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ABSTRACT

The study of eye motions involved in the vestibular ocular reflex (VOR) is a key tool for

understanding the performance of the vestibular system and for the diagnosis of dysfunction.
Limitations in experimental equipment and in the analytic methods applied have resulted in VOR
testing being conducted under artificial laboratory conditions that do not resemble the conditions
under which the VOR naturally functions. The results from these tests are often unreliable, and
may, in fact, misrepresent the function and performance of the VOR and the vestibular system.

The purpose of this thesis was to develop the experimental equipment, protocol, and
analysis algorithms required to conduct a stochastic system identification of the horizontal,
rotational VOR, while it was being used to stabilize gaze during natural, head-free tracking. By
providing statistically uncorrelated stimuli to the visual and vestibular systems, estimates of the
VOR's impulse response function could be made as subjects tracked a visual target that moved
with an unpredictable trajectory. A novel stochastic technique was developed to generate the
visual and vestibular input sequences such that they had appropriate amplitude distributions, and
auto- and cross-correlation functions.

The results showed that the technique was able to identify the dynamics of the VOR over
the frequency range that it naturally functions to stabilize gaze, that is from below 0.5 Hz through
4.0 Hz. Nonlinearities in the head-neck control system limited the analysis at low frequencies,
and difficulties in calculating high frequency eye velocities limited the accuracy of the analysis at
high frequencies. Unlike the rotational VOR tests that are commonly used today, this technique
was able to distinguish between the visually and vestibularly driven eye responses, and was able
to show that during head-free gaze tracking, the vestibular system is able to compensate for head
disturbances with a near unity gain.

Thesis Supervisor: Lynette A. Jones
Title: Principle Research Scientist
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Chapter 1

Introduction, background, and thesis organization

1.1 Introduction

1.2 VOR and gaze tracking

1.3 Traditional VOR testing methods

1.4 System identification of the VOR during head-free tracking

1.5 Research goals and thesis organization

1.1 Introduction

The goal of this research was to develop the experimental equipment, protocol, and

analysis algorithms that were required to conduct a system level evaluation of the vestibular

ocular reflex (VOR) while it was being used to stabilize gaze during natural, head-free tracking of

a visual target.

The vestibular system, which is composed of the semicircular canals and otolith organs of

the inner ear, measures the linear and angular acceleration of the head and transmits these signals

to the appropriate cortical and sub-cortical sites. This information is used to maintain balance and

posture, enables coordinated body movements, influences how we perceive our spatial

environment, and is a crucial input to the reflexes that the body uses to compensate for head

motion. Deficiencies and failures of the vestibular system lead to debilitating dizziness, nausea,

vertigo, oscillopsia, and spatial disorientation. These symptoms are among the most common

medical complaints for people over the age of 65 (Foreman, 2000), and the costs of medical care

for these symptoms are estimated to exceed $1 billion per year in the United States (Vestibular

Disorders Association, 2003). Although these symptoms may be associated with other systemic
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problems, the majority are associated with deficits in the peripheral vestibular apparatus or in its

projections to the cerebellum and brainstem. The study of the eye motions involved in the VOR is

a key tool for understanding the performance of the vestibular system and for the diagnosis of

vestibular deficiencies. Limitations in experimental equipment, and in the analytic methods

applied, have resulted in VOR testing being conducted under artificial laboratory conditions that

do not resemble the conditions under which the VOR normally functions. The results from these

studies are often unreliable, and may, in fact, misrepresent the function and performance of the

VOR and the vestibular system (Leigh, 1996). The focus of this research is on the application of

modem system identification techniques to the vestibular system in order to develop the

experimental equipment, protocol, and analysis algorithms that will give a valid and reliable

evaluation of the VOR by testing the system under its natural operating conditions.

1.2 VOR and gaze tracking

The vestibular system

The function of the vestibular system is to generate information about head movement

and to distribute this information to the appropriate sites throughout the central nervous system.

The vestibular system gives us our sense of balance, provides the inputs required to control

posture, enable us to make coordinated motions, and preserves the stability of the eyes (VOR)

(Highstein, 1996). It measures the linear and angular motions of the head using five

mechanoreceptors located in each inner ear. Linear accelerations and static position are measured

by the two otolithic organs, the utricle and the saccule. Rotational accelerations are measured by

three, fluid filled, semicircular canals. Accelerations of the head deflect hair bundles in the

epithelial hair cells that line portions of each organ (cristae). The hair cells transduce mechanical

stimuli into receptor potentials. A distortion of the hair bundles changes the membrane potential

in the hair cells, which affects the discharge patterns of vestibular neurons. These neurons send
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head velocity and acceleration signals to the vestibular nuclei in the medulla of the brain stem,

which then transmits this information to the higher centers of the brain (Goldberg and Hudspeth,

2000).

The utricle and the saccule are arranged to detect linear accelerations and the static tilt of

the head. The utricle primarily detects horizontal head motions (within the transverse plane of the

head), and the saccule detects vertical motions (perpendicular to the transverse plane). Each organ

consists of an ovoidal sac, about 3 mm long, and within the sac are thousands of hair cells

arranged in a region called the macula (Goldberg and Hudspeth, 2000). The bundles of hairs that

extend from the hair cells are covered with a gelatinous membrane. Dense, calcium carbonate

crystals, called otoconia, are embedded in the membrane and act as masses on top of the flexible

hairs. When the head is accelerated or tilts the otoconia shift, deflect the hair bundles, and excite

responses from the hair cells which are then transmitted to the vestibular nuclei.

The semicircular canals are closed, circular tubes filled with endolymph fluid. The cross

section of the canal, which is not constant over its length, is approximately 1 mm in diameter, and

the overall diameter of the semicircular structure is about 8 mm (Figure 1.1). The semicircular

canals are shaped like the inner tubes of bicycle tires, but are filled with liquid instead of air

(Vestibular Disorders Association, 2003). The three semicircular canals of each ear are arranged

in three orthogonal planes which allow the canals to sense the three directions of rotational

acceleration. Conceptually, the semicircular canals are aligned with the pitch, twist, and yaw

movements of the head, but the canals are not aligned with the anatomical planes of the head. The

planes of the anterior and posterior canals are aligned almost vertically, and are set at about 45

deg to the midsagittal plane. The horizontal (lateral) canal is tilted about 30 degrees up from the

horizontal plane when the head is in an upright position (Figure 1.1). A simple rotation of the

head in one of the anatomical planes therefore elicits a complex response from the canals that

must be interpreted by the central nervous system.
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When the head is accelerated, the canals, which are within the temporal bone, move with

the head. The endolymph fluid within the canals lags the motion of the canal, and, relative to the

canal, moves in the opposite direction to the head's motion. The fluid does not rotate freely in the

canal because there is a gelatinous diaphragm, the cupula, across the widest section. Hair bundles

extend into the cupula in one section of its perimeter. When the head moves, the cupula moves

with the head and presses against the endolymph which remains still. This causes the cupula to

deflect, the hair bundles to bend, and the hair cells to be stimulated (Goldberg and Hudspeth,

2000).

- Semicircular Canals

Saccule
Vestibular Nerve

Auditory Nerve

Eardrum Cochlea

Round WIndow
Oval WIndow

Midd *-Ear

Eustachian Tube

INNER EAR OR LABYRINTH

Figure 1.1: Vestibular labyrinth of the inner ear
(Vestibular Disorders Association, 2003).

There are two problems associated with the canals' response to head movement. The

canals do not respond well to low frequency motions, and they habituate to long duration

rotations. During sustained rotation, the mechanical properties of the cupula and the endolymph

cause the endolymph to move with the same speed as the head and the cupula to return to its

neutral position. As this occurs, the response of the canals decays. The time constant of this decay

is approximately 6 s, but processing within the vestibular system is able to extend the time

constant of the response to about 15 s (Leigh and Zee, 1999).
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The vestibular-ocular reflex

The functional role of the vestibular-ocular reflex is to stabilize vision by creating eye

motions that compensate for undesired linear and rotational head motions. In a healthy subject,

the VOR interacts with other oculomotor and head control systems so that a person's gaze (eye

plus head position) smoothly follows a visual target's trajectory. Ideally, the VOR holds a visual

image stable on the retina by moving the eyes with an angular velocity equal and opposite to that

of the disturbances to the head's trajectory. The vestibular sensory organs measure the angular

and linear acceleration of the head and generate signals that, after processing in the vestibular and

abducens nuclei, are used to drive the eyes in a manner that quickly corrects for the head's

disturbance. Without this correction, the eyes would move with the head, causing the retina to

move relative to the target's position, which would result in the target moving across the retina.

The amount of retinal slip that can be tolerated before vision deteriorates depends on what is

being viewed, but generally, as the speed and frequency of an image's retinal drift increases, it is

seen less clearly. The VOR does not have to be perfect, but to see images that are smaller than 1

degree clearly, retinal slip should be less than 5 deg/s and the image of the object should remain

within a degree of the center of the fovea (Leigh and Zee, 1999; Highstein, 1996).

The VOR is indispensable during activities such as walking and running, where

unpredictable head perturbations can span a bandwidth of 0.5 to 5.0 Hz and attain rotational

speeds of up to 150 deg/s (Demer et al., 1991; Grossman et al., 1988). When the motion of the

head cannot be anticipated, such as during locomotion, the brain must rely upon reflexes and

feedback mechanisms to correct for disturbances to vision. Of the mechanisms that serve to

prevent and correct gaze error, namely the VOR, visual feedback, and the cervicular-ocular reflex

(COR), only the VOR has the performance characteristics necessary to compensate for the high

frequency perturbations typically experienced by the head. Visual feedback is not effective at

correcting gaze error during locomotion because of the time required for the visual system to

process the image and then to generate a corrective eye movement (Gauthier and Vercher, 1990).
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The VOR can generate eye motions with a latency as brief as 16 ms, while the visually mediated

eye motions are initiated at latencies greater than 75 ms (Leigh and Zee, 1999).The cervicular

ocular reflex (COR) generates eye motions based on proprioceptive feedback from neck muscles.

Although COR eye motions may have as short a latency as those of the VOR, it has been shown

that the COR makes a negligible contribution to higher frequency gaze stability in normal

subjects (Sawyer et al., 1994). It is possible, however, that in patients with a poorly functioning

vestibular system, the gain of the COR could increase over time to help compensate for the loss

of the VOR.

Gaze tracking

During natural behavior, humans interact visually with the environment by directing their

gaze through coordinated head and eye movements towards visual targets of interest. Images are

seen most clearly when the gaze is directed so that the image is positioned at the center of the

retina, a region called the fovea. The gaze system controls and coordinates the head and eye

motions through the cephalomotor and oculomotor systems. The cephalomotor system controls

the movement and stability of the head, and so positions the orbits of the eyes, and the

oculomotor system directs the position of the eyes within the orbits. The gaze system also

stabilizes the visual image on the fovea when either the object or head moves.

The greatest impediment to clear vision during natural activities, such as locomotion, is

disturbances to the head's position (Leigh and Zee, 1999). The cephalomotor system maintains

the head as a relatively stable platform for the eyes, but during walking and running the

predominant motions of the head in the vertical plane are between 0.5 and 5.0 Hz, and between

0.6 and 3.0 Hz in the horizontal plane (yaw) (Grossman and Leigh, 1989). During walking, the

maximum velocities of the disturbances usually remains below 50 deg/s, but when running the

maximum velocity may be beyond 150 deg/s. Head stability is controlled using a combination of

voluntary mechanisms, neuromuscular reflexes and passive system mechanics. The contribution
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of each of these mechanisms to stability is frequency dependent, with each mechanism

dominating a different frequency range (Keshner and Peterson, 1995). Voluntary control of the

head dominates at frequencies below about 1.0 Hz. This is the range over which there is enough

time to recognize that the head has been disturbed, and to either modulate the mechanics of the

neck to resist the disturbance, or to make active corrective motions. At higher frequencies, above

about 3 Hz, passive mechanics dominate the head's stability. The mass of the head, coupled with

the stiffness and damping of the neck resist high frequency disturbances. In the middle range of

frequencies the vestibulo-collic reflex, which receives input from the vestibular system, and the

cervico-collic reflex, which takes its input from proprioceptors in the neck, are very important to

head stability. These reflexes have also been found to be an important mechanism for modulating

the dynamic stiffness of the head-neck system (Keshner et aL, 1999).

During natural disturbance motions of the head, vision is stabilized mostly by the VOR.

The VOR is only one of the six oculomotor systems that control eye movement. There are two

primary types of eye motions: those that shift the gaze from target to target, and those that

stabilize the gaze on a target that is being tracked. All six systems work synergistically to produce

the gaze response, but shifts in gaze are controlled principally through the saccadic control

system, and the tracking of a moving visual target is controlled through the combined efforts of

the smooth pursuit, VOR, and optokinetic systems.

Saccades shift the fovea very rapidly from one area of visual interest to another. They are

used to explore the environment and to bring an image from the periphery of the retina into

sharper focus on the fovea. Saccadic eye motions typically follow a standard waveform

trajectory, and can attain speeds of up to 900 deg/s (Goldberg, 2000). The maximum velocity that

a saccade attains is dependent on the amplitude of the angular position shift. Visual acuity is

suspended during large saccades.

The smooth pursuit system allows for clear and continuous vision of a target as it moves

in the environment. It keeps the target's image on the fovea by moving the eyes with a velocity
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close to that of the target, although small oscillations occur in the velocity of the eyes, especially

at the onset of smooth pursuit motions (Leigh and Zee, 1999). Studies have indicated that the

smooth pursuit system will respond to both the slip of the image across the retina and to position

errors between the gaze and the target. The motion of the target across the retina is the principal

input to this system. The predictability of a target's trajectory has a strong influence on smooth

pursuit motions. When a target is unpredictable, the smooth pursuit response is driven by visual

feedback, and there is approximately a 100 to 150 ms delay between the target's movement and

the gaze response. When the target can be predicted, the delay from visual processing no longer

occurs and the smooth pursuit eye motion can follow the target with little error or lag. Smooth

pursuit eye motions have a maximum velocity of between 100 and 150 deg/s.

The fixation system holds the eyes still when a subject focuses intently on a stationary

target. Vision is most acute when the eyes are still, and the fixation system actively prevents the

eyes from moving. Fixation is sometimes regarded as smooth pursuit at zero velocity, but studies

have indicated that visual fixation is an independent system (Leigh and Zee, 1999).

The optokinetic system is a visually mediated stability system. Because of the mechanical

properties of the semicircular canals, the rotational VOR does not stabilize vision well against

low frequency or sustained head motions. Together with the smooth pursuit system, the

optokinetic system supplements the VOR at low frequencies or during sustained rotation. As the

response of the VOR decays, the response of the optokinetic system builds until it reaches a

velocity close to that of the rotation. The optokinetic system only functions when there is a visual

stimulus.

Most of the eye control systems create conjugate eye motions, that is both eyes move

together by the same amount. For objects that are at a distance greater than optical infinity, which

is about a meter, the eyes should have the same angular position for the image to fall on the same

position on the retina. For objects that are within the near visual field, or moving from the far to

near field, the eye must be rotated by different amounts, or even rotated towards each other, so
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that the target's image can fall on both foveae. The vergeance system is the system that controls

these disconjugate eye movements.

Natural head-free tracking is characterized by smooth eye and head movements

interspersed with small, corrective saccades. This combination of movements controls both the

velocity and position of the gaze response (Carl and Gellman, 1987). During sustained pursuit,

the gaze velocity approximates, but often does not precisely match, the target's velocity (Barnes

et al., 1987; Pola and Wyatt, 1980). To help correct for the position error that develops between

the gaze and the target, small saccades are used to shift the eyes rapidly and bring the target's

image onto the fovea. The saccades effectively increase the bandwidth of the tracking system by

intermittently resetting the target's image on the fovea when the target is moving faster, or

changing more quickly than the velocity controller is able to respond (Bahill et al., 1980).

It is generally believed that visual pursuit is an adaptive process controlled mainly

through two mechanisms: one is the feedback of the error between the target and gaze velocities,

and the other is a predictive mechanism that creates an estimate of the target's velocity and time

course (Wellenius and Cullen, 2000; Barnes and Grealy, 1992; Young, 1977). Studies have

shown that the pursuit response is also influenced by the target's position, acceleration, and other

visual and nonvisual information, but these do not appear to be as significant for visual pursuit as

the velocity and predictability of the target (Lindner and Ilg, 2000; Pola and Wyatt, 1980). The

motion of a target's image across the retina creates a velocity error signal that initially drives the

pursuit system like a conventional servomechanism. The visual feedback is delayed by the 100-

150 ms required to process the target visually, so a tracking response driven purely by visual

feedback will lag the target's motion. The predictive mechanism builds a model of the target's

motion, possibly from an internal copy of the visual feedback signal (Barnes and Grealy, 1992),

and uses its estimation of future target motion to enhance gradually the visual feedback signal and

so overcome the delay of the visual system. The means by which the predictive mechanism

generates this signal is not well understood, but the end result is that eye motions are adjusted so
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that the gaze velocity gain is improved, and the tracking lag reduced. The visual feedback signal

is used to check the validity of the estimate against the visual image, and when there is a conflict,

which could be caused by changes in the target's motion, or by a poor model of the target's

trajectory, the pursuit system reverts to a purely visual feedback mode (Barnes and Asselman,

1991). Although most studies have been conducted with head-fixed tracking, Barnes and Lawson

(1989) demonstrated that the combination of visual feedback and predictive processes also occurs

during head-free tracking responses. Unless the target's motion can be modeled with complete

accuracy, the predictive mechanism will exert varying degrees of influence on the visual feedback

signal, and the response of the tracking system will be time-variant, moving through a continuum

from time-delayed, visually driven responses to improved, predictive responses.

VOR cancellation and suppression

The semicircular canals and the otolith organs of the vestibular system are sensitive to

head movement. Head movement will cause a reaction from the mechanoreceptors independently

of whether the movement was caused by a disturbance to the head or was an active head

movement to follow a target. The VOR cannot respond in the same manner to active motions and

disturbances. During combined eye-head tracking, the VOR's response to the active head motions

must be nulled for the gaze to follow the target's motion (Leigh and Zee, 1999). If this did not

occur, then as the head was actively moved with the target, the eyes would be driven to oppose

the head and would be moved away from the target. The VOR cannot be totally suppressed as this

would not allow the eyes to be stabilized against disturbances. This implies that the vestibular

system can control or limit the vestibular drive that is invoked by voluntary head motions when

tracking a moving target (Leigh and Zee, 1999).

The current evidence suggests that there are two mechanisms that affect the VOR signal

during head-free gaze tracking. It is likely that the same signal that drives the smooth pursuit

response is used to cancel the VOR response to voluntary head motions (VOR cancellation).
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Studies have also suggested the existence of a second mechanism called VOR suppression, which

makes a direct adjustment of the VOR gain during head-free tracking. This mechanism may also

partially disable the VOR during large (> 40 deg) eye-head gaze saccades (Leigh and Zee, 1999).

1.3 Traditional VOR testing methods

Dizziness, vertigo, and balance disorders are among the most common reasons for visits

to doctors' offices in the elderly. The Vestibular Disorders Association and the Johns Hopkins

School of Medicine Center for Hearing and Balance both claim that 10% of all visits to doctor's

offices are for dizziness (Johns Hopkins University Center for Hearing and Balance, 2003;

Vestibular Disorders Association, 2003), and the American Academy of Otolaryngology states

that more than 2 million people in the US visit their doctor each year for dizziness and balance

problems (American Academy of Otolaryngology, 2003). Despite the high incidence of visits for

dizziness and related dysfunction, there are few tools available to doctors that allow them to

analyze the function of the vestibular system at the bedside or in an office. Of the tools that are

available, none allow for a system-level analysis of the vestibular system. At the bedside, doctors

and clinicians are limited to making observations about eye motions and a patient's static and

dynamic equilibrium. Patients must be referred to specialized vestibular testing facilities to get a

system level assessment of their visual and vestibular systems. The Mayo Medical Clinic, the

Johns Hopkins School of Medicine, the Massachusetts Eye and Ear Infirmary, and the UCLA

Medical Center, are a few of about two hundred clinics listed by the Vestibular Disorders

Association as facilities with specialized vestibular and balance laboratories.

At any of these clinics, patients undergo a common series of tests. The most frequent

tests that are conducted at the Mayo Clinic, for example, are those that evaluate hearing, measure

postural stability with moving platform posturography (MVP), assess oculomotor function using

positional nystagmus and electronystagmography (ENG), and assess the vestibular system
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response using rotational tests (Mayo Clinic, 2003). Less common tests that may also be

performed are MRIs of the brain and structures around the inner ear, CT scans of the temporal

bones, blood tests, and cardiac function tests. Of these, the ENG and rotation tests are the main

quantitative procedures used to evaluate the vestibular system.

The auditory test is conducted to examine the function of the inner ear, as problems with

the cochlea, the hearing apparatus in the inner ear, often accompany disturbances in the function

of the vestibular organs. The tests are far more extensive than the hearing tests that are done

during a routine physical examination, and include evaluating how sound signals move from the

ear to the auditory nerve (electrocochleography), how signals travel from the ear to the brain and

within the brain (auditory brainstem response), and how well hair cells within the cochlea are

functioning (otoacoustic emissions) (Vestibular Disorders Association, 2003).

Moving platform posturography evaluates a patient's ability to maintain balance. The

patient stands on a platform that can move and tilt, and looks at a visual image on a screen that

surrounds the patient and that can also move. During the tests, the shifts in the center of gravity

that the patient makes to try to maintain balance are recorded. These tests are designed to give the

physician information about what parts of the postural control system the patient relies upon

most: visual, vestibular or proprioceptive. Although moving platform posturography tests are

frequently used to evaluate patients with balance disorders, there is evidence that posturography

is insensitive to vestibular disorders, and that it is not an adequate test for vestibular function

(DiFabio, 1995).

The positional nystagmus test is a postural maneuver that is done to determine if the

patient has benign paroxysmal positioning vertigo (BPPV). The test is also known as the Dix-

Hallpike maneuver. BPPV is a disorder caused when calcium carbonate otoconia are dislodged

from the utricle or saccule and get trapped in one of the semicircular canals. When the person

moves a certain way, the crystals move and this results in the person feeling that they are

spinning.
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The ENG and the rotational tests are the most frequently performed VOR tests used by

vestibular laboratories to assess vestibular function (Furman and Cass, 1996; Wall and Furman,

1989). They evaluate the vestibular system through the eye motions of the VOR, and have been

the principal tools from which the system response characteristics of the vestibular system have

been understood. The ENG test refers to a series of procedures that measure eye motions that are

made by a patient in response to visual targets, changes in body position, and thermal stimuli.

Rotational tests directly measure the response of the patient's VOR to rotations. Most often,

patients are seated in motorized chairs that rotate them in the dark or as they watch a visual target.

Head-only rotational testing (HORT) is an alternative to the rotational chair, and is gaining

popularity. In HORT patients actively move their heads rather than having their whole body

rotated. HORT is subject to the same analytic shortcomings as rotational-chair testing and has yet

to be accepted as a clinically relevant testing method (Hirvonen et al., 1999).

ENG; caloric tests

ENG tests measure nystagmus movements of the eyes which can indicate the presence of

vestibular dysfunction. Although ENG tests are the most popular procedures administered to

patients with vertigo, dizziness, and balance disorders, neither the test battery nor the testing

methods are standardized (Vestibular Disorders Association, 2003). All ENG testing includes

examinations for spontaneous vestibular nystagmus, an "oculomotor screening battery" that

includes an assessment of saccades, smooth pursuit, and optokinetic nystagmus, and tests for

positional nystagmus, which is caused by the otolith organs and may occur when the patient is

moved into a particular position (Furman and Cass, 1996).

Caloric testing is also part of the series of ENG tests and is considered the "mainstay of

vestibular laboratories" (Furman and Cass, 1996), and the "gold standard for diagnosis of ear

disorders that affect one ear at a time" (Hain, 2002). It uses water, or air, to establish a thermal

gradient across the horizontal semicircular canals, which causes convection current to develop in
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the canal, pushing the endolymph against the cupula. In a healthy subject, irrigation with warm

water will induce a slow component eye movement away from the irrigated ear, with a

subsequent quick nystagmus that beats the eye back toward the irrigated ear. Irrigation with cool

water will produce similar eye motions, but in the opposite direction. The slow component eye

motion is the vestibular portion of the response and its magnitude reflects the amplitude of the

vestibular response.

The performance of the right and left semicircular canals can be quantitatively compared

by calculating the "percent reduced vestibular response". The maximum velocity of the slow

component motions for the warm and cool irrigations are summed for each ear, and then the

velocity sums for each ear are subtracted from each other. This difference is normalized by

dividing it by the sum of the maximum slow component velocities for all the cool and warm

irrigations. This quantity is then converted to a percentage. A test subject's response is considered

abnormal if the "percent reduced vestibular response" exceeds a threshold value, usually set at

around 25 - 30%. Unfortunately, there is great variability in a subject's response to irrigation and

therefore in the subsequent "percent reduced vestibular response". This makes it very difficult to

compare trials from the same subject and to assess improvement or decline. It is also difficult to

establish a standard threshold value from which to compare a subject's "percent reduced

vestibular response".

A limitation to the caloric test is that it gives a signal, and not a system response. The test

is only an indicator of how the system responds to the thermal stimulus, which is the equivalent

of approximately a 0.03 Hz motion stimulus (Goebel et al., 2000). The response to this stimulus

is not necessarily a good predictor of how the vestibular system would respond at any other input

frequency. Even though the caloric test provides a poor quantitative measure of vestibular

performance, it has, and does serve as a useful diagnostic tool. Its main advantage is that it

allows for the left and right vestibular labyrinths to be tested separately. It is also easy to

administer, well tolerated, and can be performed at a person's bedside as well as in a laboratory.
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Rotational-chair testing

Rotational-chair testing evaluates the vestibular system by rotating test subjects through a

series of rotations, usually while their body and head are rigidly fixed to a large motor-driven

chair (Figure 1.2). The eye responses that result from the rotations are measured. Rotational-chair

testing has been the main tool used to quantify the system level response of the vestibular system,

but the size and expense of the equipment prevent it from being used outside specialized

laboratories. The rotations are conducted about the earth-vertical axis and stimulate primarily the

horizontal semicircular canal, and the horizontal, rotational VOR. It is most common for patients

to be rotated by sinusoidal accelerations and constant velocity ramps (trapezoidal), but some

research studies have used other inputs, such as pseudo-random binary sequences, to create

unpredictable inputs with wide bandwidths (Wall et al., 1978). Rotations are typically

Figure 1.2: Rotational chair (Hain, 2002).

conducted under three visual conditions: with a visual target that moves with the chair and

remains directly in front of the test subject; with a visual target that is stationary (earth fixed); and

with no visual target. The latter can include testing in the dark, with opaque goggles, or with the

test subject's eyes closed. The rotational tests stimulate both canals simultaneously, one is
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excited, the other inhibited, and so they do not provide information about each canal as is

provided by caloric tests. Instead, rotational tests provide information about how the central

nervous system processes vestibular information, and how it is able to integrate signals from the

visual and vestibular sensory systems (Furman and Cass, 1996).

A sinusoidal rotation of a patient in the dark is the standard test that is used to measure

the default response of the VOR. The intent of conducting the test in the dark is to eliminate the

influence of the visual system on the responses of the eyes, and to stimulate only vestibularly

driven motions. Typically, the patient is rotated back and forth in a smooth sinusoidal motion at

low frequencies (0.01-1.0 Hz). Some laboratories sweep the amplitude of a single frequency so

that the patient is subjected to several peak velocities. Eye motions are recorded during the

rotations and to prevent the patients from corrupting their eye motions with voluntary movements

to imagined targets, they are asked simple questions, or to do simple math, to keep them attentive.

In a healthy subject, the rotations will induce a nystagmus response. For example, when the chair

moves to the left, a slow phase VOR component will move the eyes to the right, and a quick

phase motion will reset the eyes to the left. In order to analyze the VOR eye motions, it is

necessary to remove the quick components, and to piece together the slow phase motions as

shown in Figure 1.3 (Furman and Cass, 1996). The VOR gain is defined as the ratio of the VOR

eye velocity to the patient's rotational velocity, and so the VOR eye velocity must be found by

taking the derivative of the constructed slow phase response. A sinusoid is then fitted to the VOR

eye velocity so that the variance and noise in the calculated response can be ignored. The VOR

gain is estimated by dividing the peak of the best fit sinusoid by the peak velocity of the rotation.

The phase response is also estimated by comparing the peaks of the input and output sinusoids.

"Perfect" VOR compensation occurs when the eyes move with an angular velocity equal and

opposite to that of the head's disturbance velocity, and results in a gain of 1 and a phase of 180

degrees. The standard convention is to bias the phase to 0, so that a gain of 1 and a phase of 0

represent perfect compensation. A crude estimate of a patient's VOR frequency response function
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can be made by calculating the gain and phase relations at different frequencies, and then

"connecting the dots".
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Figure 1.3: Reconstructed slow-phase eye position from
a rotational chair test (Leigh and Zee, 2003).

Visual-vestibular interactions are tested by asking the patient to follow a visual target that

rotates with the chair during their earth-fixed rotation, and by having the patient focus on a visual

target that remains stationary relative to the earth as the patient is rotated. These tests evaluate

how the visual system either augments or reduces the VOR response. In a typical series of tests,

the patient will be rotated at a single frequency and tested in the dark, with a target fixed relative

to the chair, and with a target fixed relative to the earth.

Head-only rotational testing (HORT)

Head-only rotational testing (HORT) has been proposed as a convenient alternative to

rotational-chair testing (Hirvonen et al., 1999; O'Leary and Davis, 1998). Rather than stimulating
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the vestibular system with full body rotations created with a rotational chair, during a head-only

rotational test, patients will either actively rotate their head, or have their head passively rotated

by a technician. The visual conditions are usually the same as with rotational-chair testing. A

periodic, audible tone, such as that from a metronome, is sometimes used as a cue to encourage

the subject to create head motions with the appropriate frequency content. Studies have found that

subjects are able to create active head motions reliably up to 3 Hz, so the bandwidth of the test is

broader than with rotational-chairs (Furman and Durrant, 1998). In contrast to the expensive,

large, rotational-chair equipment, the head-only rotational test requires little instrumentation and

is not limited to being conducted in specialized laboratories. The HORT suffers from problems

of reliability, due to the uncontrolled nature of the voluntary head motion, and validity, because

the head motions are often artificial and predictable. Since patients are actively creating their

head motions, it is easier for them to create corresponding eye motions. HORT is a relatively new

method, and its results have not yet been accepted for clinical diagnostic purposes, but it has been

shown that in some cases HORT does provide results similar to those from rotational chair testing

(Hanson and Goebel, 1998). Two commercially available active head rotation systems are the

Vestibular Autorotation Test (VAT) (Vestibular Technologies Inc., Tampa, FL) and Vorteq

(Micromedical Technologies, Chaltham, IL).

1.4 System identification of the VOR during head-free tracking

1.4.1 Criticism of classical testing

The results from classical rotational and caloric tests suggest that the VOR is not able to

stabilize vision adequately when the head moves during natural activities. Most laboratories

report that the gain of the VOR is 0.75 or lower in people with apparently normal VOR function

(Leigh, 1996; Collewijn, 1989). For clear vision, the gain of the VOR would need to be between

0.9 and 1.1, which is what Grossman and Leigh observed for the VOR that was measured as
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subjects walked in place (Grossman et al., 1989). Some researchers have argued that the VOR is

indeed inadequate to stabilize vision by itself, and that for an image to remain stable on the retina,

the VOR must be supplemented by visual inputs, the cerviculo-ocular response (COR), and the

ability to predict the head's disturbance and the visual target's motion (Demer, 1996). Leigh

(1996) has proposed that only the VOR is capable of responding to the unpredictable, high

frequency, higher speed disturbances that are characteristic of head motions during locomotion.

The visual system has too long a latency, and in people with healthy vestibular systems the COR

makes a negligible contribution to gaze stability. Furthermore, the disturbance motions of the

head are random, and therefore cannot be anticipated. If gaze is stabilized during high frequency

head disturbances, then this is accomplished by the VOR. Laboratory tests that do not reflect this

ability of the VOR are inadequate, and have underestimated the performance of the system

(Leigh, 1996).

The artificial constraints of the classical tests may have prevented them from capturing

the functional behavior of the VOR. The experimental conditions imposed during rotation and

caloric testing do not resemble the natural conditions under which the VOR serves to stabilize

gaze. Under normal conditions, the vestibular and visual system work together to direct and

stabilize gaze so that visual targets can be tracked and clearly seen. The two systems can be

expected to influence each other under all conditions, as they are not independent and share many

neural pathways. Classical rotational protocols are based on the assumption that the visual and the

vestibular systems can operate independently, and that by removing the visual target or by

delivering a very limited visual stimulus, the interactions between the systems may be mitigated.

Unfortunately, the types of visual stimuli used in classical tests allow the subjects to influence

their visual responses and so affect the experimental results. In addition to reporting that the VOR

gain is lower than would be expected from a healthy VOR response, laboratory tests often report

that the gains varied significantly between trials (Wall and Furman, 1989), which implies that the

VOR response was influenced by the test subject. In healthy adults the 'default' gain measured in
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the dark varies between 0.5 and 0.8, while the gain of the VOR will often rise to 1.0 when

tracking an earth-fixed target, or drop to as low as 0.3 when tracking a head-fixed target. Leigh

(1996) argues that the frequencies at which rotational tests are conducted, and the conditions

under which the tests are conducted, particularly in darkness, are important differences between

laboratory and natural conditions. The rotational-chair and the caloric tests stimulate the VOR at

frequencies that are much lower than the 0.5 to 5.0 Hz frequency band that is typical of normal

head disturbances. The performance of the VOR at low frequencies may not represent what is

required of the VOR at higher frequencies. The low VOR gain values may also be directly linked

to testing subjects in the dark. Studies have indicated that the VOR performs only at the level

required to stabilize vision (Leigh, 1996). If the goal of the VOR is to stabilize the retinal field

when there are both visual and vestibular stimuli, then what is its goal when the visual stimulus is

removed? Another factor that may affect the function of the VOR and its reported gain is that the

sinusoidal rotational stimuli used in rotational-chair tests are predictable. This may result in the

test subject generating anticipatory eye motions that mask the actual performance of the VOR,

and these cannot be corrected for in the analysis.

Although rotational-chair and caloric testing have provided many of the findings used to

characterize the VOR, and have proved invaluable for detecting vestibular dysfunction,

limitations in their testing protocols suggest that they do not provide data that reflects the VOR's

performance under natural conditions. Leigh (1996) concludes his discussion of the problems

with classical testing with his view of how testing of the VOR should be conducted:

"It is unfortunate that, because of technological constraints, it has been possible to study

the VOR only during relatively artificial conditions; these studies have, to some extent,

misrepresented the role of the VOR during natural activities. As methods for reliably measuring

the VOR during locomotion become available, we may improve our ability to account for patients

symptoms during natural activities. Until that is possible, it makes sense to use laboratory stimuli

that correspond to the head disturbances that occur during natural activities such as locomotion:
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rotations with a frequency range of 0.5 to 5.0 Hz, applied in a nonpredictable sequence." (Leigh,

1996).

1.4.2 System identification of VOR through visual vestibular co-stimulation

It is apparent from the preceding section that the best way to assess the performance of

the VOR is to conduct an evaluation during natural activities such as walking, but obviously there

are technical difficulties associated with doing so. It is unfortunate that testing during normal

behavior is not usually the most efficient or even possible way of evaluating the dynamic

characteristics of a system's response. For the VOR, the evaluation should involve measuring it

as it performs its natural function, which is to stabilize a person's gaze while he or she tracks a

moving target. The visual and the vestibular systems should both be stimulated, and the subject

should be able to use natural head and eye motions to follow the target, so that the normal

physiological interactions between the tracking and stabilization systems occur. In this type of

protocol, external visual and vestibular inputs would have to be delivered in a manner that would

allow the vestibular system's influence on eye motions to be interpreted from the overall eye

motions that are used to track the target.

System identification of the VOR during gaze tracking

The procedure adopted for evaluating the VOR during head-free gaze tracking can best

be understood by considering a simplified block diagram representation of the gaze tracking

system (Figure 1.4). The system represents the case where the target's image is presented at

optical infinity, and both eyes respond identically to the combined visual and vestibular

stimulations. From the block diagram, and from the linear system equations that relate inputs and

outputs through the subsystems, it is apparent how an experiment has to be run, and the inputs

controlled, so that impulse and frequency response functions can be estimated for the VOR

system. The target is the obvious experimental input that needs to be controlled to test the
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function of the gaze-tracking system. The other external input to the gaze system is the

disturbance motion applied to the head. Almost by definition, disturbances are an uncontrolled

input to the system. It was realized that if the disturbance was controlled as an external input then

the system can be viewed as a two input (target and disturbance), two output (head and eye)

control system, and a response function for the VOR could be identified.

t G1

target response

tG2 b hihead responseh

01visually mediated yrsoe
heyd control 

i o

Figure 1.4: Block diagram of the gaze tracking system. The visual target (t) stimulates
responses from the visually mediated eye (Gi) and head (G2) control systems. The
VOR (G3) creates eye motions (v) that compensate for head disturbances such that the
target's image is stabilized on the retina.

The purpose of the gaze tracking system is to direct the gaze towards the target. The

visual target (t) provides a clear goal for the output of the gaze tracking system (g). It does not

matter, for now, whether this input is considered the target's position, velocity, or an actuation

signal based on the error between the gaze and the target. The target acts as a direct input to the

visually mediated head and eye control systems, which are under the subject's voluntary control.

Gi represents a mapping from the visual goals to the eye trajectory, and G2 is a mapping from

the visual goal to the head trajectory. The output of G2 is a head motion (b), presumably towards

the target. The output of the visually mediated eye control system, Gi, is an eye motion (a)

measured relative to the head. In this simplified representation, feedback and interactions between

the systems that are based on visual signals are assumed to be embedded in the blocks that
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represent the visually mediated systems. This includes the 100 ms delay required to process the

visual image. Ideally, the output of the eye and head systems would sum to be the gaze response,

and the gaze would closely match the target's position. However, if the head position is disturbed

from its intended position by disturbances (d), then the total motion of the head (h) is not what

was desired by the visually mediated system, but is the sum of the disturbance (d) and the head's

intended motion (b). Since eye position is relative to the head, the eye motions that were the

output of the visually driven eye-control system will not sum with the disturbed head motion to

produce a gaze that will closely match the target. The VOR must stabilize the gaze by creating a

VOR eye motion that compensates for the head disturbance. The VOR eye motion sums with the

visually driven eye motion to create the total, disturbed eye motion. If the systems are functioning

well, the disturbed eye and head motions sum to a gaze response that closely matches the target's

movement.

The linear system equations show that consistent, unbiased estimates for both the VOR

and visual tracking dynamics are possible, with appropriate control over both available stimuli.

The following equations are shown in the Laplace domain, and the systems are assumed to be

linear. There are potentially two controlled inputs, the target trajectory (T) and the head

disturbance (D). The head trajectory (H) and the eye trajectory (E) are the outputs that can be

measured.

The total eye response is due to contributions from the visual system (A) and from the

vestibular system (V)

E(s) = A(s) + V(s) = T(s) - G1(s) + H(s) -G3(s). Eq. 1.1

This expresses the eye response in terms of the target and the head motion. The two signals can

be measured, but the VOR response function, G3(s), cannot be solved from this equation. The

head response can be easily related to the independent target and disturbance inputs (D):

H(s) = B(s) + D(s) = T(s) -G2(s) + D(s), Eq. 1.2
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which can then be substituted into Eq. 1.1. Because the relations are linear, Eq. 1.2 can be

simplified to:

E(s) = T(s) -[G1(s) + G2(s) -G3(s)] + D(s) -G3(s). Eq. 1.3

This equation shows how each of the external inputs to the gaze system, the target trajectory

which is the input to the visual system, and the disturbance, which is the input to the vestibular

system, affects the measured eye motion.

To solve for the VOR response function, G3(s), the equations must be expressed as auto

and cross-power spectra, the Laplace transform of the auto and cross-correlation functions. If the

cross-power spectra are formed between the signals of Eq. 1.3, which are E(s), T(s), and D(s), and

the disturbance, then the equation becomes:

SED (s) = STD (s) -[G1(s) + G2(s) -G3(s)]+ SDD (s) - G3(s). Eq. 1.4

If the disturbance is selected optimally so that it is uncorrelated with the target trajectory, then the

cross-power spectrum, STD, is zero. The transfer function for the VOR can then be estimated as:

G3(s) = SED (S D Eq 1.5

Eq 1.5 shows the VOR as the transfer function between the perturbations and the eye

motions that were linearly related to the head's disturbance. It mathematically excludes the eye

motions that were driven by the visual target. The visual target still influences the head and eye

responses, as the subject tracks the target and so normal physiological interactions occur. When

the input sequences are optimally selected, the mathematics allow for the input and output related

to the disturbance to be distinguished from those influenced by the visual target.

Experiment protocol

An experiment must be well controlled to create the conditions that enable the analysis to

hold. The visual target must travel with a randomized trajectory so that its motion cannot be
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predicted, and be designed so that it can be tracked primarily by smooth pursuit. This should

result in a clear linear relation between the target motions and gaze tracking and VOR

stabilization. The target must be projected at optical infinity to promote conjugate eye motions.

While a test subject tracks the target, small stochastic torque perturbations will be applied directly

to the head through a head-perturbing device. The torque perturbations must be large enough to

create head motions that require a measurable corrective VOR motion, but not so large that the

subject is prevented from using natural head motions to track the target. The disturbance motions

cannot be explicitly controlled because that would prevent the subject from using the head as

desired to track the target. The subject's neck muscles will provide the majority of the torque

required to direct the head towards the target, and the perturbations will be just large enough to

perturb the head about its natural operating points. In order for G3 to represent the system level

dynamics of the VOR, it is necessary for the experiment to stimulate appropriate dynamics from

the visual and vestibular systems. Both inputs must span the full range of the visual and vestibular

systems, that is, the visual target must have a frequency content from 0 to about 2 Hz, which

represents the bandwidth of the visual tracking system and the disturbance motions should have a

bandwidth of 0.5 to 3.0 Hz if they are to represent horizontal plane disturbance, or out to 5.0 Hz if

they are to represent pitch plane dynamics. Most importantly, the input sequences must be

statistically uncorrelated so that the eye motions created by the visual system and those created by

the vestibular system can be distinguished.

To keep the analysis as simple as possible, and to minimize the complexity of the

equipment that had to be designed to execute the VOR experiments, the protocol was limited to

testing the rotational VOR in the horizontal plane. By restricting the protocol in this manner, only

horizontal, rotational motions of the eyes and the head had to be measured during the

experiments, and the perturbations applied to the head only had to create angular disturbances in

the horizontal plane. It is standard practice in clinical evaluations and in research to investigate

the rotational VOR exclusively in one plane, either the horizontal or the vertical, as it is much
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more difficult to identify the relation between head and eye motions when there are multiple

degrees of freedom in the head and eye movements. Because the semicircular canals are not

aligned exactly with the horizontal and vertical planes, a horizontal plane rotation of the head will

stimulate more than just the lateral (horizontal) semicircular canals. A healthy CNS will resolve

the responses of the canals so that only a horizontal eye motion is created in response to a

horizontal head disturbance. In the remainder of this thesis "VOR" refers primarily to the

horizontal, rotational VOR.

1.5 Research goals and thesis organization

The goal of this research was to develop the experimental equipment, protocol, and

analysis algorithms to conduct a system level evaluation of the VOR while it was being used to

stabilize gaze during natural, head-free tracking of a visual target. The research can be divided

into three main phases: 1. The design and construction of the experimental equipment; 2. The

development of the experimental protocol, appropriate input stimuli, and analysis algorithms; and

3. The validation of the system, protocol and analysis through testing with human subjects.

The organization of this thesis reflects these three phases. Chapter 2 explains the

mathematics behind the linear system identification techniques. It was found during the research

that the gaze tracking and vestibular interaction were modeled well by linear systems. Impulse

and frequency response functions were estimated for the VOR and for the visual tracking

systems. The calculations were done using the cross-correlation relation between the inputs and

outputs that could be measured during the experiments. The technique is explained, as are the

requirements that had to be met by the experimental protocol for the analysis to hold. In Chapter

3 the design and construction of the experimental equipment is discussed. Five main systems

were required to implement the VOR experiments: a head-perturber, a moving visual target, a

sensor to measure head motion, a sensor to measure eye motion, and a computer system for
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experimental control, data acquisition, and analysis. The goal set for the experimental apparatus

was to create laboratory equipment with the performance and flexibility required to conduct all

the experiments necessary to develop the techniques, as well as being used for the final VOR

experiments. The head perturber, the visual target, the eye motion sensor, and the software

algorithms were developed specifically for this research. The head motion sensors and the data

acquisition system were purchased from commercial sources.

The design of the experiments and the development of the appropriate input stimuli are

presented in Chapters 4, 5, and 6. Chapter 4 identifies the criteria that had to be met when

stimulating the visual and vestibular systems, and presents the results of experiments that were

conducted to identify the appropriate characteristics of the torque and target sequences. Chapter 5

presents a novel mathematical technique that was developed for this research to create

uncorrelated torque and target sequences. Chapter 6 describes the experiment on the dynamics of

the head-neck system that was written and published in the Annals of Biomedical Engineering. It

describes the head-neck system as a quasi-linear system with dynamics that are dependent on the

mean torque applied to the head. Chapter 7 brings together all the elements associated with the

development of the experimental system and discusses the results of the experiments that were

conducted to evaluate the VOR in healthy subjects. Chapter 8 concludes the thesis with a

summary of the results, and recommendations for future work.
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Chapter 2

Mathematics of the system identification

2.0 Chapter summary

2.1 Practical head disturbances

2.2 Linear equations that describe the input-output relations

2.3 Correlation based convolution equations and the deconvolution process

2.0 Chapter summary

As described in Chapter 1, an analysis of the VOR can be made during natural, head-free

tracking when the visual target and the disturbance to the head's position are controlled so that

they stimulate a wide range of visual and vestibular responses and so that they are not correlated.

The disturbance position of the head cannot be explicitly controlled, but must be created by

applying a torque perturbation to the head. Because of this, the response of the head-neck system

to torque perturbations must be modeled in the block diagram of the gaze tracking system (Figure

2.1 and 2.2). The equations that describe the interactions between the controlled inputs and the

subsystems of the gaze tracking system that must be solved to identify the system dynamics of the

VOR are thus slightly different from those presented in Chapter 1. In Chapter 2 these equations

are developed, and the mathematics of the correlation-based, system identification techniques that

were used to calculate the VOR response functions are explained.

39



GI

gaz

P visually mediated +
eye control eye response

ffvor

t G3 9
visual VOR gaze
target response

G2 b h head response h
P visually mediated +

d head disturbance

Figure 2.1: Block diagram of the gaze tracking system.
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Figure 2.2: Block diagram of the gaze tracking system. A torque perturbation
(p) is applied to the head to disturb the head's position.
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2.1 Practical head disturbances

The dynamics of the VOR can be evaluated during head-free gaze tracking only when the

disturbance position of the head (d) is not correlated with the trajectory of the visual target (t).

The block diagram that was used to describe the gaze tracking system, and from which the

equations that were used to identify the dynamics of the VOR were developed, is shown again in

Figure 2.1. When the analysis of the VOR was described in Chapter 1, the disturbance motion of

the head was treated as a controlled and measurable quantity. This, however, is not the case if

subjects are allowed to control their head movements voluntarily to track the visual target, which

is a requirement of the experimental protocol. The disturbance position of the head cannot be

explicitly controlled by the experimental protocol, nor can the disturbance be measured

independently of the head motion that was produced by the subject. Subjects must be able to

move their heads as they desire, and the disturbance (d) must be a small deviation to the intended

motion of the head (b). To accomplish this, the disturbance must be created by applying a small

torque perturbation to the subject's head. The amplitude of the torque must be large enough to

disturb the head and to create a measurable VOR eye motion, but it cannot be so large that it

prevents subjects from using the head as they desire.

When the disturbances to the head's position are created by an applied torque

perturbation, the block diagram that describes the gaze tracking system is changed from that in

Figure 2.1 to that in Figure 2.2. A block that represents the head-neck system's reaction to the

torque perturbation is added (g4), and the applied torque perturbation (p), rather than the

disturbance motion of the head (d), becomes the controlled experimental input. Instead of the

requirement that the disturbance and the target's trajectory be uncorrelated, the torque

perturbation sequence and the target must be made uncorrelated. The addition of the head-neck

system complicates the linear equations that were developed to solve for the VOR response

function in Chapter 1, and makes the linear identification of the VOR dependent on the response
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of the head-neck system. The head-neck system must be well modeled as a linear system.

Nonlinearities in the head-neck system will degrade how well the measured eye motions can be

linearly associated with the controlled experimental inputs, and will affect the identification of the

VOR's dynamic response.

2.2 Linear equations that describe the input-output relations

The dynamics of the VOR, and of the other systems that comprise the gaze tracking

system, were modeled using linear, impulse response functions. Consistent with most biological

systems, these systems were not expected to be strictly linear and so it was understood that the

linear models would not capture all the dynamics of the systems. The linear system analysis,

though, allowed for equations to be established from which the VOR could be identified as it

functioned within the multi-input, multi-output gaze tracking system. It is also standard practice

to conduct a system identification with linear models first, and then to determine if, and where,

the system being assessed would benefit from a nonlinear analysis. How well the linear models

had captured the behavior of the systems was evaluated by using the linear models to make

predictions of the measured outputs, and by using the coherence-squared function, which

quantifies the linearity and noise content of the input-output data (Juang, 1994; Marmarelis,

1988). Although these biological systems were not strictly linear, it was found that the linear

models did, in fact, capture the behavior of the systems very well within the bounds of the VOR

experiments. This is discussed in detail in Chapters 4, 6, and 7.

When the target's trajectory and the torque perturbations were controlled so that they

were not correlated, impulse response functions (IRFs) and frequency response functions (FRFs)

for the VOR, as well as for the head's visually mediated control system (g2) and the head-neck

system (g4), could be calculated directly from measurements of the controlled inputs and the

observable outputs, which are the eye (e) and the head (h) motions. The equations that describe
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the input-output interactions among the systems will be developed in this section in the time

domain, but are viewed as easily in the frequency domain. In the frequency domain, a linear

convolution is replaced by a multiplication, the auto-correlation function is replaced with a (auto)

power spectral density, and the cross-correlation function is replaced by the cross power spectral

density (Oppenheim et al., 1996). To identify the IRF of the VOR, it was necessary to model

both the eye and head responses to the torque and target inputs.

Head control systems

The head response (h) can be viewed as the combined output of two head control

subsystems. The region of the gaze tracking block diagram that illustrates the head control

systems is shown in Figure 2.3. The torque perturbation (p) stimulates a response from the head-

neck system (g4) and the visual target (t) stimulates a response from the visually mediated head

control system (g2). The responses of these systems, along with noise, sum to create the measured

head response (h). The linear convolution equation that relates the head velocity to the inputs is:

h=t9g2+p9g4+n, Eq.2.1

where "0" represents the linear convolution operator.

G2 b h head response
visual visually mediated
target head cont d head disturbance

G4
head-neck

system

p torque perturbation

Figure 2.3: The head control systems.

The analysis of the head control systems was made easy because the torque and target

inputs were designed to be uncorrelated. The IRF for the head-neck system (g4) can be isolated,
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and then solved for, by forming the cross-correlation of the signals in Eq. 2.1 with the torque

perturbation. When this is done the linear convolution equation becomes:

rPH "_PT0 g2 + rpp 0 g4 + rp, Eq. 2.2

where the rPH is the cross-correlation function (CCF) between the torque perturbation and the

head signal, rpp the auto-correlation function of the torque perturbation, rP1 the cross-correlation

function between the torque and the target, and rpn the cross-correlation between the torque and

the noise. Under the assumptions that the noise is uncorrelated with the input sequences, and the

torque and target inputs are, by design, uncorrelated, Eq 2.2 can be reduced to:

rpH= rpp g4. Eq. 2.3

The impulse response function for the head-neck system can then be estimated by deconvolving

rpp from rPH via a matrix inversion. The steps involved in the deconvolution process are explained

in Section 2.3

A similar development can be used to identify the IRF for the visually mediated head-

control system (g2). Instead of forming the cross-correlation of the signals in Eq. 2.1 with the

torque input, the cross-correlation functions are formed with the target sequence. Since the

torque-target CCF and the noise-target CCF can be approximated as zero, the resultant

convolution relation is:

rTH = r7 0 g2. Eq. 2.4

The LRF for the visually mediated head response (g2) can be estimated by deconvolving r11 from

rTH-

VOR and eye response

The IRF for the VOR is identified from the equations that model the eye response. The

eye response (e) represents the sum of eye motions created by the visually mediated eye control

system (gl), eye motions from the VOR (g3), and some noise (n) (Figure 2.2):
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e=a+v=t gl+hOg3+n. Eq. 2.5

Since the head response (h) is stimulated, in part, by the visual target (t), the head signal

is not uncorrelated with the target. The response function for the VOR cannot, therefore, be

calculated directly from Eq. 2.5 by forming the cross-correlation of the signals in the equation

with the head sequence. The eye motion needs to be expressed in terms of the uncorrelated torque

and target inputs, and the systems upon which they act. To do so, Eq. 2.1 is used to replace the

head motion sequence (h) in Eq. 2.5 with the components of the head motion that were driven by

the target and the torque inputs (Eq. 2.1):

e=t gl+(t0g2+p0g4)9g3+n. Eq.2.6

Since the convolution is a linear operator, Eq. 2.6 can be rearranged to show how the

controlled inputs stimulated a cascade of systems that ultimately created the eye motion. This

produces:

e = t 0 gi + tO g2 0 g3 + p® g4 0 g3 + n. Eq. 2.7

The eye motions that were generated by the VOR to stabilize the gaze against the head motions

stimulated by the torque perturbations are represented by (p9g4@g3). The eye motions that were

stimulated by the visual target through the visually mediated control systems are represented by

(tOgl+t~g2Og3).

The terms (t~g20g3) represent the response of the VOR (g3) to head motions that were

voluntarily made to follow the visual target (t~g2). The semi-circular canals of the vestibular

system are stimulated just the same independently of whether the stimulus comes from a

voluntary movement or a disturbance motion of the head, however, as discussed in Chapter 1, the

response of the VOR to voluntary head motions is thought to be cancelled, or at least suppressed,

by visually mediated mechanisms (Leigh and Zee, 1999). The gaze system functions so that the

eyes are not driven equally and opposite to a head movement that is voluntarily generated to

follow a target. Although the eye motion from (t~g2Og3) is believed to be cancelled, the terms
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are included in Eq. 2.7 because the gaze tracking system was not modeled to include components

that explicitly cancelled these terms. It can be assumed that the VOR suppression and

cancellation systems are among the visually mediated systems embedded in the gi and g2 system

blocks, and also that their direct effect on eye movements is correlated with the visual target.

Whether or not these systems are included in Eq. 2.7 does not affect the ability of the analysis to

capture the performance of the VOR in response to head disturbances. The torque and target

inputs are uncorrelated, and so the analysis can differentiate between eye responses that were

driven by the torque perturbation and the eye motions that were created by the visual target.

Eq 2.7 can be changed from representing a relation between eye responses and the torque

and target inputs, to a relation that considers only system behaviors that were driven by the

perturbation torque by forming the cross-correlation of the input and output sequences with the

perturbation torque:

rps =rp 0 gl+rr ®g20g3+rpp0g40g3. Eq.2.8

Since the torque perturbation sequence and the target velocity were made to be uncorrelated, their

cross-correlation function can be set to zero (rPT = 0), and Eq. 2.8 can be reduced to:

rpE = rp 0 g 4 9 g 3  . Eq. 2.9

Eq. 2.9 shows the linear relation between eye motions that were correlated with the

torque stimulus, rPE, and torque perturbations that disturbed the head through the head-neck

system (rpp~g4). Although data were gathered under natural tracking conditions, during which

the head and eyes interacted normally to track a moving target, the effects of eye motions that

were stimulated by the visual target have been removed and only the interactions between head

disturbances and eye motions remain.

Eq. 2.3, rPH = rpp g4, can be substituted into Eq. 2.9 to create an equation that relates the

VOR's impulse response function (g3) to the cross-correlation functions that represent the head

and the eye motions that were driven by the torque perturbation:
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rPE = rpH 0 g3. Eq. 2.10

It is from this equation that the VOR's impulse response function (g3) can be identified by

deconvolving rPH from rPE. Eq. 2.10 can be interpreted as showing the VOR response function as

the relation between head motions that were correlated with the torque perturbation, and eye

motions that were correlated with the torque perturbation. Functionally, this is the purpose of the

VOR. During gaze tracking, the VOR creates eye motions that compensate for disturbances to the

head's position, it does not need to correct for voluntary head motions.

2.3 Correlation based convolution equations and the deconvolution

process

The correlation-based, convolution equations and the deconvolution process that were

used to identify the dynamics of the VOR are developed here to illustrate how the IRFs were

estimated. The mathematics of representing system interactions with correlation-based

convolutions, and identifying system response functions from the correlation measures, has been

well developed in the literature. Texts such as those written by Ljung (Ljung, 1999), Juang

(Juang, 1994), Eykhoff (Eykhoff, 1974), and Jenkins and Watts (Jenkins and Watts, 1968),

formally develop the linear, correlation based, convolution equations that are solved to identify a

system. The texts by Juang and Eykhoff are among the few that develop the discrete time set of

equations.

Correlation based, linear, causal convolution equations

The development of the correlation-based convolution equations, and the deconvolution

process from which an IRF can be estimated, can be demonstrated be describing the analysis of

the head-neck system. The equations will be developed in a manner similar to that used by Juang

(1994).
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It is first necessary to define the correlation function estimates. The biased cross-

correlation function estimate between sequence X and Y can be defined as:

I N-I

rn,. = -I "X, , Eq. 2.11
n=j

and the biased auto-correlation function estimator as:

1 N-I

rg1 = - X , Eq. 2.12
n=j

where the sequences are of length N, and lags are greater than or equal to 0 (Jenkins and Watts,

1968).

The linear, causal, convolution relation between the head response (h) and the torque (p)

and target (t) inputs that was expressed in Eq. 2.1 can be written for the head response at time nAt

as:

M M

hn = Atj gi 2tn_ + At g4k pfk, Eq. 2.13
i=O k=O

where At is the sampling period, n represents the index of the data record and ranges from 0 to

(N-1), and the head control systems that are represented by g2 and g4 have a maximum duration

of M lags (Oppenheim et al., 1996). For simplicity, noise is ignored, since it is uncorrelated with

the inputs and will not be a factor once the cross-correlation functions are formed.

The convolution relation can be expressed directly with input and output signals or with

correlation functions. A significant advantage of expressing the input-output behavior of a system

with correlation functions is that the influence of noise on the linear system equations is

mitigated. This helps the identification process capture the underlying dynamics of the system,

rather than model the system behavior that is corrupted by measurement noise. To recast the

convolution equation with correlations, Eq. 2.13 is multiplied by a lagged torque input, Pn-j, and

averaged over time. When this is done, Eq 2.1 becomes:

48



N-i I N-i M IN-i M

-Ipnjhn = -Ep,_j(Atjg2i)+ -- I pj(Atj g4kp _-) Eq. 2.14
N j N n= i= Nn=j k=-

By definition, the left hand side of Eq. 2.14 is the cross-correlation function between the input

torque and the output head response, rph. There are two groups of terms on the right hand side of

the equation. After a slight manipulation of the order of terms and the indices of the summations,

the terms on the right hand side of the equation become the convolution of the g2 and g4 response

functions with cross- and auto-correlation functions.

Consider, first, the group of terms after the "+". This group of terms will be shown to be

equal to the convolution of the torque auto-correlation with the g4 response function, repg4.

Since a summation is a linear operator, the terms can be arranged to look more similar to the

convolution summation:

M N-i

At g4k( I PnjPn) Eq. 2.15
k=O N n=j

By letting v = n-k, the index n can be changed so that only one of the torque sequences

(p) is expressed with a lag. The new index v will range from 0-k) to (N- I-k). After this change

Eq. 2.15 becomes:

M 1 N-1-k

AtIg4,( N P _( p,)P . Eq. 2.16
k=0 Nv=j-k

Eq 2.16 can be seen to be equivalent to the convolution of head-neck IRF (g4) with the auto-

correlation function of the torque sequence, as long as the torque sequence is ergodic. When the

sequence is ergodic, which can be ensured (influenced) by the proper design of the experiment,

the time shift (-k) in the range of the index v does not affect the summation as a statistical

estimator of the auto-correlation (Juang, 1994). Eq. 2.16 is therefore equivalent to the convolution

of the head-neck system with the auto-correlation of the torque perturbation g40rpp.

Similar steps can be followed to show that the terms before the "+"on the right hand side

of Eq. 2.14 represent the convolution of the response function for the visually mediated head
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control system, g2, with the cross-correlation between the torque and the target, g20rpt. Since the

torque and target are designed to be uncorrelated, this part of the equation can be approximated as

zero.

Deconvolution

In Eq. 2.3 the impulse response function for the head-neck system, g4, can be calculated

by deconvolving the auto-correlation function of the torque from the cross-correlation between

the torque and the head response. The deconvolution process is conducted by expressing the

correlation-based convolution equation as a series of linear, matrix equations, and solving for the

vector that represents the terms of the unknown impulse response function.

