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1. Introduction

In our companion paper [3] we developed a methodology for modeling

electrocardiograms (ECG's) that could be used as the basis for ECG signal processing/analysis

algorithms. We refer to [3] for the motivation and review of past investigations that lead us to

the spatial, temporal, and hierarchical decompositions that are featured in our methodology.

Here we will only introduce the implications of these features for signal processing.

Our focus is on cardiac rhythms and therefore the focus of interest in this paper is on

the estimation of cardiac events as captured in the evolution of the interacting finite-state

processes that for the upper levels of the cardiac models developed in [3]. In Sections 1 and 2

of [3] we provided a discussion of the potential advantages in using these models as the basis

for designing signal processing algorithms.

However, while truly optimal estimation based on these models would achieve these

advantages, the computational load associated with optimal processing is prohibitively large.

Thus the major issue is the development of feasible, suboptimal estimation algorithms. In this

paper we investigate the development of such algorithms that take advantage of two important

features of this class of estimation problems. First, the estimation of event sequences in the

upper level model is essentially a decoding problem (i.e. the ECG is an encoding of the

discrete cardiac events we wish to estimate). Consequently we make repeated use of an

efficient technique for optimal estimation of finite-state processes first developed for coding

applications, namely the Viterbi algorithm [4]. Second, since our models are distributed, we

can consider the design of distributed estimators, consisting of interacting algorithms each

focused on the job of estimating the state of a particular subprocess. Such estimation

structures offer the attractive possibility of implementation in a distributed processor, thereby

allowing significant improvements in throughput rates.

The design of such estimators also raises a number of important questions independent

of the ECG application. In particular, since the several subprocesses of our upper level model
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interact strongly, it is not possible to estimate the state of a subprocess without accounting for

the influence on it of other subprocesses. Consequently it is necessary to include a (hopefully

aggregated) model of other subprocesses that captures the dynamics of the interactions these

subprocesses have with the particular subprocess being estimated. Also, it is necessary for the

estimators of interacting subprocesses to interact themselves (e.g. estimators of atrial and

ventricular activity most certainly have information worth sharing!). The interaction between

estimators implies that each estimator needs an aggregated model of the dynamics and the

uncertainties in the other estimators in order to interpret the infromation it receives from the

other estimators. In addition, since each estimator is using the same raw data but is interested

in only some of the events in the data, it may be necessary to provide information to each

estimator concerning estimated times of occurrence of other events in the ECG data (e.g. an

atrial estimator may need estimates of R-wave locations from the ventricular estimator in

order to assist it in locating the much smaller P-waves). Also, as one might expect, there may

very well be a need for some iteration in this process so that a high level of performance and

consistency among the estimators is achieved.

While electrocardiogram analysis has provided the motivation and examples for our

work, there are a variety of other applications in which similar estimation problems arise. In

particular, consider interconnected power systems which are made up of strongly interacting

components subject to events (such as generator trips and line faults) that can precipitate

events in other parts of the system. An extremely important problem is the design of

distributed monitoring systems, and a critical aspect of this problem is determining how to

structure the interaction among local monitoring systems in order to produce a consistent and

accurate overall estimate of system status. Similar issues also arise in military contexts in

distributed battle management and assessment. Our analysis begins in the next section with a

case study for the ECG application which allows us to introduce the major questions that arise

in designing distributed event estimation algorithms. In Section 3 we then extract from the

case study a general, systematic design approach for distributed estimation of interacting
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processes. The paper concludes with Section 4 in which we discuss issues arising in the

extension of our results and in particular in the design of a complete ECG rhythm tracking

system.

2. An Estimation Example

The process (Figure 1) whose state is to be estimated models normal cardiac rhythm

with occasional reentrant-mechanism premature ventricular contractions (PVC's; these result

from a normal excitation of the ventricles in effect circling back on itself and causing

additional ventricular contractions). Note several important features of the model:

(1) The model consists of two subprocesses, one (the SA-atrial submodel, denoted
CO, with state x0) representing the behavior of the upper chambers of the heart

and the other (the AV-ventricular submodel, denoted C1, with state xl)

capturing the behavior of the atrial-ventricular connection and the lower
chambers of the heart. The signatures modeled are the P-wave (corresponding

to atrial depolarization), the R- and T-waves (corresponding to a normal
ventricular depolarization-repolarization cycle) and the V-wave (corresponding
to an aberrant reentrant PVC). The signatures are labeled Pi, R i, T i, and V i

respectively in the figure. The state transition probabilities (including
inter-submodel interactions), the signature means and variances, and the
zero-mean observation noise variances are also shown in the figure.

(2) The interactions between the submodels are infrequent but are extremely strong.
In particular, the diagram shown for the SA-atrial submodel represents normal
activity which occurs unless x1 = 13 (initiation of a PVC) in the

AV-ventricular submodel. When such an event occurs, it is possible for the
electrical signal to propagate back to the upper chambers of the heart and in
essence reset the timing of the heart's own pacemaker. This is captured by
modifying the transition probabilities of xO so that with probability 1/2 xO is

reset to state 25 when xl= 13, and with probability 1/2 xO proceeds in a normal

fashion. In the x1 submodel the only transition probability affected by the value

of x0 is pl 1 . In particular, xl = 0 represents the resting state of the ventricles,
1 1

which is a trapping state (p 0 1 = 0) until the ventricles are excited (P0 1 = 1 for

one time step) by an atrial contraction (x0 = 0).

