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Abstract

The World Health Organization (WHO) is responsible for making annual vaccine strains
recommendation to countries around the globe. However, various studies have found that
the WHO vaccine selection strategy has not been effective in some years. This motivates the
search for a better strategy for choosing vaccine strains. In this work, we use recent results
from theoretical immunology to formulate the vaccine selection problem as a discrete-time
stochastic dynamic program with a high-dimensional continuous state space. We discuss
the techniques that were developed for solving this difficult dynamic program, and present
an effective and robust heuristic policy. We compare the performance of the heuristic
policy, the follow policy, and the no-vaccine policy and show that the heuristic policy is the
best among the three. After taking the cost of implementation into account, however, we
conclude that the WHO policy is a cost-effective influenza vaccine strain selection policy.
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Chapter 1

Introduction

1.1 Health and Economic Impact of Influenza

Influenza is an acute respiratory disease that has caused significant morbidity and mortality
throughout human history. Influenza pandemic (a worldwide epidemic) arose at irregular
intervals. The most devastating pandemic of the 20th century occurred in 1918-19 when
500,000 people died in the U.S., and 20 million died worldwide [1]. Two other pandetics
occurred in 1957-58 (70,000 deaths in the U.S.) and 1968-69 (34,000 deaths in the U.S.) [1].
These two pandemics together killed more than 1.5 million people and caused an estimated
$32 billion in economic damages worldwide due to productivity losses and medical expenses
[2]. Between global pandemics, local influenza epidemics occur on an annual basis. Accord-
ing to the Centers for Disease Control and Prevention (CDC), influenza epidemic affects 25
to 50 million people and is linked to 35,000 deaths and more than 114,000 hospitalizations
each year in the United States. Influenza and pneumonia (often a complication of influenza)
together is the sixth leading cause of death in the United States (65,000 deaths in 2000).
More than 85 percent of these deaths are among people 65 years of age or older. In 1993,
it was estimated that Medicare reimbursement for excess hospitalizations during influenza
epidemics ranged from $750 million to $1 billion [5]. In view of the expensive hospitalization
costs related to preventable influenza complications, Congress authorized an $80 million per

year Medicare flu shot entitlement in 1993.
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1.2 Influenza Viruses

Influenza viruses are negative-strand RNA viruses with segmented genomes. Influenza in
human beings are caused by the A, B, and C serotype of influenza viruses. Influenza due to
the C virus has seldom been reported; this is probably due to the widespread of antibody
to the C serotype among adults. In contrast, the A and B virus are both responsible for

the outbreak of annual epidemics.

Influenza A and B viruses share the same basic biological structure. A schematic drawing

of this viral structure is shown in Figure 1-1 [3]. From the viewpoint of vaccine design and

NA (Neruaminidase)
iA { Hermdgglutinin)

Matrix protein ",
~{Ten channgl)

ANA stgment ]

Figure 1-1: The basic structure of influenza A and B.

development, the two surface proteins, hemagglutinin (HA) and neuraminidase (NA), are
of paramount importance. HA allows the virus to enter host cells and begin infection; NA
destroys host cell’s membrane for release of newly formed viral particles from the surface of
the host cell. These two proteins are the primary targets of the humoral immune response
(immunity mediated by circulating antibodies) in humans. Influenza A serotype are further
divided into subtypes according to the major differences in HA and NA (e.g. A (HIN1), A
(H3N2)). Unlike influenza A, influenza B has no subtypes. Within each A subtype and the

B serotype, new strains arise frequently due to the high mutation rate of HA and NA. (Here,
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“strains” mean mutated variants within an A subtype or the B serotype. In general, strains
are functionally identical, but the HA and NA structures of nonidentical strains are slightly
different.) These mutations often result in new strains against which human beings have
little or no immunity, thus necessitate frequent updates of vaccine strains to fight against
these new strains. Small mutations are known as antigenic drifts, which are caused by point
mutations in the HA and NA genes. Both Influenza A and B virus undergo antigenic drifts
which constitute yearly epidemics. Large mutations are known as antigenic shifts, which
result from gene reassortment of viral RNA genomes among different A subtypes; antigenic

shifts give rise to unpredictable pandemics.

1.3 Influenza Vaccination

During the last decade, standard influenza vaccines (commonly known as flu shots) con-
tain inactivated antigens against the three most epidemiologically important flu viruses: A
(HIN1), A (H3N2), and B. Vaccine potency requirements have been focused on HA instead
of NA for two main reasons [16]. First of all, the degree of structural difference in HA
among influenza strains can be measured conveniently by methods such as hemagglutinin-
inhibition (HT) assay and single radial immunodiffusion (SRD) test; NA, on the other hand,
is less well characterized due to the lack of reliable tests. Second of all, HA has been con-
firmed to be capable of stimulating a protective immune response to influenza,; in contrast,

the immunogenicity of NA has yet to be established definitely.

In making annual vaccine strain recommendations to countries around the globe, the
World Health Organization (WHO) chooses a vaccine strain whose HA structure matches
closely with that of the upcoming dominant epidemic strain. In the rest of this thesis,
we define “follow” policy as the strategy that uses the expected cpidemic strain as the
vaccine strain. The actual WHO vaccine strain selection strategy is a slight variant of the
follow policy: The vaccine strain is updated if there is a 4-fold difference (measured by
HI assays) between the previous vaccine strain and the expected epidemic strain. That
is, vaccine recommendation is updated if there is a large enough difference between the
previous vaccine strain and the expected epidemic strain. The purpose of this modification
is to facilitate the vaccine manufacturing process. Therefore, the follow policy is an idealized

version of the current WHO vaccine strain selection strategy. It is obvious that an accurate
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epidemic strain prediction is pivotal to the effectiveness of the follow policy. To predict the
epidemic strains that will prevail in future flu seasons, a worldwide surveillance network

has been set up by the WHO to monitor the evolution of influenza viruses.

1.4 Motivation and Objectives

Data from the National Center for Health Statistics show that 15.1%, 32.2%, and 63.0% of
the 18-49, 50-64, and >65 age group in the U.S. received influenza vaccination in 2001 [4].
The CDC estimated that vaccine efficacy is 70-90% in healthy adults and 30-70% in elderly
people when there is a good match between the vaccine and epidemic strain. In addition
to physique and age, influenza vaccine efficacy varies among individuals for another major
reason: vaccine efficacy depends on the individual’s prior exposure to influenza. It has been
shown that influenza vaccination works effectively in first-time vaccinees [11]. However,
vaccine efficacy in repeat vaccinees has not been established definitely. Different studies on
the effect of prior immunization on vaccine efficacy have generated paradoxical conclusions.
Beyer et al. found that annually repeated vaccination did not reduce vaccine efficacy [6].
Gross et al., on the other hand, showed that adults who were previously vaccinated had
significantly lower serologic response to influenza vaccine than first-time vaccinees [12]. The
widely cited “Hoskins” and “Keitel” studies have also reached different conclusions on the
efficacy of repeated vaccination: Hoskins et al. concluded that repeated vaccination was
not effective [13], while Keitel et al. concluded the contrary [14].

To resolve the seemingly contradictory observations of vaccine efficacy in repeated vacci-
nations, Smith et al. proposed an explanation — the antigenic distance hypothesis (21]. This
Jhypothesis states that variations in repeat vaccine efficacy are due to antigenic differences
between the vaccine strain and all the strains to which the vaccinee has previously been ex-
posed. To test this hypothesis, Smith et al. constructed a computer model which estimaied
vaccine efficacy in repeat vaccinees relative to Qaccine efficacy in first-time vaccinees. The
computed efficacy had good correlation with the observed efficacy in the Hoskins and Keitel
studies (r = 0.87) [21]. An independent study by Lapedes and Farber [15] also supports the
validity of the hypothesis. Thus, the aﬂtigenic distance hypothesis provides a simple and
credible explanation for the observed discrepancies in the efficacy of repeated vaccinations.

While most efforts in influenza vaccination have been focused on predicting the upcoming
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epidemic strains [7, 19], the potential of devising more effective vaccine strain selection
strategies {other than the follow policy) has not been actively explored. Moreover, over the
last decade, numerous medical researchers have questioned the cost-effectiveness of influenza
vaccines and advocated the “no-vaccine” policy. A review of the cost-effectiveness of current
influenza vaccine selection practice calls for a performance evaluation of the follow policy, the
no-vaccine policy, and possibly other more effective policies. In this thesis, we will use the
antigenic distance hypothesis as a basis to analyze the seasonal influenza vaccination process.
The seasonal vaccine strain selection problem is formulated as an N—per:md discrete-time
continuous-state-space stochastic dynamic program. The objective of this thesis is to obtain
insights on how vaccine strains should be chosen for individuals with different histories of
influenza exposure. The remainder of this thesis takes the following form. In Chapter 2,
we give an overview on (1) the nature of anti-flu immune response, (2) the concept of
‘;sha,pe space” which alléws a mathematical characterization of influenza strains, and (3)
the theoretical influenza vaccination model (a dynamic program). In Chapter 3, we analyze
the first iteration of the dynamic program (which is equivalent to a single-period problem)
and develop a simple way to visualize the vaccine selection problem. In Chapter 4, we
use the results in Chapter 3 to devise a efficient algorithm for solving the high-dimensional
stochastic dynamic program approximately (to a reasonable accuracy). In Chapter 5, we
review the numerical results of our model and discuss their implications on vaccine selection
policies. We will also discuss the practicability of different policies and the limitations of

our model.
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Chapter 2

Formulation of the Model

2.1 The Role of Antibodies in' Anti-Flu Immune Response

Antibodies are our major line of defense against influenza infection. Antibodies are proteins
that circulate inside the bloodstream and their primary function is to bind to and remove
foreign substances that invade into the body. Antibodies bind to the surface of foreign
substances via target sites known as antigens. By binding to the antigens on a foreign
substance, antibodies can prevent the foreign substance from binding to cells and causing
infections. Moreover, formation of antibody-antigen complexes facilitate the destruction
of foreign substances by complements and macrophages as well as the uptake of foreign
substances by antigen-presenting cells (which is necessary for triggering T-cell responses).

In order to recognize the wide range of foreign substances that can invade into the body,
the antibody repertoire comprises antibody molecules with a huge collection of structural
specificities. The rangé of antibody specificities is large enough such that given any foreign
substance, at least one type of antibody can recognize and bind to this substance. The
most Important antigen found on influenza viruses is the surface protein hemagglutinin
(HA). The goal of vaccination is to stimulate the production of antibodies that can bind to
the HA of the upcoming epidemic strain. Production of these antibodies require activation
of vaccine-specific CD4 T cells in the lymphoid tissues.

Some of the antibodies generated against a given flu strain (call it Strain X) can also
bind to a different strain (call it Strain Y) if the two strains have similar HA structures.
Such binding of anti-Strain-X antibodies to Strain Y are termed cross-reactions. Because of

cross-reactions, the antibodies generated against Strain X provide a certain level of protec-

17



tion against subsequent invasion of Strain Y. The level of protection is determined by the
degree of cross-reactions between anti-Strain-X antibodies and Strain Y, which is in turn
determined by the structural similarity of the two strains. For convenience in later discus-
sions, we say that Strain X and Y cross-react or that Strain X and Y are cross-reactive when
there are cross-reactions between anti-Strain-X antibodies and Strain Y. The dynamics of
cross-reactions will be illustrated in more detail in the next section.

In our vaccination model, we are concerned with the protection mediated by circulating
antibodies. Thus, we do not model explicitly cell-mediated immunity that happens after

the infection of cells.

2.2 Shape Space and the Antigenic Distance Hypothesis

“Shape space” was initially proposed by Perelson and Oster [17] as a mathematical charac-
terization for antigen—antibody binding. Shape space has played a major role in theoretical
immunology since its inception [20, 18, 8, 9, 22]. The basic idea is that each antigen and
antibody can be represented as a unique point in a Euclidean space called the shape space;
the vector representation of an antigen or antibody is called its shape vector. The antigenic
distance between an antigen and an antibody is defined as the Euclidean distance between
their shape vectors. The binding strength of an antigen-antibody pair is inversely propor-
tional o their antigenic distance. The antigenic distance between two antigens (antibodies)
is also defined as the distance between their shape vectors. The structural similarity be-
tween two antigens (antibodies) is inversely proportional to their antigenic distance. We
say that an antibody and an antigen are complementary to each other if they have the same
shape vector. Based on the above definitions, it is clear that binding strength is maximum
when an antibody and antigen are complementary to each other. For convenience, we call
an antigen (antibody) with shape vector a “antigen o” (“antibody a”).

Lapedes and Farber [15] showed that HA of influenza A (H3N2) strains could be robustly
characterized using Euclidean shape space with 2-5 dimensions. In view of this and the
central role of HA in anti-influenza immune response, we identify each influenza strain with
its HA shape vector. That is, if a strain has HA with shape vector a, then we call this
strain Strain a. In this cbntext, every influenza A virus subtype will have its own shape

space; the influenza B virus will also have its own shape space.
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As mentioned in the Chapter 1, the antigenic distance hypothesis was proposed by Smith
et al. to explain the observed differences in vaccine efficacy among people with different
histories of influenza exposures. The hypothesis is based on the dynamics of cross-reactions,
which is best illustrated using the 2-dimensional shape space examples in Figure 2-1. We

shall explain Figure 2-1 in detail in the following paragraph.