A set of (M+1) equations is formed from Eq. 2.3. For convenience the At terms that are

part of the convolution equation are assumed equal to 1. Formally they should be expressed as a

scalar times the identity matrix, At[I]. The matrix form of the convolution equations is:

PH 0 pp 0 pp --1 . rPP-M g4o

rPe, [rPP1 rpp0  ... rppm+l g4 . Eq. 2.17

_rPH M _ rPPM-, ... PP0 __g4Mj

Since the auto-correlation function is symmetric about the zero lag value, the negative lag

values in the auto-correlation matrix can be replaced by positive lag values so that:

rPH 0 1PP' 1 I

rPH I 1 P .p 0 ' ppm-- 1  , Eq. 2.18

rP M rpp jg4j
_rPH M _ _PP M PP Alf-1 '' PPO _1- M _

which can be written as: RPH = [R,]- G4 Eq. 2.19

The (M+1 x M+1) auto-correlation matrix, Rpp, is of a Toeplitz form (constant values

along the negative diagonals). The values of the head-neck impulse response function, which are
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in the G4 vector, are estimated by inverting the auto-correlation matrix and multiplying the

inversion through the input-output cross-correlation vector, RPH, so that G4 = [Rpp]- RPH-

To solve for an IR that is M+1 elements in length, the correlation function is required

only at lag values from 0 to a maximum lag equal to the length of the system's impulse response

function. The (M+1) values of the IRF are calculated from (M+l) equations formed using the

correlation functions. Although N, input-output, data records were collected during an experiment

(with the N usually much greater than M) none of the experimental data is ignored when only

M+1 correlation-based equations are used to solve for the lIR. All the information about the

system that was in the N experimental data records is incorporated into the M+1 correlation-

based convolution equations, since at each lag value, j, the correlation function is calculated using

(N-j) elements of the experimental data (Eq. 2.11, 2.12).

Equations for the VOR

The identification of the VOR IRF was conducted in the same manner as that for the head

control systems, but the convolution equation that described the input-output relation of the VOR

lead to a different matrix relation. The estimate of the VOR impulse response function was found

from Eq. 2.10, which was:

rp = rpO g 3 . Eq. 2.10

This equation expresses a relation between two cross-correlations, not between an output-input

cross-correlation and an input auto-correlation, as was the case for the head control systems. Thus

the matrix equations that had to be solved to identify the VOR IRF had a slightly different form

from those that were formed for the head control systems. The matrix form of Eq. 2.10 is:

PE 0 1 PH 0  rPH -1  ' PH -M g3 0

rE rPH rJpH 0  ... rpH-m+ g31, Eq. 2.20

rPE M rPHM rPHMI ... rPH 0 __g3M
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which can be written as: RPE4 [Rp]- G3. Eq. 2.21

Since the terms in the RPH matrix are cross-correlation values, the negative lag values in

the upper triangle are not equal to the positive lag values of the lower triangle as in the auto-

correlation function. For the cross-correlation function, a negative lag of the CCF when sequence

X is lagged relative to sequence Y, is equal to the positive lag of the CCF when Y is lagged

relative to X, e.g. rxy5 = ryx5 .Therefore, the matrix equations can be expressed exclusively with

positive lag cross-correlation values such that:

rPE 0 PH 0 rHp1 ... rHPM g3 0

rPI , HI rPH 0 r'. HPM- g31 . Eq. 2.22

_rPE M _ PHM rPHM-I ... rPHO _g 3 M_

The values of the VOR IRF are estimated by deconvolving the torque-head cross-correlation from

the torque-eye cross-correlation function by inverting the RPH matrix and multiplying it by the RPE

vector.

Alternate development of the equations and the coherence-squared function

An alternate development of the equations that describe the gaze tracking system can be

conducted to show that the solution of the correlation-based convolution equation is similar to

finding the least square estimate of the impulse response function directly from the linear

convolution equations between the input and output sequences. This is described in Appendix A.

Appendix A also includes the development of the coherence-squared function for a two-

input system. The coherence-squared is an indispensable tool for assessing how well a linear

analysis can capture the dynamics of a system that may be corrupted by nonlinearities and noise.

Coherence squared functions for single-input, single-output systems are explained in many texts,

but they are rarely seen for two input systems.
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Chapter 3

Development of the test equipment

3.1 Introduction

3.2 Head perturbers

3.3 Visual target

3.4 Head tracker

3.5 Eye tracker

3.6 Data acquisition and experiment control

3.1 Introduction

Five subsystems of equipment were required to execute the experimental protocol: a head

perturber, a visual target, a sensor to measure head motions, a sensor to measure eye motions, and

a computer system for experimental control, data acquisition, and analysis. Since this type of

testing of the vestibular and gaze tracking systems had not been done before, the specific criteria

that had to be met by the equipment to execute a successful VOR experiment were not known.

The need, therefore, was to develop equipment with sufficient flexibility to conduct the initial

experiments that were required to determine how best to execute the VOR protocol, and with the

appropriate characteristics for running the human experiments that would validate the final VOR

protocol as an effective test of the VOR.

One of the original desires was to make the test equipment portable. Despite the high

frequency of complaints of dizziness and disequilibrium in the elderly (American Academy of

Otolaryngology, 2003; Vestibular Disorders Association, 2003), a portable, low cost system for
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evaluating the system-level performance of the vestibular-ocular system does not, at present,

exist. By making the system portable, vestibular testing could be conducted in the home, at the

bedside in the hospital, or even as a routine test administered throughout the day to verify the

spatial awareness of people in high risk occupations, such as pilots. But as equipment was

developed, it became apparent that it was going to be very difficult to achieve the performance

and portability goals simultaneously. To do so successfully, the perturber designs would have to

be optimized to meet well-defined performance objectives. Unfortunately, the performance

requirements for the equipment and testing protocol were not well defined. The initial criteria

were based on estimates of the torque required to perturb the head and assumptions about how to

stimulate an appropriate gaze response, but not on experimental data that could be directly related

to head-free pursuit of a random target. It was decided that developing a portable system would

be deferred until the other performance objectives could be met. It was more important to develop

laboratory equipment that was capable of producing a wide range of stimuli that could then be

used to develop an experimental protocol and analytic procedures for the VOR experiment, than

to have portable equipment that was suitable for use outside the laboratory.

3.2 Head perturbers

The torque perturbation sequence created by the head perturber is one of the two

controlled inputs for the experiment, the trajectory of the visual target being the other. The head

perturber was thus a crucial element of the testing apparatus. To be acceptable for use in the VOR

testing protocol, the perturber had to meet several design criteria. Its torque output had to be

produced as a controlled, stochastic output that appeared unpredictable to the subject, but that was

defined so that its relationship to the visual target was deterministic. It had to stimulate horizontal

plane head rotations throughout the full range of natural head disturbances, from at least 0.5 to

3.0 Hz. The disturbance had to move the head sufficiently to create a measurable VOR response,
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but at the same time it could not prevent natural head motions from being used to track the target.

Most importantly, the head perturber, which acts directly on the head and neck of a subject, had

to meet the safety and comfort requirements of a testing device.

The original performance specifications for the head perturber were that it should be

capable of producing a 1 N.m torque perturbation across a 0 to 10.0 Hz bandwidth for 60 to 100

seconds. These criteria were speculative, but derived from sound assumptions. Based on the peak

acceleration at which the human head can be driven by the neck, it was thought that an average

human neck could produce 10 N.m. It was thought that 10% of this, or 1 N.m, was sufficient to

elicit significant head motion, and thereby a measurable compensatory eye movement, but not so

strong that a person would be prevented from controlling the head to follow a moving visual

target. It was expected that experiments of 60 to 100 s would be sufficient to create the amount of

data required to evaluate the full dynamics of the VOR, and that an adequate range of head

motions would be created if the applied torque had a 0 to 10 Hz bandwidth.

Five different concepts were explored for the head perturber, and functional prototypes

were built for each. The concepts could be divided into two general classes: those that were

portable, were fully supported by the subject, and applied torque to the head via a reaction force,

and those that were externally supported and applied the perturbation torque directly from a

mounted motor. The portable perturbers were much more interesting to develop and to

experiment with than the "direct drive" perturbers, but unfortunately, none of the portable

prototypes met all the design objectives. It was too difficult to achieve the performance

specifications and meet the safety and weight requirements for the perturber if it was to be worn

by an elderly patient suffering from a balance disorder. The portability requirement was thus

deferred, and a perturber was built that was supported by a frame, and applied a torque to the

head directly with a motor. This "direct drive" perturber became the laboratory "mule" with

which all the experiments, including the VOR studies, were run.
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3.2.1 Portable perturbers

Four different devices were investigated as a means for producing the reaction torque for

the head perturber: (1) water jets controlled by a Coanda switching valve; (2) an inertial ring

accelerated by a servomotor; (3) a liquid metal accelerated by a Lorentz force; and (4) braked,

counter-rotating flywheels. Each method had unique advantages, but the inertial ring and the

braked flywheel devices seemed to be the most promising perturbation methods. The

development that would have been required to implement the water jets and the Lorentz-force

liquid-metal perturbers was considered beyond the scope of this research. Perturber prototypes

built with the inertial ring and with braked flywheels were successful at producing stochastic

torque perturbations, but had difficulty in simultaneously meeting the performance and weight

requirements. The limiting factor with both technologies was striking the balance between

producing a 0.5 to 1.0 N.m torque across a 10 Hz bandwidth and building a perturber that was

light enough to be worn by a patient suffering from a vestibular disorder. An inertial ring

perturber that was light was good at producing frequency perturbations above 2.0 Hz, but would

have required additional mass if it were to be tuned to generate the torque at lower frequencies.

The flywheel prototype was able to generate a full range of torques across a 0.5 to 10 Hz

spectrum, but was unable to store the full amount of energy required for a 60 s vestibular test. To

do so, flywheels light enough to be wom comfortably by patients would have to operate at nearly

the energy density limit of steel flywheels (Genta, 1985).

Coanda waterjet

The first perturbation device that was built used a Coanda-effect valve to direct the flow

of a water jet (Figure 3.1). The Coanda-valve was mounted on top of a helmet that could be worn

by a subject. Pressurized water was delivered from a faucet through flexible hoses to a Coanda-

effect valve, which directed the water jet through one of two outlet nozzles. The emission of the

water created a reaction force that could perturb the head. The water jet perturber was unique
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among the reaction force perturbers in that it did not accelerate an annulus of material circularly

about the head.

Figure 3.1: Coanda water jet device. The Coanda perturbation

device was constructed from brass tubing and flexible rubber

hose. The channel cover was removed in the picture at the right.

A Coanda-effect valve is a bi-stable switching device and allows for very quick switching

of a fluid jet between two outlets (Foster and Parker, 1970). It was thus very well suited to

creating a binary output that alternated between a torque that twisted the head to the left and a

torque that twisted the head to the right. The Coanda effect refers to the phenomenon in which a

stream of fluid that emerges from a nozzle tends to follow a nearby curved or flat surface, as long

as the curvature of the surface is not too great. When the fluid jet passes close to the surface, a

low pressure bubble between the jet and the wall is caused by viscous entrainment of fluid, and

the jet is pulled towards the wall (Foster and Parker, 1970). Equilibrium is reached when the

radial acceleration of the jet is balanced by the pressure difference across the bubble. The jet can

be prevented from curving towards the wall simply by supplying the fluid that the low pressure

bubble entrains from the jet, from another source such as an inlet port that is near to where the

bubble forms. A bistable, Coanda-effect valve is created by having a fluid jet exhaust into a "Y-

gate". The Y-gate has two walls onto which the flow can attach and that lead to two outlet

channels (Figure 3.2). The jet can be directed towards one or the other outlets by providing a
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small control flow on the opposite side of the desired outlet (Figure 3.2). Small Coanda-valves

can switch a fluid jet between outlets in as little as 100 ms (Foster and Parker, 1970).

water jet input

control
flow

water jet output

Figure 3.2: Y-gate of the Coanda water jet valve. The water jet
is directed to one outlet or the other by a small control flow.

A functional prototype was built to test the merit of the Coanda device as a head

perturber. Coanda air jet actuators have already been used successfully to perturb the human wrist

in studies of the dynamics of the forearm (Xu et al., 1991). An air jet was considered to be too

noisy to be used as a head perturber, and so a water jet was developed. The Coanda valve was

constructed from 11 mm square brass tube, with a 0.5 mm wall thickness. The valve's inlet was

shaped into a nozzle by forming the brass tube over a plastic nozzle form. The inlet nozzle was

fitted into a Y-gate that had outlet channels that angled from the midline at 20 deg. Slots that

acted as inlets for the control flow were cut into the walls of the channels about one nozzle width

(3 mm) downstream from the inlet nozzle. The control flow was supplied through nozzles similar

to the inlet nozzle. The inlet nozzle, Y gate, and control flow nozzles were joined by a liberal

application of silicone caulk. Water was supplied to the inlet nozzle from flexible tubes attached

to a faucet. The control flow was supplied from a tap on the faucet line, and was controlled to

flow to one side or the other by a manual diverter valve.

The device was successful as a proof of concept, although much would have had to be

done to develop the water jet as a routine laboratory device. The Coanda-valve easily switched
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the flow between the two outputs, and was capable of producing long periods (low frequency) of

continuous torque in either direction. The reaction force was equal to the time rate change of

momentum of the water through the nozzle, so as long as the water was accelerated through the

nozzle and exhausted, a reaction force was created. The flow switched quickly between the

outlets independently of whether the faucet was on full or had low flow rates. The torque

amplitude was not quantified, but the device could not be easily stopped when moving if it was

held and the diverter valve switch quickly. The torque definitely felt strong enough to shake the

head. The factor limiting how quickly the flow could be switched in the prototype was how fast

the diverted valve could be moved, but a diverter valve is not how an actual Coanda is controlled.

For faster switching, the control water could be pressurized against a controlled port at the inlet,

and a quick acting valve used to open the port.

Obvious shortcomings would prevent this type of system from being used as a medical

device. A water-driven system would have to be used in a special environment, such as in a

shower stall, and therefore has little potential as a bedside or routine laboratory testing device.

One technical disadvantage with the system is that the hydraulic lines that carry the water to the

Coanda valve on top of the head became stiff when pressurized with water. The stiff lines could

inhibit the wearer's head motion, and so could prevent testing the vestibular system with normal

head and neck movements.

Inertial ring

The most straightforward, and successfully implemented, portable perturber was an

inertial ring perturber (Figure 3.3). A servomotor was used to accelerate a circular ring

circumferentially about a helmet that was worn by a test subject. The change in the angular

momentum of the ring imparted a reaction torque onto the subject's head, and this torque was

controlled by directing the output of the motor.
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Figure 3.3: Inertial ring head-perturber

The initial prototype was built mainly to assist in understanding the issues that had to be

addressed when designing head perturbers, such as how well would torque perturbations be

tolerated, and how easily could subjects control their head and eye motions when the perturber

was activated. A prototype was built using a motor and raw materials that were found in the

laboratory, and turned out to be an extremely useful test tool. It was more capable than expected,

and without any modification was able to be used for initial investigations into head-neck and

vestibular system dynamics. Its shortcomings and successes highlighted issues that have to be

considered when designing portable head perturbers.

The inertial ring perturber consisted of a polystyrene bicycle helmet and an aluminum

ring that surrounded the base of the helmet. The ring was located so that it was near the same

transverse plane as the center of mass of a subject's head, which is in a transverse plane just

above the infraorbital notches. The ring had a mass of 0.25 kg and an average radius of 112.5 mm

(rotational inertia of 0.0032 kg m2 ). The aluminum ring was attached through an aluminum brace

to a torque transducer and a servomotor that were mounted on top of the helmet. The servomotor

was a Hitec HS-805BB that produces a maximum torque of 1.5 N.m. The servomotor accepted a

position command, and moved to the commanded position as quickly as it could. It did not offer

torque or velocity control, so little could be done to shape the motor's output other than

60

.................. ................... ....



influencing its duration. A pseudorandom binary sequence (PRBS) was used to encode changes to

the servomotor's position. The duration of a PRB pulse was represented by a proportional change

in the servomotor's position with longer pulses resulting in larger amplitude position changes.

The inertial ring perturber was light, comfortable to wear, easy to control, and

demonstrated that an unpredictable torque perturbation with an amplitude of 1 N.m was more

than sufficient to disturb the position of a subject's head. Subjects easily supported the perturber's

0.83 kg mass, but some subjects commented that it would have been difficult to control their head

and support the perturber if it had been much heavier. Subjects were able to control head

movements, but they were not able to stabilize their head to resist the torque disturbances. The

main limitation of this perturber was that the bandwidth of its torque output was too high. A plot

of the power spectral density for a representative torque perturbation is shown in Figure 3.4.

There was power between 2 and 6 Hz, and also in a small frequency band just above 10 Hz. The

power between 2 and 6 Hz was a direct output of the motor, and the power around 10 Hz was

from an oscillation of the aluminum ring. This was not sufficient power at low frequencies to

create the head motions required to test the VOR, which requires that head disturbances be

towards 0.5 Hz.
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Figure 3.4 Power spectral density of a representative torque
perturbation created by the inertial ring head-perturber
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The perturber was unable to produce lower frequency perturbations because of the small

rotational mass of the inertial ring and the limited angular displacement of the motor. The

perturbation torque was generated for only as long as the ring was accelerated. The greatest

angular displacement that the motor could make was 120 deg, and so the longest duration that the

torque was produced was the time it took for the motor to move the ring through 120 deg. If the

ring had a greater rotational inertial it would have taken longer to traverse the angular

displacement, or had the motor had torque control, it could have accelerated the ring with a lower

magnitude torque.

The shortcomings of the inertial head perturber illustrated the tradeoffs that had to be

made in the perturber's design between the amplitude of the torque, the weight and rotational

mass of the inertial ring, and the maximum speed that the motor must attain. When either the

rotational inertia of the ring is small or the amplitude of the desired torque is large, the inertial

ring tends to be accelerated to a high rotational velocity, or, as in the case of the prototype, it

reaches the limits of the motor's displacement. For example, if the ring of the prototype was

accelerated with a torque of 1 N.m for 1 s (half the period for a 0.5 Hz perturbation cycle), the

angular velocity of the ring would be changed by approximately 313 rad/s, which is 2984 rpm.

This might be an acceptable velocity increase if the ring had started from rest, but if the ring was

accelerated from an already high speed then it could reach rotational velocities at which the motor

was no longer capable of producing the desired torque. Since motors are power-limited, at

maximum power as the velocity increases the torque that the motor can produce decreases. There

are also safety concerns with having an external ring rotating at such high velocities and with the

energy that it has stored. The velocity that the ring attains can be reduced by increasing the ring's

rotational inertia, but the ring's weight is limited by how much weight the subject can support.

The heavier the perturber, the less likely it is that the subjects can use natural head motions to

track the visual target, and the less appropriate the perturber becomes for testing elderly patients

with vestibular dysfunction. The maximum speed that the ring attains can also be limited by
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reducing the torque with which the ring is accelerated, but there is a minimum torque that is

required to create the head disturbance. To design a good inertial ring perturber, the right balance

between the rotational inertia of the ring, the perturbation torque, the size and speed of the motor,

and the overall weight of the perturber must be found.

Liquid metal perturber

The most interesting device that was considered for the portable perturber was one that

accelerated a ring of liquid metal about a subject's head using Lorentz force actuators. The

Lorentz force is the force that acts on a charged particle in an electric and magnetic field (Figure

3.5), and is the fundamental force that causes a motor to rotate. The Lorentz force law describes

the force that acts on a charged particle moving through a magnetic and electric field:

F = qE + qi x B (Halliday and Resnick, 1986).

Figure 3.5: Liquid metal perturber. The figure on the left is a cutaway of a fluid channel.

A magnetic field (B) is established across the width of the channel, and a current (I) is

driven perpendicular to the magnetic field. A Lorentz force is developed that accelerates

the liquid metal down the channel.

In the inertial ring perturber, the Lorentz force generated the servomotor's torque, which

was applied to the inertial ring through a mechanical connection. Rather than using a mechanical

link to connect an inertial ring to a Lorentz force, actuators can be created from magnets and

current sources to apply a Lorentz force directly onto a conductive, inertial ring. It was
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envisioned that a liquid metal could be housed in a channel that surrounded the head, like a head

band, and be accelerated with Lorentz force actuators (Figure 3.5). Since the liquid metal does not

have to flow in a circular path, the channel could be made to fit closely to the head, and a portable

perturber could be made that did not have the ungainliness of the inertial ring device.

A device to test this concept was created by placing a liquid metal into a circular channel

milled into a cast nylon block as shown in Figure 3.6. The liquid metal was an alloy made from

66% gallium, 20.5% indium, and 13.5% tin (MCP Metalspecialties, Inc., Fairfield, CT). It had a

eutectic temperature (melting point) of 10.7 deg Celsius, and as claimed by the manufacturer it

had low resistivity and was non-magnetic. It looked and felt like mercury, but did not have

mercury's toxicity. The reaction torque was created by applying a Lorentz force to the gallium

alloy in the direction of the channel. As long as the applied force was greater than the flow's

viscous retardation forces, the liquid metal would accelerate around the channel and create a

reaction torque that could be used to perturb a head. The Lorentz force was created by driving

large currents through the gallium alloy from the top of the channel to the bottom, perpendicular

to a magnetic field. A strong magnetic field was established across the channel by neodymium-

iron-boron permanent magnets placed on either side of the channel (Figure 3.6). By directing the

magnetic field radially across the channel, the resultant Lorentz force was in line with the

centerline of the channel and pushed the liquid metal along the channel.

For this system, a 3.175 mm thick, and 45 mm deep channel, with an average radius of 76

mm was milled into the cast nylon block. An octagonal shape was cut from the center of the

block to a depth of 45 mm, such that only a 2 mm wall existed at the thinnest point. This was

done so that permanent magnets could be placed on either side of the channel. The top of the

channel was closed with a 13 mm thick Delrin cover plate into which a 5 mm deep channel was

milled. When placed together, the cover and base block had an overall channel height of 50 mm.

The Delrin cover was sealed to the cast nylon block with a silicon sealant, and screws were used
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to compress the seal and ensure alignment of the channels. The enclosed channel held 67.0x 10-6

m3 of the gallium alloy.

Figure 3.6: Liquid metal, Lorentz force perturber. A liquid gallium alloy was housed in a

channel milled into a Delrin block. The magnetic field was created by neodymium-iron-

boron magnets, and was maximized across the channel by using iron "horseshoes" to

create a high permeability return path for the magnetic field. Current was delivered

through wires immersed in the gallium at the top and bottom of the channel.

Current was delivered to the gallium alloy through 10 gage, wound copper wire, insulated

with PVC. The wire's overall diameter was 4.2 mm, but the conductor's diameter was only 3.1

mm which just fit into the 3.175 mm channel. Brushes, that made contact with the gallium, were

fashioned by stripping the insulation from the end of the wire, and passing the wire through a hole

axially machined into a 4 mm diameter nylon screw. The bare wire was sealed to the screw with

epoxy. The screw was threaded into the top and bottom of the channel such that a small length of

wire extended into the liquid gallium that sat in the channel. Current was supplied by 12 volt,

deep cycle, marine batteries, and was switched on and off with automotive ignition switches. The

current passed from the cable at the top of the channel, through the gallium, out the cable at the

bottom of the channel and through a resistive carbon pile. The resistance of the carbon pile could

be adjusted by changing the mechanical force acting on the pile. Changing the resistance of the

carbon pile allowed for resistive control of the current flowing through the system.

65



The strength and proper direction of the magnetic field in the channel was crucial for the

perturber to work effectively. Ideally, the magnetic field would be directed radially outward

everywhere across the channel, and to complete the magnetic circuit, would follow a return path

above and below the channel. A radial magnetic field, perpendicular to the current flow, would

ensure that the Lorentz force created by the vertically flowing electrical current would be directed

tangential to the centerline of the channel. Any magnetic field lines that flowed through the

channel in a direction other than radially outward would change the direction of the Lorentz force

away from the tangent to the channel centerline. Ideally, two radially polarized, continuous,

cylindrical magnets, one on the inside and one on the outside of the channel, would have been

used to direct the field across the channel. Unfortunately, cylindrical permanent magnets of the

size and strength needed for this application would have had to have been custom manufactured,

at a cost of approximately $15,000. Instead, strong, 50 mm square, neodymium-iron-boron

magnets were used in pairs along the inside and outside of the channel. A finite element, 3d,

electromagnetic field software package (Maxwell 3d, Ansoft Corporation, Pittsburgh, PA) was

used to analyze different arrangements of magnets and iron around the circular channel. The

magnetic field was maximized across the channel by connecting pairs of magnets on either side

of the channel with a soft iron horseshoe as seen in Figure 3.6. The iron horseshoe served as a

return path for the field after it flowed across the channel. This arrangement resulted in a strong

0.65 Tesla field measured across the channel (air filled, not gallium). The penalty for this large,

but necessary, magnetic field was the excessive weight of the magnets and the iron. When

implemented in the prototype, each pair of magnets and soft iron horseshoe exceeded 1 kg, which

is much too heavy to be used for a head perturber in which the total weight of the system should

be less than 2 kg. Unfortunately, there do not seem to be permanent magnets, ceramic, iron based,

or rare earth that at present can meet the weight and strength requirements.

The channel dimensions significantly impacted the theoretical torque that could be

produced with the liquid metal perturber. It was desirable to make the channel as tall as possible
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so that as large a Lorentz force as possible could be applied to the fluid ring. The height of the

channel corresponds to the length of the conductor in the F= IL xB "force on a conductor"

equation, where F is the force on a conductor in a magnetic field, I the current, B the magnetic

field, and L the conductor length. However, the reaction torque that was created by the liquid

perturber was not equal to the torque that was applied to the fluid, but to the time rate change in

the angular momentum of the fluid. Although larger Lorentz forces could be applied to the fluid

ring by making the channel taller, when the channel radius is fixed by the outer dimension of the

perturber and the volume of fluid fixed by the allowable weight of the device, the channel must

be made thin to accommodate the tall channel. The thinner the channel, the more pronounced the

effects of the viscous boundary layer at retarding the flow and restricting the change in the fluid's

momentum. From a simple 2-D fully developed flow model of the channel, it can be shown that

the momentum flux of the fluid flow is proportional to the thickness of the channel to the 5 th

power. Therefore as the channel height is increased, more force can be applied to the fluid, but as

it does, the fluid channel must get thinner, which increases the viscous effects retarding the flow

of the fluid in the channel. A thinner channel, though, makes is easier to support a high magnetic

field across the channel. So although the viscous forces are increased as the channel gets thin, a

thinner channel will have a stronger magnetic field, and a taller height. Both of which increase the

Lorentz force that accelerates the flow.

The thickness of the channel gave rise to another concern, the current carrying capacity

of the gallium alloy. To attain the desired 1 N-i torque, under ideal conditions, over 400 A

would have to be driven through the metal. With a channel thickness of 3.175 mm, and an

average radius of 76 mm, a current of 400 A (if evenly distributed) would yield a current density

(flux) of over 2.6x 105 A/m2. The actual current capacity of the gallium alloy is unknown, but for

copper is 1xi07 A/M 2. It was felt that keeping the current flux under Ix 106 A/ 2 for the gallium was

acceptable.
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The perturber was tested by applying brief 1 to 3 s current pulses. Torque was measured

by allowing the perturber to push against a force transducer, and the current that flowed through

the gallium allow was inductively measured. During testing, the liquid metal perturber produced

peak torques near what was estimated for its dimensions and field strength. The device produced

nearly 1 N.m when the current passing through the gallium was just over 430 A. In Figure 3.7 it

can be seen that the peak torque created by the perturber was nearly proportional to the measured

current. Although the perturber created its expected peak torque, the torque could not be

sustained. After an initial peak, the torque would decay to zero as shown in Figure 3.7.

Measurements indicated that the current flowing through the system held steady throughout the

test, and so the reduction in force was not due to a decrease in current. A possible explanation is

that the reaction force decayed because the fluid was actually attaining its steady state velocity

and no longer accelerating. The steady state velocity is attained when the viscous forces balance

the Lorentz force being applied to the fluid. The viscous forces rise with velocity, and a graph of

the fluid speed would resemble the decay curve of the torque. The time that the force took to

decay to zero was independent of the amount of current applied to the fluid.

A. Peak torque -vs- current input B. Torque
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Figure 3.7: Torque created by the liquid metal perturber. The peak torque, shown in
Plot A, was nearly proportional to the measured current. In plot B it can be seen that
the torque could not be sustained, but decayed to zero with time.

The liquid metal perturber was shown to hold some promise; it was able to produce peak

forces that matched the requirements of a head perturber, and would be relatively simple to
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modulate by controlling current (although the size of the currents that were necessary would

require special switches). To maximize the force of the system, there would have to be additional

extensive fluid flow analysis and experimentation to determine why the torque decayed quickly.

Before any direct Lorentz force based system could be considered for a head-mounted perturber

the weight of the permanent magnets would have to be significantly reduced.

Braked flywheel

The final device that was considered for the portable perturber was a braked flywheel.

Instead of creating a perturbation torque by accelerating a ring or an annulus of fluid, a reaction

force can be generated by decelerating a flywheel from a high initial speed. One of the hardest

problems to overcome with the Lorentz perturber, and to a lesser degree with the inertial ring

perturber, was the weight of the actuator that accelerated the inertial mass. The braked flywheel

device solves this problem by replacing the heavy actuator with a low weight braking device. The

energy storage properties of flywheels generally allow a flywheel system to be designed for time-

averaged performance requirements rather than for peak performance needs. This often enables a

flywheel system to be smaller and lighter than non-energy storage systems which have to be

designed to meet peak performance requirements (Genta, 1985). A flywheel could be spun to a

velocity for which there was sufficient energy to perturb the subject throughout an experiment by

an actuator that was not attached to the perturber. The torque perturbation could then be

modulated by controlling the duration and the amplitude of the force used by the braking device

to decelerate the flywheel.

It was envisioned that the braked flywheel system would resemble a computer's hard disk

drive assembly combined with small, caliper brakes, such as those from a bicycle disk brake

(Figure 3.8). Several flywheels would counter-rotate so that reaction torques could be created in

both directions. Potential gyroscopic effects from angular movements away from the flywheel's

primary rotational axis could be reduced by minimizing the difference in the rotational velocities
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of the counter-rotating disks. Small pancake motors could be used to increase the speed on one

set of disks if the disparity became too great. The acceleration of disks in one direction would

supplement the reaction torque created by the deceleration of disks in the opposite direction. The

trick would be to see how closely the speeds of the individual discs could be controlled so that the

net rotational momentum of the system was minimized as the kinetic energy of the disks was

being removed by the braking force.

Figure 3.8: Disks and caliper brake for a braked flywheel perturber

A large prototype was built from high-end bicycle components. The goals for the

prototype were to get an empirical feel for modulating the braking of spinning discs, and to see if

low braking forces could be created and modulated with frequencies between 0.5 to 10 Hz. It was

not thought necessary to build a prototype that met the weight constraints of a head-mounted

perturber until it was established that a braking system was a useful way of transferring energy

from the flywheel. The intent was to spin two bicycle wheels in opposite directions and measure

the force that could be transferred from the wheel to force sensors as the wheels were braked to a

rotational speed of zero. Two bicycle wheels were mounted in independently rotating forks, upon

which small brake calipers were attached (Hayes Brake L.L.C, Mequin, WI). Mounted on each

wheel hub was the disc upon which the brake caliper acted. Pictures of the prototype are shown in

Figure 3.9. Disc brakes were chosen in preference to traditional rim mounted, linear push/pull and

cantilever brakes because of their superior force modulation. Rim mounted, polymer pad, cable
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actuated, cantilever bicycle brakes tend to grab the wheel when even slight pressure is exerted

upon the brake's hand lever. Hydraulically actuated disc brakes and their hand lever are

specifically designed for force modulation, and the manufacturer claimed that the equipment

would provide excellent light force application and modulation. The wheels were given an initial

velocity by placing a hand drill against the rim and spinning the wheel to a high velocity. When

the moving wheel was braked a reaction force pushed the fork on which the caliper was mounted

against an Entran force transducer (Entran Sensors and Electronics, Fairfield, NJ) that measured

the braking force.

Figure 3.9: Prototype built to test the feasibility of producing a perturbation
torque by decelerating spinning disks with hydraulic caliper brakes.

Experiments demonstrated that the disk brakes could be modulated to hold a relatively

constant force, and that force perturbations could be created with periods that had frequencies

between 0.5 and 10 Hz. The braking force as one wheel was slowed in shown in Figure 3.10. To

vary the frequency across this bandwidth the brake had to be applied for periods between 0.1 and

2 s. It was simple to modulate the brake's force with the brake handle, but in a head perturber

system the hydraulic brake could be actuated by electronically controlling the plunger that creates

the pressure in the brake line. As can be seen in Figure 3.10 a high frequency oscillation is

apparent in the force output of the brake. The oscillations could be attributed to the slots in the

brake disk which are made to allow water and dirt to escape from under the pads and also to
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reduce weight. As the holes of the drilled sections passed through the brake caliper and the area

between the brake pads changed, the braking force rose and dropped.

Force from braked wheel

0 .0- --1- --

-21
0 11 22 33

time (s)

Figure 3.10: Force created by braking a spinning wheel.
The force was modulated using the manual brake handle.

There was little reason to continue with the development of the flywheel perturber until

the torque that was required to disturb the head was more precisely defined. The flywheel

perturber had great potential as a lightweight perturber, and the actuation device had been shown

to be effective, but its feasibility for use in a VOR experiment was directly related to the amount

of force it had to produce and the duration of the experiments. The smaller the torque that is

required to disturb the head, the lower the energy that has to be stored in the flywheel. Lower

energy would mean that a flywheel could have a lower maximum rotational speed, or that the

disk could have a lower rotational inertia. Lower rotational speeds can be attained with smaller

motors, and lower rotational inertias require smaller (in diameter) disks. The total energy that

must be stored in the flywheel is also important because if it increases beyond a certain level,

special designs, fabrication methods, and housings are necessary to operate a flywheel safely. For

example, assume that a 1 N.m torque is required to perturb a subject's head for 60 s. If two

flywheels are used, then each disk must store an angular momentum of 30 N.m.s at the start of

each experiment. If the flywheels are each assumed to be thin disks, with a radius of 100 mm and

a mass of 0.5 kg, then each must be spun to an initial velocity of 114600 rpm (12,000 rad/s). This
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translates to an initial energy density of 360 kJ/kg, which is beyond what can be stored by many

steel alloy plates, and so a flywheel made from steel or Kevlar wires would be required (Genta,

1985). However, if the torque required to perturb the head was reduced to 0.5 N.m, then the

energy density would decrease by 75%, and the feasibility of creating a flywheel perturber that

met the experimental requirements dramatically improves.

3.2.2 Direct drive perturber

After designing and building a range of portable perturbers, it became apparent that a

more precise set of specifications for the head perturber, based on experimental data, was

required. It did not seem feasible to meet the original torque, bandwidth, weight, and safety

criteria with a portable design. In addition, the 1 N.m torque perturbation that was created by the

inertial ring perturber felt excessive to subjects, and so it seemed reasonable that much lower

torques might be sufficient. A permanently mounted, "direct drive" perturber was built to meet

these objectives. It was originally intended that this perturber would be used only to identify the

performance specifications that were required of a portable perturber, but it was decided that this

perturber should be designed so that it could be used in all the studies required to develop the

VOR testing protocol.

The permanently mounted, direct-drive head perturber was constructed from an

adjustable helmet and a servomotor that were attached to a counterbalanced support frame as

shown in Figure 3.11. The motor that drove the helmet was a dc, brushless, resolver-based

servomotor (Kollmorgen, MT304Al, Radford, VA) that was configured for torque control. This

motor was selected for its ability to switch quickly between clockwise and counterclockwise

torque outputs, and for its small size and low stall torque (7.0 N.m). The motor output was driven

with an analog command signal produced by a National Instrument's PCI-MIO-I6XE10 data

acquisition and output (NI-DAQ) board (National Instruments Corp., Austin, TX). To prevent the

head perturber from applying too much torque to the subject's head, an electronic current limiter
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in the motor controller was set to limit the amount of current that could be applied to the motor's

coil. A mechanical slip clutch (Hilliard, L2-1-312AC, Elmira, NY) was placed between the

motor's output shaft and the helmet and acted as a secondary safety system in case the electronic

limiter failed. The slip clutch was set to prevent more than 1.0 N.m from being applied to the

helmet by the motor. The torque applied to the helmet was measured with a 6 axis, force/torque

transducer (Assurance Technologies Inc., Garner, NC) capable of resolving torques as low as

2.Ox 10- N.m and measuring torques up to 4.0 N.m. The manufacturer's specification sheets for

the motor, controller, and f/t transducer are included in Appendix B.

Figure 3.11: Direct drive head-perturber

The frame was designed so that the helmet and motor could be lowered onto the head of a

seated subject, and adjusted so that the rotational axis of the motor could be aligned with the

natural, vertical neck axis of the subject. Weights on the counterbalanced frame were adjusted to

balance the weight of the helmet and motor so that the subject did not have to support the weight

of the apparatus. This was both for the comfort of the subject and to ensure that the weight of the

apparatus did not tire the subject, nor affect how the subject used the head to track the visual

targets. When the perturber was properly fitted to a subject, and no torque was applied to the

helmet, the subject could freely rotate his or her head in the horizontal plane (yaw), but had little
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freedom to rotate the head in the sagittal (pitch) or frontal (roll) planes, or to translate the head in

any direction. This simplified the experiment to one of analyzing only the horizontal component

of the VOR, rather than having to deconvolve horizontal, vertical, and torsional components of

the VOR. With the exception of the shaft bearings and hardware such as screws and nuts, all the

pieces of the frame assembly were machined in-house on CNC machining and milling centers

from 6061 aluminum and stainless steel stock.

The Kollmorgen motor was capable of producing torque perturbations throughout the 0.5

to 10 Hz bandwidth that was desired to disturb the head. Tests of the motor demonstrated that it

could follow square wave pulses with periods as short as 0.05 s. In Figure 3.12 the torque from

the perturber is shown following a pseudo-random binary sequence (PRBS) that was executed at

10 changes/s. During the test, the motor applied torque to the torque transducer, which was held

at zero velocity. The torque from the motor followed the command voltage very well. The square

pulses were executed crisply, although there was some variance in the torque amplitude, the

motor followed the command voltage quickly enough that there was not a noticeable lag when

data sampled at 100 Hz were inspected. As was done with the inertial ring perturber, the direct

drive perturber was tested by using it to evaluate the dynamics of the rotational mass system

shown in Figure 3.13. A similar PRBS to the one shown in Figure 3.12 was used to drive the

torque applied to the rotational mass. Its PSD, shown in Figure 3.13, shows that the perturber was

able to create the low frequency perturbations that were necessary to test the VOR. Whereas there

was little power in the torque created by the inertial ring perturber below 2 Hz, the torque output

by the direct drive perturber was strong down towards 0 Hz. The PSD of the torque followed the

PSD of the voltage command closely. Its decay at high frequencies was due to the command

signal, and was not caused by an inability of the motor to follow the command signal.
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Figure 3.12: A pseudo-random binary input signal (red) and the

measured torque output (in volts) of the Kollmorgen motor (blue).
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Figure 3.13: System identification of a rotational mass. The power spectral density of a

PRB command voltage (red) and the torque output of the motor (blue) are shown in plot

A. Plot B shows the impulse response function (red) and a second order parametric model

(blue) that were calculated for the rotational mass system shown at the bottom right.
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3.3 Visual target

The visual target was generated by reflecting a red helium laser (wavelength 600-700

nanometer, class IlIb) off a mirror and onto a flat screen that was about 1.5 meters from the test

subject. The exact distance between the subject and the screen depended on the seating position

adopted by the subject. These distances varied by only a few centimeters, and were accounted for

mathematically. The mirror was positioned by a galvanometer (MG350DT, General Scanning

Inc, Watertown, MA) that was controlled by a PID controller (AE 1000, General Scanning Inc,

Watertown, MA). The galvanometer and controller were capable of driving the mirror at

frequencies over 10 Hz and at speeds above 200 deg/s with little delay. The frequency response

of the galvanometer, mirror, and PID controller is shown in Figure 3.14. Pictures of the laser and

galvanometer are also shown in the figure. Position commands were supplied to the galvanometer

by the analog output of the National Instruments DAQ board. The laser was equipped with a lens

that allowed the beam to be shaped so that the size of its image on the screen could be adjusted.

The lens was adjusted and the beam passed through a circular aperture, so that the image

subtended about 1 deg of arc on the screen. This was the size recommended by the American

National Standard Procedures for Testing Basic Vestibular Function (Acoustical Society of

America, 1999). Smaller images can move over the fovea without requiring the gaze to move to

follow the target. The screen was 3.0 m long and 1.0 m high, and made from a flat sheet of

expanded, high density poly-vinyl chloride (Sintra brand, Alcan Composites, St. Louis, MO). The

front of the screen was covered in black vinyl tape to ensure that the screen was opaque. The

target's image could travel +/- 35 deg relative to the subject when he or she was seated under the

head perturber.
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Figure 3.14: The visual target. The visual target was generated by reflecting a red helium
laser off a mirror that was controlled by a galvanometer (top). The frequency response of
the galvanometer and mirror are shown in the bottom two plots. The system's bandwidth
exceeded 10 Hz.

3.4 Head tracker

It was originally envisioned that subjects would stand in an open testing area and track

the moving visual target with whatever head and eye motions they desired. To do this, a head

tracking method was needed that could measure the translations and rotations of the head in all

three planes. Magnetic sensors that can be attached to the subject's head and body were
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considered, such as those from PolhemusTM and Flock of BirdsTM. At that time, the angular

resolution of these tracking systems was not good, and would be further degraded if subjects were

tested within a metal frame that would support the various items of test equipment. The

measurement of head position was simplified when the perturber design changed from being

portable to being permanently mounted. The direct drive perturber restricted the subject's head

motions to rotations about the vertical axis, so it was no longer necessary to measure linear

translations. The only requirement was that the head tracker could measure one axis of rotation

from 0 to greater than 10 Hz, and velocities up to 150 deg/s.

A TA magneto-hydrodynamic angular rate sensor

The first sensors that were used to track head rotations were magneto-hydrodynamic

(MHD), angular rate sensors (ATA, ARS-04E, and Albuquerque, NM). The sensors were small

and light, with a diameter of only 20 mm, a height of 16 mm, and a mass of 14 g. The MHD

sensor was mounted on a thin aluminum brace that was taped to the bridge of a subject's nose

(Figure 3.15). The bridge of the nose has little compliance and the sensor little mass, so it was

likely that the sensor's motions reflected those of the head. The sensors worked on the same

principle as the liquid metal perturber, or an electric generator. When the sensor was rotated,

mercury, which is conductive, moved within a permanent magnetic field. The velocity of the

mercury across the magnetic field caused a current flow which was proportional to the mercury's

velocity. The response of the sensor was like that of a high pass system; the response was good

out to almost 1000 Hz, but decayed at low frequencies. Similar to the semicircular canals of the

vestibular system, the MHD sensor was insensitive to low frequency motions and its response

decayed during sustained rotation. The sensor had a high pass comer near 0.3 Hz, so was

insensitive to low frequency rotations of the head. A simple digital compensation filter was

written to lower the effective corners of the sensor, but it could never function as a DC sensor,

and the low frequency response of the head was always lost. This was not a significant problem
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when only the head's velocity was being considered, but it was problematic when the head's

position signal had to be calculated from the velocity. The manufacturer's specification sheet for

the MHD sensor and the code for the digital compensation filter are included in Appendix B.

Figure 3.15: Magneto-hydrodynamic angular rate sensor

Watson angular rate sensor

Watson "tuning fork" angular rate sensors were then used as a replacement for the MHD

sensors (Watson ARS-C141-1AR, Eau Claire, WI). The Watson angular rate sensors were larger

than the MHD sensors, but they were effective over a bandwidth that extended from 50 Hz down

to DC, so they could measure the low frequency motions of the head. The Watson sensors had an

oscillating piezo-crystal that produced a torque proportional to its angular velocity. The Watson

sensors were housed in a protective PVC cylinder that was 20 mm in diameter and 47 mm long,

and so was too large to be mounted to the bridge of the nose. Instead, the sensors were mounted

in a Delrin plate that was fixed to a mouthpiece. The noise that was measured from the sensor

when it was at rest had a standard deviation that was less than the equivalent of 0.05 deg/s, and a

maximum amplitude that was usually less than 0.1 deg/s. A representative noise measurement is

shown in Figure 3.16. The manufacturer's specification sheet is included in Appendix B.
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Figure 3.16: Watson angular rate sensor, a representative noise measurement (bottom

left), and the power spectral density of the noise (bottom right). In this example the noise

measured from the sensor had a standard deviation that was equivalent to 0.034 deg/s.

3.5 Eye tracker

3.5.1 Electro-oculograph

Eye position was recorded using electro-oculography (EOG). The EOG quantifies the

position of the eyes from voltages that develop on the skin that surrounds the eyes. The cornea

and the retina of each eye act as a dipole, with the cornea positive relative to the retina. The

corneal-retinal potential is small, about 10 to 30 mV (ADInstruments, 2003). When the eyes

move, for example to look left, the cornea of the left eye nears the outer canthus of the left orbit

and the retina of the right eye moves closer to the outer canthus of the right orbit. A potential

difference of approximately 10 to 500 gV develops between the two canthi (Duchowski, 2000).
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There is a linear relationship between this voltage and the horizontal eye position up to

approximately +/- 40 deg (Leigh and Zee, 1999). For vertical eye motions, the voltage measured

above and below the eyes is proportional to eye position up to about +/- 30 deg (Clark, 1995).

Silver-silver chloride (Ag-AgCl) surface electrodes are typically used to transduce the ionic

potential that develops on the skin into an electric potential that can be amplified, typically

through high quality DC instrumentation amplifiers, and output to a strip recorder or sampled by

data acquisition devices. Noise is present in this voltage due to the effects of the EEG (electrical

activity of the brain), the EMG (muscle activity), and the EOG equipment. This noise is often

equivalent to approximately 1 deg of eye movement, thus the spatial resolution of the EOG is

about 1 deg (Clark, 1995; Leigh and Zee, 1999).

Several techniques have been developed to record eye motions. The most common

methods are EOG, scleral contact with search coils, infrared reflection photo-oculography, and

video based oculography. Of these methods the EOG was best suited for the development of the

VOR testing protocol as it is widely used in clinical testing, allows for the measurement of a large

range of eye movements, and is relatively inexpensive (Leigh and Zee, 1999).The EOG is

noninvasive, causes minimal discomfort and can record the position of each eye separately. Most

importantly for our VOR protocol, the electrodes that are attached to the test subject to record the

EOG are small which means they are able to measure eye position relative to the head even when

the head is being shaken. The low mass of the electrodes allows them to move with the head, and

they do not interfere with how subjects use their heads to track the moving target. The main

disadvantages of the EOG are the noise that lowers its spatial resolution, and a low frequency

drift that is often present in the signal. The noise can be especially problematic when the eye's

velocity is calculated as the derivative of the eye position signal.

Scleral contacts are often regarded as the most precise means of measuring eye position,

but the technique is invasive which makes it one of the more difficult methods to use with human

subjects. Subjects wear large contact lenses (larger than the iris to reduce slippage) in which a
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wire coil is embedded and there is also a wire lead that extends from the contact. The wire coil

moves with the eye, and its position is tracked as it moves within an electromagnetic field created

by a frame that surrounds the subject's head (Figure 3.17). At a cost of $15,000, the coil and

frame systems are expensive, but they are the most precise eye tracking tool available. They are

capable of measuring the horizontal, vertical, and torsional position of the eyes with a sensitivity

of 5 minutes of arc (Leigh and Zee, 1999). The precision of this method would be ideal for the

VOR experiments, where the small eye motions caused by head disturbances are of interest, but

the frame could limit the motion of the subject's head, and the use of contact lenses with human

subjects outside a medical facility can be problematic. These contact lenses require that a topical

anesthetic be applied to the eye, and there is an incidence of scleral abrasions in approximately 1

in 400 to 500 subjects ( Leigh and Zee, 1999; Hain, 2003). The scleral contact tracking method is

a very good research tool, but it will probably never become a clinically accepted device for

testing human eye motion (Hain, 2003).

Figure 3.17: Scleral contact (left) and frame that produces
electromagnetic field (Skalar Medical BV, 2003)

Infrared reflection and video based technologies that track the movement of the pupil and

iris are rapidly improving and are becoming the method of choice in many research laboratories
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for tracking eye motions (Hain, 2003). The systems often have less noise and more precision than

the EOG, can track horizontal, vertical, and sometimes torsional motions similar to scleral contact

lenses, and are noninvasive. The systems track eye motions using high quality cameras or

photoelectric cells that are typically mounted on the subject's head. Pictures of two such systems,

the Chronos (Skalar Medical BV, Delft, The Netherlands), and the Eye Link II (SR Research

Ltd., Ontario, Canada) are shown in Figure 3.18. Because of the head gear and the mass of the

cameras, the systems are inappropriate for use when the head is undergoing fast, high frequency

disturbances. The systems are often able to correct for small movements between the camera and

the head, but they are not designed to correct for the types of disturbances that were to be used in

the VOR testing protocol. The systems can be very expensive. For example, the Chronos eye

tracker, which can resolve eye motions as small as 0.1 deg, costs $40,000.

Figure 3.18: Head mounted eye trackers. The eye tracker at the left is the Chronos
tracker from Skalar Medical BV (2003). At the right is the Eye Link II from SR
Research (SR Research Ltd., 2003).

Construction of the EOG amplifier

Commercial EOG systems were available, but it was thought that it would be better to

build an EOG amplifier so that its characteristics could be specifically selected. The basic layout

of an EOG is simple. It requires electrodes that transduce the ionic current from the body to an

electronic current, a high quality dc, differential amplifier that can amplify the signal from the
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eyes with a gain a 500 to 1000, and a means to measure the output. Additional components, such

as isolation amplifiers that protect the subjects from electrostatic charge, and filters and balancing

circuits that help condition the signals are nice to have, but are not required to measure a signal

that is proportional to eye position. Advice was sought on EOG measurement from the Jenks

Vestibular Laboratory at the Massachusetts Eye and Ear Infirmary (Dr. Conrad Wall), and from a

vestibular system expert, Dr. H. Galiana (McGill University). Both Dr. Wall and Dr. Galiana

agreed that the EOG was the best eye tracking method for our experimental situation. Dr. Wall

recommended that the development of the VOR testing protocol should use the EOG, but that

different eye tracking methods should be considered as new technology was developed. He

cautioned that the noise in the EOG signals would limit the upper frequency at which the eye's

velocity could be calculated from the position measurements. Both he and Dr. Galiana

recommended measuring the "bitemporal" differential voltage between the outer canthi of the left

and right eye, rather than the monocular differential voltage of each eye. This meant that the

system would measure conjugate eye motions, rather than the motion of each eye individually. As

long as the target was projected at visual infinity, the eyes should move together. The bitemporal

measurement would have a higher signal to noise ratio than a monocular measurement, and this

would avoid the difficulties that occur when an electrode has to be placed between the subject's

eye and nose.

The core of the EOG amplifier that was built was a signal conditioning board designed by

Dr. Sylvain Martel (SCM-4X, Unima Project). The board is visible in Figure 3.19 at the back of

the EOG amplifier box. The signal conditioning board was designed to amplifying low voltage

signals from the heart, and so its components were of very high quality and well suited to amplify

the noisy, low voltage signals of the EOG. The EOG amplifier was set up to accept 4 channels of

differential input, so potentially the horizontal and vertical movement of each eye could be

measured. The first stage of the EOG amplifier was an isolation relay that was designed to protect

the subject from any electrostatic charge that may be in the signal conditioning board. After the
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isolation relays, the analog signals from the electrodes were input to dc, instrumentation

amplifiers (Burr Brown, lNA1 IDAG 95394006). These instrumentation amplifiers had a high

input impedance so they did not load down the source and a high common mode rejection ratio of

106 dB so that only the difference between the input signals was amplified. The gain of the

amplifier could be selected at 200, 600, or 800 times using toggle switches on the EOG amplifier

box. This allowed the amplifier's gain to be chosen so that the amplified signal would fill the

dynamic range of the data acquisition board that was used to record the EOG. After being

amplified, the signals were filtered. Two of the four channels were filtered by a 0.07 Hz high pass

filter to remove low frequency drift, and two channels were not high pass filtered so that the dc

component of the EOG was preserved. All four channels were filtered with a 60 Hz low pass

filter. The last circuit on the signal conditioning board was a unity gain follower which provided

low impedance so that the board could be connected to another circuit without it being loaded.

The amplified signals were then sent through isolation amplifiers (Analog Devices, AD2 1 OJN,

Norwood, MA) before being sent to a balancing circuit and then to a data acquisition board in a

computer. The isolation amplifiers isolated the subject from the 120 V, power supply of the

computer. Although the probability was small that current from the computer would be delivered

through the data acquisition board, via the signal conditioning board, its isolation amplifiers, and

then to the subject through the electrodes, these isolation amplifiers were added to ensure that the

system was safe. A summation amplier (balancing circuit) was built to generate a balancing

voltage that was added to the EOG output so that the signal measured by the data acquisition

device began from 0 V, rather than being biased from zero. A common problem with DC electro-

oculography is signal drift which is often caused by the half cell potential of the electrodes

(Webster, 1995). When EOG gain is set to a moderate 600 times, it only takes a 0.01 V difference

between the reference electrode of the forehead and the electrodes attached to the outer canthus of

the eye to create a 6 volt offset. The data acquisition board could only accept voltages with

magnitudes below 10 V, so a 6 V offset would limit the dynamic range over which the EOG
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output could be measured. The balancing circuit was built using precision operatonal amplifiers

(Linear Technology, LT1001, Milpitas, CA) and was designed to add or subtract up to 10 V from

the EOG ouput. The voltage was controlled by adjusting the resistance of a potentiometer. The

EOG amplifier was powered by two 12 V lead-acid batteries, and the isolation amplifiers and the

balancing circuit were powered by a +/- 15 V Kepko power supply (MPS620M).

Disposable silver-silver chloride electroders were used to measure the EOG (Hydrotrace,

Physiometrix, Billerica, MA). The electroes had a diameter of 15 mm (10 mm recording surface

diameter) and had a cushioned adhesive backing, which made their application simple. They are

shown in Figure 3.19.

Figure 3.19: Electo-oculgraph amplifier (left) and Hydrotrace Ag-AgCl electrodes (right).

EOG noise

The noise in the EOG signals was found to be slightly smaller that what is usually

expected from an EOG system. Typically, the noise of an EOG makes it possible to resolve eye

position to within 1 to 2 deg. The noise, which is considered to be any voltage that is not from the

corneal-retinal potential, comes from the EOG amplifier, leads, and electrodes, and from the EEG

and EMG voltages from the subject. The noise level thus depends not just on the equipment, but

on how cleanly the EOG signal can be measured from the subject. The noise in the EOG

measurements was quantified from the voltage that was measured when a subject fixated on a
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stationary target. During fixation, subjects can suppress many of the smaller eye movements that

are associated with pursuit tracking, so fixation represented the condition with the smallest

number of eye movements that could be measured by the EOG (Leigh and Zee, 1999). Typically,

the noise that was measured in the system was equivalent to a voltage with a standard deviation

of less that 10ptV at the electrode. In Figure 3.20 the noise measured while one subject fixated a

target is shown. The standard deviation of the voltage measurement is 5.1 pV/s. The PSD of the

voltage is largest at 0 Hz, and decays as frequency increases. The noise signal could be converted

into a position and velocity measure using a calibration of this subject's EOG measurement to the

subject's eye position. The standard deviation of the noise in terms of eye position was to 0.17

degrees. The maximum position amplitude that the noise equated to was about 0.5 deg. This was

better than the 1 to 2 deg expected from EOG. When the signal was differentiated, the noise

created an eye velocity signal with a standard deviation equivalent to about 5 deg/s. The

amplitude of the PSD for this "eye velocity" noise increased with the frequency of the PSD of the

"eye velocity" signal until about 10 Hz.

3.5.2 EOG gain calibration

The gain relation between the voltage measured by the EOG and the position of the eyes

had to be determined. This gain relation was not invariant, and could change over the course of

the experiment as the retinal charge varied or as the impedance of the skin under the EOG

electrodes changed. By calibrating the EOG immediately before measuring eye positions, the

most accurate interpretation of eye position data measured during the tracking trials could be

made. Guidance for calibrating the electro-oculograph was found in The American National

Standard Procedures for Testing Basic Vestibular Function (Acoustical Society of America,

1999).
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Figure 3.20: Noise measurement for the EOG. Plot A shows the "noise" measured in the

EOG while a subject fixated on a stationary target. The standard deviation of the noise

measurement was 5.1 x 10-6 V which was equivalent to 0.18 deg of eye movement. The

derivative of the noise is shown in plot B. Its standard deviation was 1. 6 x104 V/s which

was equivalent to an eye velocity of 5.7 deg/s. The power spectral densities of the signals

in plots A and B are shown in plots C and D.

The EOG calibration gain was calculated by directing the subject to known angular

positions and measuring the voltage at the EOG electrodes. In accordance with the ANSI

standard, it is routine to calibrate an EOG by having a subject scan their eyes between stationary

targets placed at -20, 0, and 20 degrees. The EOG voltage-eye position relationship is assumed to

be linear, and the gain relation found at these displacements is assumed to hold through

approximately +/- 40 degrees of eye motion. This simple procedure was used to calibrate the

EOG during the VOR experiments at first, but subjects found it boring and occasionally did not

follow the protocol well. The use of only a few static targets also made it difficult to verify that

the EOG voltage and eye position had a linear relationship throughout the range of eye motions
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that were anticipated to occur during the tracking trials. To make the calibration tests slightly

more interesting, and to evaluate the voltage-position relation across a larger range of angular

positions, a moving calibration target was used instead of the static targets. The moving target

stimulated smooth eye pursuit motions, whereas the static calibration targets stimulated saccades

and fixation. Thus the moving target created calibration conditions that more closely resembled

the gaze response that would occur during the tracking trials.

The calibration target was made from four, easily tracked, sinusoids (Figure 3.21). The

sinusoids had frequencies that were below or equal to 0.5 Hz, and had peak velocities less than 80

deg/s (Table 3.1). Each of the four sinusoids was executed an integer number of cycles, which

made the mean position and the mean velocity of the target signal zero. The trajectory started and

stopped at zero degrees, which was at the center of the projection screen, and the sinusoidal

components were separated from each other by a 1.7 s delay in which the target remained

stationary at the zero position. The delays provided an opportunity for subjects to bring their eyes

and head to the zero position at intervals during the calibration trials. This was intended to help

identify drift and offset in the measured head velocity and EOG voltage signals.

The underlying assumption of the EOG calibration was that the subject would learn the

sinusoids quickly and would track the target with little error or lag. The same calibration

sequence was used each time the EOG was calibrated which enhanced the subject's ability to

predict and track the target with little error. The calibration gain (KEOG) for the EOG was found

by fitting the subject's gaze position (gp) to the target's position (tp) sequence with a least-

squares fit. The subjects were instructed to track the target with the head fixed, so ideally their

gaze response consisted of only eye motions, and the gaze position could be represented by the

scaled EOG voltage (gp= KEOGxeog). Although subjects generally tried to keep their head fixed,

in reality their heads were not stationary, and the gaze position had to be formed by summing the

scaled EOG voltage with a measurement of the head position (gp = KEOGxeog + hp). The head

position had to be calculated from the measured head velocity. The EOG calibration gain (KEOG)
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was determined by fitting the EOG voltage (EOG) to the sequence formed by subtracting the

head position (hp) from the target position (tp): KEOG xeog = (tp - hp).

Calibration target
50

C.)-o

0

U'
0

0

-50 0

Figure 3.21

10 20 30 40

time (s)

Trajectory of the EOG calibration target

sine freq amp max vel cycles
(Hz) (deg) (deg/s)

1 0.35 30.0 66.0 3

2 0.25 24.0 37.7 2

3 0.30 39.0 73.5 2

4 0.50 24.0 75.4 4

Table 3.1: Characteristics of the calibration target's sinusoids

Drift and offset

The measured head velocity and the EOG voltage signals had offsets and drifts that had

to be removed before the subject's gaze signal could be formed and then fitted to the target. The

selection of an appropriate drift model was crucial to creating head velocity and eye position

sequences that correctly represented the subject's gaze during the calibration trial.

The drift in the head velocity signal was usually small and appeared to be linear.

Although the drift was small, the head position signal, which was created by integrating the

discrete time head velocity sequence with a trapezoidal integral approximation, was very
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sensitive to how the drift and offset were modeled and removed from the measured head velocity

sequence. Very different position sequences could be produced when different, but equally

reasonable, models of the drift were removed from the velocity sequence. One model might result

in a head position that had moved along with the target, while another method might indicate that

the head had ended the experiment pointing 10 deg away from the target (Figure 3.22). Two head

velocity sequences that are representative of the data collected from subjects are shown in Figure

3.23. The head velocity sequence in Figure 3.23A had one of the smaller drift rates, with a linear

drift calculated to be 0.4x 10- deg/s per second, while the plot in Figure in Figure 3.23B shows

one of the larger drift rates of 4.1 x 10- deg/s/s. These rates are both within the range of the drift

claimed by the angular rate sensor's manufacturer which is 1.Ox 10-3 deg/s per second. Ideally, the

subjects would have kept the head stationary and at the zero position throughout the calibration

trial, but in reality the subjects moved the head along with the target. It can be seen in Figure

3.23B, especially after the 30 s mark that the head moved at the same frequency as the target. If

the head had remained still, the measured head velocity data would have been only noise, and the

head velocity and head position sequences could have been uniformly set to zero. No processing

of the head velocity data would have been necessary, and the gaze could have been determined

from the EOG signal alone. But since the head moved, head position was a component of the

gaze response.