(3) The ECG measurements are available at a rate four times the clock rate of the
xO, x 1 processes. In order to allow signatures to start at any observation
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sample, each signature appears four times with 0, 1, 2, or 3 leading zeros in the
mean and covariance sequences. (The subscripts on the wave labels indicate the
number of leading zeros).

(4) The initiation of reentrant PVC's is modeled by transitions out of states 12 and
21 in submodel C1. Occupancy of state 12 corresponds to the completion of a
normal R, T-wave pair, and from this state there is a probability of 0.9 of
returning to the resting state and a probability of 0.1 of entering state 13
corresponding to the initiation of a reentrant PVC. Note that there is a much
higher probability (0.4) of initiating subsequent, consecutive reentrant PVC's
(the 21-to-13 transition) which results in occasional occurrences of bursts of
aberrant PVC's as are seen in episodes of ventricular tachycardia.

(5) The remaining states and transition probabilities model cardiac timing
propagation delays, recovery time following contraction, etc. The model does
allow for some uncertainty in this timing behavior and therefore some
variability in the heart rate (which with a Markov chain cycle time of 0.04
seconds is, on the average, 75 beats per minute). It is certainly possible to add
even more variability, but for simplicity we have not done that here.

Figure 2 shows a plot of several typical segments of a realization of this model.

(Recall the discussion of Section 4 in our companion paper [3] concerning the verisimilitude of

the simulated ECG, especially the contrast between modeling for physiological accuracy and

modeling for signal processing utility). Below the ECG tracing are several sets of annotations.

The top row of annotations indicates the true times and types of waves that are present in the

data (corresponding to the times at which transitions are made out of state 0 in submodel CO

(P-wave) and states 4 (R-wave), 7 (T-wave), and 13 (V-wave) of submodel C1). The

remaining rows represent various annotations constructed during the estimation process, with

the bottom row representing our final set of estimates.

A compact pictorial notation for interacting Markov chains is illustrated in Figure 3.

Here the label CO denotes the SA-atrial submodel and C1 the AV-ventriclar submodel shown

in Figure 1. The arrows between CO and C1 indicate that the state of each subprocess

influences the transition behavior of the other. Also, the arrows labeled P, R, T, and V

indicate the waveforms initiated by each subprocess. In addition, the variables h0 1(n) denote

the sequence of interactions initiated by CO and impinging on Cl. That is h0 1(n) completely

captures the influence CO has on the transition probabilities of C1 for the transition xl(n) -e
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x l (n+l). Referring to Figure 1, we see that we can define h0 1(n) so that it takes on only two

values

h 0 if x0(n) = 0
(1)

h 1 otherwise

The only transition probability of C1 that is influenced by CO is

1 {1, h0 1(n)= 0 (2)

P0 1 0, hl01 (n)= 1

Similarly we can define the interactions h10 (n) from C1 impinging on CO as

0 if x l (n) * 13

(n) 1 otherwise

so that if hl0(n) = 0 the transition probabilities are as indicated in the figure, and if h10 (n) = 1

they are the average of these values and a probability 1 reset to state 25 from any other state.

Note that there are far fewer values for these interaction variables than for the corresponding

states. This fact is used in an essential way in constructing several aggregate models used in

our estimation methodology.

Our approach to state estimation for such a process involves the design of a set of

interacting estimators, each of which focuses on estimation for a particular subprocess. Also,

the existence of the interactions among subprocesses may require some iteration. For the

present example our estimator can be viewed as consisting of three passes:

(1) Derive a preliminary estimate of ventricular activity (submodel C1).

(2) Based on the observed ECG and the estimates from pass 1, compute an estimate
of atrial activity (submodel CO).

(3) Refine the ventricular estimate based on the observed ECG and the estimates of
atrial activity from pass 2.

The results from (2) and (3) form the final estimate. This approach parallels the heuristic

approach humans take in first identifying high signal-to-noise ratio (SNR) events (R- and

V-waves), then using these estimates to assist in locating low SNR events (P-waves), and
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finally making adjustments to ensure accuracy and consistency. While we describe these three

steps as separate passes through the data, it is straightforward to construct a pipelined structure

in which the three steps proceed at the same time.

We now turn to a detailed examination of each of these three passes. Because the first

pass focuses on submodel C1, it is natural to include an exact copy of this submodel in the

estimator's model. However, it is also necessary to model the interactions impinging on the

C1 submodel, i.e. h0 1(n). Possibilities range from the exact model of CO depicted in Figure 1

to no model. We use the simplest possible aggregate model for submodel CO with which we

can still capture the full range of interactions with submodel C1, specifically we use a

two-state model, corresponding to the two possible values of h01(n). In addition, we allow

submodel C1 to reset the state of our two-state aggregate model, again reflecting behavior

seen in the full model. In the full discussion of our approach to estimation, this type of

aggregate model is referred to as an "SO-submodel". Details for this example are given in

Figure 4.