Let us first look at Figure 2-1(a) where an individual is being vaccinated with strain
vi. Upon challenge by the vaccine strain v; {e), antibodies (x) whose shape vectors are
close enough to v; are generated. In Smith et al., “close enough” refers to antibodies that
lie within the ball of stimulation (BOS) of v;. Antibodies that lie inside the BOS of v
bind to and help eliminate vy. The affinity between an antibody and an antigen increases
as their antigenic distance decreases. Reciprocally, an antibody a (%) can bind to antigens
that lie within its BOS. In Figure 2-1(b), we assume that the individual is attacked by an
epidemic strain e; after vaccination. The potency of this epidemic attack is attenuated if the
vaccine and epidemic strain are cross-reactive. Two strains are cross-reactive if their BOS
intersect. Antibodies that lie within this intersection can bind to both strains. We call these
antibodies cross-reactive antibodies of the two strains. In this diagram, the cross-reactive
antibodies of strain v; and e; (generated earlier by vaccination with strain v;) bind to and
remove the epidemic viral particles (of strain e; ), thus help preventing infection. Because of
cross-reactions, vaccination can be effective even if the vaccine and epidemic strain are not
identical, as is the case shown here. Vaccine efficacy of v; on e; increases as the number of
cross-reactive antibodies of the two strains increases. Some of the epidemic viral particles
- escape neutralization and trigger production of anti-e; antibodies (those that lie within
the BOS of ey). Next, let us suppose this individual receives vaccination with strain vz in
the following year. Vaccine efficacy of vz depends on the level of cross-reactions between
vz and all previously exposed strains (ie., v; and e; in this example). In Figure 2-1(c),
such cross-reactions are intense. Therefore, before the production of anti-vy antibodies can
be triggered, the vz vaccine particles are eliminated by cross-reactive antibodies generated
earlier by vy and e;. In this case, efficacy of repeated vaccination with strain vy is low. In
Figure 2-1(d), the level of cross-reactions is low and the vaccine vy is successful in triggering
significant production of anti-v; antibodies. In this case, efficacy of repeated vaccination
is high. Note that the degree of cross-reactions depends on the relative positions of v, eq,

and v in the shape space as well as the radius of the BOS.
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vaccine strain v,

BOS around

vaccine strain v, :
strain v,

BOS around strain v,

Figure 2-1: The dynamics of cross-reactions.

In summary, the main theme of the antigenic distance hypothesis is as follows: all flu
strains (including both vaccines and epidemic virlises) that were seen by the individual
before the adminstration of a vaccine can potentially reduce the efficacy of this vaccine. In
other words, the observed low vaccine efficacy in some cases of repeated vaccinations can
be attributed to the strong cross-reactions between the vaccine strain and all previously

exposed strains.

2.3 Influenza Vaccine Strain Selection as a Discrete-time Con-

trol Problem

Having presented the relevant immunological and shape space concepts, we now give a
brief description of the influenza vaccine strain selection problem. QOur goal is to build a

decision framework for choosing an efficacious vaccine strain for an Influenza A subtype or
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the Influenza B serotype.

We consider the case of an individual. Let ¢ = 1,2, ... index time in years. The shape
space is an n-dimensional Euclidean space R™. For mnemonic purpose, we denote the shape
space by S instead of R”. Each s € S corresponds to a physical influenza strain, which
can be a vaccine and/or an epidemic strain. The immune state of an individual at the
beginning of period t is characterized by =, = {z;(s) | s € S}, where x;:(s) is a collective
measure of the number of antibodies and B cells that are complementary to strain s at time
t. Hence, the function z; summarizes the individual’s humoral immunocompetence against
different influenza strains. For convenience in later discussions, we shall simply call z;(s) the
number of antibodies against strain s henceforth. The immune state x; is constructed from
the individual’s tmmunization history hi; the construction of z; will be discussed shortly.
The immunization history h; is defined as the sequence of vaccine and epidemic strains to

which the individual was exposed between period 1 and period ¢.

The sequence of events is as follows. At the beginning of each period t, we are given the
individual’s immunization history h; and the probability density function of the upcoming
epidemic strain e;. (Since there is a time interval of at least 7 months between vaccine strain
decision and the flu season, we model the shape vectors of future epidemic strains as random
variables.) Given this information, we choose and administer a vaccine strain v; € S for
this individual. Vaccination triggers an immune response which prompts the immune state
to heighten from z; to y; (via antibodies production and immunological memory). That is,
for each s € S, the corresponding number of antibodies is increased from z:(s) to y¢(s). The
epidemic strain e; is then realized and the individual is exposed to the epidemic strain with
probability p., which is independent of time. A reward my(hs, v, e;) is then incurred. The
reward function m; measures how well the vaccine strain v; protects this individual (who
has immunization history h;) from the epidemic strain e; if he is exposed to the epidemic
attack. After the realization of e;, period t ends and period £ + 1 begins. As a new period
begins, the immune state y; evolves into z:4; due to the immune response triggered by e;

and the natural decay of antibodies. The same cycle then repeats itself over time.

In the next few pages, we will spell out the specific details of our model. Before mov-
ing on, we remark that the human immune system is an extremely complex system for
modelling. In this thesis, we take a theoretical approach and model the relevant immun-

odynamics on a macroscopic level. Our goal is to build a model that strikes a reasonable
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balance between precision (is the model realistic?) and mathematical tractability (is the
model analyzable?). In an attempt to build a realistic model that can capture the immun-
odynamics described in the previous paragraph, we ask the following questions: (1) How
does the epidemic strain sequence {e;} evolve? (2) How does the immune state change after
an immune response? (3) How do we measure the efficacy of a vaccine strain? We shall

address these questions one by one in the following subsections.

2.3.1 How does the epidemic strain sequence {e;} evolve?

Regarding the first question, we make the following assumption:

Assumption 2.1. The random epidemic sequence {e;} evolves according to a Markov pro-
cess that is independent of the vaccine strain selection policy. In particular, {e;} follows a

random walk: eqy = eq + uy where uy ~ N(d, a?I).

The vector d represents the mean antigenic drift of the flu virus. As discussed in the last
chapter, antigenic drift is a result of random mutations of the flu virus. Our assumption
that the epidemic evolution is independent of vaccination policies is supported by Fitch ef
al. {10] and Plotkin et al. [19]; both papers have shown that in retrospect, vaccination
has not significantly altered the evolutionary course of the influenza virus in the Northern
Hemisphere. The assumption of normal distribution and independence of the components of
u; are for tractability purposes. These assumptions do not reflect established experimental
results. However, they are not contradictory to the preliminary results observed in the flu
shape space map. As more data from the flu shape space map become available, we can

refine these assumptions accordingly.

2.3.2 How does the immune state change after an immune response?

This question requires more elaboration. Since the immune state is a measure of the abun-
dance of antibodies and B cells, we restrict z(s) to be nonnegative for all s € S for every
immune state z. Upon challenge by a strain a (which can be a vaccine or epidemic strain),
cross-reactions occur between strain a and the existing antibodies in the immune state .

We denote the level of cross-reactions by ¢(z,a), which we call the clearance of a by x. We
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define c¢(z,a) as

c(x,a) = min 1 / w(s —a)z(s)ds,1 . | (2.1)
R Jgo————
weight

Let us give a physical interpretation of (2.1). The function w : § — [0, 1] is a weight
function. Given a strain with antigen a and an antibody s, w(s — a) measures the affinity
of the antigen-antibody pair as a function of their antigenic distance ||s —a||. In this paper,
we shall let w(s — a) = e~"s~2® where n > 0 is some scaling factor. This functional
form is consistent with the results in Lapedes and Farber (see Figure 5 in [15]). Note
that afhnity decreases as antigenic distance increases. Moreover, the weight function is
spherically symmetric around 0; this means that same antigenic distances result in the
same level of affinity. The constant R in (2.1) is a normalization factor. We defer our
discussion on the choice of R until we have described all the dynamics of the immune state.
Having explained the notation in (2.1), we can now see that the normalized integral in (2.1)
is a weighted number of antibodies in the immune state x, where more weight is given to
antibodies that are antigenically closer to a. The clearance is bounded above by 1, meaning
that clearance cannot be increased further after the weighted average has risen beyond a
certain level (which is controlled by the yet to be explained normalization factor R). This
upper bound guarantees that the immune state is always nonnegative. For convenience in

later discussions, we denote the weighted average in (2.1) by &(z, a):

c(x,a) = %/Sfc(s)w(s — a)ds. (2.2)

Now suppose we start with an immune state z; at time ¢ and we administer a vaccine

strain v;. The immune state then changes from z; to ¥ as follows:

y:(s) = xy(s) +§U(1 - c(xt,vt)lw(s —w), s&8. (2.3)

effective dose  weight

(2.3) means that the use of vaccine strain v; increases the number of antibodies by Ky(l —
c(zy, vy))w(ve — s) for each s € S. We call xy(1—c(xy,v;)) the effective dose of the vaccine v;.
The constant «,, represents the maximum effective dose of a vaccine. The term 1 — c(z;, v4)
admits the following interpretation. After vaccine particles are injected into the body, they

are filtered by the existing antibodies that circulate inside the bloodstream. Therefore,
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we assume that if a vaccine v; is administered on an immune state z:, a fraction ¢(z, vs)
(see (2.1)) of vaccine particles are neutralized by the existing antibodies in z;. Thus, only
1 — ¢z, vt) of the total administered vaccine particles are able to trigger immunological
memory and antibodies production in the lymphoid tissues. The function w : § — R in
(2.3) is the same as the weight function that we used in (2.1). Therefore, the increase in
number is larger for antibodies that are antigenically closer to the vaccine strain v;. We
remark that (2.3) is consistent with the computer model developed by Smith et al. [21].
After vaccination, the epidemic strain e; is realized. With probability p., the individual
is exposed to the epidemic attack, which prompts the immune state to evolve in a way that
is similar to (2.3). Moreover, as a new period begins, we assume that the immune state
is discounted by a factor of @ < 1 due to the natural decay of antibodies. Therefore, i

evolves into ;4 as follows:

Tr1(s) = a[yt(s) + I, kie{1 — c(yt, e2))w(s — et)], sel§ (2.4)

where

1 if exposed to epidemic strain e; in period t (w.p. pe);
I, = ' (2.5)

0 otherwise (w.p. 1 — pe).
We assume &, > Ky, which means that epidemic attacks can trigger stronger immune
responses than vaccinations. This is because vaccines are usually non-replicating viral
particles while epidemic viruses are live viruses.
Let us now go back to define the normalization factor R in (2.1). First, we introduce

the following definition:

Definition 2.1. If the immunization history is empty, then the immune state is 0. That

is, x¢ = 0 if hy = 0. We call this the naive immune state.

We let

_fw _ _ _ B [ nls—all? mmlls—all? g — v [T 26
R 7 Sw(s -a)w(s — a)ds p /Se e ds 5\ 2’ (2.6)

where 0 < § < 1 is called the clearance constant (note that the above calculation is indepen-
dent of the choice of a, which can be any finite vector). This definition of R admits the fol-

lowing interpretation. Suppose we have a naive immune state at time ¢, i.e. z; = 0. Consider
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the case where this naive state is boosted by a vaccine strain a and then challenged by an epi-
demic attack of the same strain a immediately after the vaccination. After vaccination, the
immune state x; is boosted to y;(s) = kyw(s —a), s € S, according to the dynamics that we
have just described. (2.6) then implies that the weighted average in (2.1) at the time of the
ensuing epidemic challenge is &(y;, a) = £ [gui(s)w(s—a)ds = & [cw(s—a)w(s—a)ds = 6.
Hence, the clearance of the epidemic strain a by y; is 8, meaning that the vaccine is success-
ful in eliminating # x 100% of the epidemic viral particles for a naive immune state when

the vaccine and epidemic strain match exactly.

We close our discussion on the construction of immune state with a few shorthand
notations. We let Dy, = £,(1 — ¢(z¢,v¢)) in (2.3) and D,, = ke(1 — c(yt, 1)) in (2.4). For
i < t, we call o!7*D,, the residual dose of v; at time t (a!7'D,, is defined analogously).
Moreover, we define a function p such that given an element a € hy, p(a) outputs the time
index of a; for instance, p(v;—1) = ¢ — 1. Under such notation, (2.4) and (2.3) can be

expressed compactly as

Za PO Dw(s —a), s€S, (2.7)
athe

w(s)= Y o PUDuw(s—a), seéb (2.8)
ac{hy,us}

From these equations, we see that the constructed immune state is additivé in the sense
that .aln immune state at a given time is the sum of the effect of all previously exposed
strains (discounted by the decay factor o). Note that the contribution of each strain in the
Immunization history depends on its cross-reactions with all previously exposed strains via
its effective dose. Also, note that the immune state at any two different times are related

additively. For instance, z; and x;,1 are related by the equation
Ter1(s) = a|@i(s) + Dy, w(s — ve) + I, De,w(s — et)], seS. (2.9)

Relationships between immune state at different times such as (2.9) will be invoked fre-

quently throughout the rest of this thesis.
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2.3.3 How do we measure the efficacy of a vaccine strain?

Recall that c(y;,e;) is the fraction of epidemic viral particles that are cleared by the post-
vaccine immune state at time t if the individual is exposed to the epidemic. Hence, we
use c{ys,e;) as the benchmark for measuring the efficacy of our vaccine choice. To sim-
plify our analysis, however, we use &(1,€e;) as the measure instead (recall that c(y;, e;) =
min{¢(y:, e:),1}). That is, we define the reward at time ¢ to be &(y, e;). For an N-period

problem, the overall objective function is

N .
Er, Tey ermen [Z Bitt(ye, et) | 60] (2.10)
t=1

where 3; < 1 is the probability that the individual will be alive in period ¢ given that he is

alive in period 1 (of course, we have 3, > ;41 for all t).