Head position
5

0

-10

-15
0 10 20 30 40

time (s)

Figure 3.22: Two possible head position sequences after
different drift models were removed from the head velocity.
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The drift model for the head velocity had to be consistent with assumptions about how

the head was used when the subject tracked the calibration target. The calibration trials began and

ended with the target at rest, and since the subject had been instructed to keep the head still, it

was likely that the head was at zero velocity at the beginning and end of the calibration

sequences. The response of the head sensor at these times probably represented 0 deg/s, or at least

very close to zero, plus some noise. Any difference in the mean values of the signal during these

periods was likely the result of the sensor drifting, and not the result of the head velocity

gradually changing over the course of the experiment. Additionally, the mean of head velocity

over the entire length of the trial should have been near zero, since the head began and ended the

calibration trial in nearly the same position.

A. Head velocity and linear drift B. Head velocity and linear drift
2 2

>-2 
-2 I

0 10 20 30 40 0 10 20 30 40

time (s) time (s)

Figure 3.23: Head velocity (brown) and linear drift (red). The head velocity sequence
in plot A had an average drift of -0.36x 10-3 deg/s/s, and the sequence in plot B had a
drift of -4.1x10-3 deg/s/s.

The measured EOG signal was also affected by offset and drift. A biasing circuit on the

EOG amplifier was used to minimize the offset, so the bias of the EOG was much smaller than

for the head velocity signal. Distinguishing signal drift from an actual eye motion was

complicated by the fact that the EOG signal was a measure of eye position relative to the head,

not a measure of the eye position relative to earth. To determine if the EOG had drifted, the signal

had to be considered with regard to the angular position of the head. Although subjects rarely
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kept their heads at zero throughout the calibration trial, they did tend to bring the head to rest

close to zero during the periods in which the target was stationary at the beginning and end of the

calibration trial, and during the rest period between each sinusoid. During these periods the EOG

signal more closely represented the position of the eye in space, which assisted in visualizing if

the EOG signal had drifted. The measured EOG signals tended to have one of three forms of drift.

In some of the eye sequences the drift was significant, but appeared to be linear. Plot A of Figure

3.24 shows a representative EOG signal with a large drift. The EOG voltage began at

approximately 0, followed a similar pattern as the target trajectory, but drifted along a line with a

slope of 5.6x 10-6 V/s. By the end of the trial, the drift was of the same amplitude as the sinusoid

of the eye voltage, which represented a displacement of approximately 24 deg. The subject's head

had remained within 1 deg of the zero position during this calibration trial, so assuming that the

subject had tracked the target well, the linear movement of the EOG signal was due to signal

drift. It did not represent eye movements that were made by the subject to compensate for the

head having been moved away from the zero position. The majority of the calibration trials had

EOG signals with a much smaller drift as shown in Figure 3.24B. The shift in the signal from

beginning to end still appeared linear, but was much less pronounced than for the signal in plot A.

The small shift in the EOG's voltage between the beginning and end of the trial was equivalent to

only a few degrees displacement. Although treated as signal drift, this difference in voltage could

have potentially represented a small shift in the eyes that compensated for a small head rotation,

or even gaze motions that were not directly focused on the target, but were within acceptable gaze

error for the subject to see the target clearly. Some of the EOG signals, though, had drifts that

were large and did not appear to drift in only one direction between the beginning and end of the

trial. Plot C of Figure 3.24 shows a representative signal. The EOG signal appeared to drift

downward during the first two sinusoids, and then drifted upward during the last two sinusoids.

Especially in these cases, it was necessary to consider carefully the EOG signal with regard to the
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position of the head in order to identify what was eye movement and what may have been signal

drift.
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Figure 3.24: Three forms of drift in EOG: A. large linear
drift; B. small linear drift; C. nonlinear drift.

Drift models

The drifts and offsets in the measured sequences were estimated by fitting "drift models"

to the data. The drift and offset were modeled as a constant, linearly changing function from the

beginning to the end of the calibration trial, and also linearly changing between the rest periods of
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the calibration trial. The estimated drift and offset were subtracted from the measured head

velocity and EOG signal to produce what was thought to be a more accurate representation of

what the head velocity and the eye position were during the experiment. These sequences were

then used to estimate the head position, and to calculate the EOG calibration gain by fitting the

gaze position to the target position. A drift model made sense for a data set when certain

assumptions about a subject's head and eye performance could be made, and once subtracted

from the measured data imposed certain constraints on the resulting data.

The simplest way to model the drift and the offset was to assume, contrary to the

evidence, that the head velocity and EOG signals did not drift, but were corrupted by a constant

bias voltage. When this model was applied it was assumed that at the beginning of the calibration

trial the head was at rest, the eyes were at 0 degrees relative to the head, and the gaze was focused

on the target. During the period before the target began to move, the mean value of the head

velocity signal represented 0 deg/s, and the mean value of the EOG signal represented an eye

displacement of 0 degrees. These mean values were subtracted from their respective sequences.

Any movement of the signals away from zero from then on was considered to be from actual

head and eye movements. This method produced a good fit of the gaze to the target only when the

signals had little drift. It usually produced a gaze that wandered away from the target when there

was drift in the signals (Figure 3.25).

A method that was more consistent with the apparent drift in the data was to assume that

the drift was linear, and to estimate the drift and offset by fitting a line by least-squares to the

head and EOG sequences. By subtracting the fitted lines from the measured data the resulting

head velocity and EOG signals have a mean of zero. The zero mean head velocity constrained the

head position to end the calibration trial at the same position as it had begun, which may not have

been precisely correct. The imposition of a zero mean on the EOG signal did not force the EOG

to end and begin the trial at the same value, and so overall the gaze response was not constrained

to match the target's zero degree position at the beginning and at the end of the trial. The target
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was set to a zero mean so it was not unreasonable to assume that the EOG had a zero mean. An

example of sequences that had their drift modeled in this manner is shown in Figure 3.26. Across

all subjects, this method tended to produce the best fits of the gaze to the target.
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Figure 3.25: Gaze fitted to target. Sequences were assumed to have an offset, but

not to have drifted. The gaze fit the target with a mean square error of 41.9 deg 2

A different linear drift model was formed by assuming that, on average, the data collected

at the beginning and end of the trial represented the head at 0 deg/s and the eyes at 0 degrees

relative to the head. These were periods for which the target was stationary. The difference in the

mean value of these regions was due to signal drift. The drift was assumed to be linear and was
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represented as a line fitted between these means. The resulting drift model was not very different

from the line found with the least squares fit, but it differed in that it did not impose a zero mean

on the head velocity. The final head position was not constrained to be equal to the initial head

position, though the initial and final eye position was constrained to be 0 degrees relative to the

head. As with the least-squares drift model, this method tended to produce good fits of the gaze to

the target.
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Figure 3.26: Gaze fitted to target. Sequences were assumed to have a linear
drift. The gaze fit the target with a mean square error of 5.0 deg2
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The final drift model estimated the drift with lines fitted throughout each of the five

periods during which the calibration target was stationary. The five stationary periods were

modeled with constants, equal to the mean of the data, and the drift between each of the

stationary periods was modeled by a line joining the end of one constant region to the beginning

of the next. The mean value during these stationary periods was calculated from the data after

transients had settled, and the head and eyes appeared to be at rest. This model required the most

restrictive assumptions about the subject's behavior to be valid, namely that each time the target

came to rest the head was held still, and that the head and the eyes were both brought to the zero

position. This method was not more effective at modeling the drift and fitting the gaze to the

target, for sequences that had linear looking drifts. It was however, very effective when the drift

did not appear to be linear but shifted directions during the trial. When that occurred the linear

drift models were inappropriate, and this method worked best.

Although the different drift models would sometimes lead to very different fits of the

gaze to the target position, the values calculated for the EOG calibration gain were surprisingly

insensitive to the drift model. Even in cases where the head and eye signals did not fit the target

well, the gain value that minimized the square error between the gaze and the target was often

close in value to a gain found from a processing method that created a very good fit (Figure 3.27).

It was therefore not crucial to choose the most exact drift model, since only the EOG calibration

value was needed, and each method led to the same value being calculated. Understanding how

the signal drifted was very helpful though, when identifying an appropriate drift model for the

tracking trials. The gain value that was accepted as the "EOG calibration gain" and that was

applied to the subsequent tracking trial was found by averaging the EOG gain values from all the

drift models that gave reasonable fits and gain results. Methods that were obviously incorrect

were excluded.
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Figure 3.27: Gaze fitted to target. The EOG gain was not very sensitive to the
method used to model the drift and fit the gaze to the target. In plot A, the EOG gain
was found to be 6.85 1x104 , while in plot B the EOG gain was found to be 6.856x10 4

3.6 Data acquisition and experiment control

Data acquisition was done using a National Instruments data acquisition board (National

Instruments PCI-MIO-16XE -10, Austin, TX). The board was capable of 3x10 6 samples per

second, had 16 bits of resolution and a +/- 10 V dynamic range. The board had a maximum

settling time of 10 microseconds between samples. The gain of the board was programmable so

that the input signal could be amplified to fill the full dynamic range of the board. Signals were

filtered by 6-pole, Bessel, anti-aliasing filters (Krohn Hite Corporation, Avon, MA) with cut off

frequencies set to 40 Hz, before they were sampled by the data acquisition board. Bessel type

filters were selected because their phase response is more linear than those of other low pass

filters. When the phase response is linear, the time shift is the same at all frequencies. The data

acquisition was controlled from an application written with Visual Studio 6.0 (Microsoft

Corporation, Redmond, WA). The research began with a 180 MHz, Pentium Pro personal

computer, and by the time the research project neared completion was run from a 1.6 GHz,

Pentium 4.
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A second computer was used to output the sequences that controlled the position of the

target and the torque output of the head perturber. The output was run from a Visual Studio 6

application that relied heavily upon a custom timer application written by Dr. Serge Lafontaine

which enabled the timing of the output signals to be executed precisely.

Data analysis was done offline. Analysis was conducted using applications written

primarily in Mathcad 2000 and 2001 (Mathsoft Corp., Cambridge, MA) and by using and

developing algorithms in the Plexus analysis library written by Prof. Ian Hunter.
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Chapter 4

Design of visual and vestibular inputs

4.0 Chapter summary

4.1 Input signal requirements

4.2 Torque perturbation

4.3 Visual target

4.4 Tracking unpredictable targets with torque perturbations applied to the head

4.0 Chapter summary

Chapters 1 and 2 discussed how a system identification of the vestibular ocular reflex

could be conducted during natural, head-free, gaze tracking. By applying an unpredictable

perturbation to a subject's head, and controlling the trajectory of a visual target being tracked by

the subject, the performance of the VOR can be evaluated as it creates eye movements that

compensate for the disturbance motion of the head, and so enables clear vision. This chapter

discusses the experimentation conducted to identify visual target and torque perturbation

sequences that were appropriate inputs for the visual and vestibular systems. A PRBS torque

sequence and a random target velocity sequence, with specified amplitude and frequency content,

were found to stimulate the appropriate physiological responses from which the VOR could be

evaluated.
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4.1 Input signal requirements

It was shown in Chapter 2 that a linear system identification of the VOR could be

conducted by disturbing the position of a subject's head with an applied torque perturbation while

the subject tracked a moving visual target. The visual target acts as the experimentally controlled

goal for the gaze system and directs the visually mediated head and eye tracking motions. The

torque perturbation disturbs the position of the subject's head and stimulates the vestibular system

to generate eye motions that compensate for the unwanted head motions, and so maintains clear

vision. The performance of the VOR is evaluated by mathematically distinguishing the

vestibularly driven eye component from the measured eye tracking response, and evaluating the

head velocity - eye velocity relationship.

The appropriate design of the torque and the target input sequences is crucial to the

analysis of the VOR. To stimulate adequately the visual and vestibular systems so that an

identification of the VOR can be made with linear system identification techniques, the torque

and target inputs must be designed to meet four general criteria. First, the inputs must have

frequency spectra and amplitude distributions rich enough to stimulate smooth pursuit tracking

and VOR responses that span, or exceed, the full range of natural behavior. This ensures that the

evaluation reflects the full, functional, system level dynamics of the VOR. To match the

disturbance motions experienced by the head during natural activities, the torque perturbation

should stimulate horizontal head motions between 0.5 and 3.0 Hz, and create head velocities that

are as high as 90 deg/s (Demer et al., 1991; Grossman et al., 1989). The magnitude of the torque

must be sufficient to induce a measurable VOR response, but cannot be so high that subjects are

prevented from voluntarily controlling head position while tracking the target. To encourage

smooth eye and head motions, the visual target should move smoothly across the screen with

velocities that approach 30 deg/s and with frequencies from 0.0 Hz to 2 to 3 Hz; the upper limits
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are determined by the subject's ability to track the target without excessive error and without

relying upon saccades.

Second, the input sequences must be unpredictable. Subjects must not develop a strategy

of stabilizing the head against the torque perturbations, nor drive their gaze from a prediction of

where the visual target will travel to or what direction the torque will move the head. The eye and

head motions must be causal, not anticipatory, responses to the controlled inputs so that the

calculated performance of the VOR and the gaze tracking systems reflect the ability of the

underlying reflexive systems, not of the systems modified by the subject's ability to model and

predict the head and target's motion.

Third, the torque and target inputs must be designed to limit the occurrence of nonlinear

head-neck and gaze tracking responses. These include responses, such as making saccadic eye

movements and modulating the properties of the head-neck system, that occur naturally during

gaze tracking. These nonlinearities can be considered as outputs of systems that are beyond the

controlled bounds of the experimental protocol, which is focused on the VOR's stabilization of

smooth pursuit eye motions. When present, these nonlinearities change the dynamic relation

between the controlled inputs and the measured response, and reduce how well a linear systems

analysis can capture the dynamics of the VOR. Last, and perhaps most important for the

mathematics of the VOR analysis, the torque and target sequences must be statistically

uncorrelated so that the visually mediated and reflexive vestibular components of the eye motions

can be quantified, and the dynamics of the VOR identified.

To conduct the proposed VOR testing protocol, a large set of input signals, composed of

pairs of torque and target sequences that met the four design criteria, was needed. The set had to

be extensive so that several subjects could be tested, and so that the limits of each subject's

tracking and VOR performance could be explored. A protocol similar to this had not been used

before to test the VOR or gaze tracking. It was not known, therefore, what types of signals would

best stimulate the natural responses of the visual and vestibular systems and still permit the
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experiment to be controlled in such a way that the analyses were accurate. Thus, the first step in

designing the input signals was to determine experimentally the fundamental signal

characteristics (e.g. signal type, frequency spectrum, amplitude distributions, duration) that the

torque and target inputs needed to have in order to stimulate, individually, the head-neck system

and the gaze tracking system. Once it was understood how to stimulate the head and the tracking

systems separately, the torque and target inputs were delivered to the subject simultaneously to

validate that the systems still responded within the bounds required by the protocol.

It should be stressed that the goal was to generate a set of signals, and a systematic

method for creating the signals, that would satisfactorily meet the needs of the VOR testing

protocol. The goal was not to identify the optimal signals to test the systems, though of course,

the desire is to achieve that eventually.

4.2 Torque perturbation

Torque sequences that were appropriate for use in the VOR testing protocol were

identified primarily from the results of two sets of experiments. In the first set, unpredictable

torque perturbations were applied to a subject's head while the subject tracked a target that

moved with a sinusoidal trajectory. These experiments were conducted to identify the amplitude

of the torque perturbation necessary to disturb the head as subjects tracked a moving target. The

second set of experiments, in which subjects actively corrected for disturbances to the head's

position that were caused by a pseudo-random binary torque perturbation, was conducted to

validate that the pseudo-random binary sequence (PRBS) was an acceptable input for the VOR

protocol, and to characterize the dynamic response of the head-neck system to the horizontal

plane perturbations. The experiment and its results are fully described in Chapter 6.

106



4.2.1 Tracking sinusoids while head was disturbed by torque perturbations

The first experiments that were conducted with the head-perturber were designed to

quantify the magnitude of the torque perturbation that was needed to disturb the head as the head

was voluntarily moved to follow a sinusoidal target. During the development of the head-

perturber, it had been observed that broadband inputs, with amplitudes as low as 0.1 N.m,

delivered enough power to a subject's relaxed head and neck for the dynamics of the head-neck

system to be identified. This magnitude was only ten percent of what had been estimated to be

needed, and indicated that the relaxed head and neck were very compliant and could be

sufficiently disturbed by a small amplitude torque. It was not known if the torque required to

perturb the head would increase when the neck was not relaxed. The stiffness and damping

properties of muscle are known to change with the load and displacement of the muscle (Kearney

and Hunter, 1990). The required perturbation magnitude could change dramatically when the

neck muscles were being used to move the head to follow a target. The level could also vary as

the control and stabilization requirements of the head changed. Experiments were conducted to

identify the minimum perturbation amplitude needed to elicit a measurable VOR response while

the subject used head and eye motions to track a sinusoidal target.

Experimental methods

Subjects were seated in a rigid chair under the helmet of the head perturber. The helmet

was lowered onto the subject's head, and tightened with head and chin straps so that it did not slip

when the torque was applied or when the subject moved the head. The head perturber was

adjusted so that the head and the helmet could rotate without there being any significant

eccentricity between the neck's and the helmet's rotational axes. This allowed the subjects to

rotate the head without interference from the perturber. Only two subjects were used in this

experiment, as the goal was to develop an appreciation for the level of torque necessary to disturb

the head. A laser dot was projected onto a flat screen 1400 mm in front of the subject, and moved
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in the horizontal plane with a sinusoidal trajectory. The sinusoidal trajectory was chosen because

it is one of the easiest trajectories to track. Single frequency sinusoids are very predictable, and

can be learned by a subject within one half cycle. Subjects can often track sinusoids with little

gaze error and slip, and at speeds much higher than that for unpredictable targets (Baloh et al.,

1980; Young and Stark, 1963; Rashbass, 1961). The sinusoidal target trajectories were moved

through 83 degrees at frequencies of 0.15, 0.30, 0.45, and 0.60 Hz. These frequencies resulted in

peak target velocities of 39.4, 78.8, 118, and 157.6 deg/s respectively, which exceeded what is

considered to be the upper velocity limits for smooth pursuit tracking of predictable targets

(Leigh and Zee, 1999). The subjects were required to track the target using natural head and eye

motions. The large angle through which the target traveled discouraged the subjects from tracking

the target using only eye movements. While the subjects tracked the target, a pseudo-random

binary torque perturbation was applied to the subject's head with the head perturber. Pseudo-

random binary sequences (PRBS) are commonly used for disturbance signals because they

approximate an unpredictable, bandlimited, white sequence even though they are

deterministically generated, and have a binary amplitude distribution (Godfrey, 1993; Davies,

1970). At each frequency tested, perturbation amplitudes from 0.05 to 0.25 N.m were applied in

increments of 0.05 N.m. The maximum amplitude was limited to 0.25 N.m, because at that

amplitude it was obvious that the head was being disturbed and the VOR was creating eye

motions to maintain clear vision. The applied torque perturbation, the target's trajectory, the

subject's head velocity, and the binocular eye position were measured and sampled at 100 Hz.

Results

As expected, as the level of torque was increased within trials conducted at the same

frequency, the VOR driven eye motions became stronger, and an equal and opposite relationship

between the head and eye motions became more apparent. The plots of Figures 4.1 and 4.2 show

data from a subject tracking a 0.3 Hz sinusoid. At low amplitudes, the torque perturbations did
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not disturb the head's position enough for the compensatory VOR to be observable, as shown in

Figure 4.1 for a torque of 0.05 N.m. The subject's gaze did not match the target's motion exactly,

but it did follow the target well. Although at times it led, and at other times lagged the target, the

gaze response moved approximately in synchrony with the target. This is a result of the subject

being able to predict the sinusoidal trajectory of the target. The head led the target, and its peak

amplitude was about half that of the target. Eye position, which was measured relative to the

head, lagged both the head and the target, and its amplitude was much closer to that of the target.

Both the head and the eye moved in a smooth periodic path, similar to the sinusoidal movement

of the target. Together, the eye and the head summed to a gaze that moved with the target, and

equaled its amplitude. The trend of the head leading the target and the eye lagging the target was

seen at all frequencies, although as the target frequency was increased the head's lead and the

eyes' lag were less evident. VOR induced eye motions began to develop as the torque amplitude

was increased. When the torque was 0.10 N.m, the perturbation affected the position of the head

and eyes, and it became evident that the eyes were compensating for the head's motion as shown

in Figure 4.2. Once the torque had reached 0.2 N.m, the head perturbation produced an obvious

change in head and eye position, with the eye velocity and the head velocity moving in opposite

directions. The head and eye position plots no longer looked like the sinusoidal movement of the

target. The eye velocity was almost equal and opposite to that of the head. If they were exactly

equal and opposite, the velocities would sum to zero, and would not create a gaze response that

followed the target's sinusoidal trajectory.

As the frequency of the target was increased, and therefore also its speed, higher

amplitude torque perturbations were needed to produce an obvious VOR response. In the plots

shown in Figures 4.1 and 4.2, in which the target was traveling at a frequency of 0.30 Hz, the

0.15 N.m torque was sufficient to produce a VOR response. A perturbation of 0.15 N.m was still

adequate when the target traveled at 0.45 Hz, but was not sufficient when the frequency increased

to 0.60 Hz. Figure 4.3 compares the effect that the 0.15 N.m torque had on the subject when
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tracking the 0.15, 0.45, and 0.60 Hz targets. At 0.15 Hz, the 0.15 N.m torque created a significant

disturbance to the subject's head. In both the position and the velocity plot it can be seen that the

head has been displaced and is not moving on a smooth trajectory. The VOR eye motions are

obvious in the velocity plot, and are even clearer in the position plot. When the target was

increased to 0.45 Hz, the head did not appear to be as strongly perturbed as when the target was

traveling at 0.15 Hz (Figure 4.3). The eyes still moved with a component opposite to the head, but

the velocity was not a smooth mirror image of the head. For targets traveling at 0.6 Hz, the head

was not disturbed much by the torque.
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Figure 4.1: Tracking response to a 0.3 Hz sinusoid when a
0.05 N.m PRB torque perturbation was applied to the head.
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Figure 4.2: Progression of eye and head motions as the amplitude of the PRB torque
perturbation was increased. The target frequency was held constant at 0.3 Hz. The torque
amplitude was 0.10 N.m in plots A and B, 0.15 N.m in plots C and D, and 0.20 N.m in
plots E and F.
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Figure 4.3: Progression of eye and head motions as the target's frequency was
increased. The amplitude of the torque perturbation was held constant at 0.15 N.m. The
target frequency was 0.15 Hz in plots A and B, 0.45 Hz in plots C and D, and 0.60 Hz in
plots E and F.

Overall, torque perturbations with amplitudes of 0.20 to 0.25 N.m created measurable

VOR responses across all frequencies tested. These were about the minimum amplitudes needed

at the highest frequency of 0.6 Hz, and although higher than required at the lower frequencies,
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subjects were still able to control their head and to track the target well at these low frequencies.

The 0.20 to 0.25 N.m amplitude was significantly lower than the original estimate of 1.0 N.m.

This estimate was based on the assumption that a torque between 5 and 10 % of the maximum

torque that could be generated by the neck in rotation would be required to create an adequate

disturbance. Little was found in the literature, however, about the maximum rotational torque that

can be generated by the neck, although there were data on the maximum neck forces that could be

generated in flexion, extension, and lateral flexion (Vasavada et at., 2002). The maximum

rotational torque was therefore calculated from estimates of the head's rotational inertia and peak

acceleration. It was assumed that an average male skull has a radius of 100 mm, and a density

equal to that of water. This results in a rotational inertia of between 1.57x 10- kg.m2 (if

approximated as a sphere) and 1.68x 10- kg.m 2 (if approximated as a cylinder). These

assumptions were confirmed by a study of 21 cadaver heads that found that the mean rotational

inertia of the head about the vertical axis is 1.5x 10- (Beier et at., 1980). Since the head can

attain peak accelerations between 1000 and 1500 rad/s2, the estimated peak torque was between

16 and 24 N.m. The selection of 1.0 N.m fell on the low side of 5 to 10% of this maximum torque

range. However, it was later observed that a healthy 32 year old male found it difficult to rotate

his head in the horizontal plane against more than 4.5 N.m of torque. If 4.5 N.m is assumed to be

near the maximum torque that can be generated by the neck in pure rotation, then the neck is not

nearly as strong as had been estimated, and it seemed more reasonable that a torque of 0.2 N.m

would be adequate to disturb the head's position during tracking.

4.2.2 Dynamics of the head-neck in response to horizontal plane torque perturbations

Torque perturbations that were driven from a PRBS worked well during the tests in

which the subject tracked the sinusoidal targets, and so appeared suitable for use in the VOR

protocol. They were easy to generate with the characteristics needed to disturb the head's

position, were well tolerated by the subjects, perceived as unpredictable, and were reproduced
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consistently by the controller and motor. The one potential drawback to the PRBS was its limited

binary amplitude spectrum, but since 0.2 N.m had been found to be a good amplitude over a

range of voluntary head motions, a single amplitude PRB torque sequence seemed adequate for

testing the VOR under natural, head-free, gaze tracking conditions. It still needed to be

determined whether the PRBS stimulated the desired frequency response from the head, and if

there was a linear relationship between the torque input and the head's response. Since the same

torque amplitude could create different responses at different frequencies, it was possible that the

amplitude that stimulated a liner response under some conditions could drive the head-neck

system beyond a linear range under other conditions. A linear relation between the head-neck

response and the torque input was necessary for the linear analysis of the VOR to be valid.

A study was conducted to examine the dynamics of the head-neck system in response to

horizontal-plane torque perturbations, and to understand how the dynamics of the system changed

as a function of the magnitude of the static torque applied to the head. A quasi-linear testing and

analysis approach was used to quantify the dynamics of the head-neck system at different levels

of mean (static) torque. An operating point for the head-neck system was established by applying

a static torque to the head with the head perturber. The system dynamics were then probed by

disturbing the head-neck system with a rich spectrum, PRB torque disturbance added on top of

the static torque. What follows is a summary of the experiments, results, and their implications to

the VOR testing protocol. A complete description of these experiments and the experimental

results can be found in Chapter 6.

The physical set-up of the head-neck study was similar to that used when the subjects

tracked the sinusoidal target, but the testing procedure and the task given to the subjects were

different. Each subject was seated under the head perturber in front of the screen, and the head-

perturber was attached to the head. Once the helmet was adjusted, subjects were asked to rotate

their head to a natural, "zero rotation" position. A laser pointer mounted on top of the helmet was

illuminated, and its projection was marked on the screen as a visual reference. During
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experimentation the projection of the laser relative to this mark acted as visual feedback so

subjects would know where their head was pointing. Each experimental trial began by applying a

static (constant) torque to the helmet, which tended to displace the subject's head away from the

zero-rotation position. The static torque ranged from 0.0 to 0.65 N.m, and was applied in

increments of 0.05 in both the clockwise and counterclockwise directions. Subjects were

instructed to compensate for the torque, and to rotate their head so that the laser projection was

re-aligned with the zero-rotation mark. A small amplitude, zero mean, PRBS perturbation torque

was added to the static torque. This perturbation shook the subject's head about the zero-rotation

point, effectively acting as a disturbance to a system defined at an operating point established by

the static torque. Subjects were instructed to correct for any position disturbance, and to try and

keep the laser pointer aligned with the zero-rotation marker. Trials were run for 60 to 90 s. Six

subjects, one woman and five men, participated in this study. Their ages ranged from 22 to 33.

All were healthy graduate students with no history of or apparent neuromuscular or vestibular

problems, and had normal to corrected-to-normal vision.

The torque applied to the helmet, the helmet's rotational velocity, and the head's

rotational velocity were sampled at 100 Hz. The data were analyzed as representing

measurements of a quasi-linear system that had been disturbed about an equilibrium point. The

system's equilibrium point and its associated dynamics were set by the system's reaction to the

applied static torque, and the disturbance about this operating point was created by the torque

perturbation. The admittance impulse response function (IRF) was calculated for each

experiment, and a second-order parametric model was fit to the IRF. Admittance is defined as the

relation between a torque input and a velocity output, which is the mechanical analog of the

electrical admittance.

The PRB torque sequence was executed at 10, 15.4, and 20 changes per second, and

scaled for a magnitude of +/-0.1 or 0.2 N.m. The execution rates were selected to disturb the

head throughout the 0.6 to 2.7 Hz range of frequencies that Grossman et al. (1988) had found to
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be predominant for the head in the horizontal plane during locomotion, and for which the VOR is

normally required to stabilize vision. Representative power spectral densities (PSD) of the torque

input and the head velocity output are shown in Figure 4.4. The torque input was successful at

stimulating the head throughout, and beyond, the 0.6 to 2.7 Hz bandwidth. The PSD of the torque

was highest near 0.0 Hz, gradually decayed as the frequency increased, and then dropped sharply

near the frequency at which the PRBS was executed. The PSD of the head velocity was strong

from approximately 0.5 Hz to beyond 5.0 Hz, and its peak value usually occurred between 1 and

3 Hz. Below 0.5 Hz the power in the head velocity decayed rapidly. In addition to disturbing the

head across a wide frequency band, the randomness of the PRBS prevented the subjects from

predicting the sequence of torque perturbations. Subjects reported that, although the perturbations

were mild and did not create large head motions, the randomness of the sequence made it very

difficult to bring the laser back to the zero position after being disturbed. By the time they were

attempting to correct for the disturbance, and had generated a motion towards the zero-rotation

position, another perturbation would displace the head. A critical analysis of whether the torque

had stimulated the head velocity sufficiently comes from the impulse response analysis that

relates the torque input to the velocity output, and from calculating the coherence function which

can identify if nonlinearities or a poor signal to noise ratio corrupted the data.

A. PSD: torque input B. PSD: head velocity output
1 10
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Figure 4.4: Power spectral densities of a PRB torque perturbation input (plot A) and
a head velocity output (plot B).
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The IRF analysis indicated that between 0.5 and 10.0 Hz, the head-neck system behaved

like a quasi-linear, passive system in response to small stochastic inputs applied to the head in the

horizontal plane. When the mean torque was held constant, and the system perturbed with the

PRB torque sequence, the head-neck system responded much like a linear, second-order,

underdamped system. The system was not, however, strictly linear. The properties of the head-

neck system were sensitive to the static component of the input torque, and the characteristic

impulse response function changed markedly as the mean torque level was changed (Figure 4.5).

As the static torque was increased, the effective stiffness and damping of the system, which

represented the combined effects of neuromuscular reflexes, voluntary control, and passive

viscoelastic properties of muscle, progressively increased, but did so such that the system's

second-order damping ratio remained essentially constant across a mean torque of 0.0 to 0.65

N.m.

A. Non-parametric head-neck IRF B. 2d order parametric head-neck IRF
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Figure 4.5: Non-parametric IRFs (plot A) and second-order parametric IRFs (plot B)
for the head-neck system. A mean-torque of 0.10 N.m (solid), and a mean torque of 0.55
N.m (dotted) were applied to the head.

At frequencies below 0.5 Hz and above 10.0 Hz, the characteristics of the system were

not captured by the linear input-output analysis, and the system's behavior could not be described

by constant parameter, second-order models. Low coherence-squared values indicated that at

these frequencies the analysis was corrupted by system nonlinearities and/or measurement noise.
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Above 10 Hz it is evident that the drop in coherence was due to low input power, which reduced

the signal-to-noise ratio. As can be seen in Figure 4.6, around 10.0 Hz the drop in coherence

mirrors the drop in input power. The input power remained high below 0.5 Hz, so the low

coherence-squared measures at these frequencies were not caused by a low signal to noise ratio,

but by the nonlinearity of the active control system that dominates the head's response at low

frequencies.

A. Coherence squared function B. PSD of torque input
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Figure 4.6: Coherence-squared function for a torque input and the head velocity
output (plot A), and the power spectral density for the torque input (plot B).

The results of the tracking and the head-neck experiments supported two important

conclusions with regard to the VOR testing protocol. A PRBS input can stimulate the head

through the desired frequency band for which the VOR naturally functions to stabilize vision, and

does so in a manner that is unpredictable, but still allows a subject to control the head and to track

a target. When stimulated by a low amplitude PRB torque sequence, a linear relation was

preserved for the head-neck system, and the VOR response could be analyzed with the linear

method's described in Chapter 2.
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Figure 4.7: Block diagram for the gaze tracking system.

4.3.1 Requirements for the visual target

A visual target provides a clear, controlled goal for the gaze tracking system, and ensures

that the VOR is evaluated under conditions that encourage natural system behaviors. The target

drives the visually mediated eye and head sub-systems, which are shown as gi and g2 in Figure

4.7. During the experiment, the target must be tracked accurately so that a strong target-gaze

relation exists, and it should also stimulate a range of gaze movements so that the resulting

evaluation reflects the VOR's performance throughout its full range for which it stabilizes gaze.

A linear identification of the VOR requires that the target's trajectory is unpredictable, and that

the target is tracked primarily with smooth eye and head motions. This minimizes the use of

predictive tracking mechanisms and saccades which are natural oculomotor responses that

enhance the capabilities of head-free tracking, but which can introduce time-variance and non-
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linearities into the gaze response. These dynamics would not be captured or modeled well by the

proposed linear systems analysis.

It is difficult to create a target that is both unpredictable and that stimulates smooth

pursuit tracking, as these two requirements are somewhat contradictory. The characteristics that

make a target unpredictable also tend to lead to a tracking response that is populated with

saccades. Some researchers use the breakdown in the smooth-pursuit response, as marked by the

occurrence of saccades, to classify a target as unpredictable (Barnes et al., 1987). The solution

comes from understanding what is achieved by making the target unpredictable. As discussed in

Chapter 1, natural gaze tracking is driven by a mixture of visual feedback and predictive

mechanisms, and is characterized by smooth eye motions interspersed with saccades (Carl and

Gellman, 1987). When a target first appears, it is tracked using visual feedback. Since 70 to 150

ms are required to process the target's image and to generate head and eye tracking movements,

the visually driven gaze response lags the target (Figure 4.8a) (Leigh and Zee, 1999). As the

target is followed, its motions are learned and a model of its trajectory is developed by predictive

mechanisms in the tracking system ( Wellenius and Cullen, 2000; Barnes and Grealy, 1992;

Young, 1977). The signal driving the gaze system changes from one derived from the visual

feedback signal to a signal based on the internal model of the target's trajectory. This often

reduces tracking error by advancing the phase and improving the gain of the gaze so that it better

coincides with the movement of the target (Figure 4.8b). Visual feedback is not ignored, but is

used to monitor the error between the gaze and the target. If the target changes course, or if the

model of the trajectory is inaccurate, the system reverts back to being driven by visual feedback,

and the modeling process starts over (Barnes and Asselman, 1991). When the target's motion is

predicted well, little error exists between the gaze and the target, and the gaze tracking response is

smooth with few saccades. When the target is not predicted well, the gaze's position and velocity

do not match those of the target, and saccades are used more frequently to keep the gaze close to

the target. When the target cannot be predicted some saccades will occur. Since they cannot be
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eliminated, the trajectory must be generated so that their use is minimized. The target must be

tracked with visual feedback, but the error cannot be so great that saccades are frequently

triggered to interrupt the smooth tracking.

A. Position: target (red), gaze (blk) B. Position: target (red), gaze (blk)
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Figure 4.8: Gaze tracking. In plot A the target was unpredictable and the subject's
gaze (black) lagged the target (red). In plot B the subject was able to predict the target
and there was little lag between the target and the gaze.

Rather than stating that the goal is to make the visual target unpredictable, it is more

correct to state that the goal of the target is to stimulate a tracking response driven predominantly

by visual feedback, and not by predictive mechanisms. Predictability is a difficult characteristic to

quantify, and it is often not an "either-or" characteristic of a sequence (Michael and Melvill

Jones, 1966). Unless the sequence is a strictly random, white sequence, it is likely that it will have

some level of predictability. By making the target "unpredictable", the anticipatory motions of a

predictive response, and the time variance that occurs as the gaze tracking system switches

between prediction and visual feedback, are avoided. A consistent response from the tracking

system is desired throughout the experiment, not a response that varies as components of the

tracking response are intermittently enhanced by predictive mechanisms. An invariant drive to the

gaze tracking system helps the linear analysis, and also makes it easier to distinguish between eye

motions that were driven by visual feedback and eye motions caused by the VOR, which have a

much shorter latency of about 15 ms. If a tracking response is driven by visual feedback, and not
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by predictive mechanisms, a consistent 50 to 150 ms lag should exist between the target and the

gaze response at all frequencies for which the target was controlled.

4.3.2 Generating experimental target trajectories using the Hunter-Kearney stochastic swap

It was anticipated that targets that would satisfy the visual system's input requirements

could be created by driving the target from a random sequence with the correct balance of

velocities and frequencies. Gaze tracking studies have demonstrated that the dominant factors

that influence whether tracking is maintained by smooth pursuit or by saccadic motions, and

whether the gaze is driven by visual feedback or by predictive mechanisms are the target's

velocity, frequency spectrum, and whether its trajectory follows repeated patterns. The smooth

pursuit system responds to both target position and target velocity, but studies indicate that it is

the velocity of the image on the retina that is most important, and therefore the more appropriate

characteristic to control to drive smooth pursuit tracking (Leigh and Zee, 1999). Smooth pursuit

tracking has been found to be effective only with target velocities up to 10 to 40 deg/s; above

that, saccades are needed to help keep the gaze on the target (Baloh et al., 1980; Young and Stark,

1963; Rashbass, 1961). The predictability of the target, or, more precisely, whether gaze tracking

was enhanced by predictive mechanisms or driven by visual feedback, is determined by the

signal's frequency content, not its complexity (Barnes and Lawson, 1989; Barnes and Ruddock,

1989). For pseudorandom targets made from mixed sinusoids, the tracking of all the sinusoidal

components is enhanced by predictive mechanisms when the maximum frequency is below 0.4 to

0.8 Hz. However, when the highest frequency component is above this critical range, only the

tracking of the highest frequency component is enhanced by predictive mechanisms; the tracking

of the lower frequency components is driven by visual feedback, and smooth pursuit motions are

observed to break down (Barnes and Asselman, 1991). When the highest frequency component of

a target made from as few as two sinusoids exceeds the 0.4 to 0.8 Hz, the lowest frequency

component can be tracked as if it were unpredictable. By balancing the speed and the frequency
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content of the target, and by using a random sequence, it was expected that the target could be

made to stimulate smooth pursuit tracking responses driven by the visual feedback.

It seemed reasonable to use the sums of sinusoids as the basis for the set of target velocity

sequences. "Sum-of-sines" sequences are often used in oculomotor studies because they are

smooth, generally well tolerated by subjects, easy to define and to manipulate, and, as

demonstrated by Barnes et al. (Barnes and Ruddock, 1989), simple to arrange so that the tracking

of all frequency components, except the highest, is driven by visual feedback. Along with

"constant velocity ramps", mixed sinusoids have been used in many of the studies that established

the body of knowledge about the gaze tracking system. It was thought that the findings from

those studies would provide the basis for the development of targets that would satisfy the needs

of the VOR testing protocol.

In practice, the sum-of-sines sequences had shortcomings that made them awkward to

design and inadequate for use as the target's velocity sequence. The obvious drawback to sum-of-

sines sequences is that they stimulate a linear system only at distinct frequencies, rather than

continuously across a frequency range. In the context of the VOR testing protocol, the role of the

visual target is to control, or at least to direct, the gaze throughout the full bandwidth of smooth

pursuit tracking. With a sum-of-sines sequence, the gaze system is only controlled at the discrete

frequencies of the individual sinusoids, leaving many frequency bands for which the VOR and

gaze tracking performance would not be explicitly analyzed. A large number of sinusoids had to

be combined for the target to have a frequency spectrum that could approximate a continuous

spectrum across the bandwidth that was to be tested. This created a practical challenge in

generating a sequence that would remain within the physical bounds of the experiment. As more

and more sinusoids were added together to create a more continuous frequency spectrum, it

became increasingly difficult to combine their amplitudes, frequencies, and phases so that the

target's image remained within the limits of the screen onto which it was projected. The target

could always be kept on the screen by abruptly stopping the sequence when it reached the ends of
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the screen, but this affected the smoothness of the trajectory, and altered the target's frequency

spectrum. Another simple, but also inadequate, solution was to keep the velocity amplitude of

each frequency component small. When this was implemented, however, the target tended not to

move over a sufficiently wide area of the screen, and did not stimulate much of a range of head

and eye motions. These trajectories were often not interesting for the subjects to track, and as a

consequence subjects were not engaged in the tracking task. It was not difficult to create a good

sum-of-sines sequence, but each sequence's design became a laborious, manual process of

deciding which frequencies and amplitudes to choose so that when projected onto the screen the

target appeared appropriate for the subject and stimulated the right type of head and eye motions.

It became apparent that it was impractical to define the large set of target trajectory sequences

that were needed to conduct the VOR experiments with this method.

The use of sum-of-sines sequences to create the targets also failed to address the cross-

correlation requirements for the target and the torque perturbation sequences. This was not

important for creating a target that was only to be tracked, but was vital for creating the targets

for use in the VOR experiments. The torque and target velocity sequences needed to span similar

frequency ranges, and so it was unlikely, though possible, that when they were generated

independently, they would be sufficiently uncorrelated for the VOR analysis to be conducted.

When two sequences have similar frequency content, they have a non-zero cross spectral density

(Jenkins and Watts, 1968). The cross-power spectral density (cross PSD) is the Fourier transform

of the cross-correlation function, and so a non-zero cross-power spectral density results in a non-

zero cross-correlation.

When two different types of signals are required to be uncorrelated, as is the case when

using a PRBS for the torque and a sum-of-sines for the target, it is not uncommon to create many

sequences that meet the individual stimulus criteria, and then to mix and match the sequences

until two are found serendipitously that are uncorrelated. Although possible, and ultimately

effective, this would not be an efficient approach for defining a large set of torque and target
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sequences that are needed to investigate the tracking and VOR systems. A more direct way is to

design specifically the sequences so that they meet the testing criteria.

It is relatively easy to generate two uncorrelated sum-of-sine sequences by ensuring that

the sequences do not share the same, or harmonically related, frequencies (called interweaving). It

is also possible to "interweave" the elements of two PRBS inputs so that the sequences are

uncorrelated, but still approximate bandlimited white signals (Davies, 1970). The interweaving of

sinusoids in the frequency domain, and the interweaving of PRB sequences in the time domain

are very different processes, but are given the same name, and can result in uncorrelated

sequences. The interweaving techniques do not work, however, when both signals are not PRB

sequences or when both are not sinusoids.

The solution to generating appropriate target sequences was found by using a method to

generate random sequences that was developed by Hunter and Kearney (Hunter and Kearney,

1983). Their method uses an efficient, recursive, double stochastic interchange to generate

random, discrete time, sequences with jointly specified auto-correlation and probability density

functions. This allows for direct control of the target's velocity distribution and frequency

spectrum, the two characteristics that had been observed to affect most directly the target's

predictability and whether saccades were triggered during gaze tracking. Target sequences were

generated in which the target's velocity amplitudes were defined by a specific probability mass

function (PMF, or probability density function for continuous time signals), such as being

uniformly distributed at distinct velocities between -20 deg/s and 20 deg/s. The trajectory's

frequency content was defined by a desired auto-correlation function (ACF). Since the time

domain ACF and the frequency domain power spectral density (PSD) are a Fourier transform

pair, the target's frequency spectrum could be defined to be from 0 to 2 Hz, for example, and the

desired ACF calculated by taking the inverse Fourier transform of the PSD.

The Hunter-Kearney algorithm first creates a discrete time sequence with a desired

amplitude probability density function (PDF) by transforming a uniformly distributed sequence
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with a static filter made from the reversion of the desired cumulative distribution function (CDF).

The algorithm then arranges the elements of the sequence with a recursive, double stochastic,

interchange of elements so that the sequence's ACF converges to the desired ACF as shown in

Figure 4.9. This is done by randomly choosing two elements of the sequence, swapping their

positions, and then calculating the ACF of the reordered sequence. If the resultant ACF is closer

to the desired ACF, the swap is kept. If not, the elements are returned to the positions they had

before the swap was initiated. The Hunter-Kearney algorithm significantly reduces the

computational time needed to calculate the ACF by updating the value of the ACF, rather than by

explicitly recalculating the ACF, after two elements are swapped. The update is efficiently

accomplished by considering only the products in the ACF summation that are affected by the

exchange of elements. The effort to compute the ACF is independent of the number of elements

in the sequence since a maximum of eight terms in the ACF summation (at any lag) are affected

when the two elements are swapped. The process of interchanging elements and evaluating the

ACF continues until the sequence's ACF is sufficiently close to the desired value, or until there is

no more improvement. Reordering the elements affects the sequence's ACF and spectral content,

but it does not alter the PMF of the elements. The PMF is determined only by the values of the

elements in the sequence and the frequency with which they occur, not on how the elements are

ordered. Although reordering the sequence to have a specific ACF does not affect the PMF, the

PMF does affect the ACF that can be achieved by reordering the elements. The potential of the

sequence to attain a desired ACF is dependent on the elements that are available in the sequence.

The Hunter-Kearney algorithm made it easy to generate target sequences that satisfied the

criteria specified for stimulating the visual pathways. Because the velocities and frequencies were

directly controlled, it was simple to manipulate target characteristics and investigate what

properties lead to the target being tracked with smooth pursuit, but with the gaze response

consistently lagging the target. Targets could be generated that had continuous spectra between

0.0 and a maximum frequency, which permitted the full range of gaze tracking movements, and
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were therefore appropriate for system identification. A clear practical advantage of this approach

over the sums-of-sines sequences was the direct control over the velocity which made it simpler

to define the sequence so that the target remained on the screen when projected.
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Figure 4.9: Stochastic swap. The sequence in plot A was reordered to that in plot B
using the Hunter-Kearney stochastic swap. The sequence's auto-correlation was
changed from that in plot C, to the black plot in plot D.

The Hunter-Kearney technique did not, in its original form, address the correlation

between the target and the torque inputs any better than when the target sequences were created

from sums-of sines. As with sum-of-sines sequences, or with any sequence designed to control

the visual path, a target sequence generated by the Hunter-Kearney technique would have to share

a similar frequency band with the torque PRBS, and would likely be too highly correlated with

the torque input to be used in the VOR analysis. By making a modification to the Hunter-

Kearney algorithm, a target velocity sequence could be generated so that its cross-correlation with

a torque perturbation input could be manipulated. This modification made it possible to create
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torque and target sequences that met all four of the criteria required to conduct a system

identification of the VOR. This modified version of the Hunter-Kearney technique is a very

powerful method for developing input signals for system identification studies, in that it allows

two very different sequences to be created with arbitrarily defined ACF, PDF, and CCF. It does

not rely upon chance for the sequences to meet correlation requirements, nor is it restricted to de-

correlating sequences of the same type, such as when interweaving two sum-of-sines or two

PRBS. The technique is not limited to making the sequences uncorrelated, but can give the

sequences any desired cross-correlation over the defined lag period. The modified Hunter-

Kearney algorithm is more thoroughly discussed in Chapter 5.

4.3.3 Gaze tracking experiment and results

Pseudorandom target sequences, with various frequency spectra and velocity

distributions, were generated with the Hunter and Kearney technique and were judged as to their

appropriateness by having subjects track their motion and evaluating the gaze-target, output-

input, relation. The primary goal was to identify what velocities and frequencies were good target

trajectories. The secondary goal was to learn how best to create the sequences so that all the

testing requirements for the stimuli were met. A good target was defined as one that was well-

tracked and that induced a gaze response that was driven predominantly by visual feedback and

not by predictive mechanisms. "Well-tracked" meant that the gaze followed the target's motions

closely, that the gain relation between the gaze and the target was near unity over the frequency

range for which the target was controlled, and that few saccades were needed to maintain the

target's image on the fovea. The position error between the target and the gaze is an indicator of

how well a target is tracked, but since the error is caused both by the gain and phase response of

the gaze, the magnitude of the error does not indicate how well the gaze matched the target's

motion. A gaze response that followed the target well could have a larger error than one that

followed the target poorly, if there was a consistent time lag between the target's motion and the
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gaze reaction. The lag separates the gaze from the target, and may mask a gaze that closely

followed the target, but that was delayed by the time required for the visual system to process the

target's image. The phase lag, or alternately the time lag between the target and the gaze, was

used as the primary indicator of whether the tracking was driven by the visual response or by

predictive mechanisms. A phase lag that increased linearly with frequency would indicate that

there was a constant time lag between the target's motions and the gaze response at all

frequencies. When this time lag was near that expected for the visual delay, which is between 50

and 150 ms, it was a good indication that the gaze response was consistently driven by visual

feedback. If predictive mechanisms affected tracking, it would be expected that the phase would

be advanced at the frequencies for which the predictive mechanism was able to lock on to the

target motion, and anticipate its movements.

Methods

The target's velocity was created as a random sequence with the Hunter-Kearney

algorithm, and then integrated into a position sequence using a discrete-time, trapezoidal,

integration approximation (Press et al., 1997). The position sequence was input to the

galvanometer which positioned the target's image on the screen. This sequence was given a

mean of zero, so that it was balanced on the screen, and was sometimes scaled so that it spanned

the full width of the screen. Giving the target a zero mean position did not affect the velocity

sequence, but the velocities were affected when the amplitude of the position sequence was

scaled. The sequence was scaled so that the maximum velocity remained within the desired

bounds. The first second and last second of the position sequence were replaced by a constant

velocity ramp so that the sequence started and ended at the center of the screen (Figure 4.10). The

sequences were generated so that the position command was updated at least 200 times per

second. Targets with much slower update rates did not appear to move smoothly across the

screen. There was little noticeable improvement in the target's smoothness when targets were
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updated at rates faster then 200 times per second, but there was a definite advantage to keeping

the update rates as low as possible. Faster update rates had more elements per second in the

discrete time sequence, and therefore required more processing time and power when the

sequence was being ordered to calculate its ACF and CCF.

The target's image was projected onto the screen, 1600 mm in front of seated subjects.

The maximum velocity of the sequences ranged from 10 to 40 deg/s, and the frequency spectrum

of the sequences began at 0 Hz and extended to between 1.0 and 4.0 Hz, although some tests were

run with targets that extended to 10 Hz. Subjects were asked to follow the target's motion as best

they could with natural head and eye motions. During these trials the subjects' heads were placed

into the helmet of the head perturber, but the perturber was not activated. This prevented the

subjects from translating their head and changing the distance between their eyes and the screen,

but allowed for free rotation. The subjects' gaze was calculated from measurements of the head's

velocity and the eyes' position. Individual trials lasted between 30 to 90 s, and subjects completed

up to 15 trials. Seven different subjects were tested over the course of the experiment; some

during the initial development, and others as the testing protocol and development of the input

sequences evolved. A few of the subjects were tested more than once during the course of the

experimental development. All the subjects reported that they were healthy. Three of the seven

wore corrective lenses or contact lenses during the experiment.
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Figure 4.10: Target position (plot A) and target velocity (plot B) sequences.

130



Results

Targets that were tracked well, with a good gaze-target gain relation, small error, without

many saccades, and with a gaze response that had a consistent lag and appeared to be driven by

delayed visual feedback, had frequency spectra that were continuous from 0 Hz to between 1 and

2 Hz, and velocity distributions in which the majority of the sampled amplitudes were under 10 to

20 deg/s. The particular trajectory characteristics that led to good tracking were dependent on the

subject, but the values specified above generally agree with what has been found in other studies

(Bames and Lawson, 1989; Baloh et al., 1980; Young and Stark, 1963; Rashbass, 1961). When

the target's spectrum was close to or extended beyond 2 Hz, subjects often reported that the target

was difficult to follow, and the tracking data showed that the gaze response contained more

saccades. When the frequency spectra were reduced to below 1 Hz, subjects found the

trajectories easier to follow, and saccades were used less frequently than for the higher frequency

targets, but it was evident that predictive mechanisms enhanced the tracking responses. The phase

delay between the gaze and the target was small, and did not consistently increase with

frequency. The target's velocity also affected how well it was tracked. Gaze slip generally

increased steadily with frequency and with the target's velocity, but increased more rapidly as the

target's velocity rose over 15 to 20 deg/s.

Well- tracked, unpredictable targets

Figures 4.11 through 4.18 show representative plots of targets that were considered to

have been well tracked. Data were sampled at 100 Hz, filtered with a small, three or five-element

neighborhood, median filter, and then low-pass filtered at 15 Hz. The 15 Hz cutoff was high

enough to retain all the information about smooth pursuit motions, and although it removed some

of the detail in quick phase saccades, it was low enough to remove some of the inherent noise that

corrupts EOG measurements. Filtering greatly improved the time domain plots of the data, but

did not have a great impact on the linear, input-output analysis, as long as the cutoff remained
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higher than the bandwidth of the target. The interpretation of the frequency and correlation

relations for the gaze tracking response were unchanged independently of whether the data were

unfiltered, filtered at 15 Hz, or even at 2 Hz, as long as the filter's corner was above the target's

frequency spectrum.

The data shown in the plots in Figures 4.11 to 4.18 are from a target sequence with

characteristics that were closer to the upper frequency and velocity limits that generally produced

a good tracking response. The frequency spectrum of the target's velocity extended to 2.0 Hz, and

the probability mass function (PMF) showed that the majority of the target's velocity was below

15 deg/s (Figure 4.11). It can be seen in Figure 4.12 that the subject's gaze position followed the

target's position well. The tracking error was small, with a standard deviation of only 1.7 deg.

The subject's gaze was never as smooth as the target's motion, as the gaze tracking system was

reacting to the unpredictable movements of the target, and it is obvious that the gaze lagged the

target. The lag was most consistent at times when the target's position changed most rapidly,

between 74 to 76 s for example, and there was little opportunity for the subject to learn the

trajectory. The gaze and target traces are similar, but are offset. A portion of the gaze error

(gaze error = target position - gaze position) can be attributed to the delay between the gaze and

target, although much of the error was due to the gaze system simply not being able to, or needing

to, match precisely the target's motion. When the gaze position was advanced by 100 ms, the

mean square error between the gaze and the target was minimized. The standard deviation of the

error was reduced from 1.7 to 1.2 degrees, not to zero, which would be the case if the gaze had

followed the target position exactly (Figure 4.13). Although the subjects reported that they felt

they had tracked these targets well, the gaze position did not mirror the target's position.

However, it is not necessary to maintain zero gaze error when tracking a target. Studies have

concluded that visual acuity can be maintained when the gaze is within 3 deg of a target, and the

gaze slip less than 5 deg/s (gaze slip = target velocity - gaze velocity (Leigh and Zee, 1999).

Since the target was a blurred circle, the gaze tracking system did not need to focus the image
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precisely at the center of the fovea. The 100 ms delay between the target and the gaze fell within

the 50 to 150 ms normally expected to process the target visually, and implied that, on average,

the tracking was driven by visual feedback, not by predictive mechanisms. If the target's motions

had been consistently predicted by the subject, the gaze would have been advanced so that it was

more in phase with the target, which did occur when the same subject tracked a sinusoid (Figure

4.14). The subject anticipated the sinusoidal trajectory very well and there was nearly zero lag

between the target and the gaze. Gaze and target velocity plots for the random target are shown in

Figure 4.15. The gaze velocity did not match the target velocity nearly as closely as the gaze

position matched the target position which supports the historical claim that the gaze system is a

"sloppy" velocity controller (Williams and Fender, 1979). Some of the high frequency eye

velocity and gaze slip can be attributed to the "calculation noise" that was generated when the eye

velocity sequence was calculated as the derivative of the sampled eye position sequence. The

velocity was maintained usually to within 10 deg/s of the target velocity. This compared well to

the slip that occurred when the same subject tracked the sinusoid (Figure 4.16). The sinusoid was

tracked with less position error, but the gaze velocity was still seen to follow the target with slips

often in excess of 10 deg/s. Even though the target's movements were anticipated, and the gaze

appeared locked on to the target, high frequency gaze motions were used to keep the gaze in the

vicinity of the target.
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Figure 4.11: Probability mass function and power spectral density for a target velocity
sequence that was tracked "well".
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Figure 4.12: Gaze tracking of a target with a 0 to 2.0 Hz

PSD. The standard deviation of the gaze error was 1.7 deg.
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Figure 4.13: Gaze tracking of the same target as in Figure 4.12. The gaze
was advanced by 100 ms to minimize the mean square error. The standard
deviation of the gaze error, after the gaze was advanced, was 1.2 deg.
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Figure 4.14: Gaze tracking of a sinusoid. The subject tracked the target with little lag,

and an error with a standard deviation of 1.8 deg.
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Figure 4.15: Gaze and target velocity for a target with a 0.0 to 2.0 Hz PSD.
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Figure 4.16: Gaze and target velocity for a sinusoidal target.

Although the random target was tracked as if it were unpredictable, it did not induce

excessive gaze slip or require frequent, quick phase, saccades. When the gaze velocity was

advanced by 100 ms, as was done for the position response, the velocities matched up well

(Figure 4.17). The gaze velocity had the same low frequency motion as the target, but had

additional high frequency motions. These oscillations reflect an underdamped servo-system that

does not have the time to settle to a steady state response. It is likely that these high frequency

oscillations were due to the subject's tracking response being in a continual state of "smooth

pursuit onset". Oscillations are often observed during the onset of smooth pursuit during the first

few hundred milliseconds after the gaze reacts to a target's motion (Leigh and Zee, 1999). The

random changes in the target's trajectory prevented the subject's gaze from ever moving away

from an onset response. Although the target was not predicted well, only a few saccades are

evident in the gaze response. Saccades are visible in the data just before and just after the 75

second mark. These high velocity spikes occurred just as the target's velocity peaked near 40

deg/s, and quickly brought the gaze position back toward the moving target. These movements

are identified as saccades because of their high velocity, which is about 50 deg/s greater than the

velocity of the moving target. Their shape however does not have the characteristic, sharp edge of

a saccadic motion, but this can be attributed to the data having been low-pass filtered.
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Figure 4.17: Advanced gaze velocity. The gaze velocity was advanced by 100 ms for
the same gaze and target that was shown in Figure 4.15. Advancing the gaze velocity
reduced the standard deviation of the gaze slip from 19 deg/s to 13.8 deg/s.

Although saccades were present in these data, they were infrequent and did not

significantly affect how well the linear analysis captured the dynamics of the gaze response. The

frequency response and coherence squared functions indicated that there was a strong, linear

relationship between the gaze velocity output and the target velocity input over the bandwidth of

the target (Figure 4.18). The coherence squared remained above 0.9 from 0.0 to 2.0 Hz, with the

exception of a small region between 1.15 and 1.45 Hz, where it was a bit lower. This provided
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strong evidence that saccadic motions did not significantly degrade the linear gaze-target

relationship over the frequency range for which the visual target was controlled. Beyond 2.0 Hz,

the target velocity had very little power, and the coherence dropped below 0.25, which indicated

that a low signal to noise ratio, and/or nonlinearities, had degraded the linear input-output

relationship. The gain plot shows that the gain was just under unity until 0.8 Hz, and then

gradually rose to approximately 1.2 at 2.0 Hz. Gains near unity were to be expected, since the

subject tracked the target well. The crossover to above unity near 0.8 Hz was an interesting

characteristic observed in the response of many of the subjects. Above 2.0 Hz the FRF gain plot

rose quickly. This was not the result of the gaze tracking system responding more strongly to the

target, but occurred because the gaze system followed the target with higher frequency motions

than existed in the target trajectory. There was little input power at these frequencies, but, as is

evident from the gaze velocity plot, there were measurable high frequency gaze motions. The

high frequency velocities are greater than can be attributed to noise from the eye velocity

calculation, but some of the high frequency responses were from the EOG noise. The dramatic

drop in the coherence squared at these frequencies is consistent with the idea that the gain relation

is degraded by nonlinearities and a low signal to noise ratio.

The phase plot in Figure 4.18 illustrates that the target was tracked as if it were

unpredictable, but also shows what occurs when predictive mechanisms enhance the tracking

response. The phase plot shows that the phase lag between the gaze and the target increased

steadily with frequency. A phase lag that increases linearly with frequency translates into a

constant time lag between the input and the output, where the slope of the line equals the time

delay. Between 1.15 and 1.45 Hz the phase was not fitted well by a straight line. At these

frequencies, the phase lag was slightly reduced, indicating that the gaze responded more quickly

to the target motion. The slope of the line fitted to minimize the sum of squared error is 100 ms.