There are several further points to make about this first pass. First, because the

P-wave has a small amplitude in comparision to the R- and V-waves, which are the waves of

primary concern for this pass, it is unlikely to be confused with an R- or V-wave. Therefore,

though it is straightforward to define a SO subprocess that initiates P-waves, we have not done

so. Second, one can imagine several methods for choosing p in submodel SO - matching

some statistic of the exact submodel CO or viewing p as a design parameter to be chosen to

optimize estimator performance. In [2] several general statistical methods (which can be

easily automated) are described for choosing parameters to match particularly useful statistics.

In Section 3 we describe the statistical method used to obtain the value for p indicated in the

figure. Finally, with this parameter specified, we have a complete model, and the first step

estimator is designed to produced a minimum probability-of-error state trajectory estimate for

this model (i.e. estimates of the states of SO and C1 as functions of time) based on the

observed ECG. This computation and those in all of our estimators are performed using the
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Viterbi algorithm [4] which efficiently and recursively computes the optimal smoothed state

trajectory, i.e. the best state estimate at each time is based on information before and after that

time.

The Viterbi algorithm requires the process to be Markovian, while signatures (as in this

example) that last more than one Markov chain cycle make the process nonMarkovian.

However, it is straightforward to Markovianize the process by state augmentation and because

there are few transitions that initiate signatures, the required augmentation does not radically

increase the size of the state space. Though straighforward, the details of this augmentation

process are rather tedious and are omitted.

The results of this first pass estimator are illustrated in the second row of annotations in

Figure 2, where we have indicated the estimated times of occurrence of R-, T-, and V-waves.

For the most part these estimates are quite accurate, thanks to the high SNR of these waves,

although there are infrequent false alarms in the estimates caused by extra-long P-P intervals

in which case the estimator attempted to match a T-wave with an actual P-wave.

The second step in our overall estimation structure is to estimate the state in the

SA-atrial submodel. Therefore, it is natural to include an exact copy of the SA-atrial

submodel in the estimator's model. The only direct information from the ECG for this step is

the low SNR P-wave. However, there is also a great deal of indirect information available

through the causal relationship between P- and R- waves and V- and P-waves.

First consider interactions initiated by CO. That is, consider the causality between P-

and R-waves the latter of which only occur when the SA-atrial submodel successfully excites

the AV-ventricular submodel. The goal is to exploit the auxiliary information concerning

R-wave occurrences determined in the first estimation pass. At the very least one could

imagine using the state estimates for SO from the first pass which are estimates of interactions

impinging on the AV-ventricular submodel. Since the O-state in this submodel corresponds to

the O-state in the original submodel CO (and thus to attempts to excite submodel C1), the

estimates of times at which SO is in state 0 would be likely estimates of times at which
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estimates of times at which SO is in state 0 would be likely estimates of times at which

hO1 (n) = 0. However, because of the highly aggregated nature of SO, some of these estimates

may be somewhat suspect. However, when such an estimate is coupled together with a closely

following estimated occurrence of an R-wave (corresponding to the estimate of the C1

subprocess occupying state 4), the SO estimate is much more likely to correspond to a true

occurrence of an attempt at ventricular excitation. Consequently the information we provide to

pass 2 from pass 1, which we will refer to as estimated augmented interactions, consists of the

sequence of estimates of the states of SO and C1 produced in pass 1.

In order to use the estimated augmented interactions we must model the errors they

contain. Note, however, that the errors of importance here are not only memoryless errors

(which could be modeled by static misclassification probabilities) but also errors in timing

(e.g. the estimated time of occurrence of an R-wave may be in error by one or two samples).

Consequently, we need a dynamic model for the way in which estimated augmented

interactions provide information about CO. This is accomplished, as illustrated in Figure 5, by

modeling the estimated interactions, denoted by zl, as the observed outputs of an additional

submodel of a class we refer to as S1 submodels. This additional submodel receives

interactions from CO, whose state we wish to estimate. In order to model the fact that the

estimates in zl(n) may contain time shifts relative to the actual values of the interactions

h01(n), we take as the state of the S1 submodel a vector of the most recent interaction values.

To minimize the size of the S1 state space one clearly wishes to minimize the dimension of

this vector. For this study we found a dimension of 2 to be adequate, so that the state of S 1 at

time n is (hOl(n-1), h0 1(n-2)). By examining CO, we see that it is impossible for h0 1 to

equal 0 at consecutive times. Thus, there are only three possible S1 states which we have

coded as follows in Figure 5:

0=(0, 1) , 1=(1,0), 2=(1, 1)

Since h0 1 is a deterministic function of the state of CO it is straightforward to derive the way

in which xO(n) affects the transition behavior of S 1 (Figure 5).



-10-

As in all of our models, the observation z l (n) is associated with transitions in the S1

subprocess which correspond to 3-tuples (h 0 1 (n-1), h0 1 (n-2), h0 1 (n-3)) of interactions. Our

measurement model is then the set of conditional probabilities

Pr(z1(n) I h0 1 (n-1),h 0 1 (n-2),h0 1(n-3)) (4)

Since the Viterbi algorithm provides us with noncausal estimates, we are free to build some

noncausality into this model. Consequently, we have chosen to take zl(n) as the pass 1

estimate at time n-2, which therefore provides an estimate of h0 1 (n-2). Thus the model

allows us to capture time shifts of +1. The specification of (4) can be obtained by analysis of

the performance of the first step estimator. We have estimated these quantities via simulation.

