fluid velocity vector, and D is the dispersion

coefficient tensor. A large body of literature relates the dispersion coefficient, or macro-

dispersion coefficient, to the variance and integral scale of the log-conductivity field, as

reviewed in Dagan [1989], Gelhar [1993] and Cushman [1990]. The macrodispersion

coefficient describes solute spreading due to variation in the velocity caused by spatial

heterogeneity of conductivity at a smaller scale than is explicitly modeled. The first-order

approximation of velocity variance in both the x- and y-directions (parallel and perpendicular to

flow, respectively), for a two-dimensional, isotropic multigaussian field from Gelhar and Axness

[1983] is:

32
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Y 2 -aK i (2b)
VY 8 Y' eff

where Y=ln(K) and Y is the variance of Y. Keff is the effective conductivity (geometric mean)

of K, and i is the hydraulic gradient. The late-time macrodispersion coefficient for relatively

small variance is derived from the velocity statistics to be:

D = AT o-,V (3)

where A is the macrodispersivity, V indicates mean velocity, and the integral scale, X, is

assumed to be finite. Many studies consider extensions and improvements of these equations.

Here, we found that the simple first-order results were sufficiently accurate to describe our

numerical results in multigaussian conductivity fields.

We also found it useful to compare some of our results to analytic results for

macrodispersion in stratified aquifers. For flow perfectly parallel to layered conductivity

variations, Gelhar, et al. [19791 found that if the hydraulic conductivity is described by a

restricted class of covariance functions that integrate to zero (i.e. hole effect covariance

functions), then the macrodispersion coefficient asymptotically approaches a value that increases

quadratically with the mean velocity and decreases with the diffusion coefficient:
-2

D= d+B-d (4)

where d is the apparent diffusion coefficient and B is a coefficient that depends on the statistics

of the conductivity layers. These results are analogous to classical Taylor-Aris dispersion in

laminar flow through straight tubes or fractures [Taylor, 1953; Aris, 1956]. Matheron and

deMarsily [1980] showed that if the hydraulic gradient is not exactly parallel to stratification, as

often happens under natural conditions, the macrodispersion coefficient approaches an asymptote

that also increases quadratically with the mean velocity and decreases with the diffusion

coefficient. In this case, the covariance function need not integrate to zero, so the result holds

true for commonly used covariance functions.

2.3 The Mass Transfer Model

Researchers have also employed rate-limited mobile-immobile domain mass transfer

models to describe solute transport through heterogeneous media. In addition to describing

intragranular diffusion and sorption, these models are often used to describe transfer of solute in
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and out of low conductivity regions [e.g., Barenblatt., 19601. Most studies consider physical

mass transfer to be driven by diffusion, but some consider slow advection in and out of low

permeability regions. Recently, Harvey and Gorelick [2000] have used simple mass transfer

models to explain non-reactive transport through the sedimentary aquifer at the MacroDisperison

Experiment (MADE) field site. Feehley, et al. [2000] and Julian, et al. [2001] have corroborated

these results. In that particular aquifer, the variability in hydraulic conductivity is large and the

macrodispersion model failed to describe the observed solute behavior as well as it has in more

homogeneous aquifers [e.g., Freyberg, 1986; Hess, et al., 1992]

2.3.1 First-Order Mass Transfer Model

The first-order mass-transfer equation may be coupled with the advective dispersive

equation as:

a- + P as- -v mobileVC + V(DEVC) (5a)
at as

a= a(C - S) (5b)
at

where S is the concentration of the solute in the immobile domain. This model assumes that

there is a mobile domain (i.e., a region through which solute advects at the groundwater velocity

in mobile region, vmobile), and an immobile domain, with solute transfer between the two domiains

rate-limited. The ratio of rate-limited or nonequilibrium immobile domain pore space to mobile

domain pore space is given by the capacity coefficient, P. The rate at which solute moves

between these two domains is controlled by a, which depends on the particular size and

geometry of these regions. More sophisticated diffusive mass transfer models account for a

range of mass-transfer rate coefficients [Haggerty and Gorelick, 1995], and have been shown to

better represent field data [McKenna et al., 2001]. However, multi-rate mass transfer entails

much more complicated estimation, and hence we chose to use a simpler model in this thesis.

Some researchers [e.g. Griffloen, et al., 1998] have also considered advective mass-

transfer. Guswa and Freyberg [2000] recently demonstrated that advection through low

permeability inclusions can lead to breakthrough curves with tailing very similar to that caused
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by diffusion in and out of low permeability regions. Thus, from a single experiment, it could be

very difficult to tell the two processes apart.

2.3.2 The "Memory Function" Model of Mass Transfer

The so-called memory function, which we will often refer to as g(t) from this point

forward, falls out of a formulation of mass transfer that does not prescribe a specific model to the

mass transfer. This model is discussed at length in Haggerty, et al. [2000].

The memory function method classifies mass transfer as a general source-sink term,

dependent on time and space, but not necessarily explicitly described. In one-dimensional form,

the transport equation is expressed as:

V,(ac C acF( (6)-- as -C =-+F(xt)()
RX C x a t

with RX the retardation factor (which we set to 1 for all of our work), aL the longitudinal

dispersivity, vx the mobile domain velocity in the x-direction, and F(x,t) the source-sink term.

The derivation assumes that solute has a characteristic advection time through the mobile

domain, tad, which leads to the assumptions at late time that:

aL ad (7a)
ax

aC
- << r(x1t), t >> tad (7b)

at

Note that this requires the time scale of mass transfer to be significantly larger than the time

scale of advection. These two equations are simply mathematical expressions of the fact that at

late time (i.e., in the tail of the plume), dispersion has a minimal effect, and the immobile domain

dominates the solute concentration instead of variations in the mobile domain. Factoring

equations 7a and 7b into equation 6 gives us:

ac
_va = F(xt) (8)

ax

Again, assuming late time (and we have dropped the retardation factor). The derivation also

assumes that F(x,t) is spatially uniform (that is, we assume one value of F(xt) for the entire

domain), allowing us to calculate concentration by integrating equation 8 over space:

1L F(t)dXC(x = Lt) = -f t (9)
0 v
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where L is the distance traveled. Solving the integral gives a late-time concentration:

C(x = L,t) = -tadF(t), t >> tad (10)

Dealing with the source-sink term requires an assumption of linearity in the mass transfer

process, and spatially-uniform initial conditions. We can then express F(t) as a convolution

(following the method of Carrera, et al. [1998]):

a C(t - T) a c oF(t)=fg(-) *g=C*-+cg0 -cog (11)fo() Tat a at g o

where g(t) is commonly referred to as the "memory function" (units of inverse time). A closed-

form expression is created by applying temporal boundary conditions for a specific solute

transport scenario (again, detailed at greater length in Haggerty, et al., 2000). If we assume that

the immobile domain begins with no solute in it, and a dirac pulse of solute is input to the

domain at time zero, we can approximate the concentration by:

C = m08(t) (12)

In addition to the zero time boundary, we can impose an infinite time boundary, which requires

that concentration go to zero. Applying these boundary conditions and exploiting the

convolution, gives a solution for the source-sink term of:

F(x,t) m 0 -- C g
at

and finally, plugging this expression into equation 10 gives us:

Og"C tad(Cog 0- Mg ,
at)

t >> tad

(13)

(14)

which is the late-time concentration of the solute plume. This particular form is highly

advantageous due to the fact that one of the two terms will drop out in most transport scenarios,

as Co is the concentration in the immobile domain at time zero, and mo is the solute mass injected

at time zero. For a case where the mobile and immobile domains begin at uniform concentration

(i.e., equilibrium), and we flush domain with clean water, the mo term drops out. For a case

where the domain is initially clean, and we inject a dirac pulse (for example, the flux-

proportional line used in some of our particle tracking simulations), the Co drops out.
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2.4 Evolution of Transport Coefficients over Travel Path

The macro-dispersion literature describes solute transport as pre-asymptotic before the

time-rate-of-growth of the second spatial moments of a plume stabilizes both from an Eulerian

[e.g., Gelhar, 19931 and Lagrangian [e.g., Dagan, et al., 19921 point of view. The travel distance

for the effective dispersion coefficient to approach asymptotic conditions has been calculated to

be on the order of 10 correlation lengths [Dagan, 1984]. This notion of pre-asymptotic behavior

does not apply directly to mass transfer models, as the spreading and tailing caused by mass-

transfer occur only over time scales on the order of a'. In contrast to the macro-dispersive

model, the mass transfer model predicts a non-constant time-rate-of-growth of the second spatial

moments of a plume over times scales on the order of cc, even though all of the coefficients are

constant. At time scales much larger than a', transport may be modeled with a simple

retardation factor, and the effects of rate-limited mass transfer are no longer evident. Thus the

tailing behavior that the mass transfer model produces is a pre-asymptotic effect. However, it is

this effect that we wish to understand and to model because of its importance for practical

problems such as contaminant cleanup.

2.5 Visualization of Flow in Porous Media

Visualization of flow in naturally occurring rocks and soils is an inherently difficult

process, as it generally involves imaging of tracers in an opaque sample. Modern technology

may eventually enable detailed three-dimensional images of solute transport (for example, use of

MRI techniques [e.g., Ogawa et al, 2001; Chen et al., 2002]). However, traditional methods of

imaging real rock have used high-energy visualization methods that can penetrate the medium,

depth-averaged into a two-dimensional image [e.g., Tidwell and Glass, 1994; Altman et al.,

1998; Tidwell et al, 2000].

An alternative is to construct the porous medium and forgo using real rock. Fabrication

can be done in a way to target specific characteristics of interest, which is a potential advantage.

However, the creation of an artificial porous medium can be troublesome, with the risk of the

medium not properly mimicking the desired physical characteristics. It is also difficult, if not
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impossible, to create a sample which can entirely mimic depositional patterns, diagenesis, or

consolidation.

Another issue of consideration is the size of the experiment, as a range of experimental

scales is feasible [e.g., Silliman, 1995; 2001; Tidwell et al, 1995; Lennox, 1997; Schroth, et al,

1997]. The scale will affect the time scale of relevant processes (e.g., diffusion), and can affect

resolution, though this is also a function of imaging technique

A common technique for porous medium visualization is the use of visible light

transmission [e.g., Tidwell and Glass, 1994, Darnault et al, 1998; Welker et al., 1999; Gramling

et al., 2002]. This method generally requires that the medium be transparent or very thin, and

needs a powerful light source to achieve good concentration resolution. One method for creating

a translucent porous medium with a feasible magnitude of light transmission is to use glass beads

[e.g., Oostrom et al., 1992; Corapcioglu and Fedirchuk, 1999]. High-quality packed beads

possess many useful characteristics, including high transparency, relatively predictable

conductivity and porosity, low reactivity, low intragranular porosity, and good durability. The

colored dye FD&C Blue #1 (a.k.a. Brilliant Blue FCF) possesses several favorable

characteristics for simulating and visualizing a conservative solute, including strong linearity,

low reactivity, and a distinct primary absorbance peak [Norton and Glass, 1993; Flury and

Fluhler, 1995; Darnault et al, 1998]. The one concern with the dye is that it can react with

organic components in natural soils [e.g., Allaire-Leung et al., 1999], but this is not an issue for

our experiment.

Conductivity contrasts of the size we are interested in have rarely been studied in the

laboratory, particularly for visualization purposes. This is especially true of artificially

constructed porous media, which are difficult to create. Artificially constructed laboratory

visualization studies have generally possessed a conductivity contrast of no more than a factor of

20 between the highest and lowest conductivity values [Silliman, 1995; 2001; Schroth et al,

1997; Berkowitz et al, 2000; Glass, et al, 2000]. The one exception in which conductivity

contrast is large is the case of fracture flow [e.g., Tidwell, et al., 1995]. Tailing has been

observed in some of these experiments, but the behavior is generally due to other factors such as

NAPL dissolution [Schroth et al, 1997] or preasymptotic length scales [Berkowitz et al, 2000],

while we are interested in tailing for conservative solutes at relatively large ( lOX) distance

scales.
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Chapter 3

The Importance of Connected Conductivity Structures

3.1 Introduction

As previously mentioned, the standard approach to modeling transport of conservative

solutes is with macrodispersion and associated stochastic methodologies, and implicit in these is

an assumption of multigaussian conductivity structure. In this chapter, we motivate the

importance of connected conductivity. We do this by comparing flow and transport in a standard

multigaussian field, in which median conductivities are the most connected, to flow and transport

in fields with high conductivities most connected and fields with low conductivity values most

connected. Despite the fields having different characteristics of connectedness, they are

specifically designed to have nearly identical univariate conductivity distributions and

covariance structures.

It should be noted that although connected features certainly appear in natural geologic

formations, geology is not always as smooth as our fields. Despite that, we focus on fields with

continuous distributions in order to demonstrate the importance of connected extreme values of

conductivity. By keeping the fields smooth and continuous, we ensure that the only significant

structural difference between the fields is their connected structures, and thus that any flow and

transport differences are driven by that connectedness. We attempt to address geologies

possessing less continuous distributions of conductivities in subsequent chapters.

We show that connectedness does indeed influence both flow and transport by means of

particle tracking simulations modeling advection and diffusion, and demonstrate that fields with

connected high conductivities display effective conductivities that are higher than those of the

multigaussian field. These fields also display mass transfer at higher variances. The
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multigaussian fields and fields with connected low conductivity values display little or no mass

transfer. We also find mass transfer driven by both slow advection in low conductivity areas and

diffusion into and out of these low conductivity areas.

All of this points to the conclusion that connectedness actually does have a huge impact

on flow and transport. Not only can it drive changes in basic parameters, such as mean fluid

velocity in the field, it can actually affect what upscaled model is required to describe

conservative solute transport in that field.

3.2 Methods

3.2.1 Generation of Connected Fields

We modeled transport behavior in three types of conductivity fields: (1) a standard

multigaussian field; (2) a field with connected patterns of high conductivity (which we

henceforth refer to as the "connected" field), and; (3) a field with disconnected high

conductivity, but connected patterns of low conductivity (the "disconnected" field). All three of

these fields share nearly identical univariate distributions and spatial covariance functions. Thus,

all three conductivity fields share the same basic statistics (the first and second statistical

moments) but their structures differ in how the high and low values are connected.

The isotropic multigaussian field (figure la) consisted of a regular grid of 800 by 500

point values representing grid blocks generated by the sequential Gaussian simulation algorithm

[Deutch and Journel, 1997] using a Gaussian covariance function. The correlation of the field

as a function of separation distance is shown in figure 2. The integral scale is approximately 1.1

percent of the length of the field, 9 blocks.

The connected (figure ic) and disconnected fields were generated through a

transformation of the multigaussian field in four steps:

(1) The absolute value of the multigaussian field (zero-mean, unit-variance) in figure la

was calculated. This transform shifts extreme values to become high values, and values

originally close to the mean become low values.

(2) The histogram of the values in the field was converted back to a univariate Gaussian

distribution by mapping the CDF value at each point to a standard normal CDF. This

transformation can be written explicitly as:
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Y= -Jerf 2erf -) (1)

where Y' are the transformed values of ln(K) and Y are the original values. This creates a field

in which the extreme low values are connected and the high values form isolated blobs - the

field shown in figure 1b.

(3) The block size of the field was increased so that the integral scale matched that of the

original multigaussian field. This provided the final disconnected field.

(4) The connected field (figure ic) was then generated from the disconnected field by

reflecting the values of the disconnected field around the mean, so connected patterns of low

conductivity become connected flow paths of high conductivity.

Appendix A gives an analytical solution for the covariance of the transformed field (after

step 1, but before step 2), and shows how the integral scale is reduced by the absolute value

transform, which necessitates step 3. The correlation functions for the multigaussian field and

the connected fields, along with the analytic results, are shown in figure 2. The results from

Appendix A are in close agreement with the calculated correlations from the realization,

indicating that the normal-scores transform (step 2) has only a minor effect on the covariance

function, despite the fact that the transform is non-linear. The integral scale of the multigaussian

field and the connected field differ by a factor of 1.86. Therefore, the separation distance

between points was increased by the factor of 1.86 (step 3, shown above), and the number of

rows and columns was reduced by a factor of 1.86 in order to maintain the same domain size.

An alternative approach is to use the covariance function of the connected field (after

steps 1 and 2) to generate a new multigaussian field. This approach provides the possibility of

producing identical, rather than nearly identical, covariance functions. However, for a single

random field the variability between the experimental correlation function and the function used

to generate the field is typically as large as the difference between our connected and

multigaussian fields.

Figure Ic shows the final connected field after all four of the steps above. The

disconnected field is simply the inverse, or reflected, version of the connected field, so the high

conductivity flow channels become low conductivity barriers. The connected and disconnected

fields now have histograms and experimental covariance functions (figure 2) that are nearly
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identical to those of the multigaussian field. These ln(K) fields are used in all of the following

simulations of flow and transport in this chapter.

3.2.2 Simulation of Flow and Transport

A head gradient was applied across the field, with constant head boundaries on the left

and right borders, and no-flow boundaries on the top and bottom, driving flow from left to right.

The steady-state, two-dimensional flow equation was solved with a finite difference

approximation. The velocity field was calculated along block edges by taking the difference in

the heads of the two adjoining blocks, multiplying by the mean conductivity, and dividing by a

uniform porosity.

Although we will work with dimensionless parameter groups, it is perhaps useful to think

of the following possible parameter values: a length of 8m (800 1cm square blocks), effective

conductivity of 1.8*10-6 m/s (16 cm/day ), gradient of 0.02, and porosity of 0.3. This leads to a

mean flow velocity for the multigaussian field (shown in figure la) of approximately 1.2* 10-

m/s (1.1 cm/day). Note that flow velocities in the other fields will be different, as discussed in

the results section.

Conservative solute transport (advection and diffusion) was simulated with particle

tracking by combining two commonly used methods - the constant time-step method [e.g.,

Goode, 1990] and the "boundary to boundary" method [Pollock, 19881. The boundary method is

more accurate and computationally efficient than the time step method when only advection is

simulated. However, it cannot be directly implemented when diffusion is considered.

We combined the strengths of both approaches (at some cost in computational efficiency)

by modeling diffusion as random displacements during discrete time steps and using the

boundary method to integrate the interpolated velocity over time steps. Instead of integrating the

velocity over the particle's full path across the block domain, we integrated through time for a

duration equal to the time step. This method has the advantages of tracking advective

trajectories, while approximating the simultaneity of advection and diffusion. Positions of

particles within a block after a certain amount of time has elapsed were solved analytically with

linear interpolation using equation 12 from Pollock [1988]. Diffusive movement (with a

spatially homogeneous diffusion coefficient) was then incorporated by adding a zero-mean

normally distributed random displacement in both the x and y direction, rx and ry, with
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(Y = E2dAt . To insure against excessively large advective displacements in blocks with large

velocities, we set At such that the maximum velocity in the entire field multiplied by At did not

exceed a distance of 0.5*Ax.

The numerical accuracy of the scheme was verified against two known solutions: the

solution for Taylor dispersion in a parabolic velocity field [Taylor, 1953], and the solution for

advection and diffusion through a high conductivity matrix with embedded circular impermeable

regions [Goltz and Roberts, 1986], which includes sharp interfaces between zero and finite

velocities. The simulations of the Taylor-Aris flow showed excellent agreement, with both the

first and second spatial moments of a particle plume agreeing with the theoretical moments to

within 0.1 percent. The comparison between the theoretical moments of the embedded cylinders

scenario with our simulated particle plume were also good, with about 1 percent error on the

second moment, which we believe is caused in part by the use of a finite number of particles, and

in part by the fact that the circular regions must be approximated with a circular assemblage of

squares.

In each of the numerical experiments described below, 1000 particles were initially

distributed on a vertical line located 19 correlation lengths from the left boundary. We

considered two distributions of particles along this vertical line. In the first method, the density

of particles is proportional to the velocity at a given point. In the second method, the particles

are evenly spaced. The first, flux-proportional, method has the advantage that it better simulates

how particles would be introduced into an aquifer from a well screen, or into an experimental

column or box along a constant head boundary. It is analogous to a dirac pulse in the flux

concentration [Kreft and Zuber,1978]. The second method, in which particles begin evenly

spaced, has the advantage that comparison to theoretical results from the advective-dispersive

model is easier, with an initial condition that is simply a dirac pulse in the resident concentration.

Vanderborght, et al. [1998] determined that for a two dimensional system with an exponential

variogram and ln(K) variance of approximately 2.5, the choice of initial conditions could affect

transport parameters to a distance of about three correlation lengths. Theoretical predictions with

the mass-transfer model can easily be made with either initial distribution of particles. The

velocity-proportional case corresponds to an initial condition with zero immobile solute, and the

evenly spaced case corresponds to an initial condition where the mobile and immobile

concentrations are at equilibrium.
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Breakthrough was recorded at another vertical line that was 67 correlation lengths from

the injection line (e.g., 600 blocks in the multigaussian field, 323 blocks in the connected and

disconnected fields). This allows comparison of consistent tracking distances in the three fields,

and is also a distance large enough to assure that the solute plume passed through many

correlation lengths of heterogeneity.

3.2.3 Estimation of Effective Parameters from Breakthrough Curves

The solute transport model used to fit the simulated breakthrough curves incorporates

both dispersion and mobile-immobile domain mass transfer. The immobile domain is divided

into one subdomain that contributes to rate-limited mass transfer over the time scale of

observations, and a second noncontributing subdomain in which mass transfer is too slow to

significantly affect solute concentrations over the time scale of observations. Hence our model is

a two-site model, where one portion of the immobile domain has a finite mass transfer rate

coefficient, and another portion has a rate coefficient of zero. The mobile domain velocity is

then:

vmobile V + Ptot) -- vi+ P(ofcont + Pnoneq (2)

where V is the average velocity in the aquifer as a whole, and ptot, the ratio of all immobile

domain pore space to the mobile domain pore space, is the sum of the capacity coefficients for

both the noncontributing subdomain, pfoncont and the nonequilibrium subdomain, Pn,,neq.