This matches the delay previously found between the gaze and the target when the gaze velocity

was advanced so as to be best aligned with the target velocity. The average lag is determined by
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advancing the gaze to best match the target, and the phase response examines this lag as a

function of frequency. If the lag is the same at all frequencies then the gaze is being driven by the

same mechanism. A delay of 100 ms is presumed to result from visual feedback, and not

predictive mechanisms. Changes in the gain plot and the coherence squared plot were also seen at

these frequencies. The gain plot shows a gain very close to unity at these frequencies, whereas

before and after, it is above unity. The coherence squared also drops to its lowest level in this

frequency band. These are all indicators that suggest that in this small frequency band predictive

mechanisms did enhance the tracking response.
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Target velocity and frequency too high

Subjects reported that it felt harder to track targets with frequencies that extended beyond

2.0 Hz. Targets with frequencies as high as 10 Hz were presented, but these trajectories changed

much too rapidly for subjects to react to the movements. A maximum frequency of 3.0 to 3.5 Hz

was about the limit at which subjects thought that they could follow some of the higher frequency

motions. Subjects reported that they would often ignore the higher frequency movements, which,

unless they had high velocity, did not move far. The trajectories were generally too fast and too

difficult to focus upon. However, the data do not indicate that the higher frequency targets were

tracked particularly poorly, but it was evident that these targets were tracked with greater gaze

slip and more frequent saccades. Figures 4.19 and 4.20 show the response for one subject to a

target with a frequency spectrum from 0.0 to 3.0 Hz. The phase lag shows that the target was

tracked with a consistent time lag, in this case, 130 ms. Visual feedback did not advance the

tracking response at any frequency. The gaze position and velocity were aligned best with the

target motion when they were advanced by 140 ins. The gaze position plot is not as smooth as the

target's, but it generally follows the target's motion. To accomplish this, the subject used higher

velocities and generally more saccades than when the lower frequency trajectories were tracked.

The effect of the saccades, which are a nonlinear response, can be seen in the coherence-squared

and FRF functions in Figure 4.21. The coherence-squared, which relates the target velocity input

to the gaze velocity output, was high, but did not remain as high as when the target's frequency

spectrum was lower. For the lower frequency targets, it was common for the coherence-squared

function to be above 0.9 across the full spectrum over which the target was controlled. For the

higher frequency trajectories, the coherence squared was high at the lower frequencies, but had

greater variance and decreased as the frequency increased. The high velocity of the gaze slip, and

the increased number of saccades associated with the higher frequency targets, degraded the

linear analysis. Although the saccades affected the linear input-output relationship, they

functionally allowed the gaze to remain near the target, and so the gain stayed close to unity.
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Figure 4.19: Gaze tracking of a target with 0.0 to 3.0 Hz PSD.

The standard deviation of the gaze error was 3.3 deg.
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Figure 4.21: Frequency response function (gain in plot B and phase in plot C) and
coherence-squared function (plot A) for the gaze tracking response to a target with a
0.0 to 3.0 Hz PSD.

Target frequency too low

When the target spectra were limited to below 1 Hz, and the velocities kept below 20

deg/s, the targets were tracked with little position error and little gaze slip, and the number of

saccades was lower than when the targets had higher frequencies. It was also evident that

predictive mechanisms enhanced the gaze response. As can be seen in Figure 4.23, which is an

example of one subject tracking a target with a 0 to 1 Hz spectrum, the gaze did not lag the target

by much. If the gaze had been driven by visual feedback, the time lag would have been between

75 and 150 ms, as was seen when the higher frequency targets were tracked. To minimize the

mean square difference the gaze only had to be advanced by 30 ms. Although the gaze lagged the

target less than for the higher frequency targets, it still did not move as smoothly as the target, and

144



the gaze velocity oscillated around the target's velocity, as had been seen during tracking of the

higher frequency targets. The coherence-squared function was nearly 1 throughout the frequency

range of the target, which indicated that neither nonlinearities nor noise had degraded the linear

analysis. This would seem ideal for the VOR analysis if it were not for the phase plot which had

an inconsistent lag across the frequencies as shown in Figure 4.25. Between 0 and 0.15, the phase

was nearly zero. At these frequencies, where both the gain and coherence were nearly 1, the

predictive mechanisms had anticipated the target's movements very well. The phase increased

steadily above 0.15 Hz, but the lag at 1 Hz is only 27 ms, which is shorter than the time required

for visual system processing. When the target did not exceed 1 Hz, the gaze was enhanced by

predictive mechanisms and these targets were therefore inappropriate for the VOR protocol.
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Figure 4.22: Representative probability mass function (plot A) and power spectral
density (plot B) of a target velocity sequence that was tracked as if it were predictable.
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Figure 4.23: Gaze tracking a target with a 0.0 to 1.0 Hz PSD. The standard deviation
of the gaze error was 2.1 deg.
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0

I ki

-o

. V

116 117 118 119 120 121 122
time (s)

0

116 117 118 119 120

time (s)

Figure 4.24: Gaze and target velocity for a target with a 0.0 to 1.0 Hz PSD.

A. Coherence squared (vel)
- -I

0.5

frequency (Hz)

B. FRF: gain (vel)

..E.N:'

0.5 1
frequency (Hz)

-o

.5

1.5

C. FRF: phase (vel)
20

20 ~

40 I

60 '

80 I
0 0.5 1 1.

frequency (Hz)

Figure 4.25: Frequency response function (gain in plot B and phase in plot C)
and coherence-squared function (plot A) for the gaze tracking (velocity) response
to a target with a 0.0 to 1.0 Hz PSD.
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4.4 Tracking unpredictable targets with torque perturbations applied

to the head

The torque and target input sequences had to be validated for use in the VOR

experiments by applying them simultaneously to the subject. The experiments that were

conducted to evaluate the head-neck system's response to torque perturbations, and to identify the

characteristics of a visual target that resulted in it being tracked as if it were unpredictable, had

successfully identified input sequences that were appropriate stimuli for the visual and vestibular

systems, but none of the experiments had been conducted with the same protocol that would be

used to test the VOR. It seemed possible that the ability of a subject to track an unpredictable

target might be altered when torque perturbations were applied to the head. The torque

perturbation sequences generated considerable disturbances and covered a range of potential

disturbances that a subject might experience during natural activities into a short time span (60 to

90 s). Although a subject with a healthy vestibular system should be able to generate eye motions

that compensated for the head disturbances, the ability of the subject to track the target would be

degraded if the perturbations saturated the vestibular system or if the perturbations prevented the

subjects from using the head as they needed to track the target. A related concern was whether the

PRB torque inputs would still stimulate the desired range of head disturbances when the head was

being actively driven to follow the unpredictable target. The torque inputs had been shown to be

adequate when the subjects tracked a predictable sinusoid, but the mechanisms involved in

controlling the stability of the head could change with an unpredictable target. If the performance

of the tracking and the head-neck systems changed when the torque and target inputs were

applied to the subject simultaneously during the VOR experiments, then the input sequences

would have to be refined to accommodate the changes.

The response of the gaze tracking system, and of the associated head and eye motions,

were therefore evaluated as subjects tracked unpredictable targets while the head was perturbed
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by PRB torque perturbations. The experimental procedure was similar to that used when the

subjects had tracked the unpredictable targets without the applied head disturbances. The subject

was seated 1600 mm in front of the screen onto which the target was projected, and the head

perturber was lowered and attached to the subject's head. The subjects were required to track a

randomly moving target, as best they could, with natural head and eye motions. The target

trajectories were selected from the trajectories that had previously been used to create visual-

feedback driven, gaze responses. PRB torque perturbations, with amplitudes of approximately

0.2 N.m, were applied as the subject tracked the target. Head velocity, eye position, target

position, and the torque applied to the head-perturber's helmet were sampled at 100 Hz.

It was found that the torque and target sequences that were good stimuli when they were

applied separately to the visual and vestibular systems were still appropriate when applied

simultaneously. The torque perturbations disturbed the head sufficiently, but the VOR was able to

compensate for these disturbances, and the tracking response was not noticeably affected. The

subjects tracked the targets as well, and in the same manner, as when no perturbations were

applied.

The PRB torque perturbation sequences created head disturbances with an appropriate

magnitude, and desired frequency range, as the subject controlled the head's motions to track the

target. The disturbance to the head position and velocity was obvious, and it induced easily

measured VOR eye motions. Plots of the head and eye velocities from two representative trials,

one with perturbations and one without, are shown in Figure 4.26. When no perturbation was

applied to the head, the subject tracked the target without moving the head rapidly. Throughout

the 1.8 Hz spectrum for which the target was controlled, the PSD of the head velocity was much

lower than that for the eyes, and decreased as the frequency of the target increased. The head

appeared to move slowly to direct the eyes towards the target, and the eyes did most of the work

to follow the target's motions. The velocity and PSD plots for the head and eyes were very

different when the perturbations were applied to the head. It is obvious that the torque
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perturbations created strong head disturbances. The head velocity rapidly changed direction and

was obviously driven by the PRB torque input. It is also evident that the VOR created eye

motions to compensate for the unwanted head disturbances. The plot of the eye velocity appears

close to being equal and opposite to the head velocity, and from 0.0 through 4.0 Hz the PSD for

the eye and the head velocities are very similar. The PSD of the head velocity when the head was

perturbed is much higher than when the head was perturbed. Beyond about 4 Hz, the PSD for the

eyes and head begin to deviate.
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Figure 4.26: Head (brown) and eye (blue) responses during gaze tracking. No torque
perturbations were applied to the head in plots A and B. Perturbations were applied to
the head in plots C and D.

There were no noticeable differences in the subjects' overall tracking performance when

the torque perturbations were applied to the head. The torque perturbations significantly disturbed

the head position and created the desired span of disturbance motions, but did not interfere with

the subjects' ability to track the target. In fact, some subjects reported that they found it easier to
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track the targets while their head was perturbed as compared to when no perturbations were

applied. One subject claimed that it felt as though a different system had taken over her tracking

response when the torque sequences were shaking the head. When no perturbations were applied,

she felt that she had to make a conscious effort to focus on and track the target. When the

perturbations were applied, she no longer felt as if she had to concentrate to follow the target, and

could just let her gaze system react to where the target was moving. It has been reported that

smooth pursuit tracking is sometimes improved when subjects are distracted by mental arithmetic

( Wells and Barnes, 1999; Van Gelder and Lebedev, 1995). This may offer some explanation as

to why target tracking felt easier, rather than more difficult, when the perturbations were applied

to the head. Humans are not good at voluntarily controlling smooth pursuit eye motions. Very

few people can create smooth pursuit eye motions unless there is a smoothly moving visual target

to track (Leigh and Zee, 1999). It is possible that the perturbation torque acted as a distraction to

the subjects, and stopped the subjects from trying to actively enhance their smooth pursuit

response.

The head and eye responses were very different when the torque perturbations were

applied to the subjects' heads as compared to when there were no perturbations, but the net result

of how the eye and head motions summed to produce a gaze response, was indistinguishable. The

vestibular systems of these healthy subjects were obviously able to stabilize the subjects' gaze

response against the disturbances caused by the torque perturbations. There were certainly

differences between the responses when results from the two sets of experiments were compared,

but the differences were not such that it was possible to determine reliably whether the tracking

trial had occurred with, or without, applied torque perturbations. The gaze tracking responses

that were associated with the head and eye velocity plots of Figure 4.26 are shown in Figure 4.27.

Both gaze responses lag the target's motion, and the error plots are of about the same magnitude.

The standard deviation of the error was 2.1 deg when the perturbations were applied to the head,

and 2.0 deg when no perturbations were applied.
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Figure 4.27: Gaze (black) and target (red) position during gaze tracking. No torque
perturbations were applied to the head in plots A and B. Perturbations were applied to
the head in plots C and D.

The results for the gaze velocities were also very similar. The gaze velocity, gaze slip,

and PSD plots in Figure 4.28 are from a trial when torque perturbations were applied, and are

similar to the plots shown in Figure 4.15, which shows the gaze velocity response to a 0.0 to 2.0

Hz target when no perturbations were applied. The gaze slip did not change significantly when

the head was perturbed, with a standard deviation of 15.2 deg/s with perturbations, and 17.2 deg/s

without the perturbations. The PSD of the gaze slip in both cases increased steadily with the

target's frequency, and the magnitude of the PSD at each frequency was nearly identical. The

gain and phase plots of the frequency response function, and the coherence-squared measures, are

also remarkably similar. The FRF and coherence-squared plots for a trial with torque

perturbations are shown in Figure 4.29. Similar to the situation when there were no perturbations

applied to the head (Figure 4.18), the gain is near unity until around 0.8 Hz, and then increases to
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just above unity across the 1.8 Hz bandwidth of the target. As would be expected, the addition of

perturbations did not improve the subject's ability to predict the target motions. Targets that were

tracked as if they were unpredictable when the head was not perturbed remained unpredictable

when the perturbations were applied. The phase lag shown in Figure 4.29 increased nearly

linearly with frequency, just as in Figure 4.18. For these examples, the time lag between the target

and the gaze response was 140 ms when the perturbations were applied, and 130 ms when they

were not. The coherence-squared measure was also not affected much, if at all, by the addition of

head perturbations. The coherence-squared measure in Figure 4.29 is not quite as high as that

shown in Figure 4.18, but it still is above 0.8 across most of the 1.8 Hz spectrum for which the

target was controlled, and actually above 0.9 for frequencies below 0.8 Hz. The disturbances

applied to the head did not change the linearity of the response between the target and the gaze,

and did not add a considerable amount of noise to the measurements. In some cases the torque

perturbations may actually have improved the experimental measurements since more

pronounced head velocity, eye position, and torque measurements occurred when the head was

being perturbed.

The torque perturbations significantly disturbed the head and eye motions, but did not

change how well the subjects tracked the targets, nor did they change the velocity content of the

gaze response. Saccades did not appear to be more frequent, nor did the perturbations seem to

alter the signal that drove the gaze response. It was evident that when the VOR was functioning

properly, it was able to compensate for the level of disturbance created by the torque

perturbations and maintain the subject's gaze. At least among healthy subjects, the PRBS torque

perturbations and random target sequences that had been found to stimulate individually the

visual and vestibular pathways worked very well when applied simultaneously under the VOR

testing protocol.

152



40

20

A. Target (red) and gaze (blk) velocity
I

40
0 14 16 18 20 2

time (s)

B. Gaze slip
20

0

LUV

4
10

3
10

2
10

10

16 18

time (s)
20 22

C. PSD: target velocity (red) and slip (blk)

0 1 2 3 4
frequency (Hz)

5 6 7

Figure 4.28: Gaze tracking response (black) when perturbations
were applied to the head. The target had a 0.0 to 1.8 Hz PSD
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Figure 4.29: Frequency response function (gain in plot B and phase in plot C)

and coherence-squared function (plot A) for the gaze tracking (velocity)

response. A PRB torque perturbation sequence was applied to the head. The

target had a 0.0 to 1.8 Hz PSD.

154

At



Chapter 5

Generating uncorrelated torque and target inputs

5.0 Chapter summary

5.1 The modified Hunter-Kearney procedure

5.2 Steps of the modified Hunter-Kearney procedure

5.3 Defining bounds for zero cross-correlation

5.4 Swap conditions: number of elements, evaluation criteria, sequence PMF

5.5 Conclusions

5.0 Chapter summary

It was demonstrated in Chapter 4 that a PRBS torque perturbation and a random target

velocity trajectory would stimulate the physiological responses from which the performance of

the VOR could be evaluated. The analysis of the VOR required that the torque and target inputs

be uncorrelated. This chapter discusses the techniques that were developed to generate torque and

target sequences that were uncorrelated and still retained the properties required to stimulate the

visual and vestibular systems. The core procedure that was used to generate the signals was a

novel stochastic interchange method that allowed two sequences to be generated with jointly

specified probability density, auto-correlation, and cross-correlation functions.
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5.1 The modified Hunter-Kearney procedure

Uncorrelated torque and target sequences were generated using a novel process

developed for this research. The technique allows two discrete time sequences to be created with

individual spectral and temporal characteristics, and with a specified cross-correlation. One of the

sequences can be chosen to be of any signal type, and there are no restrictions as to how it is

created. The second sequence is generated with a stochastic swap technique and thus, by the

nature of the stochastic swap process, is a random sequence. To fulfill the requirements of the

VOR testing protocol, the technique was used first to create a PRBS torque sequence and then to

manipulate a target velocity sequence so that it had the characteristics required to stimulate the

gaze system but was uncorrelated with the torque sequence.

The core of the technique is based on the Hunter-Kearney stochastic swap algorithm,

which was developed to create a single random sequence with jointly specified auto-correlation

and probability density functions (Hunter and Kearney, 1983). The Hunter-Kearney algorithm

creates a discrete-time sequence with an amplitude distribution that approximates a desired

probability density function (PDF), and then orders the elements with a recursive, double

stochastic, interchange of elements, so that the sequence's auto-correlation function (ACF)

converges to a desired ACF. Details of the algorithm are described more fully in Chapter 4.

It was recognized that the Hunter-Kearney algorithm could be modified so that instead of

arranging the elements of a sequence to have a desired auto-correlation function, the elements

could be arranged to have a desired cross-correlation with a different, previously defined

sequence. After all, a sequence's ACF is simply the CCF of the sequence with itself. In addition,

the elements of the sequence could be arranged so that the sequence's ACF, and its CCF with

another sequence, simultaneously converged toward desired values. With this modified

procedure, a target velocity sequence could be generated with the frequency and amplitude

characteristics that were appropriate for stimulating the gaze tracking system, and also be made
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so that it was uncorrelated with a PRBS torque sequence that had the appropriate amplitude and

temporal characteristics for stimulating the vestibular system.

The development of the modified Hunter-Kearney technique was an important step

towards being able to execute the VOR testing protocol. It provided an efficient and systematic

means of generating the experimental torque and target sequences so that all stimulus criteria

were met. It was, of course, crucial to identify the types and characteristics of signals that

stimulated appropriate responses from the head-neck and gaze tracking systems, but it was not

sufficient. Although an experimental trial could generate data that represented a full spectrum of

natural gaze tracking and corrective VOR responses, and was thus informative enough for a

system identification (Ljung, 1999), when the inputs are correlated it is not possible to distinguish

the eye response that is due to the visual input from that resulting from the vestibular input, and

so the performance of the VOR cannot be extracted from the data. Without the modified Hunter-

Kearney technique, torque and target sequences would have had to have been created

independently, and then mixed and matched until pairs were found with a sufficiently low cross-

correlation; a very time consuming and tedious process.

The modified Hunter-Kearney procedure is a powerful technique for creating sequences

for system identification studies. The method has few restrictions, and is very general in that it

can manipulate many different types of signals so that they have arbitrarily defined auto-

correlation and cross-correlation functions. The technique is not restricted to ordering a sequence

to be white, nor to making the two sequences uncorrelated. It can be used to generate sequences

with arbitrary spectral content, and with shared power at defined frequencies (cross-power

spectral density). There are several other methods that can be used to create signals with a

specific ACF, or PDF, or that are uncorrelated, but these methods tend to be more limited in the

types of signals they can use and in the ACF and CCF that they can generate. For example, two

PRBS can be made uncorrelated through interweaving (Davies, 1970), but the technique cannot

be extended to generate anything other than binary sequences with a band-limited white spectrum
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(impulse ACF) and a CCF that is uncorrelated. Sums-of-sines can be made to be unpredictable

and to have arbitrarily defined spectral content (ACF) and cross spectral densities by carefully

choosing the amplitude and frequency of each sinusoid, but the method is less general than the

modified Hunter-Kearney procedure because it allows only sinusoids to be manipulated. The

modified Hunter-Kearney technique is an important development for generating inputs for multi-

input systems. Rather than having to use the same type of signal along each input path, the

technique allows the most appropriate type signal for each input path to be generated with

specified ACF and CCF properties. This is particularly important for physiological studies, where

the sensory or motor systems may be able to tolerate only certain types of signals. In the past, the

most common means used to create two different signal types with cross-spectral and cross-

correlation properties was to find two signals, by chance, that met the requirements.

The main limitations of the modified Hunter-Kearney technique are that it requires a

significant amount of computing time and power to arrange the elements of the sequences, and

how well the final ACF and CCF meet their desired values depends on the characteristics of the

initial sequence of elements. The modified Hunter-Kearney technique is not a closed form

solution that creates sequences with exact ACF and CCF values. Owing to its stochastic nature,

its success at creating sequences with acceptable characteristics is somewhat dependent on how

good the user is at defining favorable initial conditions.

5.2 Steps of the modified Hunter-Kearney procedure

The torque and target sequences used in the VOR experiments were created with an

application coded using Visual Studio 6.0. The code is shown in Appendix C. The process is first

described briefly, and then each step is discussed in more detail.

There were five fundamental steps to generating the torque and target input pairs with the

modified Hunter-Keamey process. First the PRBS torque sequence was created. It was generated
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to have the amplitude and temporal characteristics that were appropriate for perturbing the head-

neck system, but without regard for its relation to the target sequence. Second, a sequence was

generated that was the same length as the torque sequence, but with an amplitude distribution that

represented the velocities the visual target would travel during the experiment. Third, this

velocity sequence was arranged using the modified Hunter-Kearney stochastic swap algorithm

until it has the desired auto-correlation and cross-correlation function. The ACF was defined by

taking the inverse Fourier transform of a power spectral density function, which was easier and

more intuitive to define directly than the ACF. The desired CCF was set to zero. Fourth, the

target sequence was low-pass filtered to remove any unwanted high frequency content. Finally

the velocity sequence was integrated, and became the target position sequence used to move the

target on the screen.

5.2.1 Generate the PRBS torque sequence

The first step of the process was to create the PRBS torque perturbation sequence. In

terms of a generalized "modified Hunter-Kearney process", in which two sequences are designed

to have particular ACF and CCF properties, it is not necessary that this first sequence be a PRBS.

It can be any signal type that is desired, such as PRBS, sinusoids, random, or deterministic

signals. The only requirement is that the sequence must be designed to meet the stimulus

requirements for the system on which it acts. It is created without regard to its cross-correlation

with the random sequence that will be manipulated with the stochastic swap algorithm. The

characteristics that are given to this first sequence will, however, affect how well the modified

Hunter-Kearney algorithm can order the second sequence to achieve the desired spectral and

cross-correlation properties.

The example shown in Figure 5.1 is representative of the torque command sequences

used during the VOR experimental trials. The torque PRBS had an amplitude of 0.2 V, and was

executed at a rate of 10 elements per second. The sequence represented the voltage reference that
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was applied to the motor of the head-perturber. The amplitude was adjusted so that the motor's

torque output was near 0.2 N.m and comfortable for the subject. Most of the subjects found

torque amplitudes between 0.2 and 0.3 N.m strong enough to disturb the head, but low enough so

that they were still able to position the head where they wanted. A PRBS execution rate of

between 10 and 15 elements per second was determined to be appropriate for the protocol. Slower

execution rates did not produce power across a sufficient frequency band to stimulate all the

desired motions of the head, and faster execution rates were not always followed faithfully by the

motor. When the perturber did not follow the torque command faithfully, the torque that was

delivered to the head did not have the same spectrum as the command signal, and so the cross-

correlation relation that had been carefully designed into the sequences was degraded. The

sequence in Figure 5.1 is 30 s long, which is shorter than most trial lengths which lasted from 60

to 90s. It was selected as the example sequence because its short length made it more convenient

to show the intermediate steps associated with generating the target velocity sequence. The PRBS

was created from a nine-element seed. The number of seed elements was chosen so that the PRBS

did not complete a full cycle during the experimental trial. The PRBS repeats itself after 2"- 1

elements and becomes periodic. Unless the protocol is designed to conduct a "periodic" system

identification, where periodic based ACF and PSD estimators are used to account for the

periodicity of the signal (Godfrey, 1993), the ACF will show that the sequence became correlated

with itself at a lag value equal to 2"-l, and the PSD will no longer look as if the signal

approximates a band-limited white sequence. The torque sequence was "filled in" to have 200

elements per second (Figure 5. 1b), so that it could be output by the experimental control program

at the same rate as the target sequence. This update rate was necessary for the target to appear to

move smoothly across the screen.

160



B. Magnified torque command
0.20

020

-0.20

0.20

0 0

-0.20
6 7 8 9 10 7.95 8.01 8.08 8.14 8.2

time (s) time (s)

Figure 5.1: Pseudo-random binary torque sequence. The sequence was created so that
potential changes in the PRBS were executed at 10 elements per second (c/s) (plot A). The
sequence was then "filled-in" so that the sequence had 200 elements per second (plot B).

5.2.2 Generate target velocity sequence with a desired amplitude distribution

The target velocity sequence was created using the modified Hunter-Kearney algorithm

and was designed to have the spectral and amplitude characteristics required to stimulate the gaze

tracking system, and to be uncorrelated with the PRBS torque sequence. The modified Hunter-

Kearney procedure requires that this second sequence be a random sequence, whereas the first

sequence can be of any signal type.

The first step in generating the target velocity sequence was to form a discrete-time

sequence that was the same length as the torque sequence, with a desired amplitude probability

distribution. The amplitude distribution of the sequence represented the velocities that the target

would travel during the experiment. In the method developed by Hunter and Kearney, a sequence

is made to have a probability mass function that approximates a desired PDF by filtering a

sequence of numbers, uniformly distributed between 0 and 1, with a static nonlinearity. The static

nonlinearity is created from the reversion of the desired cumulative distribution function (CDF),

which is the integral of the probability density function. The cumulative distribution function,

evaluated at xO, represents the probability that an outcome of an experiment (random variable)

will be less than the value xO. The CDF always falls between 0 and 1, where the probability that
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an outcome is less than -oo is 0 and the probability that the outcome is less than 00 is 1. The

reversion of the function y = f(x), solves the independent variable in terms of the dependent

variable, x = g(y). For the CDF, the independent variable is the value that the random variable

will be equal to or less than, and the dependent variable is the probability that the experimental

outcome will be lower than the value of the independent variable. The reversion of the CDF

therefore uses the probability value as the argument, and the value of the random variable as the

dependent variable.

A uniformly distributed, discrete time, sequence was first created. It was required to

have the same number of elements as the torque sequence, and to be equally spaced with values

between, but not equal to, 0 and 1 (Figure 5.2a). The range (0 to 1) corresponds to the probability

limits of the cumulative distribution function. The uniform sequence was then given the desired

amplitude distribution, which was approximately Gaussian in this example, by transforming the

sequence with the reverted cumulative distribution function. Each element of the uniform

sequence, a value between 0 and 1, was used as an argument into a function created from the

reverted CDF. The outputs of the function formed a sequence with a probability mass function

that approximated a Gaussian PDF.

The use of the reverted CDF to transform the sequence avoided having to rely upon the

central limit theorem and a random number generator to create a sequence that approximated a

Gaussian distribution. The Gaussian CDF can be expressed explicitly as the integral of the closed

form Gaussian PDF (Eq. 5.1), but is often expressed in terms of the complementary error function

(Eq. 5.2).

1 (x - p)2

CDFGauss 2 )dx Eq. 5.1
-O2 o72 2a

1 x_-_p
CDF,,,(x, p, a)=1 erfc( ) Eq. 5.2

2
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The CDF for a Gaussian random variable with zero mean and a standard deviation of 2.0 is

shown in Figure 5.3.

0.5

0

0

U

A. Ordered, uniformly distributed, sequence

0 2000 4000 600
element

B. Probability mass function

0 0.5 1.0
bin (amplitude)

C. CDF

0.5--

0 0.5

bin (amplitude)

1 1.5

Figure 5.2: A uniformly
function (plot B), and its

distributed sequence (plot A), its probability mass
cumulative distribution function (plot C).
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Figure 5.3: Cumulative distribution function (CDF) for a Gaussian
sequence with a mean of 0 and a standard deviation of 2.

There is no elementary solution for the reversion of the Gaussian CDF, which is of the

form f(x) = £exp(-x2 )dx, and so the definite integral must be approximated (Thomas and

Finney, 1984). Fortunately, the reverted Gaussian CDF is commonly tabulated and explicitly

defined in mathematical software packages. In the Mathcad mathematical package (Mathsoft Inc.,

Cambridge, MA) the reverted Gaussian CDF is expressed by the function QNORM(p, p, a)

(Figure 5.4).

Reverted Gaussian CDF
10- -

S5- -

-5 -
.1

-10-- probability

Figure 5.4: The reversion of the Gaussian cumulative distribution function.
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The Gaussian distributed sequence was formed from the output of the QNORM function,

where the input arguments were the elements of the original, uniformly distributed, sequence. The

end result was a sequentially ordered sequence, with a PMF that approximates a Gaussian PDF

(Figure 5.5).

A. Gaussian distributed sequence B. Sequence PMF (blu) vs. Gaussian PDF (red)
i-o

0

0 1000 2000 3000 4000 5000 6000 -2.0 0 2.0

element bin (amplitude)

Figure 5.5: The outcome of transforming the uniform sequence with a static filter made
from the reversion of a Gaussian cumulative distribution function (plot A). The
sequence's probability mass function and the Gaussian PDF is shown in plot B.

5.2.3 Arranging the velocity sequence for ACF and CCF with modified Hunter-Kearney swap

After the target velocity sequence had been transformed to have the desired amplitude

distribution, the elements were ordered to meet the ACF and CCF criteria using the modified

Hunter-Kearney stochastic swap algorithm. The desired ACF was not directly specified, but was

calculated by taking the discrete, inverse Fourier transform of a power spectral density function.

It is more natural to define the desired spectral content for the target sequence through the power

spectral density function than through the ACF. A 0.0 to 2.0 Hz PSD is shown in Figure 5.6,

along with its corresponding ACF. The PSD represented the same total power as was in the target

velocity sequence. This ensured that the ACF, calculated from the PSD, could potentially be

achieved by a configuration of the sequence's elements.
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A. Desired power spectral density
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Figure 5.6: The desired power spectral
correlation function (plot B).

B. Desired auto-correlation function
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The sequentially ordered sequence was randomly shuffled and "whitened" before being

manipulated to attain the desired ACF and CCF (Figure 5.7). Hunter and Kearney (1983) found

that this is required to ensure that the final sequence is stationary. As with the original Hunter-

Kearney technique, rearranging the elements did not affect the velocity distribution because only

the order, not the value, of the elements was changed. A comparison of the desired PSD and

ACF, and the PSD and ACF for the shuffled sequence is shown in Figure 5.8. At this point in its

development the shuffled velocity sequence is a good approximation of a band-limited white

sequence. Its PSD is uniform, and its ACF is close to an impulse.

A. Shuffled sequence
I I I

- 1 .J . . ij ,1 11 4 1 1

-~q

B. Shuffled PMF (blk) vs. Gaussian PDF (red)

200 250 300 350 400 -2.0 0 2.0

element bin (amplitude)

Figure 5.7: The sequence after being shuffled. Reordering the elements does not affect
the PMF of the sequence.
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A. PSD: shuffled (blk), desired (red) B. ACF: shuffled (blk), desired (red)
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Figure 5.8: The PSD and the ACF of the shuffled sequence (black) and the desired PSD
and ACF (red).

Two elements of the sequence were then randomly chosen, and the effects of swapping

their position on the target velocity sequence's auto-correlation and the torque-target cross-

correlation were evaluated. The efficient algorithm that Hunter and Kearney had developed to

update the ACF was extended so that the CCF could also be evaluated without having to calculate

explicitly the entire CCF. The sum of the squared differences (SSD) was used as the criterion to

compare the actual and the desired ACF and CCF. In the example, the elements were swapped

when interchanging their positions decreased the CCF SSD and did not increase the ACF SSD.

For other sequences, the decision to accept a swap and to reposition two elements was made on

the basis of different combinations of the correlation SSDs decreasing or not increasing. This

was done to help identify which criteria resulted in the ACF and CCF converging most rapidly to

their desired values. Surprisingly, none of the combinations consistently produced better results

than the others (this is discussed in Section 5.4). The stochastic interchange was conducted a

prescribed number of times, usually from 250 to 1000 times the length of the sequences. The rate

at which the ACF and the CCF approached their desired values generally decayed exponentially

(Figure 5.9). Most of the improvement was realized by the time a number of swaps equivalent to

20 to 30 times the length of the sequence had been evaluated. The remaining swaps were still

necessary to get the ACF and CCF close to the desired functions, but the rate of improvement was
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lower than at the beginning. The interchanges could also have been conducted until the ACF and

CCF were within some range of the desired values, or until improvements no longer occurred.

After evaluating 600,000 swaps (100 times the length of the sequence), and accepting those that

decreased the CCF SSD and did not increase the ACF SSD, the example sequence was rearranged

to that plotted in Figure 5.10. Its ACF is similar to the desired ACF, and its PSD shows that its

power is highest between 0 and 2 Hz.

A. ACF SSD

2050 50
swap number (xN)

B. ACF SSD

10

swap number (xN)

100

100

C. CCF SSD
0.6

0.4 -
Mj-

U

U
0.2

0
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C,.

U
0.1

0.01

0 50 10
swap number (xN)

D. CCF SSD
I.I

10

swap number (xN)

0

100

Figure 5.9: The convergence of the ACF and the CCF as a function of the number of
swaps. Plots A and C show the sum of the squared difference (SSD) between the
actual and the desired correlation functions as a function of the number of swaps. The
functions are plotted on a log-log scale in plots B and D. The nearly linear behavior
of the SSDs in the log-log plots indicates that the ACF and CCF converged to their
desired values approximately exponentially.
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A. Swapped sequence
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B. PSD: swapped (blu), desired (red)
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Figure 5.10: The sequence, its ACF, and its PSD after being
reordered by the Hunter-Kearney stochastic swap (blue). The
sequence is shown with the desired PSD and ACF (red).

Defining the desired ACF

It was more intuitive to specify the ordering of the target sequence through the power

spectral density function than directly from the ACF. The gaze tracking studies had identified the

frequency content of the target that lead to good tracking, and so the PSD was the characteristic
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that the sequence was being ordered to meet. The desired ACF is simply the inverse Fourier

transform of the desired PSD.

The sequence's auto-correlation was estimated with the biased autocorrelation estimator:

1 N-1-j

r,[j]= - Yx[i~x~i + A], Eq. 5.3
N o

and the PSD from an N to N Fourier transform of the ACF:

C [n] = r, [k] * exp(-j2;fn -). Eq. 5.4
k=O N

The ACF was calculated from the PSD with the inverse transform:

1 N-i
r,[k]=- C,[n] * exp(j2z - k) Eq. 5.5

N ,=O N

(Press et al., 1997).

The biased auto-correlation estimator was used because, although biased, it has a smaller

mean square error than the unbiased estimator (Jenkins and Watts, 1968). In order to preserve

amplitude information in the calculation, the ACF estimator was not normalized by the

sequence's variance.

The N to N transformation of the ACF into the PSD (Eq. 5.4) produces an estimate of the

power at each frequency with a large variance (100%). The variance can be reduced through

windowing, and by dividing the time series into smaller records and averaging calculations of the

PSD. It is not improved by increasing the number of elements in the sequence since the

transformation creates N discrete frequency values from N data points. More elements mean more

frequency bins, and not a better estimate at each frequency. This method was used to keep the

estimate of the sequence's total power consistent when transforming between the time and

frequency domains, as specified by the Parseval and Plancheral relations, and not to get the best

estimate of the power at a particular frequency (Press et al., 1997). These definitions allow

consistency when taking either the inverse transform of the PSD to get the ACF or when taking
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the transform of the ACF for the PSD. This did not, however, prevent the use of a windowed,

averaged power spectrum estimate when considering the final spectrum of a sequence.

Efficient evaluation ofACF and CCF after two element swap

It is inefficient to calculate explicitly the ACF and CCF after each swap. Each time the

N

ACF of an N-element sequence is calculated to a maximum lag of M, Y n products must be

evaluated. Twice as many products have to be calculated for the CCF, because unlike the ACF,

the negative lag values of the CCF do not equal their positive lag counterparts. For the short,

6000 element sequence used as an example, over 1.3x 107 products had to be calculated for the

ACF after every swap when the maximum lag was set to half the sequence length. This brute

force method is very time consuming considering that the number of stochastic swaps that must

be conducted in order for the sequence to have a satisfactory ACF and CCF may exceed 100

times the length of the sequence.

Hunter and Kearney (1983) recognized that a maximum of eight terms in the biased auto-

correlation estimator were affected when the position of two elements in the sequence were

swapped. It was therefore not necessary to recalculate the entire auto-correlation function after

each swap. The ACF, at a particular lag value, could be updated by adding the correction, D/N, to

the correlation value. N is the length of the sequence, and D is found with the following

algorithm. The indices for the elements being considered for the swap are j1 and j2.

1. D = 0

2. If (jl+k i N-1) and (jl+k w j2) then D =D-xixjl+K + Xj 2Xjl+K else D=D

3. If (j1 - k 0) and (j1 - k # j2) then D = D - x 1xj ,K + xj2xjl-K else D=D

4. If (j2+ k N -1) and (j2+ k w jl) then D = D - xj 2xj 2 +K + XjlXj2+K else D=D

5. If (j2 - k 0) and (j2 - k # j1) then D = D - x 2xj2--K + Xj1j2-K else D=D
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The efficient update for the ACF is not unique to the ACF, and was modified for this

research to update the cross-correlation between two sequences. The algorithm assumes that

elements of sequence Y are being swapped, the element indices range from 0 to N-1, and that the

biased cross-correlation estimator is defined as: ryx [k] = I J x[i - k]y[i] Eq. 5.6
N

where i = k to (N-1) for positive lags, and i = 0 to (N-I-k) for negative lags. The CCF, at lag k, is

updated by adding the correction, DIN, where D is calculated by:

1. D = 0

2. If (fl - k 0) and (jl - k N -1) then D = D - xj1 -KYjl + X1 l-KYj2 else D=D

3. If (j2 - k 0) and (j2 - k N -1) then D = D - xj2-K j 2 + X2-K j else D=D

The algorithm for the cross-correlation has fewer update comparisons than for the auto-

correlation algorithm. Two sequences are involved in the CCF calculation, but only the elements

of the Y sequence are being interchanged. Only one term in each product in the cross-correlation

sum is being changed, rather than potentially both as for the auto-correlation sum. The swap has

an effect only when the potential index of the X element, ji -k or j2-k, falls within the range of the

sequence elements, 0 to N-1.

5.2.4 Low pass filtering the target velocity sequence

The target velocity sequence was low-pass filtered to remove unwanted high frequency

content that remained in the sequence after the stochastic swap was complete. Frequencies

outside of the desired frequency range made the target trajectory jittery, and more difficult to

track, and were removed so the visual target was not tracked using saccades or with too much

error. It was difficult to arrange all the elements of the sequence so that they fell within the

constraints imposed by the desired ACF and CCF. It was more difficult than when trying to meet

a desired ACF alone. The stochastic swap does the best it can, and can be helped by a judicious
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choice of the PDF, but the position of some elements will cause the ACF and CCF to differ from

that desired. It can seen in Plot b of Figure 5.10 that after the swap the target velocity sequence

had only about half the power of the desired PSD from 0 to 2 Hz. The total power of the velocity

sequence was the same as that represented by the PSD, so about half the sequence's power fell

outside the desired frequency band. It was not uncommon when developing signals for VOR

experiments for only 30 to 40% of the total power of the sequence to be in the desired frequency

range.

The low-pass filter was designed using the Kaiser-window filter design method

(Oppenheim et al., 1999). It was designed as an acausal, finite impulse response (FIR) filter,

symmetric about the time-0 element. By making it symmetric about time 0, the filter did not

introduce a phase change into the velocity sequence. If the filter had introduced a phase change

into the target velocity sequence, the temporal relationship between the torque and the target

sequences would have been shifted and their cross-correlation function would have been altered

significantly.

The filtered velocity sequence shown in Figure 5.11 is much smoother than after it had

been arranged by the stochastic swap algorithm (Figure 5.10). The same underlying pattern can

be seen in both plots, but the filtered sequence makes no abrupt jumps and the velocities

transitioned nicely into one another. The filtered sequence had the same PSD as the unfiltered

sequence between 0 and 2.0 Hz, but it had little power outside this frequency band. The low-pass

filter did not change the sequence's ACF dramatically. The most obvious change was in the zero

lag value, which is proportional to the total power of the sequence. After the filter, the zero lag

ACF value was half the value before the filter, just as the total power was halved. The rest of the

ACF remained virtually unchanged. The shuffling and swapping procedures had only affected the

order of the elements in the velocity sequence and so the sequence had retained its original

amplitude distribution, which is Gaussian in this example. The low-pass filter affected the

magnitude of the elements in the sequence, and therefore altered the sequence's amplitude
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distribution (PMF). The PMF of the filtered sequence did not approximate a Gaussian PDF as did

the original distribution (Figure 5.12). How great of an effect the low-pass filter had on the

sequence's PMF depended on how much of the sequence had remained in higher frequency bands

after the stochastic swap was complete. The requirement of filtering the sequence was a necessary

limitation associated with wanting the frequency criteria to be strictly met.

A. Filtered sequence
5

-od
0AN

-5
200 250 300 350 400

element

B. PSD: filtered (blk), desired (red)
210r

10 5

0
0 2 4 6 8

frequency (Hz)

C. ACF: filtered (blk), desired (red)

2

U 0

-2-
0 1 2 3 4 5

lag (s)

Figure 5.11: The sequence, its PSD, and its ACF after
being filtered by a 0.0 to 2.0 Hz low-pass filter

174



Filtered PMF (blk) vs. Gaussian PDF (red)

-2.0 0 2.0

bin (amplitude)

Figure 5.12: The PMF of the arranged sequence
(black) is shown with a Gaussian PDF (red).

5.2.5 Integrate the velocity sequence into a position command signal

The target velocity sequence was integrated into a position sequence using an extended

trapezoidal rule (Press et al., 1997). This position sequence was the command signal that directed

the galvanometer and moved the target's image across the screen. Additional processing was

done to make the position sequence more useable for the experiments. It was given a zero mean

so that it was well balanced relative to the center of the screen. This effectively shifted the

target's initial position, but did not affect the target's velocity. It therefore did not alter the torque-

target velocity relationship that had been carefully designed into the target. In some cases, after

the position was shifted, its amplitude was increased so that the target spanned the full width of

the screen. This also amplified the velocity of the target, so was used carefully, and checked to

ensure that the target's velocity was not increased to magnitudes that would encourage the use of

saccadic eye motions. The velocity sequence's range had generally been decreased by the low

pass filter, so there was room to amplify the velocity and still remain within the 10 to 40 deg/s

limit of smooth pursuit movements. Finally, the first and last second of the position sequence was

replaced by a constant velocity ramp so that the target began smoothly from, and ended smoothly
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at the zero position. This helped the subjects acquire the target at the beginning of the experiment,

and brought their gaze back to the zero position at the end.

The sequence shown in Figure 5.13 was a 90 s target position command used in one

experiment to move the target throughout a +/- 30 degree displacement on the screen. There was

approximately a 10 to 1 ratio between the target's position on the screen, in degrees, and the

voltage signal applied to the galvanometer that moved the target's image.

Target position

0 -

0 20 40 60 80 100
time (s)

Figure 5.13: A target position sequence

5.3 Defining bounds for zero cross-correlation

It has been stated repeatedly, and was shown mathematically in Chapter Two, that in

order for the system level performance of the VOR to be analyzed, the cross-correlation between

the torque and target input sequences should be zero. Although this was desired, in practice it

could not be accomplished. The input sequences could not meet the stimulation requirements for

the visual and vestibular systems, and also have a cross-correlation function (or cross-covariance

function) that was identically zero. Instead, the sequences had to be designed so that their cross-

correlation function, which was calculated to a limited lag, was lower than a bound that

represented an acceptable level of correlation. When the magnitude of the CCF was smaller than

this bound, it could be approximated as zero, and the VOR analysis could be conducted as if the
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sequences were ideally uncorrelated. Since the PRB torque sequence approximated a bandlimited

white sequence, its ACF was a suitable bound to decide if the sequences were uncorrelated.

5.3.1 The torque-target CCF cannot be made identically zero

The fact that the torque and target sequences could not be made so that their CCF was

identically zero can be understood by considering the practical difficulty of making the cross-

correlation function equal to zero at all lags (Eq. 5.9), or more rigorously by considering that the

torque and target sequences-had to have power in similar frequency bands.

Cross-correlation calculation

The cross-covariance (CCVF) of two random processes, x(t) and y(t), is defined as:

CXY (tIt 2 )= E{(x(t) - pX)(y(t2) - IuI)}, Eq. 5.7

where the processes are assumed to be wide sense stationary, E{ } is the expected value, and p. is

the process mean. The cross-correlation (CCF) function is defined as:

RXY (tIt 2 )= E{x(t1)y(t 2)}. Eq. 5.8

Two random processes are defined as "uncorrelated" when the cross-covariance function

is zero for all times, ti and t2. The two processes are defined as "mutually orthogonal" when the

cross-correlation function is zero for all times t and t2 . When the processes are zero-mean, the

cross-correlation and cross-covariance functions are the same. In this case, two sequences that are

uncorrelated are also mutually orthogonal, and vice versa. Since zero-mean sequences were used

for the torque and target velocity sequences, "uncorrelated" has been used to describe the

sequences when referring to either the cross-correlation or cross-covariance function being zero.

The torque and target sequences that were being generated for the VOR protocol were

finite length, discrete-time sequences, not probabilistically defined random processes, and

therefore could not have their CCF calculated via the function definitions of Eqs.5.7 and 5.8.
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Their CCF, which equaled their CCVF, was calculated using the biased cross-correlation

estimator, which, for positive lag values (j), is defined as:

1 N-1-j

C,(U) = -LxWiyO + A) Eq. 5.9
N o

where N is the length of the sequences, X(i) can be thought of as representing an element of the

torque sequence, and Y(i+j) an element of the target sequence.

The elements of the target sequence, which represented the velocities of the visual target,

were arranged by the modified Hunter-Kearney algorithm so that the sequence's order had a

particular spectral content and so that its CCF with the torque sequence, calculated with Eq. 5.9,

equaled zero. Unless all the elements of the target velocity sequence were zero, it is unlikely that

the elements could be arranged so that the cross-correlation sum was identically zero at all lag

values, j. It is not unreasonable to expect that the sequence could be arranged so that the CCF

was smaller than a defined bound, but it cannot be expected that the CCF would be identically

zero and the sequences strictly uncorrelated.

Common frequency spectra

The fundamental reason why the torque and target sequences could not be made to have

zero cross-correlation was that the sequences needed to span similar frequency spectra. The PRB

torque sequences were created to have power between 0 and 5 Hz, and the target sequences were

generated to have a bandwidth from 0 through 1 to 3 Hz. Two sequences that have power in the

same frequency bands have a non-zero cross-power spectral density (CPSD) (Jenkins and Watts,

1968). The CPSD is the Fourier transform of the cross-correlation function. Since the total power

of a sequence must be the same no matter in what domain the sequence is represented, a non-zero

CSPD implies that the sequence must have non-zero CCF. The torque and target sequences

cannot, therefore, be strictly uncorrelated.
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5.3.2 ACF of the PRB torque as a correlation bound

The auto-correlation function of the PRB torque sequence can be used as a bound to

decide if two sequences are sufficiently uncorrelated. A full cycle of a PRBS is accepted as being

approximately band-limited white, and is considered uncorrelated with itself at lags greater than

zero. Theoretically, the auto-correlation of an infinite length, continuous time, white sequence is

the delta function. Its only non-zero value is its zero lag value. For a finite, discrete time PRBS,

the off-impulse values are not zero, but have a theoretical value of -a/n, where a is the amplitude

of the binary sequence and n is the length of the seed sequence from which the PRBS originated

(Davies, 1970). Although the off-impulse ACF values are not zero, the finite length, discrete

time, PRBS is considered uncorrelated with itself at these lags. The off-impulse values of the

auto-correlation function can therefore stand as a measure of two sequences being uncorrelated. If

the target sequence can be designed so that the magnitude of the target-torque CCF is smaller

than the magnitude of the off-impulse values of the PRB torque ACF, then the torque and target

sequences can be considered uncorrelated, and any dynamic effects caused by the cross-

correlation of the inputs ignored.

5.3.3 Evaluate CCF over a limited lag

In order for the target sequence to be arranged so that the ACF and CCF design goals

were met satisfactorily, the maximum lag over which the CCF between the torque and target

sequences was evaluated had to be limited. Since the two sequences had power in common

frequencies, their CCF could not be zero. The requirement that the sequences spanned a common

spectrum did not, however, dictate that the sequences had to be strongly correlated at all lags. The

total power of the cross-spectral density function will also be the same as that in the cross-

correlation function, but where it arises in the CCF can be controlled by how the sequences are

designed.
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A key to making the sequences appear uncorrelated is to separate temporally the common

frequencies so that strong correlations occur at long lag values. By making the lag values greater

than the settling times of the subsystems in the gaze tracking system, the high correlation levels

should not have a measurable influence on the dynamics of the systems. Consider the discrete-

time, linear, convolution equation that relates the inputs (u, x), the output (y), and the subsystems

(g, h) of a causal, linear, two-input, single-output system:

M-1 M-1

y[n] = At g[k]u[n - k] + At h[k]x[n - k] . Eq. 5.10
k=O k=O

The subsystems g and h are approximated by finite length impulse response functions (IRF) with

settling times of length M. This implies that the output at time n is only affected by inputs to the

subsystem that happened later than time (n-M) (e.g. u(n-M+1), u(n-M+2).. .u(n)). Inputs that

occurred at times earlier than time (n-M) are assumed not to have a measurable effect on the

output at time n. The two inputs can therefore be considered uncorrelated when their cross-

correlation is near zero at all lags up to a maximum lag equal to the length of the system's IRF.

At lags that are greater than the duration of the IRF, the interaction between the inputs does not

matter because the inputs no longer contribute to the systems' output. The two sequences may be

highly correlated at some lag values, but as long as the correlation occurs at lag times that are

greater than the duration of the system's IRF, the CCF can be mathematically approximated as

zero. For the VOR experiment, the cross-correlation between the torque and target sequences had

to be near zero for lags only as long as the IRFs of the subsystems in the gaze system.

It can also be seen from the correlation-based convolution equations that were developed

in Chapter 2 (Eqs. 2.17, 2.18, 2.20) that the cross-correlation function at lags greater than the

duration of the systems' IRF do not have to be considered in order to identify the dynamics of the

IRF. The maximum lag of the correlation functions that are used in the equations from which the

IRF is calculated is equal to the length of the IRF. The input sequences can therefore be treated as

uncorrelated as long as their cross-correlation function is near zero out to a max lag of M.
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Swapping for ACF and CCF; evaluate CCF over all lags

When the modified Hunter-Kearny method was used to try to make the torque and target

sequences uncorrelated at all lag values, the resultant CCF was low enough to consider the

sequences uncorrelated, but the target sequence was inadequate for stimulating the gaze system.

The algorithm was not able to arrange the target velocity sequence so that the sequence had

sufficient power in the desired frequency range. The target velocity sequence shown in Figure

5.14 was stochastically swapped to have a 0 to 2.0 Hz frequency spectrum and to be uncorrelated

with a torque PRBS. The decision to accept a swap of two elements was based on an evaluation

of the target's ACF and torque-target CCF out to a maximum lag of 90 s, a lag equal to the length

of the sequences. The final torque-target CCF is plotted together with the ACF of the PRB torque

sequence in Figure 5.14. The magnitude of the CCF was smaller than that of the torque's ACF,

which indicates that the torque and target sequences were less correlated than the PRB torque

sequence was with itself. In fact, the mean squared amplitude of the off-impulse ACF values was

15 times the mean squared amplitude of the CCF. Although the target velocity and torque

sequences can be considered to be uncorrelated, too little of the target velocity's total power was

in the desired 0 to 2.0 Hz frequency band. The power spectral density (PSD) of the target velocity

sequence is also shown in Figure 5.14. The PSD of the sequence was greatest from 0 to 2.0 Hz,

but most of the sequence's total power was in frequencies above 2.0 Hz. This is obvious in the

plot of the target velocity which is not smooth and so is unlikely to be followed by a smooth gaze

response.

The velocity elements had to be filtered by a LPF to have the smoothness required to

produce a position sequence that would stimulate the appropriate gaze tracking responses.

However, too much of the sequence's total power was lost when the sequence was filtered. The

outcome of the low pass filter is shown in Fig 5.15. The filtered sequence retained only 12% of

the total power of the original sequence. The original random sequence had a zero mean and a
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distribution that looked like a combination of two Gaussian sequences; one with a mode at 0.28

rad/s (15 deg/s) and the other with a mode of -0.28 rad/s (Figure 5.16a). The filter removed so

much of the velocity content, which had remained above the desired 2.0 Hz limit, that the

sequence's amplitude distribution was destroyed. Even the range of velocities that were required

for testing the VOR was lost. The sequence originally had velocities that reached 0.5 rad/s, but

after being filtered the sequence's maximum velocity was only 0.28 rad/s. Consequently, the

position sequence that was created from this velocity sequence was inadequate for testing.

A. Swapped velocity elements

0
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time (s)

B. PSD: swapped velocity
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C. CCF: torque - target
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Figure 5.14: The target velocity sequence in plot A was arranged to have a 0.0 to 2.0
Hz PSD (plot B), and to be uncorrelated with a PRB torque sequence over all possible
lag values. The CCF between the target and the torque is shown in plots C and D
(blue) along with the ACF of the torque (black).
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Figure 5.16: Sequence probability mass functions. The plot on the left shows the
sequence's PMF before the sequence was low-pass filtered, and the plot on the right
shows the PMF after the sequence was filtered.

Swapping for ACF and CCF; evaluated over limited lags

The solution to meeting both the ACF and CCF criteria was to limit the lag over which

the torque and target sequences were made uncorrelated. This eased the requirements that had to

be met when two elements in the target sequence were swapped, and allowed for more swaps to

be accepted that improved the spectral content of the target signal.

Since the torque and target sequences had power in common frequency bands, there was

no way to avoid some degree of correlation. The stochastic swap algorithm was thus limited to
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arranging the sequence so that the power in the cross-correlation function was distributed over all

lag values. However, when the maximum lag over which the sequences had to be uncorrelated

was reduced, the power in the cross-correlation function could be pushed to greater lag values.

Arrangements of the target sequence that had a good ACF and a good CCF over the limited lag

range, but that were highly correlated with the torque sequence at large lags, could now occur.

A. CCF: torque - target velocity B. CCF: torque - target
0.04 I0.002

0.02 - o
00

0

-0.02 I0.002f
0 2 4 6 8 10 12 0 7 14

time (s) time (s)

Figure 5.17: CCF between the target and the torque (red), and the ACF of the torque
(black). The target sequence was arranged to meet ACF and CCF criteria over a limited
range of lags. After the swap, the ACF of the PRB torque sequence was 1015 times greater
than the CCF between the torque and the target. Plot B shows a magnified view of plot A.

Figure 5.17 shows the cross-correlation function that resulted when the torque and target

sequences were made to be uncorrelated only out to a limited lag value. The same sequence of

velocity elements was used in this example as in the example shown in Figure 5.14. As before,

the goal for the target's frequency spectrum was to have power from 0 to 2.0 Hz. The CCF was

evaluated over 10 seconds of lag, a lag time that was longer than the settling time of the

subsystems in the gaze response system. Between 0 and 10 seconds of lag, the magnitude of the

cross-correlation function was very small. The mean squared amplitude of the torque's ACF was

1015 times greater than the mean squared amplitude of the torque-target CCF. The mean squared

amplitude of the ACF was only 15 times that of the CCF when the CCF had been evaluated to a

lag of 90 s. The mean squared values were evaluated after the peak ACF value had decayed, and
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so the CCF was only compared against ACF values that represented "uncorrelated" values. At

lags greater than 10 s, the torque and target sequences were more correlated, although the mean

squared amplitude of the CCF was never much greater that that of the ACF. The power in the

correlation, or cross-spectrum, of the torque and target sequence had been pushed to these greater

lag values, which is what allowed the magnitude of the torque-target CCF to be so small at lags

less than 10 s.

It can be seen in Figure 5.18 that after being reordered by the stochastic swap algorithm,

the target sequence had it highest power between 0 and 2.0 Hz, but it still had some power outside

the desired range. The velocity sequence was smoother than when it had been created with the

CCF evaluated to a lag of 90 s (Figure 5.14), but it still needed to be low-pass filtered before it

could be integrated into an acceptable target position sequence. However, the low-pass filter did

not remove nearly as much power from the sequence, nor did it affect the sequence's amplitude

distribution as much as when the CCF was evaluated over all lag values. The sequence retained

38% of its original total power when the CCF was evaluated out to 10 s, as compared to only 12%

when the CCF was evaluated to 90 s. In some of the sequences created for the VOR experiment,

the sequence retained as much as 60% of its power. The sequence's amplitude distribution was

altered by the filter, but the sequence retained velocities close to the desired range. In both Figure

5.18 and Figure 5.16 the filter appears to have made the sequence's amplitude distribution more

Gaussian. This was common to nearly all the sequences created for the VOR experiments.
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Figure 5.18: The sequence, its PSD, and its PMF after being ordered by the modified
Hunter-Kearney swap routine (plots A, B, C) and then after a low-pass filter (plots D,
E, F)
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5.4 Swap conditions: number of elements, evaluation criteria,

sequence PMF

5.4.1 Optimizing the swap routine

The modified Hunter-Kearney method manipulates the order of the elements in a

sequence so that the sequence's spectral and correlation measures gradually progress toward

desired values. It is not a closed form technique that produces a specific solution, but it does not

fail if an exact solution cannot be found. How well the modified Hunter-Kearney technique can

arrange a sequence to achieve desired properties is dependent on the goals set for the sequence

(e.g. the desired ACF, CCF, and lag over which the correlations are evaluated), the raw elements

available to be swapped (e.g. the PMF of the sequence), and how the stochastic swap is

conducted (e.g. the number of elements in the swap, how the success of the swap is evaluated,

and the number of swaps executed). To help optimize the modified Hunter-Kearney method for

creating target velocity sequences appropriate for testing the VOR, we investigated how the

convergence of the ACF and CCF to their desired values was affected by the number of elements

in the swap, how the decision to accept the swap was made, and the PMF of the sequence being

swapped.

Fifty-four target velocity sequences, each 6000 elements long, were manipulated with

stochastic-swap routines with conditions specifically designed to investigate each of the above

concerns. All the sequences were arranged to have power between 0 and 2.0 Hz, and to be

uncorrelated with the same PRB sequence. Each sequence had an amplitude distribution that

approximated one of four PDFs: a Gaussian (GWN), bimodal GWN (2-GWN), uniform, or

"bimodal" uniform (2-uniform) distribution (Figure 5.19). The rationale in selecting the bimodal

distributions was that they would have some qualities of a binary sequence, which can be ordered

to have a broad range of frequency spectra, but would have a richer velocity content. The

characteristics of the amplitude distributions were chosen so that the sequences had appropriate
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velocities for testing the VOR. Although the sequences were not as long as those used for the

VOR experiments, their other characteristics were similar. The stochastic swap routines were

executed for 360,000 swaps, which was 60 times the sequence length. This number of swaps was

chosen because it produced an amount of data that was within the memory limits of the computer

system and software used to analyze the data.

A. "GWN" PMF
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bin

B. "2-GWN" PMF

C. "uniform" PMF
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D. "2-uniform" PMF
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Figure 5.19: Four amplitude distributions. A. Gaussian (GWN); B. bimodal Gaussian
(2-GWN); C. uniform; and D. "bimodal" uniform.

The findings of this investigation apply directly only to the modified Hunter-Kearney

process as it was used to create the torque and target sequences for the VOR experiment. The

results should not be interpreted broadly to apply in general to the modified Hunter-Kearney

process, because the ability of the method to produce an outcome, and the influence of each of the

three characteristics, will vary greatly depending on the objective of the swap.

5.4.2 Two versus three-element swaps
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One hypothesis was that the potential of a sequence to be arranged using the modified

Hunter-Kearney technique to meet ACF and CCF goals was limited when only two elements

were considered to be swapped. The procedure might be able to arrange the sequence better if the

positions of three, or four, elements were exchanged at once. Simultaneously interchanging more

than two elements might result in a "non-linear" dynamic where, had the same of elements been

exchanged sequentially, two at a time, there would have been no improvement in the ACF and

CCF after the first two element swap, and therefore no reason to retain the new element positions

as the initial stage for the next two element swap.

A three-element stochastic-swap routine was created. Three elements in the sequence,

ji, j2, and j3, were randomly selected to be swapped. There are two permutations where the

position of each of the three elements is changed; j3, ji, j2 and j2, j3, ji. The elements were

reordered into the permutation that improved the ACF and CCF the most. If neither permutation

improved the ACF and CCF, then the elements remained in their original positions, ji, j2, j3. The

algorithm designed by Hunter and Kearney to update the sequence's ACF after two elements had

swapped positions was used as a building block to update the ACF and CCF when three elements

changed positions. The ACF and CCF for each three-element permutation were calculated by

using three, two-element updates. First, an intermediate reordering was done. Elements ji and j2

were swapped to create the order j2, ji, j3, and the ACF and CCF were calculated using the

efficient, two-element, update. The two, three-element permutations were then made by switching

elements jl and j3 to get the order j2, j3, jl, and by switching elements j2 and j3, to get j3, jl, j2.

The ACF and CCF for each permutation were then calculated using another two-element update.

This three-element update required about three times as many calculations as that needed to

evaluate a two-element swap, but it was still more efficient than explicitly recalculating the ACF

and CCF after each potential swap.

It was expected that a sequence's ACF and the CCF would converge to their desired

values more rapidly with the three-element swap, since more was manipulated and evaluated in a
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"single", three-element swap than in a single, two-element swap. A "single swap" in the two-

element swap routine compared the ACF and CCF after the positions of two elements in the

sequence were changed with the ACF and CCF of the original order. A "single swap" in the

three-element swap routine involved choosing the better of two, three-element permutations, and

comparing its ACF and CCF with the ACF and CCF of the original order. Surprisingly, the three-

element swap routine did not lead to a better convergence of the ACF and CCF towards their

desired values. Representative results from the two- and three-elements swap routines are shown

in Table 5.1 and in Figures 5.20 and 5.21. The plots show the progression of the sum of squared

differences between the actual and desired correlation measures. The final outcomes for the two-

element and three-element swaps were not very different for any of the sequences. The two-

element swap consistently arranged the sequence to have slightly more power in the desired

frequency bands, and in the majority of cases, to have a lower CCF with the torque

sequence.