We now must consider the interactions h1 0 (n) initiated by C1 and impinging on CO, i.e.

the effect of V-wave occurrences on CO. There is a similarity here with the modeling of SO in

the first pass but in the present context we also have the estimates from pass 1 which tell us

something about these interactions. Specifically, since we used the exact C1 submodel in pass

1, we can deduce estimates of h1 0 (see (3)). We take these estimates as our observation z2 for

pass 2 (without any augmentation as was done for zl since the first step estimator used an

exact model for C1 and consequently should produce comparatively accurate estimates). Also,

as with the S1 submodel, we need to model possible estimation timing errors, so again we take

the state of S2 to be a set of the most recent interactions, in this case (h 1 0 (n), h 10 (n-1)).l In

this example it is impossible for h 10 to equal 1 at two consecutive times, and thus we can code

the feasible S2 states as

0=(0,0) , 1=(0, 1) ,2=(1,0)

1Note that there is some asymmetry in comparison with the S1 submodel where the state was
lagged one step. This is a result of the fact that in the S1 submodel, h01l(n) is a deterministic

function of xO(n). Thus for the state xO(n) to correctly "influence" the next transition in S1,

we needed to introduce the time delay in defining the S1 state. This is not needed in S2, since
there is no such deterministic coupling.
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In this example the CO submodel transition probabilities are shown in Figure 1 for XS2 (n) = 0

or 1 and incorporate the 0.5 probability reset to state 25 when XS2 (n) = 2. The S2 model is

illustrated in Figure 5. Note that as with S1, there is a parameter p to be chosen to specify the

S2 transition probabilities. This parameter was also chosen to match statistics of the true h10

process using a general method described in the next section. Finally, the observation z2(n),

which is the pass 1 estimate of h 1 0 (n-1), is modeled as resulting from S2-transitions. Thus

again we must specify a distribution, namely

Pr(z2 (n) I h 10 (n), h 1 0 (n-1), h 10 (n-2))

which we have again done by simulation.

This completes the specification of the second pass model. Note the complete absence

of R-, T-, and V-waves. For the pass 1 estimation algorithm we argued that it was

reasonable to consider omitting P-waves from the model since (a) we were focusing most

attention on submodel C1 and (b) the P-waves were of low amplitude. In pass 2, the first

argument holds (here we are focusing on CO), but the latter does not. In the general procedure

described in the next section, we allow for the possibility of taking such waves into account

through so-called subtractor submodels. However, as the results in this section and in [2]

indicate, for ECG-type models such as the one considered here, that is unnecessary.

Intuitively such waves can be ignored in the pass 2 estimation algorithm because through zl(n)

and z2 (n) we are providing indications of the times at which these waves occur. Given then

the coupling between these waves and the likely times of P-waves, captured in the original

CO-C1 model and in our simplified pass 2 CO-S1-S2 model, the pass 2 estimator will not try

to account for R-, T-, and V-waves by placing P-waves in their locations.

A second issue we have ignored is that of allowing the CO submodel to influence the

S2 submodel motivated by the fact that the CO submodel does influence the C1 submodel.

However, it is precisely this influence that is focused upon in the S1 submodel, while the S2

submodel focuses on that part of the C1 submodel, dealing with V-waves, which is unaffected



-12-

by the CO submodel. Consequently, while our general modeling methodology allows CO to

influence S2, it is not necessary to include this bit of complexity in the present context.

Note that in our model we consider zl and z2 to be independent measurements, which

is clearly erroneous since they are both determined by the pass 1 estimation process. One can

certainly construct a more complex model involving a joint distribution of z1l, z 2 given the

combined information in the most recent transitions of S1 and S2, but this was not found to be

necessary (since again z 1 and z2 focus on different portions of the overall model).

In summary, the second pass of our procedure consists of the minimum

probability-of-error estimation of the state trajectory of the model given in Figure 5 given the

ECG measurement and the derived measurements z1 and z2 from the first pass. The results

for this example are given in the third row of annotations in Figure 2 showing the times at

which P-waves were estimated to have occurred. Comparing this to the top row of

annotations we see that performance is quite good. Note that the erroneous R,T-wave pairs

from pass 1 near 136.6 and 138.3 seconds did not lead to an erroneous P-waves in pass 2,

thanks to our modeling of zl which incorporated the possibility of such false alarms. Note

also the occurrence of P-wave timing errors (as illustrated near 80.2 and 99.9 seconds) all of

which underestimate the P-R interval. Finally, note that it is possible in our model (and in the

heart) for P- and V-waves to occur nearly simultaneously or for V-waves to preempt an

already occurring P-wave from initiating a normal R-wave. Having knowledge of this, the

pass 2 estimator will attempt to insert P-waves when the timing seems likely even though the

presence of V-waves may obscure the P-wave. An example of correct estimates of this type

can be found near 99 seconds. A false alarm can be seen near 82.6 seconds, and a missed

detection near 83.3 seconds. While the value of such estimates is suspect (and not of

particular consequence) they do provide rather graphic examples of the use our estimator

makes of the timing and control information embedded in our models.