2.4 Dynamic Programming Formulation

Having described in detail the formulation of our influenza vaccine strain selection model,
we can now write down our dynamic program. At each period t, the components of our
dynamic program are as follows:

State: Immunization history h; and the expected upcoming epidemic strain &

Decision variable: Vaccine strain v

Random disturbance: Upcoming epidemic strain €t

Reward: Approximate clearance of epidemic viral particles by the post-vaccine

immune state, &(yz, e:}, weighted by the probability of survival aﬁ time ¢, 3

Note that the origin of the shape space is arbitrary and we are only interested in the
relative positions of the strains in the shape space. This means that we have the freedom of
defining the origin of the shape space to be &; at each iteration of the dynamic program (DP).
Hence, without loss of generality, we can reformulate the DP such that the state at time ¢
comprises only the immunizatibn history h;. In summary, for a time horizon of NV periods,
the objective is to find the optimal vaccine strain selection policies p;(ht), t = 1,..., N, to
maximize (2.10) subject to (2.1), (2.2), (2.5), (2.6}, (2.7}, and (2.8). Note that the number
of state variables increases as time increases because we accumulate more and more strains

in the immunization history as we move forward in time. The expansion of the state vector
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results in a high-dimensional continuous state space for the early iterations of the dynamic
program. In Chapter 4, we show how we can overcome the curse of dimensionality in this

problem and solve this high-dimensional DP.
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Chapter 3

Analysis of the 1-Period Problem

3.1 Some Useful Formulas

We begin our analysis with some formulas that will be used repeatedly in the rest of this

paper. Substituting (2.7) and (2.8) into (2.2), we have

(ze, ve) /Zat p(‘IDw(s—a) S—’UtdS—za p(a) Dygla —v),

ache achy
c(yz, ) = ! / Z PO D w(s — a)w(s — e;)ds = Z ot PO D gla — ¢,),
ac{hs v} ac{h¢,vi}

(3.1)

where g(a —b) = % fow(s — a)w(s —b)ds. Since w(s —a) = e M52l and R = Ve (see
(2.6)), it can be easily verified that g(a — b) = %e‘"”“‘b"zﬂ. Note that (3.1} implies

(e, 1) = &(ws, 1) + Do gler — vr) (3.2)

and other similar additive relations which we shall use frequently throughout the thesis.

Substituting (3.1) into the definitions of the effective doses, we have

‘ +
Dy, = £4(1 — ¢c(zy, 1)) = KU(]. — Z at_p(“)Dag(a - vt)) ,

aEhy

+
De, = ke(l — clys, e1)) = Kc(l - Z atP@Dgla — et)) . (3.3)
aE{ht,'Uf,}
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By Assumption 2.1, the conditional pdf of e; is

fles | es—1) = ( = ) gle=al’/20” s e 5, (3.4)

2no

where & = e;_1 + d. Therefore, if s is independent of ey} for all k > 0, we have
9 2 _ - 2
Eet+k [g(s —ervk) | et—l] = ;_B;’;/_le nByy1lls—&—kd||?/2 (3_5)
v
where B, = W Combining (3.1) and (3.5), we see that

Ee,x {E(yt;et—klc) | et—l] = Z o PR D e L [Q(G —erik) | et—l] (3.6)
’ ae{ht,vt}

admits a closed form expression.

3.2 Reformulation of the 1-Period Problem

We now begin the analysis of the first DP iteration, which is the same as a 1-period problem
(except for the difference in 3;). The objective function is simply the expected reward at

time N:

AnFey[elyn, en) |en-1] = Bn Beylc(on,en) | en-1] +0n Doy Eey |9(un —en) | 6N—1] :

residual immunity in zx immunity boosted by vx

(3.7
The equality holds because of (3.2). Since the first term in (3.7) is independent of vy, it
suffices to maximize just the second term. Moreover, since we are maximizing the function,
we are only interested in choices of vy that give positive D, (we can always achieve
D,, = 0 by not using any vaccine). Using (3.3) and (3.5), we can easily verify that the

1-period problem is the same as max,,, FN(UN)Jr where

Fy(uy) = (1 _ 9 3 oV-P(@) Dae—nna—vwu?/z)e—anwN—ule/z, ' (3.8)

v a&hpy

Note that an optimal solution to max,, Fi(vy) is also an optimal solution to max,, Fx (v N)T
We choose to work with the former formulation because the objective function is contin-

uous. Let v% be the optimal solution to this maximization problem. Clearly, if hy = 0
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(i.e., no immunization history), then v}, = &y and the 1-period problem is trivial. So let
us assume iy # O for the rest of our analysis. Also, we assume that v}; is unique and éx
is not a stationary point of Fj; (which can be achieved by slightly perturbing the data hy
if necessary). This means that VF. N{en) # 0. We are interested in obtaining analytical
insights on the behavior of v},. Unfortunately, v}, does not admit a closed-form solution
and its properties is not easily analyzable. Our goal in this section is therefore to find a
close approximation to v} that is analytically tractable. Let us begin by visualizing the
geometry of this problem. The term inside the parentheses in (3.8) shows that there are
penalties for placing vy near the points in hy: a penalty is radially distributed around each
point in hy. These penalties arise from the cross-reactions of the vaccine strain vy and each
strain in the immunization history hx. On the other hand, there is a reward for placing vy
near éy: a reward is radially distributed around ép. This reward stems from the expected
cross-reactions between the vaccine strain and the upcoming epidemic strain. Hence, v}, is
the point that strikes an optimal balance between the penalties and the reward. We proceed

as follows.

We begin with a simple example where hy has only one element, say vy_;. That is,

hy = vny—1. From the symmetry of the problem shown in Figure 3-1, we immediately see

ball of reward around EN

A

ball of penalty around v, _,

v, must lig in this direction

Figure 3-1: Symmetry in the example where Ay = vy_j.

* UN_1—€EN

* — e — D ———
that vy =€y = p low—1—&n]l

for some p* > 0. Therefore, we only need to know p* in order
to locate v},. By expressing vy in the form of &y — pﬁ in (3.8), we can transform

the multi-dimensional problem max,,, Fx(vy) into a one-dimensional problem

8 .
—n(p+lvn=1 eN||)2/2) nB1p%/2
1})1)33c(1 . aDy, e e : {(3.9)
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However, this optimization problem does not have a closed-form solution neither. Never-
theless, as we will show later in our analysis, we can extract some important relationships

between the optimal solution and the parameters of the problem.

Lef us now consider the case where hy has an arbitrary number of points. Our next
step is to approximate the problem max,, Fn(vn) with a one-dimensional problem that
resembles (3.9). In the previous example, we assume hy = vy 1 and then deduce the
direction in which v}, lies (relative to &y). Let us now reverse the scenario and assume that
we know the optimal solution v}. In particular, we know the optimal direction ”—Z%:%ﬁ,
denoted by 3. Then by symmetry, we see that it is possible to construct a 1-period problem
that has (i) the same optimal solution v}, and (ii) an immunization history hp that has

only one point, denoted by r}, = &y — 5T for some vy, > 0. That is, there exist D7, and

rx (equivalently, v}/) such that

v = arg max(l _ ED:NE_U|IT?\I_UN||2/2)e'ﬂBIH'UN—éN”z/Z’ (3.10)
vy Ky

If we can determine Dy, and rj without knowing v}y, then we can transform max,, Fy(vy)
into a one-dimensional problem that is much more amenable to analysis. Note that (3.10)
implies that in our search for vy, all relevant information in hy are compressed into Dy
~and . That is, D and rj contains necessary and sufficient information for finding v3;.
We call the transformation of Ay to D7 and 7} the history reduction. Recall that our goal
in this chapter is to find a good approximation to v}, that is easily analyzable. In view of
the 1-dimensional problem transformation under history reduction, we shall approximate
vy by obtaining a good approximation to D; = and ry. Before we do this, however, let us

first examine the behavior of v} under the setting of the transformed problem in (3.10).

3.3 Properties of the Optimal Solution to the Transformed
1-D Problem

Analogous to (3.9), the problem in (3.10) can be reduced to a 1-dimensional problem:

9 *
1,13138((1 _ H_D:Ne*n(p#m)z/?) e MB10% /2 (3.11)
v
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Let p* be the optimal solution to (3.11). As mentioned before, p* does not admit a closed-
form solution. Our next step is to analyze how p* varies as a function of the parameters inl
(8.11). In particular, we are interested in eliciting the dependence of p* on Y5> which is the
distance between r}; and &y, while holding other parameters constant. For this purpose, we
nondimensionalize the objective function by letting ¢ = V@ p, T = \/2’71*\1’ and ¢ = K%D:N,

The nondimensionalized objective function is therefore
H(q) = (1 — Ce~(@t7))g~B1e° (3.12)

where €' > 0 and 0 < By < 1. For any 7 > 0, H is bounded and has only one local

maximum in g > 0. Hence, the global maximum of H can be found by solving the equation

% = 2¢~Bre"—(a+7)? (C’(qu +q+T)— B1qe(”")2) =0 (3.13)

fHa,)

in ¢ > 0. Let ¢ be the unique function that satisfies f(,¢(7)) = 0 for all 7 > 0. The

optimal solution v}, can now be expressed as

* N 2 7 .\ Tn — EN
vmew—yfTo( 3 iy — e (314)

Theorem 3.1 and 3.2 below give us some important information on how ¢ varies with =, C,

and B;. For ease of presentation, we assume C' # g fllfh and include 7 = 0 in the domain

of ¢, albeit 7 > 0 in our problem. The proofs of Theorem 3.1 and 3.2 can be found in the
Appendix.

Theorem 3.1. ¢ € C([0,00)) and lim, oo ¢(T) = 0. The (C,B1) parameter plane can
be partitioned into 4 regions as follows based on the general behavior of ¢ therein:
Region 1: C < -

N S
e2(1+58y)

. . . B B
ERegion 2: HE <0< T
1
; . B 3y E
Region 3: {$5-e*48) < C <

3
. By _.31735])
. 1 _»2(1+2B
Region 4: C > T+ € 1

3
e 2(112B7)

B
1+B;

The behavior of ¢ in each region is summarized in Table 3.1. Furthermore, Ty < \/g and

Tinflect < \/%- for all C > 0 and 0 < By <1 that satisfy C # 15}91'

Theorem 3.2. Suppose we vary C' while holding By or B% fired. Let ¢c be the function ¢

33



Region | General behavior of ¢

1 ¢(0) = 0;

¢(7) is strictly concave and strictly increasing on [0, Trmag);
¢(7) attains a global maximum at 7 = Tiae;

#(7) is strictly concave and strictly decreasing on (Tyaz, Tinflect);
¢(7) has a point of inflection at 7 = 7y, fiecs;

¢(7) is strictly convex and strictly decreasing on (Tinfrect, 00).
2 Same as Region 1 except ¢(0) > 0.

3 ¢(0) > 0;

Z—f(O) =0if C = %eﬁﬂl), g—":(O) < 0 otherwise;

@(7) is strictly concave and strictly decreasing on (0, 7y, fzect);
¢(7) has a point of infection at 7 = Ty freet;

¢(7) is strictly convex and strictly decreasing on (Tin flect, 00).
4 $(0) > 0;

L2(0) = 0if C = 25250, £2(0) > 0 otherwise;

¢() is strictly convex and strictly decreasing for all 7 > 0.

Table 3.1: General behavior of ¢ in the four different parameter regions in Theorem 3.1.

parameterized by C. If C > 0 and C > 0 satisfy C < C, then ba(T) < da(r) for all T > 0.

09r

5 —— Region 1
08 Region 4 . --- Region 2

1+ -—-— Region 3
0.7[ ~Region 4
Region 3
08r 0af
| ~-
05 Region 2 ]
© Tosf
04} =08 S
"\
0.3t Region 1 04_'6“\ RN
RS N N, .
02 \Q\\ .\'\ .
o1t 02 RN
0 i N ' . L o ; R i "
0
o] 0.2 0.4 B 0.6 08 1 0 05 1 15 2 25 3
1 T

3.4 Construction of the Approximate Optimal Solution

We will complete our analysis of the 1-period problem by constructing a good and robust .
approximate optimal solution. As mentioned before, we will do this by finding a good
approximation to D7, and r},. By comparing Fiy(vy) in (3.8) and the objective function in

(3-10), we see that D, and ry will be good approximations to Df = and 7%, respectively,
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if

Z a¥=rl) p emalla—vnl?/2 o DTNe“"ll'”"—‘”"nz/2 for vy near v} (3.15)
achy

Consider expanding the left-hand-side of (3.15) as follows:

_ ol (12
2 oY P(G)Dae nlle—vpn |2 /2
achy

= emllew=unIP/2 §7 oN-p(a) p g—la—ex|?/2gntus~2w)T (a~2x)

aChy
_ N e s 21 _ R
= ¢~nllEn—vn|?/2 > ol pelle 8N||2/2ZE(TI(UN+6N)-T(a—eN)) . (3.16)
e€hy k=0

The second equality is obtaining by writing a — vy as (e — éy) — (un — En). Next, we let

G
N = EN — ’)’N“T;rﬂ (3.17)

where vy and Gy are to be determined. We then substitute (3.17) into the right-hand-side
of (3.15) and expand the result as follows:

DTNe—ﬂ||?‘f~r~v:\r||2/2

_ G 2
- DTNG*WHSN_'YNWG—I%—UNH /2

= enllen-—wlP/2p  o=mi /2NN —En) ey

_ 1 k
='e_77||BN—'”N”2/2DTN6—"7"/)2\7/2 Z —(—TWN(vN - gN)Tﬂ) ) (3.18)

23 ICnT

We can now match (3.16) and (3.18) (i.e., the left- and right-hand-side of (3.15)) up to the

second order by choosing

Gy = Z aN=P@) (g5 — @) Dge Ma—enli*/2, (3.19)
achy
' B 1
YN = HGNH( Z aN*p(“)Dae*"”“_eN”z/z) , (3.20)
aChpy
D, = 6?7‘?’12\:'/2@_ (3.21)
TN
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Since we assume hy # @, the term inside the parentheses in (3.20) is nonzero and vy is
well-defined. Interestingly, we notice from (3.17) and (3.21) that rn and D,, are both
functions-of only vy and Gy. From (3.17), we see that vy is the distance between rn and

en and —ng—“ is the unit vector that points to rx from &yx. Moreover, it can be easily

. VEN(E
verified that ||vFgEej§gl|

violates our assumption) and ry is well-defined.