In this chapter, we will employ the one-dimensional form of the mass transfer equation

(equation 5 in chapter 2), which (incorporating equation 2) is:

aC as +C P c2C (a
- + pnoneq - -v(+ noncont+ Poeq) - + A(1 + Pnoncont+ Pnoneq) 2 (3a)at ata 8

as
= a(C - S) (3b)

at
This form is similar to that used by Harvey and Gorelick [2000] to model transport at the MADE

site, with the exceptions that they incorporated a retardation factor to describe pore-scale

immobile regions, and they did not consider a noncontributing domain. Because the mean

groundwater velocity was not known at the MADE site, the effects of such a noncontributing

domain, if it existed, would have been accounted for by a larger estimate of the mean velocity.
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Equation 3 can then be non-dimensionalized by normalizing the distance by the length of

the domain, L, and time by L/ , the mean time for fluid to flow across the domain:

aC as aC k a2C
-+ PnoaeS + P - .. con, +Poneq)-+ - Pe(1+ Inoncont+ noneq) ,2 (4a)

at at xo L ax

as
-= Da(C - S) (4b)
at

where the non-dimensional parameters are:

x
x' = - (5a)

L

t = t - (5b)
L

A
Pe = - (5c)

L
Da = - (5d)

Note that the capacity coefficients (P's) are already dimensionless. Pe is the common notation

for the Peclet number, while Da, the Damkbhler number (sometimes denoted Da), is similar to

the parameter in Bahr and Rubin [1987] except that their Damk6hler number is formulated for

kinetic chemical sorption instead of diffusive mass transfer. Also note that equation 4a includes

a non-dimensional factor that is the ratio of the integral scale to the length of the domain (XL).

We address the importance of this parameter in a later section of this chapter.

An analytical solution to the first-order mass transfer equation was fit to the simulated

breakthrough curves to estimate the four effective parameters: Pe, Pn.ncon, Inoeq, and Da. The

values of Da and PIoneq, in particular, quantitatively indicates the importance of nonequilibrium

mass transfer, while the sum of Pnon and Pnoncont indicates the magnitude of the immobile domain.

The distribution of arrival times of particles was converted to a discrete series of

concentration values by summing all of the particles that come through the breakthrough point

between two times into a single total value. This total mass is then divided by the flux and the

total time elapsed over which the particles were summed in order to give a concentration at the

midpoint of each time interval. Once we had the results in terms of concentration, we estimated
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the four parameters with the Eulerian analytical solution of Goltz and Roberts [19871 modified

for our parameter groups:

Me 2 XPe x'(s')
C(x',s')= exp- [

2 -(s') Pe(1+Pt,) -Pe(1+ ) (6)
LL (6)

Where T (x, s) is solute concentration in the Laplace domain, and Q(s) is defined by:

Q(s') + Po + Da" I"es' + s
X s'+Da"4- Pe (7)
L

s' is the normalized Laplace parameter, s, s'= s -, and M is the initial solute mass. The
V

concentration in time was then calculated by inverse Laplace transform of C(x,s') using the

algorithm from Hollenbeck 11998; ftp://ftp.mathworks.com/pub/contrib/v4/math/invlap.m I by

way of de Hoog, et al. [1982]. The theoretical breakthrough curve was fit to the simulation

breakthrough curve by simple least-squares minimization.

We found that considering the entire breakthrough curve, rather than just temporal or

spatial moments of the solute plume, provided more accurate parameter estimates. Estimating

mass-transfer parameters from moments requires the calculation of higher order moments, which

are subject to increasing errors as more weight is applied to extreme values [Harvey and

Gorelick, 1995].

3.3 Results

3.3.1 Characteristics of the Flow Fields

Effective Conductivity

The effective conductivity of each field was calculated by averaging the specific

discharge in the x-direction (the primary direction of flow) over any transect perpendicular to

flow and dividing by the hydraulic gradient. The resulting effective conductivities, normalized

by the geometric mean conductivity, are plotted in figure 3 as a function of the ln(K) variances of

the fields. This figure compares the effective conductivities for each of the three fields

(connected, disconnected, and multigaussian) to the geometric, arithmetic, and harmonic mean
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conductivities, which are the same for all three fields because the fields share the same

histogram.

The effective conductivity for the multigaussian field agrees well with theory - for all

variance values it remains close to the geometric mean, the theoretical value. The effective

conductivities of connected and disconnected fields deviate significantly from the geometric

mean. For the connected field, the effective conductivity exceeds the geometric mean, and for

the disconnected field is below the geometric mean. These differences increase as the variance

increases.

Velocity Variability

The connected field shows by far the largest velocity variation (figure 4), and one that

steadily increases with increasing conductivity variance. The multigaussian field matches the

theoretical prediction quite well in the x direction and at low variance in the y direction, but does

not match as well at high variance in the y direction. Higher-order approximations for velocity

variance have shown some potential for deviation from the first order model in directions

perpendicular to flow [e.g., Deng and Cushman, 1998]. These results suggest that solute

spreading, and hence effective dispersivities, should increase in all three field types as the

variance increases, and that the connected field may have higher dispersivities than the

multigaussian field, which may be higher than the disconnected field.

3.3.2 Solute Transport - Mass Transfer Behavior

The simulated breakthrough curve and model fits in figure 5 demonstrate that

incorporating the mass-transfer model can significantly improve the model fit to simulated solute

transport. In the case of the connected conductivity field with a ln(K) variance of 9 and no

diffusion, both models adequately fit the peak of the breakthrough curve. However, the

macrodispersive model alone poorly fits the tail of the breakthrough curve (figure 5). This tail is

frequently a problem in real-world situations, and thus its characterization is of primary

importance. The tail is a significant percentage of the total mass, and breakthrough of this mass

continues well after the macrodispersive model predicts insignificant concentrations, as is clear

in the cumulative breakthrough curve.
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Attempting to fit the breakthrough curve with POcnt set to zero (figure 6) demonstrates

the importance of modeling a subdomain that does not affect solute over the time scale of the

numerical experiment. Figure 6 shows that either the peak of the curve (the sharp ascent at the

front of the curve) or the tail of the curve can be matched, but without the use of Inoncont, the

complete curve cannot be reproduced. Thus, there appears to be a significant fraction of the

domain through which very little solute passes over the time-scale of this particular simulation.

Combining a nonequilibrium and noncontributing immobile domain, we can match the

breakthrough curve quite well, as can be seen from figures 5 and 6.

Transport through Connected, Multigaussian, and Disconnected Conductivity Fields

The breakthrough curves (figure 7) are substantially different for the three different

fields, although they share the same basic statistics. Much of the differences among these

breakthrough curves is explained by the difference in mean fluid velocity (effective

conductivity), discussed in the previous section. However, there are also significant differences

in spreading and tailing, as demonstrated in figure 8, where the breakthrough curves are plotted

against normalized time. The figures show breakthrough curves for various values of

normalized diffusion coefficient:

d'- dL (8)

where d is the diffusion coefficient of the solute in the porous media. This normalized diffusion

coefficient represents the ratio of the rate of diffusion in and out of structures with characteristic

length, X, to the rate of advection through the field. If the value is greater than 1, then the mean

time to diffuse in and out of statistical structures in the field is smaller than the mean time to

advect across the field.

The breakthrough curve for the connected field (figure 8) shows tailing in the high

variance cases, with the most significant tailing occurring with low and intermediate diffusion

coefficients. The multigaussian field has very small tails in its breakthrough curves in the high

variance case, which disappears for high diffusion coefficients. The disconnected field does not

appear to have significant tailing. The difference between the curves for different conductivity

fields diminishes for high values of the diffusion coefficient.
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3.3.3 Breakthrough Curve Analysis - Parameter Estimates

The qualitative observations described above are quantified by estimating transport and

mass transfer parameters from the simulated breakthrough curves. The four parameters

estimated were: the Peclet number, Pe (the non-dimensionalized form of the macrodispersivity),

the two capacity coefficients, Pnoncon, and Isnon,, and the Damk6hler number, Da (the non-

dimensionalized form of the nonequilibrium mass transfer rate coefficient). A complete

summary of the estimated parameters is shown in figure 9, which is a series of contour plots of

the four parameters for the three different patterns for hydraulic conductivity (multigaussian,

connected, and disconnected). The parameters shown are those estimated with the flux-

proportional starting conditions. The x-axis of each plot indicates the normalized diffusion

coefficient (d'). The y-axis of each plot indicates the ln(K) variance of the conductivity field.

The contour plots show the estimated parameter for the particular field type as a function of these

two variables.

Because the parameters are in non-dimensional groups, these simulations may be

applicable over a large range of length and time scales. However, it is useful to check that the

values plotted in figure 9 may represent practical situations. For example, if we consider

transport over a length of 6m, for a groundwater velocity of 3.5* 10- m/s (3 cm/day), an apparent

diffusion coefficient of 0.35 cm 2 /day (4*1010 m2 /s, approximately the diffusion coefficient in

porous media for many dyes), and a representative length of heterogeneities of 9 cm, then the

normalized diffusion coefficient, d' (eq 8), is approximately 1, which falls near the center of the

x-axis of each plot.

Dispersivity (Pe): The normalized dispersivity results in figure 9 are consistent with the trends

in velocity variances. For all three fields, the estimated dispersivity increases with variance in

ln(K) and hence with velocity variance. Also, the estimated dispersivity in the connected field is

greater than the multigaussian field, which in turn is greater than the disconnected field, again

consistent with velocity variance.

The first-order approximation (chapter 2, eq. 3) for the dispersivity in a multigaussian

field is simply the variance in ln(K) when normalized by the correlation length. Because we

have already normalized our dispersivity estimates by the correlation length, the contours of our

estimates should intersect the ln(K) axis at the value of the contour lines, if the first-order
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multigaussian result applies. For the connected field, this is clearly not the case. The

dispersivity values are significantly larger than the multigaussian theory predicts. For the

disconnected field, the estimated dispersivities are much lower at high ln(K) variance than

predicted. For the multigaussian field, the results are much closer to the theory, but do not

perfectly agree. This discrepancy may be caused by the inclusion of mass-transfer processes in

our model, which will lead to lower estimates of dispersivity because some of the spreading is

accounted for by the mass transfer parameters, or by the flux-proportional initial conditions.

The estimated dispersivity for the connected field is generally decreasing with an

increasing diffusion coefficient, d'. This is similar to the results for dispersion in stratified media

[Matheron and deMarsily, 1980], which also has continuous paths of relatively high velocity.

An exception exists for small diffusion coefficients and large ln(K) variances, where the

dispersivity, in fact, increases. The disconnected field shows increasing dispersivity with

increasing ln(K) variance, but exhibits little dependence on diffusion coefficient. The

multigaussain field shows evidence of dispersivities that increase with the diffusion coefficient

and increase with increasing field conductivity variance.

Noncontributing Capacity Coefficient (P..nwnc): The noncontributing capacity coefficient

(second column of figure 9) indicates the proportion of the flow field from which solute is

excluded. In conjunction with the nonequilibrium capacity coefficient, it also indicates how

much faster the average advective flow of solute in the field is relative to the average fluid

velocity in the field.

The values of Inoncon, are relatively large in the connected field at high variance. At a

variance of 9 with no diffusion, the value of Pnoncon, reaches 1.7, indicating that solute is not

interacting with a large portion of the conductivity field. As the diffusion coefficient increases,

the non-contributing capacity coefficient steadily decreases because diffusion mixes solute into a

larger proportion of the domain. The multigaussian and disconnected fields show substantially

smaller values of nonco .

Nonequilibrium Capacity Coefficient (p.neq): The nonequilibrium capacity coefficient (third

column of figure 8) describes the ratio of the pore volume subject to nonequilibrium, or rate-

limited, mass transfer, to the pore volume of the mobile domain. In concert with a value of Da
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on the order of 1, a high value of Pnoneq indicates that significant nonequilibrium mass transfer

occurs.

By far the largest amount of nonequilibrium mass transfer occurs in the connected field,

with P reaching a maximum value of 0.82 for a ln(K) variance of 9, and normalized diffusion

coefficients greater than 0 but less than 1. The disconnected field shows Pnoneq values that are no

greater than 0.1, indicating only minimal nonequilibrium mass transfer. The multigaussian field

also shows relatively small Pnoneq values. The highest value of Pnoneq in the multigaussian field is

0.2, which occurs in the multigaussian field with variance of 9 and with normalized diffusion

coefficients near 0.5. While much less significant than the values for the connected field, this

value is high enough to cause the slight tailing noted earlier in the qualitative descriptions. In all

three fields the value of PIoneq increases with increasing ln(K) variance, consistent with the idea

that as the variance of the fields increase, the proportion of conductivity values that are

sufficiently low to be treated as immobile also increases.

Although the largest values of Pnoneq in the connected field are found when d' is greater

than 0, but less than 1, significant values of Pnoneq are also observed when the normalized

diffusion coefficient is 0, indicating advective-driven mass transfer. The relative importance of

advective and diffusive driven mass transfer is discussed latter.

Rate Coefficient (Da): The mass transfer rate coefficient (nondimensionalized as Da in the last

column in figure 9) indicates how quickly solute is moving in and out of effectively immobile

zones if nonequilibrium mass transfer is occurring. Values on the order of 1 indicate that the

timescale of mass transfer is comparable to the time to advect across the field. If Da is much

higher than 1, then mass transfer is occurring so quickly that equilibrium mass transfer is present

instead of nonequilibrium mass transfer. If Da is much lower than 1, then the solute does not

have sufficient time to move into the immobile regions, and thus, during the timescale of the

simulations, these regions remain inaccessible. Such processes would be accounted for by the

estimated Pnoncont* The value of Da is only meaningful when it is associated with a significant

immobile volume as indicated by a value of Pnoneq significantly larger than 0. Thus, the mass

transfer rate coefficients for the connected case are meaningful. For the multigaussian and

disconnected fields, the value of Da is less important.

51



The estimated Da's for the connected field increase with increasing variance in ln(K).

This indicates that the effective rate that solute is transferred between mobile and immobile

regions also increases as the contrast between high and low conductivity regions increases (and

the volume of the immobile region subject to nonequilibrium mass transfer increases). We also

find that for high ln(K) variances, the rate coefficient is highest when there is no diffusion. These

results are at odds with the notion that mass transfer is caused exclusively by diffusion. If mass

transfer was caused by diffusion in and out of immobile regions of a size characterized by the

correlation length, k, then the estimated values of Da would increase linearly with increasing

diffusion coefficients (d').

3.3.4 Advective Mass Transfer

Several results from the previous section indicate that mass transfer is controlled in some

cases by advection through low conductivity regions rather than diffusion. First, the

nonequilibrium capacity coefficients were estimated to be significantly large in simulations in

which the diffusion coefficient was zero. Without diffusion, the only process driving mass-

transfer in and out of immobile regions in these simulations is advection. Second, the rate

coefficient did not increase in direct proportion to the diffusion coefficient, as would be expected

if mass transfer were driven by diffusion.

To examine the effects of advection on mass-transfer for different diffusion coefficients,

solute transport was simulated through the conductivity fields with the head gradient increased

by a factor of two, doubling all velocities, while other conditions were held constant. The

importance of advection is then ascertained by examining the estimated rate coefficients, cc, from

the subsequent breakthrough curves. If nonequilibrium behavior is entirely advection-dependant,

the estimate of a will also increase by a factor of two, as the rate of transfer in and out of

immobile regions driven entirely by advection will scale identically with velocity. The

assumptions for both fields, in both simulations, were that the mean conductivity was 8 cm/day,

the hydraulic gradient was 0.01, and the total travel distance was 6m.

The results for the two connected fields with ln(K) variances of 6.25 and 9 (figure 10)

demonstrate that there is an advective component to the nonequilibrium behavior in both of these

fields. In the absence of diffusion, estimated rate coefficient values, a, double when the velocity

is doubled, indicating that mass transfer is driven only by advection. As the diffusion coefficient
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is increased, the estimates of cc converge to the same value for both velocities, indicating that

diffusion is the dominant process, overwhelming advection. Parameters are shown in

dimensional form because increasing the velocity by a factor of two causes the normalized

coefficients of the two cases to vary. To prevent confusion, the estimates are shown as their

actual values.

We can gain some insight into conditions under which mass-transfer is dominated by

diffusion or advection by considering the ratio of the estimated c's for the two different velocity

conditions. A ratio that is less than 1.5 suggests diffusion is more important. By this criterion,

in the connected field with variance of 6.25, advective mass transfer dominates up to a diffusion

coefficient of 0.24 cm 2/day, which corresponds to a normalized diffusion coefficient in the base

case of about 2. Though diffusion appears to be the more dominant mass transfer process above

this threshold, the capacity coefficient is small (pone < 0.2), so there is actually very little rate-

limited mass transfer at these high diffusion coefficients. Thus, overall, advective mass transfer

may be the dominant nonequilibrium process in the connected field with ln(K) variance of 6.25.

For the connected field with a variance of 9, advective mass transfer dominates up until a

diffusion coefficient of 0.21 cm 2/day, which corresponds to a normalized diffusion coefficient of

approximately 0.8. Since the immobile domain is still significant (pwoneq > 0.7) at this diffusion

coefficient, diffusive mass transfer plays an important role in this conductivity field.

We also found that increasing the velocity significantly increased the estimated

dispersivity in the connected field, but did not significantly affect the estimates of Pnoneq and

snoncont (maximum change of 12%). For large diffusion coefficients (d' = 3), the effective

dispersivity increased by a factor of 3.2 for a doubling of the velocity. This increase approaches

the increase of a factor of 4 predicted for transport in layered systems by Gelhar, et al. [1979],

and Matheron and de Marsily [1980]. At lower diffusion coefficients, we did not find as large

an increase in the estimated dispersion coefficient with velocity. We believe this is because of

the initial conditions that place particles only in high velocity paths, which is analyzed below.

3.3.5 Initial Conditions

In the simulations described so far, the spacing of particles introduced along the injection

line was proportional to fluid flux, the approach of Desbarats [1990]. This starting condition

was modeled with the mass-transfer model by setting the initial immobile concentration to zero.
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We now consider an alternative initial positioning, equidistant placement along the vertical line.

For this placement, we change the initial conditions for the mass transfer model to equal

concentrations of immobile and mobile solute, i.e., equilibrium. It should be noted that

Vanderborght, et a.[ 19981, suggested that the flux proportional method is generally preferable

since it does not bias late-time parameter estimates with early-time anomalies. They also

suggested that this initial condition bias is removed from the transport relatively quickly (a few

correlation lengths). However, they dealt with only multigaussian fields at relatively low ln(K)

variance (approximately 2.5), so results in our fields may differ.

The greatest effects on the breakthrough curve are seen for a ln(K) variance of 9 for the

connected field (figure 11). Little difference is seen at low variance between the different

starting conditions, or at high variance for the multigaussian and disconnected fields, and the

estimated parameters change by less than 15%. However, for the connected field with ln(K)

variance of 9, the estimated dispersivity and pnoncont are significantly different between the two

initial particle placements. At a diffusion coefficient of zero, the estimated dispersivity increased

by a factor of three for the equally spaced starting position. This may be due to the fact that in

the connected field, the flow channels are contiguous throughout the entire domain. In the case

where starting positions are proportional to velocity, most particles start out in fast moving

streampaths, and in the absence of diffusion, stay in those paths. In the case with starting

positions equidistant, the particles start out in and remain in a wider variety of velocities, so the

effective dispersivity is larger. This explanation is supported by the fact that when a relatively

small amount of diffusion is introduced (normalized diffusion coefficient, d', equal to 0.3), the

difference in dispersivities drops to a factor of two, and decreases even further as more diffusion

is added. Diffusion allows faster mixing across flow paths, thereby negating the effects of the

starting positions. This explanation is also consistent with the result that the estimated fraction

of the domain in which significant solute does not pass, Pnoncont is significantly smaller with the

initial conditions of evenly spaced particles. The initial equal spacing places particles in all

parts of the domain, so at least initially, no region of the domain is outside of the path of

particles.

It is important to note that the different parameter estimates for both Pnoncon and the

dispersivity do not indicate that different initial conditions drive fundamentally different

behavior. Conductivity fields that are dominated by mass transfer in one case are also dominated
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by it in the other, while fields which are well-described by the advective-dispersive model in the

flux-proportional initial condition will still be well-described by it when subjected to equilibrium

initial conditions. However, the differences in parameters indicate that the initial conditions can

have some influence on the evolution of the solute plume.

3.3.6 Evolution of Transport Parameters

Here we consider how estimated transport parameters may change for breakthrough

curves at different downstream distances. All of the simulations discussed thus far have dealt

with the same travel distance (67 correlation lengths). Now we consider estimated parameters 44

correlation lengths downstream of the injection distance with the particles started at the same

location with the same initial starting positions (both proportional to velocity and with

equidistant spacing). We ran the simulated flow and transport for all three field types at the

highest variance (ln(K) variance of 9), where the largest differences, if any, should be found.

For the disconnected field, we found no significant change in any of the estimated

parameters. For the multigaussian and connected fields, we found that the estimated

dispersivities, rate coefficients, and nonequilibrium partition coefficients were all within close

agreement (differences of less than 10 percent) with the same parameters estimated at the further

downstream breakthrough curve. This held true for all values of the diffusion coefficient and for

both initial conditions.

However, a larger noncontributing partition coefficient, P.cn,,was estimated from

breakthrough curves recorded at 44 correlation lengths, as opposed to 67 correlation lengths, for

both the connected and multigaussian fields when initial particle positions were proportional to

velocity. The largest increase was estimated for no diffusion - in the multigaussian field, po3 onCft

increased by 31 percent, and in the connected field it increased by 77 percent. The difference in

estimated snoncont decreased as diffusion coefficient (d') increased, until at the largest value of

diffusion coefficient (d' = 3), the estimates for both cases were nearly identical. When the

starting positions of the particles were equally spaced, we found no substantial difference in the

estimated values of Pnoncont.