PDF GWN GWN 2-GWN 2-GWN uniform uniform 2-unif 2-unif

swap 2 3 2 3 2 3 2 3
elements

% power 33 27 34 26 34 32 25 24

CCF 10.7 14.2 3.9 5.3 4.0 4.5 5.1 5.1
swap

CCF 4.4 3.5 1.5 2.0 1.3 1.9 0.8 1.0
lpf I III__II_

Table 5.1: Comparison of the results from two- and three-element swaps. "% power"
indicates the percent of the sequence's total power that was in the desired 0 to 2.0 Hz
frequency range after the swap routine finished. "CCF swap" is the mean squared amplitude
of the torque-target cross-correlation function immediately after the swap-routine that was
evaluated to a maximum lag of 10 s. "CCF lpf' is the mean squared amplitude of the CCF
after the sequence was low-pass filtered to remove power in frequencies beyond the desired
0 to 2.0 Hz frequency band.
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A. ACF SSD: first 20*N swaps C. CCF SSD: first 20*N swaps
800 3

700 -- 2-~

UQ 1<600- U I

50 0
0 5 10 15 20 0 5 10 15 20

swap (xN) swap (xN)

B. ACF SSD: last 20 of 60*N swaps D. CCF: last 20 of 60*N swaps
500---. ---- 1--- - 0.06 - _,_--_

480u) 0.04 -

U U

0.02 ~

40 45 50 55 60 40 45 50 55 60

swap (xN) swap (xN)

Figure 5.20: Two- vs. three-element swap routines for a Gaussian sequence. The plots
show the convergence of the ACF (plots A and B) and the CCF (plots C and D) to their
desired values. The sum of the squared difference (SSD) between the actual and desired
values for the functions are plotted as a function of the swap number. The solid red plots are
for the two-element swap, and the dashed black are for a three-element swap. Plots A and C
show the SSD for the first 20xN swaps, where N is the length of the sequence, and plots B
and D are for the last 20xN swaps.

Although the three-element swap routine did not produce a better final outcome, the ACF

and CCF were driven towards their desired values faster in the beginning than for the two-

element swap routine. In the example shown for the 2-uniform sequence (Figure 5.21), the final

SSD for the two- and three-element routines were close for the ACF (38.6 vs. 36.8) and nearly

identical for the CCF. The two-element routine generally caught up to and surpassed the three-

element routine once the number of swaps exceeded five to ten times the sequence length. It

makes sense that the three-element swap would begin faster than the two-element routine. Each

potential swap selected the best of three, three-element, permutations (including the original

order), rather than the best of two, two-element permutations. It is possible that once the sequence

started to take shape and began to have the desired spectral and cross-correlation characteristics,

that it was harder to find a three-element permutation, than a two-element permutation, that
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further improved the sequence order. Three-element permutations disturbed too much of the

sequence's order. At this point, fine tuning was needed, and this was better accomplished by

swapping two elements at a time. Mathematically, this can be seen from the perspective of there

being a limited set of two- and three-element permutations that improve the characteristics of a

sequence towards the desired values. Once the sequence begins to have the desirable ACF and

CCF characteristics, there are more two-element permutations, than three-element permutations,

among the set of all sequences that further improve the ACF and CCF. A randomly selected two-

element swap has a higher likelihood of being in the set that improves the sequence's

characteristics than a randomly selected three-element swap, and therefore the sequence improves

faster by selecting two elements at a time.

A. ACF SSD: first 20*N swaps C. CCF SSD: first 20*N swaps
60 0.6 I I I

50-\ 0.4
U ~0.41

40 - U.

0

00 5 10 15 20 0 5 10 15 20

swap (xN) swap (xN)

B. ACF SSD: last 20 of 60*N swaps D. CCF: last 20 of 60*N swaps
40 I 0.02 I I I

39 -- - -

38- 0.01 -

U
37

36 0 j40 45 50 55 60 040 45 50 55 60

swap (xN) swap (xN)

Figure 5.21: Two- vs. three-element swap routines for a 2-uniform sequence. The plots
show the convergence of the ACF (plots A and B) and the CCF (plots C and D) to their
desired values. The sum of the squared difference (SSD) between the actual and desired
values for the functions are plotted as a function of the swap number. The red plots are for
the two-element swap, and the black are for the three-element swap. Plots A and C show the
SSD for the first 20xN swaps, where N is the length of the sequence, and plots B and D are
for the last 20xN swaps.
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Although the three-element swap routine improved the sequences faster initially, there

would be little advantage to incorporating the three-element swap into a routine for producing

sequences for the VOR experiments. Each three-element swap required about three times the

calculations for each two-element swap. Considering the extra time needed to carry out these

calculations, it is far better to conduct three times the number of two-element swaps than to use

the three-element routine. However the three-element routine cannot be dismissed entirely. There

may be some cases when swapping three, or more, elements at a time allows for arrangements to

develop that would not otherwise occur if the sequence was ordered two elements at a time.

These arrangements might be the only way to achieve some ACF and CCF requirements.

5.4.3 When should a swap be accepted and the sequence reordered?

When the two- and three-element swap routines were directly compared in section 5.4.2,

the elements of the sequence were repositioned when the sum of the squared differences between

the actual and the desired cross-correlation functions (CCF SSD) decreased (<), and the ACF

SSD did not increase (<=). This was not the only way that could have been selected to accept the

swap and reposition the elements. Any combination of the ACF SSD and the CCF SSD that

resulted in a decrease following the swap might have sufficed. It would not have been logical to

accept a swap when either the ACF or CCF was made worse, and so the least restrictive criterion

that could be used to accept a swap was that the SSD did not increase. To help optimize the

Hunter-Kearney procedure for creating the torque and target sequences for the VOR experiment,

it had to be determined if there was one way to decide if a swap should be accepted that

consistently lead to the best ACF and CCF values.

Velocity sequences were arranged using stochastic-swap routines that repositioned the

elements using one of four decision criteria: a) ACF SSD decreased, CCF SSD decreased, b)

ACF SSD did not increase, CCF SSD decreased, c) ACF SSD did not increase, CCF SSD did not
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increase, and d) ACF SSD decreased, CCF SSD did not increase. At least one velocity sequence

from each of the four amplitude distributions described in Section 5.4.1 was arranged using every

decision criteria. Each of the sequences was swapped to have a 0 to 2.0 Hz frequency spectrum,

and to be uncorrelated with the same PRB torque sequence. The sequences were swapped

360,000 times (60xN).

It was expected that the fastest way for the ACF to converge would be to accept swaps

that decreased the ACF SSD but did not increase the CCF SSD. If the CCF SSD had to decrease

as well, swaps that decreased the ACF SSD, but that did not change the CCF SSD, would be

rejected. By putting the least restrictive requirement on the CCF, fewer swaps that improved the

ACF would be rejected because they failed to meet the CCF criterion. Although the practical

difference between the CCF SSD decreasing and it not increasing was small, it was thought that it

could make a noticeable difference in how the ACF and CCF converged over the course of

hundreds of thousands of swaps. This would also apply to the CCF. To give it its best chance of

converging, it was decided that elements in the sequence should be swapped when the CCF SSD

decreased and the ACF SSD did not increase.

However, no particular set of the decision criteria used to accept a swap resulted in the

best outcome for either the ACF or the CCF in all the sequences tested. Contrary to what was

hypothesized, the least restrictive bound on the CCF did not always yield the best ACF, nor was

the best CCF always created when swaps were accepted that decreased the CCF SSD and did not

increase the ACF SSD. Table 5.2 and Figures 5.22 and Figure 5.23 show representative results

from the four sequences. Direct comparisons of the results were made only among the sequences

with the same amplitude distribution, since only then were the initial conditions set for the swap

routines and the sequences' total power the same.
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PDF GWN GWN GWN GWN 2-GWN 2-GWN 2-GWN 2-GWN

ACFcond < <= <= < < <= <= <

CCFcond < < <= <= < < <= <=

% power 30 33 31 40 31 34 40 33

CCF swap 10.8 10.7 10.9 11.2 5.6 3.9 3.9 3.4

CCF Ipf 3.7 4.4 3.3 5.0 2.7 1.5 0.6 1.5

PDF unif unif unif unif 2-uni 2-unif 2-unif 2-unif

ACFcond < <= <= < < < < <

CCFcond < < <= <= < < < <

% power 33 34 30 32 20 25 24 31

CCF swap 5.0 4.0 3.7 3.3 5.2 5.1 5.1 6.1

CCF Ipf 2.1 1.3 1.5 1.9 1.2 0.8 1.8 0.9

Table 5.2: Results of swap routines based on different decision criteria. GWN, 2-GWN,
unif, and 2-uni sequences were arranged to meet ACF and CCF criteria using four
different swap criterion. "% power" indicates the percent of the sequence's total power
that was in the desired 0.0 to 2.0 Hz frequency range after the swap routine finished.
"CCF swap" is the mean squared amplitude of the torque-target CCF immediately after
the swap routine. "CCF lpf' is the mean squared amplitude of the CCF after the sequences
was low pass filtered to remove power in frequencies beyond the desired 0.0 to 2.0 Hz
band.

The results for the GWN and the 2-unif sequences were consistent with the hypothesis

regarding creating the best ACF or CCF. Both sequences had their lowest "CCF swap" value

when the decision criterion accepted swaps that decreased the CCF SSD (<) and did not increase

the ACF SSD (<=). Both sequences had their highest "% power" when the ACF SSD decreased

(<) and the CCF SSD did not increase (<=). This decision criterion also created the worst

(highest) "CCF swap" value for both amplitude distributions, so the tradeoff for giving the

sequences a good spectral content was a poor cross-correlation.

The results of the 2-GWN and the uniform sequences were not consistent with the

hypothesis. The 2-GWN sequence had its highest "% power" when both the ACF SSD and the
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CCF SSD did not increase (<=), and had its best "CCF swap" value when the CCF SSD did not

increase (<=) and the ACF SSD decreased (<). The criteria that gave the best ACF and CCF

results for the uniform sequence were contrary to what the hypothesis predicted. The uniform

sequence had its best spectral power when the swap did not increase the ACF SSD (< =) and

decreased the CCF SSD (<), and its lowest "CCF swap" value occurred when the CCF SSD did

not increase (< =) and the ACF SSD decreased (<).

A. ACF SSD: beginning of swap B. ACF SSD: end of swap

70-L 48-
U

60 -- '-~~' . 46 --

44
0 2 4 6 8 10 26 28 30 32 34 36

swap number (x 104) swap number (x 104)

Figure 5.22: Convergence of the ACF for a uniform sequence. The SSDs between
the desired and actual ACFs are plotted as a function of the number of swaps that
were evaluated. The decision criteria that were used to accept a swap were: ACF SSD
decreased and CCF SSD decreased (blue dash), ACF SSD decreased and CCF SSD
did not increase (red solid), ACF SSD did not increase and CCF SSD did not increase
(black solid), and ACF SSD did not increase and CCF SSD decreased (brown dash-
dot).

Figure 5.22 shows the progress of the ACF SSD for the uniformly distributed sequence,

and Figure 5.23 shows the progress of the CCF SSD for the GWN sequence. The plots are not

identical to those for the other distributions, but do represent their trends. There was little

difference between the four decision criteria in how the ACF or the CCF converged, particularly

for the CCF. In fact, the differences between the ACF SSD and the CCF SSD curves created with

different decision criteria were no greater than the variance between the ACF SSD and the CCF

SSD curves when the same sequence was arranged several times using the same decision criteria.
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Figure 5.23: Convergence of the CCF for a Gaussian sequence. The SSDs between the

desired and actual CCFs are plotted as a function of the number of swaps that were
evaluated. The decision criteria that were used to accept a swap were: ACF SSD
decreased and CCF SSD decreased (blue dash), ACF SSD decreased and CCF SSD did
not increase (red solid), ACF SSD did not increase and CCF SSD did not increase (black

solid), and ACF SSD did not increase and CCF SSD decreased (brown dash-dot).

The reason that no decision criteria stood out as being the best method to arrange the

sequence to meet the ACF or CCF requirements was probably because there was little effective

difference between the "decreased" and the " did not increase" criteria. The only difference was

that the "did not increase" criterion allowed for a swap to be accepted when the correlation

measure remained the same. It is unlikely that this ever occurred when the positions of two

elements in the sequence were swapped. The elements of the target velocity sequence that were

selected to be swapped would have had to have been either of the same value, or their product

with the elements in the torque sequence would have had to have remained the same. Because the

velocity sequences were not truly random sequences, but were created by transforming uniform

sequences with static filters, few, if any, of the elements in the sequence were of the same value,

so when swapped, the correlation values would always have changed. The "remained the same"

portion of the "did not increase" criterion probably never occurred.

Overall, the ACF and CCF converged to their desired values at about the same rate no

matter what decision criteria were used to evaluate the swap. The results of the GWN and the 2-

unif sequence showed that sometimes the cost of using the decision criterion that arranged the
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sequence so that it had the best spectral content was that the sequence had the worst CCF

measure. However, this was not reflected in the results for the other sequences. No method gave

significantly, or consistently, better or worse results than another method. Each of the decision

criteria was equally appropriate for creating target and torque sequences for the VOR experiment.

5.4.4 The effect of the amplitude distribution on the ACF and CCF

In their 1983 paper, Hunter and Kearney described how a signal's auto-correlation

function and its probability distribution function (PDF) were independent descriptions of the

signal, and therefore could both be defined arbitrarily. The order of the elements in a discrete time

sequence can be manipulated to give the sequence an arbitrary ACF without affecting the

sequence's (amplitude) probability mass function (PMF), which is the discrete time analog of the

PDF. Although this is true, the ACF and the PMF are related. The amplitude distribution of the

sequence affects how well the sequence can be arranged to have a desired ACF. The amplitude

distribution defines what elements are available in the sequence to be arranged. The potential of

the sequence to be arranged to have a particular ACF will depend upon the availability of

appropriate elements so that the desired spectral content can be created.

Although the amplitude distribution and the ACF are separate characterizations of a

sequence, the potential of the sequence to be ordered to have a desired spectral content can be

helped by a judicious choice of the sequence's amplitude spectrum. The corollary is that an

inappropriate amplitude distribution can make it difficult to achieve the ACF and CCF

requirements, no matter how the swap routine is executed. The relation between a sequence's

amplitude distribution and the spectral content that the sequence can be arranged to have is not,

however, an obvious one. A rich amplitude distribution does not guarantee that the sequence can

be ordered to meet a range of ACFs, nor does a limited amplitude distribution prevent a sequence

from achieving a range of ACFs. In fact, a binary sequence, which, other than a constant

sequence, can be considered to have the most limited amplitude distribution, can be arranged to
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have the widest range of frequencies. The highest discrete time frequencies, 0.5 c/s, can be

created by alternating the elements of opposite sines, and the lowest frequency that it can have is

limited only by the length of the sequence.

In order to identify if one of the four amplitude distributions tended to meet the ACF and

CCF criteria better than the others, or if one of the distributions consistently lead to poor results,

comparisons were made between the results of the swap routines conducted on the 54 6000-

element sequences. Each sequence was arranged using one of the several iterations of the

modified Hunter-Kearney method to have a frequency spectrum between 0 and 2.0 Hz, and to be

uncorrelated with the same PRB torque sequence. Since sequences with different amplitude

distributions had different initial swap conditions and different total powers, normalized

correlation measures had to be used to compare the results of the swap routines conducted on

different sequences. The results were compared using the percent of the sequence's total power

that was in the desired 0 to 2.0 Hz frequency range (percent power), and the mean squared

amplitude of the normalized cross-correlation function right after the swap routine (mCCF-swap),

and after the sequence was low pass filtered (nCCF-lpf). The CCF was normalized by dividing

the CCF by the product of the torque and target standard deviations.

Tables 5.3 through 5.7 show representative results from sequences arranged with five

iterations of the modified Hunter-Keamey stochastic swap routine. Each table summarizes the

results for sequences arranged with the same swap routine. The columns list the amplitude

distributions from best (at top) to worst (at bottom) for nCCF-swap, nCCF-lpf, and percent

power.

For all five iterations of the stochastic swap routine, the GWN sequences had the

normalized cross-correlation function (nCCF-swap) with the lowest magnitude, and the 2-

uniform sequences had the worst nCCF-swap value immediately after the swap. This changed

once the sequences were low-pass filtered, and now the results were not as consistent. The GWN

sequences had the lowest nCCF-lpf value in only two out of the five swap routines, and the 2-
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uniform sequence had the worst nCCF-lpf only once. The target velocity sequences had to be

low-pass filtered before they could be integrated into a position sequence and used in the VOR

experiments, so the nCCF-lpf value is more relevant to the VOR experiment than the nCCF-swap

value. None of the amplitude distributions consistently resulted in the highest percent power. The

uniform sequence had the highest percent power thrice, the 2 GWN once, and the GWN also

once. The 2-uniform distribution, however, did have in the lowest percent power all five times.

None of the amplitude distributions was clearly the best for creating the best ACF or CCF

results. There was no typical order for which the GWN, 2-GWN, and uniform sequences were

ranked from best to worst, but the 2-unif sequences consistently had the worst percent power.

Any one of the three distributions that gave good results (the GWN, the 2-GWN, and the uniform

distributions) could be used to create acceptable target velocity sequences for the VOR

experiments. The decision as to which one to use for the VOR experiments could be based on

which sequence the subject tracks best.

3-element swap: ACF SSD not increased, CCF SSD decreased

PDF nCCF PDF nCCF PDF %
swap Ipf power

GWN 3.4 GWN 3.2 unif 32

unif 5.7 2-unif 4.1 GWN 27

2-GWN 7.0 unif 4.5 2-GWN 26

2-unif 12.4 2-GWN 5.6 2-unif 24

Table 5.3: 3-element swap; swap accepted when ACF SSD was not increased and CCF
SSD decreased. "nCCF swap" represents the mean squared amplitude of the normalized
cross-correlation function after the sequence was reordered, and "nCCF lpf' after the
sequence was low-pass filtered. "% power" is the percent of the total sequence power that
was in the desired frequency range.

200



2-element swap: ACF SSD decreased, CCF SSD decreased

PDF nCCF PDF nCCF PDF %
swap Ipf power

GWN 2.5 GWN 3.1 unif 33

unif 6.6 unif 4.7 2-GWN 31

2-GWN 7.7 2-unif 5.7 GWN 30

2-unif 12.6 2-GWN 6.4 2-unif 20

Table 5.4: 2-element swap; swap accepted when ACF SSD decreased and CCF SSD
decreased.

2-element swap: ACF SSD not increased, CCF SSD decreased

PDF nCCF PDF nCCF PDF %
swap Ipf power

GWN 2.4 unif 2.8 unif 34

2-GWN 4.5 2-unif 3.1 2-GWN 33

unif 4.7 2-GWN 3.3 GWN 33

2-unif 11.2 GWN 3.4 2-unif 25

Table 5.5: 2-element swap; swap
SSD decreased.

accepted when ACF SSD was not increased and CCF

Table 5.6: 2-element swap; swap accepted when ACF SSD was not increased and CCF
SSD was not increased.
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2-element swap: ACF SSD not increased, CCF not increased

PDF nCCF PDF nCCF PDF %
swap Ipf power

GWN 2.5 2-GWN 1.1 2-GWN 40

2-GWN 4.1 GWN 2.7 GWN 31

unif 4.5 unif 3.7 unif 30

2-unif 11.8 2-unif 6.9 2-unif 24



Table 5.7: 2-element swap; swap accepted when ACF SSD decreased and CCF SSD
decreased.

5.5 Conclusions

The modified Hunter-Kearney technique can be used to create sequences with arbitrary

spectral and cross-correlation characteristics. It is a powerful tool for creating input signals for

multi-input and physiological systems, where each input may have to be of a different signal type

in order for it to be tolerated well by the system under study. As a stochastic technique, the

modified Hunter-Kearney process does not provide a closed form solution, but arranges the

sequence to meet design goals. The ability of the algorithm to arrange the elements of the

sequence to meet the desired spectral and correlation goals depends on the raw signal that is being

manipulated, and how the stochastic swap is executed and evaluated.

Fifty-four velocity sequences, each 6000 elements long, and with four amplitude

distributions, were arranged using several iterations of the modified Hunter-Kearney stochastic

swap method. The goal was to investigate how effective the modified-Hunter Kearney technique

was in creating sequences for the VOR experiment as a function of the number of elements

involved in each swap, the decision criteria used to evaluate each swap, and the amplitude

distribution of the sequence.
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2-element swap: ACF SSD decreased, CCF SSD decreased

PDF nCCF PDF nCCF PDF %
swap Ipf power

GWN 2.2 2-unif 2.6 GWN 40

2-GWN 4.0 GWN 2.7 2-GWN 31

unif 4.2 2-GWN 3.7 unif 30

2-unif 11.3 unif 6.9 2-unif 24



The two-element swap routine produced better results than the three-element swap

routine. When the number of swaps executed was less than ten times the length of the sequence,

the three-element swap routine often reduced the ACF and CCF SSD slightly more than the two-

element swap routine, but the two-element routine surpassed the three-element routine when a

greater number of swaps were executed. After a large number of swaps, however, the differences

between the results from the two- and three-element routines were not dramatic. The most

significant advantage of the two-element swap over the three-element swap was that it was more

efficient. A single two-element swap required about a third of the processing of a single three-

element swap.

How well the sequences were arranged to have desired characteristics was not

significantly affected by the decision criterion used to evaluate and decide if a swap should be

accepted and the elements repositioned. The differences observed between the four decision

criteria was no greater than the variance observed when the same sequence was arranged several

times using the same decision criterion.

Of the four amplitude distributions of the sequences, none stood out as the best for

creating the characteristics for the VOR experiments. The results of the swap routines that

manipulated the 2-uniform sequences consistently had the lowest percent power in the desired

frequency range, and so the 2-uniform distribution was viewed as the least appropriate

distribution. Any of the other three distributions were appropriate for generating sequences for the

VOR experiment. This allowed for target velocity sequences to be created with a broader range of

velocity distributions than if only one amplitude distribution had been found to be optimal.
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Chapter 6

Dynamics of the human head-neck system in the horizontal

plane

6.0 Chapter summary

Chapter 6 is a reprint of a paper that was published in Annals of Biomedical Engineering,

Vol. 31, pp. 606-620, 2003. The study was conducted to determine the dynamics of the head-neck

system in response to stochastic, horizontal plane, torque perturbations. The linearity of the head-

neck system was important to being able to associate the VOR eye motions to the controlled

torque input. If the system was strongly nonlinear, then nonlinear system identification techniques

would have been required to accurately assess the performance of the VOR. Fortunately, it was

found that the response of the head-neck system to stochastic perturbations could be well

represented by a quasi-linear, second-order system. When the mean torque was held constant, and

the disturbances to the head's position were small, the viscoelastic properties of the system were

not dependent on the stimulus frequency between 0.5 and 10 Hz. The viscoelastic properties

were, however, sensitive to the mean torque. As the mean torque increased, both the effective

stiffness and damping of the system increased, and did so in a manner that maintained the

system's damping ratio nearly constant.
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Abstract-The vestibular system has often been studied by
perturbing the position of the head. This study was conducted
to identify the dynamic properties of the head-neck system in
response to horizontal plane perturbations. A quasilinear ap-
proach was used to quantify the dynamics of the head-neck
system at different levels of static torque. An operating point
was established by applying a static torque to the head with a
helmet-based perturber. The head-neck dynamics were then
probed with a rich spectrum, stochastic, torque perturbation.
Impulse response functions (IRFs) were estimated from corre-
lation measures, and parametric models were fit to the IRFs.
The results indicated that when the mean torque was held
constant, the head-neck system behaved like a second-order,
underdamped, passive system between 0.5 and 10.0 Hz. The
system was not strictly linear, however. The properties of the
system were sensitive to the static component of the torque. As
the mean torque increased, the effective stiffness and damping
progressively increased, and did so such that the system's
damping ratio remained essentially constant. The findings of
the study will assist in designing stimuli that are well tolerated
by subjects and can induce head motions that span the perfor-
mance capabilities of the vestibular system. C 2003 Biomedi-
cal Engineering Society. [DOI: 10.1114/1.1566772]

Keywords-Helmet, Impulse response, Stochastic, System
identification, Vestibular, VOR.

INTRODUCTION

The vestibular ocular reflex (VOR) stabilizes vision
by creating eye motions that compensate for undesired
linear and rotational head motions. The head serves as a

relatively stable reference platform for the eyes, but is
often disturbed during normal activities so that without a

properly functioning VOR, people find it difficult to
read, focus, or track moving objects. We are developing
a testing method that evaluates the system-level perfor-
mance of the horizontal, angular VOR while it stabilizes
gaze during normal target tracking. Small amplitude, sto-
chastic, torque perturbations are applied to a subject's
head while the subject tracks an unpredictable, moving

Address correspondence to: James Tangorra, 77 Massachusetts Ave,
3-147, Cambridge, MA, 02139. Electronic mail: jtangor@mit.edu

target with natural head and eye motions. The torque
perturbations are designed to disturb the motion of the
subject's head and to make it necessary for the VOR to
generate corrective eye motions so that the subject's gaze
can remain focused on the moving target. The amplitude
of the perturbation applied to the head must be large
enough to induce a measurable VOR eye response, but
not so large that the test subjects are prevented from
moving their heads as they desire while tracking the
target. In order to determine the appropriate amplitude
for this perturbation, the dynamic relationship between
the torque applied to the head and the resultant motion of
the head and neck must be quantified.

The properties and the response of the head-neck sys-
tem can be expected to have a nonlinear, time variant
relation with the torque stimulus applied to the head, and
will be sensitive to the conditions associated with target
tracking, such as head velocity and gaze error. The sta-
bility of the head is controlled using a combination of
voluntary control, neuromuscular reflexes, and passive
system mechanics. The contribution of each of these
mechanisms to stability is frequency dependent, with
each mechanism dominating in a different frequency
range.16 It seems reasonable to expect that the properties
of the head-neck system will change as the mechanisms
that contribute to head stability increase or decrease their
influence. Studies of the head-neck system have shown
that properties such as stiffness are sensitive to external
loading, as is the case for many joints in the human
body.' t8' 30 Keshner et al.15 concluded that the stiffness
of the head-neck system was neurally mediated, prima-
rily through a modulation in the gain of the vestibulo-
collic reflex (VCR), which helps to maintain similar head
dynamics under different inertial conditions. They found
that as the inertial load on the head was nearly doubled,
the effective stiffness of the head-neck system increased
considerably, but the dynamics of the system, as mea-
sured by the system's natural frequency and settling
time, remained essentially the same. Viviani and
Berthoz28 had also shown that the stiffness of the head-
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neck system was sensitive to the level of continuous
force applied in the sagittal plane, but contrary to Kesh-
ner et al. ,' found that significant changes in system dy-
namics occurred as the viscoelastic properties of the
head-neck system changed.

This paper focuses on the response of the head-neck
system in the horizontal plane to torque perturbations
applied directly to the head. A quasilinear testing and
analysis approach was used to quantify the dynamics of
the head-neck system at different levels of mean (static)
torque. An operating point for the system was established
by applying a static torque to the head. The system
dynamics was then probed by disturbing the head-neck
system with a rich spectrum, stochastic, torque distur-
bance added on top of the static torque. The impulse
response function (IRF) for the head-neck system was
calculated at each level of static torque, and a parametric
model was fitted to the nonparametric IRF. The focus of
these experiments was on the overall response of the
head under different loading conditions, not on the indi-
vidual contributions made by different mechanisms to-
wards the head-neck system's stability. The contributions
of all mechanisms were lumped together, thus the param-
eters calculated for the system represent the combined
contributions of all the mechanisms participating in the
head and neck's response.

Active and passive stimulation of the head has been
gaining popularity as a means of investigating vestibular
responses, 4,1, but little has been published that charac-
terizes the dynamic response of the head in response to
forces and torques applied in the horizontal plane. The
aviation and automotive industries have extensive data
on the head's response during crashes and in response to
vertical accelerations, but these motions are generally
considered for the sagittal plane, and for much greater
loads and larger motions than are needed to probe the
VOR. Studies that have looked at the head's response in
the horizontal plane often use full-body motion as the
input, rather than a force or torque. 6

,
26 Full-body mo-

tions are a more natural input to the head than are di-
rectly applied torques, but may be better suited for sta-
bility studies than for identification of the system, as it is
difficult to quantify the magnitude of the input that is
transferred to the head. The present study will assist in
the design of unpredictable torque sequences that can be
used to stimulate the head for studies of the vestibular
system.

METHODS: APPARATUS, EXPERIMENTATION,
AND ANALYSIS

Apparatus

A head perturbing mechanism was developed to apply
torque disturbances to a subject's head that induced small
head rotations about the vertical neck axis. The head

FIGURE 1. Head perturber designed to apply torque pertur-
bations in the horizontal plane to a subject's head. The per-
turber is composed of an adjustable helmet driven by a com-
puter controlled torque motor.

perturber was constructed from an adjustable helmet and
servomotor that were attached to a counterbalanced sup-
port frame as shown in Fig. 1. The frame was designed
so that the helmet and motor could be lowered onto the
head of a seated subject, and adjusted so that the rota-
tional axis of the motor could be aligned with the natu-
ral, vertical neck axis of the subject. When the perturber
was properly fitted to a subject, and no torque was ap-
plied to the helmet, the subject could freely rotate his or
her head in the horizontal plane (yaw), but had little
freedom to rotate the head in the sagittal (pitch) or fron-
tal (roll) planes, or to translate the head in any direction.
Weights on the counterbalanced frame were adjusted to
balance the weight of the helmet and motor so that the
subject did not have to support the weight of the appa-
ratus. This was both for the comfort of the subject and to
ensure that the weight of the apparatus did not tire the
subject nor affect the dynamics of the head and neck.

The motor that drove the helmet was a static, brush-
less, resolver-based servomotor (Kollmorgen MT304A1,
Radford, VA) that was configured for torque control. The
motor output was driven with an analog command signal
produced by a National Instrument's PCI-MIO-16XEIO
data acquisition and output (NI-DAQ) board (National
Instruments Corp., Austin, TX). To prevent the head per-
turber from applying too much torque to the subject's
head, an electronic current limiter in the motor controller
was set to limit the amount of current that could be
applied to the motor's coil. A mechanical slip clutch
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(Hilliard L2-1-312AC, Elmira, NY), placed between the
motor's output shaft and the helmet, acted as a secondary

safety system in case the electronic limiter failed. The

slip clutch was set to prevent more than 1.0 N m from

being applied to the helmet by the motor. The torque

applied to the helmet was measured with a six axis,
force/torque transducer (Assurance Technologies Inc.,
Gamer, NC) capable of resolving torques as low as 2.0
X 10-3 N m and measuring torque up to 4.0 N m. A laser
pointer was mounted on top of the helmet to give visual
feedback of head position. The laser projected onto a
screen placed 1.6 m in front of the subject. Head and
helmet motions were measured with either small (6 g, 12
mm diameter), magnetohydrodynamic (MHD) angular
rate sensors (ATA ARS-04E, Albuquerque, NM), or
slightly larger (14 g, 20 mm), piezoelectric "tuning fork"

angular rate sensors (Watson ARS-C141-lAR, Eau
Claire, WI). The ATA MHD sensor was mounted on the

bridge of the subject's nose with a thin aluminum brace,
and the Watson sensor was mounted on a bite plate.
Since the helmet perturber restricted movement of the

head to rotations about the neck's primary axis, only the

rotational velocity of the head was measured. Data were

gathered with the same NI-DAQ board used to create
the motor's reference signal. Data were analyzed offline
with Mathcad 2001 and with software developed in the

Visual Studio 6.0 environment.

Experimentation

Six subjects, one woman and five men, participated in
this study. The subjects' ages ranged from 22 to 33. All
were healthy graduate students with no history of or
apparent neuromuscular or vestibular problems, and had
normal or corrected-to-normal vision. No quantitative
test was conducted to assess the subjects' vestibular per-

formance before assessing their head-neck response, but
subjects were questioned by the experimenter and ex-
cluded if they reported any present or past neck, back, or
vestibular problems. All subjects had a range of motion
with their neck that exceeded the rotational displace-
ments that would be experienced during the experiments.
Three potential subjects were excluded: two had previous

back-related injuries, and one had suffered a head injury
within the past year. This study was approved by the
Massachusetts Institute of Technology Committee on the

Use of Humans as Experimental Subjects. All subjects
gave written consent before participating in this research

study.
Subjects were seated in a rigid chair just under the

helmet of the head perturber. The helmet was lowered

onto the subject's head and tightened with head and chin
straps so that it did not slip when torque was applied or
when the head was moved. The primary axis of the
subject's neck was not explicitly measured, but the test-

ing apparatus was adjusted for each subject so that the
head and the helmet rotated without there being any

significant eccentricity between the neck's and the hel-

met's rotational axes. There were independent adjust-
ments for the lateral and horizontal positioning of the
helmet, the angle of the motor axis in the vertical plane,
the helmet's attachment and alignment to the motor, and
a variety of adjustments within the helmet allowed the
helmet to be securely attached to the subject's head.
Subjects were instructed to adjust the head perturber so
that they felt that their head rotated comfortably with the
helmet, and so that they were able to rotate their heads
with the helmet through ±30 deg without feeling that the
primary axis of their neck was eccentric to the axis of
the head perturber. This was verified visually by the
experimenter as the subjects rotated their heads. During
the experiment, the torque perturbations rarely created
disturbances to the head's position that exceeded 5 deg,
so any translation that would have been caused by a
deviation between the rotational axis of the helmet and
the subject's head was minimal. The compliance of a
subject's skin did permit the helmet to move slightly
relative to the skull. This made it necessary to measure
both the helmet and head velocities during the experi-
ments, and to calculate the resultant torque that acted on
the head, which differed slightly from that measured at
the helmet. Once the helmet was adjusted, subjects were
asked to rotate their head to a natural "zero-rotation"
position. The laser pointer on top of the helmet was
illuminated, and its projection marked on the screen as a
visual reference. During experimentation the projection
of the laser relative to this mark acted as a visual refer-
ence so subjects would know where their head was
pointing.

Each experimental trial began by applying a static
(constant) torque to the helmet, which tended to displace
the subject's head away from the zero-rotation position.
Subjects were instructed to compensate for the torque,
and to rotate their head so that the laser projection was
realigned with the zero-rotation mark on the screen.
Once the subject was accustomed to compensating for
the static torque, a small amplitude, zero-mean, stochas-
tic torque perturbation sequence was added to the static
torque. This perturbation shook the test subject's head
about the zero-rotation point, effectively acting as a dis-
turbance to a system defined at an operating point estab-
lished by the static torque. Subjects were instructed to
correct for any position disturbance and to try and keep
the laser pointer aligned with the zero-rotation marker. It
was stressed to each subject that they should not resist
the torque perturbations by cocontracting their neck
muscles, which has been shown to increase the stiffness
of a joint,14 but that they should actively correct for any
position error. Training runs were conducted to try to
illustrate to subjects the difference between actively cor-
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recting the head's position and resisting the disturbance
with cocontraction. All subjects kept their eyes open dur-
ing the experiment.

The static torque applied to the helmet ranged from
0.0 to 0.65 N m and was applied in increments of 0.05
N m in both the clockwise and counter-clockwise direc-
tions. Although the neck is capable of producing rota-
tional torques well above 0.65 N m, 0.65 N m was used
as an upper limit in the interest of safety, and to ensure
that all subjects would be able to resist the torque during
the experiment without tiring. The stochastic torque per-
turbation sequence was generated with a 12-seed pseu-
dorandom binary sequence (PRBS), executed at 15 or 20
elements per second, and scaled for a magnitude of ± 0.1
or 0.2 N m. This execution rate produced sufficient input
power through 10.0 Hz. As the predominant frequencies
of head motions in the horizontal plane during locomo-
tion are in the range of 0.5-3.0 Hz,9 this input spectrum
seemed sufficient to stimulate the head motions neces-
sary for system identification. The torque perturbation
was gradually applied to the helmet by increasing the
level from 0.0 to 0.2 Nm, and in a few experiments was
limited to 0.1 Nm. The stochastic PRBS was chosen so
that a subject would not be able to predict the sequence
of torque perturbations being delivered and potentially
develop a strategy to compensate for the disturbance.
Subjects reported that although the perturbations were
light and did not create large head motions, the random-
ness of the sequence made it very difficult to bring the
laser to the zero position after being disturbed from the
neutral position. By the time they were attempting to
correct for a disturbance and had generated a motion
towards the zero-rotation position, another perturbation
would displace their head before the correction could be
made. Experimental trials were run for 60-90 s. To help
prevent fatigue, rest periods of equal duration were given
between each trial, 10 min breaks were taken after every
six experimental trials, and the direction in which the
static torque was applied alternated between clockwise
and counter-clockwise directions. Additionally, the order
in which the static torques were applied to the head was
randomized, so that the subject would not get accus-
tomed to a continuously increasing level of torque, and
to balance low and high levels of torque throughout the
experiment. A total of 150 experimental trials were con-
ducted on the six subjects.

Analysis

The torque applied to the helmet (tor), the helmet's
rotational velocity (helm), and the head's rotational ve-
locity (vel) were each sampled at 100 Hz and analyzed
offline. Data were median filtered to remove aberrant
data points and the input and output power spectral den-

sities were calculated to verify that appropriate power
was available throughout all frequencies of interest.

The data were analyzed as representing measurements
of a quasilinear system that had been disturbed about an
equilibrium operating point. The system's equilibrium
point and its associated dynamics were set by the sys-
tem's reaction to the applied static torque, and the dis-
turbance about this operating point was created by the
torque perturbations. The admittance IRF was calculated
for each experiment, and a second-order parametric
model was fit to the IRF. Admittance is being defined as
the relationship between a torque input and a velocity
output, the mechanical analog to the electrical admit-
tance, the relationship between a voltage input and a
current output. The admittance IRF is simply the first
derivative of the more common compliance IRF, which
relates the position output to the torque input. The head
and helmet were instrumented with angular rate sensors,
so the admittance IRF was the natural output-input rela-
tionship to calculate.

The admittance IRF estimate, hest' was calculated by
deconvolving the input (torque) auto-covariance estima-
tor from the output-input (head velocity-torque) cross-
covariance estimator. Sequence means are written as A.

Biased auto-covariance estimator

I N-1-i
ctt(j)= - X Y, [tor(i+j) - /pto,] X[tor(i) - /ptor]-

i=0

(1)

Biased cross-covariance estimator

1 N-1-j
Cot(j)= EX [vel(i+j)- veI]X[tor(i) - tor].

(2)

Identification of the IRF from the covariance estima-
tors, rather than directly from input and output measure-
ments, gives a more accurate estimate of the dynamics of
the underlying system by reducing the effect of measure-
ment noise.12 2 0 The linear relation between the covari-
ance functions and the system IRF is

(3)cl(n) = CNI(n) + E h~k) X c(n -k),
k=O

where CNt represents the cross-covariance between the
measurement noise and the input torque. When the mea-
surement noise and input torque are statistically uncorre-
lated, the noise-torque cross-covariance may be set to
zero. The underlying system response, uncorrupted by
noise, therefore represents the relation between the input
covariance and the output-input cross-covariance.

210

609



TANGORRA et al.

The input auto-covariance was "deconvolved" from
the cross-covariance by first expressing m lags of the
input auto-covariance as an (m X m) Toeplitz matrix, (D,
where the (ij)th term was set equal to the covariance at
lag li-jl. The Toeplitz matrix was inverted and multi-
plied by the (m X 1) output-input cross-covariance esti-
mator. The resulting IRF estimate was then scaled by the
sampling interval, At, to make its amplitude consistent
with the originally sampled continuous time signal. The
maximum lag value, m, was iteratively chosen to be
approximately six times the apparent settling time of the
IRF, so that all relevant system dynamics would be in-
cluded in the calculations.

Admittance impulse response function estimate

-o
50

0

(a)

0 0.2 0.4 0.6

Lag (s)

(b)

hest= - X -ixI .IAt (4)

-o
The coherence-squared function was calculated from

the auto- and cross-spectral densities to assess the sig-
nificance of linearity and noise in the analysis, and to
identify the frequency range over which the linear IRF
represented well the dynamics of the underlying head
and neck system about the operating point.

The admittance IRF had the characteristic shape of a
linear, underdamped, second-order system (Fig. 2), and
was well approximated by the second-order parametric
model

h mod=gainx cX e-X 0nx cos(1- 1 2 xWn X t)

-- X sin(v1 - i2 x Oin X t) ,(5)
21 - 2

where con is the undamped natural frequency, and is the
damping ratio.

This velocity/torque IRF is the first derivative of the
more familiar position/torque IRF

h .d ainX nX e - X &nX X

hmo d~aixonx 1-~'x 2

X sin(V1 - 2X w Xt). (6)

The rotational inertia (J), damping (B), and stiffness
(K) of the head and neck are related to the model's gain,
natural frequency, and damping ratio by

1
gainx on

B = 2 2
gain X on '

Kg n
gain'

0

0 0.2 0.4 0.6

Lag (s)

FIGURE 2. Admittance impulse response function estimates
(solid) and their second-order parametric models (dashed)
obtained from two subjects. The data represent the impulse
relation between a torque input and a velocity output. The
characteristics of the IRF shown in plot (a) are very similar
to that of the ideal second-order model. The IRF shown in
plot (b) begins at a low value, uncharacteristic of the ideal
second-order response, but then quickly rises to a value
close to the time=O value of the IRF in plot (a). After this
initial spike, the IRF has a similar oscillatory, exponential
decay as the ideal second-order model.

The second-order parametric models were fit to the IRF
by minimizing the mean sum of square difference be-
tween the IRF and the parametric model with a nonlin-
ear, Levenberg-Marquardt, minimization technique. 24

Estimates of the head velocity measured during each
experiment were made by convolving the measured input
torque with the nonparametric and parametric IRFs. The
"percent variance accounted for" (VAF) and the mean
square error of these estimates were calculated to assess
how well the IRF captured the dynamics of the underly-
ing head-neck system, and to compare how much of the
dynamic response was lost by modeling the nonparamet-
ric IRF with the three-parameter second-order model.

To determine the characteristics of the head-neck sys-
tem, the influence of the head perturber must be re-
moved. Ideally the analysis of the admittance IRF of the
head and neck would be made using a direct measure-
ment of the torque applied to the head. Unfortunately, we
are limited to measuring the torque applied to the helmet
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and estimating the torque that is transferred to the head.
These torques, although close in value, differ because of
the dynamic response of the helmet, and the compliance
of the skin, which permits the helmet to have a slightly
different motion from the head. The analysis began by
modeling the head perturber components located after
the torque transducer, the helmet and its connecting
shaft, as a first-order rotational mass and damper, the
compliance of the skin between the helmet and the head
as a spring and damper, and the head and neck system as
an unknown dynamic system. Because the skin between
the head and helmet is being modeled without inertia, the
IRF of the head and neck can be calculated from a
measurement of the torque applied to the helmet minus
the "dynamic torque" used by the helmet. The helmet's
dynamic torque is estimated by convolving a measure-
ment of the helmet's velocity with an a priori IRF
that represents the velocity-torque relation of the head
perturber.

This calculation can be simplified when the difference
between the velocities measured for the head and for the
helmet are small enough to be neglected, and if the
head-neck system is treated as a linear, single mass,
lumped parameter system. When the measured velocities
are set equal, a single IRF representing the response of
the combined helmet and head-neck system can be found
using the torque measured by the transducer at the hel-
met. Parameters representing the properties of the head-
neck system can be found by subtracting the known
mass and damping of the head perturber from the param-
eters that describe the combined system.

Significant differences were not found between trends
in the parameters estimated when the head-neck IRFs
were calculated by removing the dynamic torque or
when the parameters were calculated by subtracting the
perturber's parameters from the parameters describing
the combined system. There were differences in the spe-
cific values of the parameters found with the two calcu-
lation methods, but the differences were small and con-
sistent, and the general trends exhibited by the
parameters for a series of experiments were the same.
Because of intersubject variability, and variability in an
individual subject's response, particular values for a
property at a specific mean torque are less significant
than the trend describing how the property changed as
the mean torque applied to the head was varied. This
information can be gathered with either the analysis that
removes the helmet's dynamic torque, or the analysis
that simply subtracts the head perturber's mass and
damping. For consistency, the results reported throughout
this paper are those found without removing the dynamic
helmet torque. This allowed the inclusion of data for
cases where a sensor was not available to measure inde-
pendently the helmet's velocity.
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FIGURE 3. Coherence-squared (a) and input power spectrum
(b) from a representative subject. The drop in the coherence
squared function below 0.5 and above 10 Hz is an indication
that nonlinearities and/or a low signal to noise ratio are ad-
versely affecting the linear input-output analysis at these
frequencies.

RESULTS

Nonparametric IRFs

The data displayed in Fig. 2 are typical of the non-
parametric admittance calculated from the experimental
measurements. Both curves show that in response to an
impulse input, the head-neck system exhibits exponen-
tially decaying oscillations. In some cases the IRF de-
cayed from a high initial value, but in others the IRF
began with a quick rise from a low initial value that was
followed by an oscillatory decay. Both curve shapes
were found during the analysis of data from each subject,
and neither was more prevalent over any particular range
of static torques. Although the head-neck system pos-
sesses nonlinear, time variant, adaptive qualities, coher-
ence measures and the VAF in velocity predictions
showed that, under the constraints of the experiment, the
quasilinear assumption for the system and analysis was
sound, and the resulting nonparametric IRFs accurately
represented the dynamics of the head-neck system at the
different levels of mean torque.
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Figure 3 shows a representative coherence-squared
function from the linear analysis of the system's input

and output measurements. In general, coherence values
were high (above 0.9) at frequencies from as low as 0.5
to 10 Hz. This indicates that, at least in this frequency
range, the linearity assumption was valid, and the noise
content of the experimental data was low.20 21 The high
coherence-squared is evidence that a single IRF repre-
sents the system well from 0.5 to 10 Hz. Below 0.5, and
above 10 Hz, the coherence drops rapidly, indicating that
at these frequencies, either the system would have been
better modeled with higher order, nonlinear functionals,17

or that the signal-to-noise ratio of the measurements was
too low to assess system performance accurately. The
drop in coherence above 10 Hz can be attributed to a
drop in the input power at higher frequencies. As can be
seen in Fig. 3, the spectral density of the input torque
dropped significantly by 10 Hz. Coherence is sensitive to
the signal to noise ratio, and was adversely affected by
the nearly two orders of magnitude drop in power by 10
Hz.

The nonparametric IRFs were convolved with the
measured input torque sequences to create estimates of

the head velocity. The resulting calculations matched the
measured head velocity well, indicating that the non-
parametric IRFs captured the dynamics of the head-neck
system. The mean VAF for the velocity estimates for all
150 experimental trials was 92.2% [standard deviation
(s.d.) 2.4%]. In the majority of instances, the same ve-
locity sequence that was used to calculate the cross co-
variance function, and subsequently the IRF estimate,
was used in the calculation of the VAF. In only a few
instances were data records long enough to be split so
that a velocity prediction could be made with data that
were not also used to estimate the system's IRF.

Modeling the Head-Neck System as an Underdamped,
Second-Order, Linear System

The IRF and the frequency response functions' (FRF)
gain and phase plots showed that, at all levels of static
torque tested, the head-neck system exhibited character-
istics of a second-order underdamped system. The fun-
damental features of the nonparametric IRFs were con-
sistent with the characteristics of ideal second-order
models, with visually similar oscillatory frequencies, de-

cay rates, and settling times. As would be expected, the
nonparametric IRFs were not as smooth as the paramet-
ric IRFs, nor were the decays of the nonparametric IRFs
ideally exponential, but the same fundamental dynamics
could be seen in the nonparametric and in the second-
order parametric IRFs. The spike seen in the initial re-
sponse of some of the nonparametric IRFs deviated from
the ideal, but even these IRFs quickly returned to a more
idealized oscillatory, exponential decay after the spike.
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FIGURE 4. Gain (a) and phase (b) plots of the frequency
response function calculated from a single subject. These
show the characteristic traits of a second-order response
from the perspective of a torque input and a velocity output.

In the frequency domain, gain and phase plots calcu-
lated from experimental data also supported modeling
the nonparametric IRFs with second-order, parametric
models. The data displayed in Fig. 4 are typical gain and
phase results, and exhibit the traits of an ideal second-
order system when considered from the perspective of a
velocity output. The experimental gain response can be
seen to increase with frequency with a slope near 1 until
reaching a resonance peak between 2 and 3 Hz. After the
resonance peak, the gain drops with a slope near - 1.
The phase begins near 90 deg, decreases and crosses 0
deg near the frequency of the resonance peak, and then
approaches - 90 in the decades after the resonance
peak. Although not exactly the same as that for an ideal
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second-order system, the gain and phase plots strongly
suggest that second-order modeling of the head-neck is
appropriate.

Second-order parametric models were fitted to the
nonparametric IRFs by minimizing the mean square error
with a nonlinear Levenberg-Marquardt minimization
scheme (Mathcad 2001, Mathsoft Inc., Cambridge,
MA).16 As with the nonparametric IRFs, the second-
order parametric IRFs were used to calculate estimates of
experimental velocities by convolving the model IRF
with measured input torque sequences. The mean VAF
for the all 150 experiments was 86.4% (s.d. 3.9%)
whereas when the velocity was calculated using the non-
parametric IRF the mean VAF was 92.2% (s.d. 2.4%).
The parametric outcomes are exceptional considering
that the parametric model is described by only three
terms, whereas the nonparametric IRF is defined by a
value at each sampling interval over its entire length,
which is over 200 terms in this analysis. The high VAF
indicates that the second-order models captured the dy-
namics of the system, and that the model parameters
were accurate descriptors of head and neck properties.

Second-Order Parameters versus Mean Torque

Significant changes in the response of the head-neck
system occurred as the static torque applied to the head
was varied from 0.0 to 0.65 N m. The amount the sub-
ject's head was disturbed in response to the perturbations
was noticeably smaller at the higher levels of static
torque than at the lower levels, implying that the effec-
tive stiffness of the head-neck joint had increased as the
static torque increased. Changes in the system's dynam-
ics were apparent in the IRFs and FRFs, but were most
readily seen, and best quantified, by the changes in the
parameters of the second-order IRFs.

Representative Data from One Test Subject. The results
from one test subject, shown for static torque levels of
0.10 and 0.55 Nm, are displayed in Fig. 5. The changes
illustrated by these IRF and FRF curves are representa-
tive of the changes found in other subjects. In each graph
the curves have a similar shape, and if separated from a
time and amplitude scale, would appear nearly identical.
However, the differences in amplitude, and crossover
values, indicate that although the system remained fun-
damentally the same, its speed and magnitude of re-
sponse were a function of the static torque applied to the
head. It is apparent from the IRF that the system tested
at 0.55 Nm had a higher natural oscillation frequency
and settled more quickly than when the input torque was
0.10 Nm. From the FRF gain plot, the system is clearly
less compliant at the higher level of static torque. The
parameters of the second-order models that were fitted to
the nonparametric IRFs support these observations.
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FIGURE 5. Impulse response functions (a), second-order
parametric models (b), and the frequency response function
gain response (c) of trials conducted at 0.10 N m (solid) and
0.55 N m (dashed).

When the mean torque was increased from 0.10 to 0.55
Nm, the calculated natural frequency increased from 3.6
to 4.3 Hz, and the settling time decreased from 0.38 to
0.33 s. Stiffness increased from 8.06 to 12.46 Nm/rad
and damping increased from 0.33 to 0.43 Nm s/rad. As
expected the calculated rotational inertia remained virtu-
ally unchanged [0.012-0.013 kg m2 (Nm s 2 /rad)] across
the static torque levels tested.
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FIGURE 6. Rotational inertia data (crosses and plusses) and
mean rotational inertia (lines) from two subjects.

Although there was significant intersubject variability
in the values of the parameters calculated at each torque
level, the same general trends held for each subject. In
general, stiffness (K), damping (B), and natural fre-
quency (&o>) all increased with increasing mean torque,
settling time (t,) decreased, and the rotational inertia (J)
and damping ratio ( ) remained essentially constant over
the range of mean torques used.

Parameter Relations with Mean Torque. Rotational
Inertia (J, kg m2). For each subject, the rotational inertia
remained nearly constant over the range of static torques
tested. This was expected since the torque applied to the
head should have had little or no effect on the rotational
mass of the head and neck. Small deviations in head and
neck inertia could occur if the test subject's head was
positioned differently between tests, or could result from
changes in blood volume and muscle mass that might be
required to compensate for different levels of torque, but
a subject's head and neck inertia should remain nearly
the same from test to test. For each subject, the calcu-
lated rotational inertia did vary from test to test, but the
variance was small, and there was no trend in the data to
indicate that the rotational inertia had changed in a pre-
dictable manner with an increase in mean torque (Fig. 6).
The rotational inertia data were best modeled by their
mean value. For each subject, the mean rotational inertia
fell between 0.011 and 0.0 17 kg m2 , with variances rang-
ing from 0.75X 10- 6 to 2.3X 10- 6.

Damping (B, Nm s rad'1). For all subjects, the damping
parameter, B (N m s rad-1), of the system increased as
the static torque applied to the head increased. Across the
range of 0.0-0.65 Nm, the smallest mean change in
damping for a subject was 0.2Nmsrad- 1 (Nm)Y',
from a minimum of 0.25 to a maximum of
0.38 N m s rad-1, and the greatest mean increase was
0.6 N m s rad-' (N m)- 1, from 0.31 to 0.70 N m s rad' .
These values did not necessarily occur at the lowest and
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FIGURE 7. Damping data from two subjects shown with first-
order polynomial models fitted independently to data at posi-
tive and negative mean torque values.

highest static torque values. These data are shown in Fig.
7. The data for each subject were fitted by first and
second-order polynomial models to determine which
model best represented the data with respect to mean
square error.

Physiologically, the head and neck system is symmet-
ric, and should exhibit a similar response to a torque
applied in either the clockwise or counter-clockwise di-
rection. Therefore, models were applied that allowed for,
and assessed, symmetry about zero mean torque. First-
order polynomials were fitted to the data from the posi-
tive mean torque and negative mean torque, B=c X tor
+d, separately. The two sides were fitted independently
to identify if, in fact, the system dynamics changed sym-
metrically about zero static torque. The second-order
polynomial, B=a) Xtor2x b X tor+c, was fitted to all
data points. Its first-order coefficient allowed it to bias
how quickly the model increased with positive or nega-
tive torques.

The pairs of first-order models and the second-order
models both fit the data reasonably well. On average, the
first-order models fit the data with a slightly lower mean
square error than did the second-order polynomials. The
pairs of first-order models were not perfectly symmetric.
Typically there was a slight offset between the zero
torque values for the negative and positive sides of the
model, and one side had a slightly greater slope than the
other as shown in Fig. 7. There was no particular bias,
however, when the models for all test subjects were
considered, as to whether the higher slope or higher zero
offset occurred in the direction of clockwise or counter-
clockwise neck rotation. The slope, which is the propor-
tionality constant between the system damping and the
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FIGURE 8. Stiffness data for two subjects (a) shown with
second-order polynomial models (b) for all six data sets.

mean torque, ranged from a low of 0.07 to a high of
0.27 N m s rad 1 per N m. The results of the second-order
models were consistent with those from the first-order
models. The models were nearly symmetric, but each
had a slight offset towards one side.

Stiffness (K, Nm rad '). The stiffness of the head-neck
system increased as the static torque was increased. The
relation between stiffness and torque is shown in Fig. 8.
Intersubject variability was considerable in terms of the
absolute values for stiffness, but the same trend held for
the relation between stiffness and mean torque for all
subjects. Typically, the stiffness seemed flat, almost con-
stant, around static torque values near zero, but as the
static torque increased beyond 0.25 Nm, the stiffness
increased rapidly. The change did not appear to be a
linear, but looked very much like a second-order poly-
nomial. The subject with the smallest change in stiffness
over the 0.0-0.65 N m torque range, showed an increase
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FIGURE 9. Undamped natural frequency data for two sub-
jects.

from 3.7 to 6.7 N m rad- 1 , with a mean of
4.7 Nm rad- per N m, whereas the subject with the
greatest change in stiffness showed an increase from 7.2
to 13.0Nmrad-1, with a mean of
8.9 N m rad 1 per N m. Both increases represented
changes of over 80% of the stiffness at zero static torque.
It can be seen in Fig. 8 that the change in stiffness was
nearly symmetric about zero. For all but one subject,
second-order polynomial models fitted the data with
lower mean square error than did pairs of first-order
models.

Natural Frequency ((o, Hz). For most subjects (5 of 6)
the head-neck system's natural frequency tended to in-
crease with an increase in the static torque applied to the
head. The natural frequency values did not rise smoothly
with incremental increases in the static torque, but varied
about a local mean that increased with the applied
torque. This trend can be seen in Fig. 9. The one test
subject who deviated from this pattern had a natural
frequency that seemed to vary between high and low
values across the entire range of negative and positive
static torques. Although the increase in natural frequency
was not smooth, there was a significant change in the
values over the relatively small range of torques applied
to the head. The natural frequency for five of the six test
subjects was between 2.0 and 2.5 Hz (12.6 and 15.7
rad/s) at 0 N m, and by 0.65 N m it had reached between
2.9 and 4.0 Hz (18.2 and 25.1 rad/s).

Damping Ratio (). There was little change in the sub-
jects' damping ratios across the range of torques tested.
The data did not visually exhibit any consistent change
with mean torque, and first- and second-order polynomi-
als fit to the data modeled the data as essentially un-
changing with mean torque. The mean values for the
subjects ranged from 0.42 to 0.64. With the exception of
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TABLE 1. Second-order damping ratio.

Subject Mean Variance

1 0.45 0.7X 1-

2 0.59 4.9X 10-3

3 0.64 15.Ox 10- 3

4 0.42 0.8x10-3
5 0.53 4.7x 10-3

6 0.54 3.5x10-3

a few outliers in the 150 experimental trials, the damping
ratio was always found to be less than 1, indicating that
the head-neck system tends to respond to torque distur-
bances in an underdamped fashion. The mean and vari-
ance for each subject's damping ratio data are shown in
Table 1.

DISCUSSION

This study examined how the dynamics of the head-
neck system changed as a function of the magnitude of
static torque applied to the head. The results indicated
that between 0.5 and 10.0 Hz, the head-neck system
behaved like a quasilinear, passive system in response to
small, stochastic torque inputs applied to the head in the
horizontal plane. When the mean torque was held con-
stant, and the system perturbed, the head-neck system
responded much like a linear, second-order, under-
damped system. The system was not, however, strictly
linear. The properties of the head-neck system were sen-
sitive to the static component of the input torque, and the
characteristic impulse response function changed mark-
edly as the mean torque level was changed. As the static
torque was increased, the effective stiffness and damping
of the system, which represented the combined effects of
neuromuscular reflexes, voluntary control, and passive
viscoelastic properties of muscle, progressively in-
creased, and did so in a manner such that the system's
second-order damping ratio remained essentially constant
across a mean torque range of 0.0-0.65 Nm.

Single IRF Holds from 0.5 to 10.0 Hz for a Constant
Level of Torque

When the mean torque applied to the head was held
constant, the behavior of the head-neck system could be
represented by a single, linear IRF for frequencies be-
tween 0.5 and 10.0 Hz. High (above 0.9), relatively con-
stant values of the coherence-squared function indicated
that system nonlinearities and measurement noise were
not significant, and that the linear covariance analysis
and the resulting linear IRFs applied well throughout the
0.5-10.0 Hz range. The IRFs had the characteristics of,
and were well modeled, by underdamped, second-order,
parametric models. On average, the second-order models

captured 94% of the response described by the nonpara-
metric IRFs (as measured by the ratio of the average
variance accounted for calculated when the IRFs and
models were used to predict the system's output), clearly
indicating that the parameters of the second-order models
were good measures of the head and neck's inertial and
viscoelastic properties.

The physiology of the head and neck supports mod-
eling the system's reaction to perturbations in the hori-
zontal plane with a lumped parameter, damped, mass-
spring model, which has a characteristic second-order
response. When the head rotates in the horizontal plane,
the skull and the first cervical vertebra, the atlas (c I),
rotate about a pivot created by the dens of the second
cervical vertebra, the axis (c2). Although a large dis-
placement rotation of the head may require other cervical
and thoracic vertebrae to move along their articular fac-
ets, and for intervertebral disks to twist, rotation of the
head in the horizontal plane is predominantly manifested
by a rotation of the skull about the axis.8,2 7 This can be
simplified as a rotational inertia moving on a single,
vertical axis. Damping and stiffness can be attributed to
the muscle, connective, and soft tissue surrounding the
neck, the properties of which will change as more or
fewer muscle fibers are involved in creating motion or
resisting disturbance forces.