”G s SO Gn # 0 (otherwise €y is a stationary point of Fiy which

We now have rx and DTN as approximations to 7} and Dy . By substituting these
approximations into the transformed problem (3.10), we are in essence approximating Fliv
by

g -
Fi(on) = (1 - ;_DTNG_VI”TN—UNMZ/Q)e—ﬂBl||”N—eN||2/2_ (3.22)
U
Let: v]h(; be the optimal solution to max,, ¥ ﬁ(vN); we will use vf{, as an approximation to

v}y- As discussed before, we have

h‘_— 2 n TN —eN
dmon ol im) st e ol e

Notice that (3.23) means that we are approximating the optimal direction v with ;&5 e

lGwll”
Since ”gg’: gﬁ ;H = ”gx [ We are essentially approximating the optimal direction ¥}, with

the steepest ascent direction of Fiy at &x. We use the superscript “A” in v?v because we
will use 1)1’{, as a time-independent heuristic policy in our dynamic program in the next
chapter. The performance of vj’tj in the 1-period problem will be demonstrated shortly; the
performance of the heuritic policy in the multi-period problem will be tested in the next

chapter when we solve the DP numerically.

3.5 Testing the Performance of Different Policies in the 1-
Period Problem

In this section, we test the performance of the heuristic policy, the follow policy (denoted by
U{v = En), and the no-vaccine policy (denoted by UR, = 00) in the 1-period problem. Before
we do so, let us first summarize our results so far. Our goal in-this chapter is to obtain an
analytically tractable approximation to the optimal solution of the 1-period problem. We

showed that a general 1-period problem with an arbitrary immunization history hy can

be reformulated as a special 1-period problem where hy has only one representative strain

36



r}‘\', whose effective dose is Dy (see (3.10)). We then extract some important properties
of the optimal solution to the transformed I-dimensional 1-period problem (see (3.11)) in
Theorem 3.1 and 3.2. Finally, we obtained an approximation to v}, denoted by v}, (see
(3.23)), by approximating r3 and D} with ry and D,,. We now close this chapter by
testing the performance of vf;, vj{,, and v% and how well Fft(v;) (see (3.22)) approximates

Fn(v})T. To this purpose, we construct a simulation as follows:

1. Without loss of generality, set k. = 1 and n = 5. 5 = 5 is convenient because the value

of the weight function w(s) drops to negligible level when ||s|| > 1. See Figure 3-2.

1
0.9F
08f

Q.7

N

@

S

0 02 0.4 0.6 08 1 1.2
Antigenic distance z

Figure 3-2: Plot of the weight function for = 5. The weight drops to negligible level when
[lsll = 1.

2. Since we do not have concrete data to help us set parameter values, we generate

parameters randomly according to Table 3.2. We set ¢ = cul% where ¢, measures

the degree of variation in the epidemic evolution (which is a random walk).

3. Compute

En(R)* o pr Ex(ep)t

R =
Fn(uy)™ (i)t

(3.24)
which measures the performance of the heuristic and follow policy. Note that R™ =

% which

measures how well max,,, FI’S, (vwn) (the transformed problem under history reduction)

Fn(vR)"/Fn(vh)T = 0 for the no-vaccine policy. Also, we compute

approximates maxy, Fy(vn)*t (the original 1-period problem). This will lead us to

devise an efficient algorithm to approximate the DP in the next chapter.
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Parameter Distribution | Interpretation

n (Integer) | U(2,5) Dimension of shape space is between 2 and 5

M (Integer) | U(1,10) 1 to 10 years of immunization history

Ko U(0.3,0.6) | Vaccines are 30 to 60% as potent as epidemic attacks

o U(0.3,0.6) Immune state decay rate is between 0.3 and 0.6.

6 U(0.4,0.8) | Vaccine removes 40 to 80% of epidemic viral particles in a
naive immune state if vaccine strain matches epidemic strain

De U(0.3,0.6) Probability of epidemic exposure is between 0.3 and 0.6

| U(0,0.5) Magnitude of mean antigenic drift

e U(0.1,1) o =c, 1

Table 3.2: Randomly generated parameter values for testing the accuracy of vf; in the
1-period problem.

The simulation is repeated 800,000 times to test the performance of the three policies against
that of the optimal policy. The frequency plots of R* and Rf are shown in Figure 3-3. From
the plot of R*, we see that the heuristic policy is an excellent approximation to the optimal
policy for all the randomly generated combinations of parameter values in the simulations.
In this sense, the heuristic policy is a robust approximation to the optimal policy. The
frequency plot of Rf shows that the follow policy is less robust, yet still performs quite well

in many cases.
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Figure 3-3: Frequency plots of R* and R/.

Note that the performance measures that we just used (i.e., R* and Rf) compare only
the immunity boosted by vy. Recall that Fyy is the part of the 1-period objective function
that depends on vy (see (3.7)). In practice, however, we are most interested in the overall
immunocompetence of the individual and we should therefore include the residual immunity

term (see (3.7)) in the performance measures. To this end, let us compare the performance
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measures

b BeyleWhnen) lena]l 5 Eeylelufnen) len—1] o Eep ey en) | enci)

ro= — y = A y - y— )
EEN[C(yRHeN) | eN—l] EEN [c(yN’eN) | eN—l] EEN[C(vaeN) I eN—l])
(3.25

where yy, y?\,, yl{,, and yj; are the post-vaccine immune states under the optimal, heuristic,

follow, and no-vaccine policy (note that y% = zn). The frequency plots of r*, rf, and

T.n

are shown in Figure 3-4. Also, we are interested in knowing how the performance
of policies change as a function of residual immunity. Let R™® be the ratio of residual

immunity to vaccine-boosted immunity under the optimal policy. That is, let R™®® =
Eep [E(I,V,BN) | eN~1i|

. In Figure 3-5, we plot R" and R/ against R™*. With the effect of

2
0BT 2 Fy (up )+
"
0.9 0.051
0st 00451
o1h 0.04

Frequency
o o o
Y wn o
T

Fraquancy
(=] e Q =
R 88 &

o
w

Q.0151

a
[X]

Q.01

o

0.005}

a

097 0875 098 0885 099 0995 1
&

0.0251
oo2r

0.015f

Fraguency

o
2

0.005

Figure 3-4: Frequency plots of »*, . and r™.

residual immunity now taken into account, let us reexamine the performance of the three
policies. From the frequency plot of " in Figure 3-4, we see that the performance of
the heuristic policy is still robust. Indeed, as shown in the plot of R" in Figure 3-5, its

performance is very insensitive to the level of residual immunity. Next, from the frequency
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Figure 3-5: Scattorplot of R" and R/ versus the level of residual immunity.

plot of rf, we see that the follow policy is performing very well after the residual immunity
term is taken into account. This is because in cases where the follow policy provides only
relatively low level of boosted immunity (i.e., low Rf), the attenuation of vaccine efficacy
implies a high level of residual immunity. Thus, the low vaccine efficacy is compensated
by a high level of residual immunity. This view is confirmed by the plot of R versus R
in Figure 3-5, which shows that vaccine efficacy under the follow policy deterioriates as
the level of residual immunity increases. Although the performance of the follow policy
is far less spectacular than that of the heuristic, it is fair to say that the follow policy is
still a good and robust suboptimal policy. Finally, the frequency plot of 7™ shows that the
performance of the no-vaccine policy varies widely depending on the parameter values and

the immunization history. In this sense, the no-vaccine policy is neither good nor robust.

Next, we turn our attention to the frequency plot of the ratio Fi;% in Figure 3-6.
The plot shows that Ff (v ) is an excellent approximation to Fy(vy)". This fact will help
us identify an efficient way to approximate the value function of the first DP iteration in
the next chapter. When we solve the DP numerically in the next chapter, we will focus on
the case n = 2 (i.e., the dimension of the shape space is n = 2). In Figure 3-7 to 3-9, we
show the frequency plots of R*, Rf, v rf »™ and %’%—% for simulation trials that have
n = 2. Comparing the results in Figure 3-7 to 3-9 with that in Figure 3-3 to 3-6, we see that
the performance of the three policies are not greatly affected by the value of n. However,
comparing the frequency plot of r7 in Figure 3-4 to that in Figure 3-8, we can deduce that

the follow policy performs worse when n is larger. This is because when the dimension of

the shape space is higher, it is easier for the optimal vaccine strain to avoid cross-reactions

40



0.15
01
0,05
DI 1.01 162 103 n1.04 . 105 1 ;?6 1 ;37 ‘1 ;JB
PR P F o)
. Fh(uh)
6 W)
Figure 3-6: Frequency plot of Fa{oi)F
with past strains.
n=2 n=2
"
018
0.8r
0161
0.8+
014
0.7
- 06} otz
a &
g 1 g 0
g 05 :il'i
uw 04l w008
03 0.06
0.2t 0.04
01r 0.02f
o . . ‘ . . . o . .
094 095 098 " 097 0.98 0.99 1 0.65 07 0.75 0.8
R A

Figure 3-7: Frequency plots of R" and Rf for n = 2.

41



09

Frequency
o © © © o o
=] b o Lozl el o

Lod
N

01

n=

0.4
0.09F
o.08f
007f

=
2 0.08f
5
3
2 0050
uw
0.04F
0.03¢
0.02f
001
097 0975 096 0985 099 0995 1 086 088 09
rh
n=2
0041
0035}
003
0.025;
g
5
= 002
i
0.0%5F
0.01f
Q.0051

01 02 03 04 05 08 07 08 03 1

Fraquancy
o 2 © © o o o
[~ H o & ~ =] =]

o
X}

e

ol

1 101 102 103, 104 . 105
R R

s " 4
106 107 1.08

FL(vk)

WfOI'TL:g.

Figure 3-9: Frequency plot of

42



Chapter 4

Numerical Methods for DP

Approximation

4.1 Parameter Values for DP

In the previous chapter, we analyzed the 1-period problem, which is the same as the first
iteration of our dynamic program. In addition, we have shown that our heuristic policy
is an excellent and robust near-optimal policy in the 1-period problem. Qur goal in this
chapter is to solve an N-period problem numerically and then compare the performance of
the heuristic policy, the follow policy, the no-vaccine policy to that of the optimal policy.
We restrict our attention to a time horizon of N = 10 years and a shape space dimension

of n = 2. Specifically, we consider the case of a 65-year-old individual who will be receiving |
flu vaccines for the next N = 10 years. According to the United States Life Tables in
2001, the values of B;, t = 1,..., N, for this individual are shown in Table 4.1. (Recall that
B¢ is the probability that the individual will be alive in period t.) As mentioned before,
we do not have concrete data that allow us to choose specific values for the rest of our
model parameters. For this reason, we will solve the DP for the parameter values shown

in Table 4.2. We will run the DP for all 216 combinations of parameter values given in

t |1 2 3 4 5 6 7 8 9 10
By | 0.984 | 0.967 | 0.949 | 0.929 | 0.908 | 0.885 | 0.862 | 0.837 | 0.810 | 0.782

Table 4.1: Values of 8, ¢ =1, ..., N, obtained from the U.S. Life Table, 2001.
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Parameter | Values Interpretation

Ky {0.3,0.6} Vaccines are 30 or 60% as potent as epidemic attacks.
a {0.3,0.6} Immune state decay rate is 0.3 or 0.6.

6 | {0.4,0.6,0.8} | Clearance constant is 0.4, 0.6, or 0.8

De {0.3,0.6) Probability of epidemic exposure is between 0.3 or 0.6.
|1 {0.1,0.4,0.8} | The magnitude of mean antigenic drift is 0.1, 0.4 or 0.8
cy {01,051} |o=c,4

Table 4.2: DP parameter values

Table 4.2, which we shall index as Case 1 to Case 216. The combination of parameter

values in each case can be found in Table A.1 in the Appendix.