We attribute this increased estimate of Pnoncont to the same phenomena discussed in the

previous section: the velocity-proportional initial conditions place the bulk of the particles in the

fastest parts of the mobile domain, and the farther the particles travel, the more this initial bias is
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averaged out. Thus the average velocity of the particles in the mobile domain will be higher the

closer the breakthrough point is to the starting point. This is consistent with the result that

higher diffusion coefficients decrease the difference, since diffusion mixes particles out of fast

paths more quickly. It is also consistent with the lack of significant differences in the estimated

values of Pnoncont when the particles are started equally spaced, as there is no significant initial

bias in the initial velocities with this starting condition. Also of note is that the multigaussian

field does display some increase in soncnt, but significantly less than the connected field. This is

consistent with our earlier finding that there is a small, but real, P3oncont in the high variance

multigaussian field.

3.4 Discussion

Each of the three types of fields considered here has fundamentally different flow and

transport behaviors.

In the connected field, the effective conductivity is greater than the geometric mean,

velocity variations are much higher than the multigaussian equivalent, and solute transport is

subject to significant mass transfer. The high conductivity zone forms a continuous network of

paths through which fluid and solute move. Isolated low conductivity blobs are embedded in this

network and form low velocity regions where solute is slowed or immobilized. Flow around

these blobs creates a large variance in the velocity perpendicular to the mean direction of flow,

and the sharp contrast between flow in the channels and the blobs creates a large variance in flow

velocity in the mean direction of flow. For relatively low contrast (cY below approximately 4),

mass transfer effects are not evident and transport can be accurately modeled by the advective-

dispersion equation, although mean plume velocity is still greater than in the multigaussian case.

If the contrast between the high conductivity paths and the low conductivity blobs is larger (o2

above approximately 4 but below approximately 8), then advection through low permeability

regions produces tailing. This advective process creates large-scale behavior similar to diffusive

mass transfer, but the rates depend on head gradients rather than diffusion coefficients. If the

contrast between the high and low conductivities becomes even larger, the size of the effectively

immobile regions increases and the lowest conductivity regions become areas with no significant
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fluid flow. In this high variance case (02 above approximately 8), mass transfer is driven by

both diffusion and advection.

At higher variances (c2 above approximately 6), the effective dispersion coefficient for

the connected field also shows characteristics similar to the effective dispersion coefficient in

layered media [Matheron and de Marsily, 1980]. The effective dispersion coefficient decreases

with an increasing diffusion coefficient, and the dispersion coefficient increases with velocity at

a rate greater than linear, although not at the quadratic rate found for perfectly layered media.

Thus, Matheron and de Marsily's theory, which considered flow that was not perfectly aligned

with stratification, appears to also have some application to flow channels that are not straight.

Flow and transport in the connected field has many of the characteristics that are

attributed to conductivity fields with layering, bimodal histograms, or large integral scales,

described in the introduction. Yet, the connected field is isotropic, univariate lognormal, and has

an integral scale much smaller than the domain length. The connected field has behaviors

similar to a layered field because the high conductivity regions, although isotropic, form

contiguous preferential channels for flow. It also may reproduce some of the behavior of

nonstationary fields (i.e. field with integral scales larger than the domain size) because the high

conductivity structures span the entire domain. Finally, the connected field can reproduce

behaviors, such as nonequilibrium mass transfer, that are often attributed to fields with bimodal

distributions, such as low conductivity blobs embedded in a matrix of uniformly higher

conductivity. This is because the connected field also creates regions of low velocity embedded

in channels of high velocity, even though the univariate distribution of ln(K) is Gaussian, and

hence unimodal.

In the disconnected field, the effective conductivity is less than the geometric mean, the

velocity variance is small, and mass transfer behavior does not occur. The contiguous structure

of low conductivity areas in this field forces flow through low conductivity regions, so there are

few, if any, isolated low velocity regions where mass transfer occurs. Flow lines are relatively

straight, and the variance in fluid velocity is relatively low. Although the effective conductivity

and dispersivity values are lower in this disconnected field than in the equivalent multigaussian

field, the upscaled solute behavior in this type of field is similar to classical macrodispersion in a

multigaussian field.
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Flow and transport characteristics in the multigaussian field agree well with existing

theory and are well modeled with the advective-dispersive equation. Thus, this field serves

primarily as a control for numerical experiments in the connected and disconnected fields.

Although the multigaussian field shows modest amounts of mass transfer at high variance, this

behavior is not significant compared to the connected field. As with the disconnected case, there

is no continuous high-velocity zone. Values close to the mean form a connected structure,

spanning the domain, which isolates high conductivity blobs. A small volume of low

conductivity blobs also exists and is of sufficient size and conductivity contrast to cause mass

transfer, but this is a relatively minor part of the entire field.

The finding that mass transfer behaviors occur in fields with an effective conductivity

greater than the geometric mean is consistent with the results of Guswa and Freyberg [2002].

They studied flow and transport through a homogeneous medium with elliptical inclusions (of

varying shape, size, conductivity contrast, etc.) and also found that mass transfer occurs when the

mean effective conductivity is greater than the geometric mean, but that transport is well

described by the advective-dispersive model when the effective conductivity is at or below the

geometric mean.

There are a variety of issues we did not consider. First, we have not studied the effective

transverse dispersion of the solute movement through the various fields. Second, we neglected

pore-scale, or mechanical, dispersion, and consider only small-scale mixing by diffusion. Third,

we did not consider multiple rates of mass transfer for our effective model. A multirate mass

transfer model could improve the breakthrough curve fits. However, our simple model provides

qualitatively good fits and the parameter estimates give a clear quantitative characterization of

the dominant transport processes in each scenario.

3.5 Conclusions

Our general conclusion is that very different flow and transport behaviors can occur in

conductivity fields that all have nearly identical log-normal univariate conductivity distributions

and nearly identical isotropic spatial covariance functions. Under many existing stochastic

models, these fields would be identical in their predicted upscaled flow and solute transport

behavior. A secondary conclusion is that significant rate-limited mass transfer may occur in

smooth conductivity fields if the high values are well connected. This provides some theoretical

58



basis for the application of mass transfer models to transport of conservative solutes in

sedimentary aquifers with relatively high conductivity variance and connected high

conductivities, such as the MADE site in Mississippi. Below, we list specific conclusions.

(1) Spatial patterns of hydraulic conductivity can be constructed with connected structures of

either high or low conductivity, that have the same univariate probability density function

and isotropic covariance function as a multigaussian field that does not have connected

structures of extreme values. Although the integral scale of these connected fields is much

smaller than the domain size, the connected structures of either low or high values span the

entire domain.

(2) Matheron's conjecture that the effective conductivity in a two-dimensional conductivity field

is the geometric mean does not apply to the connected conductivity fields considered here,

although they are isotropic with log-normal univariate conductivity distributions. The

effective conductivity is larger than the geometric mean for the field with connected high

values of conductivity, and smaller for the field with connected low values.

(3) Velocity variability, and hence the effective dispersion coefficient, is substantially higher in

the conductivity field with connected high values than in multigaussian field. The field with

connected low values has substantially smaller effective dispersion coefficients than the

multigaussian field.

(4) Rate-limited mass transfer, i.e., tailing, may be a significant process in conductivity fields

with connected structures of high values. At variances in ln(K) above approximately 6, the

majority of the field considered here is best modeled as immobile. A practical implication is

that when the effective conductivity is significantly larger than predicted for multigaussian

fields, mass transfer behavior may occur.

(5) Rate-limited mass transfer in hydraulic conductivity fields with connected high values can be

driven by a complex interaction of advection and diffusion. For the cases considered here,

mass transfer is primarily driven by advection below variances in ln(K) of approximately 8.

For all values of conductivity variance, the largest total immobile domains are found when

no diffusion is simulated. However, at higher variances, diffusion also plays a significant,

and in some cases dominant, role. For higher values of the diffusion coefficient, the effective

mass-transfer rate coefficients were reduced (contrary to the notion that the rate of mass
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transfer is driven by the rate of diffusion), and the total proportion of the domain found to be

effectively immobile was also reduced.

(6) Effective dispersion coefficients in the conductivity field with connected high values had

characteristics similar to those of Matheron and de Marsily's [19801 dispersion coefficients

for transport through layers, which also have continuous paths of high relative fluid velocity.

The effective dispersion coefficient generally decreased with an increasing diffusion

coefficient and increased with velocity at a rate greater than linear.

Most hydrogeologists will agree that large continuous flow channels have large effects on

groundwater flow and solute transport. Here we demonstrate that significant effects of flow

channeling may occur in statistically isotropic hydraulic conductivity fields that share the same

basic statistics as stationary multigaussian fields with integral scales much less than the domain

length. In particular, we find that rate-limited mass transfer may be a significant process during

solute transport through a hydraulic conductivity field with a texture of connected high values,

and that this mass transfer is driven by a complex interaction of both advection and diffusion.

These results suggests that information on the connectedness of geologic media may be

necessary not only to choose parameters for flow and transport models, but also to choose the

form of the transport model. In conductivity fields with nearly identical conventional statistics,

solute spreading may be well modeled by Fickian dispersion, or a mass transfer model may be

required to adequately predict tailing, and the mass-transfer rate coefficient may depend on the

hydraulic gradient, or on the apparent diffusion coefficient. Although characterizing patterns of

connectedness in the field is an extremely difficult problem, these results suggest that

representing spatial heterogeneity as multigaussian may not be a conservative assumption.
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Figure 3-1: Generation of a connected hydraulic conductivity field from a multigaussian
field. (a) Multinormal field generated by sequential Gaussian simulation. (b) The zero
mean field produced by taking an absolute value transform followed by a normal-scores
transform (eq. 1). The low conductivity values are now the most connected. (c) The
connected field generated by reversing the sign of the values in field (b) and stretching
the coordinate axis so that the field has the same correlation length as field (a).
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Multigaussian Field (figure 1 a)
- e- -Field after transformation steps 1 and 2 (figure 1 b
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Figure 3-2: Comparison of spatial correlation functions for the multigaussian field (figure
la) and the connected field (figure Ic) showing that they are nearly identical. Also
shown are the theoretical correlation function of the absolute value transform of the
multigaussian field (application of equation A10) and the calculated covariance of field
(figure lb), indicating that these are similar.
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Effective Conductivities for Different Conductivity Patterns
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Figure 3-3: The effective conductivity for the three different conductivity fields:
multigaussian, connected, and disconnected. These are shown as compared to the
arithmetic, geometric, and harmonic means of the conductivity values. The values are all
normalized by the geometric mean of the conductivity values.
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Figure 3-4: Coefficient of variation in velocity for the three different spatial patterns of
conductivity as a function of the spatial variance of ln(K). Also shown is the theoretical
prediction of the coefficients of variation. The left figure shows the variation in the
direction of flow (x-direction) and the right-hand figure shows the variation
perpendicular to the direction of flow (y-direction).
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Model Fit Comparisons:
Cumulative Breakthrough Curves
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Figure 3-5: Comparison of breakthrough curve fits using the advective-dispersive model
and the single-rate mass transfer model. The breakthrough curve was simulated in the
connected conductivity field with a variance of 9 and no diffusion. The breakthrough
curves are shown in the form of cumulative mass fraction breakthrough. The mass
transfer model provides a better fit, especially in the tail.
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Fits With and Without Noncontributing Immobile Region
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Figure 3-6: A simulated breakthrough curve, the best fit using the complete model
equation (equation 4), and two fits made without considering a noncontributing immobile
domain - one fits the peak of the breakthrough curve, one matches the tail. Neither do
both, whereas the complete model better fits the curve at all times.
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Comparison of Breakthrough Curves for 3
Conductivity Patterns at High Variance (=9)
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time(days)

Figure 3-7: Breakthrough curves for the three different patterns of hydraulic conductivity
with variance of 9 and no diffusion present. Demonstrates different mean arrival times
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Figure 3-8: Cumulative breakthrough curves for the three different patterns of hydraulic
conductivity after normalizing time by mean fluid travel time. Breakthrough curves are
plotted for combinations of differing normalized diffusion coefficient (columns) and
a2y(rows) for each of the three patterns of hydraulic conductivity.
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Figure 3-9: Estimated transport parameter values for each of the three different patterns of
hydraulic conductivity. Each plot shows contours of an estimated parameter as a function
of the field variance &2y (y-axis) and the normalized diffusion coefficient d'(x-axis).
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Figure 3-10: Estimated rate coefficients (c) as a function of the diffusion coefficient for
the base conditions compared with estimated rate coefficients where the velocity
(hydraulic gradient) is doubled. For zero diffusion the estimated rate coefficient doubled
with a doubling of the velocity, indicating advective mass transfer.
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Comparison of Breakthrough Curves for Two Different
Initial Conditions (Connected Field, variance=9, d'=1)
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Figure 3-11: Normalized breakthrough curves for the connected field with C2=9 and a
Y

normalized diffusion coefficient (d') equal to 1, with initial particle positions evenly
spaced and proportional to velocity.
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Chapter 4

Experimental Visualization of Solute Transport and

Mass Transfer

4.1 Introduction

The work in the previous chapter demonstrates that connectedness can play a large role in

solute transport, and that, particularly in fields with large differences between the upper and

lower conductivities, could drive behavior that is fundamentally described by a mass transfer

model instead of a macrodispersive model. In addition, the work in the previous chapter pointed

to two possible processes driving mass transfer - advection and diffusion.

The results of the previous chapter, however, are completely theoretical. It is certainly

legitimate to question whether a computer can successfully simulate reality, and more to the

point, whether the conclusions we draw in the previous chapter are actually physically plausible.

Is the existence of advective and diffusive processes driving mass transfer something we can

actually demonstrate in a real porous medium? Can we actually observe a difference between

advection-dominated mass transfer and diffusion-dominated mass transfer? Do observable

differences in mass transfer at the small-scale actually amount to something relevant at a larger

scale?

In this chapter, we attempt to answer these questions by means of a series of experiments

conducted at the Flow Visualization Laboratory of the Sandia National Laboratories. We

constructed a porous medium of glass beads, consisting of a high conductivity matrix

surrounding low conductivity cylindrical emplacements, and used high-resolution photography

to image solute flow through it. The structure of the field (high conductivity matrix surrounding
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lower conductivity structures) provides us with a connected field, which our previous work

suggests is an important component of mass transfer. At the same time as we image solute in the

porous medium, we measured outflow concentration of the solute, allowing us to examine both

small-scale variability and its upscaled effects. Although this is an artificial aquifer, it is a

porous medium that consists of reasonable structural characteristics. The experiments performed

on this porous medium provide concrete illustration of our results in chapter 3, and form the

basis of our work in chapter 5. Our ability to control the conductivity structure and visualize the

solute plume in fine detail marks a departure from field work, where even highly detailed field

sites require a great deal of extrapolation from limited data points. Our ability to control the

conditions of the experiment also allowed us to perform experiments under a relatively large

range of scenarios, such as modifying head gradients and the conductivity contrasts. The design

also allows us to check upscaled results for some experiments against known analytical

solutions, and we find that in those cases, our results are fit very well by analytical models.

4.2 Methods

Our experiments involved a lengthy set of procedures that we have organized into four

categories. First is the construction of the tanks used for the experiments, which involved

several specialized procedures. The second section details the other equipment used, including

the spectrophotometer, pumps, camera, and light box. The third describes the experimental

procedure. The last section describes how the data was processed to create images and

breakthrough curves.

4.2.1 Tank Construction

The design and construction of the tank is a complex procedure, with several novel

components developed specifically for this experiment.

Our first goal was to design a system that could hold glass beads of significantly different

sizes. To create the conductivity contrasts we desired using nearly uniform sized spherical

grains required significant size differences, problematic because small beads easily move

through a matrix of significantly larger beads. Table 1 lists the sizes used for the three tanks and

the conductivity ratio (conductivity of the larger beads divided by the conductivity of the small

beads) created (using the Carmen-Kozeny-Bear equation [Bear, 19721 and incorporating edge

74



effects [Somerton and Wood, 1988]). In order to keep the two bead packs separated while still

allowing fluid interaction between the two regions, we constructed what we refer to as

"emplacements."

Emplacements act as a thin separating wall between the two regions of different beads.

Construction began by sintering together three stainless-steel meshes - a fine mesh (holes 30tm

square) between two courser meshes (0.3mm square holes). The fine mesh restricts the

movement of small beads while the coarser meshes provide structural support. The

emplacements for advective-dipsersive case, in which the small beads were 0.9mm diameter, did

not include the fine mesh.

The sintered-mesh screen was wrapped and welded into a circular shape (i.e., the screen

looked like a circular pipe) with a 1 inch (2.54cm) diameter, and was then cut into 5.5mm thick

slices. To ensure that all emplacements were of identical height, they were softened with

moderate heat and placed together in a long vice-like device, which was closed to the desired

thickness. The heated metal deformed at the edges and then cooled with a consistent thickness,

altering the screen structure only along the edges and leaving all emplacements approximately

the same thickness. The end result is an object that looks like a thin slice of porous pipe. The

screen itself was approximately 0.5mm thick, encompassing less than 4 percent of the total

volume of each emplacement. We completed construction by gluing an o-ring (25mm diameter,

1mm cord diameter) to the top of each screen slice, giving the emplacement a flexible but solid

contact with the top of the flow area in the tank. The superglue gel we used was chosen for it's

chemical properties and its viscosity. The glue did not significantly sorb with FD&C Blue #1

dyed water, and had a high viscosity, preventing glue from wicking into the steel mesh of the

emplacements. Low-viscosity glues had a much greater degree of capillary-induced suction,

leading to blocking of significant numbers of mesh pores.

We desired a random placing of the emplacement cylinders to avoid effects driven solely

by configuration, without emplacements placed too close to each other or the tank's edges. We

used a computer create a random pattern of 53 emplacements while honoring proximity

constraints - emplacements may not be closer to each other than 6mm and not closer to the edges

of the tank than 4mm. Using this pattern as a template, we glued emplacements onto a sheet of

0.02 inch (0.5mm) clear plastic.
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A second problem caused by using beads of significantly different sizes is that light

transmission through the bead pack is approximately proportional to bead size. To equalize

intensities we attached a neutral density filter (a plastic sheet that reduced light transmission at

all wavelengths) to the back of the plastic sheet containing the emplacements. The filter strength

for each tank is noted in Table 1. We then cut circular holes in the filter at the emplacement

locations, so that the filter blocked light entering the large bead areas without reducing

transmission through small bead areas. The holes were cut to 0.75inch diameter, instead of 1

inch, to compensate for any holes being cut slightly off-center, and to ensure that refraction did

not cause any additional light to enter the large bead areas. Tests showed that although the filter

was covering parts of the small bead areas, light intensity was reduced no more than 50%, due to

numerous of refractions and reflections in the small bead pack. It should be noted that in the

diffusive mass transfer tank, holes were cut at 0.938inch diameter, causing minor problems

(discussed in section 4). Even reduced light intensity around emplacement edges was sufficient

for detailed concentration measurements.

To assemble the tank, we first packed the emplacements with small beads, then built the

rest of the tank around the plastic base and its packed emplacements. Each tank consisted of

several quasi-2D pieces stacked together and held along the sides by a clamping mechanism,

with the top and bottom attached to specially designed flow manifolds.

We placed the filter and plastic base on top of a piece of 40cm long by 25.4cm wide by

1.9cm thick glass (the plastic base and filter have identical length and width as the glass). We

then placed anodized aluminum side rails (40cm long, 2.7cm wide, and 0.635cm thick, save at

each end, where width increases to accommodate manifold screws, see figure ic for illustration)

along the two sides of the emplacement-filled area. We then placed another piece of glass on top,

making sure the entire "sandwich" is aligned, i.e., all edges in the sandwich and the ends of the

side rails should line up. This sandwich, when finished, is illustrated (in side view) in figure la.

The rails and glass plates form the no-flow boundaries perpendicular to flow in the experiment.

The sandwich was held together by two steel bars located on top of the glass, running

lengthwise directly above the side rails. A cross-section of the bar is L-shaped, with the upright

portion along the side closer to the middle of the glass (see figure 1b). The bar is designed to

even out the pressure applied by two large steel screw plates (see figure lb for cross-sectional

appearance). The screws were tightened down to a torque of 10 joules on the pressure bars - the
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pressure bars applied evened downward pressure on the top glass plate and the screw plate

bottoms applied upward pressure on the bottom glass plate. This holds the sandwich together

with sufficient force to create a watertight seal around the flow area.

The next step in constructing the tank is to attach the manifolds. The two manifolds are

specially milled Lexan blocks designed for either inflow or outflow, and thus go in specific

locations (inflow at the bottom, outflow at the top - see figure ic).

The bottom (inflow) manifold has three entrance points on its front side - eighth inch

valve fittings that are attached to the inflow tubes. The entrance points connect through drilled

channels to an approximately 15ml reservoir (see figure 2a). This reservoir creates an

approximate constant concentration boundary during the experiment by creating a significant

volume of a particular concentration along the inflow boundary. A fine mesh screen was placed

at the top of the reservoir to even out flow, with a coarse mesh screen on top of it to provide

structural support.

The top (outflow) manifold was designed to minimize outflow mixing and to prevent any

stagnation zones from forming near the outflow. A series of grooves along its width channeled

flow into low-volume funnels that connect to the three outflow points (see figure 2b) located at

the top of the manifold. The outflow points are designed to each drain an identical cross-section

of the tank. The grooves extend along almost the entire width of the flow area. The existence of

flow channels all along the cross-section minimized stagnation zones, and the entire outflow

manifold was designed to have a minimal volume to ensure short outflow residence time.

Outflow from the manifold was channeled into three narrow (0.63inch inner diameter) outflow

tubes of equal length that joined together into a single tube of the same diameter. This ensures

that all outflow from the tank has an equal travel time to the photometer.

The manifolds were attached to the tank using silicone caulk and rubber sheeting cut into

gaskets. The gaskets, attached to the manifolds and tank with silicone caulk, give the tank more

reliable sealing than simply gluing the manifolds onto the tank, and also ease manifold removal.