The third pass of the estimation process, whose purpose is to provide improved and

consistent estimates of ventricular activity, is based on a model, illustrated in Figure 6, with
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structure analogous to that of pass 2 (with the roles of submodels CO and C1 interchanged).

We omit the details of the construction, as they are exactly analogous to those in pass 2. The

estimator is again a minimum probability-of-error estimator using the ECG and the derived

measurements z 1, z2.

The result of applying this estimator is illustrated in the fourth row of annotations in

Figure 2. The final, overall estimate (row 5) consists of the CO-state estimate of pass 2 (row

3) and the Cl-state estimate of pass 3 (row 4). Comparing the top and bottom rows we see

that the estimator has performed quite well. Disregarding the initial heartbeat (which was

missed in pass 3 because of the specific way in which we implemented the initialization of the

latter passes of our algorithm) all R-, T-, and V-waves were detected and located with no

false alarms. Note that while there had been several false R, T-wave estimates in pass 1,

these have been completely eliminated in pass 3, in which we have the benefit of using

estimates of CO-behavior in order to enforce consistent overall estimation.

The estimation of P-wave occurrences is also quite good. Quantifying this

performance, however, is an interesting question itself, since one is clearly not just interested

in estimation errors at points in time but also in timing errors at points in the estimated event

cycle - i.e. an estimation error of one time sample in locating a P-wave should not be

thought of as a missed detection but rather as a timing error. Much more on the issue of

performance measures for event-oriented estimation problems can be found in [2]. This

example does, however, indicate the main ideas. In examining the results of the full

simulation we find that there are only two isolated false positive P-wave indications and one

isolated false negative (neglecting the initial heartbeat), where by "isolated" we mean that

there is no nearby P-wave in the true or estimated state trajectories. Given that there are 230

heartbeats in this simulation, these correspond to a false positive rate of .009 and a false

negative rate of .004. There are also 23 other paired false positives and negatives, where we

have used the criterion of associating estimated and actual P-wave locations only if the

waveforms at these locations overlap. This corresponds to a paired error rate of 0.10. Note
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that in our model, every R-wave must be preceded by a P-wave, and thus this pairing is to be

expected. It is worth noting that in each of these paired errors, the estimated P-wave location

was closer to the R-wave than the true R-wave, indicating a bias that may be removable (and

is most likely due to the pass 2 estimator correlating the P-wave with the initial portion of the

R-wave).

In [2] we consider a variety of other models. For example, we have examined models

with transient AV block, i.e. models in which not every attempt at ventricular excitation leads

to an R-wave even if the ventricles are apparently in the resting state. Because of the

additional freedom in the model, one would expect some drop in performance. However the

drop is extremely small for estimators based on the principles outlined in this section and

formalized in the next.

3. A General Design Methodology

The example of Section 2 illustrates the major elements of a general estimator design

methodology for distributed Markov chains which is described in this section. Specifically,

consider the estimation of an interconnection of subprocesses, denoted C 0 , C1,...,CN, with

states x0, xl,...,xN, given measurements of signals containing signatures corresponding to

particular state transitions in these subprocesses. Let hij(n) denote the interaction initiated by

C i and impinging on Cj at time n. This interaction is a deterministic function of xi(n), and the

transition probabilities of Cj are deterministic functions of {hij(n) lij}. The assumption is that

the set of possible transition probabilities for each C. (and thus the set of possible values of

(hij(n) jiij }) is quite small.

Our overall estimator consists of an interconnection of local estimators (LE's), each of

which focuses on the estimation of one of the subprocesses. Because of the existence of

interactions with and events in the observed data due to other subprocesses, each LE not only

must take these effects into account in its model but also must communicate with the other

LE's.
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During the initial pass through the data the LE's have no previous information to

communicate and the LE for a specific submodel C. will in general need:

(a) A complete model of the subprocess C. on which it is focused.

(b) A model of the interactions impinging on C..

(c) A model of the waveforms generated by the other submodels.

The model referred to in (b) is called an SO submodel, and a major objective is to make

it as simple as possible in order to keep the LE as simple as possible. 2 We have taken the

states of the SO submodel to be in one-to-one correspondence with the possible values of the

N-tuple {hij(n) i=j}. In order to set the transition probabilities for the SO submodel our

primary approach has been to match these one-step transition probabilities to the actual

steady-state versions within the original process, that is, to

1 i m Pr({h ij(n) iij} | {hij(n-1) ij}, {hji(n-1) = h.. I i}j)) (5)
n-+-oo ii i i

Unlike {xi(n) ij} conditioned on {h.(n) lij}, the highly aggregated [hij(n) lij} conditioned

on [{hi(n) i ij) is typically not a Markov chain and therefore the limit in (5) is not a trivial

computation, though it is straightforward once the ergodic probabilities for [xi(n)I ij)} have

been computed. Typically for models with infrequent changes in interactions, most of the

transition probabilities specified in (5) are 0 or 1, and there are only a few parameters (such as

p in Figure 4) for which this computation is necessary. 3

2There are two distinct ways in which one can perform this modeling step and several that
follow. In particular, in this section we describe the construction of a single SO submodel
capturing the interactions impinging on C. from all other subprocesses. In [2] an analogous

approach is described for constructing separate SO submodels for the interactions initiated by
each of the other subprocesses.