4.2 Breaking the Curse of Dimensionality via Features Ex-

traction

As mentioned at the end of Chapter 2, this DP is difficult to solve because the dimension of
“the state vector increases as time increases. In the first DP iteration, there are N —1 =9
years of immunization history. Therefore, hy has 2(N — 1)n = 36 real variables (one year
of history is consisted of one vaccine strain and one epidemic strain; each strain has a shape
vector of dimension n = 2). Since a closed férm expression of the value function is not
available, we resort to finding a closed form approximation to the value function. However,
learning the value function in a 36-dimensional continuous state space is a daunting task.
The computational requirement for solving this DP (approximately) is thus prohibitive
under the usual straightforward DP implementation. In what follows, we develop an efficient
algorithm to get around the curse of dimeénsionality in our DP. Our approach is to first
identify a small number of “features” that can effectively capture the information contained
in the state vector. We then approximate the value function by a low order polynomial of
these features. This approach allows us to learn the value function from a reduced feature
space whose dimension is much smaller than that of the original state space. We proceed

as follows.
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4.3 Reward-To-Go Approximation at the 1st DP Iteration

Let pf, utf , and pf* denote the heuristic, follow, and no-vaccine policy at period ¢. Recall
that pl(h) = v} and pf (k) = &, where v} is given in (3.23) (With N replaced by t).
Since all three of theée policies are time-independent, we shall drop their time subscripts
henceforth. Let p} be the optimal policy at time V. Let Jy, JR’,, Jj:,, and J§ be the
the optimal, heuristic, follow, and no-vaccine reward-to-go at time V. Our first step is to
extract the desirable features for approximating Jy;, J, 1’@, and J 1{1 (J§ has a closed form
solution so no approximation is necessary). To do this, we need to obtain information on
how Jj, J&, and JZ{I depend on the state hy. By (3.7), the reward-to-go function at time

N under a given policy u € {u}, 1", pf}, denoted by Jy, is

IN(AN) = By Bey 6@y, en) | en—1] + 0B Fa(u(hn))™. (4.1)

As shown in the last chapter, the first term on the right-hand-side is the residual immunity in
the immune state z and is independent of the policy u. So let us look at how Fy(u{hn))™
depends on the state Ay. Let 6y = Gl _ D achy o:N_p(a)Dae"?”a—éz\rI|2/27 where Gy and

TN

~vn are given in (3.19) and (3.20). For the follow policy, we have

Fn(uf (hw))t = Fu(en)*t = (1 — 3 ot P pyelleenl® /z) (4.2)

v aEht

S

v

S

Thus, we see that Fy(u/ (hn))* depends on the state Ay via only dx. Next, from Figure 3-
9, we see that F}(u"(hy)) is an excellent approximation to Fn(uj(hn))*. Substituting
(3.23) into (3.22), we obtain

) = (1- 2 DTNe—w(@wm/%)z)6_BL¢<¢%>2
l
(hgll(gwll Ear- I COVE Ty \F—N—)?) -Big(y/ I (4.3)
v N

Thus, we see that F(u"(hy)) depends on the state hy via only éy and ||Gn/||. Therefore,
(4.2) and (4.3) suggest that in approximating the second term of the reward-to-go in (4.1)
under all three policies, we may use dn and ||Gy|| as features to summarize the information

contained in the state hpy. In particular, for each policy p € {p’}‘v,p,h,yf }, we consider
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approximating ﬁNBBIL/‘?FN (u{hn))T with a low order polynomial function of 6 and |Gx|l:
BNOBY 2 Fy(u(hw))T = Cn1 + O 28y + Cv 383 + Cnal G |- (4.4)

The coefficients will be obtained by running a regression on randomly generated state sam-
ples and their corresponding reward-to-go values. The functional form in (4.4) is chosen
because (i) it yields a good approximation as we will demonstrate shortly, and (ii) it gives
us a closed form approximation to By ,[Fn(-)7 | eny—2] which we will need in the next
iteration of the DP. (A ||Gn|| term is not included in the polynomial because we cannot
get closed form expression for the expected valuc of |Gn||.) Let Cf C’R,,i, and C J{,’i,
1 =1, ...,4, be the regression coeflicients for the optimal, heuristic, and follow reward-to-go,
respectively. The next step is to test the performance of our approximation in (4.4) us-
ing simulations. We compute the regression coefficients U ;, C}b,i, and Cf{f,i in (4.4) from
a training set that comprises 2,500 randomly generated state samples. We then test the
performance of the regression with an independent test set that comprises 2,500 randomly
generated state samples. The R-square values of the training and test set for each policy -
are plotted in Figure 4-1. It can be seen from Figure 4-1 that our chosen functional form in
(4.4) works very well in approximating the reward-to-go functions at time N for all three
policies. Let us denote the resulting approximations to Jy, J 1’(}, and J 1{, by f;{,, Jh and
j]{,, respectively. Note that if Fn(uf(hn))t > 0 for the follow policy, then {4.2) implies
that the approximation in (4.4) is exact with CI{,’I = BNQB?/Z, Cz{r,z = —ﬁNHB?/ZN%, and
01{7,3 = CJ{IA = 0.

4.4 Reward-To-Go Approximation at the 2nd DP Iteration

We now move on to the second iteration of the DP. For conciseness, we shall show the
calculations for the optimal reward-to-go function only; the calculations for the heuristic,
follow, and no-vaccine reward-to-go are analogous. The optimal reward-to-go function at

time N — 1 is

T hv-1) = max { Brey_ excs [By18omor,ena) + T (hn) [ ena|}. (45)
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Figure 4-1: R-square values for reward-to-go approximations at the 1st DP iteration.

The next step is thus to evaluate Ep, . en [J}(, | EN_2:| . Using our reward-to-go approx-

imation in (4.4), we have

Bl yienos [ Jielhn) | enca)
% Bl e |8 Bew |[Sen, en) | enoa| + i+ Chiabi + Chisfy + CheallGw 2 | e
= AnEe, [aE(SCN—h en) | eN—2j| + BnaDy,_ Eey, [g(val —en) | eNfz}

+ peBnak,, [DeN_1 | ENfz] Een_1en [9(6N—1 —en) | 6N-2]

+Er, ena [C'?iu + Cadn + CR 383 + CRallGull” | 6N—2]- (4.6)
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The equality follows since
&zn,en) = at(zn-1,en) +aDyy 19(vn-1 —en) + Loy Doy glen—1 —en).  (4.7)

Substituting (4.6) into (4.5), we have

JJ’:I—I(hN*I)
A2 max {,BN—lEeN_l {E(CCN—laeN—l) l 3N—2] + OnvEey [E(melaeN) | 6N—z}

+ Onv_1Dyp 1 Fey_, [Q(UN—I —en-1) | 3N—-2] + BnvaDyy_  Fey [Q(UNA —en) | en_2
+ DeBNGEen_, Do, | €n2] Ben_yen [9len—1 = en) | ena)

+Breyy_y -1 | Ot + OO + Ciradk + ClrallGal? | ena) } - (4.8)

Note that the first two terms of this objective function are independent of vy_j (these
are the residual immunity terms). Let us denote the sum of the last four terms of the
approximate objective function in (4.8) by Fy_,(vn—-1). Therefore, we are approximating
the second iteration of the DP with the problem max,,_, F5_;(vy_1). In the Appendix, we
compute closed formed approximations to E,.,, | [‘DEN—I | eN,z], Eley_jena [51\; | eN_z],
Bl _jens [512\, | eN_z], and Ey, ey, U|GN||2 | eN_g]. This means that we can obtain
a closed form approximation to Fy_;, which greatly facilitates the optimization process.
Let fi},_; be the optimal policy to our approximate problem in (4.8). Since we have shown
that jj{, is a good approximation to J} (see Figure 3-9), the approximate optimal policy

finy_, so obtained should be very close to the optimal policy uj,_;-

As mentioned before, we will apply the same approximation techniques that we used
for the optimal reward-to-go to the heuristic, follow, and no-vaccine reward-to-go. Our
next step is to choose the features for approximating Fjy_; (@8_1(hn-1)), F& (4" (hn-1)),
FJ{,_l(uf(hN_l)), and FT_;(p"(hn-1)). In view of our success in using §n and [|Gn|| as
features at time IV, let us consider again appfoximating these functions with the functional
form

On-11+ CN-128n-1 + Cn_136% 1 + Cn_1,4]|Gn-1]*. (4.9)

As before, we test the performance of our approximation in (4.9) using simulations. The

coefficients C}, ,, C% | C}:, and C% . in (4.8) are obtained from the regressions at time N.

l‘L,
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The coefficients CF_, ;, C’,’b_l,i, 01{1—1,1" and CF;_, ; are then computed from a training set
that comprises 2,500 randomly generated state samples at time N — 1; the performance of
the regression is then tested with an independent test set that comprises 2,500 randomly
generated state samples. The R-square values of the training and test set for the approxi-
mate optimal, heuristic, and follow reward-to-go approximations are plotted in Figure 4-2.
It can be seen from Figure 4-2 that the chosen functional form in (4.9) performs very well
in approicimating the reward-to-go functions at time N — 1. Let us denote the resulting

approximate reward-to-go functions by jI’Q_l, jj’\}_l, J j:,*l, and j]’@_l, respectively.

4.5 DP Approximation Algorithm

The results in the last two sections show that our scheme of using é; and |G| as features
is very successful in approximating the reward-to-go functions at time N and N — 1 for all
four policies. Let us now consider extending our approximation scheme to all subsequent

DP iterations. The algorithm is as follows:

1. Evaluate the closed form approximate objective function at time ¢t. The approximate

objective function is

Ep,, e [ﬁté(’yt,et) + Jf1 (heyr) | €t~1] (4.10)
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where

Er,, e [jt*-i—l(h’tJrl) | GH]
N-t
= EL, e { > Bipre* e, [E($i+1=et+k) | et] | et—l]
k=1

* * * 2 * 2
+ Bl e, [Ct+1,1 + Cfp120t41 + Cfpy 36501 + Cl 4Gl | et—l]
N

—t
= Z Btk Z at+k_p(G)DaEet+k [g(a —etrk) | et—l]
k=1 achy
N—t
+ Z Ber* Dy, B, ., [Q(Ut —etik) | 6t—1}
k=1

N-t
-+ Pe Z :Bt—I—kakEEg [Det | €t,1:| Ee:,eH-k [g(ef - eH-k) | St_l}
k=1

+ Ep,, e [Cf+1,1 + Ci06041 + Cip1 36001 + Cti1,4llGell” | et—l] (4.11)

2. Let F}(v;) be the part of the objective function that depends on v;. The approximate
DP problem at time t is thus max,, F{*(v;). Let fif be the optimal policy to this
approximate problem. Generate K (K even) state samples randomly and solve the
problem max,, F}(v;) for each sample. Let Y;, i = 1,..., K, be the optimal values of

these samples. Also, for each state sample, compute the value of the features

5t = Z atﬁp(a)Dae_n”a_étllz/z’ (412)
O.Ehg
1G] = 1| S o 7@ (&, — a)Dye~mle2el /2. (4.13)
ache

Denote these computed values by 6;; and |Gy, i = 1,..., K.
3. Approximate Fy(fif (h:)) with
Oy + Cia0: + 30t + Crali Gl (4.14)

by computing the regression coeflicients Cf;, ¢ = 1,...,4, from ¢4, |Gtill, and Y3,

i—1,..,K/2
4. Test the performance of the approximation in (4.14) with a test set that comprises

o0



bty |Geill, and Vi, ¢ = K/2 + 1, ..., K. Compute the R-square value for this test set.

5. If the R-square value of the test set is satisfactory, denote the resulting approximate

reward-to-go by J; and go to the next iteration of the DP.

The R-square values for each case in each DP iteration are plotted in Figure 4-3 to
Figure 4-9. From these regression results, we see that our DP approximation algorithm
works very well in most cases. In the next chapter, we will examine the results of our com-
putational study and discuss their implications on the practicability and cost-effectiveness

of the four vaccine strain selection policies.
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Figure 4-2: R-square values for reward-to-go approximations at the 2nd DP iteration.
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Figure 4-3: R-square values for reward-to-go approximations at the 3rd DP iteration.
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Figure 4-4: R-square values for reward-to-go approximations at the 4th DP iteration.
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Figure 4-5: R-square values for reward-to-go approximations at the 5th DP iteration.
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Figure 4-7: R-square values for reward-to-go approximations at the 7th DP iteration.
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Figure 4-8: R-square values for reward-to-go approximations at the 8th DP iteration.
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Chapter 5

Discussion

In the last chapter, we solved the DP to reasonable accuracy for 216 different combinations
of parameter values (see Table A.1 in the Appendix). In this chapter, we shall look at the
results of our computational study and discuss their implications on vaccine strain selection

policies.

5.1 Performance Evaluation of Different Policies.

Following the notation that we introduced in the last chapter, jl*, j{l, J { , and j{L are the
approximate DP objective function value (which we shall simply call “rewards” to facilitate

our vdiscussions) under the optimal, heuristic, follow, and no-vaccine policy, respectively.

Let

Th if
Th = Jl ’!‘f = J—l

_Jr
Jy gy’

—JT{"

Tn

(5.1)

We shall use 7, 7¢, and 7, as the performance measures for the three policies. The plots in
Figure 5-1 show the values of r, ¢, and r, for each of our 216 computational case studies.

Let us first look at the performance of the heuristic policy. From the plot of the heuristic-
to-optimal reward ratios (i.e., 7 ), we see that the heuristic policy is very close to optimal in
almost all cases (ry > 0.95 except in one case). Recall that the time-independent heuristic
policy is a near-optimal policy to the 1-period problem. So the high values of r; means
that when choosing a vaccine strain, we can achieve near-optimal performance by using a 1-

period optimal policy (instead of having ﬂo solve a DP with a long time-horizon). This also
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implies that when predicting future epidemic evolution, we need to be accurate on only the
most immediate upcoming epidemic strain in order to identify an effective vaccine strain.
The close-to-optimal performance of the heuristic policy also indicates that our approximate
history reduction is an accurate and simple way of visualizing the vaccine selection problem.
To understand why the 1-period optimal policy works so well in the multi-period problem,

let us look into the objective function of a 2-period problem for insights:

Efetlfet_,_l 1€t 41 [ﬁté(ytv et) + ﬁt+15(y?+1» E5t+1) I et—l]

=G Ee, [E(Et, et) | €t-1] +0B41 Ee,,, [E(It,ﬁtﬂ) | €t—1}
residual immunity against e; in residual immunity against eprq in x;

+ By Dy, Ee, [Q(Ut —e) | 6t—1] +Bt41 aDy, B, [g(vt —e41) | et—l]

vg-e; cross-reaction vg-€p41 cross-reaction

+ pEﬂt‘}'l aE&g [Det | et—l]Eec,eH_l [g(et - Et+]) l et—l:l

S

€:-€441 Cross-reaction

+ Biv1 ElL, e [Eeﬁl |:D/J,*(h¢+1)g(p‘*(ht+1) —ep1) | et} | et—l] (5.2)

vl

(optimal) v41-€141 cross-reaction

The first two resdiual immunity terms are unaffected by the choice of v;. The high perfor-
mance of the 1-period optimal policy in the multi-period problem suggests that the v;-e;
cross-reaction term (which is simply the objective function of the 1-period problem) is the
dominant term in the 2-period objective function in terms of its dependence on v;. This is
equivalent to saying that the sum of the last three terms is a weak function of v. These
terms corresponds to the effect of v; on the clearance of e;+;. We can decompose this effect

into the following components:

1. The most obvious interaction between v; and e;y; is, of course, the vs-e44; cross-

reaction.