Two gaskets were used at each end of the tank - one attached to the manifold, the other to the

tank, with the inner hole in each gasket approximating the boundaries of the flow area in the

tank. The manifolds were attached onto the ends of the tank using screws that thread into the

side rails (see figure ic and figure 2). With the bottom manifold attached, we filled the tank with

the large beads that form the porous medium outside of the emplacements. We slowly poured
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large beads into the tank, shaking, tapping, and using a pipe cleaner as a makeshift ramrod to

maximize packing. Water was flushed and drained from the tank as a final impetus of

consolidation. Once the packing was satisfactory, the top manifold was put on, and the tank was

complete.

In order to allow for repeat experiments, we constructed three tanks, one for each

transport scenario, using the same procedure (with a different bead size inside emplacements).

4.2.2 Other Equipment

Water was pumped into the tank using a computer-controlled piston pump, which gives

accurate and consistent flowrates down to 0.001 mI/min. During the experiments, we used two

pumps, each flowing at half of the desired flowrate. This allowed one pump to remain running

while the other was refilled, preventing flow from ever being completely turned off. Refilling

both pumps took about five minutes, a short time relative to experiment length.

Outflow dye concentration was measured with a Varian TM spectrophotometer. The

device is computer-controlled and programmable. The photometer was set to target two

particular wavelengths, the 630nm (primary) peak of FD&C Blue#1 and the 409nm (secondary)

peak. These peaks were studied extensively using full-range wavelength scans with a set of

standard concentrations spanning the expected concentration range of the solute. The 630nm

peak was effective at measuring concentrations from 0.0 1mg/l to approximately 20mg/l. The

409nm peak was effective from 0. 1mg/l to above our maximum concentration of 30mg/l.

Tank outflow was measured by the photometer in two ways. In the advective-dispersive

experiments (for reasons explained in the results section), we collected outflow in small sample

bottles, then poured the sample into a cuvette for photometer scanning. For the two mass

transfer experiments, we hooked the outflow of the tank into an 80 tl flow-through cell placed in

the spectrophotometer, minimizing the lag time between the outflow and the time it is measured,

allowing extremely high measurement frequency, and reducing any mixing or contamination that

could potentially occur in manual outflow samples. The use of narrow tubing and the small

volume of the outflow manifold serves to keep the outflow lag time to less than three minutes for

our smallest flow rates, a negligible amount compared to experimental length.

A timed series of chamber images was captured with a computer-controlled 12-bit liquid-

cooled CCD camera. A combination of filters was used on the camera lens to filter out
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wavelengths save those near the peak absorbance (630nm). Pixel intensities were recorded and

converted to relative light absorbance using the computer program IPLabTM. Each pixel resolved

and area of the tank approximately 400[tm square.

The chamber was mounted in front of a diffuse light source composed of a bank of high-

frequency (60 MHz), high-output fluorescent lights controlled through feedback circuitry and fan

cooling to maintain a constant temperature. We also placed a photographic step tablet (a series

of progressively darkening gray filters) next to the tank along the light box. This stepped density

wedge, which was imaged along with the tank, calibrated shifts in light box intensity and acted

as a fixed point in space for calculating camera field drift (see the post-processing section).

The entire setup, diagramed from the perspective of the camera, is shown in Figure 3.

The light box is directly behind the tank. The photometer and pumps are represented as boxes in

the diagram, and not drawn to scale. We also connected a valve system to the bottom manifold -

this is necessary for the reservoir flushing, as described in the following section.

4.2.3 Experimental Procedure

Once the tanks were completed we ran the following procedure for each experiment.

Step 1: Pump the tank dry. We pulled air through a desiccating chamber and then through the

tank using a vacuum pump until the tank was dry (usually about 24 hours).

Step 2: Clean water fill. We saturated the tank with CO 2 and slowly pumped de-aired water into

the tank. The use of CO 2 with de-aired water produced rapid tank saturation, with small bubbles

dissolving within a few hours. We took pictures of the saturated tank with the camera to

determine ideal exposure times, using the image with the desired exposure time as the baseline

"clean" image (see post-processing section). We also measured the porosity of the tank by

calculating the total amount of water required to fill (subtracting for the manifold and tubing

volume). We then drained the tank, which emptied most of the water from the large bead areas

while leaving the small bead areas still saturated. In this way we calculated the porosity of both

bead packs. We calculated porosities to be between 0.4 to 0.45 for all tanks and in both the large

and small bead areas.

Step 3: Drain and dry the tank. We drained the water and dried the tank again.
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Step 4: Fill with dye. We saturated the tank with CO 2 and pumped de-aired FD&C Blue#1 with

a concentration of 30mg/I instead of clean water. Once saturated, the tank sat until dye

concentration was homogeneous, which we checked by taking hourly pictures.

Step 5: Run standard calibration curve. We ran a set of standards composed of 10 concentrations

through the spectrophotometer flow cell before beginning the experiment.

Step 6: Flush manifold. We flushed the lower manifold's reservoir clean of dye using de-aired

water. All outflow from the tank at the top manifold was clamped off and the valve system

attached to the bottom manifold (see figure 3) was configured to force flow through the bottom

manifold reservoir and out of the tank. Flushing took approximately 5 minutes, and left the

inflow tubing and manifold reservoir clean of dye. We then shut off outflow from the valve

system and reopened the outflow ports at the top of the tank.

Step 7: Begin experiment. We activated the pumps, the camera, and the spectrophotometer at

their desired pumping/acquisition rates. Start times were effectively simultaneous.

Step 8: Adjust equipment and sample. We took hand samples if necessary and adjusted time

intervals for measurement devices and refilled pumps as needed.

Step 9: Another standard curve. A final standard curve ensured that spectrophotometer readings

had not drifted significantly.

We repeated these steps for all experiments discussed in this paper save that steps 1 and 2

are only necessary once per tank, provided that neither the tank nor the camera are moved

between experiments. Steps 5 and 9 were not necessary if all concentration measurements were

done by hand sample.

4.2.4 Post-Processing

The post-processing of the data was designed to use light absorbance as a proxy for

concentration in both the outflow measurements and tank images.

Although we ran standard concentration curves both before and after each experiment,

we never found significant drift in the photometer. All standard curves were fit using least-

squares linear regression and this line was used to transform photometer absorbance

measurements into concentrations. All standards had very strong correlation, with r-squared

values in excess of 0.999. We performed calibration for both the 630nm absorbance peak and

the 409nm peak.
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Outflow concentrations were calculated from photometer absorption measurements at

both wavelengths. We then picked a specific concentration value (usually near 10mg/I) around

which both sets of measurements were in close agreement. Concentrations calculated using the

409nm calibration curve were used above the cutoff value, while the 630nm line was used below

the cutoff value. This method did not introduce any discontinuities in the data because of the

strong agreement between the two different estimates within this overlap range.

Breakthrough curve parameters were estimated using the computer program STAMMT-L

[Haggerty and Reeves, 2000] with the program configured to solve multi-rate, one-dimensional

mass transfer [Haggerty and Gorelick, 1995], using the same formulation as chapter 2, eq. 6:

ac ,d 2cm acm'"m+ F(x' t) =-- CcL 2n c

at Rm ax ax

where cm is the mobile domain concentration, vX the velocity, and aL the dispersivity, all mobile

domain parameters. Because the solute does not sorb, we set Rm, the retardation factor, to 1.

F(x,t) is a transient source/sink term incorporating multiple rates and volumes of mass transfer:

N a(cim)(

F(x,t)= p (2)
j=1 a

where cim is the concentration in the immobile domain, and Pf is the ratio of each immobile

domain pore volume to mobile domain pore volume, such that:
N

= (3)
j=1

with sto, the ratio of all immobile pore space to mobile pore space. Equation 2 is coupled with

equation 1 using:

a(cjm ).
at c=mjlcm -(cim)] (4)

where u mj is the rate coefficient of mass transfer.

In our experiments, we use cylindrical emplacements of low conductivity. If the pore

space inside the cylinder is truly advectively immobile, then solute movement is driven

exclusively by diffusion, as detailed in Crank [1975]. Diffusion into a cylinder has also been

described in detail in the form of multi-rate mass transfer and mass transfer memory functions

[Haggerty and Gorelick, 1995; Haggerty, et al., 2000]. If significant advection occurs in the

cylinder, analtyical studies of advective flowpaths through elliptical inclusions have been
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performed, of which cylinders are a specific case [Wheatcraft and Winterberg, 1985; Strack,

1989; Lessoff and Dagan, 2001]. Although we will make use of solutions for advection through

a cylinder, STAMMT-L does not incorporate advection-driven mass transfer in its solution

method. Therefore, we use the program to estimate parameters for diffusion-driven mass

transfer. Given the geometry of our experiment, we set STAMMT-L to use analytical solutions

for cylindrical diffusion [Haggerty and Gorelick, 1995] to calculate the C's and s's:
2 Da

mJ = r0,-T (5a)

4 (5b)sj - 2 Ptot (b

where ro0 is jth root of J0(x), the zero-order Bessel function of the first kind, a is the radius of the

cylinders and Da is the diffusion coefficient. STAMMT-L was set to truncate this infinite series

at 50 terms, but this introduces negligible error (see Haggerty and Gorelick [19951). Data was fit

with a log-weighted least-squares scheme in order to ensure good fits of breakthrough curve

tails. Although this methodology can simulate cylindrical diffusion and situations with no mass

transfer (by small values of st3t), it cannot simulate slow advection through cylinders. We

address this problem in the results section and Appendix B.

Processing the tank images required four discrete steps. In the first step, we adjusted

light intensity measurements to compensate for shifts in the brightness of the light box. We used

the wedge, which has several gray-level gradations on it, by measuring the average light intensity

in each of these gradations for each picture. We compared these values to the wedge brightness

levels of a baseline image and used the differences to recalibrate the light intensity values of all

pixels in the picture (see, for example, Detwiler, et al., [1999]).

In the next two steps we adjusted the picture to compensate for any drift in the camera

field during the experiment. We selected a particularly distinct object on the baseline image and

then systematically compared the other images to it (the feature of interest was a part of the

wedge that possessed a dramatic light intensity shift in both the x and y directions). We first

adjusted any images that differed by more than a full pixel, shifting them to be less than one

pixel in difference. We then corrected the partial pixel drift using the method described in

Detweiler, et al. [1999]. These three steps produced images that were that were normalized to

the same bases of position and background light intensity.
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Concentrations were calculated at each pixel by comparing that pixel's intensity in the

water-saturated tank image (step 2 of the procedure) and the dye-saturated tank image (step 4)

using the Beer-Lambert law:

C ln(I) - ln(Ii,) (6)
C0  ln(lI,) - ln(Iiw)

where Ci is the dye concentration at pixel i, Co is the concentration when the image is saturated

with dye (30 mg/I), Ii is the light intensity of pixel i, Ii, is the light intensity in the water-only

image of that pixel, and IO is the light intensity in the dye saturated image of pixel i.

4.3 Experimental Validation

We ran several diagnostics to confirm that our experimental methods and assumptions

were valid.

Lightbox Stability: The technique of compensation for shifts in light box intensity may fail if

light box intensity varies by a large amount. To check this we set the camera to take a picture of

the diffuser plate on the light box every hour for a period of approximately 200 hours. We gray-

level adjusted the images and examined the difference in the average light intensity at each hour

as compared to the intensity at the first hour. Prior to gray-level adjustment, it was low,

approximately 3 percent at the largest. After adjustment, changes dropped to less than 1 percent,

suggesting that lightbox variability is sufficiently low for our experiments, particularly after

gray-level adjustment.

Linearity of Light Transmission: To test our assumption that the Beer-Lambert law accurately

describes the relationship between absorbance and concentration we systematically flooded a

completed tank with multiple known concentrations of dye and took an image at each

concentration. Several small (10 pixel by 10 pixel) areas were selected and compared across all

images. We calculated the average concentration in each area using equation 6 (and water-

saturated and 30mg/i-saturated tank images). Figure 4a compares the calculated concentrations

to the actual concentration flushed into the tank by plotting the mean of the concentration

estimates from each image (circles) and the ideal prediction (solid black line). Our method

seems to have consistently overestimated actual concentration by a small amount, though
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conforming to a linear relationship (in log-log space) that deviates slightly from the ideal. The

data is more accurately fit by the relationship:

Cest =1.33C0. 2  (7)

where Cact is the true concentration, and Cst is the estimated concentration using the perfect Beer-

Lambert assumption (equation 6). This new function is shown in figure 4a as the dashed line,

and was applied to calculated concentrations after using the Beer-Lambert law, although this

function has minor overall impact.

High variability in mean concentration estimates can indicate that even relatively

accurate mean estimates will show unacceptably large noise on a point-by-point basis. We

looked at the coefficient of variation of the concentration estimates (the same ones used to

calculate the mean in the figure 4a), and the results (figure 4b) show a significant increase in

variability between concentrations of 0.2mg/l and 0.1mg/l, from a relatively low initial level.

We concluded that concentration calculations down to approximately 0.2mg/l (about two orders

of magnitude below our maximum concentration) are probably reliable, but lower values are

questionable.

Mass Balance: Lastly, we compared the calculated mean concentration in entire tanks during the

actual experiments to theoretical mean concentrations, which checks the reliability of

concentration estimates through mass balance. We examined calculated concentrations for

several images in all three tanks at identical flow rates (1.32ml/min). The errors in our

calculated total mass as compared to the theoretical (using the dimensions of the tank and the

estimated porosity) are plotted in figure 4c. Both the advective mass transfer tank and

advective-dispersive tank are in exceptionally good agreement with the theoretical. The

diffusive mass transfer tank, while in relatively good agreement, is not as accurate as the other

two tanks. We theorize a reason for this inconsistency in the following section of this work.

Agreement with the theoretical mean concentration tends to worsen as time goes on. This is due

to increasingly large areas with very low dye concentration, where the reliability of our estimates

tends to break down.

From our series of experimental validations, we conclude that our method is does a good

job of estimating concentrations throughout the tank, with the caveat that at concentration

measurements below approximately 0.01CO are probably of limited reliability.
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4.4 Results

We divide this section into two pieces, each focusing on a particular aspect of the

experiments. The first deals with the imaging results from the experiments as a convenient

means of describing the fundamentally different solute transport behaviors, the second with

analysis and comparison of the breakthrough curves.

4.4.1 Tank Images

Our method obtained images of the tanks as flow occurred that were accurate over about

two orders of magnitude in concentration (relative to initial concentration) and could be taken

with very high frequency. Space constrains our ability to show complete data sets, but we have a

website with downloadable movies of each of the three processes (http://web.mit.edu/harvey-

lab/www/RegimesPage/movs.html). We show in figure 5 a few images from each tank, spaced

through time to illustrate the three observed behaviors. The figure shows results from each tank

at the same flow rate (1.32 ml/min), with the same color scale (indicated by the color bar in the

lower right). Each tank image represents an area approximately 40cm long and 20cm wide.

Although flow in the actual tank was vertical, we have rotated the images by 90 degrees

clockwise for easier organization. Thus, flow is from left to right in these images, with initial

dye saturation everywhere, followed by constant flow flushing with clean water.

The first column shows results from the advective-dispersive tank. The images resemble

classic dispersion scenarios, with a front propagating through the entire tank and velocity

variation leading to spreading. The effects of the emplacements can be clearly seen - flow in

these areas is slower. It appears from the images that emplacement flow is fast enough that

solute movement does not tail significantly behind the main front. The emplacements appear to

only introduce spreading to the plume, not tailing.

The next two columns are images from the diffusive mass transfer tank (twice as many

images are shown). The first difference between this tank and the advective-dispersive tank

appears at early times - flow through emplacements in this tank is unobservably small at early

times. Flow diverts around the emplacements completely, leaving them saturated with dye

despite the fact that the main body of the plume has passed by. As time passes (second column),
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solute slowly diffuses out of the emplacements. After a day, there is still significant solute left in

the emplacements, while the advective-dispersive tank was basically clean after four hours.

The diffusive mass transfer tank's images display problems caused by beads settling in

the emplacements. Because beads were packed in a different orientation than the final tank

position, they sometimes settled enough that small gaps formed at the top of the emplacements.

Although the open spaces had no discernable effects on the flow field, they caused imaging

difficulties because the holes that were cut in the neutral density light filter did not completely

cover them. This left an unfiltered path for light to pass through the tank, resulting in

unacceptably high light intensity in these areas. To fix this problem, we were forced to cut small

slivers of filter and tape them over the areas where excess light penetrated the tank, which caused

a reduction in resolution in areas outside the emplacement that were filtered twice. The tape also

caused problems because it scatters a great deal of light. These problems are visible in the

images of the diffusive mass transfer tanks (see figure 5). The total area disrupted by these

measures was deemed small enough that visualization was still accurate, but the area behind

these filters and tape did introduce significant error into particular areas. We believe these errors

are largely responsible for the mass balance discrepancies in this particular tank (see previous

section).

The next column (first column on the second page of the figure) shows a close-up of an

individual emplacement, added because it is difficult to make out fine details in the full tank

pictures. The white box in the full tank picture denotes the particular emplacement. Images of

the emplacement show classic behavior for diffusion out of a cylinder - circularly symmetric

solute concentrations with highest values in the middle of the emplacement. This ring-like

pattern agrees with analytical solutions [e.g., Crank, 1975]. One interesting characteristic is that

the ring is not perfectly symmetric, but appears to be shifted slightly in the direction of flow.

This suggests that advection through the emplacement is extremely slow, but is large enough to

cause a small amount of solute displacement.

The final three columns show results from the advective mass transfer tank (again, two

columns of tank images, third column focusing on one emplacement). At early times, the

behavior in this tank is indistinguishable from the diffusive mass transfer tank - the main

advective front flows around emplacements, enabling significant tailing. Late-time behaviors,

however, diverge significantly - instead of diffusing out of the emplacements, solute primarily
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advects across them slowly. We can see this particularly in the images focusing on a single

emplacement (in both cases the same emplacement was focused on). Where the diffusive mass

transfer case shows a radial release of solute, the advective mass transfer case is more akin to

plug flow (with some dispersion) through the emplacement - clean water is transported in at the

upstream end and dyed solute flows out at the downstream end. This advection process,

although slow, occurs faster than diffusion, as overall concentration in the advective mass

transfer tank at 1035 minutes is already lower than in the diffusive mass transfer tank at 1710

minutes.

4.4.2 Breakthrough Curve Parameter Estimates

We fit the breakthrough curves for the experiments with the cylindrical diffusion mass

transfer model (see post-processing section). Parameter estimates are given in table 2. Because

the diffusion model did not fit the advective mass transfer case very well we used an alternate

model with alternate parameters to fit the breakthrough curve (detailed in Appendix B).

The advective-dispersive case is the simplest scenario to fit, as ideally there should only

be two parameters (velocity and dispersivity), a reasonable assumption given that the tank did

not visually appear to display mass transfer. However, we fit the breakthrough curves with the

cylindrical diffusion model to confirm this.

The breakthrough curves from the two experiments run in the advective-dispersive tank

are shown in figure 6. We were forced to take hand samples for these breakthrough curves,

which degrades both the quality and quantity of data. Use of hand samples was necessitated by a

pinhole leak that occurred in the top right corner of the tank. This leak caused the air to entrain

in one of the ourflow hoses. The flow cell cannot be used when air bubbles are present in the

outflow because the bubbles become stuck in the cell, invalidating absorption measurements.

The data points are shown as black circles on the graph, with the best fit using STAMMT-L

shown as the dotted line. Breakthrough curves are plotted in log-log format to allow for better

illustration of the tails.

Both experiments are fit well by the model. The data is noisy due to the use of hand

samples, but the curves qualitatively look like advective-dispersive scenarios - in log-log space,

the curve starts flat and then turns sharply in a downward linear fashion that continues unabated.
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Parameter estimates (see table 2) confirm no significant mass transfer occurring in either

experiment (low estimated values of Ito).

For the diffusive mass transfer experiments (figure 7) the appearance of the breakthrough

curves differs significantly from the advective-dispersive curves, with a significant tail apparent

in the curve. Outflow concentration in the tail falls steadily, but less rapidly than the dropoff

during advective breakthrough, and at late times resumes a sharper descent. This qualitatively

matches what we would expect the tail to look like (see Haggerty, et al., [2000]). Use of the

flow cell for these experiments allowed nearly continuous data (the lines in the graphs are

composed over 1000 data points each).

Fits of the breakthrough curves using the cylindrical diffusion model are difficult to see

in the figures. This is because the estimates fit the data almost perfectly, creating two curves

plotted on top of one another. We illustrate a few of the actual data points with black circles.

Parameter estimates (table 2) for these two experiments agree well with the known

physical parameters of this system. Given the volume of the emplacements (approximately 1/3

of the tank), we would estimate a Pt of 0.5, slightly higher than the actual estimates. Estimated

diffusion coefficients also possess reasonable values. STAMMT-L estimates a value of 3.5*10-

m I2/s for both experiments. We measured the diffusion coefficient of the dye in open water to

be 5.6* 10-0 m2/s, suggesting a bead pack tortuosity of 0.6, a reasonable value for packed spheres

[Bear, 1972]. Estimates for the diffusion coefficients in the two experiments differ by less than 2

percent. This reinforces the conclusion that the tailing in this tank is caused by diffusive

processes, which have time scales that are independent of head gradients.

The advective mass transfer tank shows breakthrough curve behavior that does not

qualitatively resemble either advective-dispersive or diffusive mass transfer (figure 8). There is

clearly tailing in both experiments, but the tails display different characteristics than in the

diffusive mass transfer case. Figures 8a and 8b plot the advective mass transfer experimental

data along with the diffusive mass transfer data at the same flow rate. The early part of the tail is

much flatter in the advective mass transfer scenario, i.e., outflow concentration is higher. In the

later parts of the tail, the advective case takes a much sharper downturn than the diffusive

scenario, and quickly drops below the diffusive scenarios' outflow concentration. The

differences between the advective and diffusive curves at the faster flow rate (1.32ml/min) are

greater than at the slower rate.
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A good fit to the advective mass transfer curves with the cylindrical diffusion model is

not possible. Figure 8c shows that the best fit for the faster (1.32ml/min) experiment fails to

adequately describe the breakthrough curve (and also estimates unrealistic values, like a P,, of

0.78). We were forced to develop our own model to fit the breakthrough curve.