3Indeed for all of the cases considered in [2], the model was exactly as in Figure 4 (with
different values of p), since in all of our cases there have been only two interaction values, one
of which could not occur at consecutive times.
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Note that we have included conditioning on {hji(n-1) I i-j ), which reflects the influence

C. has on the other subprocesses. This results in the transition probabilities of SO being

influenced by the state of C.. Again we typically expect this influence to manifest itself as a

small number of possible values for a small subset of the transition probabilies (e.g. in our case

study only the parameter p in Figure 4 is influenced, and it only takes on two values).

Finally, note that there are cases in which the matching of the steady-state statistic (5)

may be inappropriate since it, in essence, assumes that the transition probabilities of

{xi(n) li} i do not change very frequently (so that steady-state is actually achieved) That is,

(5) assumes that the interactions hji(n) are constant so that the time variations observed in the

actual x.(n) process must not lead to frequent changes in the interactions hji(n). We refer the

reader to [2] for examples violating this assumption and in which we must set the SO transition

probabilities in a different manner. Note that this assumption is in fact violated in our case

study. In particular, while it is certainly true that h10 =0 for long periods of time, h 10 =l

cannot possibly occur at any two consecutive times. In this case, since h 10 = 1 corresponds to

a reset of CO to state 25, and since all states in CO other than 0 correspond to h0 1 = 1, it is

reasonable to reset the state of SO to 1 whenever x1 = 13. This is what is specified in Figure 1

and what we would calculate from (5). Thus (5) is often useful even if the assumption on

which it is based is violated.

The model referred to in (c), denoted S3, is one of the subtractor submodels, referred to

in the previous section. It is incorporated in order to keep the LE from interpreting waveforms

generated by other submodels as coming from Cj. Our desire is to present the LE with

observations containing only those signatures generated by C.. Since this is not possible, we

equip the LE with a mechanism for estimating when other signatures have occured so that it

can in effect subtract out their effects. In general, one can construct a separate S3 submodel

for each signature not initiated by C.. While it is possible to couple these subprocesses with

the C. and SO submodels, we have obtained good results with the simpler structure shown in

Figure 7, in which each S3 submodel is a completely autonomous, aggregated process that
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produces interarrival statistics for the wave of interest identical to those produced by the exact

model. Let tSS(n) denote the time between the nth and (n+l)st occurrence of the signature S

in the original process. Then we choose the two parameters p and q to match the probability

that signatures occur at successive times and the mean time between successive signatures.

That is

p = 1-l i m Pr[ss(n)= 1] (6)
n---oo

R + 1 = l i m E[rss(n)] (7)
q n--oo

Again the statistics in (6),(7) can be calculated from the ergodic probabilities of the full model.

In most cases Pr[Pss(n) = 1] = 0, so that

1 i m E[ 8ss(n)] - 1 (8)
n-*-oo

Therefore, in our general methodology we construct each initial LE model using C., SO,

and S3 components as illustrated in Figure 8 and compute the initial pass minimum

probability-of--error estimates for each LE. We are then in a position to consider a refinement

pass, in which each LE reprocesses the data, together with information provided from the

initial passes of the LE's.

The LE for subprocess C. will in general need the following elements in its model for a

refinement pass:

(1) A complete model of Cj.

(2) A model of the information provided by the previous pass concerning
interactions initiated by C..

(3) A model of the information provided by the previous pass concerning
interactions impinging on Cj.

(4) A model of the information provided by the previous pass concerning times of
occurrence of waveforms generated by the other subprocesses.



-18-

Elements (2) and (3) together correspond to (b) in the initial pass. They are split here because

(i) it simplifies modeling the information and (ii) the information referred to in (2) and (3)

typically comes from different sources or is of very different accuracy or structure since each

LE has an accurate model of its own subprocess but only highly aggregated models of the

others.

As discussed in the previous section, the models referred to in (2) and (3), denoted S1

and S2 submodels, respectively, must capture the timing and estimation uncertainties from the

previous pass. Each accomplishes this by taking as its state space a moving window of the

most recent interactions. In particular, the state of the S1 submodel consists of a window of

the most recent values of the N-tuple {hji l iij I while the state of the S2 submodel is a window

of the most recent values of the N-tuple4 {hij li j }. An objective in designing these models is

to keep the window lengths K 1 and K 2 small in order to minimize state space size. This

desire is balanced by the need to model estimation timing errors (since the maximum such

symmetric error that can be modeled corresponds to 1/2 the window length). In our work we

have always taken this window length equal to 2.

The S1 dynamics are essentially a shift register memory, since each h.i(n) is a

deterministic function of x.(n) and since the full C. model is used by the LE. Specifically,
J J

given xj(n), the transition

XS 1 (n) = {hji(m) I iij, m=n-K2 ,...,n-1 }

xS (n+) = { hji(m) l ij, m=n-K2+l,...,n}

is deterministic, that is, for each present state there is one next state (whose identity depends

on x.(n)) that S1 will occupy with probability 1.