2. If the individual is exposed to e, at time t, the cross-reaction of v, and e; lowers
the effective dose of e, (which is the objective of the l1-period problem). Then at
time t + 1, e; can cross-react with v,y and e;41. Lower effective dose of e; therefore
implies weaker es-vg,1 and es;-eqp1 cross-reaction. Weaker e;-vpy) cross-reaction, on

the other hand, leads to higher effective dose of v;+1, which in turn implies stronger
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vir1-€1+1 cross-reaction. Therefore, if the individual is exposed to e;, then the vi-e
cross-reaction results in (i) weaker e;-e;41 cross-reaction and (ii) stronger viyi-e;41

cross-reaction.

3. v, itself can cross-react with v;41, thus lowering the effective dose of v;4; and resulting

in weaker v441-€¢41 cross-reaction.

We can argue qualitatively why the net effect of the above components are immaterial when
compared to the v;-¢; cross-reaction term. Relative to the v-e; cross-reaction term in (5.2},
each of the above components is a weaker function of vy because (1) the immunity provided
by wv; is discounted by « at time ¢t + 1 and (2) the reward at time ¢ + 1 is discounted by
Ber1 < ;. Moreover, the vp-e;41 cross-reaction term in Component 1 has less “room for
optimization” than the vi-e; cross-reaction term because the variance of e;q prediction is
larger. Besides being weaker functions of v, these components also have counterbalancing
effects, as we explain as follows. Recall from our analysis in Chapter 3 that the follow
policy is a good and robust policy for the 1-period problem. This implies that the optimal
ver1 must be close to &4). Thus, if v; is close to &4, then v; is likely to be somewhat
close to viyq too. It then follows that Component 1 and 3 have opposite effects: The
stronger the v4-€441 cross—reactioﬁ in Component 1, the weaker the vy 1-€44.1 cross-reaction
in Component 3 (because the v-v;41 cross-reaction lowers the effective dose of vyy1) , and
vice versa. Therefore, the contribution of v; in Component 1 and 3 tend to cancel out. Next,
within Component 2, the es;-e; 1 cross-reaction effect in (i) and the vyy.q-e4y1 cross-reaction
effect in (ii) are obviously opposing forces. In addition, the contribution of Component 2
is further discounted by p., which is the probability that the individual is exposed to e;.
In short, all these factors suggest that the net effect of v; in all these components is much
weaker than the effect of v; in the v-¢; cross-reaction term, hence the good performance
of the 1-period optimal policy in the 2-period problem. For a multi-period problem with a
longer time-horizon, the residual effects of v; in later periods are further discounted by «,
{Bt1r}, and the la;ger variance and drift of the epidemic evolution. Despite the qualitative
nature of the above arguments, their implications are consistent with the quantitative results
in Figure 5-1. .

Next, we turn our attention to the performance of the follow policy. The plot of the

follow-to-optimal reward ratios (i.e., r¢) shows that the follow policy performs quite well in
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all cases. This cutcome is consistent with the performance results of the heuristic policy.
As discussed in the last paragraph, we can achieve good performance in the multi-period
problem by using the 1-period optimal solution at every time period. Since the follow policy
is a good and robust l-period policy, it should come as no surprise that the follow policy
also performs quite well under the multi-period setting,.

Finally, we look at the performance of the no-vaccine policy. From the plot of the no-
vaccine-to-optimal reward ratios (i.e., r,), we see that the performance of the no-vaccine
policy varies widely depending on the parameter values. The value of the no-vaccine-to-
optimal reward ratio can reach as low as 0.1 and as high as 0.78. Under the no-vaccine
policy, we rely entirely on past epidemic exposures to provide immunity against future
epidemic attacks. Therefore, we expect the performance of the no-vaccine policy to be

relatively good in the following scenarios (or a combination of them):

1. The decay constant « is high, i.e. antibodies decay at a slow rate. Unlike immunity
| provided by vaccines, which are administered shortly before the flu seasons, immunity
triggered by prior epidemic exposures suffers a longer time delay. Larger values of

will therefore increase the performance of the no-vaccine policy.

2. The norm of d is small, i.e. the magnitude of antigenic drift is small. If the drift is
large, cross-reactions between successive epidemic straing are weaker, thus lowering

the performance of the no-vaccine policy.

3. The value of p, is large, i.e. the probability of epidemic exposure is high. Since
the no-vaccine policy relies on the protection given by prior epidemic exposures, its

performance increases as the probability of exposure increases.

In the next section, we provide numerical results to support these hypotheses.

5.2 Sensitivity of Policies Performance to Parameter Values

Our next focus is to see how individual parameter affects the performance of different
policies. To this end, we look into how sensitive rp, vy, and r, are to the value of each
individual parameter (while holding other parameters constant) in our case studies. We
begin with «,, which is the potency of vaccines (relative to epidemic viruses). Recall from

Table 4.2 that we ran the DP for «, € {0.3,0.6}. Let us divide the 216 case studies into
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Figure 5-1: Reward ratios of the heuristic, follow, and no-vaccine policy in each case study.

two groups according to the value of «, in each case. We then pair each member of one
group with a member of the other if the two have the same parameter values except x,.
In Figure 5-2, we plot ry, ¢, and r,, from one group against 7, r¢, and r,, from the other
group (each data point in the plots corresponds to a pair). From Figure 5-2, it appears that
both the heuristic and follow policy performs better when «, is larger. This suggests that
we can boost the performance of these policies by increasing &, via, for instance, a higher
dosage of vaccine injection or the use of attenuated live viruses. On the other hand, we see
that the no-vaccine policy becomes relatively less effective (relative to the optimal policy)
as #y increases. This is to be expected since a higher vaccine potency is of no utility if there

are no vaccinations.

In Figure 5-3 to Figure 5-7, we repeat the same sensitivity analysis for «, 6, p,, |Idl],
and ¢,. The plots for « in Figure 5-3 show that the performance of the heuristic and follow

policy deteriorate significantly as o increases. This implies that the 1-period optimal policy
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Figure 5-2: Performance of the heuristic, follow, and no-vaccine policy under different values
of ky. The line shown in each plot is a 45 degree line. If a data point lies above the line,
this means that the performance of the y-axis case is better than that of the z-axis case,
and vice-versa.

becomes less eflective in the multi-period problem if the antibodies decay at a slower rate.
This is because with a slower decay rate, the immunity provided by a vaccine lasts longer
and therefore exerts more interference on vaccine efficacy and epidemic viral clearance in
future periods. For instance, the last three components in (5.2) become stronger functions
of v; which weaken the dominance of the v;-e; cross-reaction term in the 2-period objective.
As a result, we expect the optimal vaccine policy at different times to be more strongly
coupled when the value of « is large. This explains the weaker performance of the 1-period
optimal policy in the multi-period problem when « is large. Since the heuristic and follow
policy are similar to the 1-period optimal policy, it follows that their performance also
degrade for the same reason as o gets large. Unlike the heuristic and follow policy, the no-

vaccine policy performs better when o is large. As mentioned in the last section, we expect
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that a slower decay rate will favor the performance of the no-vaccine policy because we
rely entirely on epidemic exposures in past periods to provide protection against upcoming

epidemic attacks. The results here support our hypothesis.
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Figure 5-3: Performance of the heuristic, follow, and no-vaccine policy under different, values

of . If a data point lies above the line, this means that the performance of the y-axis case
is better than that of the z-axis case, and vice-versa.

Next, we look at the effect of 6, which is the clearance constant. Recall from (2.6) that
§ x 100 is the percentage of epidemic viral particles removed by a vaccine for a naive immune
state if the vaccine strain matches exactly the epidemic strain. In Figure 5-4, the plots of
75, Teveal that the performance of the heuristic policy exhibits no monotonic dependence on
the value of §. From the plots of 7, we see that the follow policy appears to perform better
with a smaller 6. Finally, the plots of r,, show that the performance of the no-vaccine policy
is rather insensitive to the value of 6. _

Next, we turn our attention to the effect of p., which is the probability of epidemic

exposure. From the plot of r;, in Figure 5-5, we see that the value of p, has little impact
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on the performance of the heuristic policy. The follow policy, on the other hand, performs
better when p, is smaller, as shown in the plot of 5. An explanation for these results is that
unlike the heuristic policy, the follow policy is not designed to avoid cross-reactions with
past strains in the immunization history. With a larger p., the number of epidemic strains
in the immunization history that can cross-react with the “follow” vaccine strain tends to
be larger. As a result, the performance of the follow policy is worse when the probability of
exposure is higher. The plot of r,, shows that the no-vaccine policy is more effective when
Pe is larger, which agrees with our intuitions in Section 5.1.

Our next focus is ||d||, which is the magnitude of the mean antigenic drift. We expect
that the heuristic and follow policy to perform better as ||d|| increases since the multi-
period problem can be decomposed into a series of 1- -period problems for ||d|| large On
the other hand, the no-vaccine policy will perform worse for large ||d|| since cross-reactions
between successive epidemic strains are weaker. The results in Figure 5-6 confirm these
views. Moreover, it is interesting to note that the coupling between the optimal decision at
different times are still quite strong for lld]l = 0.4 although w(||d]|) =~ 0.5 (see Figure 3-2).

cv%. That is, the larger the

Finally, we look at the effect of ¢y. Recall that we set ¢ —
value of ¢,, the larger the variance in the epidemic evolution. The plot of Ty in Figure 5-7
shows that the heuristic policy performs better as the variance gets larger in all cases. A
possible explanation for this is that when the variance is large, the prediction for epidemic
strain e;y1 is much less accurate than the prediction of the epidemic strain e; at time ¢
(due to the Markov property of the epidemic evolution). Therefore, the larger variance
leads the optimal policy to focus on hitting e; instead of chasing after e;11. In other words,
a larger {rariance favors the 1-period optimal policy, hence the increased performance of
the heuristic policy. The performance results of the follow policy are consistent with this
hypothesis with a few exceptional cases. These exceptions may be attributed to the fact
that the follow policy is a less robust 1-period suboptimal policy than the heuristic policy.
Finally, a larger variance also favors the performance of the no-vaccine policy. This is
because with a larger variance, the epidemic strain prediction is less accurate, thus lowering

the rewards of doing vaccinations.
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Figure 5-6: Performance of the heuristic, follow, and no-vaccine policy under different values
of ||d||. If a data point lies above the line, this means that the performance of the y-axis
case is better than that of the z-axis case, and vice-versa.
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Figure 5-7: Performance of the heuristic, follow, and no-vaccine policy under different values
of ¢,. If a data point lies above the line, this means that the performance of the y-axis case
is better than that of the z-axis case, and vice-versa.
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5.3 Limitations of the Model and Recommendations on Vac-

cine Strain Selection

Before we summarize our results, let us first remark on some of the limitations of our
model. Our model is a theoretical model that built upon the antigenic distance hypothesis,
preliminary results from the flu shape space map, and some intuitions on the dynamics of
the immune system. We have assumed that the dynamics of anti-flu humoral immunity are
governed by the immune state transition equations. Given the complexity of the immune
system, it has yet to be established that these equations provide a satisfactory description
of the relevant immunodynamics. The continuous nature of the flu shape space (which
is simply an m-dimensional Euclidean space) implies that the number of flu strains are
uncountable, while in reality, the number of possible physical flu strains is almost certainly
finite. We have also restricted the epidemic evolution to follow a random walk with a
constant drift. While there is evidence from the flu shape space map that the epidemic
evolufion is a drifted process, there is no evidence to support (or contradict) that ldistances
between two successive epidemic strains can be modelled as independent normal random.
variables. Finally, the reward in our model is a theoretical quantity (which is the clearance
of epidemic viral particles by the post-vaccine immune state). In practice, however, we are
most interested in the actual post-vaccine serological response against epidemic attacks.
Although we expect the two to be monotonically increasing functions of each other, it
would be ideal to construct a more clinically-based objective function by establishing a link
between our theoretical model and measurable anti-flu humoral immunocompetence. In
view of the above limitations, the validity of our model has yet to be tested by future work
from immunology and the flu shape space map. Until then, the results presented in this

work should be interpreted with caution.

Despite all the above-mentioned shortcomings, our model is the first analytical model to
look at the feedback-control nature of the annual influenza vaccine selection problem. Let
us now summarize our findings and draw some conclusions on the vaccine strain selection
problem within the context of our model. We have shown that the heuristic policy, which is
a robust near-optimal policy for the 1-period problem, is also an excellent and robust policy
for the multi-period problem. This means that solving a 1-period problem will give us a

vaccine strain that is almost as effective as that provided by the multi-period problem. The
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follow policy, although less spectacular than the heuristic policy, performs quite well also
in the multi-period problem. The performance of these two policies are rather insensitive
to the values of the model parameters except o, which is the antibodies decay constant.
- In Section 5.2, we showed that when « is increased from 0.3 to 0.6, the value of rp and
rr can decrease by as much as 7.85% and 15.1%, respectively. Therefore, in terms of both

performance and robustness, the heuristic policy is the winner.