Appendix B describes the model in detail. We solved analytically for the advective flux

out of a cylinder and discretized the outflow into streamtubes, then incorporated longitudinal

dispersion/diffusion by applying the analytic one-dimensional solution for advection and

diffusion to each tube. The fit from this model, shown in figure 8c, fits the breakthrough much

better than the diffusion model. The weakness of the fit is at early times in the tail, suggesting

that the one thing our model does not incorporate, lateral dispersion/diffusion, is actually

significant at early times. The overall fit, however, is satisfactory for our purposes, particularly

in demonstrating that it is slow advection that is driving much of the tailing.

Some interesting characteristics are evident in the advective mass transfer parameter

estimates (table 2). The estimate of Vi, the velocity inside the emplacements is about two orders

of magnitude less than outside in both cases. This supports our estimate that the conductivity

difference between the two regions is about a factor of 300. The faster experiment shows a

velocity difference slightly greater than a factor of 100, while the slower experiment shows a

difference of slightly less than a factor of 100. This is due to our model becoming less accurate

as diffusion becomes more important, with our model estimating a faster velocity to account for

faster movement of solute produced by relatively larger diffusion.

Dispersivity estimates in the mobile domain were much closer to dispersivity estimates in

the emplacements than the velocity differences. Dispersivity inside the emplacements is much

larger than the average bead diameter in the emplacements, suggesting that diffusion must also

play a role inside the emplacements.

Differences between the advective and diffusive mass transfer experiments are

substantially greater for the faster flow rate experiment than the slower. In fact the advective

mass transfer curve for the 0.66ml/min experiment has a shape somewhere between the faster

advective mass transfer curve and a classic diffusive mass transfer scenario, which suggests that

neither advective nor diffusive mass transfer processes completely dominate the experiment.
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4.5 Discussion

The experiments show clear behavioral differences in the three tanks, both at the small-

scale level (tank imaging) and at the upscaled level (breakthrough curves). This points to

different fundamental behaviors in connected conductivity fields - traditional advection and

dispersion, mass transfer dominated by diffusive processes, and mass transfer dominated by

advective processes.

One might argue that the advective and diffusive mass transfer tanks are not actually

different - increasing the head gradient in the diffusive tank or decreasing it in the advective tank

by sufficient amounts would create similar scenarios. This is true, and suggests that mass

transfer is a fundamentally competitive process in these systems. In our experiments,

conductivity contrast serves as a controlling component of advective velocity through the low

conductivity areas, dictating the ratio of the advective time scale to the diffusive time scale in

these regions. The faster process will dominate the mass transfer. This is in contrast to the

advective-dispersive tank, where the conductivity contrast is so low that mass transfer does not

occur, at any flow rate, i.e., there is no immobile domain.

We can see the lack of an immobile domain by comparing the velocity estimates for the

three experiments with the same flow rate (1.32ml/min). Velocity estimates in the two mass

transfer tanks are close to each other (within 10 percent), both approximately 1.5 times the

estimate for the advective-dispersive tank. This is because the emplacements take up 1/3 of the

total volume of the tank, and if emplacements are not part of the mobile domain, flow is

restricted to 2/3 of the tank. Thus flow must move 1.5 times as fast in order to maintain the same

volumetric flow rate. The velocity difference points to an immobile zone (or, more accurately, a

low mobility zone) that is present in the mass transfer tanks but absent in the advective-

dispersive tank.

Dispersivities in the three tanks are relatively close to one another, with values ranging

from 0.46cm to 0.7cm, a length scale of about half of the emplacement radius. The one outlying

experiment is the advective-dispersive tank with a flow rate of 4.1ml/min, which has a

dispersivity estimate that is twice as high as any other experiment. We attribute this to the fact

that air entrapment in the right-hand outflow tubing was severe enough in this experiment to

frequently block flow. This led to larger apparent spreading as flow was forced to move laterally

across the tank to exit through the other two outflow tubes. Given how much higher this
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dispersivity estimate is than all of the others, and given that this was the only tank that suffered

serious outflow problems from trapped air bubbles, it seems reasonable to attribute this

discrepancy to bubble entrainment error. One additional observation is that dispersivity

estimates increase as the conductivity contrast in the tanks increases (this is particularly visible

by looking at the results for the three experiments with flow rates of 1.32ml/min). This is

consistent with general stochastic theory regarding dispersivity as a function of field variance,

and consistent with our numerical simulations later in this thesis.

It is clear that fundamentally different processes are driving the mass transfer in the

advective and diffusive mass transfer tanks. The shape of the breakthrough curves suggests that

advection-driven mass transfer occurred sooner than that caused by diffusion in the advective

mass transfer experiments. This is the result of the characteristic time of diffusion in

emplacments significantly exceeding the characteristic time for advection, thus causing

advection to dominate. We see further qualitative evidence of this in the breakthrough curves.

The advective mass transfer experiment with the lower flow rate more closely resembles its

corresponding diffusive mass transfer experiment than does the faster experiment. This points to

advective processes being significant to the mass transfer process - as flow rate (velocity)

decreases, the rate at which advective mass transfer occurs decreases toward the time scale of

diffusive mass transfer. In a diffusion-controlled mass transfer process, the tail should not be

affected by the head gradient, as was the case in the diffusive mass transfer experiments.

This all points to both diffusion and advection acting as a coupled process in driving

mass transfer in connected fields. Although it is possible for one process to dominate the other,

there is no reason to believe that situations with more closely equal time scales do not exist in the

real world, which could have important implications for parameter estimation and remediation

decisions.

4.6 Conclusions

The flow experiments discussed in this chapter visualized small-scale flow while

simultaneously measuring outflow concentration from an artificially constructed porous medium.

The system was designed to allow high resolution in concentration measurements so that low

concentrations at late times could be observed. The system was also unique in creating a

connected conductivity field with conductivity differences of greater than three orders of
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magnitude, much larger than any previous visualization experiments using constructed media.

These large conductivity differences create conditions that drive three fundamentally different

upscaled behaviors - advection with dispersion, advective mass transfer, and diffusive mass

transfer. These different behaviors can be observed both inside the experimental apparatus and

in the tank outflow, demonstrating that fundamentally different small-scale behaviors drive

fundamentally different upscaled behaviors.

Parameter estimates performed on the breakthrough curves give estimates of diffusion

coefficients, capacity coefficients, and dispersivities that are reasonable given the physical

configuration of the tanks and the dye used. These estimates confirm our qualitative

observations of solute transport behavior in the three different tanks. Parameter estimates

confirm, for example, that no significant mass transfer occurs in the advective-dispersive tank.

Diffusion coefficient estimates also confirm that the mass transfer process in the diffusive mass

transfer tank is almost entirely diffusion-driven. For the advective mass transfer tank, we were

forced to develop our own simplistic model to describe the flow (see Appendix B). Although the

model does not fit perfectly, it demonstrates that our characterization of the mass transfer as

primarily advective in nature seems to be reasonable. Furthermore, as we reduced the flow rate

(and thus the hydraulic gradient) in the advective mass transfer tank, breakthrough began to look

more like the breakthrough in the diffusive mass transfer case. This points to a mass transfer in

this system being at least partially competitive, in the sense that either diffusion or advection or a

combination of both can dominate the mass transfer, depending on various conditions of the flow

field.
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Tank Large Bead Size Small Bead Size K Contrast Filter
Advective-Dispersive 2.1 mm 900 gm 6 50%

Advective Mass Transfer 2.1 mm 135 gm 300 12.50%
Diffusive Mass Transfer 2.1 mm 57 gm 1800 6.25%

Table 4-1: Comparison of the bead sizes and light filters used in the three tanks. The large
bead size indicates the mean bead diameter of the beads outside of the emplacements, the
small bead size represents the mean diameter inside. The approximate conductivity ratio
between these two regions is calculated, with edge effects incorporated. The filter
column represent the percent of light was allowed to enter the large bead area (100% was
allowed to enter inside the emplacements).
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Figure 4-1: View of experimental tank at various stages of construction from various
angles. IA shows a side view before tightening with screw plate. lB shows a top view
after it has been secured with pressure bars and the screw plate. The flow area for the
experiment is the open space between the two side rails. IC shows a front view of the
tank with the manifolds added, i.e., the completed tank.
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Figure 4-2: A detailed side view of the two manifolds, both specially designed for this
experiment. The top manifold is designed to minimize mixing volume of the outflow and
to prevent stagnation zones or heterogeneities along the outflow boundary. The bottom
manifold has a reservoir that can be flushed without significantly affecting the interior of
the tank, establishing a much more reliable boundary condition.
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Figure 4-3: The completed experimental setup from two different perspectives. Shown
at the top is the view, as seen by the camera, of the system, with the lightbox behind the
tank. The valve system is used to flush the reservoir in the inflow manifold clean of dye
prior to the experiment (see step #6 in the procedure). Clean water is then flushed
through the dye-saturated tank, with tank outflow sent to the photometer. The bottom
figure shows a side view of the path that light follows from the light box to the camera.
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Figure 4-4: Experimental methodology checks. The first graph shows mean estimated
concentrations using the Beer-Lambert assumption in one of our tanks, versus the known
actual concentration, along with a linear best fit that varies slightly from the ideal. The
second figure shows the coefficient of variation of the concentration estimates, which
remains low until a sharp increase at a concentration of 0. lmg/l. The third graph shows
the percent error in total dye mass as measured by camera images compared to the actual
dye mass. Overall agreement is good, despite some deterioration with time.
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Advective-Dispersive Experiment
Flow rate = 1.32 mil/min

time =12 min
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I
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time = 30 min
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time = 810 min

time = 1710 min

Figure 4-5: Series of color images representing solute concentration as a function of time
for each of the three tanks, all run with the same flowrate. Concentration is represented
as fraction of initial, as noted on colorbar to the right. Close up of a single emplacement
is shown for the two mass transfer cases, illustrating fundamentally different behavior,
with one dominated by diffusion and the other by advection.
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Table 4-2: Parameter estimates for the six breakthrough curves from the experiment. For

all six, a mobile domain velocity and dispersivity were calculated. For the advective

diffusive and diffusive mass transfer experiments, a rate coefficient and partition

coefficient were also calculated, with an assumed model of cylindrical diffusion. For the
advective mass transfer case, we used our own model, estimating instead the (slow)
velocity inside the emplacement, and the longitudinal dispersivity of this slow advection.
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Tank Flow Rate Velocity Dispersivity Diff. Coeff. Vin Dispin

(ml/min) (cm/min) (cm) (cm 2/min) (cm/min) (cm)

Advective- 1.32 0.195 0.46 0.0058 0.04 NA NA
Dispersive 4.1 0.57 1.22 0.004 0.01 NA NA

Diffusive Mass 0.66 0.149 0.68 0.00021 0.48 NA NA
Transfer 1.32 0.297 0.55 0.00021 0.46 NA NA

Advective Mass 0.66 0.13 0.6 NA NA 0.0016 0.19
Transfer 1.32 0.275 0.7 NA NA 0.0025 0.28
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Figure 4-6: Advective-dispersive experiment breakthrough curve data and best fits. The
shape of the curves (and parameter estimates) indicates little mass transfer (tailing) is
occurring. Sporadic data and noisy data caused by air in outflow, necessitating use of
hand samples instead of continuous flow cell reading in photometer.
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Figure 4-7: Diffusive mass transfer experiment breakthrough curve data and best fits. Data
set includes more than 1000 points. The model fits both curves with great accuracy.
Identical diffusion coefficient estimates indicate that diffusion is the controlling process
driving tailing, and P estimates are consistent with expected magnitude.
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Mass Transfer Data Comparison: q=1.32mi/min

Advective Mass Transfer Data
--- Diffusive Mass Transfer Data

100 1000
Time(minutes)

Mass Transfer Data Comparison: q=0.66mi/min

Advective Mass Transfer Data
- Diffusive Mass Transfer Data
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Figure 4-8: Advective mass transfer breakthrough curves. The first two figures show the
advective mass transfer breakthrough curve as compared to the diffusive mass transfer
curve with identical flow rate. In the higher flow rate experiment (q=1.32ml/min), the
advective mass transfer case displays significantly different breakthrough characteristics.
At the slower flow rate, the advective case tends to look more like the diffusive case
(q=0.66ml/min). The third figure shows a comparison of the breakthrough curve for the
1.32ml/min experiment with a fit using our simple model that incorporates advection
through cylinders and longitudinal dispersion.
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Chapter 5

Delineating Different Regimes of Solute Transport

5.1 Introduction

The previous chapter demonstrated that a connected field with significant conductivity

contrast does show mass transfer behavior, confirming our work from chapter 3. We also were

able to demonstrate mass transfer driven by both advection and diffusion, and more importantly,

that these two different small-scale processes have a meaningful impact on upscaled behavior. It

is also clear from the previous chapter that mass transfer driven by advection and mass transfer

driven by diffusion are not necessarily separable processes. It is plausible to have one of the two

processes playing a dominant role, but it is also completely plausible for both to simultaneously

affect solute transport in a significant way.

In this chapter, we attempt to take the observations and questions raised in the previous

chapter, and develop a somewhat more general framework into which the results of our

experiments fit. Specifically, we would like to know what conditions cause one or the other

mass transfer process to dominate. What effect does the conductivity variability or contrast

have? What effect does the hydraulic gradient have? What conductivity contrasts are too small

to drive any mass transfer? Do our general answers to these questions seem to fit with our

results from the previous chapter? Are our generalizations corroborated by any field data?

We attempt to answer this question by simulating flow and transport through two-

dimensional, isotropic random fields, again using a particle tracking approach. This time, we

make the field binary, i.e., it only has two conductivity values. These fields are more complex

than the cylindrical emplacement fields used in our experiments, which is advantageous to
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behaviors are possible - diffusive mass transfer, advective mass transfer, or equilibrium mass

transfer (which can simply be modeled with Fickian spreading).

Lastly, we compare our results in this chapter with the results from our experiments in the

previous chapter, and with results from extensive simulations studying the Livermore aquifer.

We find our results to be in good agreement with those results, though, as noted earlier in this

work, we often can only compare results in the most general of senses, i.e., is mass transfer

occurring, and what process tends to dominate it.

5.2 Methods

As with the numerical simulation in chapter 3, we performed particle tracking on a series

of random conductivity fields. The fields were created by first generating a lognormal

multigaussian conductivity field using the method of sequential gaussian simulation in GSLIB

[Deutch and Journel, 1997], as in chapter 3. The field was isotropic, two-dimensional, and 800

points horizontally by 500 points vertically.

In creating the binary field from these multigaussian fields, we again exploited the

characteristic of multigaussian fields that values closer to the mean are more connected. We

took the 50 percent of the multigaussian field with values closest to the mean and assigned a

single value to them. The other 50 percent were assigned another value.

The transformed field is shown in figure 1, with black representing one of the

conductivity values (the values closest to the mean in the original multigaussian field), white

representing the other. The black conductivity values are clearly more connected, forming field-

spanning channels, while the white conductivity values form isolated blobs of various

geometries. Because of this, we refer to the conductivity of the black area as Khannel and of the

white area as Kblob.

We now have an isotropic binary conductivity field with one conductivity more

connected than the other, possessing an approximate correlation length (k) of 15 blocks. We

created multiple conductivity fields by varying the ratio of Kchannel to Kbob. Because we are

interested in studying relatively high contrasts between the two conductivities, we use a

parameter we called Yc.,, which expresses this ratio logarithmically:

Ycon = Ini channel
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crafting more general conclusions. One could argue, however, that such fields are less complex

than those simulated in chapter 3, and that this is perhaps a disadvantage of this approach.

We would argue, though, that overall, a binary field is actually a more realistic

description of some aquifers than is the smooth, continuous fields of chapter 3. While those

fields are useful in motivating the exceptional importance of connected extreme conductivity

structures, it is also worth noting that many aquifers tend not to look so smooth. As noted in the

background section of this work (specifically, section 2.1.3), there is ample evidence to suggest

that many aquifers are not particularly continuous in nature. The MADE site, for example,

appears to consist of basically two conductivities (Harvey and Gorelick, 2000). The Livermore

site (LaBolle and Fogg, 2001) possesses four fundamental facies, but three of these facies are

very similar and have conductivities substantially larger than the fourth. The Wilcox aquifer

(Fogg, 1986) also seems to have a somewhat bimodal distribution of conductivities, driven by

two fundamentally different facies. This is not to say that this is true of all aquifers, as there are

studies that support the more traditional lognormal distribution of conductivity values (e.g.,

Hoeksema and Kitanidis, 1985). Ultimately, the validity of such assumptions is a function of

both the specific aquifer and the scale of interest. However, we think that a binary representation

is an accurate approximation for many real scenarios of interest.

Furthermore, the binary nature of the field adds to the power of conclusions, because we

can specifically look at what differences in conductivity tend to be conducive to which forms of

mass transfer (or even no mass transfer at all). This is something that we simply could not do

with a continuous field.

Ultimately, we find that the results in this chapter cannot be summarized simply by

words, requiring a figure to fully characterize the results. However, we shall try to briefly

summarize the results here. We find that the existence of mass transfer is driven exclusively by

conductivity contrast, not by other characteristics like gradient or diffusion coefficient. Once we

enter conductivity contrasts where mass transfer begins to occur, things become more

complicated. There exist three fundamental time scales that need to be accounted for, as all three

are important to describing the solute behavior. The first is the time scale of advection in the

mobile domain, i.e., the time to advect through the high conductivity part of the aquifer. The

second is the time to advect through low conductivity regions. The third is the time to diffuse

into and out of low conductivity regions. Depending on the ratios of these time scales, three
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We study a variety of different field values of Y,.,, including cases where its value is negative

(i.e., cases where KbIb is higher than Kchannel). In all cases, the geometric mean conductivity (i.e.,

the arithmetic mean of log-conductivity) was kept the same.

Velocities within the field were again calculated using the finite-difference method to the

two-dimensional groundwater flow equation, assuming constant head boundaries on the left and

right of the field, no-flow boundaries on the top and bottom. The porosity of the field was set to

0.3 everywhere, with a hydraulic gradient of 0.02 and flow moving from left to right, although

we eventually non-dimensionalize all of the key parameters, rendering these assumptions

unimportant (save the assumption that porosity is constant throughout the field).

Initial particle placement simulated equilibrium saturation. This was done by placing

15,000 evenly spaced particles in a subset of the field, an area of 600 blocks by 400 blocks near

the center of the field, in order to eliminate edge effects near the boundaries. Particle

breakthrough was recorded along a vertical line that composed the right-hand boundary of the

initial saturated area. A saturated initial condition mimics our experimental starting conditions in

chapter 4, and allows solute to interact with all areas of the domain, giving us a more complete

picture of the subsurface.

Particle simulation incorporated both an advective and diffusive component, using the

same method as discussed in chapter 3. Movement was composed of discrete time steps in

which advection was explicitly computed through the velocity field, and diffusion was added as

a gaussian random step in both the x and y-directions. This method allows curved instead of

linear advective steps for the particles, which is essential in allowing particles to flow around

sharp block interfaces with large conductivity contrasts while still allowing discrete time steps to

incorporate diffusion. For fields such as ours, the capability is obviously essential - traditional

interpolation methods with linear advective displacement were found to be incapable of

preventing advection into low conductivity areas.

Breakthrough curve parameters were calculated using the one-dimensional, first-order

mass transfer model. This model is simple to perform estimation with and does not make

assumptions about the process that controls mass transfer (unlike, e.g., cylindrical diffusion).

The model (as noted in chapter 3), is expressed as:

ac ,aci D a 2cm v, acm
dt @ ""t- Rm " Rm '"(2a)
at at RM ax2 RM ax
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-c- = a(cm - cim) (2b)
at

with the initial condition of:

cm(t = 0) = cim(t = 0)= C0  (3)

i.e., the aquifer is initially saturated at concentration Co. We assume no retardation, i.e., Rm is

equal to 1. This leaves four unknown parameters, v,,, D, cc, and s, to estimate.

We non-dimensionalized our estimates to ease comparison between different fields:

V'= vX (4a)
V mean

D
Pe = - (4b)

vxx

a'1 = a(4c)
Vmean

With V, Pe (the Peclet number), and c' the normalized velocity, dispersivity, and rate coefficient,

respectively, and vman and L the arithmetic mean velocity and length of the field. P is inherently

non-dimensional and is the ratio of immobile domain volume to mobile domain volume.

In addition to varying Y,0 . in our simulations, we also varied the parameter we refer to as

the normalized diffusion coefficient, defined in similar fashion to the parameter of the same

name in chapter 3:

L
d'= d (5)

2 mean

where d is the diffusion coefficient. This non-dimensionalization expresses the average time to

advect across the field divided by the average time to diffuse into and out of average-sized KbI.b

regions. For example, a d' value of 1 would indicate that particles tend diffuse in and out of the

Kbieb regions at about the same rate that they advect across the field.

Parameters were estimated using breakthrough curves expressed in the form of total mass

fraction remaining in the system using STAMMT-L. Mass fraction curves were chosen because

they are much smoother (and thus more reliably fit) than breakthrough curves converted to

concentration form. We illustrate the accuracy of fit in figure 2, with curves from simulations in

a field with Ycon of 6 and d' of 0.01 and 3. These curves and their fits are typical of our results.

The d'=0.01 curve shows significant mass transfer, as seen by the tail in the curve, and is fit
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relatively well with the single-rate model. The d'=3 curve shows no mass transfer, and our

model also fits it accurately.

5.3 Results

5.3.1 Flow Characteristics

Normalization of parameter estimates is essential because flow characteristics change as

a function of Ycon, particularly mean velocity. We illustrate this in figure 3, which shows the

effective conductivity of the field as a function of Ycon, expressed in terms of a value of p. This p

value is derived from the formulation for the effective mean of two values (in our case, two

conductivities):

Kef = c hannel + lob

where Keff was calculated for each field using Darcy's Law and the volumetric flux and hydraulic

gradient. A p value of -1 defines the harmonic mean, 0 the geometric mean, and 1 the arithmetic

mean.