4 Recall from the previous section that there is some asymmetry in the windows here, with the
window for S 1 stopping at time n-1, and the window for S2 stopping at time n.
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The dynamics of the S2 submodel are not deterministic. As in the SO submodel, we

choose the S2 transition probabilities to match those in the original process. In particular, we

choose these to equal

1 i m Pr({hij(m) ij, m=n-K2 +2,...,n+l } j hij(m) I ii,m=n-K2+1,..,n, [hji(n) ij )
n-+oo

(9)

By including the conditioning on h.ji(n) I ij) we can capture the interactions initiated by C.

and impinging on the other subprocesses (and therefore, in the LE model, on S2). However, as

discussed in the previous section, the effects of these interactions are the primary concern of

the S1 submodel, and thus it is worth seeking and typically possible to find a far simpler

model. In fact throughout our work we have been able to completely eliminate the influence

of Cj on S2 (which then operates autonomously, generating the interactions that impinge on

C.). This can be done by using (9) with h.ei(n) lij) set equal to the values that represent the

most usual interactions or by computing the average of (9) over the possible values of

th (n) I inj } using their ergodic probabilities. We have used the latter of these two methods.

Consider next the modeling of the "measurements" provided by the previous data pass.

With respect to S1, we have in general the following sources of information concerning the

interactions initiated by Cj:

(i) The previous state estimate of Cj from its associated LE. From this we can

directly compute an estimate of {h.i(n) l ij }.

(ii) The augmented interactions from each of the other LE's. These consist of the
estimate of the interaction impinging on the C i submodel associated with each
LE (obtained from the aggregated SO submodel used by the LE) and the
corresponding Ci-state estimate.

Together this information forms a measurement, which we denote zl(n), and we model the

information contained in zl(n) by

5sIn our ECG examples this corresponds to no attempt at interprocess excitation, as such
electrical excitations occur over relatively short time periods (usually a single time sample).
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Pr(zl(n) | {hji(m) I i;j, m=n-K2 -l,...,n-1 }) (10)

As discussed in the previous section, we have the flexibility of introducing some noncausality

in order to model positive and negative timing errors. That is, we take zl(n) to be the

previous pass estimates indicated in (i) and (ii) evaluated at time n-l-K2/2. Finally, while it

is possible to devise analytical methods to obtain approximations for (10), we have found it

easier to evaluate these distributions by simulation.

For S2, we have the following sources of information concerning interactions

impinging on Cj:

(i) The augmented estimated interaction provided by the previous pass of the LE
for C..

(ii) The estimated state of each Ci provided by the associated LE. From these we
can directly compute estimates of each hii(n).

This information forms the measurement z 2(n), which is modeled via

Pr(z2(n) { hij(n) I i;j, i=n-K2,...,n) (11)

Again we introduce some noncausality by taking z2(n) to be the previous pass information

evaluated at n - K2 /2, and we determine (11) by simulation.

Finally, consider modeling the information available from the previous pass concerning

waveforms generated by other submodels. Each such waveform is modeled by a second type

of subtractor model denoted S4 which is similar in structure and principle to S2 submodels.

Consider an S4 submodel corresponding to a particular waveform generated by submodel C i.

The measurement z4(n) provided by the previous pass LE for C i is a sequence of binary

annotations - 0 if the LE estimates that the particular C i waveform was not initiated at that

time sample and 1 if the estimate is that the waveform was generated. The state of the S4

submodel is a window of the most recent true values of these binary annotations. As with S2,

the transition rates of this model are chosen to match the corresponding transition rates of

sequences of binary annotations in the full model. If the counterpart to (9) is used, the S4
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model will in general be influenced by C.. Again, as in the case of S2, we have typically

simplified this model so that S4 is autonomous, by averaging out the Cj-dependence using the

ergodic distribution for xj(n).

The output of the S4 chain is a sequence of occurrences of the waveform being

modeled. Such outputs occur at all S4 transitions to states with a 1 as the most recent

annotation. The auxiliary observation z 4(n) is again modeled via a probability distribution

conditioned on the most recent S4 transition. We have determined distributions of this type via

simulation.

The structure of the models on which each LE refinement pass is based is depicted in

Figure 9. In principle one can envision making several refinement passes, with the final

estimate consisting of the collection of Cj-state estimates from the final passes of the

corresponding LE's. The primary purpose of the refinement passes is to improve the accuracy

and consistency of this set of estimates. In particular, if one implemented a single, optimal

estimator for the full process, one would know for certain that all transitions present in the

final state estimate would be consistent (i.e. have nonzero probability in the full process).

When one uses a collection of distributed, simpler LE's, there is no such guarantee, but the

coordination made possbile by refinement passes makes the occurrence of inconsistent

estimates extremely unlikely.

In the example of Section 2, the first refinement pass (pass 2) is crucial because it is

the first pass to focus on sumodel CO. The second refinement pass (pass 3) is less important,

though it does correct several false positive errors made by pass 1.

The complete procedure we have described requires the implementation of a full set of

LE's for the initial pass (based on models as in Figure 8) and subsequent refinement passes

(each based on its own model as in Figure 9). As in our example in Section 2, it is typically

possible to simplify this design considerably. First of all, for each LE it is often not necessary

in the initial pass to include subtractor submodels S3 for waveforms of low SNR compared to

the waveforms generated by the submodel corresponding to the LE. Also, as we showed, it
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may not be necessary to include any S4 submodels, since the information provided through S1

and S2 submodels essentially provides timing information that allows the LE to avoid intervals

in which these interfering signatures may appear. In [2] we present comparative results with

and without S3 and S4 submodels that support these simplifications.