The head-neck system's behavior from 0.5 to 10.0 Hz
was well described by a single linear, time-invariant
model which indicated that when the mean level of
torque was held constant, the viscoelastic properties of
the head and neck did not change as a function of the
stimulus frequency, but remained nearly constant. This is
somewhat surprising considering that between 0.5 and
10.0 Hz head stability is not controlled by a single
mechanism, but through a combination of voluntary con-
trol, neuromuscular reflexes, and passive system
mechanics.2 3 The contribution to stability from each of
these mechanisms is frequency dependent, with each
mechanism dominating stability in a different portion of
the frequency range. Stability at low frequencies, around
1.0 Hz and below, is dominated by voluntary control,
whereas stability at higher frequencies, 2.5-3.0 Hz and
above, seems to be dominated by passive system me-
chanics. The reflexive mechanisms, namely the vestibu-
locollic reflex VCR and the cervicocollic reflex, have
been found to be most significant between the low and
high frequency ranges.16 The expectation that the prop-
erties of the head-neck system would change with the
frequency of the applied stimulus is based on the finding
that the mechanical stiffness of muscle fibers increases
with the frequency of a sinusoidal force applied to the
muscle.2 5

,
2 8 Despite the frequency-dependent nature of

the mechanisms that control head stability, the present
results indicated that when the mean load on the head
remained constant, the control and stability mechanisms
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functioned to create an overall system with physical
properties that were relatively invariant between 0.5 and
10.0 Hz. This finding of invariance has been shown in
other joints that were tested in a similar fashion. As this

study found for head-neck responses in the horizontal
plane, Viviani and Berthoz28 found that the properties of

the head-neck system in the sagittal plane remained
nearly constant between 0.5 and 5.0 Hz, and could be
modeled by a single, linear, second-order system. In their
review of joint dynamics, Kearney and Hunter 4 con-
cluded that "linear models provide excellent descriptions
of joint dynamics provided that conditions (e.g., activa-
tion level, mean position) are maintained approximately
constant throughout the experiment" (Ref. 14, p. 73).

The finding that the viscoelastic properties were in-
variant probably reflects the fact that the subjects' heads
were not displaced through large rotations by the torque
perturbation. Over the range of experimental conditions
employed the head was rarely, if ever, displaced more
than 5 deg. The stiffness of isolated muscle, as well as
the overall stiffness of human joints, is known to vary
with displacement. 7"14 If the head had been moved
through a much larger range of motion, it is likely that
the viscoelastic properties of the head-neck system
would have varied, and the system would not have been
well modeled by a constant parameter, linear model.

At frequencies below 0.5 and above 10.0 Hz, the
characteristics of the system were not captured by the
linear input-output analysis, and the system's behavior
could not be described by constant parameter, second-
order models. Low coherence-squared values indicated
that at these frequencies, the analysis was corrupted by
system non-linearities and/or measurement noise. 12 21

Above 10.0 Hz, it is evident that the drop in coherence
was likely due to low input power, which reduced the
signal to noise ratio. As can be seen in Fig. 3, near and
above 10.0 Hz the drop in coherence mirrors the drop in
input power. This drop in power was intentional, a result
of the design of the input sequence which attempted to
simulate the frequency of motions encountered in the
natural environment. During locomotion the predominant
frequencies of head perturbations in the horizontal plane
are between 0.5 and 3.0 Hz.9 The PRBS torque sequence
applied to the head was therefore executed at only 15 or
20 elements per second to concentrate input power at
lower frequencies. Input power remained high below 0.5
Hz, so the low coherence-squared measures at these fre-
quencies were not caused by a low signal to noise ratio,
but by the nonlinearity of the active control system that
dominates the head's response at low frequencies. Below
0.5 Hz, a single torque stimulus will act on the head for
over 2 s, and so subjects have the time to compensate
actively for the applied torque and move the head back
to the zero position. At higher frequencies, the subjects
can see and feel that their head has been displaced, but

do not have the time to correct for the disturbance before
the next perturbation acts on the head. Although the
initial response to long duration perturbations may be the
same as that for the short duration perturbations, the
linear IRFs and the passive, second-order models do not
model the active correction that occurs after a time delay.

Stiffness Changes with Mean Torque

Although the head-neck system behaved like a
second-order linear system when the mean torque was
held constant, the overall dynamics of the system were
not strictly linear, and cannot be sufficiently represented
by a single linear IRF or a second-order, constant param-
eter model. The physical properties of the head-neck
system were sensitive to the static torque, and underwent
significant changes as the mean torque was varied. On
average for the six subjects tested, as the mean torque
was increased from 0.0 to 0.65 N m, stiffness increased
by 80% and damping increased by 50%.

The data supported modeling head-neck stiffness as
increasing with the square of the mean torque. As can be
seen in Fig. 8, at mean torque levels of less than 0.25
Nm, stiffness did not increase with mean torque, but
fluctuated around a local mean value. In this range, the
relation between stiffness and mean torque appeared flat.
Above about 0.25 N m a change was seen in most sub-
jects' data, and the stiffness increased significantly with
increases in torque. Second-order polynomials visually fit
the data well, and fit the data with slightly lower mean
square error values than did pairs of first-order polyno-
mials fitted separately to the data for the positive and
negative torque levels.

The squared relationship found between stiffness and
mean torque for the head and neck differs from that
commonly reported for other joints. In most cases a
joint's stiffness has been reported to increase linearly
with the load applied to the joint. 14'1 This linear rela-
tionship is often attributed to motor unit recruitment: as
the load applied to the muscle is increased, motor units
are recruited to compensate for the increased force. The
force, and also the stiffness, of each muscle fiber of the
motor unit add in parallel, so doubling the load on the
muscles doubles the stiffness of the joint about which the
muscle acts." This theory cannot, however, be assumed
to account for the behavior of the muscles at all levels of
contraction. The number of fibers activated in a muscle
does not increase linearly across the full range of forces
that can be generated by a muscle. It is generally thought
that up to a certain percentage of its maximal load, a
muscle will react to increases in load with an orderly
sequence of recruitment of motor units. Beyond this
load, rate coding is used to increase the force of contrac-
tion. The load at which the transition from recruitment to
rate coding occurs, as well as the recruitment order of
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the motor unit types, is dependent on the size, location,
and complexity of the muscle. 2

The difference between the torque-stiffness relation
found for the head and neck and that for other joints may
be attributable to a combination of the relatively narrow
range of mean torques over which the head-neck system
was tested, and the complicated musculoskeletal struc-
ture of the neck. Typically, the joints for which stiffness
has been shown to increase linearly with torque, such as
the ankle, knee, and elbow, have been tested across a
much larger range of mean torques than was done for the
head and neck, in some instances with loads exceeding
50% of the joint's maximum output.2 9 For safety, com-
fort, and test repeatability, the maximum mean torque
applied to the head-neck system in any of our tests was
limited to 0.7 Nm, which is much lower than the maxi-
mum rotational torque that the neck is capable of gener-
ating. In preliminary experiments, we found that a
healthy male could rotate the head in the horizontal
plane against a torque of 4.5 N m Above 4.5 N m it was
difficult for the subject to produce the appropriate move-
ment, and the motion became a mixture of rotation and
lateral flexion of the neck. Assuming that 4.5 N m is the
maximum torque that can be generated by the neck in
pure rotation, the 0.7 Nm load applied in our experi-
ments is less than 16% of the neck's maximum torque
output. A more linear relationship between head-neck
stiffness and mean torque may be evident if the system is
tested with higher levels of mean torque. Since the maxi-
mum load applied to the head was kept low, the "flat"

region seen between 0.0 and 0.25 Nm had a significant
bearing on the type of model that best fit the data. It is
possible that the nonlinearity exists only at low torques,
as if the system has a "bias" torque that has to be
overcome before the linear relation between stiffness and
mean torque can be seen. This flat, nonlinear region
might also be characteristic of other joints, but is not
apparent in the data because the joints are not typically
tested at as many low amplitude torques. The few data
points in the nonlinear region at low loads then become
insignificant compared to the number of data points in
the more linear region that exists at higher loads.

The neck's complicated muscle architecture may also
account for this relation between stiffness and mean
torque. Most of the joints that have been studied, such as
the ankle, elbow, and knee, are hinged joints for which
movement is primarily controlled by the action of an
agonist/antagonist pair of muscles. The properties of
these joints are therefore dominated by the characteristics
of the agonist/antagonist pair. These muscles may com-
pensate for added load with a linear increase in the
number of motor units activated, which results in a linear
relation between stiffness and mean load. Rotation of the
head about the atlantoaxial joint, a monaxial pivot joint,
is accomplished with a much more complicated arrange-

ment of muscles. There is not a single pair of agonist/
antagonist muscles arranged to directly pull the head
around the atlantoaxial joint. Rotation of the head to-
wards one side is accomplished mainly by the coordi-
nated action of the sternocleidomastoid, semispinalis
capitis, splenius capitus, and the longissimus capitis
muscles. These muscles are arranged somewhat verti-
cally in the neck, originating either near the sternum or
one of the lower cervical vertebrae, and inserting in the
head at the mastoid process of the temporal bone or the
occipital bone. This arrangement allows these muscles to
control also head tilt and extension.8, 27 In addition to
these muscles, there are many other muscles that pass
through the neck to control the oral-facial musculature.
There are also major arteries, veins, the trachea, esopha-
gus, and connective tissue. As the head is rotated, the
motion of all these structures contributes to the overall
viscoelastic properties of the head-neck system. This
complicated arrangement of muscles and soft tissue may
well account for the difference in the stiffness-mean
torque relation observed for the head and neck as com-
pared to the arm and the leg.

Damping Ratio,

The head-neck system's stiffness and damping prop-
erties changed considerably as the mean torque was var-
ied, but did so in a manner that maintained the second-
order damping ratio virtually unchanged for each subject.
In all but a few of the 150 experimental trials, the head-
neck system was calculated to be well underdamped,
with the average damping ratio for each subject falling
between 0.42 and 0.65. These values are higher than that
reported for the forearm (0.10-0.17),18 the ankle (read
from plot as 0.2-0.45),29 and the knee (0.2)." The
damping ratio calculated for the head and neck seemed,
at first consideration, low for a system whose primary
task is to stabilize the head. Purely passive systems with
damping ratios between 0.4 and 0.7 respond to step in-
puts with multiple oscillations before settling to a steady
state. It seemed reasonable to expect that the head-neck
system would have evolved to be overdamped ( > 1), or
at least critically damped (C= 1), so that the energy of
disturbances would be dissipated quickly and without
oscillations. Although low as a measure of a system's
relative stability, the damping ratios found for the head-
neck system may allow the neck to maintain a good
balance between stabilizing against disturbances and re-
sponding quickly for active positioning. The head serves
as the frame of reference for the visual, vestibular, and
auditory senses, and must be both well stabilized and
well controlled for us to interact effectively with the
environment. The advantage of maintaining a relatively
low damping ratio is that the head can be quickly posi-
tioned without having to overcome high damping loads.
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Underdamped systems with damping ratios between 0.5
and 0.8 are able to get close to their final value more
rapidly than either critically or overdamped systems. 22

The head and neck's damping ratio remained nearly
constant across a range of applied loads, an observation
also found for the ankle 13,29 and knee.30 This invariance
may simplify the planning necessary for movement.14
The motion of a limb is usually carried out by sequences
of agonist/antagonist muscle activations. These phasic
activations control the limb's acceleration and decelera-
tion, and are combined as needed to produce motion with
the appropriate temporal characteristics. 5 It can be as-
sumed that the neck is positioned using a similar se-
quence of phasic muscle activations, although they are
not generated by an agonist/antagonist muscle pair. By
maintaining a constant damping ratio under different
loads, the head-neck system retains similar fundamental
response characteristics for different muscle activation
levels. Once an appropriate command sequence has been
developed for one activity, or for one level of activation,
the sequence of phasic activations can be generalized for
other activities by scaling the amplitude and time
course. 14

The head does not react to disturbances as a purely
passive system, and so does not rely upon static physical
properties to stabilize against, or to mitigate the effects
of, these disturbances. They are initially resisted by pas-
sive properties and reflex action,3 but the overall re-
sponse of the head and neck is the result of a strategy
that involves active intervention. After the initial reaction
to a disturbance, an active modulation of the neck's vis-
coelastic properties can be used, if needed, to reduce the
magnitude and time course of the disturbance to the
head. Cocontraction of the agonist/antagonist muscles
acting on hinged joints has been shown to increase the
joint's effective stiffness and damping.14 Lacquaniti
et al.18 showed that when subjects actively resisted per-
turbations applied to the forearm both the stiffness and
the damping of the elbow increased without significantly
changing the system's damping ratio.18 As a result, the
magnitude of the forearm's response decreased, and the
settling time of the system, which describes the time the
disturbance causes the system to oscillate, was reduced.
By contracting the muscles responsible for the head's
rotation, the viscoelastic properties of the head-neck sys-
tem could be actively modulated to change the dynamic
response of the head and neck. The present study showed
that the head and neck responded like a second-order
system with invariant parameters under the conditions
that a subject was to correct for position error, but was
not to resist the torque disturbances by co-contracting the
neck muscles. This restriction may have prevented the
subjects from using a natural strategy that involved co-
contraction to minimize the head's position error during
the experimental trials, but was necessary so that the

activation level of the neck muscles would be dictated by
the torque applied to the head and not arbitrarily by the
subject.

CONCLUSION

The motivation for this study was to develop an un-
derstanding of the relation between small torque pertur-
bations applied to the head and the resulting disturbance
to the head's position, so that appropriate torque se-
quences could be designed for stimulating the human
angular VOR. Directly applied, horizontal plane, torque
perturbations are not frequently experienced by humans,
but unpredictable disturbances to the head in the hori-
zontal plane are experienced actively during locomotion
and experienced passively when traveling in a car, plane,
or any moving vehicle. The VOR (horizontal) is often
considered to be capable of responding to unpredictable
head motions that range from 0.5 to beyond 10.0 Hz and
attain rotational velocities of up to 170 deg/s. Laboratory
testing of the VOR is rarely, if ever, conducted so that
the full performance range of the VOR is explored. More
often than not, testing protocols use predictable stimuli,
relatively low frequencies, and slow velocities.19 The
findings from this study will assist in designing torque
stimuli that are well tolerated by subjects and can induce
head motions that span the performance capabilities of
the horizontal, angular vestibular system. This study
demonstrated that although the head-neck system is sta-
bilized by frequency dependent mechanisms, and is in
general a nonlinear system, the response to stochastic
perturbations can be well represented by a quasilinear,
second-order system. When the mean torque applied to
the head was held constant, and the resulting position
disturbances small, the viscoelastic properties of the sys-
tem were not dependent on the stimulus frequency be-
tween 0.5 and 10 Hz. The viscoelastic properties were,
however, sensitive to the mean torque. As the mean
torque was increased, both the effective stiffness and
damping of the system increased, and did so in a manner
that maintained the system's damping ratio nearly con-
stant. The finding that the head neck system has a qua-
silinear, second-order response from 0.5 to 10 Hz should,
however, not be interpreted to imply that under natural
conditions the head and neck will behave like an oscil-
latory, second-order system. The models and trends
found in this study apply directly to the specific condi-
tions of this study. The natural behavior of the head and
neck involves both active and passive stabilization, as
well as active positioning. The response to torque per-
turbations observed in this study are an indication of the
expected short duration response of the head, before ac-
tive intervention and modulation of the system properties
occurs.
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Chapter 7

VOR experiment, analysis and results

7.0 Chapter summary

7.1 Experimental methods

7.2 Data processing

7.3 Results from the tracking trials

7.4 Head response

7.5 VOR response

7.6 Prediction of the gaze response

7.0 Chapter summary

Chapter 7 discusses the results and the analyses of the experimental trials that were

conducted to test the VOR. The goal of this research was to develop the methods required to

evaluate the VOR under natural tracking conditions. The results show that a consistent

identification of the VOR system can be made over a broad frequency range during natural head-

free pursuit of a visual target. The testing protocol stimulated a sufficiently wide range of tracking

and VOR responses from subjects a frequency range of 0 Hz to beyond 8 Hz. The linear analysis,

though, was limited to evaluating the VOR over a smaller frequency range, from approximately

0.5 Hz to between 4 and 5 Hz. Nonlinearities in the head-neck system affected the low frequency

linear analysis, and a poor signal-to-noise ratio degraded the analysis at the higher frequencies.

Very consistent behaviors were seen in the VOR in both the frequency and time domain analyses.

Both indicated that the VOR had a high-pass system response, and that the VOR gain during
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head-free tracking was near one. In addition, estimates of the impulse response functions could be

made for the head control systems as well as for the VOR. These models were used to reconstruct

the gaze tracking system during the VOR experiment, and to predict the eye and head responses

that occurred during the experiments. The results showed that the linear analysis was able to

capture the underlying dynamics of the gaze tracking system during hcad-free tracking.

7.1 Experimental methods

7.1.1 Subjects

Eleven VOR experiments were conducted on seven subjects: five men and two women

aged 21 to 34 years. All were healthy graduate students with no history of or apparent

neuromuscular or vestibular problems, and had normal or corrected-to-normal vision. No

quantitative test was conducted to evaluate the subject's vestibular performance before

conducting the VOR experiments, but the subjects were questioned by the experimenter and

excluded if they reported any past neck, back, or vestibular problems. All subjects had a range of

motion with their head and neck that exceeded the rotational displacements that would be

experienced during the experiments. The study was approved by the Massachusetts Institute of

Technology's Committee on the Use of Humans as Experimental Subjects. All subjects gave their

written consent before participating in this research.

7.1.2 Procedure

Subjects were seated in a rigid chair, just under the helmet of the head perturber, and

1600 mm in front of the screen onto which the visual target was projected (Figure 7.1). The

helmet was lowered onto the subject's head and tightened with head and chin straps so that it did

not slip when torque was applied or the head was moved. Electrodes (15 mm diameter) were

attached beside the outer canthus of the eyes and on the forehead to record the EOG. The head
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perturber was aligned with the subject's head and neck as described in Chapter 6. The head

perturber was adjusted so that the subjects were able to rotate their head comfortably through +/-

30 deg without feeling that the rotational axis of the perturber was eccentric to the primary,

vertical axis of their neck.

screen 1.55 m

projecteaxtarget

1.6m

subject,
galvanometer, +/- 44.1 deg
mirror & head

perturber

Figure 7.1: Top down view of the experimental testing area.

Each VOR experiment consisted of between 8 and 20 tracking trials. During each trial a

visual target was projected onto the screen, and the subject was asked to follow the target with

natural head and eye motions. In about half the trials torque perturbations were applied by the

head perturber to disrupt the position of the subject's head, and in the other half no perturbations

were applied. The amplitude of the torque perturbations was between 0.2 and 0.3 N.m, depending

on what the subject found comfortable and what was required to induce a strong VOR eye

motion. The tracking trials lasted from 30 to 120 seconds. The shorter tracking trials were used

early in the development of the experimental protocol. Trials that lasted from 60 to 120 seconds

produced sufficient data for analyzing the system characteristics of the VOR and the gaze system.

The torque and target velocity sequences that were used in the experiments were selected from a

large set of sequence pairs that were created in advance to have the required ACF, CCF, and

amplitude characteristics. These torque and target signals were generated using the techniques
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described in Chapters 4 and 5. The particulars of each experiment, such as the target PSD, torque

amplitude and PRBS execution rate, experiment length, and sampling rate, are listed in Appendix

D. Immediately before each tracking trial, the gain relation between the EOG's voltage

measurement and the subject's eye position was calibrated by having the subject track a series of

slowy g s ( t I'). T help reven IaLtUeL, rst peIUiouds of at least I mInUe

were given between each trial, and 5 to 10 minute breaks were taken after every four tracking

trials. Data were collected on the torque applied to the helmet of the head perturber, the position

of the visual target, the head velocity, and the position of the eyes relative to the head. The

sensors were energized and allowed to warm-up for at least 30 minutes prior to collecting data.

The equipment and sensors used in the VOR experiments are fully described in Chapter 3.

7.1.3 EOG measurements

Prior to recording the EOG, the subject's skin had to be prepared for the EOG electrodes,

and the subject's vision had to be acclimated to the testing environment. These preparations

helped improve the amplitude and stationarity of the voltage signal measured at the eye. Subjects

first washed their forehead and the outer canthus of each eye. The skin of these areas was then

scrubbed with a lightly abrasive electrode gel (Nuprep, D.O Weaver, Aurora, CO) that removed

oils, dirt, and some of the stratum corneum - the top layer of the epidermis. This lowered the

impedance of the skin and increased the strength of the voltage signal acquired by the EOG.

Since only horizontal, binocular eye movements were evaluated during the VOR experiments, an

electrode was placed at the outer canthus of each eye socket in line with the horizontal movement

of the eye. A third electrode was placed on the forehead as the reference electrode for the EOG

(Figure 7.2). Once the electrodes were attached and connected to the EOG amplifier, the subject

was seated in the testing area under the head perturber, and the testing area was made dark. The

only source of light seen by the subject during this period and during the experiment was the

visual target. The subject sat for 20 to 30 minutes so that their retinae acclimated to the lighting
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conditions in the testing area. Since the EOG does not directly measure the position of the eyes,

but measures the voltage that develops on the bones surrounding the eye, it is necessary to

mitigate the effects of, if not eliminate, any transients that could affect the voltage measured by

the electrodes. The voltage level measured by the electrodes was often less than 1 mV, so even

very small voltage transients could have a significant impact on the measurement of eye position.

Twenty to thirty minutes was sufficient time for the retinae to adjust to the low light level, for the

half-cell potential of the electrodes to equilibrate, and for any transients from the placement of the

electrodes on the skin to settle (Acoustical Society of America, 1999). After the acclimation

period was over, the EOG signal was checked to verify that it had settled, and the gain of the

EOG amplifier adjusted so that the EOG signal filled the dynamic range of the data acquisition

board that sampled the data.

Figure 7.2: Subject with electrodes placed at the outer canthus of

each eye socket and a reference electrode placed on the forehead.

7.2 Data processing

The data that were collected during the tracking trials had to be processed before they

could be used to analyze gaze tracking and VOR performance. The measured voltages had to be

converted from voltages into physical units, filtered for noise, and corrected for transients, and

drift. Also, data that were needed for the analysis, but that had not been measured directly by
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sensors, such as the head's position and the target's velocity, had to be calculated. The data were

processed using a dedicated application, and the processed data were saved to files. An example

of the program used for this initial processing called "Make Files" is in Appendix E. The raw data

were particularly affected by how the data were filtered, and how drift was modeled and

remXILoved. Xhs stps r icusd morc Idetai l ite fullowing section.

Scaling data

The raw data collected included the target's position, the torque applied by the head-

perturber, the position of the eyes relative to the head, and the head's velocity. These data were

inspected to ensure that they had not saturated the data acquisition board, and were converted by

the appropriate sensor and acquisition gains into physical units. For convenience, angular

positions and velocities were converted into deg and deg/s, but were later converted to radians

and rad/s for analysis. Corrections also had to be made to the head velocity and to the target

position sequences. The head velocity sequence had to be corrected to compensate for a non-

linear calibration error in the angular rate sensor that measured the head's velocity (Chapter 3).

The target position sequence had to be converted from the position of the galvanometer into the

angular position of the visual target as seen by the subjects. It was the target's position on the

screen relative to the subject, not the galvanometer's position that was the input that drove the

subject's gaze response. These differed because the subject's head, and the mirror that positioned

the visual target, were not at the same distance from the screen. The angular positions were

md
related by: tp = arctan( tan(mp)) , where tp is the target's position relative to the subject, mp

sd

the galvanometer's (mirror's) angular position, md the slant distance between the mirror and the

position of the target on the screen, and hd the slant distance between the subject's eyes and the

target.
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Median and low-pass filtering

The data were median filtered to remove aberrant data points and then low-pass filtered

to remove high frequency noise. Unlike mean filters, which are frequently used to smooth data,

the median filter can remove outliers without affecting the sharp, higher frequency characteristics

of a sequence. Median filters are nonlinear so they can affect signals within the same data set

differently. They must be used carefully so that they do not alter the linear relation between data

sequences. The neighborhood of the median filter that was applied to the tracking data was kept

small so that its effect on anything but outliers was small. When the data had been sampled at 100

samples/s, the neighborhood of the median filter was set to 3, 5, or 7 elements. The size of the

neighborhood was chosen so that it did not have a noticeable effect on the PSD of any of the data

sequences below 5 Hz, which was the upper limit for the analysis of the linear relationships. A

representative eye position sequence and PSD are shown in Figure 7.3. The PSD of the sequence

that was filtered with the 5-point median filter deviated from the unfiltered PSD between 6 and 8

Hz. The time domain sequence was changed, but retained many of the sharp characteristics of the

unfiltered sequence. The median filters seemed to have had the greatest effect on the eye position

sequences. This may have been because the eye position's power spectral density dropped rapidly

with increasing frequency. When the PSD of the eye position indicated that the median filter had

affected the eye position at frequencies as low as 5 Hz, the PSD of the other sequences typically

were not affected much below 10 Hz.

When the median filter neighborhood was set too high, the characteristics of the

sequences were noticeably changed, and the sequence's PSD was affected at low frequencies.

The blue plots in Figure 7.3 show the eye position sequence after it was filtered by a median filter

with a 15-point neighborhood. The neighborhood is too large and has had a great impact on the

sequence. The two small peaks between time 16.4 and 16.6 have been replaced by a constant. The

PSD of the sequence deviates from the unfiltered PSD at frequencies as low as 3 Hz.
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Figure 7.3: Eye position (plot A) and its power spectral density (plot B). The eye position
sequences are shown when they were not filtered (black), and when they were filtered by
a median filter with a 5 point (0.05 s) neighborhood (red), and a 15 point (0. 15s)
neighborhood (blue).

After the data were median filtered, they were low-pass filtered (LPF) to remove high

frequency noise. The LPF was created with the Kaiser window filter design method (Oppenheim

et aL., 1999). The great advantage of this method as compared to designing an ideal low pass

filter and applying a more common window, such as Hamming or Hanning, is the ease with

which the impulse response function (IRF) of the filter can be generated. The Kaiser method

allows the user to specify the filter's desired cutoff frequency, transition band, and peak

approximation error and then produces the elements of the discrete-time impulse response

function that satisfy the specifications. Any of the traditional filter windows can be created with

the Kaiser method by simply specifying the characteristics associated with that window. To

prevent the filter from introducing a phase change to the data, the IRF was made to be acausal,

and to be symmetric about time zero. Depending on the conditions of the particular tracking trial,

the filter was given a cutoff frequency between 10 and 15 Hz. The filter's cutoff was usually set

to be just above the execution rate of the PRB torque sequence. A cutoff frequency of 10 to 15 Hz

was also high enough to retain the important characteristics of the smooth pursuit eye motions

(Dr. H.L. Galiana, McGill University, personal communication, April 2002). It was important

that the cutoff of the LPF was set this high so that on visual inspection the time and frequency
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domain plots of the sampled experimental sequences looked similar to the designed command

signals, as this allowed the signals to be easily compared. During the analysis it was found that

noise in the experimental signals degraded the linear analysis at frequencies above 5.0 Hz. The

low-pass filter cutoff frequency could be reduced towards 5.0 Hz to smooth the time domain

picture of the experimental sequences without having an obvious impact on the results of the

linear frequency analysis. After the data sequences were filtered, transients were removed from

the beginning and end of the sequences. The transients were caused by there not being sufficient

data to convolve the full length filter IRF, and were also due to starting and stopping the tracking

trial.

Drift and offset

Drift and offset had to be removed from the data sequences as was done for the

calibration trials (Chapter 3). This was particularly important so that the calculated gaze

responses reflected what occurred during the tracking trials. The head and eye position sequences

were most sensitive to drift in the sensors. A low frequency drift in the head velocity data might

not have affected the velocity measure, but since head position was calculated as the integral of

the velocity, drift could result in large displacements in head position. The also occurred for eye

position and eye velocity sequences, as eye velocity was calculated from the derivative of the

measured eye position. A slow drift in the eye position signal might indicate that the eyes had

moved through a large displacement, but the drift would not be reflected in a significant change

in the eye velocity. It was more difficult to identify drift and offset in the tracking trials than it

was in the calibration trials. During the calibration trials, the head movement was usually small

and the gaze response was composed mainly of eye movements. During the tracking trials,

subjects were encouraged to use their heads naturally to track the target, and the head's position

was disturbed by the torque perturbation.
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The measured torque and target sequences were biased, but did not appear to drift over

the course of the tracking trial. The target sequence was measured from the galvanometer's

position feedback signal, and the torque was measured using the force/torque sensor. Both

sensors had small offsets, but neither had appreciable drift. The offsets in the torque and the

target signals were estimated by taking the mean value of the sequences at the beginning and end

of the trial, when the target, the head perturber, and the head were at rest (Figure 7.4). There was

usually very little difference between the means calculated at the beginning and end of the trial

and so the two were averaged. The mean offset value was then subtracted from all elements in

each sequence.

Target position
50 1 1 1 1

(g0

0 0 40 60 80 100
e (s)

Figure 7.4: Regions where target was at rest.

As was discussed in the EOG calibration section in Chapter 3, the head velocity and the

eye position signals were corrupted by both drift and offset. Since the target drove the subject's

gaze, and not the head or eye motions directly, the head and eye movements were coupled and

could not be processed independently. Several drift models were fitted to, and removed from, the

head velocity and eye position sequences. Head position sequences were calculated from the head

velocity sequences, and were added to the eye position signals to form potential gaze responses.

These gaze responses were then compared to the target's position. The error was calculated

between the gaze and the target, and summarized by the mean squared error and standard
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deviation, as these gave different estimates of the error which did not have a zero mean. The head

velocity and eye position sequences that created the gaze that seemed most sensible in terms of

the how the gaze had followed the target, not necessarily with the lowest error, were selected as

representative of what had occurred during the experiment.

The head and eye sequences were analyzed with the assumption that the subject had

tracked the target, and when the drifts and offsets were removed, the head and eye sequences

should produce a gaze response that looked similar to the target's trajectory. A subject might not

have tracked all the motions of the target during the trial, especially the high frequency and high

velocity motions, and so some error was expected to exist between the gaze and the target.

Additionally, the target began and ended the trial at the zero position and at rest. Subjects were

instructed to start the trial with their head and eyes at rest at the zero position, and to end the trial

the same way.

Three different methods were used to approximate and remove the drift and offset from

the head velocity sequence. The drift in the head velocity sequence was usually small, but the

position sequence was definitely affected by how the drift was removed. The methods, and the

drift models that they assumed, were similar to those used for the EOG calibration. The first and

easiest method was to give the head velocity a zero mean, which is based on the assumption that

the velocity signal had an average offset, but did not drift. The zero mean velocity constrained the

head's position to end the trial at exactly the same position as it began, which were the

instructions given to the subjects, but probably did not reflect the reality of the head's movement.

The second method was to remove a least-squares line from the data that was fitted to the velocity

sequence. This model assumed that the drift was linear, and also gave the head velocity sequence

a zero mean (Figure 7.5.A). The third method assumed that the head was at rest at the beginning

and end of the trial. The mean of the data during these periods represented the sequence's offset

during that time. Between these regions the offset was assumed to drift linearly. It was modeled

by connecting a line to the means of the two regions. This model gave the head velocity a zero
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mean during the regions at the beginning and end, but did not give the overall sequence a zero

mean. The head position was therefore not constrained to end the trial at zero degrees. Since it is

unlikely that the subject's head would have ended the trial at exactly the same position as it

began, the assumptions of this drift model probably best reflected what occurred during the trials.

However, this method most often produced a head velocity sequence that was inconsistent with

what was observed. Often the calculated head position indicated that the head had gradually

twisted during the trial, and had ended the trial 10 to 30 degrees away from the zero position

(Figure 7.5.B). The head moved throughout the tracking trials, but subjects generally brought

their head back to within a few degrees of zero at the end of the trial.

A. Raw head velocity (brn) and drift (red) C. Raw head velocity (brn) and drift (red)
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Figure 7.5: Head velocity, drift, and the calculated head position. In plot A the drift
(red) was modeled by a line fitted to the velocity sequence (brown). The resulting head
position is shown in plot B. In plot C the drift was modeled by a line that connected
regions at the beginning and end of the experiment when the head was assumed to be at
rest. The resulting head position is shown in plot D.
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Two drift models were fitted to the eye position sequences. For the first, there was

assumed to be no drift in the eye position data, and the offset was calculated as the mean of the

regions where the target was at zero. For the second, the drift was modeled by fitting a line

between the offsets calculated at the beginning and end of the data record (Figure 7.6), as was

done for the head velocity (Figure 7.5.B).

A. Eye position (blu), drift (red) B. Eye position (blu), target pos (red)
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Figure 7.6: The drift (red) in the eye position sequence was modeled as a line that

connected the regions at the beginning and end of experiment when the eyes were

assumed to be at zero deg (plot A). The resulting eye position sequence (blue) and the

target position (red) are shown in plot B.

The six possible gaze responses from the three head position sequences and the two eye

position sequences were calculated and each was compared to the target position sequence. It was

usually obvious which sequences, and which combinations, did not make sense within the context

of the experiment. Sequences that indicated that the gaze, or the head, had deviated far from the

target were discarded. Of the sequences that seemed to make sense, the MSD and standard

deviation of the error were used to decide the best combination of head velocity and eye position.

These were the sequences that were saved to files and used in the data analyses.

Velocity calculations

The eye velocity and target velocity sequences were calculated from their position data

using a five-point, equal abscissa, numerical derivative algorithm (Abramowitz and Stegun,
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1972). The algorithm calculated the derivative of the discrete-time sequences using the

coefficients of a polynomial expansion that was fitted through 5 data points. The data points were

usually centered around the data point for which the derivative is desired. The expansion is shown

in Appendix E.

The five-point, equal abscissa algorithm was selected from several numcrical methods

that were evaluated to calculate the derivatives of the target and eye position data. The target and

eye position sequences were not smooth functions, but were the sampled output of random

processes and were, as well, noisy. Although the underlying process might not change quickly,

noise in discrete-time sequences can lead to high values being calculated for the numerical

derivative by causing there to be greater changes in the values of successive data points (Press et

al., 1997). Thus it was necessary to select a numerical derivative algorithm that was somewhat

insensitive to the noise in the position data. The numerical derivative methods that were evaluated

were: 1. fitting a 2 nd order polynomial to groups of three data points, and finding the derivative of

this polynomial, 2. fitting a 2nd order polynomial with least squares to groups of 5 data points,

and calculating the derivative of the polynomial (Savitzy-Golay filtering), and 3. the five-point,

equal abscissa expansion. For comparison, a two-point difference method, which is very sensitive

to the noise in the data, was also tested. In general, the results of the three derivative methods

were quite similar. The Savitsky-Golay method tended to produce the smoothest derivative

results, but the velocities were not necessarily more accurate than from other methods, and the

method required the most processing time. The five-point equal abscissa algorithm was selected

as the method to be used to calculate the experimental eye and target velocities because it was

well balanced between being insensitive to noise and having a low calculation time, and was

robust in that it was able to find a derivative for all the data sequences (Press et al., 1997).
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7.3 Results from the tracking trials

The accuracy of the VOR system identification was dependent on having controlled the

experimental inputs successfully, and having stimulated the appropriate head and eye motions

from the subjects. Before the data from a trial were analyzed, the input and output sequences were

inspected. The input sequences should have maintained the spectral characteristics and cross-

correlation relations that they had been designed to have. In addition, the subject should have

tracked the target well so that there was confidence that the gaze response had been driven by the

visual target. Finally, the torque perturbations should have disturbed the position of the head so

that the VOR was needed to stabilize the gaze.

The outcome of the tracking trials was consistent with goals of the protocol. The

performance of the subjects was consistent with the behavior discussed in Section 4.4, where it

was shown that the perturbations did not degrade the subject's ability to track the target. It was

apparent during the tracking trials that the torque perturbations had disturbed the motion of the

head, but that the subjects were able to track the targets well. It was obvious that the subjects'

VOR systems had stabilized their gaze. If the experimental protocol and the analysis were to be

valid, then the system identified by the analysis must reflect the performance of the VOR across

the full frequency spectrum of the head disturbances.

7.3.1 Input sequences: experimental vs. designed

The torque and target inputs that were measured during the experiments were not

identical to the "designed" torque and target input signals. The differences were small, but

resulted in the experimental signals having slightly different spectral characteristics and being

more correlated than the designed signals. The differences occurred because the ideal, high

precision torque and target sequences that were designed were transformed into physical

realizations by actuators that were not 100 % accurate, and were sampled by noisy sensors. The
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characteristics of the experimental signals were still good and satisfied the requirements for

testing the VOR.

Input torque

The torque signal wTas desgne as an ideal PRBS. It had tw'o amplitude values, and the

switches made between amplitudes in the sequence were immediate. Each torque sequence was

converted to a continuous-time voltage by a digital to analog converter (National Instruments),

and applied as a command to the motor of the head-perturber. The motor's controller controlled

the torque at the motor's rotor. The torque was delivered to the subject through a slip clutch,

across the force/torque (f/t) sensor, and then to the helmet that was fitted to the subject's head.

The experimental torque signal was sampled from the f/t sensor's output. The f/t sensor measured

the torque as close as possible to the head, which was required for the analysis. Since the f/t

sensor was not collocated with where the motor controlled its torque output, the torque that the f/t

sensor measured was different from the torque applied by the motor. The torque that was

measured by the f/t sensor and recorded in the experimental torque sequence was a combination

of the torque applied by the motor and the torque created by movements of the subject's head that

accelerated the masses along the head perturber's shaft.

The experimental torque sequences matched the shape of the designed PRB torque

sequences well and had similar power-spectral density and auto-correlation functions. The most

obvious difference between the experimental and the designed torque sequences was that the

experimental sequences did not have a binary amplitude distribution. The amplitudes of the

torque pulses were not constant, but varied around the commanded torque level. A representative

pair of experimental and designed torque and target sequence is shown in Figure 7.7, along with

plots of their amplitude distributions, PSD, and ACF. The designed signal had two amplitudes, +

0.20 and - 0.20 N.m. The amplitudes of the experimental signal were not binary, but the majority

of them were spread between magnitudes of 0.18 to a 0.23 N.m. The plot of the amplitude
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distribution shows that the experimental sequence had some values with magnitudes less than

0.18 N.m. This was due to the f/t sensor being sampled as the motor switched from applying

torque in one direction to the other.

A. Torque: des (red), exp (blk) C. ACF: des (red), exp (blk)
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Figure 7.7: Comparison of the experimental (black) and the designed (red) torque

perturbation sequence (plot A). The PMF (plot B), ACF (plot C), and PSD (plot D) for
the experimental and designed sequences are also shown.

Although the experimental torque sequences did not match the designed signals exactly,

the degradation of the torque signal because of the non-binary amplitudes was unimportant. The

important design goals for the torque signals were its spectral and auto-correlation characteristics,

and very little difference could be seen between the PSD and ACF for the experimental and

designed sequences (Figure 7.7). The experimental sequences approximated band-limited white

sequences, and had ACFs that could be used as a bound to decide if the torque and target

sequences were uncorrelated. The experimental sequences had the same temporal characteristics
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as the designed sequences which helped preserve their cross-correlation with the target

sequences.

The only times that the characteristics of the experimental torque sequence did not match

those of the designed torque inputs were during the few trials where the PRB torque sequence

w eecuted at 20 hags/s. The serv tor could not always respond quickly enough to

follow the highest frequency amplitude changes. The high frequency amplitude switches were not

accomplished, and the torque was held at the same amplitude for a longer duration than was

intended by the command signal. This effectively changed the high frequency switches into lower

frequency patterns. This altered the ACF of the torque sequence, and affected the torque-target

cross-correlation function since the torque sequence did not have the same temporal arrangement

of frequencies that had been designed.

Visual target

The trajectories of the visual targets were designed as discrete time velocity sequences.

Each velocity sequence was integrated into a position sequence, which was then converted into a

continuous time command signal. The command voltages were applied to the galvanometer

which moved the visual target's image by rotating a mirror off which the laser was projected.

During the experiments, the galvanometer's position was measured. The angular position of the

galvanometer was converted into the angular position at which the subject saw the target on the

screen. The experimental target velocity sequences were calculated by taking the discrete time

derivative of these target position signals.

The experimental target velocity trajectories indicated that the target had followed the

trajectory of the designed velocity sequence. When the experimental sequences were overlaid on

the designed sequences the sequences matched closely, but they were not exact. The experimental

sequences were usually not as smooth as the designed velocity sequences. This was partly

because the designed sequences had 200 elements/s whereas the experimental data sequences
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usually had 100 element/s (due to sampling rate), and partly because the experimental velocity

sequences were calculated by differentiating the target position sequence. As discussed in Section

7.3, differentiating a discrete time signal tends to amplify high frequency noise. The high

frequency noise was evident in the power spectral density plots of the sequence, but did not have

much effect on the target velocity's auto-correlation function. Figure 7.8 shows an example of a

velocity sequence that was designed to have its power between 0 and 1.8 Hz. The PSD of the

experimental velocity matches the PSD of the designed sequence in the desired frequency range,

but beyond 1.8 Hz it contains more noise. The most apparent difference between the amplitude

distributions occurred at the 0 deg/s bin. Most of the experimental sequences had a peak in their

amplitude sequence at 0, which was simply due to the sequences being sampled when they

crossed between positive and negative values.

A. Target: des (red), exp (blk) C. ACF: des (red), exp (blk)
0.5 0.04 -

Cd 0.02

0
d 0

-0.5 -0.02 _________________
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B. PMF: des (red), exp (blk) D. PSD: red (des), exp (blk)
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Figure 7.8: Comparison of the experimental (black) and the designed (red) target

velocity sequence (plot A). The PMF (plot B), ACF (plot C), and PSD (plot D) for the
experimental and designed sequences are also shown.
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Torque-target cross-correlation

The experimental torque and target sequences were more correlated than the designed

torque and target sequences. Over the lag values for which the torque and target sequences had

been designed to be uncorrelated, the mean squared amplitude of the experimental torque-target

CC"Ps vwrer rftenL 1 f) 20 1Ame gr-eate+r than the mean square' amnplitu-de of the designedJ torque-

target CCFs. Although the CCFs were larger, their mean squared amplitude was still much

smaller than that of the torque ACF. The torque and target sequences could therefore be

considered as uncorrelated. The mean squared amplitude values for the CCFs and ACFs from two

experiments are summarized in Table 7.1. The differences between the mean squared amplitudes

of the ACFs for the experimental and for the designed torque sequences were not as great as those

for the CCFs. The mean squared amplitudes of the experimental torque ACFs were rarely more

than 20% larger than those for the designed sequences. The magnitude of the experimental ACF

was still a good measure of the correlation between sequences that were uncorrelated. The ratio of

the mean squared amplitude of the ACF to the mean squared amplitude of the CCF was used to

verify that the torque and target sequences had a low enough correlation to be accepted as

uncorrelated. The functions were evaluated over the lags for which the sequences were designed

to be uncorrelated, but to be conservative, were not compared at lags that included the impulse in

the torque ACF. For the designed sequences, it was common for the mean squared amplitude of

the ACF to be 50 to 500 times that of the CCF. For the experimental sequences, the magnitude of

the ACF was often only 3 to 40 times the magnitude of the CCF. It can be seen in Figure 7.9 that

for either the designed or the experimental sequences, the CCF was small relative to the ACF.

The experimental torque and target sequences were more correlated than the designed

sequences because of power that was in the experimental target sequences at frequencies higher

than the desired frequency spectrum of the target's trajectory. This power was caused by noise,

sampling, and from calculating the target velocity as the derivative of the position sequence. This

added power lead to the cross-power spectral density (cross-PSD) between the target and the
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torque sequence being higher at these frequencies. Because the same total power is in the cross-

correlation function as is in the cross-PSD, the experimental sequences had to have higher cross-

correlation values than the designed sequences.

Exp:14JunO2 4 6 10 12 14 18 20 24

ACF des (10-6) 0.54 0.76 0.20 0.20 0.16 0.65 0.78 0.67

ACF exp (10-6) 0.64 0.84 0.23 0.22 0.20 0.71 0.86 0.78

CCF des (10- 9) 6.5 1.5 17.6 0.72 7.8 2.1 1.5 2.2

CCF exp (10-9) 46.6 26.6 82.1 149 42.1 28.5 22.4 42.0

ACF/CCF des 82.7 513 11.2 273 20.9 305 514 312

ACF/CCF exp 13.8 31.6 2.8 1.5 4.8 25.1 38.3 18.5

Exp: 04May03 2 4 6 8 10 12 14 16

ACF des (10-6) 1.32 1.00 0.23 0.61 0.36 0.98 0.67 0.67

ACF exp (10-6) 1.36 1.04 0.24 0.69 0.41 1.06 0.74 0.75

CCF des (10-9) 2.35 1.46 5.25 2.68 0.58 4.80 2.16 1.0

CCF exp (10-9) 60.1 23.9 30.2 63.3 111 39.3 28.0 25.2

ACF/CCF des 564 686 43.0 226 617 203 310 646

ACF/CCF exp 22.5 43.5 8.1 10.9 3.7 27.0 26.6 29.8

Table 7.1: Mean squared amplitude of the PRB torque auto-correlation functions
and the torque-target cross-correlation functions. The values are listed for the
designed (des) and the experimental (exp) sequences for experimental trials run on
two subjects. The trial's number is listed in the top row of each table.

In the example shown in Figure 7.8, the target sequence was designed to have power

from 0 to 1.8 Hz. Between 0 and 1.8 Hz the PSD of the experimental target velocity was nearly

identical to the PSD of the designed sequence. But at higher frequencies, the magnitude of the

experimental sequence's PSD was greater that that of the designed target sequence. This power

occurred at frequencies for which the PRB torque sequence also had power (Figure 7.7) which

resulted in the experimental torque and target sequences having a higher cross-power spectral

density at frequencies above 1.8 Hz than did the designed sequences (Figure 7.10). Since the
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power above 1.8 Hz was created after the design process was complete, the target sequence had

not been arranged so that the power occurred in the cross-correlation function at large lag values.

It therefore corrupted the cross-correlation function at lags where the sequence had been designed

to be uncorrelated, and made the experimental sequences more correlated than the designed

sequences (Figure 7.10).

A. Des: tor ACF (red), CCF (blk)
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B. Exp: tor ACF (red), CCF (blk)

0 6
lag (s)

Figure 7.9: The torque ACF (red) and the torque-target CCF (black) for the designed
(plot A) and the experimental (plot B) torque and target sequences. For the designed
sequences, the mean squared amplitude of the torque sequence's ACF was 310 times the
mean square amplitude of the torque-target CCF. For the experimental sequences, the
mean square amplitude of the ACF was 27 times that for the CCF.
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Figure 7.10: Cross-power spectral density (plot A) and cross-correlation function (plot
B) for the experimental (black) and the designed (red) torque and target sequences.
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7.3.2 Output sequences: tracking, head and eye motions

The targets were well tracked by the subjects, and stimulated predominantly smooth

pursuit tracking responses. The subjects demonstrated a range of tracking behaviors, but the were

generally able to compensate for the disturbance to the head and tracked the targets without too

much error or need for saccades. The head and eye movements were considerably disturbed, but

combined to produce a good gaze response. There was not an observable difference in how well

the subjects tracked the target, or if the tracking was done smoothly or with saccades, as a

function of whether perturbations were applied or not during the tracking. The tracking behavior

was consistent with what was observed during the investigations that were conducted to identify

the characteristics of the visual target that were to be used in the VOR experiments (Chapter 4).

In the majority of trials the subject's head moved with the low frequency motions of the

target. The eyes followed the higher frequency target movements and compensated for the

disturbances to the head's position. The plots of head and eye position shown in Figure 7.11 are

typical of trials in which the head was moved through nearly the same range as the target. The

plot of the head position has the same gross shape as that of the target, but its motions are not

smooth and are obviously affected by the torque perturbation. The eyes also have movements that

are characteristic of the target, but the magnitude of the eye movements is smaller than that of the

head. The eye motions are disturbed by the same amount as the head. The head and eye motions

combined to from a gaze position that replicated the target's position. In this example, the mean

squared difference between the gaze and the target was less than 3.5 deg2 , and the standard

deviation of the gaze error was only 1.7 deg.

Not all subjects moved their head with the target, and a subject would not necessarily use

the same head strategy in all tracking trials. In some cases, the subject tracked the target mostly

with eye movements. The head's position remained close to zero, although it was affected by the

torque perturbation. The eyes compensated for the disturbances to the head's position and moved

with the target (Figure 7.12). How well the subjects were able to track the target did not seem to

245



depend on whether they actively moved their heads or not. Since the maximum angular

displacement of the targets was only +/- 35 degrees, subjects were not forced to move their heads

to track the target. Although this was a limitation of the equipment, it allowed the subjects to use

whichever strategy they wanted.

A. Target (red) & gaze (blk) position
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B. Gaze error
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Figure 7.11: Representative gaze tracking response where subject moved the head
through nearly the same range as the target (plot A). Plots C and D show the head
(brown), eye (blue), and target (red) position sequences.

The spectra and amplitudes of the head's velocity as it was perturbed met and exceeded

what was desired. The goal was to create horizontal plane disturbances that were similar to what

is experienced by the head during locomotion, namely frequencies between 0.5 and 4.0 Hz, and

velocities up to 60 deg/s. It was difficult to identify the disturbance to the head's motion by

inspection alone. The head movements that were measured during the VOR experiments were a

combination of active motions that were used to track the target and the disturbance motions

caused by the torque. To identify accurately the motions caused by the torque, a cross-correlation

246

50

0

-o

:1
p.

50'

0

'0

0

0

I I I I

I I I I

MMMMNM==NR

1 50'
0

00



analysis would have to be conducted (Section 7.6). However, the effect of the perturbations on

the subjects' heads can be understood by comparing the head velocities during a trial where

torque perturbations were applied to those measured when there were no perturbations. An

example of the head velocity PSD for two representative trials is shown in Figure 7.13. The PSD

of the head velocity when perturbations were applied is greater at all frequencies. Near 0 Hz, the

magnitudes of the PSDs are similar, but by 0.5 Hz, the magnitude of the PSD when torque was

applied is an order of magnitude greater than when no perturbations were applied. The difference

increases and remains steady at approximately two orders of magnitude difference at all

frequencies above 2.0 Hz. When there were no perturbations, subjects tracked the target slowly

with their head. The maximum velocity measured for the head was less than 3 deg/s. When the

torque perturbations were applied the maximum head velocity exceeded 70 deg/s. The subject

may, or may not, have moved the head differently to track the target when the perturbations were

applied, but it can be assumed that most of the increase in the head velocity was caused by the

applied torque.

A. Head (brn) and target (red) pos. B. Eye (blu) and target (red) pos.
50 0

-0 -50

0 20 40 60 80 100 0 20 40 60 80 100

time (s) time (s)

Figure 7.12: Representative head (plot A) and eye (plot B) position for a subject that

did not move the head with the target (red).
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A. PSD head vel: pert (brn), no pert (red)
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Figure 7.13: Comparison of the head velocity during a tracking trial when torque
perturbations were applied (brown) and when no perturbations were applied (red). The
power spectral densities of the sequences are shown in plot A, and the distributions of the
velocity amplitudes are shown in plots B (with perturbations) and C (without perturbations).

The amplitude and spectrum of the head velocity response was surprisingly insensitive to

the rate at which the PRB torque sequence was executed. Most of the trials were run at 10

changes/s, but some trials were run at 9, 15, and even 20 changes/s. The effective bandwidth of

an ideal PRBS is one third of its execution frequency. The highest frequency of the effective

bandwidth for PRB sequences executed at 9 or 20 changes/s occurred very near the upper

frequency of the disturbance motions that the perturbations were designed to create. Figure 7.14

shows representative PSDs for the same subject when perturbations were applied at 10, 15, and

20 changes/s. It is obvious that the spectrum of the 10 changes/s PRBS decayed more rapidly than

the 15 and 20 changes/s PRBS. The response of the head, however, did not vary significantly.

The differences seen between the head velocity PSDs when the torque sequences were executed
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at the different rates were not much greater than the differences seen in head velocity PSDs when

the same execution rate was repeated. In the range of frequencies that were of interest for the

VOR analysis there was no advantage to using sequences executed at 15 and 20 changes/s as

compared to sequences executed at 10 changes/s. The faster execution rates did not create a wider

spectrum of disturbances, and in comments made between trials, the subjects reported that the 15

and 20 changes/s sequences felt faster than the 10 changes/s sequences, and were less

comfortable. An advantage to using the slowest execution was that it concentrated the total power

into a smaller range of frequencies and therefore stimulated more responses in the frequencies

that were of interest.

The eye velocities were dominated by components that were nearly equal and opposite to

the head velocities, as shown in Figure 7.15. The amplitudes of the head and eye responses were

rarely equal, and when combined they summed to be nearly equal to the target's velocity. There

was little evidence of saccadic eye motions in the eye response. The "equal and opposite"

behavior of the eyes was evidence that the VOR had functioned during the head-free pursuit of

the target. The VOR gain relationship could not be accurately determined by simply comparing

the head and eye amplitudes since the eyes were also driven by the target, but based on

inspections of subjects' data the VOR gain did appear to be close to unity. The plots of the eye

velocity PSDs were unique to the subjects and to the tracking trial, but there was a common

pattern in many of the trials. At the frequencies over which the target had been controlled, the

head velocity and the eye velocity PSD had similar amplitudes and shape, but there were some

differences. Although it would be expected that healthy subjects would have similar PSDs for

head and the VOR-induced eye motions, the head and eyes were used differently to track the

target and the PSD reflected these different motions. From just above the maximum frequency of

the target to about 4 Hz, the PSD for the eye and head velocities were nearly identical. Above

approximately 4 Hz, the eye velocity PSD deviated from the head velocity PSD, and this was

probably due to noise corrupting the eye velocity calculation.

249
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Figure 7.14: Representative power spectral densities for the head velocity

(brown) and the torque perturbation (red) when the PRB torque sequence

was executed at 10 changes/s (plot A), 15 changes/s (plot B), and 20

changes/s (plot C).
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Figure 7.15: Head (brown) and eye (blue) velocity when torque

perturbations were applied to the head (plot A). Plots B and C show

representative power spectral densities for the eye and head velocity

sequences for two subjects
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7.4 Head response

The head was used "naturally" by subjects to track the targets. The motion of the head

was disturbed by the torque perturbations, but the subjects controlled how the head tracked the

visual target. The measured head motions could be decomposed into two components; a

component that was driven by the target and that was under the voluntary control of the subject,

and a component that resulted from the torque perturbations applied to the head.

It was important to analyze the head response to assess the linearity of the head control

systems. The linearity of the head control systems has a direct impact on the ability to assess the

VOR with linear system identification. The eye motions caused by the VOR, and those caused by

the visual system, can be distinguished only when they can be linearly related back to the torque

and target inputs through the subsystems of the gaze control system. This relation is degraded

when nonlinear relations exist.

7.4.1 Analysis of IRF and FRF for visually mediated (g2) and head-neck (g4) control systems

Head velocity can be considered the output of a two-input system (Figure 7.16). The

torque perturbation (p) stimulates a response from the head-neck system (g4) and the visual target

(t) stimulates a response from the visually mediated control system (g2). The responses of these

systems, along with noise, sum to create the head velocity (h). The linear convolution equation

that relates the head velocity to the inputs is:

h = t 0 g2+ p 0 g4+ n, Eq. 7.1

The calculation of the estimates of the g2 and g4 impulse response functions (IRF) is

simplified because the torque and the target input sequence are uncorrelated.
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torque perturbation

Figure 7.16: Block diagram for the head control systems.

The IRF for g4 is calculated by taking the cross-correlation of the signals in Eq. 7.1 with

the perturbation torque. The linear convolution equation becomes:

rpH =pT 9 g2 + rpp 9 g4 + r Eq. 7.2

where the linear convolution operator is represented by "0", rpH is the cross-correlation function

between the torque and the head velocity, rpp the auto-correlation function of the torque

perturbation, rPT the cross-correlation function between the torque and the target, and rpn the

cross-correlation between the torque and the noise. Under the assumptions that the noise is

uncorrelated with the input sequences, and the torque and target inputs are, by design,

uncorrelated, Eq 7.2 reduces to:

rpH = rpp 9 g4. Eq. 7.3

The impulse response function for the head-neck system could then be estimated by deconvolving

rpp from rPH via a matrix inversion. This technique was fully described in Chapter 2.

A similar process can be used to calculate the g2 IRF. Instead of forming the cross-

correlation of the signals in Eq. 7.1 with the torque input, the cross-correlation was formed with
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the target velocity. The torque-target CCF and the noise-target CCF could be approximated as

zero, and the resultant convolution relation was:

rTH = rT 0 g2 . Eq. 7.4

The g2 IRF was estimated by deconvolving rTT from rTH-

An example of the analysis program that was used to estimate the impulse response

functions for the head system is included in Appendix E.

7.4.2 Head-neck (g4) and visually (g2) mediated control systems

Head response to the torque perturbations (g4)

The dynamics of the head-neck systems in response to the torque perturbations resembled

those of second-order, underdamped system. A representative example of one subject's data is

shown in Figure 7.17. The impulse response functions and the gain and phase plots of the

frequency response functions had the characteristics of second-order admittance functions (torque

input, velocity output). The IRFs were fitted well by second-order parametric models. The gain of

the FRF increased until it reached a resonance peak, and then decayed with nearly the same slope.

The phase plot began at a phase near 90 deg, decayed and crossed 0 degrees at the same

frequency as the resonance peak in the gain plot, and then asymptotically approached -90 deg, all

of which are characteristic of second-order systems.

The IRFs that were calculated for the head-neck system during the VOR experiments

were similar to those calculated for the same subjects during the head-neck system experiments

(Chapter 6). The protocols followed during the VOR experiments and the "head-neck"

experiments were very different, but similarities could be seen in the responses of the subjects

who had participated in both.
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In Figure 7.17, the IRF and FRF that were calculated for a subject during the VOR and

head-neck experiments are shown. The response functions are not the same, but there are strong

similarities. The IRFs are both fitted well by the parametric model. The parametric IRF to the left

has a damping ratio of 0.46, and the IRF to the right has a damping ratio of 0.44. The peak gain in

the FRF is larger in the plot at the right, but both responses peak at a frequency around 2.5 Hz,

and have a similar decay as the frequency increases. Both phase plots start with a phase of 90 deg

at 0 Hz, and by 5 Hz, both phase plots show a phase of -90 deg. This subject tended to have a

very strong linear, second-order response during both the VOR and head-neck experiments.

During the VOR experiment the non-parametric IRFs were able to predict the head output with a

VAF of 96%, and the parametric IRF predicted the output with a VAF of 91%.

There are many reasons for there to be differences in the response functions calculated

for the head during the VOR and head-neck experiments. During the head-neck experiments the

protocol was controlled so that the head was used in the same manner in each trial. The protocol

was designed to stimulate linear, time invariant behavior from the head-neck system, so that it

could be compared at different equilibrium points. Subjects were required to keep the head

directed forward (with help of visual feedback), and to correct for the disturbances to the head's

position that were created by the applied torque perturbations. Generally, the displacements to the

head were less than 10 deg. During the VOR experiments the subjects were free to move their

heads as they wished. Some subjects moved the head with the target through displacements of

more than 25 deg, and others kept the head centered. Considering how different the protocols

were during the VOR and head-neck experiments, it is remarkable how close the response

functions were.

Not all subjects had head-neck (g4) IRFs that were so well modeled by second-order,

linear systems. Figure 7.18 shows the IRF and FRF responses for another subject. The IRF and

FRF are not as clean and not as closely matched by second-order models as they are for the

subject shown in Figure 7.17. The responses still show characteristics of second-order systems.
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There was some degree of variability in how closely the subject's response resembled an ideal,

second-order system, but there was some consistency in the subject's head-neck responses during

the VOR and head-neck experiments.
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Figure 7.17: Representative impulse and frequency response functions for the head-
neck system for one subject. Plots A, B and C show the results for the head-neck system
during a VOR experiment. Plots D, E, and F show the results of a head-neck experiment
when the mean torque that was applied to the subject's head was 0.1 N.m.
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A. IRF during tracking
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Figure 7.18: Representative impulse and frequency response functions for the head-

neck system for a subject different from the subject in Figure 7.17. Plots A, B and C

show the results for the head-neck system during a VOR experiment Plots D, E, and F

show the results from a head-neck experiment.
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Voluntary, visually mediated response (g2)

The g2 IRF represented the relation between the target and the subject's head

movements. This relation was not as strong as that for the g4 IRF as subjects were free to decide

how much head motion to use to follow the target. The target did not directly drive the head

Th k+i -1,c k 1 Apx, +, "n, UT--~ Ub 1.L - 3-- - -------
AinIJLsJii.J, LJt dLrv te gzJV. . HI ow VV the gaze respOns was spIIL UeLWee1 hdU aUd eye motiOls was

up to the subject, and since the subject did not have to maintain a consistent strategy during the

trial, how the head was used could vary. There tended to be three types of head uses among the

subjects. Some subjects moved the head closely with the target (Figure 7.11), whereas others kept

the head near 0 deg and followed the target mostly with eye motions (Figure 7.12), and others

used a combination of the two.

The gain and phase plots of a G2 FRF are shown in Figure 7.19. The plots are

representative of the class of subjects who tended to use a combination of head and eye

movements to track the target. In this example the target trajectory had a frequency spectrum

between 0 and 1.8 Hz. The gain plot shows that the subject's head motions had a gain of about

0.6 across throughout this frequency range. The subject moved the head with the target even at

the higher velocities. On average the phase increased linearly with frequency, ss is shown in the

phase plot. Therefore the head response lagged the target by a nearly constant time lag across all

frequencies. Since the targets were unpredictable, this suggests that the visually driven response

was in fact driven by visual mechanisms and not by prediction. In most cases, independently of

whether the gain was high or not, the phase indicated that there was a delay between the target's

motion and the response of the head.

Predictions of the head response

Although the head and neck are controlled and stabilized by nonlinear systems, the linear

g2 and g4 IRFs were usually able to capture a great deal of the head's dynamic response during

the tracking trials. Predictions of head velocity sequences were made by convolving the input

258



sequences with the g2 and g4 IRFs. Comparisons of the predicted head velocities with the

measured sequences showed where the linear analysis captured the dynamics of the head during

the head-free tracking, and where the head-neck system had nonlinearities that could not be

modeled well by linear system identification.