The general assumption is that an ensemble of conductivities not aligned in layers has an

effective conductivity equal to the geometric mean of the ensemble, as discussed earlier.

However, figure 3 indicates that Y, > 0 creates fields with p > 0, i.e., the effective conductivity

of the field moves toward the arithmetic mean, and Ycon <0 yields an effective conductivity

trends toward the harmonic mean. This is consistent with behavior in continuous connected

fields seen in chapter 3 of this work - connected high conductivity enhances flow and connected

low conductivity channels act as barriers to flow.

As noted earlier, the mean conductivity of all fields was the same, thus mean velocity of a

field must increase or decrease as Ycon changes. For example, the field with Ycon of 8 has a mean

velocity of 7.7cm/day, while the field withY coof 6 has a vn of 3.1cm/day (assuming mean

conductivity of 15.9cm/day, hydraulic gradient of 0.02 and porosity of 0.3). This is one reason

estimated parameters were normalized - to increase the ease of comparing results between

different fields. It also allows us to express the magnitude of various parameters in comparison

to the magnitude of other important field characteristics.
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5.3.2 Parameter Estimates

Estimation of normalized parameters was performed on the breakthrough curves

produced by particle tracking over a range of Ye,, and d' values. Simulations were performed on

fields with Ycon values of 0, 3, 4, 5, 6, 7, and ±8. For each field, simulations were run with

d' values of 0.01, 0.03, 0.1, 0.3, 1 and 3.

We found no significant mass transfer when Ye,0 <0. This means values of P were small

(none exceeded 0.05), and values of a' are irrelevant. Further, all velocity estimates were found

to be within 10% of vmean. Only Pe (the normalized dispersivity) showed significant variability

when Yeo, was negative, as shown in figure 4, which maps the Pe estimate as a function of the

Yco value of the field and the d' value of the simulation. Dispersivity increases as the contrast in

conductivities increases and decreases with increasing diffusion (d'). That dispersivity would

increase in more variable conductivity fields agrees with general theory regarding transport in

heterogeneous aquifers, but the behavior as a function of d' does not. Most conventional theory

treats diffusion as a Fickian process that is added to dispersion. This is not the case in our

simulations, although we can be certain that a sufficiently large d' would dominate all spreading

in a Fickian manner and thus increase the dispersivity. We discuss this further later, but it should

be noted that this behavior bears similarity to results from Dagan and Fiori [1997], who worked

with pore-scale dispersion modeled in a fashion similar to our diffusion.

When Yco is positive there is significant variation in all four estimated parameters, as

shown in figure 5. Both velocity (v') and partition coefficient (P) show similar trends -

estimated values are higher at larger values of Ye0 , and lower values of d'. The division of our

aquifer into a high (mobile) conductivity half and low (immobile) conductivity half, suggests that

in ideal cases (i.e., a situation in which the low conductivity regions are truly immobile) P should

be 1 and v' should be 2. In such a situation, we would also predict a strong correlation between

the trends of P and v', with 1+P being close to v'. Our results show this behavior, as values of P

reach a maximum of about 1, and values of v' reach about 2, suggesting a situation in which half

of the domain is mobile and half is of much lower mobility (provided Yco0 is high (>7) and d' is

low (<0.1)).

We can use the P plot to determine where significant rate-limited mass transfer occurs.

The cutoff for significance is somewhat arbitrary, but we suggest a P of approximately 0.2,

indicating less than 20 percent of the aquifer is contributing to mass transfer behavior, i.e., the
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tail is relatively small. In fields that display high values of P at some values of d' and low values

at others, P values indicate that the amount of the immobile domain contributing to tailing

behavior is decreasing as d' increases.

Normalized rate coefficients (a') increase with decreasing Y,0 ,, and increasing d'.

Estimates of c' relate mean mass transfer time to mean travel time, so increasing d' increases the

speed of movement in these regions, thus increasing a'. Decreasing Yen creates higher relative

velocities in the low velocity regions, allowing solute to move through immobile regions more

quickly and increasing a'.

Dispersivity shows the most complex behavior of all parameters. The first, most general

observation is that dispersivity tends to increase as Yonincreases, consistent with stochasitic

theory and qualitatively consistent with dispersivity estimates in our flow visualization

experiments. Below Y,.. of about 4.5, the behavior of the dispersivity is similar to negative Yeon

cases, but with a much stronger reduction as a function of d'. Above Yeo of 4.5 behavior is more

complex - dispersivity initially increases, then decreases, and increases again at high d'. This

behavior is illustrated in figure 6, which shows Pe estimates for the field with Ye0n=6, carried out

to larger d' than shown in figure 5. The behavior past d' of 45 is speculative, indicated by the

dashed line with the question mark. Dispersivity estimates increase up to a d' value of about 10,

then sharply decrease out to d' of 30, and then begin increasing again. This complicated

dispersivity behavior, as with the negative Ycon cases, is contrary to general theory on coupling of

dispersion and diffusion. We speculate on what drives this behavior in the following section.

Lastly, we compared the relative influence of diffusive and advective processes in the

mass transfer behavior observed by comparing parameter estimates, using a technique similar to

the one we used in chapter 3. We reran simulations with the hydraulic gradient (and thus

velocity) reduced to half of its original value. Using the same diffusion coefficients as the

original case, we reran the particle tracking simulations and estimated breakthrough curve

parameters, with particular attention to the new estimates for a', which we call a'2. We show in

figure 7 the ratio of a' to a' 2 as a function of Yco and the mean d'. The mean normalized

diffusion coefficient is used because changing the hydraulic gradient by a factor of 2 also scales

the normalization factor (see equation 5).

If advection was the only process driving mass transfer, then values of the ratio of a'

should be 2, since mass transfer will occur twice as fast when the velocity is twice as high. If
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diffusion exclusively drove mass transfer, the estimate of ' should be identical in both cases,

i.e., the ' ratio should be 1. Figure 7 shows an a' ratio closest to 2 at Yc0. between 5 and 7 and

relatively low d' values, while higher values of Ye and d' drive the ratio in the direction of

diffusive mass transfer. We hypothesize why this occurs in the discussion section that follows.

The separation between primarily diffusive mass transfer and primarily advective mass transfer

is somewhat arbitrary. Wherever the line is drawn, it is clear that there is a significant area in

which neither process completely dominates the tailing behavior, and therefore both processes

play a significant role.

5.4 Discussion

In a broad sense, our simulations identified two fundamentally different types of binary

conductivity fields - ones with solute transport described by mass transfer models, and ones

without. However, we can break these into qualitatively described behavioral subcategories,

summarizing the complete results in figure 8, which shows a qualitative description of the

behaviors as a function of Yeo0 and normalized diffusion coefficient. The figure also notes where

our experiments in chapter 4 would occur with this system of demarcation - Y.,0 computed by

the estimated conductivity difference inside and outside the emplacements, d' by the

characteristic time to diffuse out of an emplacment (given the radius and estimated diffusion

coefficient) compared with the mean velocity of the field (estimated velocity of the mobile

domain divided by 1+P).

When Yco is less than 0, channels of low conductivity impede flow, leading to a lower

effective conductivity for the field. These low K areas are rarely isolated from flow, which

prevents conditions that lead to tailing. Heterogeneity in the flow field leads to dispersion that

increases as the conductivity contrast increases, but the addition of diffusion averages out

velocity variability experienced by the solute, decreasing dispersivity.

When Yco is between 0 and approximately 4.5, channels of high conductivity promote

flow around low K areas, but the conductivity contrast is not sufficient to create immobile

regions. Heterogeneity promotes some degree of tortuous flow around low K areas, so

dispersivity is higher than in the negative Yeo fields of equal variance. Additional diffusion

reduces dispersion, for similar reasons to negative Ycn case, but reduces it by a larger amount.
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When Yeo exceeds 4.5, fields have a conductivity contrast high enough to create isolated

low velocity zones with much slower flow than the high conductivity channels. Tailing can

occur by two processes - slow advection through the low velocity regions, or diffusion into and

out of them. The time scale of both processes is affected by the geometry of the low K regions,

but the two processes differ in other controlling factors. In addition to geometry, diffusion-

driven mass transfer is controlled by the diffusion coefficient, while advection-driven mass

transfer is controlled by the hydraulic gradient and the conductivity of the region (or more

accurately, the conductivity ratio between the high and low areas). The process that occurs most

quickly dominates the tailing, though it is possible for both processes to occur at similar rates.

This explains the observation that increasing YeO and d' increases dominance by diffusive mass

transfer - increasing d' speeds up diffusion while increasing Yco reduces the relative

conductivity of isolated areas, thus decreasing the advective velocity in these regions.

Also, P tends to decrease from it's maximum possible value (in our case, 1) as Yco

decreases and d' increases. This is a result of the varying geometry of the low conductivity

regions. The time scale to diffuse or advect into and out of some regions is shorter than others.

When Yco decreases, the relative time to advect through these regions decreases. Increasing d'

decreases the time to diffuse. Low conductivity areas with short time scales of advection or

diffusion will not contribute to significant tailing, as solute is not slowed down sufficiently in

these regions. Eventually almost all of the advective and diffusive time scales are too fast to

drive tailing, and thus we leave the regime of solute transport that is best described by the mass

transfer model. In fact, during transport in these scenarios, most solute spends approximately

equal amounts of time in mobile and immobile regions, behavior described by classic

equilibrium mass transfer with retardation factor equal to 1+P. However, from a model

standpoint, this behavior can be described completely with Fickian spreading, and thus we do not

require the use of a mass transfer model.

Dispersivity behavior in fields with significant mass transfer is quite complex. Initially,

dispersivity increases with d', then begins to decrease once d' reaches about 3, then begins

increasing again once d' reaches 30. This runs counter to the usual method of incorporating

diffusion into upscaled models of solute transport, in which diffusion and dispersion coefficients

are added to each other to get the effective Fickian spread. We think that the dispersivity

behavior in our fields results from solute that quickly moves in and out of immobile regions
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becoming incorporated into the dispersivity estimate, i.e., quick mass transfer introduces

additional spreading that looks like dispersion. As d' increases, the amount of solute that falls

into this category increases, until we reach a point where only equilibrium mass transfer occurs.

At this point, we see behavior similar to that observed in the lower Yco0 fields - added diffusion

reduces dispersion by evening out velocity variability. Finally, once d' becomes very large,

diffusion acts as a Fickian spread (equilibrium mass transfer conditions are maintained) but is so

large that it dominates spreading and exceeds spreading driven by velocity variability.

Presumably, this increase continues indefinitely in an approximately linear fashion. How

realistic scenarios with such large d' are in the real world is probably questionable.

This points to a key feature of our simulation results - use of non-dimensional

parameters. It is possible to extend our results to a variety of different aquifer scenarios,

provided that the aquifer is approximately binary in its conductivity distribution and one of the

conductivities is significantly more connected than the other. For example, we can compare our

results to those from the Livermore site simulations, as detailed in Labolle and Fogg [2001].

Although the site has four facies, three have relatively similar hydraulic conductivities, much

higher than the fourth. The highest conductivity is the most connected, the lowest (which takes

up about 56% of the volume) is the least, with values that lead to a Yco of approximately 10.5.

Using the geometry of the low K regions, the regional head gradient, porosity, the diffusion

coefficient of the contaminants, and the simulated travel distance, we estimate a d' value of 0.2.

Labolle and Fogg find extensive tailing driven by diffusion, as well as the fraction of mass

entering low K regions showing a strong dependence on the diffusion coefficient value. This

behavior is precisely what our simulations would predict, despite the fact that this field site is not

perfectly analogous to our simulations. Although our model can predict general behavior, it does

not predict the precise appearance of breakthrough curves, which are dependent on the specifics

of the site in question.

The caveat with non-dimensionalization is that it does not require that the transport

scenario be realistic. High values of d' (i.e., greater than 1) require very small immobile regions,

very slow advective flow rates, or very large travel distances. Also, if the aquifer possesses a

structure such that Kchannels> KbIbS, but with strong anisotropy perpendicular to the direction of

flow, the field may not be described by our model (see Guswa and Freyberg [2002] for examples

of such fields).
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Our parameter estimates are partially dependent on initial conditions, but we would not

see fundamentally different behavior with different solute starting conditions. For example,

consider our field with Yc of 8, but with particles all starting in the mobile domain (such as a

flux-proportional line injection). At low d' values, few particles would enter low conductivity

regions, so we would observe breakthrough curve tails that were small in overall volume but

lengthy due to the slow rate. Moderate diffusion values would cause faster diffusion into low K

areas, resulting in faster rate coefficients and larger tails. Finally, large d' values would result in

equilibrium mass transfer, just as occurred with our initial conditions. This does not reflect

fundamentally different behavior driven by the two initial conditions, but they clearly could alter

the overall spatial and temporal profiles of the plume.

Figure 8 demonstrates that our visualization experiments in chapter 4 agree well with our

numerical results. The advective-dispersive tank has a conductivity contrast that our simulation

results predict will lead to advective-dispersive behavior, although it is difficult to conclude that

dispersivity is reduced at higher diffusion coefficient, because we question the accuracy of one

of the dispersivity measurements. The diffusive mass transfer tank also falls in a conductivity

contrast and diffusion coefficient values that predict mass transfer dominated by diffusion. The

advective mass transfer tank is a bit more complicated - our results in chapter 4 suggested that

the faster flow experiment was advection-dominated mass transfer, but the slower of the two

experiments might be somewhere between the advection-dominated and diffusion-dominated

cases. However, figure 8 agrees reasonably well with this result - the location of the slower

experiment puts it somewhere near the boundary between diffusive and advective mass transfer.

Lastly, we have included, for the sake of completeness, a final regime of solute transport

that occurs when the normalized diffusion coefficient is very large. Although we did not

explicitly simulate any such scenarios, it is reasonable to assume that once the normalized

diffusion coefficient becomes extremely large, diffusion dominates solute transport. This means

that almost all spreading will be due to diffusion (a Fickian spread). The realism of such

scenarios is questionable, though, as noted earlier in this section, requiring extremely low flow

rates, which are unlikely to occur in most real-world aquifers. Some exceptions might be flow

through low conductivity barriers (such as in a waste containment lining) or in fracture networks

where the fractures are not sufficiently connected to allow for significant advection.
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5.5 Conclusions

In this chapter, we extended the results of the experiments detailed in chapter 4 into a

more general framework using particle tracking simulations in a random connected binary

conductivity field. Results from these simulations were in strong agreement with our

experimental results. Two main behaviors were observed - traditional advection-dispersion,

mass transfer behavior (i.e., tailing) driven by varying degrees of advection and diffusion.

Within the advective-dispersive regime, there is a further subdivision - in fields with Yc0, > 0,
dispersion is strongly reduced by increasing diffusion, while in negative Yon fields, dispersion is

more moderately reduced by increased diffusion. In both cases, this goes against the

conventional method of treating diffusion and dispersion coefficients as additive.

The division between advective and diffusive mass transfer is not a hard boundary, rather

a continuum which moves from dominance of mass transfer by one process to dominance by the

other. The particular details of the transition and importance of the two mass transfer processes

is determined by the time scale of advection through low conductivity regions and the time scale

of diffusion through these regions. Both time scales are dependent on the geometry of the low

conductivity regions, but diffusive rates will depend on the diffusion coefficient while advective

rates will depend on the hydraulic gradient and conductivity.

This means that tailing in these aquifers depend on certain aquifer characteristics that are

generally not accounted for, and that changes in these characteristics can significantly affect the

behavior of solute transport and mass transfer. Also, some of the parameters, such as the

hydraulic gradient, are to some degree controllable, thus making the competition between mass

transfer processes an important consideration in remediation decisions. It is this competition that

we consider in the final section of the work.
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9-

Binary Conductivity Field

Figure 5-1: Illustration of binary conductivity field. All black locations have one value, all
white locations have one (different) value. Black areas are the most connected, forming
thin channels that span the conductivity field. White areas tend to form isolated blobs.
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Figure 5-2: Sample breakthrough curves shown in form of mass fraction remaining,
plotted with best estimates using single-rate mass transfer model. The model provides
good fits both in a case with mass transfer (d'=0.01) and a case without mass transfer
(d'=3).
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Figure 5-3: Effective conductivity of field expressed in form of p-value. Positive p-value
indicates bias in effective conductivity toward the arithmetic mean, negative indicates
bias toward the harmonic mean. Non-layered fields are usually assumed to have an
effective conductivity equal to the geometric mean (p-value of 0).
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Normalized Dispersivity (Pe = D/kvmean)
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Figure 5-4: Estimated normalized dispersivities for fields with negative Ycon. Dispersivity
tends to increase with increasing contrast between channel and blob conductivity, and
also increases as normalized diffusion coefficient increases, counter to conventional
methods of incorporating diffusion
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Normalized Parameter Estimates

Velocity (v'= V/Vmean)
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Figure 5-5: Normalized estimated parameters for fields with positive X,,. Dispersivity
shows complex behavior similar to negative Yon case. Rate coefficients ((x') increase as
diffusion increases and conductivity contrast decreases. Large estimates of P indicate
significant regions of mass transfer, supported by estimates of v' that approach 2. Low $
estimates and V estimates of 1 for high Ycon, high d' cases suggest equilibrium mass
transfer.
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Figure 5-6: Dispersivity as a function of normalized diffusion coefficient for field with
Y of 6. Dispersivity shows a complex behavior of rising, falling, and then rising again.
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Ratio of Original Rate Coefficent to Rate
Coefficient with Velocity Halved (x'/'2)
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Figure 5-7: Comparison of x' estimates in original case divided by X' estimates in case
where velocity has been reduced by a factor of 2 but diffusion coefficient stays the same.
A ratio close to 2 indicates that advection is the dominant mass transfer process, a ratio
close to one indicates that diffusion is dominant. The x-axis is shown as the mean d'
value of the two runs, since keeping diffusion coefficient constant but varying velocity
changes d'.
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Regimes of Solute Transport for Binary Fields
- Visualization Experiment

10- Diffusion-Dominated
Mass Transfer

demarcation of transition dependent on
geometry of low velocity regions and aquifer

8-- - - - - / characteristics

Advection-

6- Dominated
Mass Transfer

Boundary between solute transport best
modeled by mass transfer and solute transport
accurately described by Fickian spreading .

0
E

macrodispersive spreading significantly
o reduced by diffusion *

I 0

Standard Advection and Dispersion
0 - -------------------------------------------

macrodispersive spreading modestly
reduced by diffusion
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time advect through mobile domain

Normalized Diffusion Coefficient (d') = r
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Figure 8: Figure mapping out regimes of transport and conditions under which they
occur. Location of experiments relative to our scales of Ycon and d' are marked as well.
The transition between advective and diffusive mass transfer is dependent on several
aquifer and solute parameters, and thus is not a concrete line - the one shown is
appropriate for our particular case. Although not explicitly modeled in our simulations,
at high values of d' transport is dominated by diffusion.
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Chapter 6

Implications of Multiple Mass Transfer Processes and

an Application

6.1 Introduction

Most of our work thus far, particularly in the previous chapter, focused on trying to

determine conditions under which either advective or diffusive processes dominated mass

transfer. In this sense, we have tended to treat the two processes separately, but in this chapter

we try to examine the behavior of solute tails when both mass transfer processes operate jointly,

in particular the effect on rates of mass transfer. We also change the perspective from which we

look at the plume tails - our earlier work has frequently described behaviors in terms of a

normalized diffusion coefficient, with the diffusion coefficient assumed to have changed and the

gradient assumed to have stayed constant. Now we examine these tails from the perspective of a

changing head gradient and constant diffusion coefficient, on the assumption that head gradients

tend to be a more controllable parameter in the real world.

We also try to steer ourselves away from the dependence on effective parameters that we

have displayed in the earlier sections of this work. Although such parameters can be useful for

simple characterization, we try to take an approach in this section of "looking at the tail", instead

of fitting models to it, though we do resort to that methodology in a few instances. This

approach allows us to study the memory function, g(t), of the solute transport (see section 2.3.2).

We examine what effect the presence of advective mass transfer means for g(t), since it is

generally assumed to be a fixed parameter of the aquifer. We also study whether assumptions
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about the memory function model, particularly equation 13 in chapter 2, remains valid in the

presence of advective mass transfer.

Finally, we bring the work back to an application that gets at the original motivation of

the research - the effect of mass transfer on remediation. As noted in the introduction, tailing is

a potentially huge problem in remediation, and our work has focused on identifying conditions

that promote nonequilibrium behavior. However, with the presence of advective mass transfer,

we are faced with a mass transfer process that we have some degree of control of, by controlling

head gradients through pumping rates. We are also potentially faced with a process over which

we have no control, diffusive mass transfer. Is increasing pumping rates a desirable alternative

in the presence of advective mass transfer? We suggest that it is a somewhat complicated

tradeoff of costs, but there are potentially optimal decisions between extremely fast or extremely

slow pumping rates.

6.2 Methods

Our analysis in this chapter mainly makes use of results from previous sections, with

examination of these results from a different perspective. However, we did augment these

results with some additional particle tracking simulations.

Although our goal is to study joint advective and diffusive mass transfer, we must, for

comparison's sake, also determine solute behavior in the presence of only one of the two

processes. To study the case of advection-only mass transfer, we ran simulations on the binary

fields with Yeo0 of 6 and 8. We chose these two particular fields because both show significant

mass transfer, but the field with Ycon of 6 tended to be far more conducive to advective mass

transfer. For these new simulations, we simply deactivated diffusion, i.e., we only simulated

advection. All other characteristics - head gradient, initial conditions, etc., were kept the same.

In order to study the case of diffusion-only mass transfer, we generated a binary field with a Ycon

of 15. Such a field has extremely low velocities in the low conductivity areas, such that any

significant value of diffusion coefficient will ensure that mass transfer is entirely diffusion-

driven. We ran simulations in this field for the same range of diffusion coefficients as run in the

binary fields in chapter 5.