It is also typically possible to eliminate many of the LE's from each pass. For example,

in the initial pass, one typically would implement LE's only for submodels generating the

higher SNR signatures (such as R-waves), since the performance of initial pass LE's for other

submodels with only low SNR signatures (or no signatures, as is the case for some rhythm

models described in [2],[3]) will generally be unsatisfactory. Also, in order to achieve

consistency, we do not need to refine all LE's in subsequent passes. In particular we typically

can implement an alternating iterative structure much as in the example in which we initially

estimate the C. with high SNR signatures, then use these estimates to assist in estimating only

the remaining C i during the next pass; these estimates can then be used in turn during the

following pass in the re-estimation of the C. from the initial pass in order to improve the

accuracy and consistency of the C.-state estimates. Note that in addition to eliminating entire

passes of LE's, such a structure reduces the quantity of zl and z2 measurements to be

processed by the remaining LE's. In fact, the full set of such information described previously

has some redundancy, reflecting the fact that perhaps not all of this intermediate processing is

needed. The structure described above simplifies the design by removing these redundant

sources of information. In [2] we present results favorably comparing reduced designs of this

type to estimators incorporating more or all of the LE's at each stage.

4. Conclusions

In this paper we have presented a methodology for the distributed estimation of

interconnected finite-state processes given the observation of signals containing waveforms

initiated by events in the various processes. The motivation for our work is the problem of
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automated ECG analysis, but the methods we have developed are of potential use in a variety

of other applications such as the monitoring of distributed power networks.

The approach we have developed highlights the major issues that must be addressed in

designing distributed estimators, namely the aggregated modeling of the interactions between

other portions of the overall process and the particular subprocess being estimated and the

dynamic modeling of the information provided by other estimators as part of the process of

producing coordinated, consistent estimates of all the subprocesses. We have presented

systematic procedures for constructing these models that can in fact be used as the basis for a

completely automated estimator design procedure [2].

In order to illustrate the various elements of our design process we have presented a

case study corresponding to the tracking of a particular cardiac rhythm using synthetic data.

The results presented indicate the potential of this design method. Two major issues remain to

be considered, however, before a complete ECG rhythm analysis system can be constructed.

In particular, while our distributed design yields estimators with far more modest

computational demands than the corresponding optimal estimator, several steps can be taken to

simplify these computations even more. First, as mentioned previously, it is possible to

construct pipelined versions of our multi-pass estimators in which all passes are performed at

the same time rather than in sequence. This achieves a several-fold increase in processing

throughput. Also, the nature of the models arising in ECG analysis offer another possibility

for simplification. Specifically, these finite-state processes typically display multiple time

scale behavior (as actual signature-initiating events occur at a far lower rate than the sampling

rate needed to capture interprocess timing). Consequently, it may be possible to use results on

hierarchical aggregation of processes with several time scales [1] to construct more efficient

estimators that not only display the spatial but also the temporal decomposition of these

processes.

Finally, it is important to realize that the problem of rhythm tracking addressed here is

only a first step in a rhythm diagnosis system. Specifically in such a system one wishes to
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identify the underlying distributed process model from a set of such models representing

different cardiac rhythms. As in standard system identification problems, the computation of

the likelihoods for a set of models can be performed efficiently using the estimates produced

by estimators based on each of the models (e.g. see [5] for an application of this idea to ECG

rhythm analysis based on R-wave location data only). In [2] we describe an approach to

constructing such likelihoods based on the outputs of a set of estimators of the type described

in this paper, but work remains to be performed to test this method and to develop efficient

implementations.
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Table of Figures

1. Figure 1: A model of normal cardiac rhythm with occasional reentrant-mechanism
PVC's: (a) the two subprocesses; (b) the various signatures. Each occurrence of the P-,
R-, T-, and V-waves consists of the signature plus zero-mean noise of standard
deviation 0.02, 0.2, 0.12, and 0.4, respectively. In addition the entire ECG is observed in
zero-mean noise of standard deviation 0.02.

2. Figure 2: Several segments of a simulated ECG obtained using the model in Figure 1.
Annotations below the traces refer to estimates produced at several points in the
estimation algorithm (see text).

3. Figure 3: High-level block diagram representation of the model of Figure 1.

4. Figure 4: Model for the first pass of the estimation algorithm: (a) overall block
diagram; (b) detail of the SO model- state 0 corresponds to h0 1 (n) = 0, state 1 to

h0 1 (n) = 1.

5. Figure 5: Model for the second pass. (The submodel CO is reset, i.e. its transition rates
are as given in Figure 1 with x1 = 13, only if the S2 process is in state 2).

6. Figure 6: Block diagram of the model for the third pass.

7. Figure 7: An S3 chain. Here the 0 - 0 and 0 - 1 transitions initiate the signature
denoted by S.

8. Figure 8: The structure of a general LE model for an initial pass.

9. Figure 9: The structure of a general LE model for a refinement pass.
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