A. FRF G2: gain B. FRF G2: phase
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0 1.25 1.8 2.5 0 1.25 2.5
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Figure 7.19: Representative gain (plot A) and phase (plot B) response plots for the
visually mediated head control system during the tracking of a 0.0 to 2.0 Hz visual target.

Figure 7.20 shows a representative example of head velocity, its linear prediction, and the

breakdown of the prediction into a visually driven component and a torque driven component.

Overall, the linear IRFs were able to capture a great deal of the dynamics of the head-control

systems. The prediction of the head velocity had a VAF of 92%. It can be seen from plots of the

power spectral density functions that the predicted PSD matched the measured PSD at all

frequencies, with one exception. Between 0.2 and 0.5 Hz, the linear models did not predict the

head velocity well. Just below 0.5 Hz, the PSD of the predicted response deviated from the PSD

of the measured head velocity. The two match again, however, near 0.0 Hz. These frequencies

mark the two regions where active control dominates the head response, and where the head

response is dominated by a reaction to the torque. The g3 IRF accounts for most of the head's

dynamics at frequencies above 0.5 to 1.0 Hz. In plot D of Figure 7.20, the PSD of the torque
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driven component matches the PSD of the head at frequencies above 0.5 Hz, but drops by over

three orders of magnitude between 0.5 Hz and 0.0 Hz. Although the torque perturbation has

power down towards 0.0 Hz, the active control of the head prevents the torque from disturbing

the motion of the head at low frequencies, as had been observed in the head-neck experiments. In

pl-t E and F the visuai--lly-j driven I.,mpone.t If the hed Xlocit k-AsP, Is s4DQ h .1 Thc

target driven component matches the measured head velocity below 0.2 Hz. In this case, only a

small part of the measured velocity of the head is predicted by the linear g2 system. More of the

head motion may in fact be visually mediated, but its dynamics are not captured by the linear g2

IRF.

It can be seen from plots of the head position how the visually mediated and the torque

driven components contributed to the head's overall motions. Figure 7.21 shows the predicted

velocities integrated into position sequences. The total head response can easily be seen to be the

sum of two components. The visually driven movement of the head follows the low frequency

motion of the head, and the torque driven component captures the higher frequency motions. As

was intended by the experimental protocol, the torque driven component appears as a disturbance

to the head's motion as the head is used to track the target.

The characteristics of this example were common to most of the predicted head velocity

PSDs. The predicted responses matched the measured head velocity well at all frequencies near

0.0 Hz and at all frequencies above 1.0 Hz. In some range between 0 and 1.0 Hz, the PSD of the

predicted response did not match the PSD of the measured head velocity. The response in this

area can probably be attributed to nonlinear active control. There are certainly head velocities that

arise from the natural use of the head to track the target, and from the torque disturbing the

position of the head, but these dynamics were not captured by the linear analysis of the g2 and g4

systems.
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Figure 7.20: Linear predictions of the head velocity. The plots on the left show the

measured head velocity (red) and the predictions (black or blue). The plots on the right

show the corresponding power spectral densities. Plots A and B show the prediction of

the head velocity. Plots C and D show the component of the head velocity that was driven

by the perturbation torque. Plots E and F show the component of the head velocity that

was driven by the visual target.
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Head position predictions
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Figure 7.21: Prediction of the head position. The position was calculated by
numerically integrating the predictions of the head velocity. The visually
driven component is shown in blue, the component driven by the torque
perturbation is in black, and the complete head prediction is shown in red.

7.4.3 Coherence-squared functions: system nonlinearities

What is most important to the VOR analysis is that there is a strong, linear output-input

relation through the head control systems, especially through the head-neck system (g4), not that

the g2 and the g4 systems can be modeled by familiar parametric systems. The modeling of the

g4 system as a second-order system shows that the head-neck system is relatively invariant, but is

not essential to the identification of the VOR system. What is important is that the head responds

linearly to the applied torque perturbations over a wide range of frequencies. This allows the eye

motions that were created by the VOR to be linearly related to the torque perturbations through

the head-neck system (g4). Since the torque and the target are the controlled experimental inputs,

the measured eye responses can be separated into components stimulated by the torque, and those

stimulated by the target, only if there is a linear relation between the inputs and the output.

Nonlinearities in the head-neck system degrade the linear cascade of systems between the

controlled torque input, and the VOR output, and limit how well the linear system identification

technique can evaluate the VOR's performance.

The coherence-squared functions between the torque and target inputs, and the head

velocity output, show where the measured head velocity was linearly related to the inputs, and
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identify where the linear relation was corrupted by noise and nonlinear system behavior. The

coherence-squared function essentially decomposes the "percent variance accounted for" that was

calculated between the prediction of the head velocity and the measured head velocity by

frequency. The measured head velocity is the output of a two-input, single-output system. The

interpretation of the coherence-squared function for a two-input, single-output system is not as

straightforward as the coherence-squared function for a single-input single-output system (Juang,

1994). The coherence-squared function for a two-input single-output system is the sum of three

groups of terms (Chapter 2). There are coherence-squared terms between each input and the

measured output. These are calculated in the same way as for a single input-single output system.

There is a coherence-squared measure between the inputs, and two coherence-squared terms that

simultaneously relate both inputs and the output ("triple coherence-squared"). The sum of the

three groups of terms (coherence-squared sum) is bound by unity, as opposed to the case for a

single-input single system, where the coherence between the single input and the output is bound

by unity. The interpretation of the terms in the coherence-squared sum is simplified when the

input signals are uncorrelated, as was the case in the VOR experiments.

Relative to the coherence-squared between either the torque or the target and the head

velocity output, the coherence-squared between the inputs, and the "triple coherence squared"

terms, are about zero. When these terms are ignored, the coherence-squared functions between

the torque and the head velocity, and between the target and the head velocity, can be interpreted

similarly to that for a single-input single-output system. Each coherence-squared function can be

interpreted as the fraction of the head velocity's total response that was linearly related to the

particular input. In the single-input single-output system, the coherence-squared decreases with

noise and nonlinearities. In the two-input, single-output system, noise and nonlinearities still

degrade the coherence-squared value, but the coherence-squared between one of the inputs and

the output is also reduced from unity by the linear contribution to the output from other inputs.

The relationship between the input and its component of the output may be strictly linear, but if
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the measured output is also stimulated by other inputs, or degraded by noise or nonlinearities, the

coherence-squared measure will be below unity.

The relations between the measured head velocity and the torque and target inputs can be

divided into two parts: one component that involves frequencies above the target's spectrum, the

other covers frequencies where the target was controlled. Coherence-squared functions that are

representative of data from three subjects are shown in Figure 7.22. As a general rule, the

frequency spectra of the visual targets used in the VOR experiments extended from 0.0 Hz to

between 1.5 and 2.0 Hz. At frequencies above the target's spectrum, the coherence-squared plots

indicated that the motion of the head was caused predominantly by the torque perturbation. This

was consistent with the PSD of the predicted head velocity. As shown in Figure 7.20, the PSD of

the head velocity component that was driven by the torque matched the PSD of the head velocity

closely at all frequencies above 1.0 Hz. At these frequencies, the coherence-squared between the

torque and the head velocity was the main contributor to the coherence-squared sum. The

coherence-squared between the target and the torque was near zero, and the plot of the coherence-

squared between the torque and the head velocity was nearly identical to the figure that showed

the sum of the coherence-squared measures (Figure 7.22). The high coherence-squared values

(>0.9) indicated that there was a strong, linear relationship between the head velocity and the

torque perturbation. The relationship was not degraded by noise, nonlinearities, or contributions

to the head velocity from other inputs.

At the highest frequencies for which the visual targets were controlled, the coherence-

squared was near, or greater than, 0.8. It improved as the frequency increased. By 4 Hz the

coherence-squared was near unity, and it remained near unity until the frequency approached the

rate at which the torque PRBS was executed. At this frequency the coherence-squared dropped

rapidly since the power in the input torque dropped considerably, and the signal to noise ratio

became low. In the top plot of Figure 7.22 the torque had been executed at 10 changes/s, in the
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middle it was executed at 9 changes/s, and in the bottom plot it had been executed at 15

changes/s.
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Figure 7.22: Coherence-squared functions for three subjects. The plots on the left show the

complete coherence-squared function (as described in Appendix A) between the torque and

target inputs and the head velocity output. The plots on the right show the coherence-

squared functions between the torque and the head velocity (black) and the target velocity

and the head velocity (blue). Plots A and B are representative of the data from one subject

who had an exceptionally linear relation between the head response and the torque

perturbations. Plots C and D are representative of the majority of the trials for all subjects,

except for the subject shown in the plots A and B. Plots E and F are representative of trials

where a subject tracked the target primarily with eye motions, and did not voluntarily move

the head to follow the target. In these cases, the head was moved by perturbations alone.

The upper frequency of the visual target's spectrum is marked by a dotted vertical line
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The coherence-squared sum was usually lower at the frequencies for which the visual

target had power than it was at higher frequencies. In the majority of trials, the coherence-squared

remained above 0.7 between 0.0 and 2.0 Hz. This indicated that there was a strong linear

relationship between the head velocity and the torque and target inputs, although the linear

relation was not as strong as it was at frequencies for which the head was driven only by the

torque perturbation. A characteristic that was common to most trials for which the subject had

used head motions to track the target, was that the lowest coherence-squared values occurred

between 0.2 and 1.0 Hz. The coherence-squared was often near unity at 0.0 Hz. It would quickly

drop to its lowest value(s) in the frequency range from approximately 0.2 to 1.0 Hz, and then

would increase towards the end of the spectrum where the target had power. The plots of the

coherence-squared values between the target and the head velocity and the torque and the head

velocity show how the drop in the coherence-squared developed. Near 0.0 Hz the head velocity

was strongly dependent on the target, and then this linear dependence quickly decayed toward

zero. As this decayed, the coherence-squared between the torque and the head velocity increased.

In the region from 0.2 to 1.0 Hz a portion of the head velocity was nonlinearly related to the

inputs. This is the region where active control and stability of the head prevents the torque inputs

from stimulating head disturbances in a linear fashion. These results are consistent with the

results of the head-neck study of Chapter 6; below 0.5 Hz the head-neck response to horizontal

plane torque perturbations was not modeled well by a linear IRF.

At the lowest frequencies, the torque perturbations did not stimulate head movement, but

the head velocity was linearly related to the visual target's motion. As the frequency increased

from 0.0 Hz, there was less of a linear response from the head to follow the target velocity. This

was also seen in the PSD of the head velocity prediction (Figure 7.20). Between 0 and about 0.3

Hz, the PSD of the head velocity component that was caused by the visually-mediated system

matched the PSD of the head velocity (Figure 7.20, plot F). Beyond 0.3 Hz, the visually driven

component had almost no power.
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The coherence-squared functions for the head velocity demonstrated that above 0.5 to 1.0

Hz the head is linearly related to the torque perturbation, and the dynamics of the head can be

modeled well by a linear IRFs and FRFs. Below 0.5 to 1.0 Hz nonlinearities in the head control

and stability systems degrade how well the systems can be represented by linear models.

The linear analysis of the VOR will be degraded by the same nonlinearities. The input to

the subject's vestibular system that stimulates a response from the VOR is the head disturbance,

but the stimuli to the VOR, within the framework of the linear analysis, are the components of the

head disturbance that can be linearly related to the applied torque. The coherence-squared

function that will relate the output of the VOR to the torque perturbation will be no better than the

coherence-squared function that relates the torque to the head velocity.

The nonlinearities of the head-neck system would not affect the linear system

identification of the VOR if the VOR eye motions could be related directly to a measurement of

the head's disturbance position. This is not possible unless the head's disturbance position

becomes a controlled input, rather than it being a perturbation to the subject's natural head

motions. If the disturbance's position was controlled, and the subject was prevented from using

natural motions to track the target, the analysis would not assess the natural function of the VOR

during head-free pursuit, and the normal interactions of subsystems in the gaze control system

would be altered. The appropriate solution would be to use a nonlinear model to represent the

dynamics of the head-neck system. That would require a very different analysis and a protocol

that was more appropriate to nonlinear system identification.

7.5 VOR response

One of the benefits of testing the gaze tracking system with random, broadband inputs

was that the system-level response of the VOR could be estimated in both the frequency and time

domains. The frequency response function (FRF) could be calculated over a wide range of
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frequencies, and estimates of the impulse response function (IRF) could be made directly from

the time domain data. The FRF and the IRF provided the same information about the VOR

system, but presented the information differently. The system characteristics of the VOR were

more easily interpreted from the gain and phase functions of the FRF.

7.5.1 Analysis of VOR IRF (g3) and FRF (G3)

G1
ti visually mediated a + e r

visual eye control eye response
target v vor

G2 b h head response

visual visually mediated +
head controltarget d head disturbance

G4
head-neck

system

p
torque perturbation

Figure 7.23: Block diagram of the inputs, outputs, and systems directly
involved in the analysis of the VOR

The VOR system response function represented the VOR's response to the perturbations

applied to the head. It was not the relation between the head velocity and eye velocity, even

though those were the head and eye signals that could be directly measured. The impulse and

frequency response functions that described the linear behavior of the VOR were found by

decomposing the measured eye response into visually driven and VOR-driven eye motions, and

relating the VOR eye motions to the movements of the head that were caused by the torque

perturbations. The mathematics of the analysis was discussed fully in Chapter 2, but a summary
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of the equations is presented in this section. An example of the analysis program that was used to

analyze the VOR system is included in Appendix E.

The eye velocity sequence (e) that was calculated for each tracking trial represented the

sum of the eye motions from the visually mediated eye control system (a = t~gl) and from the

VOR (v = h0g3) (Figure 7.23):

e= a+v=t gl+h9g3, Eq. 7.5

where the linear convolution operator is represented by "0".

The head response (h) can be decomposed into head movements that resulted from the

visually mediated head control system (b = t0g2) and disturbance motions that were caused by

the torque applied by the head-perturber (d = p~g4):

h=b+d=t g2+p9g4. Eq.7.6

Since the convolution is a linear operator, Eq. 7.5 can be expanded into:

e = t0 gi + (tO g2) 0 g3 + (p0 g4) 0 g3. Eq. 7.7

The eye motions that were in response to the visual target, either through voluntary eye control

(gI) or indirectly through voluntary head control (g2), are represented by t~g I+(t~g2)0g3. The

eye motions that were created by the VOR to stabilize vision during the perturbation of the head

are represented by (p~g4)0g3.

Eq 7.7 can be changed from representing the relation between the total eye response and

the torque and target inputs, to an equation that considers only eye motions that were driven by

the torque perturbation, by forming the cross-correlation of the input and output sequences with

the perturbation torque:

res =TPT e gl+rr ®g2Og3+rpp 0g40&g3. Eq. 7.8

Since the torque perturbation sequence and the target velocity were made to be

uncorrelated, their cross-correlation function can be set to zero (rpT= 0), and Eq. 7.7 is reduced to:
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r,, = rp, 0 g 4 0 g3 . Eq. 7.9

Eq. 7.9 shows the linear relation between eye motions that were correlated with the torque

stimulus and the torque perturbation that disturbed the head. Although the data were gathered

under natural tracking conditions, during which the head and eyes interacted normally to track the

target, the influence of the visual target has been removed from the analysis.

It was shown in Section 7.5 that:

rpH = rp, g4, Eq. 7.10

where rPH represents the movement of the head that was caused by the torque perturbation, rpp.

Eq. 7.10 can be substituted into Eq 7.9 to create an equation that relates the VOR's impulse

response function (g3) to the cross-correlation functions that represent the head and the eye

motions that were driven by the torque perturbation:

rp, =rp, g 3 , Eq.7.11

Eq 7.11 can be developed more quickly from Eq 7.5 by forming the cross-correlation

functions between the torque perturbation and the head and target velocity input sequences, and

the eye velocity output sequence. This is unorthodox, as it is rare, in the analysis of a two-input,

single-output system to form the cross-correlation of the inputs and the output with a third

sequence that is not also one of the inputs or outputs in the analysis equation. The procedure is

justified, however, because it does not involve any physical relations that did not hold in the

development of Eq. 7.11. The result is:

rPE =rPr 9 gl+rpH 0 g 3 . Eq.7.12

Since rp1 is approximated as 0, Eq. 7.12 simplifies to Eq. 7.11

The VOR impulse response function (g3) was estimated using Eq. 7.11 by de-convolving

rPH from rPE. Eq. 7.11 was expanded into a series of equations and then represented in a matrix.

The de-convolution was conducted via a matrix inversion. The process was fully described in

Chapter 2.
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The frequency domain equations extend immediately from the time domain equations.

The linear convolution in the time domain becomes a multiplication in the frequency domain, and

the time domain cross-correlation functions become the frequency domain cross-power spectral

density functions. In the frequency domain Eq 7.11 becomes:

S PE (1W) = SPH (jo) -G3(jo). Eq. 7.13

The frequency response function of the VOR (G3) was found by dividing the cross-PSD between

the eye velocity and the perturbation torque by the cross-PSD between the head velocity and the

torque perturbation. In the text Applied System Identification (Juang, 1994), Juang proposed that

cross-power spectral density functions should not be calculated directly from a full data record,

but from the average of smaller records. The data records were broken into smaller records, and

the cross-PSDs for Eq. 7.13 calculated as the average of the cross-PSDs of the smaller records.

This reduced the variance of the cross-PSD functions as estimators of the cross spectral density of

the random process that created the data, and improved G3 as an estimator of the system

performance.

The VOR dynamics that can be solved for by Eq. 7.11, are those that are stimulated by

the head disturbances that can be linearly related to the input torque, not those that are stimulated

by all head disturbances. Eqs. 7.9 and 7.10 make it clear why this occurs. The perturbation torque

was one of the two controlled inputs used in the experiment, with the visual target being the other

input. The torque perturbation did not, however, stimulate the VOR. The VOR (g3) was

stimulated by head disturbances that were caused by the torque, and the linear equations only

accounted for disturbances that could be linearly related to the torque perturbation (p&g4).

Although the torque perturbation sequences had power at frequencies from 0 through 8 to 10 Hz,

the linear stimulus to the VOR did not. The linear analysis could not therefore assess the

performance of the VOR over all frequencies for which there was power in the torque sequence.
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The VOR could only be evaluated over frequencies for which the head disturbance that was

linearly related to the torque, p~g4, had power.

One of the fundamental assumptions made during the development of the equations that

were used to identify the g3 response was that the torque and target sequences could be

approximated as uncorrelated. This allowed rPT to be set to and to be removed from thc anayi

equations. Without this assumption, g3 could not be identified. When the input sequences were

being designed, the torque and target sequences were accepted as uncorrelated when the

magnitude of their cross-correlation was small relative to the auto-correlation function of the PRB

torque sequence (Chapter 4). The ACF of the PRB torque sequence was an appropriate measure

with which to judge the sequences as uncorrelated, but it was also the only measure available

during the design process with which to judge the level of the torque-target correlation. Once the

tracking trial had been run and the data collected, other measures became available that could be

used to assess the influence of the torque-target CCF on the analysis and to justify setting the

torque-target CCF to zero.

Eq. 7.12 shows the relation between the two eye-control systems, gI and g3, and the

three signals that can be measured: target velocity, torque perturbation, and head velocity. When

rPT is set to zero the influence of the gI system on the output measure, rPE, is assumed to be

insignificant. Without knowledge of the gl system, it is not known how sensitive the system is to

small values of rPT. To be conservative in accepting the assumption that rPT~gl does go to zero,

rPT should be small relative to the other cross-correlation values in the equation, rPE and rPH, not

just small relative to the ACF of the torque, which is not explicitly part of the equation from

which g3 is determined.

Typical cross-correlation functions are shown in Figure 7.24. The plots show that the

cross-correlation between the target and the torque was much smaller than either the CCF

between the eye velocity and the torque (the output measure) or the CCF between head velocity
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and the torque (the input measure). In this example the two-norm of the eye velocity-torque CCF

and the two-norm of the head velocity-torque CCF are 114 and 108 times the two-norm of the

target velocity-torque CCF. Across all experiments, it was common for the two-norm of the

target-torque CCF to be 40 to 120 times smaller than the two-norm of the CCF between either the

eye velocity, or the head velocity, and the torque. These results supported setting rPT to zero. The

torque and target sequences that had been designed to be uncorrelated, and that had retained their

qualities when they were converted into physical inputs and sampled, did in fact end up being

insignificantly correlated when compared to the other sequences used in the analysis equations.

CCVF: pt-tv (red), pt-ev (blu), pt-hv (brn)
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Figure 7.24: Cross-covariance function (CCVF) between the torque and

target (red), the torque and eye velocity (blue), and the torque and head

velocity (brown). The 2-norm of the torque-eye velocity CCVF is 50 times

the 2-norm of the torque-target CCVF, and the 2-norm of the torque-head

velocity CCVF is 45 time the 2-norm of the torque-target CCVF.

7.5.2 VOR FRF: gain, phase, coherence-squared, high pass models

Gain and phase plots

The frequency response functions that were calculated for the subject's VOR resembled

high-pass systems. Gain and phase plots that are representative of the results from three of the

subjects are shown in Figure 7.25. The FRFs usually began with both the gain and the phase near

zero at 0.0 Hz. The gain values quickly rose as the frequency increased, and usually between 0.3

and 0.7 Hz settled near unity, which indicated that the VOR eye response was approximately
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equal in magnitude to the head disturbance. The gain values remained close to unity until between

3 to 5 Hz. Above this, the difference between consecutive gain values increased, although the

average of the gain values was usually near unity. An exception to this was in the results for the

subject shown in plots E and F, whose gain consistently dropped between 3 and 5 Hz, but then

returned to an average near unity at higher frequencies. This was the subject who had uscd vcry

little head motion to track the targets (Section 7.4), and as was noted previously, his results

tended to be slightly different from those of the other subjects. The phase plots usually began at 0

deg and by 0.1 to 0.3 Hz had settled to near 180 deg. Even at the lowest frequencies, the FRF

indicated that the VOR moved the eye directly opposite to the head's disturbance motions, with

little or no time lag between the head disturbance and the compensatory VOR motion. The phase

remained close to 180 degrees as the frequency increased, but just as with the gain plot, there was

an increase in the variance in the gain values at frequencies above 3 to 5 Hz.

The VOR is traditionally modeled as a high-pass system, so it was reassuring to see that

the FRFs from this analysis also looked like high-pass systems. However, traditional modeling of

the VOR usually shows that the corner of the high-pass VOR model is at a lower frequency than

was found in these results (Leigh and Zee, 1999). The difference in testing conditions was

probably responsible for the change in the corner frequency that was calculated for the high pass

models. Traditional VOR testing evaluates the vestibular system in the dark or with opaque

glasses over the subject's eyes, with the hope of removing the influence of the visual system on

the measured eye response. The visual system is not controlled, and any influence of the visual

system on the stabilization of the eyes cannot be distinguished from the VOR's response. Our

testing protocol evaluated the VOR under natural conditions where visual and vestibular

interactions were an important part of the protocol. The vestibular system was thus evaluated as it

interacted with the visual system to stabilize the vision, but the contributions of the visual and

vestibular system could be distinguished because the visual and vestibular inputs were

uncorrelated. Because the visual and vestibular oculomotor control systems share common neural
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pathways and control loops, it is not unreasonable to expect that the VOR component of a

combined visual-vestibular response would indicate that the VOR's response had gain that

improves toward unity at frequencies where the visual system is no longer effective at stabilizing

the gaze. As the frequency of the head disturbance increased towards and beyond 1.0 Hz, the

ability of the visual system to stabilize the vision degraded. It is thus at these frequencies that the

VOR was needed to stabilize the gaze and its gain response approached unity.
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Figure 7.25: Representative gain and phase responses for the VOR for three subjects.
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The gain and phase plots had values that were within the anticipated range. The tracking

performance of subjects during the tracking trials indicated that their VORs should have a gain

near one and a phase near 180 degrees. The subjects had been able to track the targets well, and

there was little difference in their gaze performance independently of whether perturbations were

applied to the head or not. Obviousiy, their horizontal VORs had functioned well and had

stabilized their vision in response to the head disturbances.

Although the low frequency gain and phase values were consistent with what had been

expected for the VOR, the values had to be viewed as with caution. ("Low frequency" refers to

the frequencies before the gain had settled near unity which was from 0.0 Hz to between 0.3 and

0.7 Hz, depending on the subject and the trial). The low frequency gain response was sensitive to

how the cross-power spectral densities (cross PSD) that were used in the FRF calculation ratio

were themselves calculated. The cross-PSDs were calculated from finite length, sampled data

records, and were thus estimators of the true cross-PSDs for the processes that had produced the

data. The shape of the low frequency gain response was often affected by small changes in the

number of records that the data sequence was divided into. If the analysis had captured the system

level response well, small changes in how the data were divided and averaged would have

resulted in only small changes in the gain plot. As shown in plot A of Figure 7.25 the low

frequency gain responses often looked like a first order system. When the number of records was

changed the shape of the gain response sometimes became more characteristic of a second-order

high-pass system and the gain would peak before it settled near unity, rather than climb steadily

to its high frequency gain value.

The gain response at frequencies above the low frequency region was much less sensitive

to how the data were broken into records. The gain values changed by a very small amount when

a different number of records was used to calculated the cross spectral densities. The variance in

the gain values was reduced when data from numerous trials were averaged, but the basic shape

of the response and its average values were not significantly affected.
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The gain response was sensitive to how the cross-power spectral densities were

calculated which provides an indication of the frequencies over which the linear analysis of the

VOR did and did not hold well. The gain response was affected most at the same low frequencies

for which the linear analysis of the head-neck system had been degraded due to the nonlinear

relationship between the torque perturbations and the head velocity. This was the region where

the head was stabilized by active control, and where the drive to the head changed from coming

primarily from the visual system to mostly from the torque input. The coherence-squared

functions between the head velocity output and the target velocity and torque inputs were shown

in Figure 7.5.8 for the same tracking trials that are shown in Figure 7.25. The torque perturbations

that were applied to the head had power down to 0.0 Hz, but the coherence-squared plots show

that the head did not have a strong linear response to the torque input below about 0.3 to 0.7 Hz.

There was little power in the head disturbances that could be linearly related to the torque

perturbations at these frequencies. The G3 FRF related eye velocities to the head disturbances

that were created by the torque, but there was little input power from which to analyze the G3

response. Although gain and phase values could be calculated for the VOR at these low

frequencies, the values do not necessarily reflect the dynamics of the system. Above 0.3 to 0.7 Hz

the strength of the response between the head velocity and the torque perturbations implied that

the linear analysis of the VOR held well. The performance of the VOR could therefore be

captured by a linear system analysis over the frequencies for which the system was used to

stabilize gaze. This linear analysis was limited at low frequencies by the nonlinear response of the

head to the applied torque perturbations.

Coherence-squared functions

How well the linear relations between the torque and target inputs and the eye velocity

output captured the dynamics of the VOR, and at what frequencies the analysis was degraded by

nonlinearities and noise in the data, was more rigorously analyzed using coherence-squared
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functions. The eye velocity was the output of a two input system (Figure 7.23). Similar to the

analysis in Section 7.5 for the head velocity, coherence-squared functions were calculated to

assess the linearity of the subsystems that transformed the torque and target inputs into eye

movements, and to evaluate the quality of the data. The complete coherence-squared function was

the sum of coherence-squared measures calculated between the torquc and thc eye velocity

(YEVPT), the target velocity and the eye velocity (Y2EVTV), and three coherence-squared measures

that were caused by the inputs not being completely uncorrelated. The sum of these three

measures was always small when compared to the coherence-squared between the inputs and the

output, and so for simplicity in the coherence-squared plots the three measures were lumped

together into one term (WCOR). Y2
EVTV represents the visual target's effect on the eye velocity.

The visual target affected the eye velocity through two paths: directly through the gi subsystem,

and indirectly through the visually mediated head motion system (g2) when voluntary head

movements stimulated a VOR response. As discussed in Chapter 2, the VOR should not have

been sensitive to voluntarily controlled head motions. Y2
EVPT represented the perturbation torque's

effect on the eye velocity. The torque affected the eye velocity through the head-neck system (g4)

and then through the VOR (g3). The output of the g4 subsystem was the input to the g3

subsystem. The coherence-squared between the eye velocity and the torque was therefore bound

by the coherence-squared between the head velocity and the input torque.

The coherence-squared sum indicates where the analysis of the VOR has been degraded

by nonlinearities and noise, but this degradation cannot be attributed to the VOR system. The sum

of all the coherence-squared terms shows how well the eye velocity was linearly related to the

torque and target inputs. Its deviation from unity was caused by noise in the measured signals and

from nonlinear responses in all the subsystems through which the signals passed.
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The coherence-squared functions for three experiments are shown in Figures 7.26. The

coherence-squared functions for the three subjects generally followed a similar pattern, although

the results from the subject who did not use many voluntary head motions to track the target were

consistently different from the other subjects. The coherence-squared functions could be divided

; + - --- - - 1 1 A C+ T . - -. 1)4.A CTT_ __ f -- Inally 1inLU L1ree L1CLJU%11%ny 1isI. UlOW V. J LU1. ILL, up U abVUL -3 LU 4+.5 rz, adU then fally

frequencies above 3 to 4.5 Hz. Between about 1 Hz and 3 Hz, and in the best cases between 0.5

and 4.5 Hz, the coherence-squared was consistently high, near or greater than 0.8. This implied

that across these frequencies the eye velocity had a strong linear relation to the inputs, and that

the dynamics of the G3 subsystem was captured well by the linear analysis. It can be seen in the

plots that show the coherence-squared measures between each input and the eye velocity output

that this region ranges from frequencies where both the visual target and the perturbation torque

contributed to the eye velocity, to frequencies where the target was no longer controlled, and the

eye velocity was stimulated predominantly by the torque input that disturbed the head. At these

frequencies the head-neck system had behaved linearly and there was a strong linear relation

between the applied torque perturbations and the disturbance motion of the head, and so it was

not surprising that the linear analysis was not degraded by nonlinearities. The sum of coherence-

squared measures for the eye velocity output is less than that for the head velocity output.

Therefore there were nonlinearities, and/or noise, beyond that caused by the head-neck system

that degraded the linear relations between the inputs and the eye velocity.

Below 0.5 to 1.0 Hz the coherence-squared functions exhibited a similar behavior to that

of the coherence-squared functions that related the head-velocity output to the torque and target

inputs (Figure 7.22). The coherence-squared functions were high near 0.0 Hz, and again near and

above 1.0 Hz, but between 0 and 1.0 Hz were lower. In the best cases, the coherence-squared

remained above 0.6 and returned to above 0.8 by 0.5 Hz, but in many trials the coherence-

squared dropped below 0.5 and did not increase until the frequency was near 1.0 Hz. The

coherence-squared functions between the eye velocity and the individual inputs were also similar
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to those for the head velocity. The coherence-squared between the visual target and the eye

velocity showed that the drive from the target was strongest near zero and then decreased with

frequency. The drive from the torque perturbation started near zero and then rose with frequency.

It was not surprising that the shapes of the coherence-squared functions for the eye velocity

systems were similar to those for the head velocity since the torque passed through the head-neck

system to create the head disturbance that was the stimulus for the VOR. The nonlinearities of the

head-neck system degraded the eye velocity coherence-squared function just as they did the

coherence-squared for the head-neck system.

The similarities between the coherence-squared functions for eye and head velocity imply

that the VOR subsystem behaved linearly. The analysis of the VOR at frequencies below 3 to 4

Hz was limited by the nonlinearities of the head-neck system. There were no indications that the

VOR had nonlinearities during natural head-free tracking that could not be captured by a linear

system analysis.

At higher frequencies, above 3 to 4 Hz, the coherence-squared for the eye velocity

dropped, and remained low as the frequency increased. This was different from the coherence-

squared functions for the head velocity, which had remained high until the power in the input

torque had dropped, which was around 10 Hz. The drop in the coherence function had to be

attributed to either nonlinear behaviors in the g3 subsystem or to noise in the data. Although

nonlinearities in the g3 system could not be ruled out, its response probably did not have a strong

nonlinear component. Its low frequency response did not have a strong nonlinear component, and

the VOR had stabilized the subjects' gaze during perturbations at the higher frequencies as well

as at the low frequencies. The drop in the coherence-squared value is best explained by a low

signal to noise ratio for the eye movement data. The head velocity data were directly measured by

an angular rate sensor and there was little noise in its measurement relative to the signal (Chapter

3). Eye velocity was calculated from the measured eye position data, and its noise was relatively

high at frequencies above 4 Hz. Figure 7.27 shows typical PSDs for head and eye velocity.

281



Between 0 and 4.0 Hz, the plots are very similar with both the head and the eye velocity PSDs

peaking near 1.5 Hz, and then decaying as frequency increases. Above 4.0 Hz, the eye velocity

PSD stops decreasing and remains relatively constant as frequency increases, whereas the head

velocity PSD continues to decline. This was shown in Chapter 3 to be due to the noise created

when the eye velocity was calculated from the position data. This means that as the strength of

the stimulus to the VOR decreased, the noise in the eye velocity measurement increased and so

the ratio of the input signal to the noise decreased, resulting in a decline in the coherence-squared

function.
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Figure 7.27: Power spectral densities for the head velocity (brown)
and eye velocity (blue) while the subject's head was perturbed.

The coherence-squared functions showed that the linear systems analysis of the VOR

using measures of the eye velocity output and the torque and target inputs was very good between

at least 1 and 3 Hz, and in the best of cases was very good between 0.5 and 4.5 Hz. Below 0.5 to

1.0 Hz the analysis was degraded by nonlinearities caused by active control of the head-neck

system, and at frequencies above 3 to 4 Hz, noise in the eye velocity data affected the signal to

noise ratio and hence the linear analysis. These results were consistent with observations made

when the G3 FRFs were calculated. The low frequency analysis was sensitive to how the

calculations of the spectral densities were made, which was interpreted as indicating that the
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linear functions had not captured the nonlinear response of the head-neck system well. At the

higher frequencies, there was greater variance in the gain and phase values.

High pass models (incomplete description of parameters)

First- (Eq. 7.14) and second-order (Eq. 7.15) parametric models of the frequency

response function for high pass systems were fitted to the VOR gain responses that had been

calculated for each tracking trial (Figure 7.28). The models were fitted to the data from 0.0 Hz out

to the frequency for which the coherence-squared values dropped, which was between 3 and 4

Hz. The models were developed using an electrical system analog with parameters for gain,

resistance (R), capacitance (C), and inductance (L). In the first-order model the resistance and

capacitance always appear as a product, and so were combined into a single RC parameter. The

magnitudes of the models were fitted to the gain using a Levenberg-Marquardt minimization

technique to minimize the sum of the squared difference between the model and the calculated

gain values (Press et al., 1997).

gain -RC -j -2;f
FRFD = Eq. 7.14

1+RC.j.2zrf

FRF - gain(j -2)f)2 Eq.7.15
(j -27f)2 + (j -2)f)+ I

L LC

The VOR gain responses were fitted well by the high-pass models. As can be seen in

Figure 7.28 if a first-order model did not fit the data well, then a second-order model often would.

The values of the parameters for the first- and second-order models that were fitted to the gaze

responses of one of the subjects are listed in Table 7.2. The values of the gain parameter were

consistent from trial to trial, but the variance in the other parameters was large. For both the first-

and second-order models the values of gain parameter were around 1, which is what would be
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expected for a VOR that had stabilized the gaze well. The gain values for the first-order models

had a mean of 0.96 and a standard deviation of 0.03. The gain values for second-order models had

a mean of 0.94 and a standard deviation of 0.05. The low variance in the gain parameters

indicates that the gain parameter was a good representative of the gain of the subject's system.

The values for the other parameters in the models were much less consistent. The "RC" parameter

of the first-order model spanned a very large range, from 1.39 to 8715. The standard deviation of

the "RC" parameter was more than twice the value of the mean. In the second-order models there

was large variance in the L, R, and C parameters. In all cases, the standard deviation of the values

found for the parameters in the trials, was more than 50 % larger than the mean value. When the

standard deviation, and thus the variance, of a parameter is this large, no single value could be

said to be a accurate representation of the system in each of the trials.
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Figure 7.28: Gain (plot A) and phase (plot B) response for the VOR. First-order (blue)

and second-order (black) high-pass system model were fitted to the gain response.

Although the high pass models fit the VOR gain responses well, there could only be

confidence in the gain parameter values as a measure of the subject's system response. The low

frequency response of the high-pass models, that is the rise of the response from zero, the

magnitude of the peak in the second-order system, and the corner frequency, are defined by the R,

C, and L parameters. Since the linear system analysis did not capture the low frequency dynamics

of the VOR well, the values of the parameters fitted to the low frequency gain response could not
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be accepted as representative of the subject's VOR. The variance in these model parameters were

a result of the limitations of the analysis.

Table 7.2: VOR high-pass model parameters

first-order model second-order model

trial gain RC gain L R C

1 0.96 1.39 0.96 1.53 1.35 3.57

2 0.93 5.48 0.92 2.23 0.78 2.03

3 0.94 1667 0.93 2.39 0.42 3.98

4 0.96 0.72 0.84 0.19 0.44 0.36

5 1.03 11.4 1.03 7.3 1.52 7.2

6 0.98 8715 0.95 6.08 0.27 1.24

7 0.98 1.6 0.97 0.96 0.79 1.78

8 0.93 2.5 0.94 2.92 1.48 10.5

mean 0.96 1.3x10 3  0.94 2.95 0.88 3.8

std dev 0.03 2.9x10 3 0.05 2.3 0.47 3.2

Table 7.2: Parameters of high-pass models fitted to VOR gain response.

The high frequency response of the models, which is the gain at which the response

settled, is defined by the gain parameter. The coherence-squared functions demonstrated that the

linear analysis of the VOR was very good in the 1 to 3 Hz frequency range, and since the models

fit the data well, the gain parameter reflected the performance of the subject's VOR at these

frequencies. The consistency in the gain values indicated that the analysis had captured a

consistent system response from trial to trial.

The VOR is often thought to be suppressed during head-free gaze motions (Leigh and

Zee, 1999). The peripheral vestibular organs sense the motion of the head. The canals, saccule,

and utricle are stimulated similarly by voluntary head motions and perturbations applied to the

head. However, the response to the signals must be different. A fully functional VOR that

responded to all head motions would create eye motions that compensated for voluntary head
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motions. If the head was driven to follow a target moving to the left, a fully functioning VOR

would drive the eyes to the right to compensate for the leftward head motions. But this does not

happen. When we track a target with head and eye motions, the head and eyes often move

together. There must be some mechanism in the VOR that stops the eyes from compensating for

wliit-r1 1 A +;-,- "k 1-+ 4kn+ alxr +1U V D o + _U;-. . A. _J -. _1
luty iiLlJLhe 11d mtn, bLIL LI 0 L11 VO tJI'. L Labili gaze during againsL UisuIbances. It

has been proposed that a copy of the head motion, such as a corollary discharge, is used to inform

the VOR of the intended movement, or that during head-free tracking the VOR is suppressed

(Leigh and Zee, 1999). The results presented here indicate that the gain of the VOR, or at least

the component that is stimulated by the perturbations applied to the head, was not affected during

head-free tracking. When subjects moved their heads to follow the target the gain was near unity.

Subjects did not necessarily move their heads quickly, and the head velocity that was attributed to

the target was smaller than the head motion that was attributed to the torque. However, between 1

and 2 Hz, which was above the frequency range where the nonlinearities of the head-neck system

had affected the analysis, but before the target was no longer controlled, the drive to the eyes was

mixed between the torque and the target. At these frequencies, the gain of the VOR was similar to

the gain measured at frequencies for which the visual target was not controlled. The VOR gain

was consistent at frequencies for which the target was controlled and the head was free to move

to pursue the target, and at frequencies for which the target was essentially stationary and the

head moved by torque perturbations alone.

7.5.3 VOR impulse response functions

VOR IRF estimate (g3)

The VOR impulse response function estimates (g3) were calculated by de-convolving the

cross-covariance function (CCVF) between the head velocity and the torque perturbation from the

CCVF between the eye velocity and the torque perturbation. To improve the IRFs as models of

the subjects' VOR systems, the CCVFs were calculated from data sequences that were
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constructed by joining the experimental data records from several tracking trials. Two IRF

estimates were calculated for each data sequence: a "single IRF" and an "average IRF". The

"single IRFs" were calculated by de-convolving CCVFs that had been calculated from the full

length data sequences. The "average IRFs" were estimated by dividing the long data sequences

into smaller, overlapping records, calculating an IRF for each record, and then averaging the IRFs

of the records. The averaging technique tended to reduce the amount of noise that was modeled

by the IRF estimates, and was similar to that used in the FRY analysis to reduce the variance of

the cross-PSD estimators. Although the single IRF and the average IRF that were calculated for

the same data set looked different, it was found that there was little difference in the dynamics of

the VOR that they had captured.

5 A. g3: single IRF B. g3: average IRF
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Figure 7.29: Impulse response functions for the VOR. The IRF in plot A was calculated
as a "single" IRF, and in Plot B as an "average" IRF.

The basic shapes of the single IRFs and of the average IRFs were much the same across

subjects. There were consistent traits among the IRFs calculated from the full data records, and

also among the IRFs calculated as averages of the IRFs from smaller records. A single IRE and

an average IRF are shown for a representative data set in Figure 7.29. The single IRFs were

dominated by spikes during the first few lag values. Most often the IRFs would start with a large

pulse that went to a negative value, and then would quickly oscillate between a few positive and

negative spikes that were close in magnitude to the initial pulse. After these initial spikes, the
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amplitude of the IRF would drop in magnitude and would then oscillate more slowly, and

smoothly. The oscillations slowly decayed towards zero. Plots of the average TRFs were simpler.

They were dominated by a single, negative amplitude spike at a lag near zero. The initial pulse

was followed by a smaller pulse with a positive amplitude, almost an overshoot, and then the

amplitude decayed quickly to zero, with fewer and smaller oscillations than the single IRF.

A. DFT (g3 IRF) B. G3 gain (red), ld model (blk)
10 2 3 1 1

frequency (Hz) frequency (Hz)

Figure 7.30: Estimate of a VOR frequency response function (plot A) and the actual VOR
FRF (plot B) calculated for the same tracking trial.

The VOR IIRFs were not easily recognized as characteristic of any particular system type,

but after taking the Fourier transform of the TRF, it was evident that most of the IIRF estimates

represented high-pass systems. This was consistent with the results of the frequency response

functions. The IiRF and the FRF are formally a Fourier transform pair, and so an estimate of the

FRF is produced by taking the discrete Fourier transform (DFT) of the IRF. The DFT of the IRF

in Figure 7.29 is shown in Figure 7.30, together with the FRF that was calculated for the same

tracking trial. As was seen with the high frequency responses in the FRFs, the amplitudes of the

DFT of the IRFs began near 0 at 0 Hz, rose to a higher magnitude, and then stayed near that level

as frequency increased. The DFT of the IRF usually had a similar shape to the FRF, rising from a

magnitude near zero to its high frequency gain value within the same frequency range, and like

the FRFs, the low frequency values were sensitive to changes in the length of the IIRF. The DFT

of the IRFs did not have the same gain values as the frequency response functions, which was due
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to the particular function forms that were used to calculate the DFT and the FRF. The DFT of the

IRF had a cruder frequency interval than the FRF. The IRFs were only 2 to 4 seconds long which

meant that the discrete time Fourier transforms had a large frequency increment. Despite these

differences, the similarities between the FRFs and the DFT of the IRFs showed that the same

VOR dynamics had been captured by the time and the frequency domain analyses.

Similarities and variance between IRFs

When the IRF calculations were first made, a separate VOR IRF was calculated for each

trial. The data sequences for most trials were short, about 90 s in length, but because a rich range

of head and eye movements had been stimulated during each experimental trial, the data were

thought to be informative enough (Ljung, 1999) for the IRFs to capture the full dynamic response

of the VOR.

The plots of the IRFs that were calculated from different trials, with the same subject

were usually very similar. The IRFs from two subjects are shown in Figures 7.31 and 7.32. For

both subjects, the only obvious difference between the IRFs from the different trials was in the

amplitude scale. In fact, when the IRFs were overlaid, it could be seen that their time course and

the decay of their amplitudes were nearly identical. The DFT of the IRF also showed that both

analyses had captured the same frequency response for the VOR during the two experiments. The

fact that nearly identical results were calculated from experimental trials that were conducted

with different, rich spectrum, random inputs, was evidence that the IRFs had captured the

underlying system performance of the VOR. Ideally, the IRF estimates that were calculated from

the individual tracking trials would have represented only the dynamics of the subject's VOR and

would have been identical. Realistically, however, noise variations in the voluntary responses of

the subject, and other uncontrollable aspects of experimentation introduce some variance into the

results for the IRF.
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It was remarkable how similar some of the IRFs were from different trials, but the

variability between the IRFs and in their ability to predict the output sequence, implied that the

IRFs that were calculated from single tracking trials could be further improved as models of the

subjects' VORs. When the IRFs were convolved with the input sequences to make predictions of

the mesuired output signals, the zRFs were better at modeling the data frnm which the were

analyzed, than the data sequences from other trials. This was not surprising, since the IRF is

simply the solution to the set of equations established between the input and output data. It makes

sense that an IRF would be a better solution for the equations from which it was solved, than for a

different set of equations.
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Figure 7.31: IRFs (plots A and C) and their Fourier transforms (plots B and D) for two
data sets from the same subject.
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Figure 7.32: IRFs (plots A and C) and their Fourier transforms (plots B and D) for two
data sets from the same subject. The subject was different from the subject of Figure 7.31.

To improve the IRFs as estimators of a subject's VOR system, and make the IRFs less

reflective of the results from a single tracking trial, data from several trials were joined into

longer sequences from which the IRFs were estimated. The amount of data from which the IRFs

were calculated increased from 90 s for a single trial, to 180 to 360 s for multiple trials. By

joining the data from several trials, the sequence was more likely to have the necessary

information from which to determine the full dynamic response of the VOR, and the IRF

calculated from the data would be less likely to model the noise from any particular trial. Since

the IRFs that had been calculated from the individual trials were so similar, it was not surprising

that the IRFs that were calculated from longer data sequences were not significantly different

from the IRFs of the single trials. The IRFs that were calculated by joining the data from the

single trials shown in Figures 7.31 and 7.32, are shown in Figure 7.33. The IRFs from the

multiple trials predicted the output data of each of the tracking trials well. The predictions were
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not quite as good as when an IRF that was calculated from a single trial was used to predict the

data from the same trial, but the predictions were better than when the IRF from the single trial

was used to calculate data from a different trial.

4 A. g3: single IRF (6 & 20) _ B. g3: single IRF (2 & 8)

0 0

-1101 03
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

lag (s) lag (s)

Figure 7.33: IRFs calculated from data from multiple trials.

Averaging IRF to reduce noise

In some of the "single IRF" estimates, the oscillations that occurred after the initial spikes

were much larger, relative to the magnitude of the pulses, than for other IRF estimates, as shown

in Figure 7.34. The magnitude of the oscillations decayed slowly, if at all, and their magnitude

relative to the amplitude of the spikes would change depending on the lag duration for which the

IRF was calculated. In some cases the IRF was dominated by these oscillations and not by the

dynamics of the VOR. When that occurred, the predictions of the VOR output made from the IRF

were poor, and did not resemble the expected VOR response. Since it was known that the

subject's gaze had remained close to the target during the trial, the predicted VOR eye motions

should have been similar to the predicted disturbance motions of the head. If the eye motions

were not similar, they could not have stabilized vision during the disturbance and maintained the

gaze close to the target.
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Figure 7.34: VOR IRF with oscillations (plot A). The velocity of the head's disturbance

motion (black) and the prediction of the VOR eye velocity (red) are shown in plot B.

It was initially thought that the oscillations were the result of an instability in the de-

convolution operation that had been used to calculate the IRF from the cross-covariance

functions. The de-convolution was conducted by inverting a matrix representation of the torque-

head velocity CCVF. The matrix was of a Toeplitz form (constant along the negative diagonals),

and inverting Toeplitz matrices can sometimes result in an instability that appears as an

oscillation (Bottcher and Grudsky, 2000). The stability of the inversions was checked by

inverting the Toeplitz matrix via singular value decomposition, which will usually not have the

same instability. The same oscillations existed no matter how the matrix inverses were calculated,

and so it appears that they are not the result of an instability in the Toeplitz matrix.

The most likely source of the oscillations in the IRF was noise in the data that had

corrupted the IRF calculation. The IRFs possibly modeled the noise in the data more than the

underlying VOR behavior. It was found that these IRFs were more sensitive to how the data were

low pass filtered than IRFs that did not exhibit the large oscillations. The oscillations would

sometimes not occur if the data were filtered at frequencies near 4 to 6 Hz, rather than at 10 Hz,

which was the standard when the raw data from the tracking trails were processed (Section 7.3).

In plot B of Figure 7.35, the IRF was calculated after the data were filtered with a 5 Hz low-pass

filter. The data from which plot A was made were filtered at 10 Hz. The 5 Hz filter made a
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considerable difference to the number of oscillations that occurred after the initial pulses. The

IRF retained its pulses in the first few lag values, but the oscillatory response decayed quickly.

One advantage of calculating a system's IRF from the cross-correlation, or cross-

covariance, is that it helps prevent the IRF from capturing and modeling noise in the data

measurements. If measurement noise is uncorrelated with the input sequence from which the

cross-correlation functions are formed (the torque perturbation in the case of the VOR analysis),

the effect of the noise on the IRF is diminished. In these tracking experiments the noise in the

data may not have been uncorrelated with the torque input. Much of the noise in the data was

from the eye velocity sequence. The noise in the eye velocity sequence was not measurement

noise, per se, but noise that resulted from calculating the eye velocity from eye position. The

velocity calculation amplified any measurement noise that was in the eye position data. Since the

eye motions were caused in part by the torque, it is possible that this noise was correlated with the

torque. If that were the case, the cross-correlation between the noise and the torque would not

have been zero, the effect of the noise would have remained in the set of equations that the IRF

solved, and the noise would have been modeled by the IRF.

The frequency analysis was also affected by noise in the data. The noise was modeled by

the FRF, but in the FRF relations are separated by frequency. The effects of the noise were

evident at higher frequencies in the gain and phase plots where values had increased variance, and

were quantified in the coherence-squared function when it dropped in value. The higher

frequency noise content did not corrupt the lower frequency gain and phase relations that were

attributed to the VOR. The IRFs are not separated by frequency and so the noise that was

modeled by the IRF was spread across all lags.

The "average IRFs" were calculated to reduce the effects of noise on the WIRs. In many

cases low-pass filtering eliminated the large magnitude oscillations in the IRF, but the filter was

indiscriminant and removed data as well as noise. Averaging can sometimes "average out" the

noise, but retain the dynamics from the system. The data sequences that had been formed by

294



joining data from several tracking trials were often 180 to 360 seconds long. The responses of the

IRFs that had been calculated from the full length data sequences had settled within a few

seconds. There was little advantage to calculating the IRFs to lags any greater than 2 to 4 s. It was

therefore appropriate to divide the long data sequences into smaller records of 30 to 40 seconds,

and still expect the average IRF to capture the dynamics of the system. One drawback to breaking

the data into records was that it disturbed the continuity between the output and the input

sequences. The output data at the beginning of a record had been affected by inputs that were at

the end of a previous record. To reduce these effects, the records were overlapped, and the IRF

was calculated only from data for which the full input-output convolution relation could be

formed.

A. g3: single IRF C. g3: single IRF
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B. g3: average IRF D. g3: average IRF
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Figure 7.35: VOR IRFs. The IRFs in plots A and B were calculated from data that was
low-pass filtered with a 10 Hz filter. The IRFs in plots C and D were calculated from data
that was low-pass filtered with a 5 Hz filter.
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The "average IRFs" looked more like impulses than models of systems with complex, or

long duration, dynamics. The "average IRFs" did not have as much oscillatory behavior as the

"single IRFs". When there were oscillations, they would typically decay to almost zero by 0.50 s.

The average IRFs were not very sensitive to the cutoff frequency at which the data were low pass

filtered. A can be S,e in1 pnlts C An DT - . 7.1,- r 1sei. difeCC-e b

an average IRF estimator that was from data filtered at 10 Hz and from data that was filtered as

low as 4 to 6 Hz. The average IRFs seemed to have reduced the amount of noise that was

modeled by the IRF as effectively as the low-pass filters. It was reasonable that the average IRFs

looked similar to a simple pulse function. If the average IRFs had been a pure pulse with a

negative amplitude, then they would have indicated that the eye motions of the VOR were exactly

equal and opposite to the head disturbance. This would be ideal for the VOR, as it represents

perfect stabilization against the head disturbances. This is approximately what was observed in

the subjects' tracking data. Therefore, the VOR had effectively compensated for the head

disturbances, which implies that the eye and head motions were equal and opposite. It should not

be surprising that the average IRF for g3 would look like a negative impulse. The differences in

the average IRFs from an ideal negative pulse did indicate that the VOR stabilization was not

ideal, that is, the VOR eye motions could be delayed, that noise may have been captured by the

IRFs, and that the VOR's response to disturbances was not the same at all frequencies.

Predictions of VOR eye motions

Predictions of the VOR eye motions were made by convolving the estimates of the VOR

IRF with predictions of the head's disturbance motion. Head velocity had been measured, but the

g3 IRF was calculated as the response of the eyes to the head's disturbance motion, not its total

motion. The best estimate of the head's disturbance motion was found by convolving the IRF of

the head-neck system (g4) with the measured torque perturbation. The predicted disturbance head

velocity usually had a PSD that was similar to the PSD of the measured head velocity for
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frequencies above 1.0 Hz, but deviated below 0.5 to 1.0 Hz (Figure 7.21). The lower frequency

components of head velocity are controlled by the visually mediated system. During tracking, the

head moved with velocities that had power across all frequencies, but the disturbance component

rarely had much power below 0.5 Hz. Therefore the "linear g3" system was not stimulated well

below 0.5 Hz. This meant that the IRFs could not have captured the behavior of the VOR at low

frequencies (which was also seen in the FRF analysis). This was not a major concern, since the

goal was to evaluate the normal, functional dynamics of the VOR. Grossman reported that below

0.6 Hz the head is disturbed little in the horizontal plane (Grossman et al., 1988) and that the

VOR does not have to stabilize the gaze often against disturbances below 0.5 Hz. The linear

disturbance, therefore, matches the disturbance motions that are experienced by the horizontal

VOR during normal function.

Figure 7.36 shows representative predictions of the VOR eye velocity, and the PSDs of

the head disturbance and the VOR eye motions, that were made with single IRFs and average

IRFs. In most cases there was usually very little difference between the predictions made using

the single or average IRF. There were slight differences in the amplitudes of the PSDs at some

frequencies, and subtle differences between the plots of the VOR eye velocities, but for the most

part the predictions implied that the same system dynamics had been captured by both LRFs. This

is interesting in light of the differences seen in the plots of the single and average IRFs for the

same tracking trials (Figures 7.29, 7.35) and lent further support to the hypothesis that the

oscillations in the single IRFs were from noise, and were not representative of dynamics of the

VOR system.

The plots of the VOR eye motion against the head's disturbance showed that the IRF

analysis predicted that the VOR had stabilized the gaze against the head disturbance well. The

amplitudes of the VOR eye velocities were nearly equal to the corresponding head disturbance

velocities, and there was no noticeable lag between the head motion and the opposing eye

motions. The %VAF between the VOR eye velocity and the disturbance head velocity were
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typically above 95%, and the RMS difference was usually less than 4 deg/s (The VOR eye

velocity was compared against -1 times the disturbance head velocity). These predictions agreed

with the near unity gain and 180 deg phase difference that had been consistently found across

most frequencies during the analysis of the VOR's frequency response function.
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Figure 7.36: The velocities of the predicted head disturbance (black) and the VOR eye
response (red). Plots A and B were calculated using a "single" VOR IRF, and plots C and
D were calculated using an "average" IRF.

The response of the VOR is believed to lag the disturbance motion of the head by about

15 ms. It takes time from when the head is disturbed to when the stimulus from the semi-circular

travels through the neural pathways to stimulate the neurons of the vestibular system's "three

neuron arc", and causes the oculomotor muscles to move the eyes (Goldberg and Hudspeth, 2000)

The IRFs, however, predicted that the VOR's stabilizing motions occurred at the same time as the

head's motions. No consistent lag was found when the subjects' VOR eye motions and the head

disturbances were compared using cross-correlations, or even when one sequence was shifted to
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minimize the difference between the two. The lag between the head movement and VOR

reaction was too small for the IRFs to capture. Most of the IRFs were calculated from data

sampled at 100 samples/s, and so the lag increment of the IRF and between predicted values of

the eye response was 10 ms. The predicted VOR eye motions would have had to have been

delayed relative to the head velocity by only 1 to 2 lag increments to show that a lag of 15 ms

existed between the head and the eyes. This was too small a difference to be seen in this analysis.

To record these delays, the noise in the measurements and predictions would have to be reduced,

and the sampling frequency would have to be increased.

The main difference between the predicted VOR eye motions and the head disturbance

motions was seen at frequencies below 1.0 Hz, which are the frequencies for which there can be

little confidence in the analysis. Although their PSDs never matched exactly at high frequencies,

the differences between the sequences were consistently greater at frequencies below 0.5 to 1.0

Hz. In the example shown in Figure 7.36, the VOR eye motion had a smaller power spectral

density below 0.2 Hz than the head disturbance velocity. This gives the impression that the

analysis showed that the VOR was a high-pass system, that is, the ratio of the eye PSD to the

head PSD was near unity at high frequencies, but was lower below at low frequencies. This

interpretation suffers from the same problems as the low frequency analysis of the frequency

response function. The nonlinearities of the head-neck system prevented head disturbances (at

least linearly related perturbations) from stimulating head motions at low frequencies. Even when

the analysis did show that the low frequency response of the VOR decayed like that of a high pass

system, that results cannot be accepted with confidence. Conclusions about the system level

performance of the VOR at frequencies below 0.5 Hz can not be made from these findings.
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7.6 Prediction of the gaze response

All the results from the IRFs indicated that the experimental protocol and the analytic

techniques had successfully captured the system level dynamics of the VOR during head-free

tracking. The IRFs captured consistent VOR dynamics for a subject from trial to trial, the

dynamics modeled by the IRF agreed with those found from the frequency response functions,

the predicted VOR outputs confirmed that the subject's gaze had been well stabilized by the

vestibular system, and similar dynamics were found for different subjects. How well the predicted

VOR eye motions compensated for head disturbances could be evaluated by comparing the

predicted VOR output against the disturbance motions, unfortunately there were no measured

(experimental) signals against which the predicted VOR eye motions could be directly compared

in order to quantify how much of a subject's VOR dynamics had been accounted for by the linear

models. This was similar to the situation where the frequency response functions had been

verified. As with the g3 IRF, the FRF was calculated from the input and output signals of the gaze

system. There were no direct measures of the VOR's input and output that could be used to create

a coherence-squared function across the VOR system. Thus, the linearity of the VOR system, and

the quality of the data from which the FRF was calculated, were judged from coherence-squared

functions that were calculated from the controlled inputs to the gaze tracking system and the eye

and head velocity outputs. In an analogous way, how well the linear IRFs had captured the system

level dynamics of the subjects' VOR s could be assessed by using the g3 IRF, along with the

IRFs that were estimated for the head control systems (g2 and g4), to reconstruct the signals

within the gaze control system. The linear predictions could be combined into a prediction of the

gaze output and then compared with the measured output sequences, which were the result of the

linear and nonlinear system dynamics.
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Figure 7.37: Gaze tracking block diagram. Each signal is shown to have a linear (L)

and a nonlinear (NL) component.

The intent of system identification is to determine the underlying properties of the system

being tested. The goal is to develop a mathematical model of the system, such as an impulse

response function, that behaves like the actual system when the model and system are stimulated

by the same input. The capacity of an IRF to represent a system's dynamics comes not from the

complexity of its calculation, but from the design and execution of the experiments. The IRF that

is calculated from the cross-correlation relations is essentially the estimator, with the least

squared error, that satisfies the linear convolution relations between the input and output

sequences (Chapter 2). To get a meaningful IRF, the experiments must be designed so that the

measured data, from which the IRF is calculated, is informative enough for the IRF to capture the

full dynamics of the system (Ljung, 1999; Goodwin and Payne, 1977). The appropriate test of an

IRF as a model of a system's dynamics is to evaluate the IRF's ability to predict outputs of the

system from data that were not used to solve for the IRF. It is not as rigorous to validate an IRF as

a model of a system's dynamics using the same data sequences from which the IRF was
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calculated, because the IRF is already the least squares solution to the set of equations from the

data. If an IRF is able to make good predictions of a system's response to rich, broad spectrum

inputs, then the IRF probably represents the same dynamics as the system. If the IRF is only able

to predict the data from which it was solved, then the IRF is not a good model of the system, but

justl th soL&WUto tW %nese Lf Lnearl %eqUations.

The ability of the IRFs to model the interactions of the subjects' gaze tracking systems

was tested using data from trials that were not used to calculate the IRFs. As described in Section

7.5, the IRFs were calculated from data sequences that were formed by joining data from several

tracking trials. This was done to make them better estimators of the subject's gaze tracking

systems. These IRFs were then used to predict the output sequence from tracking trials that had

not been used to calculate the IRF estimates. Since all the tracking trials were designed to

stimulate a full range of head, eye, and VOR responses that a subject would experience during

natural activities, any trials were appropriate for validating that the TRFs had indeed captured the

underlying dynamics of the VOR and the gaze tracking systems. If the predictions from the linear

IRFs matched the measured outputs well, then within the construct of the VOR experiment, two

important conclusions could be drawn: the IRFs were good models of the systems they

represented, which meant that the systems were primarily linear, and the IRFs represented the

dynamics of the subject's vestibular systems, not merely a relationship between the output and

input data from one experimental trial.