However, several factors deter the vimplementation of the heuristic policy and favor the
follow policy over the heuristic policy. First of all, the heuristic policy requires detailed
and accurate knowledge of anti-flu immunodynamics (e.g. values of a, 6, Ky, etc.). Such
information has yet to be determined precisely. In contrast, the follow policy requires only
the prediction of epidemic strains, which is also one of the ingredients of the heuristic policy.
. Second of all, the heuristic policy prescribes different vaccine strains to people with different
immunization histories. With a population that comprises a diverse set of immunization
histories, the heuristic policy requires (1) tracking of personal immunization history (e.g.,
via blood tests), (2) production of a potentially wide collection of vaccines, and (3) efficient
distribution of vaccines to regions with different vaccine demands (because of different
composition of immunization histories in different regions). Therefore, implementation of
the heuristic policy requires a whole new network of clinical, manufacturing, and logistical
coordinations. The follow policy, on the other hand, is a one-size-fit-all policy that is exempt
from such complementary setup. As a result, the cost of influenza vaccination will be much
higher under the heuristic policy. Therefore, in terms of practicability and cost, the follow

policy is the winner.

We have also shown that the performance of the no-vaccine policy varies widely depend-
ing on the parameter values of the model. In particular, the value of r, can reach as low
as 0.09 and as high as 0.78. Several factors favor the no-vaccine policy, which include (1)
a slow antibodies decay rate, (2) a small antigenic drift, (3) a high probability of epidemic
exposure, (4) low vaccine potency. Since we do not have concrete data on the parameter
values of our model, we do not recommend the use of the no-vaccine policy because of its

lack of robustness.

In summary, although the heuristic policy performs better and is more robust than the
follow policy, the follow policy is much easier to implement and less expensive. From both

the scientific and practical point of view, it would be interesting to see how much (clinically
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measurable) improvements the heuristic policy can provide and whether its implementation
cost is justified by the improvements. Before such evidence can be established, we believe
that the follow policy, which is the idealized version of current WHOQ practice, is a cost-

effective influenza vaccine strain selection policy.
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Appendix A

Proofs and Formulas

A.1 Proof of Theorem 3.1

To ease our exposition, we rephrase the theorem into the following parts:

1.

2.

$ € C=([0,00)) if C # 1.

Let 1q be the smallest nonnegative value of T such that Z—g(f) < 0. Then 71y ezists,

70 < \/—%- and ¢ is strictly decreasing for all T > 1. In particular, 79 is the global

" maximum of ¢.

Let 7 be the smallest nonnegative value of T such that %(7) < 0 and %(7) > 0.

Then 1y exists, 11 < \/g and ¢ is strictly convex for all T > 7. Furthermore, 71 > 7p.

. #(0) > 0 if and only if C > 2—; %(0) < 0 if and only if C > —B}B—e%h&BlJ;
Cd2¢

1+Bl’ dr
3
7%(0) >0 zf and only if C > %62(1+281);

-

1+B;

For a given 7 > 0, ¢(7) is the unique positive value of ¢ that satisfies the equation

fir,q) = C(Big+ g+ 7) — Bige®™™* = . (A1)

Multiplying (A.1) by e {4+ and taking the limit 7 — oo, we see that lim, o #(7) = 0.

Moreover, we define ¢(0) = Re, /m(BQ1 + C). Note that ¢(r) = 0 only if 7 = 0.

B

Let us prove Part 1. Suppose C # 7. Straightforward differentiation gives V, f(r,q) =

CB+C— Ble(‘”'ﬂz(l + 2¢ + 27q). By rearranging terms in the equation f(r,¢(7)) =0,

we obtain Bjel8()+7)? — C(Bl + 1+ ¢—(Tr§) for all 7 > 0. Substituting this result into
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Vol (r,6(7)), we get Vf(r,0(r)) = ~Cgly — 200(r)(6(r) + ) (BL + 1+ g) < 0
for all 7 > 0. At 7 = 0, we have ¢(0) = 0if C < lf—gl and ¢(0) = 1/ln(—BQ;+C’) if
c > 1f1131' In the first case, V4f(0,¢(0)) = CBy + C — By < 0. In the second case,
V,£(0,(0)) = —2C(By +1)In (B% + O) < 0. Thus, we conclude that V,f(r, ¢(r)) < 0 for

all 7 > 0. Since f € €, the Implicit Function Theorem guarantees that ¢ € C*°([0, 00)).

‘Let us now prove Part 2. Differentiating f(7, #(7}) = 0 with respect to 7, we obtain

26(r)(§(r) + 7) = Fe~ @

d¢
dr 20(r)(g(7) + 1) — S @ 4 (1 - Cem (@17

dr () =

(A.2)

By rearranging the terms in the equation f(7,¢(7r)) = 0, we can see that Ce= B+ —

#ﬁw whenever ¢(7) > 0. Substituting this relation into (A.2), we get
N
— Bl at 7 =0if $(0) =0,
dé .\ _ ) 1-g-C

dr 26(T)(@(r)+7)(Bro(T)+o(r)+7)—¢(T) (r,6(7) )
- 2¢(T)(¢(T)l+‘r)(lBlc;(7)+<;(7—)_1{-7-)+: =_€(;¢,(:)) otherwise,.

(A.3)

We claim that there exists at most one 7 € [0, 00) such that %2(7) = 0. Clearly, %(T) =0

if and only if p(r,#(7)) = 0. By solving the equation p(r,q) = 0 for ¢, we find that
.  —r(24+B1)+\/T2B}+2B1+2 '
q = (1) = 12( )l -

1+B,

is the only root of p(7,q) = 0 that can be positive.
Moreover, it can be easily verified that %(7) < 0 for all 7 > 0, so ¥ is a one-to-one
mapping. It then follows that there can be at most one 7 € [0,00) such that %‘f(r) =0,
thus verifying our claim. Note that if %(fr} = 0 at some 7 > 0, then ¥(7) = ¢(7). Since
¢(7) is nonnegative for all 7 > 0 and lim,_,o ¢(7) = 0, we must have lim,_, Cdl—f(T) =0
with %?é(’r) < 0 for all 7 > 7 for some large enough 7. Combining this with the fact that
%ﬁ(f) = 0 for at most one 7 € [0,00), we conclude that (i) %‘f(ﬂ < 0 for all 7 > 0 if
%2(0) < 0 and (ii) ¢(7) attains a unique global maximum at Tyeg > 0 (With j—f(Tmaz) =0)
if 22(0) > 0. Thus, 7o as defined in the theorem is

i d
0 if ﬁ(()) <0;
To =

Trnaz if %(0) > 0.

It remains to show that 75 < \/g . Clearly, it suffices to show that Tmg; < \@ . At Tz,
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we have ¢(Tmaz) = ¥(Tmaez) = 0. Straightforward calculations show that @D(\/ii) = 0. Since
%(7) < 0 for all 7 > 0, it follows that ¢(7) > 0 only if 7 < \/g Thus, Tmer < \/g This

completes the proof of Part 2.

We now move on to Part 3. We claim that there exists at most one 7 € (0,00) such

that %('r) = 0. Straightforward differentiation gives

d2¢ 0at 7=0if $(0) =0,

—{T) =
dr? 20(r)(¢(r) +1) (B $(r) +(r)m)h(r,6(r))
@B 4() " +28(7) 490 ) T+ 27 Bro(r) 4 26(D) 17+ 7

otherwise,

where h(7,q) = 272 +47B1g+4¢7+2¢°> —3+4B; ¢*. Clearly, %(T) = 0at 7 > 0if and only

if h(7, ¢(7)) = 0. Solving h(r,q) = 0 for q shows that ¢ = A(r) = _2T(B1+1);21+;§%1;2+1231+6

is the only root of h{r,q) = 0 that can be positive. Moreover, it can be easily verified
that %(’r) < 0 foral 7 > 0, so X is a one-to-one mapping. It then follows that there
exists at most one 7 € (0,00) such that %(T) = 0, thus verifying our claim. Note that if
%?(T) = 0 at some 7 > 0, then A(7) = ¢(7). Since lim, , %g(”r) = 0 with %g('r) < 0 for
all 7 > 7 for some large enough ¥ (from Part 2), we must have %ﬁ(r) > 0 for all 7 > 7 for
some large enough #. Moreover, if ¢ has a globa.lrma.ximum at Tmqr, then %(Tmﬂ) <0
and ¢ must have a unique point of inflection at some Tinfiect > Tmaz (this follows from our
verified claim). Note that %(Tin flect) < 0. Combining all these observations with Part 2, we
conclude that (i) % (7) < 0 and %5 (r) > 0 for all 7 > 0if 22(0) < 0 and £2(0) > 0, and (ii)
¢ has a unique point of inflection at 7, fiee; > 0 (with %g(ﬂ'nﬂect) < 0 and %(Tmﬂect) = 0)

otherwise. Thus, m as defined in the theorem is

0 if %2(0) < 0 and £2(0) > 0;

T =
Tinflect Otherwise.

Let us now show 7; < \/g It suffices to show that 7y, fe0 < \/g - At Tinflect, We have
MTinfleet) = §{Tinflect)- Simple calculations show that )\(\/g) = 0. Since %(7‘) < 0 for all
T > 0, it follows that A(7) > 0 only if 7 < \/g, which implies 7y frect < \/g It remains to
show that 73 > 79. This is trivially true if 7o = 0. If 7 = 702, then 71 = Tinfrect > Trnaz 88

we have already shown. Thus, the proof of Part 3 is complete.

Finally, we turn to the proof of Part 4. Clearly, ¢(0) > 0 if and only if ln(Bg1 + C') >0,
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which is equivalent to ¢ > 2. Next, we notice that $2(0) < 0 only if ¢(0) > 0.
172(1+Bx)1n<f%+c)
(1+Bl)1n(£+c)

31 S - .. d2¢
is the same as C' > 175 ¢*0+P0. Similarly, 35(0) > 0 only if ¢(0) > 0, and (O)

ln(B—1+C) (3—2(;+231) In (B£1+c) )

4(1-+By 2 1n(3£1+c)

Straightforward calculations give gﬂ,‘;(O) = if ¢(0) > 0, so %ﬁ(O) < 0

if #(0) > 0. Hence, %(0) > 0 is the same as C >

B 3955
2(14+2B .
€ 1. } [l

A2 Proof of Theorem 3.2

From the Part 2 of the proof of Theorem 3.1, we see that ¢ is a solution to the ODE system
specified by the initial condition ¢(0) = Re ln(BQ1 +C) and the differential equation
(A.3). Moreover, ¢ is the unique solution to this ODE system since the right-hand-side of

the differential equation is continuously differentiable.

Suppose we vary C while holding B; fixed, C >0 C>0and ¢ < C. Clearly,

$5(0) < ¢a(0). If ¢a(0) = ¢(0) = 0, then we must have € < F}é‘_ and € < 1+B It
then follows that 0 < %Q(O) =T _Bi,l < 713141 = dg’T (0). Therefore, for small enough

1
¢ B c B

€>0,0 < ¢s(7) < ¢pa(r) for all 7 € (0,¢]. At 7 = ¢, both ¢ and ¢ are governed by
the same differential equation (A.3) since By is fixed. Thus, ¢a(7) < ¢a(7) for all 7 > ¢,
since otherwise there exist 7 > ¢ aﬁd § > 0 such that ¢ intersects ¢ at 7 = 7 with
da(r) > ba(r) for 7 € (7,7 + §), which contradicts the uniqueness of the solution to the
ODE system with initial condition ¢(7) = ¢5(7) = da(7). If ¢a(0) < gbc( ), the same
arguments are again valid. Hence, ¢x(7) § ¢a(7) for all 7> 0.

Now suppose we vary C while holdmg - fixed, C >0 C>0andC < C. The

arguments below (A.2) show that (A.3) can be written as

<

do I——CE—atT—Olqu(O)—O
= _2:15(1') (B(r)+r)— fplr)e B+ (A4)

otherwise.