Because we wish to express our results in terms of solute transport components that can

be externally influenced, we express our most of our results in this section as a function of
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normalized hydraulic gradient. The gradient is defined as being equal to one when it drives a

characteristic time of diffusion that is equal to the characteristic time of advection in the mobile

domain, i.e., the gradient at which the normalized diffusion coefficient is one. Higher

normalized gradients are analogous to reducing the normalized diffusion coefficient by an equal

ratio.

Lastly, we also want to study different initial conditions in this chapter. To do this, we

introduced approximately 2000 particles in a flux-proportional line into the Ycon 6 and 8 binary

fields, similar to what was done in the continuous connected fields in chapter 3. Breakthrough

was recorded at a line 40 correlation lengths from the initial injection line (i.e., transport

occurred through the same total area as in the equilibrium scenarios in chapter 5), with all other

characteristics of the field and the simulations the same as their corresponding equilibrium

simulations. We also performed these flux-proportional simulations for advection-only scenarios

in the Ycon 6 and 8 fields and ran simulations in the field with Ycon of 15 to study diffusion-only

mass transfer.

6.3 Results

6.3.1 The Memory Function - g(t) and g*(t)

As noted in the background section, the late-time concentration of a solute plume can be

expressed in relation to the memory function through:

C tad Cog - mo ,9 t >> tad (at

with Co as the initial concentration of solute in the immobile domain and mo the mass of solute

injected at time 0. This leaves us with a relatively simple method of determining g(t) for the

binary fields. In the simulations that were run in chapter 5, we began with the entire aquifer

initially saturated, and then flushed the aquifer with clean water, meaning m0 is zero, and we can

rewrite equation 1 to calculate g(t):

C
g(t) = (2)

Catad

i.e., g(t) is basically just the late-time concentration of the initially saturated initial conditions

(give or take a couple of constants).
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In figure 1 we show the memory function of the two binary fields (Yc,, of 6 and 8), each

for three different normalized gradient values, as a function of normalized time. Time is

normalized by a different amount for each gradient, because changes in gradient change the

mean velocity of the field. The main observation we can make from these graphs is that the total

"area" under the curves, i.e., the amount of mass transfer, is clearly gradient dependent. This

seems to be especially true in the field with Yon of 6, where substantially less mass transfer

occurs at lower gradients (i.e., smaller velocities). This reduction of mass transfer at lower

gradients is also present in the Y,,, of 8 field but to a lesser extent.

In order to examine the rates of mass transfer, we show in figure 2 these same memory

functions, but divided by Po, (or, since we have used single-rate mass transfer fits, just P). This

formulation, which we refer to as g*(t), allows us to look at the rates of mass transfer without

getting caught up in differences that might just be a product of smaller immobile domain volume.

If g(t) is a purely diffusive process, and therefore unaffected by changes in the advective

characteristics of the field, then the rate of mass transfer, i.e., the late-time slope of g(t), should

also remain constant. This requires that in normalized time, it should scale in an inverse linear

fashion with the gradient. Although there is some inverse scaling, it is clearly not as large as the

changes in hydraulic gradient (i.e., a factor of 100). This result and the fact that the amount of

mass transfer depends on hydraulic gradient both suggest that part of the mass transfer in these

fields is being driven by advection. These are unsurprising results given our earlier work, but

with important implications, as we discuss in the next section. In particular, these run counter to

the conventional assumption that g(t) is simply an aquifer parameter unaffected by external

forcing.

6.3.2 Joint Mass Transfer Processes Compared to Individual Processes

Our work thus far has generally focused on transport scenarios in which both advective

and diffusive mass transfer occur, but it is interesting to ask what the product of the two

processes looks like as compared to each process individually. We motivate this in figure 3, a

plot of the memory function (g(t)) for the binary field with Yeo0 equal to 6 and a normalized

gradient of 3. This is compared to g(t) for the cases of diffusion-only mass transfer and

advection-only mass transfer (calculated as detailed in section 6.2). Although the advection-only

and diffusion-only cases appear to have similar slopes, this is not something that is generally
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true, it just coincidentally happens to be the case in this particular field with this particular

combination of parameters. The slope of the joint (i.e., advective and diffusive mass transfer)

case is clearly significantly steeper than either individual case. This behavior is consistent

throughout our results in the fields with Yc of 6 and 8 - the presence of both advection and

diffusion increases the speed of mass transfer as compared to either process operating alone.

Although figure 3 provides a good specific illustration, can generalize the results by

looking at the slopes of g(t) for the three cases (diffusion-only, advection-only, and both

diffusive and advective mass transfer) over a range of gradients. Using the slope is a reasonable

method of characterizing g(t) provided that the memory function is approximately

(logarithmically) linear, which it was for our simulations. Figure 4 shows these g(t) slopes for

both binary fields. The x-axis on each graph shows the normalized hydraulic gradient, the y-axis

indicates the (absolute value of the) slope.

The solid line in each graph shows the slope of g(t) (normalized in time, i.e., Ag divided

by A(normalized)time) as a function of hydraulic gradient for simulations in which both

advective and diffusive mass transfer occurs. One dotted line shows the slopes in the case of

diffusion-only mass transfer. The other dotted line shows the sum of the slopes of the diffusion-

only and advection-only cases. Note that the slope of the advection-only case is the same

regardless of hydraulic gradient, since the slope calculation uses normalized time, which scales

as a function of the gradient.

As we saw in figure 3, the slopes of the joint cases are consistently larger than in either

case alone. In fact, the joint slope generally tends to be at least equal to the sum of both

processes individually. This suggests that, at least for our binary fields, that the two processes,

advective and diffusive mass transfer, tend to be approximately additive processes. Furthermore,

at high hydraulic gradient, the slope of the joint case is actually greater than the sum of the two

cases individually, suggesting that the two mass transfer processes are actually enhancing each

other. We speculate on why this occurs in the discussion section.

6.3.3 Validity of g(t) Formulation in Presence of Advective Mass Transfer

Going back to equation 1, we see that knowing g(t) allows us to predict late-time

concentrations relatively easily for two simple scenarios. The first case is one in which the

immobile domain begins with equilibrium saturation of solute and is flushed with clean water
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(and thus mo is zero). The second is one in which the immobile domain begins clean (thus CO is

zero) and we add a dirac-input of solute to the aquifer. We have used the first case to calculate

g(t), as seen in figure 1. With g(t), we should be able to predict the late-time concentration of a

dirac-input, i.e., the late-time breakthrough curve of our simulations in which we introduced a

flux-proportional line source into a clean aquifer. Using equation 1, the prediction is:

C 0=-m t ad (3)
at

Where g(t) is already known, from figure 1. Thus knowing g(t) for a particular hydraulic

gradient, we should be able to predict the late-time concentration of our flux-proportional case

using equation 3. Figure 5 shows just such a prediction, for the binary field with Y 0,, equal to 6

and a normalized gradient of 3. In this case, the memory function method seems to be a

relatively good prediction of late-time concentration. This effectiveness of the prediction

method tends to be consistent for both fields over a range of hydraulic gradients, with results

similar to the first graph in figure 5. To check to see if this prediction method was effective even

in the total absence of diffusive mass transfer, we compared our simulation of dirac-input into

the field with Yco of 6 and no diffusion to a prediction using equation 3. Again, agreement

between the prediction and actual late-time breakthrough is quite good.

6.4 Discussion

Perhaps the most important result from the this section is that g(t) is a clearly a process

with some functional dependence on the hydraulic gradient. This is in contrast to the usual

assumption that g(t) is a inherent (and fixed) property of the aquifer. This is not to say that g(t)

is purely dependent on external forces - clearly aquifer properties matter, as can be seen in figure

1, in which the two fields with different Yco, show somewhat different behaviors. That g(t) has a

component dependent on the hydraulic gradient is not particularly surprising given our earlier

work that demonstrates the potential for an advective component of mass transfer. But it is

worth emphasizing again that this dependence of an aquifer's mass transfer properties on

external forces has important implications, as we demonstrate in the following section.

Another interesting observation is that the Yo, of 6 field shows less change as a function

of hydraulic gradient than does the field with Ycon of 8, as seen in figures l and 2. Since we use

normalized time, a mass transfer process that is entirely advection-driven should look identical
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regardless of pumping rate (as a function of normalized time). Figures 1 and 2 confirm our

results from chapter 5 that the Yc., of 6 field is more conducive to advection-dominated mass

transfer, as demonstrated by its smaller variation as a function of hydraulic gradient. This

confirms the results of chapter 5 in a general sense, without requiring reliance on effective

parameters.

Perhaps the most surprising result is the effectiveness of the memory function method in

predicting solute concentrations when initial conditions are changed, at least in the case of our

binary fields. This effectiveness seems to hold even for cases when mass transfer is purely

advective despite the fact that, as mentioned, g(t) is not explicitly formulated to account for this

behavior. This implies that only a minor modification of the memory function model may be

necessary to account for advective mass transfer processes.

The additive nature of the slopes of g(t) (figure 4) suggests that in our binary fields,

advective and diffusive mass transfer processes tend to both enhance the rate of mass transfer,

leading to a faster overall process (i.e., a sharper slope). This additive nature makes for

convenient formulation of mass transfer in these fields, where the effective rate of mass transfer

is in many cases a simple linear combination of the two processes individually, and in certainly

is generally bounded by the sum of rates of the two processes.

As noted, the most interesting behavior of the late-time slopes (figure 4) is seen in the

field with Yon of 8 with relatively large hydraulic gradient. In this case, the rate of mass transfer

is actually significantly larger than the sum of the two processes individually. We hypothesize

that this occurs because the low-velocity domain contains a range of advective paths with

varying residence times. If we imagine that the low-velocity regions begin saturated with solute,

advection can mobilize that solute quickly from the fastest paths, effectively "cleaning out" these

areas. Solute from adjacent slower paths can then diffuse into these clean faster paths. In this

way, overall mass transfer is sped up by solute preferentially diffusing into faster paths. We

think this is what is responsible for this accelerated behavior, and we can see some evidence of it

in figure 4. If our explanation is correct, then presumably if diffusion becomes extremely small

relative to advection, the process described above will cease to function, because solute does not

have time to diffuse into the faster advective paths. In figure 4, we see that this behavior (in the

Ycon of 8 field) peaks at a normalized gradient of 30 and then begins to decrease. This is
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consistent with the idea that once the gradient becomes extremely large, the speed of diffusion

begins to become too slow to drive the accelerated mass transfer behavior.

It is important to note that although the rate of mass transfer in the binary fields tends to

be additive, the same is not true regarding the "size" of the mass transfer (i.e., the total mass

contained in the solute tail). While advective and diffusive mass transfer processes are

fundamentally different, both operate on the same "area", those regions in which velocities are

significantly lower than the mobile domain. Depending on various inherent properties of the

aquifer and certain external conditions, some areas may be more amenable to mass transfer by

diffusion or by advection. However, the total size of the areas possessing fundamentally slow

velocities relative to the mobile domain will not change.

One last caveat is that our conclusions, particularly regarding late-time slopes of

breaktrough curves, while applicable to our binary fields, are not necessarily applicable to all

mass transfer scenarios. As an example, consider the case of our experiments in chapter 4 on the

advective mass transfer tank. We show g(t) for these cases in figure 6 (without normalized

time). The diffusion-only case we know from analytic models (and from our results in the

diffusive mass transfer tank), and the advection-only case is just generated by applying the

model in Appendix B with longitudinal dispersion/diffusion set to zero. In this case, where the

tail is more complex than the approximately linear tails of the binary fields, the behavior with

both advection and diffusion present is clearly not some simple linear combination of the two

processes. This is probably due to the fact that in the cylindrical emplacements, the areas of

fastest diffusive mass transfer and the areas of fastest advective mass transfer are not necessarily

the same. For example, diffusive mass transfer is fastest along the edges of the cylinder, but

some of those upstream edges are the longest advective mass transfer pathways. This points to

the fact that our results are not necessarily appropriate for all mass transfer scenarios, especially

given the complexity of the behaviors that can occur. That said, figure 6 does again point to the

fact that g(t) can be dependent on the hydraulic gradient, contrary to the usual assumptions.

6.5 Applying Dual Mass Transfer Processes to Remediation

It is reasonable to ask, after viewing all of the research detailed thus far, why the topics

we have studied in this research are actually important. We have noted in the introduction that

tailing is an important factor in determining the cost of remediation at a site, both due to
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increasing the time it takes to remediate the site, and due to the greater marginal cost of treating

water with low solute concentration present in tails. We would like to close our work with an

example that will hopefully motivate the importance of accounting for both diffusive and

advective mass transfer in a remediation strategy.

6.5.1 The Problem

We assume we have a contaminated aquifer, and that we are tasked with remediating the

aquifer using a pump-and-treat system. We assume the use of a single well for remediation, and

that all of the available pumping choices in this work:

a.) are feasible from an engineering standpoint, i.e., we have pumps that can remove the

necessary volume of water.

b.) do not dewater the aquifer or drive significant vertical flow

c.) successfully capture all solute, that is to say that all pumping choices will successfully

prevent any migration of contaminant off site

d.) we use assumption b to further assume that the hydraulic gradient is proportional to the

pumping rate, Q, as per the Theim Equation. We are thus ignoring any local gradient, assuming

only the pumping drives the gradient.

Our final assumption is that the contaminant breakthrough at the remediation well is

described by our breakthrough curves for the binary fields as a function of hydraulic gradient,

i.e., the breakthrough curves discussed earlier in this chapter. We will examine pumping choice

decisions for both the binary field with Yco0 of 6 and the field with Yeo of 8, to see if there are

any substantive differences.

6.5.2 The Cost Function

Our goal in this decision analysis is to minimize the total remediative cost associated with

cleaning the aquifer. We set as our requirement that 95% of the total mass of contaminant in the

aquifer must be removed, and this standard is used for all calculations. Once this standard has

been met, we assume costs end (i.e., we do not assume that there are additional future monitoring

or capital costs). Some further assumptions that we make regarding cost:

a.) Up-front capital costs for all scenarios are identical, and therefore we ignore these costs.

b.) There is no time discounting.
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c.) Cost is not incurred from the energy used to pump the water. The validity of this assumption

is scenario-dependent. In relatively shallow aquifers, it is probably a good assumption. In

deeper aquifers, it might be questionable, depending on other factors such as the cost of energy.

d.) Cost is incurred from actually removing the contaminant from the water, and this cost is

assumed to be a function of the concentration of contaminant in the water and the volume of

water treated. We discuss the structure of this cost further down.

e.) Cost is incurred from maintenance on the infrastructure, i.e., maintaining pumps, treatment

apparatus, etc., incurs cost. This is treated as a constant, Am, units of dollars per unit time.

f.) Pumping is performed at a constant rate, Q, throughout the remediation.

Given the costs we have chosen to incorporate and those we have chosen not to, our cost

function is:

Costtotal =A mT + AQff(C(t))dt (4)

where T is the total amount of time required for cleanup, and Q is necessary to incorporate the

volume of water (although it is simply another constant that can disappear into At). The constant

coefficients Am and At both have units of dollars per time. For the treatment cost function, we

use the form suggested by Yu [20031:

f(C(t)) = ln C(t) (5)
CMCL

where CMCL in the concentration of minimum contaminant level. Note that CMCL can actually be

any number we choose, as long as it is smaller than the smallest concentrations extracted from

the well, so as to keep the values of the function positive. Any differences in our choice of CMCL

can simply be absorbed into the constant coefficients.

The choice of this functional form for cost should not be taken as the absolutely true

descriptor of cost as a function of concentration in all remediation scenarios. One might argue

that a natural-logarithmic form would be preferable for thermodynamical reasons, particularly

the exponential nature of Boltzman energy distributions and Arrhenius' description of energy

activation. However, our primary reason for this form is because it reflects the fact that water

with low concentrations of solute is more difficult to clean, on a marginal basis, than is water

with high concentrations. Further, this formulation treats costs due to concentration differences

in a consistent fashion (i.e., the cost difference between a particular concentration and one-tenth

of that concentration will be the same, regardless of the actual concentration). While that might
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not be entirely realistic in real remediation scenarios, it is at least an unbiased assumption

(unbiased in the mathematical sense, as any "choice" of model constitutes some form of bias).

Given this model, and using our binary field breakthrough curves, as noted earlier, we

can now calculate costs for remediation on both binary fields. We can also perform this

calculation for two different initial conditions - initial saturation of the domain, and flux-

proportional line injection. These two different conditions lead to some interesting, and perhaps

counterintuitive, results. We also examine how the decision changes as the relative values of Am

and At change. Costs were calculated for the entire breakthrough curve, not just the tail.

6.5.3 Cost Calculation Results

Cost calculations are dependent on two fundamental components, the total cost of

maintenance, and the total cost of water treatment. For a scenario in which the aquifer begins

saturated with solute, we would anticipate that maintenance costs (i.e., total time to remediate)

will decrease as the pumping rate increases. If mass transfer was driven only diffusion, this

would not be the case, as the nature of mass transfer would be unaffected by our pumping

choice, but with advective processes relevant to tailing, this becomes a relevant consideration. In

addition to maintenance cost changes as a function of pumping rate, we anticipate the total cost

for treating the solute will decrease as the pumping rate decreases. This occurs because as the

gradient decreases, the relative amount of tailing tends to decrease, and the relative mass transfer

rate tends to increase (as we saw in figures 1 and 2). This creates plumes that are less costly to

treat, because the average concentration of solute in the water is higher and the volume of water

treated is smaller, leading to lower marginal costs for treating the water.

We illustrate this tradeoff between maintenance and treatment costs in figure 7, which

shows the total maintenance cost, total treatment cost, and total cost (the sum of the two) as a

function of pumping rate. The costs (y-axis) were calculated using the breakthrough curves for

the binary field with Yc equal to 8, with the initial condition of equilibrium throughout the

domain. The treatment cost constant, At, was assumed to be equal to 1 (thus "normalized" cost),

and Am was assumed to be equal to At. The x-axis shows the normalized pumping rate, which is

simply the pumping rate relative to the rate necessary to drive a normalized hydraulic gradient of

1 (so a normalized pumping rate of 10 drives a normalized hydraulic gradient of 10, etc.).
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Both the maintenance and treatments costs demonstrate the expected behaviors, with

maintenance costs decreasing as the pumping rate increases, and treatment costs increasing.

Neither behavior, however, is strictly linear, due to the fact that changing the pumping rate alters

the hydraulic gradient, which in turn changes the behavior of the tail. The dependence of the tail

on advective properties of the aquifer is what drives the complexity of the decision. The optimal

choice of pumping rate actually falls between the two extremes, which runs counter to

conventional assumptions about pumping rate choices. We will discuss this further in the next

section.

We can extend the results of figure 7 into a more general framework by looking at what

happens when we vary the relative values of Am and At. To do this, we held At constant, equal to

1 (as was done in figure 7). We then varied Am through a range of values, and compared the total

costs. Figure 8 shows the results of these calculations, for the binary fields with Yeco values of 6

and 8, with the costs plotted as base-10 logarithms. The y-axis of each figure shows the relative

value of Am (i.e., Am/A,). The x-axis, as in figure 7, shows the normalized pumping rate choice.

Therefore, looking at a cross-section of the contour plot for Ye C.equal to 8, with Am/A, equal to

1, gives figure 7. The optimal choices, which can be somewhat difficult to discern in some

cases, are indicated explicitly by the heavy dashed line. Optimal decisions tend to favor low

pumping rates when Am/A, is low, and faster rates as the ratio increases. This is true for both

fields, though the exact details differ.

We performed a similar set of calculations for our simulations in which solute was

injected in a flux-proportional line into a clean aquifer. The results are shown in figure 9. This

scenario shows similar general behavior to the costs in figure 8 - optimal pumping rates tend to

increase as Am/At increases. Again, the specifics vary, and in some cases contradict normal

assumptions about the optimal pumping rate, as we discuss in the next section.

6.5.4 Optimal Pumping Rate Discussion

The existence of an advective component to mass transfer, in addition to the diffusive

component, drives the interesting behavior we see in figures 8 and 9. Advective mass transfer is

controlled by the hydraulic gradient, which is controlled by our pumping choice. Therefore, our

pumping choice affects the mass transfer characteristics of the solute, affecting both the total

time to remediate and the tail of the plume.
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This behavior runs counter to normal assumptions about mass transfer, which ascribe a

rate and amount of mass transfer that is unaffected by the advective processes. Consider the

scenario in which the aquifer begins with equilibrium solute concentration throughout both the

mobile and immobile domain. Conventional formulations of mass transfer would suggest that

the most cost-effective strategy is to pump as slowly as possible (within the limit that pumping

must successfully capture the entire contaminant plume). This decision is driven by the

assumption that the speed of mass transfer will be the same regardless of choice, and thus

pumping harder forces one to treat larger volumes of water (with lower concentrations), without

any improvement in the duration of remediation. Once we incorporate an advective component

of mass transfer, we can speed up the total time to remediate. Whether that is favorable or not

from a cost standpoint depends on how large maintenance costs are relative to treatments costs.

Figure 8 reflects this idea that the existence of an advective component to mass transfer

does not necessarily mean that faster pumping rates are preferable. At relatively low values of

Am/At, relatively low pumping rates are still optimal. This is because the maintenance cost

becomes a relatively minor part of the total cost at such low values of Am/A,, so decreasing the

total remediation time does not compensate for the higher treatment costs at high pumping rates

(which drive greater tailing). We can also see the effect of having a field in which diffusive

mass transfer tends to be the dominant process (field with Ye,,=8) as compared to a field in

which advective mass transfer is dominant (field with Yeon=6). In the field with Yc equal to 6, it

is much easier to mobilize solute through gradient changes, and thus easier to speed up the

overall process of cleaning the aquifer. This is reflected in the fact that optimal pumping choices

for the field with Yeo equal to 6 generally have higher pumping rates for most values of Am/At -

a field in which advective mass transfer is more important is more impacted by the positive

effects of increased advective mobilization of solute from low velocity regions.