2¢(7)2(A(T)+7)+ S 577 (¢lr)+7)2

From (A.4), we see that the if ¢(0) > 0, the differential equation is invariant for all 7 > 0 as
long as B% is fixed. Thus, we can repeat the arguments in the previous paragraph to assert

that ¢ (7) < ¢a(r) forall 7 > 0. (|
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A.3 Closed Form Formulas for Reward-To-Go Approxima-

tions

Using the approximation algorithm given in Chapter 4, the approximate objective function

at time ¢ is

Bl [l ) + i (heia) | eca - (a9)
where
) N—t
T (hey1) = Z Eeyyy [ﬁt+kak—15(rt+1,6t+k) ] et}
k=1
+ Gy + Cfq 201 + C:+1,3‘5t2+1 + Cfi1,4llGia I%. (A.6)

Our goal is to get a closed form expression for the approximate objective function in (A.5).
We will be done if we can evaluate the expected value of jt+1 in closed form. Let us begin

by expanding jt+1 as follows:

EIet,eg [jt*+1(hf+laet) | et—l]
N

= EIet,et [ Z Ee,+,c [ﬁt+kak_15($t+la 6t+k) l Gt]

-1
’C:l

+ Cii + Gl 2041 + C'ik+1,:*.5t2+1 + +C;+1,4’|Gt+1H2 | €t~1J

N—t
= Bur Y oTFPODE, [Q(a — €tk | et_lJ
k=1 achy
N-t :
+ /Bt+kakD'UtE6t+k [Q(Ut — etrk) | et—l]
k=1
N—t
+ De Z Bk E,, [Def, | etfl}Eet,er [g(et —erir) | €t—1]
k=1
B, e [Cfﬂ,l + G120 + Cipn a6t + Crn, IG e | | 6t—1]- (A7)
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Simple calculations give Fe, ¢, . [g(et —er) | et_l} = %Bz/ze‘"Bk”kd”z/z. So our next

step is to compute B, e, [t11 | er-1], B, ecl6f41 | ee-1], and Er, e [Gerall” | er-1:

Er,, e [5t+1 | 6t—1]

= %Efet,et[ Y. oPODgla - &) + ale, Deygler — @) | EH]
ac{he,ve}
K _
= ?U (Z ot p(a)DaEEt [g(a — e —d) | 6t—1]
achy
+ aD,, E., [g(ut e d) | et_l] + apeBe, [Det | eH] g(d)). (A.8)

2
EIet,e: [5t+1 | et—l}

_ (%)z ( Z Olz(t+1)—p(a)wv(b)Da-DbEet [g(a —er—d)glb—e; —d) | 6t—1:|

CL,tht_

+2 Z ozt'*'z_p(a)Da‘DmEQ3t [g(a ~ ey —d)g(vy — ey — d) |‘et,1]

ache .
+ 6®D2 Fe[g(or — e = d)* | ep 1] +2pe Y o' PO Dog(d)Be, [g9(a — e~ d)De, | €1y
ache
+ 29,07 Dy, g(d) Be, [g(vr — e = Do, | 11 +pealg(d)*Be, [ D2, | eca])- (A.9)

Er e[ IGuall | e
_ ()
_(9)
( Z oXt)—p@—r® n D E, [(et +d—a)T(es+d—b)gla—e— d)g(b—er —d) | et—l]
a,beht

+2 Z ta“'z_p(“)DathEet [(et +d— a)T(et +d—wv)gla—e —d)glve — e —d) | et_l]
achy

+ o? D2, Ee, [Het +d —ve|*g(vs — e; — d)? | et—l}

+ 2p. Z ot P D g(d)E,, [dT(et +d—a)gla — e, — d)De, | et,l]
achy

+ 2pea? Dy, g(d) Ee, [dT(et v d—v)g(vs - e —d)De, | eH}

+ peag(d)?||d|* B, [Di | et—l])- (A.10)
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We now compute E,, [Det | et_l] from (A.8) and E., [th | et_l} from (A.10). We adopt

the following approximations:

De, ~ (1= E(yt,et)). (A.11)

That is, we ignore the minimum operator in the definition of D,,. Under this approximation,

we have

2 2 = 2
Ee, [Det | et—_l] = Ee, [Ke (1 — &(yt, et)) ! et—l]
= k(P 1 — 28w 1) | 01

+ 3 o0 p,DyE., [g(a —e)g(b~er) | et_l]

a,bchy
+23° "D, Dy, B, |gla - ei)g(ve —ec) | ec-1]
achy
+ D'gtEet [Q(Ut — )’ | et—l]) (A.12)

Next, we evaluate E,, [g(a — e —d)De, | er—1 from (A.9):

Pufofe a1
= E,, [g(a —e; — d)ke (1 — &y, et)) [ et_l]

= Ke (Eet [g(a — e —d) | 6#1] - Z o PO Dy, [Q(a —er —d)g(b—e) | et—l}
bche

~ Dy, E., [g(a —er — d)g(vg — &) | eH]). (A.13)

Now E,, {dT(et +d—a)g(a — e — d)Dg, | e;—1 from (A.10):

E., [dT(et +d—a)gla—e —d)D,, | 6t—1]
= FE., [dT(et +d—a)gla—e —d)k, (1 — (Y, et)) ] etﬁl]
= Ke (Eet [dT(et +d—a)gla—e —d) | Bt—l}

-3 ot PO,k [dT(et +d—a)gla—e — d)g(b—e) | GH]
behy

- D, E,, [dT(et +d—a)gla—e —d)glvy —e) | et_l] ) (A.14)
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Finally, a few other terms that appear in the above equations:

Be,[g(a— eg(b — &) | ev-1

2 n
- Q_Z__/e_n|a_et||2/2g_’7||b"et||2/2( ; ) e ler=2il /2% g
N

Ky 2ro

2
6 Bg/ze,,,gz(noz||¢H,H2+||a—atn2+||bfét||2)/2_ ' (A.15)

=

v

Ek, [(et —a) (e — b)g(a — er)g(b — e2) | €t~1]

6° T 2 2 1 " 5112 /202
=2 [ (e, — a)T (e, — b Ma—e:ll?/2—nllb—e:|?/2 ( ) e ller—el?/20% 4
7 Jstem et Vi
27
= I:Bg(éf — (no? + Va + na?b) T (6 - (no? + 1)b + no?a) + naz]-
v
32"/2"‘16—1752(7702||ﬂ—bl|2+||a—€t||2+||b—€tllz)/2_ (A.16)
Be[d"(e; — a)glo —ex) | 11| = ng(ét — a)By/ M emnBleal’/z, (A17)
v

Be, |d" (er = )g(a = er)g(b — er) | er-i]

92 n _ 0_2 _nn2 a—& 2 _Et 2
- R—%dT(ét— (no? + 1)a + nob) By *Tle—nBa(nola=bl* Hla—al+b-e:l”/2 (A 1g)

A.4 Parameter Values in Case Studies
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Case | ky ta [0 |pe ||d|||c || Case | Ky | |6 |pe |||l e

1 03:03(04)03]01 |0.1] 37 03]]06|08]03]0.1 |01
2 03103040301 |05 38 03106080301 |05
3 03703(04[03]0.1 |10} 39 031060803101 |10
4 03,03(04103)|04 |0.1] 40 03|06 (0803 ,04 |0.1
5 030304103104 |05 41 03106 |08|03|04 |05
6 03030410304 {1.0] 42 0306 |08103[04 |10
7 03|03({04]06|01 |01] 43 03060810601 |01
8 0303040601 (05| 44 0306|0806 |01 |05
9 03|03;04]06|01 |10} 45 03106080601 |10
10 0.3[03[04|06|04 [0.1] 46 0306080604 |01
11 03(03]04|06|04 |05 47 0306 (0806|044 }05
12 03[03]04(06|04 [1.0] 48 03|06 (08|06]04 |10
13 03]103]08]03|01 |0.1] 49 0603(04(03(01 |01
14 03(03[08|03|01 {05} 50 06103]04(03]01 |05
15 0303080301 |10] 51 06103040301 |10
16 03030803104 |0.1] 52 06103|04(03]04 (01
17 03103]|08[03!04 |05] 53 06103,04|03]|04 |05
18 03(03[08|03|04 |1.0] 54 06030470304 (1.0
19 0303080601 |01} 55 0603|0406 |01 |01
20 0310308 |06}0.1 |05] 56 06030410601 |05
21 03103|08|06(01 |1.0]57 06103|04706|0.1 [1.0
22 03(03|08|06(|04 |0.1]|f58 06(03.04]06]|04 |0.1
23 03(03|08|06([04 {05/ 59 06 03|04|06|04 |05
24 03103|08|06|04 |1.0| 60 0603040604 |10
25 03(06|04|03|01 ;01| 61 0603|108 /03]|0.1 0.1
26 03106]04]03/!01 )05 | 62 06 030803 ]01 |05
27 0306040301 j1.0| 63 06,0308 |03]01 1.0
28 03|106|04]03|04 10.1]| 64 0603|0803 |04 ;01
29 03(06|04(03]04 )05/ 865 06 1 03|08]03|04 [0.5
30 03|06[04]03(04 1.0/ 66 0603|0803 /|04 |1.0
31 0306040601 {01 |67 0603080601 |0.1
32 03106040601 | 05| 68 060308 [06]|01 |05
33 03(06|04|06|01 |10/ 69 0603080601 |1.0
34 03|106|04|06[04 10170 0603|0806 /|04 |01
35 0306|0406 |04 {05 |71 06 103(08:06 |04 |05
36 03(06|04|06(04 |10 72 0610308 ,06)04 |1.0

Table A.1: Parameter values in DP cases
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Case | Ky | |0 |pe ||ldll | || Case |k, | [8 |pe | ]| e

73 06[06]04103]01 |01|109 |03]06]06|03[0.1 |0.1
74 06|06|04[03[01 (05110 [03[06]|06[03][01 |05
75 061060403101 [1.0( 111 [03/06]06]03/[0.1 |10
76 0606|0403 |04 |0O1)112 |03(06]06 (03|04 |01
7 06 {06({04/03(04 (05113 (0306060304 {05
78 06106040304 |10 114 |03|06]06|03]|04 |1.0
79 0606(04]06 (01 [01(115 (0306060601 |01
80 0606040601 JO5( 116 |03 (0606|0601 {05
81 06(06|04|06[01 {10117 {03|06|06|06]|0.1 |10
82 0606040604 |01} 118 (03060606104 |01
83 0606|10406|04 105|119 (03]06]06]|06|04 |05
&4 0606|0406 04 (10120 (03|06 |06({06|04 |10
85 06 (06|08 (03|01 01121 [06]03]106]03]|01 |0.1
86 0606 |08]03|01 (05122 (06(03(06[03(0.1 |05
87 0606080301 |10 123 |06[03)|06{03}0.1 |1.0
88 06 06{08|03|04 (01124 [{06]03|06[03]|04 |01
89 06060803104 (05125 |06|03(06]03]04 |05
90 0606080304 [10(126 |06[03[06]03([04 |1.0
91 06 (0608 (06|01 01127 10603060601 |0.1
92 0606|0806 |01 [05128 |06[03[06]06([0.1 |05
93 06 0608|0601 |10} 129 (0603060601 |1.0
94 06 06|08 |06 |04 |01(130 |06]03)06|061|04 ;0.1
95 060608 ,06|04 (05131 |06]|03[06]|06]04 |05
96 06 0608|0604 (10132 (06|03 ,06|06)04 |10
97 0310310610301 |01]133 |06]06]|06]03]01 0.1
98 0303060301 (05134 [ 06|06|06(0301 |05
99 0303060301 |10} 135 |06|06|{06|03]|0.1 |10
100 [ 03|031]06 03|04 |01 136 [06]06|06][03[04 |01
101 (03|03 |06[03|04 (05137 |06|06[06]|03]|04 |05
102 10303060304 |10 138 (0606060304 |10
103 |03(03|/06 06|01 |01 139 |06|06;06)06]01 |0.1
104 10303106106 |01 |05]|140 (06|06 |06[06]|01 |05
105 |03 (03{06 06|01 |10) 141 (0606060601 |1.0
106 [ 03/03]06|06|04 |01 142 106060606 04 |0.1
107 |03 (03|106[06 |04 |05 143 (0606060604 |05
108 (0303|0606 |04 |10} 144 06|06 [06)|0.6 |04 |10
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Case | ky |a |8 |pe {ldl {co ||Case|wy | [8 |pe ||d]l | c

145 [03(03(04103[08 (01181 |(06(03[{04]/03]08 |01
146 (0303|0403 |08 |05 182 |06|03|04]03([08 [05
147 103030403 (08 |10 18 [06|03|04]03({08 |1.0
148 |03 (03|04 [06[08 (01184 |06[03|04(06]0.8 |01
149 10303 |04 /06|08 (0518 |06|03(04]|06]|0.8 {05
150 1031030406108 |10 18 |06|03|04]|06[08 {1.0
151 031030603108 |01} 187 ;06|03|06[03/|08 |0.1
152 103;03{06{03{08 [05 188 {06|03/06[03]|08 |05
153 |03]03,06|03{08 |10 18% |06]0.3|06]/03(08 |10
154 |0303(06|06[08 |01 19 |06(03|06]|0.6]08 |0.1
155 ] 03|03|06 (06|08 05191 |06[03|06]06[08 |05
156 |03|03(06|06[08 |1.0| 192 j06(03|06|0.6]|08 |1.0
157 |03(03(08]03|08 |011193 [06([03|08]|03]|08 |0.1
158 1 03(03](08[03|08 |05)194 [06]03|08|03(08 |05
159 (03]03(08|03(08 10195 [06]03]08|03]08 |10
160 [ 03,03|08|06]08 01196 [06]03(08|061/|08 |0.1
161 | 03{03]08|06[08 {05197 [06]03|08|06|08 |05
162 | 03(03/08|06[08 |10 198 [06|03|08|06|08 |1.0
163 |03|06|04|03[08 |[01(199 [06{06|04|03|08 |01
164 (030604 [03|08 |05(200 [06|06|04/03|08 |05
165 | 03(0604(03|08 |10} 201 [06|06|04|03|08 |1.0
166 | 03|06 /04]06]08 011202 [06[06|04|06]|08 0.1
167 103 (06|04 06|08 |[05(203 [06[|06|04]06]|08 |05
168 (0306 {04]06|08 10204 [06|06|04|06|08 |1.0
169 1030606 |03[08 |[01]205 [06|06|06|03]|08 |01
170 |03 (06|06 | 03|08 [05(206 |06|06|06]|03]|08 |05
171 10306 (060308 [1.0] 207 [(06|06|06|03|08 |1.0
172 103 06|06 {06[08 [0.1208 [06[{06|06|06]|08 |01
173 (03 |06|06|06[08 |05(209 |06|06|06]|06]|08 |05
174 |03 |06|06 06|08 {10210 |06{06|06]|0.6]|08 |10
175 | 030608 (03|08 {01{211 [06|06|08[03]|08 |01
176 1 03|06 |08 (03|08 [05(212 (0606080308 |05
177 |03 0608|0308 {10213 |[06|06|08 03|08 |10
178 10310608 06|08 |01(214 [06]06]|08|06]|08 |01
179 103 |06|08 06|08 05215 [06|0.6|08[06]|08 |05
180 |03 | 06|08 |06 |08 |10 216 [06]06|08[061{08 |10
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