The initial conditions in which we introduced a flux-proportional line of solute into a

clean aquifer seem to yield less interesting results (figure 9), but the actual competition of

various processes is actually more complex. Generally, when one considers remediation of an

"instantaneous" contamination, there are two possible choices in the presence of diffusive mass

transfer. One is to pump as quickly as possible, in order to prevent solute from having sufficient

time to diffuse into the immobile domain. If this is impractical, i.e., the aquifer cannot be

pumped fast enough to prevent significant mass transfer, the usual choice is to pump as slowly as

139



possible (see Yu 120031 for a detailed explanation of why this is the case). As with the other

initial conditions, our results suggest that the decision is not so simple.

The assumption of mass transfer only being controlled by diffusion leads to the desire to

pump quickly in the case of an instantaneous injection - if most of the solute can be removed

before it has time to enter the immobile domain, large costs from lengthy remediation might be

avoided. But with the presence of advective mass transfer, there exists a mass transfer that is

"unavoidable", in a sense - no matter how fast the well is pumped, some significant portion of

the solute will move into low velocity areas. This would tend to bias decisions against fast

pumping rates. On the other hand, pumping slowly can still potentially drive a great deal of

mass transfer, as diffusive processes begin to contribute to tailing as well, and pumping slowly

carries with it added costs in maintenance. It appears, in the end, that faster pumping, despite

still driving tailing, is generally preferable to slower pumping in our binary fields. The

preference for faster pumping seems more pronounced in the field in which diffusive mass

transfer dominates (field with Y equal to 8). This stands to reason given our suggestion that

diffusion-driven mass transfer would tend to bias our decision in favor of faster pumping, as

mentioned. In the field with Yon equal to 8, advective mass transfer is less of a problem, and

thus higher pumping rates do a better job of preventing mass transfer, with the added bonus of

decreasing the total elapsed time of remediation.

6.6 Conclusions

The memory function model of mass transfer is typically formulated in a way that

assumes g(t) (the memory function) is a fixed parameter of the aquifer, the product of the

geometries of effectively immobile regions. However, our work through chapters 3 through 5

suggests, and our work in this chapter confirms, that this assumption about the nature of g(t) is

not always true. As with the case of our comparing macrodispersive and mass transfer models,

this is not to say that the conventional description is never correct, only that there might be

situations that do not fit into that formulation. We show that the memory function can include an

advective component, by demonstrating that g(t) changes as the effective gradient to the aquifer

changes. This means that it might be possible for a parameter that can be controlled externally,

the hydraulic gradient, can affect the nature of mass transfer.
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Despite the fact that the memory function model does not incorporate an advective

component, it seems to be capable of predicting late-time breakthroughs from altered initial

conditions, as we were able to test with dirac-input of solute mass. This effectiveness holds true

even when mass transfer is controlled completely by advection. Although this result seems

accurate for our binary fields, it may not be generally true for all fields, but it does suggest that

the memory function model is probably a useful formulation of mass transfer, assuming it is

altered to account for advection-driven mass transfer.

The effects of simultaneous advective and diffusive processes driving mass transfer tend

to be additive in our binary fields. Generally, the rate of mass transfer in the joint case (i.e.,

simulations in which both processes occur) was found to be at least equal to the sum of the rates

of both cases individually. In some cases, it was found that the rate in the joint case actually

exceeded the sum of the two cases individually, which we suggest is due to diffusion from

slower low velocity paths into faster low velocity paths, paths which clean out more quickly.

Again, our conclusions seem accurate for our binary fields, but general applicability may be

limited, as demonstrated by the results from our advective mass transfer experiments using

cylindrical emplacements (although these experiments do confirm a g(t) dependence on

hydraulic gradient).

Lastly, we apply what we have studied, both in this chapter and previous chapters, to a

simple pump-and-treat remediation scenario. We conclude that the existence of advective mass

transfer in addition to the diffusive mass transfer changes the conventional choices of pumping

rate. By pumping faster when the domain begins at an equilibrium initial concentration of

solute, we are able to mobilize a larger percentage of the total solute mass more quickly, which

can impact our decision if maintenance costs are a significant factor in our costs. However, the

existence of advective mass transfer causes problems when we attempt to remediate an aquifer

immediately following an "instantaneous" injection. In this case we cannot avoid mass transfer

by simply pumping solute out of the aquifer quickly, and thus are left with an optimal decision

that might not be as simple as the conventional "pump fast" approach.
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Figure 6-1: Memory function, g(t), as a function of hydraulic gradient, shown for the
binary fields with Y = 6 and Y = 8. The memory function is equal to the normalized

con con

late-time breakthrough concentration when the domain has equilibrium initial conditions.
Both the magnitude and "slope" of g(t) are clearly gradient-dependent, contrary to the
usual.assumption of g(t) as a fixed aquifer parameter
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Figure 6-2: Normalized meniory function, g*(t), as a function of hydraulic gradient, for
same gradients and fields as figure 1. The function g*(t) is equal to g(t) divided by P,
allowing for a comparison between mass transfer scenarios where the total size of the
immobile domain, as indicated by P, differs. Normally, g*(t) is not considered to
have significant dependence on advective properties of the domain.
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Comparison of Advective, Diffusive, and Joint g(t)
Binary Field; Yon = 6; Normalized Gradient = 3
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Figure 6-3: Memory function (g(t)) for a simulation with both advective and diffusive
mass transfer, compared with simulations with only one of the two processes (advective
case calculated by simulation with no diffusion, diffusive case by simulation of in field
with Y of 15, insuring almost no slow advection). The slope of the combined case is

con

substantially sharper than either process individually, suggesting that the two processes
tend to be reinforcing.
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Comparison of g(t) slopes for Binary Field; Y = 6
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Figure 6-4: Slope of g(t) as a function of normalized hydraulic gradient for the binary
fields with Y equal to 6 and 8. One line represents the (absolute value) slope of g(t) for

con
the case with advective and diffusive mass transfer, one represents the case where only
diffusive mass transfer occurs, and one indicates the sum of the slopes of the advection
only and diffusion-only cases. The results suggest that the two processes tend to be
reinforcing, in some situations reinforcing to a degree that they drive overall mass
transfer that is faster than sum of its components.
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Figure 6-5: Prediction of late time concentration using memory function method
compared to actual concentration. Prediction utilized g(t) (see figure 1) to predict the
late-time concentration when a dirac-impulse is introduced into the system, using the
time derivative of g(t). Actual late-time concentration is from particle-tracking
simulations done with a flux-proportional line of particles introduced into the field. The
memory function appears to, overall, provide a very good prediction of the breakthrough
curve of the dirac-input at late time.
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Memory Function for Advective Mass Transfer
Experiment; Flow = 1.32 ml/min
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Figure 6-6: Memory function (g(t)) for our earlier experiments with slow advection and
diffusion through cylinders. Also plotted are g(t) for diffusion-only mass transfer in the
cylinder and g(t) for advection-only mass transfer (no longitudinal dispersion/diffusion).
Unlike the case of the binary fields, g(t) does not appear to be easily predicted by a
simple linear combination of the two processes. This suggests that our conclusions from
the binary field simulations are not necessarily applicable to more complex mass transfer
scenarios. It does, however, display a behavior found in our binary fields - g(t) is
partially dependent on the hydraulic gradient.
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Pump and Treat Cost Comparisons
Binary Field with Y = 8; Equilbrium Start

con

Optimal Pumping Rate

(n 100

N .oo

0

.o .00. ------- Maintenance Cost
-- - Treatment Cost

Total Cost I
10 1 1 1 1 1

1 10 100
Normalized Pumping Rate

Figure 6-7: Costs incurred from a hypothetical pump-and-treat system. The aquifer
(binary field with Y = 8) is initially equilibrium-saturated with contaminant, and the

con

remediation requirement is that 95% of the total mass must be removed. Maintenance
costs decrease as pumping rate increases because total time to remediate decreases.
Treatment costs increase with the pumping rate, because more of the solute is in the tail
of the plume. The optimal pumping rate falls between the maximum and minimum
pumping rates, whereas standard theory would dictate pumping as slowly as feasible.
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Total Remediation Costs : Ycon = 6; Equilibrium Start
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Figure 6-8: Total remediation costs for two binary fields (Y con = 6 and 8) as a function
of pumping rate. Aquifers begin equilibrium-saturated, and goal is to clean up 95% of
total contaminant mass. Optimal rates are indicated by the dashed line. The x-axis
indicates pumping rate, while the y-axis shows the ratio of the maintenance cost coef-
ficient (Am) to the treatment cost coefficient (At) (units of money divided by time).
The existence of mass transfer that can be driven by changes in head gradient creates a
more complex decision than usually considered.
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Figure 6-9: Total remediation costs for two binary fields (Yeon = 6 and 8) as a function
of pumping rate. Aquifers begin with an instantaneous injection of solute, and goal
is to clean up 95% of total contaminant mass. Optimal rates are indicated by the
dashed line. The x-axis indicates pumping rate, while the y-axis shows the ratio of
the maintenance cost coefficient (Am) to the treatment cost coefficient (At). Conven-
tional theory suggests either pumping very quickly or very slowly, but we see some
pumping choices that fall between the extremes.
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Chapter 7

Conclusions and Future Work

The research in this thesis consists of a general examination of the structural

characteristics of hydraulic conductivity and the effect that these characteristics have on fluid

flow and solute transport. Of particular focus were connected structures of either high or low

conductivity, which go against the underlying assumptions of the stochastic equations from

which macrodispersive theory is developed. Our primary interest in solute transport was in

discovering conditions that lead to tailing for conservative solutes, a situation that requires use of

a mass transfer model to describe solute transport behavior instead of a macrodispersive model.

Although connected structures of low conductivity were found to create barriers to flow,

resulting in mean fluid velocities lower than predicted by the multigaussian model, overall

transport in these fields was well described by a dispersion model of solute transport. This was

true in both continuous and binary fields.

It was in fields with connected structures of high conductivity that we were able to find

mass transfer behavior. These fields display mean fluid velocities higher than predicted by the

multigaussian model. At relatively high variances, both continuous and binary fields with this

property possessed breakthrough curves that required a mass transfer model to properly explain.

These results suggest that in addition to calculating the mean and variance of hydraulic

conductivity, the connectedness of an aquifer may be a vital component of its characterization.

In our studies of mass transfer in connected fields, we also found that advective processes

can drive, and in some cases dominate, mass transfer. Most models of mass transfer do not

consider an advective component to mass transfer, yet this component may be extremely
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important, as it is one that can hypothetically be controlled externally by imposing changes to the

hydraulic gradient.

We supplemented our simulations by visualization experiments, confirming that these

processes can actually occur in a real porous medium, and occur in connectedness characteristics

and conductivity contrasts that are in agreement with our simulations. The experiments allow a

detailed small-scale study of solute transport while simultaneously measuring upscaled solute

transport, confirming that these smaller scale processes, such as advective and diffusive mass

transfer, do lead to fundamentally different upscaled behaviors.

In the final chapter, we examined the implications of our work on one particular general

model of mass transfer, the so-called memory function model. We found that the existence of

mass transfer that is dependent on advective processes leads to a memory function that is

dependent on the hydraulic gradient. This runs counter to the usual assumption of the memory

function as an intrinsic property of the aquifer, unaffected by external forcing. The model does

appear to be effective, however, at predicting late-time breakthrough for different initial

conditions, suggesting that the memory function model may be a model of mass transfer into

which advection can be incorporated with relative ease.

As a final piece of the work, we applied our earlier work to a hypothetical pump-and-treat

remediation scenario. We particularly focused on the importance of advective mass transfer, a

behavior that was affected by our choice in pumping rate. Our ability to control mass transfer to

a degree through our pumping choice created complex tradeoffs that resulted in sometimes

counterintuitive pumping rate choices, both for situations in which an aquifer begins at

equilibrium with a contaminant, and in remediating "instantaneous" spills.

As noted in the introduction of this work, this research leaves open numerous avenues of

future research, topics too vast to be dealt with in the context of this thesis.

Many research questions remain on methods to characterize connectedness in aquifers.

In this research, we have taken the approach of "we know it when we see it", which is pragmatic

but not intellectually elegant or complete. The question remains, what are the best methods of

describing connectedness? Is it a parameter that can be summarized with a single function, like

the covariance? Is it simply a higher-order correlation parameter? Or would it be better to

characterize it with an effective parameter, such as the effective conductivity?
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There is also the question of what connectedness, however we choose to characterize it,

means to solute transport. How "connected" does a field need to be in order to drive mass

transfer behavior? Is the transition between a fundamentally connected and fundamentally

unconnected field sharp, as in the case of fracture flow with its percolation threshold, or is it

gradual? Surely not all connected fields can drive mass transfer behavior - we could imagine a

case of a high permeability matrix with embedded elliptical inclusions with strong anisotropy

perpendicular to flow. In such a case flow would almost certainly tend to act more like the

behavior observed in a disconnected field. Can we account for this behavior in our method of

describing connectedness?

Our solute transport work also has numerous avenues of potential study. The most

obvious, though also probably the most difficult, would be in devising stochastic equations that

could effectively describe solute transport through connected fields. Although we fit

breakthrough curves with a mass transfer model, such fits are entirely a posteriori. It would be

useful to develop equations with a somewhat more predictive nature, as have been developed for

macrodispersion in multigaussian fields.

This research also points to the need to create a mass transfer framework that is capable

of incorporating advection-driven mass transfer, perhaps by working it into the memory function

model. How can we determine if advective mass transfer exists, since it difficult to distinguish

from diffusive mass transfer? Our results in chapter 6 suggest that perhaps tracer tests with

varying hydraulic gradients could deduce that information, or perhaps we could compare push-

pull tracer results with well-to-well results.

All of our work in this thesis has used simple conservative solutes for our studies, but it is

important to discern what effects connectedness would have on reactive transport, perhaps

through further visualization experiments, or what effect heterogeneity in chemical properties of

the subsurface could have. Would advective mass transfer processes drive fundamentally

different reactive mixing than diffusive processes?

Our work has also focused exclusively on single-phase flow, but it would be an

interesting study to see what effects connectedness could have on multiphase flow, such as flow

in the unsaturated zone. This would be particularly interesting because multiphase flow often

possesses significant positive feedback - for example, connected areas of wetting would tend to

promote even more fluid flow.
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Ideally, future work on how to characterize connectedness would dovetail into the future

work on analytic models of transport in these fields, in a way that would be analogous to

macrodispersion - i.e., by measuring the connectedness and variability of an aquifer, we would

be able to predict transport in the aquifer without having to perform tracer tests. There are two

potential problems to such an approach, though, the first being complexity - the equations may

be extremely difficult to solve. Even assuming the problem was mathematically tractable, there

is an additional issue of practicality - can we measure connectedness in an aquifer without being

forced to resort to tracer tests? My own intuition is that it is unlikely, at least in most cases,

particularly if the variability is quite small. In the end, it may be that we must increase our

reliance on tracer tests instead of analytic predictions and models, but whether through tracer

tests or conventional methods, this work suggests that we must improve our ability to effectively

characterize aquifers and their small-scale properties. This is an area of research that can be

approached from the angle of innovative characterization techniques or from simply applying

more care using conventional methods. But it is clear that connectedness and small-scale

variability can have a huge impact on the behavior groundwater and its constituents, and thus

discerning these properties may be critical to our ability to model flow and transport in many

aquifers.
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Appendix A

Derivation of the Covariance Function for the

Absolute Value Transform of a Multigaussian Field

Here we derive the spatial correlation function for the absolute value transform of a

stationary multinormal field. We show that the length scale of heterogeneities in the transformed

field is less than that of the original field by deriving an analytic relationship for the covariance

of the transformed field as a function of the covariance of the original multigaussian field.

Mean and Variance of the transformed field.

Let x be a normally distributed ( t = 0, & = 1) random variable, and y be the absolute

value of x, y = lxi. Then the expected value (i.e., the mean) of y is:

S 1 -X2 I _X2 2
'= E[y]= I |x i exp( x =2f xLexp x= - Al-- J~ e yj 2 =2 ex 2 2A2

Similarly, the variance of y is:

,2 =E y2 _ 2 2 exp -x2 x-, 2  
_C,2 _ A2

-x V2 2 i2

since c2 = 1.

Covariance of the transformed field.

We would like to find the correlation function p'(h) for two transformed variables y and

y 2 at locations separated by a distance h as a function of the correlation function p(h) for the

untransformed variables x, and x2. By definition the correlation coefficient p'(h) is:

155



2E[y, Y21 - [,2 E[y, Y21 -
p (h)= =1 2

it

We will find E[y Y2] as a function of the cdf of the multigaussian distribution of the

untransformed variables x, and x2:

r 2 1
f (xiIx2;p(h)) 1 exp - 2 2x x 2p(h)+ x 2

24 -p 2 (h) 2(1- p2(h))

A3

A4

To account for the absolute value, E[yj Y21 is written as the sum of four integrals, which account

for the four possible sign combinations of x, and x2 (both x, and x2 positive, both negative, x,

positive and x2 negative, and x, negative and x2 positive):

E[yy']= f 0 fxIx2 f(X;,X2 ;p(h))dxidx2 + f fI x2 f(x 1 , x2 ;p(h))dxidx 2f k.f-k 1 1 21(X1X2;ph))xjdA5

+ ffx 1 I x 2 f(X,X2;p(h))dxdx 2 + f x f 1X1 IX2 If(X, X2;p(h))dxidx 2

The first and fourth integrals are the same and may be written:

11=14 = x1 x 2f(xNX 2;(h))dx dx 2

Since x, and x2 are interchangeable, the second and third integrals are also equal and may be

written:

I2 =13 = fx 1x 2f(x 1,X 2;-p(h))dxidx 2

A6

A7

where the only difference is that the correlation coefficient is negative (due to the absolute value

transform affecting only one of the two variables) by the relation:
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Cov(a,-b) = -Cov(a,b) A8

The solution of the first integral may be written:

p(h) +1- p2 (h) p(h)arcsin(p(h))
I11=14=- + + A9

4 21t 2n

and the second integral is:

p(h) 91- p2 (h) p(h)arcsin(p(h))
I2 =13 -- + + AIO

4 2n 2it

Incorporating A9 and A10 into A5, and substituting into A3 gives:

2-1+ I p2(h) + p(h)arcsin(p(h)))
p'(h) = 2A10

Thus, the correlation coefficient for the transformed variable y is a function of the

correlation coefficient of the original variable at the same separation distance h, and is

independent of the correlation at other separation distances. Figure A l shows that the

correlation coefficient for the transformed variable is always less than that of the untransformed

variable. Thus the connected and disconnected fields have reduced spatial correlation, and hence

reduced integral scales.
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Figure Al: Spatial correlation after absolute value transformation as a function of the
original spatial correlation. The dashed line indicates the non-transformed case (p=p')
for comparison.
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Appendix B

Approximate Model of Advection through a Cylinder

with Longitudinal Dispersion/Diffusion

In this appendix we describe the model derived for use in fitting the advective mass

transfer through cylinders (see chapter 4, figure 8). We start with the results of Dagan and

Lessoff[2001] that flow through the cylinders occurs at an approximately constant velocity.

However, we do not use their derivation of the velocity inside the cylinder, which we estimate

when fitting the curve.

Starting with the constant velocity assumption, we then assume that the cylinder (radius =

R) begins saturated with dye, and that at time=O, the outer boundary around the cylinder changes

from dye-saturated to clean. The initial condition assumption requires that flow outside the

cylinder is significantly faster than inside, a reasonable approximation for our scenario. Flow in

the cylinder is assumed from left to right, though this does not affect the derivation.

We have a situation where the volume out of the cylinder on the downstream side (i.e.,

the semicircle that constitutes the right hand side of the cylinder) will equal the volume of water

in, entering on the upstream side. This will give a solute mass outflow of:

m(t) = C fq(S,t).ndS (B1)
S

where S is the outflow surface (the right hand semicircle), q is the volumetric fluid flux of dye-

saturated water (not total fluid flux), and CO is the initial concentration of solute in the cylinder.

This problem is analytically simple if we wish to only solve for advection, but more

difficult to do once we add a longitudinal Fickian dispersion. In order to approximate the

answer, we divide the flow into a series of horizontal streamtubes, each carrying an equal
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volumetric fluid flux. Each streamtube is assumed not to mix with its neighbor, but exhibits

longitudinal mixing. With N tubes, total dye mass out of the cylinder is:
N

m(t) = 20w hvi3 Ci(t) (B2)
i= 1

where Vi is the (constant) velocity inside the cylinder and Ci(t) is the concentration in each tube

as a function of time, wt is the width of each tube (equal to the radius divided by the number of

tubes), h is the thickness of the tank, and 0 is the porosity inside the cylinder. From here, we use

the solution for one-dimensional flow with Fickian spreading, assuming initial saturation with

solute and constant flushing with clean water, to derive the concentration in each tube as a

function of time:

Ci(t)= Co I- Ierfc xi (B3)
2 2 bn

where Di. is the dispersion/diffusion coefficient inside the cylinder and xi is the length of each

streamtube. Using our requirement that we are dividing the outflow into equally sized tubes, the

lengths will then be:

xi = R2 - 2  (B4)

where ri (the distance from the center of the cylinder to the center of the stream tube) is:

r,= i - - - , i = 1, 2,..., N (B5)
2 N

which leaves a mass release from the cylinder of:

20Rhv C N I
m(t) in 0 1 rfc I (B6)

N _ 2 2 Dit

with xi given by equations B4 and B5. We must choose a value of N and input values of R, 0, h,

and CO - leaving only vin and Di as unknowns. It is these parameters we adjust to fit to the

breakthrough curve.

Lastly, we convert the mass outflow into concentration:

N 1m(t)
C(t) = NC~ )(B7)

Q
with Q the rate of volumetric flow rate of the tank (a constant for our experiments) and Ncy the

number of cylinders (since m(t) is the mass outflow from only one cylinder).
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