Gaze response: signals and systems

Consider the block diagram model for the gaze tracking system shown in Figure 7.37.

The outputs from the physiological systems that are represented by the blocks are a mixture of

linear (subscript L) and nonlinear (subscript NL) responses to the input. There is also noise in the

measurements of the outputs (n). The output predicted from the IRF models of the systems

modeled the linear output, including noise. The goal of the tracking system is to maintain the gaze

302



focused on the target, and to maintain the gaze velocity with the target's velocity. The top half of

the block diagram represents the eye control systems. The bottom half represents the head control

systems. The VOR connects the head and eye control systems by generating corrective eye

motions in response to head disturbances. The cascade from the applied torque perturbation

through the head-neck system, and through the VOR represents the path of disturbances through

the system. The visually mediated systems, modeled by gi and g2, drive the eyes (a) and head (b)

to follow the target. Disturbance motions (d) move the head and the eyes away from the target

but are compensated for by the VOR eye motions (v). When the systems are working properly,

the gaze (g) is maintained close to the target (t). The VOR testing protocol was designed

specifically to analyze the response of the VOR (g3), but it also allowed for IRF estimates to be

made for the head control systems (g2 and g4), and the overall gaze tracking system. The one

subsystem for which an IRF estimate could not be determined directly from the input and output

signals measured during the tracking trials was the visually mediated eye control system (gi). An

estimate of its IRF could be made, however once a prediction of the VOR eye motions was made,

and the output of the gI system (a) estimated as the measured eye motion (e) minus the VOR

prediction.

Linear predictions of the gaze

To illustrate how the linear predictions of the signals within the gaze system built upon

each other to create a linear prediction of the gaze velocity, it is easiest to begin with the head

velocity. The results from one subject will be used to demonstrate this analysis. The specific

responses were unique to the subject, but in general the results are representative.

The measured head velocity sequence (h) could be divided into a component that was

driven by the visual target (b), a disturbance component that was driven by the torque

perturbation (d), and some noise (n). Each component could be further divided into linear and

nonlinear portions. The breakdown of the head velocity into components is:
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h=bL +bNL +dL +dNL +n = (tg2+p@g4)+(bNL +dNL +n).

The linear prediction of a subject's head velocity sequence was the sum of a target driven

component from the g2 IRF, bL = t g2, and a torque driven component from the head-neck IRF,

dL = p g4. It was shown in Section 7.4 that the linear models of the head control system

accounted for nearly all of the dynamics of the head and that it was typical for the linear model to

account for nearly 90% of the variance in the measured output. Nonlinearities were significant

only in the region between approximately 0.2 Hz and 0.5 to 1.0 Hz. In the example shown in

Figure 7.38 the linear prediction of the head velocity had a "percent variance accounted for" of

86.5%, and the predicted head velocity clearly had the same motion as the measured velocity. It

can be seen in Figure 7.38 that the visually driven component accounted for the very low

frequency head velocities. The target had a frequency spectrum out to 1.8 Hz, yet the PSD of the

head velocity that was linearly driven by the target was close to the PSD of the measured head

velocity only below 0.5 Hz. The torque driven prediction accounted for much of the high

frequency head motions. The power in the torque driven component of the head velocity dropped

below 1 Hz. The vast majority of the head system's dynamic response was accounted for by the

linear models. The 13.5 % of the variance in the measured head velocity that was not modeled by

the predicted output was split between noise and nonlinear responses to the perturbations and

target.

304

Eq. 7.16



B. PSD hv: pred (blk), meas (red)

32 33 34 35

time (s)

C. hv: torq comp (blk), meas (red)

I ~

10

0.1

36 0.010 1 2 3

frequency (Hz)

4

D. PSD hv: torq comp (blk), meas (red)

101

10 0
-1

10

1-2.

10-3

2 33 34 35 36 (

time (s)

E. hv: targ comp (blu), meas (red)
I I I

I I I

F.
100

10

10-2

10-3

10-4

10-5
-6

1033 34 35 36

time (s)

0

1 2 3

frequency (Hz)

PSD hv: target comp (blu), meas (red)

1 2 3

frequency (Hz)

Figure 7.38: Linear predictions of the head velocity. The plots on the left show the

measured head velocity (red) and the predictions (black or blue). The plots on the right

show the power spectral densities. Plots A and B show the prediction of the head velocity.

Plots C and D show the component of the head velocity that was driven by the perturbation

torque. Plots E and F show the component driven by the visual target.

Although the subject's VOR did not discriminate between disturbances that were linearly

(dL), or nonlinearly (dNL), related to the torque perturbations, the linear g3 IRF accounted for only

the disturbance motions that were linearly related to the torque through the head-neck system The
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nonlinear VOR eye velocity component, vNL, encompassed all VOR eye motions that were not

accounted for by the linear analysis, including eye motions that were due to a nonlinear response

of the vestibular system, and VOR eye motions that were stimulated by head disturbances that

were related nonlinearly to the torque input. Both of these nonlinear components were probably

small. The coherence-squared functions which were used to evaluate the VOR FRF had shown

that the VOR did not have a strong nonlinear dynamic. As the linear models of the head control

systems were able to predict 85 to 90% of the head's response, the nonlinear disturbance was also

small. A prediction of the linear VOR eye motions is shown in Figure 7.39. The g3 IRF that was

used to make the prediction was the IRF shown in plot A of Figure 7.33. The %VAF for the VOR

eye motions was 98% in this example (calculated against -I xhead velocity). The prediction for

this trial had one of the higher %VAF measures, but it was common in other trials and for other

subjects, that the prediction of the VOR eye motions would account for over 95% of the head

disturbance. As discussed in Section 7.5, these predictions of the VOR driven eye velocity

compensated very well for the linear head disturbances, and it was evident that the g3 IRFs were

good models of the linear dynamics of the subjects' VOR systems.

VOR ev (red), perturb hv (blk)
1.3

0

-0.9

24 25 26 27
time (s)

Figure 7.39: Prediction of the VOR eye velocity (red) and the velocity
of the head's disturbance velocity (black). The prediction of the VOR
accounted for 98% of the variance in the head's disturbance velocity.

The predicted VOR eye velocity is plotted against the measured eye velocity in Figure

7.40. The measured eye velocity was the sum of a component driven to follow the target (a), a
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component from the VOR (v), and noise (n). The breakdown of the measured eye velocity into

linear and nonlinear components is:

e=a+v+n=(aL p9g 4®g 3)+(NL + VNL +n). Eq. 7.17

The predicted VOR eye motions, p~g4®g3, comprised a large portion of the measured eye

response, but they were not all of it. The two time-domain traces move with each other, but the

measured eye velocity has a high frequency component that is not seen in the VOR eye motion.

From the plots of the power spectral densities, it can be seen that the predicted VOR component

matched the measured eye velocity closely from around 1.0 Hz to about 5.0 Hz. Above 5.0 Hz the

power in the two sequences differed mainly because of the noise in the eye velocity resulting

from calculating eye velocity from eye position data (Section 7.3). The difference between the

two plots at low frequencies begins near 1.8 Hz, which is near the upper frequency of the target's

spectrum. Below 1.8 Hz, the power in the VOR eye velocity dropped faster than that for the

measured eye velocity. The power in the VOR eye component dropped just as the power in the

disturbance head velocity dropped. The power in the total eye velocity remained higher, because

at low frequencies it was driven by the visual target, as was head velocity.

A. VOR eye vel (red), meas eye vel (blu) B. PSD: VOR ev (red), meas ev (blu)

1.3 10I -

0 S10

0 g 102-

-0.9 -- 1

24 25 26 27 0 1 2 3 4 5 6

time (s) frequency (Hz)

Figure 7.40: The predicted VOR component of the eye velocity (red) and the measured

eye velocity (blue). In this example, the VOR component of the eye velocity accounted

for 40% of the variance in the measured eye velocity.
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When the predicted VOR component was subtracted from the measured eye velocity,

what remained was the portion of the eye velocity that was driven by the target, plus the nonlinear

VOR component and noise, both of which were small relative to the eye motions driven by the

target. When this portion of the eye velocity was added to the (predicted) component of the head

velocity that was driven by the visual target (bL = t~g2), the outcome was very similar to the

measured gaze response (Figure 7.41). This estimate of the gaze response reflected the responses

of the visually mediated systems before the torque disturbance disrupted head and eye motions.

The predicted gaze was, however, affected by noise and nonlinear VOR responses. The eye

velocity component used in the estimate was not purely driven by the visual target, as it included

measured noise and any nonlinear VOR eye motions.

A. Pred gaze w/o disturbs & meas gaze velocity B. Pred gaze w/o disturbs (red) & target velocity
I I

0 0

S I I I I I

20 22 24 26 28 30 20 22 24 26 28 30
time (s) time (s)

Figure 7.41: The prediction of the "gaze velocity without disturbances" (red) shown
with the measured gaze velocity (plot A) and with the target velocity (plot B).

This eye velocity component can be used to create an estimate for the gi IRF, so that a

completely linear reconstruction of the gaze response can be made. After the linear VOR

prediction is removed, the remaining portion of the eye velocity can be expressed as:

eRM = t * gl + aNL +VNL + n Eq. 7.18

The gi IRF was estimated by de-convolving the auto-covariance of the target velocity

(input) from the cross-covariance between the target and the component of the eye velocity,
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evREM. The effects of the nonlinear VOR response and the noise on the gi IRF were minimized by

using the cross-correlation functions. Neither the VOR response nor the noise was driven by the

input target, so their cross-covariance with the target sequence was near zero. An example of a gl

IRF is shown in plot A of Figure 7.42.

A. gl IRF estimate C. PSD: target velocity

0.5 1

lag (s)

Target driven ev (blu),

Cd2

1.5 2

"g1" ev (red)

0

22 24 26 28 30

time (s)

10
10

1-2

103
-3

10

-410

-510 0 1 2 3 4 5

frequency (Hz)

D. PSD: predictions of target driven ev
100

10

10-2

-3

10-4 -
-4

105
10 0 1 2 3 4 5

frequency (Hz)

Figure 7.42: The visually mediated component of the eye velocity. A representative IRF

for the visually mediated eye control system is shown in plot A. Two estimates of the

visually driven eye velocity are shown in plot B. The estimate that was calculated by
convolving the visual target sequence with the gl IRF is shown in red, and the estimate

that was calculated by subtracting the VOR eye velocity from the measured eye velocity is

shown in blue. The PSDs of these estimates are shown in plot D.

An estimate of the linear output of the visually mediated eye control system was then

made by convolving the gl IRF with the target sequence (aL = tg 1). The linear estimates of the

eye velocity component resembled smoother versions of the eye velocity minus the predicted

VOR (Figure 7.42). The estimates did not have the higher frequency motions that were in the
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measured eye velocity. The output from the gl IRF was linearly related to the input target, which

had power only in the frequencies over which it was controlled, that is between 0 and an upper

bound of 2.0 Hz (Figure 7.42). What was missing from the estimate was the noise, and if they

existed, nonlinear outputs of the visually mediated systems and any nonlinear VOR responses.

Once this linear component of the eye velocity was found, all the components that were

needed to make a linear estimate of the gaze response were available. In Figure 7.43, the linear

prediction of the gaze response and the measured gaze response are plotted. The prediction was

remarkably similar to the measured gaze response. It matched the gaze response closely, and in

the example shown accounted for 87% of the gaze velocity's variance. The linear prediction does

not account for noise or the nonlinear components of the eye velocity that were driven by the

target, the head velocity driven by the target, the head disturbance driven by the torque, or the

VOR, which indicates that these are small when compared to the linear responses of the systems.

A. Predicted gaze (red) and meas gaze vel (blk) B. Pred gaze (red) and target vel (blk)

0 0

-0.5 -0.5 I I
20 22 24 26 28 30 20 22 24 26 28 30

time (s) time (s)

Figure 7.43: Linear prediction of the gaze velocity (red). A prediction of the gaze

velocity (red) and the measured gaze velocity (black) are shown in plot A. The prediction

(red) is shown in plot B with the target velocity (black).
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Chapter 8

Conclusions and future work

8.1 Conclusions of the VOR experiments

8.2 Other contributions

8.3 Future work

8.4 Thesis conclusion

8.1 Conclusions of the VOR experiments

The results from the VOR experiments indicated that the dynamic performance of the

VOR can be successfully evaluated while the VOR is used to stabilize vision during head-free

tracking of a visual target. The testing protocol that was developed created the conditions from

which the performance of the horizontal, rotational VOR could be evaluated across the full

bandwidth for which the VOR naturally functions to stabilize gaze, that is from 0.5 to above 3.0

Hz. Impulse and frequency response functions that were consistent estimators of the VOR's

performance could be calculated from as little as 90 s of data.

The visual and vestibular inputs that were generated using the modified Hunter-Kearney

procedure stimulated the gaze tracking and VOR responses that were required for the VOR

evaluation to be conducted. The PRB torque perturbation disturbed the head's motion with

frequencies up to 8.0 Hz and velocities that exceeded 70 deg/s. Despite these strong disturbances,

subjects tracked the visual targets well, and freely used their heads to direct their gaze. The

subjects' gaze responses lagged the visual input with lags that exceeded 100 ms, which implied

that the target was unpredictable and that the tracking response was driven by visually mediated

311



systems. The targets were tracked with a small position error, but large gaze saccades were not

needed to maintain sustained tracking. The experimental torque and target sequences were very

similar to the designed input signals, but because of noise they were slightly more correlated than

the designed signals. However, they were still many times less correlated than the PRB torque

sequence was with itse, and therefore could be approximatcd as uncorrclated, which was a

requirement for the analysis to be conducted.

Impulse and frequency response functions for the VOR, the head-neck system, and the

visually mediated head control system could be consistently estimated from data acquired in trials

as short as 90 s. The head-neck system was well modeled as linear from below 0.5 Hz through to

8.0 Hz. The nonlinear dynamics of the head's stability and voluntary control mechanisms

prevented the linear analysis from modeling the dynamics of the head-neck system accurately

below 0.5 Hz. Low power in the torque perturbation input prevented the analysis from adequately

stimulating the head-neck system at the frequencies above 8.0 Hz.

The linear systems analysis captured the dynamics of the VOR between 0.5 and 4.0 Hz.

The dynamics captured by the impulse response functions agreed with that found for the system

in the frequency domain. Response functions that were calculated from data acquired in one trial

could be used to predict accurately the subject's response in another trial. The consistency of the

results across domains, and from trial to trial, indicated that the analysis had successfully captured

the underlying behavior of the subject's VOR. The VOR analysis was limited at low frequencies

because of the nonlinear response of the head and neck, and at high frequencies because of noise

that existed in the calculation of the eye velocity.

The IRFs for the head control and VOR systems were used to model the entire gaze

tracking system. These models were often able to predict the gaze output from a tracking trial and

accounted for over 80% of the variance. Although the gaze tracking system, like most

physiological systems, is a nonlinear system, within the constraints of these stochastic VOR

experiments, its behavior was very well modeled with linear systems.
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Three observations can be made from the results of these VOR experiments that cannot

be made from the results of traditional VOR tests. First, and most obvious, the impulse and

frequency response functions experimentally verify that the VOR has the performance that is

expected of it when it stabilizes gaze, that is, it has a gain near one and a phase of 180 deg. This is

often not captured in traditional rotation tests, where it is common for the VOR gain to be

calculated as less than 0.8, or for the response reported for the VOR to be corrupted by visually

driven eye motions (Leigh, 1996; Collewijn, 1989). This new VOR testing protocol enables the

performance of the VOR to be measured accurately, because it tests the VOR under conditions in

which it functions naturally to stabilize vision, and in a manner that allows the eye motions driven

by the vestibular system to be distinguished from those driven by the visual system. The gain and

phase responses that are calculated for the VOR are not corrupted by the visual system, since the

eye motions that are stimulated by the visual target can be mathematically removed from the

analysis.

Second, there was no indication that the VOR was significantly suppressed during head-

free tracking. Subjects did not make large head motions while tracking the target, which may

have influenced the results, but with the motions that were used the VOR gain did not appear to

be suppressed or cancelled. There was no difference in the VOR gain response at frequencies

where the target had power and drove eye and head motions, or at frequencies where the target

had little power and the eyes motions were driven primarily by the head disturbance. There was

no indication that the smooth pursuit system had suppressed the VOR gain at any frequencies for

which there were smooth pursuit tracking motions.

Third, the latency between the head disturbance and the compensatory eye motion was

very short and indicated that the stabilization of the vision against the head disturbances was

indeed accomplished by the VOR, and not by the visual system. The latency between the head

disturbance and the corrective eye motion was so small that it could not be distinguished

consistently from zero in data that had been sampled at 100 Hz. The compensatory eye motions
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appeared to have occurred almost immediately after the head disturbance. The analysis also

showed that the subjects required over 100 ms to create visually mediated eye and head

movements. This implies that the visual system is too slow to be considered the cause of the eye

motions that compensated for the head disturbance. Only the vestibular system is fast enough to

have created the rapid compensatory eye motions.

8.2 Other contributions

In addition to the development of a new technique to evaluate the VOR, this research

produced several other important findings. First, the requirements that must be met by torque and

target inputs to control the visual system and to disturb the head were identified. This will make it

possible to develop a portable version of the testing equipment, using one of the systems

discussed in Chapter 3. This, in turn, will enable system-level testing of a patient's VOR to be

conducted outside of the laboratory, such as in a hospital, or clinic, or even in a patient's home.

Second, it was shown that the Hunter-Keamey technique for creating random sequences with

arbitrarily defined ACFs and PDFs could be used to create pseudo-random visual stimuli. These

stimuli are considerably different from the pseudo-random stimuli that are traditionally used

when testing the gaze tracking system. It was observed that these types of target are tracked

differently from pseudo-random visual targets that are made by combining predictable sinusoids.

The two most important developments that allowed this research to be conducted

successfully were the development of the modified Hunter-Kearney algorithm and the

identification of the head-neck system as a quasi-linear system. The modified Hunter-Kearney

technique can be used to create sequences with arbitrary spectral and cross-correlation

characteristics. It is an extremely powerful tool for creating input signals for multi-input

physiological systems, where each input may have to be of a different signal type in order for it to

be tolerated well by the system under study.
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The study of the head-neck dynamics demonstrated that although the head-neck system is

stabilized by frequency dependent mechanisms, and is in general a nonlinear system, its response

to stochastic perturbations can be well represented by a quasi-linear, second-order system. When

the mean torque applied to the head was held constant, and the position disturbances that were

applied were small, the viscoelastic properties of the system were not dependent on the stimulus

frequency between 0.5 and 10 Hz. This allowed for the linear systems analysis to be conducted

across the head-neck system, and for the torque perturbation to be a controlled experimental

input. Had this not been the case, nonlinear techniques would have been required, which would

have increased the complexity of the experiment design, analysis, and system modeling.

8.3 Future work

The development of the equipment, testing protocol and analyses was undertaken using

healthy adults as test subjects. The system should be tested next with people who have vestibular

dysfunction to determine if different protocols are more appropriate for use with people whose

natural gaze tracking may not be normal. The testing equipment can also be used for the analysis

of systems other than the VOR. For example, the equipment could be used to study

proprioceptive performance in the head-neck system, and to conduct more thorough tests of

oculomotor performance.

In this research, the linear analysis of the VOR was shown to be limited to a bandwidth

between approximately 0.5 and 4.0 Hz. The analysis could potentially be improved at low

frequencies by modeling the head-neck system using nonlinear models, such LNL, Wiener, and

Hammerstein cascade systems (Hunter and Korenberg, 1986; Korenberg and Hunter, 1986), and

at high frequencies by implementing an eye tracking device that can measure eye velocities with

less noise. It is reasonable to expect that a nonlinear modeling of the head-neck system would

lower the frequencies at which the response of VOR could be associated with the controlled
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torque input, and thus would lower the frequencies at which the VOR response could be

analyzed. The protocols used in this research were developed specifically to analyze the systems

with linear techniques, and so it might be necessary to redesign the input signals and the

experimental protocol so that the systems are stimulated appropriately for a nonlinear analysis.
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if eye position was tracked with a seleral contact, which measures eye position more accurately

and with less noise than EOG. However, this would only be appropriate if the experimentation

was conducted in a medical laboratory where an anesthetic could be applied to the eye, and care

could be taken to avoid corneal abrasions from the equipment. Video based eye tracking devices

offer more accurate tracking of the eye position than the EOG, but would only be appropriate for

use with this protocol if they could be designed with a lower mass, and with a better means for

correcting for relative position changes between the sensor and the head as the head is perturbed.

8.4 Conclusion

This thesis has shown that the dynamic response of the VOR can be evaluated under

natural functional conditions where the VOR is used to stabilize vision during head-free tracking

of a visual target. Because of this, a more accurate analysis of the normal and dysfunctional

behavior of the VOR can be made over the frequencies for which humans rely upon the VOR to

maintain clear vision. It is believed that the equipment and techniques that were developed

during the course of this research will serve as the foundation for laboratory and clinical

techniques that will be used for a more thorough diagnosis of vestibular.
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Appendix A

Additional mathematics

A.1 Least squares solution of the VOR IRF

A.2 Coherence-squared function for a two-input, single-output system

A.1 Least squares solution of the VOR IRF

The variables that are used in development of the correlation equations from which the

VOR IRF is solved are defined in the following block diagram:

GI a
- visually mediated eyereponse

eye control
v vor

t G3 9
visual VOR gaze
target V response

G2 b h head response h
visually mediated +

head control

p torque perturbation

Figure A.1: Block diagram of the gaze tracking system.

In Chapter 2 the impulse response function (IRF) for the VOR (g3) was estimated by

solving a set of convolution equations that were expressed with correlation functions. The linear

convolution equations that related the torque and target inputs to the eye and head velocity
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outputs were established first, and were converted so that the input and output sequences were

replaced by auto- (ACF) and cross-correlation functions (CCF). The correlation based

convolution equation from which the VOR IRF was solved was:

rPE= rP gl + rpH 9 g 3  Eq. A.1

which, because the torque and the target inputs were uncorrelated, reduced to:

rp, = rpH @g 3 . Eq. 2.10

The VOR IRF, g3, was found by deconvolving the CCF between the torque and the head

velocity, rPH, from the CCF between the torque and the eye velocity, rPE, using a Toeplitz matrix

inversion.

The estimation of the VOR IRF using the correlation based convolution equations is

similar to finding the least squares estimate of the IRF directly from convolution equations that

relate the input and output sequences. This, of course, is under the assumption that the input and

output sequences are outputs of random processes and are ergodic.

The following develops the least squares solution for the VOR IRF (g3) directly from the

linear convolution equations, and shows that the solution to the equation is similar to the

correlation based convolution equations.

The eye velocity (e) can be considered the output of a two input system, where the target

velocity (t) and the head velocity (h) are the inputs. Unlike the target velocity, the head velocity is

not a controlled experimental input, but it can be measured. This convolution relation between the

target velocity, head velocity, and eye velocity is:

e=t0gl+h g3, Eq.A.2

which can be expanded into:

M M

en = Atj gl itn-i + Atj g3k hn_-k Eq. A.3
i=O k=O

where M+1 is the length of the impulse response function.
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Equations A.2 and A.3 were found more directly that the equations that were developed

in Chapter 2. The development of these equations, and how they are no different that that

developed in Chapter 2, is described in Chapter 7.

Equations A.2 and A.3 can be expressed as a series of linear equation which can be put in

matrix form. For values of the eye response at times less than M, the causal convolution equation

does not use the full length of the IRF, but for times n that are greater than or equal to M, a set of

equations can be formed where all the terms of the response functions gi and g3 are present. This

linear set of equations is:

eM hM hM ... h 1 g30

e = AT-T-G1+AT 1g3 1  Eq. A.4

_eN-1 hN-1 hN- 2  hN-1-M g3m

where only the terms of the VOR IRF (g3) and the matrix for the head velocity (h) are shown in

an expanded form. Eq. A.3 can be expressed as:

E = AT -T - GI+ AT -H -G3 Eq. A.5

where E is an (N-M x 1) vector that represents the eye velocity at times M through N-1, AT is the

sampling time times an (N-M x N-M) identity matrix, T and H are (N-I x M+1) Toeplitz

matrices with terms from the torque input and the head velocity, and G1 and G3 are (M+1 x 1)

vectors with the unknown terms of the system response functions.

This is an over-determined set of equations. Since the number of data points is much

greater than the length of the system response functions, there are far more equations (N-M) than

there are unknowns (M+1 for each response function), and therefore it is unlikely that an exact

solution can be found. Also, there is noise in the data, which makes it even more unlikely that

there is an exact solution for either vector GI or G3. The least squares solution to such a set of

equations may be found by transforming the matrices into invertible, full-rank square matrices by
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multiplying through by the matrix transpose (Strang, 1998). The solution is found by inverting

the new full-rank matrix, which is often called the pseudo-inverse

A slightly unorthodox approach has to be used to solve for G3. Rather than multiplying

Eq. A.5 through by the transpose of the T or the H matrix, the torque perturbation sequence can

be Lus LlJvUVILed to remv -hiunc+ e - of the visual taUgIt (T) so haters of the G.) atrix can be

solved. The solution for GI can be found once the solution for G3 is known.

A matrix is made for the perturbation torque, P, in the same form as the target input

matrix, T, and the head velocity matrix, H.

PM PM-I .- Po

P _ PM+1 PM ... . Eq. A.6

_PN-1 PN-2 "- PN-M ]

The transpose of P, pT, is multiplied through Eq. A.5 to form:

P T E=AT PT T-G1+AT P T H -G3, Eq. A.7

where the AT matrix, which represents a scalar multiplication, has had its dimensions and its

position in the equation changed. To simplify the notation, the AT matrix will be dropped, but it

must be understood that it still exists in the equations. Eq. A.7 becomes:

P T E=P TT-G1+P T H -G3, Eq. A.8

The matrix equations are approximately the same as the correlation equations

The set of matrix equations in Eq. A.8 can be shown to be approximately the same as the

correlation based convolution equations, which were:

rp = rP 0 gl + rpH 9 g 3 Eq. A.1
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It is obvious that the sequences that are used to form the components of each equation are the

same, and it will be seen that summations of products represented by both the matrix

multiplications and by the cross-correlation functions are approximations of each other.

Output cross-vector PTE

First consider PTE,1

vector of the order (M+1 x

PMI

P T E =PM-1

_Po

PM+1

PM

P1

which will be called the output cross-vector. The product results in a

N-M)(N-M x 1) = (M x 1).

-" PN-1 eM PMeM + PM+leM+1 + + PN-1eN-1

"- PN-2 eM+ __ PM-1eM + PMeM+1 + + PN-2eN-1

--- PN-M _eN-1 PoeM + P1eM+1 + "- + PN-MeN-1

Eq. A.9

The terms in the output cross-vector are not quite the terms of the cross-correlation between the

perturbation torque and the eye velocity, but they are very similar. The biased cross correlation

can be defined as:

1 N-1
rPEE ij e Eq. A.10

N i=j

where the lag j can range from 0 to N- 1. If the first M lags of the cross-correlation are put into a

vector, the result is:

rPE 0] Poeo + ple, +...+ pMeM +PM+em+ + -. + PN_1eN-1

rPI l]__ 1 poe, + pe 2 +.+ p+MeM +PMeM+1 +"- +PN-2eN-1 Eq.A.ll

N ...

rPE[ M ] _POeM + peM+1 + - PN-MeN-1
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The matrix in Eq. A. 11 can be made the same as the matrix in Eq. A.9 simply by scaling A. 11 by

N ( the length of the sequences), and by setting the first M-1 terms of the eye velocity to zero

(which means that only the eye velocities that are influenced by a full length system response

function are considered). It is legitimate to substitute the cross-correlation terms in Eq A. 11 for

the matrix terms in Eq. A.9 f the terms in the matrix are summations of enough products so that

they contain all the statistical information about the random process (ergodic) (Juang, 1994).

Input cross-matrices

The matrix products PTT and pT H will be called the input cross-matrices, and will be

shown to be similar to the cross-correlation between the torque and the target, and the torque and

the head velocity. The general form of PTT and PTH is the expansion of PTX, which is a (M+1 x

N-M) (N-M x M+1)= (M+1 x M+1) matrix where:

PM PM+1 ... PN-1 XM XM-1 ... 0

PTX - PM-1 PM ... PN-2 XM+1 XM ... X1 A.12

LPO ... PN-M _XN-1 XN- 2  ... XN-1-M

When the matrix multiplication is conducted it can be seen that each term in the resulting matrix,

at row R and column C, is of the form:

N-1

PTXR,C IPIR i-C, A.13
i=M

where the rows and columns range from 0 to M. The terms of the (M+I x M+1) matrix are

approximately the terms of the cross-correlation function rpx at a lag (R-C). As before it is

legitimate to substitute the matrix terms in Eq. A. 12 with the terms of the cross-correlation

function if the summations contain enough products so that they contain all the statistical

information about the random process (ergodic) (Juang, 1994).

328



Solutionfor G3

The solution for the terms of the VOR's response function (G3) in Eq. A.8 is found by

inverting PTH so that:

G3 = (P TH)-' (P TE) - (P TH)-' (P T T)- G1 Eq. A.14

The product of the matrices (PTH)-' (PTE) approximates the deconvolution of the torque-

head velocity cross-correlation, rPH, from the torque-eye velocity cross-correlation, rET.

The product of the matrices (PT H)-' (PTT) approximates the deconvolution of the torque-

head velocity cross-correlation, rPH, from the torque-target cross-correlation, rPT. Since

the torque and the target are designed to be uncorrelated, PTT can be approximated as

zero. This can also be seen simply by evaluating the terms of P T.

Eq A. 11 can be simplified to:

G3 = (P T H)-1 (P T E), Eq. A.15

which approximates the deconvolution of the torque-head velocity CCF from the torque-eye

velocity CCF that must be done to solve for the g3 IRF in Eq. 2.10.

Although the VOR response function can be solved using these matrix equations, there is

a very good practical reason to use the cross-correlations rather than the matrix equations. As can

be seen from the expanded form of PTX in Eq. A. 13, each term of the matrix must be calculated

individually. It is much less time consuming to use the cross-correlation function, for example

with a lag of 2, for all the terms where the row minus the column equals 2, than it is to calculate

each term of the matrix individually. When there are a sufficient number of summations, the

difference in the individual terms has an insignificant effect on the outcome of the solution. When

the correlation functions are used, the terms are substituted so that the matrices are in a Toeplitz
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form, which means that the matrix has constant values diagonals. It is thus extremely time

consuming to calculate the terms required to find the matrix solution.

A.2 Coherence-squared function for a two-input, single-output system

The coherence-squared function is typically developed for the single-input, single-output

case. It is not commonly seen developed for multi-input cases. The development of the

coherence-squared function for the two-input, single-output case follows. The development is

done using the same procedure used by Juang (1994) for the single-input, single-output case.

The coherence-squared between the input y and the output uj is defined as:

2 S YiUjS YiU1
N~U] = - -

S Yin Sulu

where "S" denotes the spectral density which must be averaged from multiple records, and "0"

denotes the complex conjugate.

The two inputs sequences are ui(n) and u2(n), and the output id y(k). Consider Ui(k),

U 2(k), and Y(k) as the discrete Fourier transform of the input and output sequences. Form a

column vector from the DFT of the inputs and output, multiply against the complex conjugate

transpose, and take the expected value. Since the product of a complex column vector and its

complex conjugate transpose is a positive semi definite matrix, the expected value must be

greater than 0.

Y E[YY*] E[YU*] E[YU] 1
ErrUIIY* U U2] = E[UY*] E[UU*] E[UU*] >0 Eq.5

Uj E[U2 Y*] E[U2 U1* E[U 2U*]
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From the correlation theorem, E[YU*] equals the spectral density Syu, and so Eq. 5 can be

expressed using cross spectral densities.

Sv Syu, Syu2

Sru Suu,SU >0 Eq. 6
S u2  SU1 U2  Su 2u2

The determinant of a positive semi-definite matrix is greater or equal to zero, and so:

S Y Sulu, Su 2u2 - S yu, S ru, SuIu - S yu, SYu, Su2u 2 + Syu, S Yu2 Suu 2 + SYu 1 S Yu2 SuIu2 - S YY SuP2 SuIu2  0

The goal is to express this equation in the form of the coherence-squared function of Eq.

3. When the inputs ul and u2 are uncorrelated, the cross spectral densities between ul and u2 can

be set top zero. When the inputs are not perfectly uncorrelated all terms must be considered. Eq. 4

can be rewritten as:

SyySUpU1 SuU, > Syu2 Syu2 SU1 u, +syUSyUSUU -Syu, syuSU1  -Syu syusu1 U, +SyySujuSU,U

which leads to:

2 +2 2 suSYU,SU, SyuSyuSup,
YU Y uu -----------

SyySuuSuU, SyySuuSu'u,

Eq. 8 expresses a relationship between coherence squared functions between each input and the

output, between both inputs, and "triple" products between both inputs and the output. This

quantity is bound by one. IF the inputs are strictly uncorrelated, then it is the sum of the

coherence-square between each input and the output that is bound by one.
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Appendix B

Equipment specification sheets

B. 1 Kollmorgen Goldline XT MT304A1 servomotor

B.2 Kollmorgen Servostar CD CR03200 controller

B.3 Assurance Technologies Inc. Mini force/torque transducer

B.4 ATA Sensors ARS-04E magneto-hydrodynamic sensor

B.5 ATA Sensors digital compensation filter

B.6 Watson Industries ARS-C 141 1AR8P angular rate sensor
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B.1 Kollmorgen Goldline XT MT304A1 servomotor

30x PERFORMANCE DATA

Symbols Units MT302A MT302B MT304A MT304B

Horsepower HP Rated HP 0.83 1.02 1.00 1.85

Kilowatts kW Rated kW 0.62 0.76 0.75 1.38

Speed at Rated Power N Rated RPM 4500 6000 3000 6000

Max Operating Speed N Max RPM 4500 6000 3000 6000

Continuous Torque (Stall) Tc lb-ft 1.00 1.00 1.95 1.90

at 4OC N-m 1.36 1.36 2.64 2.58

Continuous Torque (Stall) Tc lb-ft 1.06 1.05 2.07 2.01

at 250C N-m 1.44 1.42 2.80 2.73

Continuous Line Current Ic Amps RMS 2.57 4.67 2.72 5.53

Peak Torque Tp lb-ft 2.38 2.38 5.46 5.46

N-m 3.23 3.22 7.40 7.41

Peak Line Current Ip Amps RMS 9.0 16.5 10.0 20.9

Max Theoretical Acceleration Z rad / sec
2  69,364 69,346 91,544 91,676

Torque Sensitivity (Stall) *10% Kt lb-ft / Amp RMS 0.398 0.217 0.727 0.349

N-m / Amp RMS 0.540 0.294 0.986 0.473

Back EMF (Line-to-Line):*10% Kb VRMS / kRPM 32.6 17.8 59.6 28.6

Max Line-to-Line Volts VMax Volts RMS 250 250 250 250

DC Res at 256C (Line-to-Line) +10% Rm Ohms 7.77 2.24 7.93 1.79

Inductance (Line-to-Line) *30% Lm mh 31 10 51 12

Rotor Inertia Jm lb-ft-sec 2  0.0000343 0.0000343 0.0000596 0.0000596

kg-m2  0.0000465 0.0000465 0.0000808 0.0000808

Weight (without brake) Wt lb 5.6 5.6 7.3 7.3

kg 2.5 2.5 3.3 3.3

Weight (with brake) Wt lb 8.0 8.0 9.7 9.7

kg 3.6 3.6 4.3 4.3

Static Friction Tf lb-ft 0.022 0.022 0.026 0.026

N-m 0.030 0.030 0.035 0.035
Thermal Time Constant TCT Minutes 22 22 25 25
Viscous Damping Z Source Fi lb-ft / kRPM 0.0057 0.0057 0.0083 0.0083

N-m/kRPM 0.0078 0.0078 0.0112 0.0112

Motor Constant at 25*C Km lb-ft / 4 Watts 0.124 0.126 0.224 0.226

N-m / ;Watts 0.168 0.171 0.304 0.306

Thermal Resistance at Stall Rth 0C / Watt 0.93 0.93 0.81 0.87

Number of Poles 8 8 8 8

Notes:
1. Please refer to the Kollmorgen SERVOSTART24 CD Series SYSTEMS TECHNICAL PUBLICATION

for Kollmorgen GOLDLINE" XT Performance Curves.
2. For models with shaft seals, derate torque at all speeds by 0.059 lb-ft (0.08 N-rn)
3. Continuous duty operation is based on using 8"x 12"x 3/8" aluminum plate.

KOLLMORGEN - Radford, Virginia - 1-800-77 SERVO
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Kollmorgen System Description

2.1.3 Electrical Specifications
Product Model Cx03 CxO6 Sx03 Sx06 SxlO Sx20 Sx3O Sx55_ Sx85

Main Input BUS (Vdc) See BUS Module specs 125 to 360 125 to360 125 to 360 260 to 360 260 to 360 260 to 360 260 to 360

(BUS+ / BUS-) Rated Power @ dc (kW) for Cx main input data 0.63-1.4 1.26-2.79 1.96-4.34 8.68 13.33 24.45 37.20
Continuous Power (KVA)@ Il5Vac l .55 1.1 0.55 1.1 1.6 n/a n/a n/a n/a
Line Input (45* Ambient)
ContinuousPower(KVA)@23OVacl 1.1 2.2 1.1 2.2 3.2 3.2 n/a n/a n/a
Line Innut (45*C Ambient)
Continuous Power (KVA) @ 230Vac3 1.1 2.2 3.6 7.3 11 20 30

Rated Line Input(45' Ambient)
Main Output Continuous Current (Arns / ADC) 3 6 3 6 10 20 30 55 85

(MA, MB, MC) Peak Cuent (Arms I Ade) for SO0mSec 9 18
Peak Current (Arms / Adc) for 25cc 6 12 20 40 60 110 170
PWM Frequency (kHz) 16 16 16 16 16 8 8 8 8
PWM Motor Current Ripple (klz) 32 32 32 32 32 16 16 16 16
Form Factor (ns/avg) S1.01 sl.01 sl.01 S1.01 S1.01 S1.01 S1.01 sl.01 sl.01
+8Vdc Supply Voltage 7.3-85 7.3-8.5 7.3-8.5 7.3-85 7.3-8.5 7.3-8.5 7.3-8.5
+8Vdc Supply Current (amps) _n___y Sppd 1.1 1.1 1.1 1.1 1.1 1.1 1.1

Control Input *15Vdc Supply Voltage 14.3-155 14.3-155 14.3-1.3 14.3-15.5 14.3-15.5 14.3-15.5
*ISVdc Supply Current (amps) .37 .37 .38 .5 .47 .66 .87
+24Vdc Ext. Logic Voltage (volts) 'his option is not
+24Vdc Ext. Logic Current (amps sink) currently available
UnderVoltage Tip (on power-up) 90 Vdc 90 Vdc 90 Vdc 90 Vdc 90 Vdc 255 Vdc 255 Vdc 255 Vdc 255 Vdc

Protective UnderVoltage Trip (nominal) 90 Vdc 90 Vdc 90 Vdc 90 Vdc 90 Vdc 125 Vdc 125 Vdc 125 Vdc 125 Vdc

Functions OverVoltage Trip 430 Vdc 430 Vdc 430 Vdc 430 Vdc 430 Vde 430 Vdc 430 Vdc 430 Vdc 430 Vdc
OverTemperature Trip 80*C 80C 118*C 1 18C 1180C 906C 90*C 90*C 90*C
Internal heat dissipation in 45 ambient @ 84w 138w 37w 84 w 120 w 240 w 254 w 465 w 675 w
continuous current (not including regen)
Operation temperature (6C) 0 to 450

Environment storage temperature (*C) -2010 70
Humidity (non-condensing) 10%to90%
Atmosphere w/o corrosive gasses or dust
Altitude Derate 3% per 1000ft above 3300ft
Vibration 0.5 g

Table 2-1 SERVOSTARo Electrical Specifications

0
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Koumorgen I

Product Model Cx03 Cx6 Sx03 Sx06 I Sx10 I Sx20 Sx3O Sx55 Sx85
Current Loop Update Rate 62.5 pS(16kHz)

Bandwidth <200OHz
Commutation Update Rate 62.5 pS(16kHz)

Loop Output Waveform Sinusoidal
Update Rate 250 pS (4kiz)
Bandwidth <400Hz

Velocity Loop Speed Command Resolution Serial/Analog: 12Bit (Optional 14)
Maximum / Minimum Speed 500Hz / [Serial: 1 RPM or Analog: (1/2048) x VMAX

1 Long-term Speed Regulation .01% (pP clock tolerance)
Position Loop Update Rate 5O0pS (2H)

Maximum Voltage 13 V differential
Input Resolution 12 Bit (Optional 14 Bit)
Sensitivity 4.9mV @12Bit

Analog Input (2,3) Voltage Range -8 to +8V (Standard)/ -10 to +10 V (Rescaled)
Input Impedance / CMR > 10Kohms / 50dB
Long-term Drift 100 ppm (0.075%/*C)

Fault Output Relay (5,6) Max Capacity 1 A @ 24 Vdc
Input Frequency 2.5kHz (Opto-isolated)

Remote Enable (7.8) & Input Voltage Range 12 to 24 V Nominal
Configurable Inputs Min. On / Max. Off 10 V / I V

(7,9,10,11) Current Demand per Input 2OmA
Configurable Digital Output Voltage (max.) 0 to 48 V Nominal - Bi-directionalOutput (7,12) Open (Min. On) lV

Collector Max. Output Current 6OmA
Configurable Max. Output Current ImA (1K internal series resistance)

Analog Output (13,4) Sensitivity / Resolution 4.9mV / 12 Bit
____________Voltage Range -10 to +10V

ncoder Equlvalent Output (C4 bi pinot) +
A/B/I & Complements Output Voltage (high level) @25*C 2.5V min @ 2OmA

(1.2,4,5,7,8) Output Voltage (low level) @25*C .5 max @ 2OmA
jRS 485 Line Drive Type [D26C31Th1

_ Remote Encoder Input (CS by foutN
A/B/I & Complements Input Voltage (high/low level) @25C 5V /OV nominal (+.2V /-.2V)

(1,2,4.5,7,8) Input Impedance 1000
RS 485 Line Receiver Type SN75173

s. stem fn snp- snsn

__________________See section 64.24 Position Loop on page 6-6 for features usinit this input



B.3 Assurance Technologies Inc. Mini force/torque transducer

0 Metric Calibrations for Nano and Mini

337

Transducer models Nano Mini
Standard Metric Calibrations 50/500 25/250 12/125 80/4 40/2 20/1
Sensing Ranges

±Force x and y range, (N) 50 25 12.5 80 40 20
±Force z range, (N) 90 '45 22.5 240 120 60
±Torque range, Nano: N-mm, 500 250 125

Mini: N-m __4 2 1
Resolution
Fx, Fy, (N) 0.05 0.025 0.0125 0.08 0.04 0.02
Fz, (N) 0.10 0.05 0.025 0.24 0.12 0.06
Tx, Ty, Tz, (N-mm) 0.25 0.125 0.0625 2.0 1.0 0.5

Counts measurement value
Fx, Fy, Fz, (counts/N) 20 40 80 12.5 25 50
Tx, Ty, Tz, Nano: counts/N-mm, 4 8 16
Mini: counts/N-m 500 1000 2000

Stiffness
Kx, Ky,(N/m) 9x106  1 1X10 6

Kz, (N/m) 12x106  24x10 6

Ktx, Kty, (N-m/rad) 250 3300
Ktz, (N-mrad) 390 4300

Weight, (grams)
Transducer, tool & mount adaptor 9.4 54
Material

Transducer Hardened Stainless Steel Hardened Stainless Steel
Tool adaptor Aircraft Aluminum Aircraft Aluminum
Mounting adaptor Aircraft Aluminum Aircraft Aluminum
Mounting ring-plug adaptor Not available Not available
Tool ring-plug adaptor Not available Not available

Overload Protection
Max. Fxy allowable, (±N) 350 1300
Max. Fz allowable, (±N) 800 2900
Max. Txyz allowable, (tN-m) 2.5 25



B.4 ATA Sensors ARS-04E magneto-hydrodynamic sensor

ATA Sensors P.O. Box 92303, ABO, NM 87199-2303
ph: (505) 823-1320, fx: (505) 823-1560

e-mail: atasensors @ aptec.conM

Doc. No. S001001-
MHD ANGULAR RATE SENSOR

Model: ARS-04E SN: 511
Date Calibrated: 09/08/00

Test Data

Scale Factor @ 10 Hz Kwo
Low Frequency -3dB Point
Low Frequency +450 Point
Pole Frequency fi
Pole Frequency f2
High Frequency -3dB Point

Input Power @ +/- 15 VDC

156.6
0.378
0.466

0.37
0.05
1270

Positive Side @
Negative Side @

mV/(rad/s)
Hz
Hz
Hz
Hz
Hz

15.10 mA x 15VDC =
15.15 mA x 15VDC =

Total Power =

Output RMS Voltage Noise
Output Offset (After 10 Minute Warming)
Output Impedance

= 9.9
= -23.7
= <100

mV
mV
n

Wiring Instructions*
Red Lead: +15VDC
White Lead: -15 VDC
Black Lead: Power and Signal Common
Yellow Lead: Output Signal

*If used with an ILC, follow the ILC wiring instructions.
CAUTION: Improper hookup can result in transducer failure.

WARNING:
Sharp Impacts May Cause Damage to This Sensor.
This Sensor Contains Mercury and is Not Designed

for Safe Operation or Use Outside the Specifications.
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B.5 ATA Sensors digital compensation filter

Digital compensation filter for MHD sensor, s/n 496

The digital compensation filter is implemented as a linear difference equation.

1. Set vectors y and mhd to the measured head velocity signal. y := head
The sequence vel will become the compensated vector.

mhd:= head

2. Set desired low fre quency pole frequencies:

mhd sensor 496 has 2 poles: ghysical electronic

original LF pole freqs (Hz): fj := 0.37 f2:= 0.08

desired LF pole freqs (Hz) fdl := 0.05 fd2 := 0.01

calculate DT frequency equivalents (rad/sec) sampling period: T := 0.01

or iinal corners desired comers

D I := 2-n -f - 2 f I = 0.023 Odl := 2-7t-fd1-T Qdl = 3.142 x 10 3

n2:= 2.7--f 2-,r n2 = 5.027 x 10- 3 Qd2:= 2 -n-fd2-T nd2 = 6.283 x 10~ 4

3. Create filter difference equation with scale factor that converts measurement to rad/sec

equation coefficients C (e 1,e2) C= 1.025
f

2 dI Cd2
e -e

-01 -02 -Q -2
C2 := e + e C2 = 1.972 C3 := e e C3 = 0.972

C4 := e + e C4 = 1.996 C5 := e -e C5 = 0.996

4. Apply difference equation to head velcoty sequence

vel:= for k e 2.. length(y)
temp +- C1. (mhdk - C2-mhdk-I + C3-mhdk-2) + C4-yk-1 - C5-yk-2

yk +- temp

y
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WATSON INDUSTRIES, INC.
3041 Melby Road Eau Claire, WI 54703
Phone (715) 839-0628 * FAX (715) 839-8248

www.watson-gyro.com * email: support@watson-gyro.com

Rate Ideal X Axis Data X Axis Error
*/Second DC (VDC) (*/Second)

-300 -10.00 -10.00 0.00
-225 -7.50 -7.49 -0.30
-150 -5.00 -4.99 -0.30
-75 -2.50 -2.50 0.00
0 0.00 0.01 0.30
75 2.50 2.51 0.30
150 5.00 5.01 0.30
225 7.50 7.51 0.30
300 . 0.30

X Axis X Axis j
Thermal Bias 10 Min. Drift

+200 C 0.00V 26 mV
-200 C 0.28V PASS
+50* C 0.16V Scale Factor
+200 C -- 0.10V 29.990/s/V

I W PASj A9

This product has been tested with equipment
traceable to N.I.S.T. Sta . ereby
certified to meet or eed manufacturers cifications.

1/10102
Signature Date

WARNING
THIS UNIT IS MADE TO WITHSTAND OVER

Certificate of Conformance

Product P/N - ARS-C141-1AR8P
S/N 14150

A"

t7 P/
f. (M A /

4'-

Angular Rate Error (lsecond)

-X Axs
3.00

2.00

1.00,
0.00

-1.0(300 -225 -150 -75 0 75 150 225 300

-2.00

-3.00

C0

rol

00

01
200 g's. A DROP OF 10 INCHES MAY EXCEED
THIS LIMIT! DRILLING AND SAWING
OPERATIONS ON THE CASE ARE LIKELY TO
DAMAGE THE UNIT.



Appendix C

Code to generate the uncorrelated torque and target inputs

Appendix C includes only the portions of the program's code that were essential to

generating the uncorrelated torque and target sequences. Much of the code that was required to

execute the progam, such as the code for of the GUIs that allowed the user to interact with the

program, has been removed. The code was written in Visual Basic 6.0.
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0.005 (101 0.015 aL( 200 HT
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PR8S toie
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ITotal power -6001.00
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2 00 ir iCwrs
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341

Figure C.1: Screen capture of the interface from the program that was used to generate

the uncorrelated torque and target sequences.
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Excerpts of the code for "GenUncorTorqTarg"

'Module level variable declarations
'Requires the Plexus tensor PlexusTensor.dll
National Instruments Component works UI

'Set option explicit so VB verifies all variables declared
Option Explicit

'Module level variables

'Common experiment settings
Private mExpLen As Integer
Private mExeclnt As Double
Private mN As Long
Private mSettingsSet As Boolean

'Torque sequence
Private mTorque As Tensor
Public mTorqueSet As Boolean

'Target velocity tensors
Private mTargRaw As Tensor
Private mTargRawSet As Boolean
Private mTargSwap As Tensor
Public mTargSwapSet As Boolean
Private mSSDswapACF( As Double
Private mSSDswapCCF( As Double
Private mGoodSwaps As Long
Private mTargFilt As Tensor
Public mTargFiltSet As Boolean
Private mTargPos As Tensor
Public mTargPosSet As Boolean
Private mTargOut As Tensor
Private mTargOutSet As Boolean

'Correlation measures
Private mACFdes As Tensor
Private mACFset As Boolean
Private mCCFdes As Tensor

'File flags - all Public
Public mAdminFileSet As Boolean
Public mTorqueFileSet As Boolean
Public mSwapFileSet As Boolean
Public mACFssdFileSet As Boolean
Public mCCFssdFileSet As Boolean
Public mFiltFileSet As Boolean
Public mPosFileSet As Boolean

'experiment length in seconds
'interval at which to execute thru sequence
'number of terms in sequence
'flag for experimental settings

'raw sequence to be manipulated
'flag for raw target sequence
'swapped for PSD and/or uncorr
'Public flag for swapped target sequence
'Tracks SSD for ACF after each swap
'Tracks SSD for CCF after each swap
'Tracks number of successful swaps
'LPF filtered target sequence
'Public flag for filtered target sequence
'Position sequence
'Public flag for position sequence
'Output tensor
'Flag for output set

'Desired ACF
'Flag that ACFdes is set
'Desired CCF
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Private Sub FormLoado
'Description:
'This Program generates PRBS torque and random target sequences.
'The spectrum of each sequence is chosen, and the target velocity sequence
' can be made so that the torque and target velocity sequences are uncorrelated.
'The position sequence is created by integrating the velocity sequence.
'The position sequence is manipulated after the integration so that it begins
' and ends at zero position.
'The sequences are made to be output at a certain frequency. Above 100 Hz is beyond
'the capability of the MS Timer. The WinTimer DLL, by Serge LaFontain, must be used.

'Module level variables

'Common experiment settings
'Private mExpLen As Integer
'Private mExecInt As Double
'Private mN As Long
'Public mSettingsSet As Boolean

'Torque sequence
'Private mTorque as Tensor
'Public mTorqueSet As Boolean

'Target velocity tensors
'Private mTargRaw As Tensor
'Public mTargRawSet As Boolean

'Private mTargSwap As Tensor
'Public mTargSwapSet As Boolean
'Private mSSDswapACFO As Double
'Private mSSDswapCCFO As Double
'Private mGoodSwaps As Long
'Private mTargFilt As Tensor
'Public mTargFiltSet As Boolean
'Public mTargPos as tensor

'Correlation measures
'Private mPSDdes As Tensor
'Private mACFdes As Tensor
'Private mACFset As Boolean
'Private mCCFdes As Tensor

'experiment length in seconds
'interval at which to execute thru sequence
'number of terms in sequence
'flag for experimental settings

'raw sequence to be manipulated
'flag for mTargRaw generated

'swapped for PSD and/or uncorr
'flag for mTargSwap generated
'Tracks SSD for ACF after each swap
'Tracks SSD for CCF after each swap
'Tracks number of successful swaps
'LPF filtered target sequence
'Flag for filtered Target sequence

'Desired PSD
'Desired ACF
'Flag that ACFdes is set
'Desired CCF

'File flags - all Public
'Public mAdminFileSet as Boolean
'Public mTorqueFileSet as Boolean
'Public mSwapFileSet As Boolean
'Public mACFssdFileSet as Boolean
'Public mCCFssdFileSet as Boolean
'Public mFiltFileSet As Boolean
'Public mPosFileSet As Boolean
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'Boolean flags all set false
'Common experimental setting
mSettingsSet = False

'Torque sequence
mTorqueSet = False

'Target sequence
mTargRawSet = False
mTargSwapSet = False
mTargFiltSet = False
mTargPosSet = False
mTargOutSet = False
mACFset = False

'Datafiles
mAdminFileSet = False
mTorqueFileSet = False
mSwapFileSet = False
mACFssdFileSet = False
mCCFssdFileSet = False
mFiltFileSet = False
mPosFileSet = False

'Update experiment length text box
txtExpLen.Text = Format(Int(sldExpLen.Value), "0") + s"

'Update execution interval text box
txtExecInt.Text = Format(sldExeclnt.Value, "0.0000")
txtExecFreq.Text = Format(Int(1 / sldExecInt.Value), "0") +" Hz"
txtNumElems.Text = Int(l + sldExpLen.Value / sldExecInt.Value)

'Set the PRBS text windows.
'Update after experiment settings are set

txtPRBSFreq.Text
txtPRBSint.Text =
txtIntRatio.Text = sldIntRatio.Value
txtPRBSdur.Text = ""

'Update amplitude/mean and standar deviation in text boxes
txtAmpMed.Text = Format(sldAmpMed.Value, "0.#0")
txtStdev.Text = Format(sldStdev.Value, "0.#0")

'Update maxlag percentage of sequence length
Dim percent As Double
percent = sldMaxLag.Value
txtMaxLag.Text = Format(percent, "#.#0") +" * N"

'Update number of swaps for interchange
txtNumSwaps.Text = Format(sldNumSwaps.Value, "0")
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'Update low and high frequency for desired PSD
txtHiFreq.Text = Format(sldHiFreq.Value, "0.0")

'LPF filter frequency
txtLPF.Text = Format(sldLPF.Value, "0.0") + " Hz"

End Sub

Private Sub butGenmTargRaw ValueChanged(ByVal Value As Boolean)
'Generates a raw sequence that will be manipulated into the Target sequence

'Module variables
'Common experiment settings

'Private mExeclnt As Double
'Private mN As Long
'Private mSettingsSet As Boolean

'Target velocity tensors
'Private mTargRaw As Tensor
'Private mTargRawSet As Boolean

'Local variables
Dim N As Long
Dim SampInt As Double
Dim SigType As String
Dim AmpMed As Double
Dim stdev As Double

Dim ylmin As Double
Dim ylmax As Double
Dim y2min As Double
Dim y2max As Double

'interval at which to execute thru sequence
'number of terms in sequence
'flag for experimental settings

'raw sequence to be manipulated
'flag for mTargRaw generated

'sequence length set by sldSeqLength.Value
'sampling interval set by sldSampFreq.Value

'y bounds for ramp sequence

Dim rmin As Double
Dim rmax As Double
Dim imin As Long
Dim imax As Long
Dim i As Long
Dim HalfSeq As Long

Dim TotPow As Double

'Generate raw target sequence
If butGenmTargRaw.Value = True Then

If mSettingsSet = True Then

'Set flags of other target sequences to false
mTargSwapSet = False
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mTargFiltSet = False
mTargPosSet = False

'Sequence parameters
N = mN 'length set in Experimental settings form
SampInt = mExecInt
AmpMed = sldAmpMed.Value 'sets peak amplitude or median
stdev = sldStdev.Value 'sets standard deviation

'Generate target sequence mY
If optGWN.Value = True Then 'generate Gaussian white sequence

mTargRaw = GenGaussNoise(O, N - 1, SampInt, AmpMed, stdev)
SigType = "Raw vel: GWN"

ElseIf opt2GWN.Value = True Then
mTargRaw = GenDualGWN(O, N - 1, SampInt, AmpMed, stdev)
SigType = "Raw vel: Dual GWN"

Elself optRamp.Value = True Then 'generate ramp
imin 0
imax = N - 1
mTargRaw = GenUniform(imin, imax, SampInt, -AmpMed, AmpMed)
SigType = "Raw vel: ramp"

ElseIf opt2Ramps.Value = True Then 'generate two ramps
imin =0
imax N - 1
y1min = -AmpMed - stdev / 2
ylmax -AmpMed + stdev / 2
y2min = AmpMed - stdev / 2
y2max= AmpMed + stdev / 2
mTargRaw = Gen2Uniform(imin, imax, SampInt, y1min, ylmax, y2min, y2max)
SigType = "Raw vel: two ramps"

ElseIf optBinary.Value = True Then 'generate ordered binary sequence
mTargRaw = GenBinary(0, N - 1, SampInt, -AmpMed, AmpMed)
SigType = "Raw vel: Binary"

"ElseIf optPRBS.Value = True Then 'generate PRBS
"mTargRaw = GenPRBS(12, 0, N - 1, SampInt)
"SigType = "Raw vel: PRBS"
'change amplitude to +/- 1, and then scale with AmpMed
"imin LBound(mTargRaw.Val)
"imax = UBound(mTargRaw.Val)
"For i = imin To imax

"mTargRaw.Val(i) = AmpMed * (2 * mTargRaw.Val(i) - 1)
"Next i

ElseIf optOther.Value = True Then 'generate other
rmin =0
rmax =(N - 1) * SampInt
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mTargRaw = GenSine(rmin, rmax, SampInt, AmpMed, 4, 0)
SigType = "Raw vel: 4 Hz sine"

Else
mTargRaw = GenGWN(0, N - 1, SampInt, AmpMed, stdev)
SigType = "Raw vel: GWN"

End If

imin = LBound(mTargRaw.Val)
imax UBound(mTargRaw.Val)

'Calculate total power from sequence values
TotPow = 0
For i = imin To imax

TotPow = TotPow + mTargRaw.Val(i) * mTargRaw.Val(i)
Next i

'Set flag indicating sequence created
mTargRawSet = True

'Display sequences, total power
plot D.PlotY mTargRaw.Val
labD.Caption = SigType
txtD.Text = "Total power =" + Format(TotPow, "#.#0")

Else 'mSettingsSet flag not set
txtComment.Text = "Experiment settings not set."
butGenmTargRaw.Value = False
mTargRawSet = False
'Set flags of other target sequences to false
mTargSwapSet = False
mTargFiltSet = False
mTargPosSet = False

End If

Else 'butGenmTargRaw turned off

mTargRawSet = False 'Set flag indicating sequence not created
'Set buttons for other target sequences to false
'This will set flags to zero in their routines
mTargSwapSet = False
butPSDuncorr = False
butLPF = False
butIntegrate = False

End If

End Sub
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Private Sub butGenPSDdesValueChanged(ByVal Value As Boolean)

'Create desired two sided PSD for the target signal
'Generates tensor mACFdes to be used in swap algorithms
'Algorithm set up for pos and neg lag ACF and a PSD defined
'from -0.5 to 0.5 dt cps

'Module level variables
'Target velocity tensors
'Private mTargRaw As Tenso
'Private mTargRawSet As Bo

'Correlation measures
'Private mACFdes As Tensor
'Private mACFset As Booleai

'Local variable declarations
Dim N As Long
Dim percentLen As Double
Dim maxlag As Long
Dim minlag As Long
Dim SampInt As Double
Dim maxFreq As Double

Dim PSDdes As Tensor

Dim ACFraw As Tensor
Dim PSDraw As Tensor

Dim TotPowACFraw As Do
Dim SumElemsPSDraw As I
Dim TotPowPSDraw As Dot
Dim imin As Long
Dim imax As Long
Dim i As Long
Dim M As Long
Dim PSDdisp As Tensor

Dim hiFreq As Long
Dim loFreq As Long
Dim hiElem As Long
Dim loElem As Long

Dim SumElemsPSDdes As D
Dim TotPowPSDdes As Dou
Dim TotPowACFdes As Dot

r
olean

'raw sequence to be manipulated
'flag for raw target sequence

'Desired ACF
'Flag that ACFdes is set

'length of mTargRaw
'percent of N for Maxlag
'Max lag set by sldMaxLag.value

'sampling interval of sequence
'1/2 the sampling frequency

'Desired PSD

'ACF of original sequence
'PSD of original sequence

uble 'N * ACF(O)
ouble 'Sum of elements in PSD
ble 'Sum of elements scaled

'length of ACF, set by maxLag
'Display 0 freq at 0 element

'Freq content of PSDdes exists
'between loFreq and hiFreq
'element equivelent to hiFreq

ouble 'Sum of PSDdes elements
ble 'PSDdesSum scaled by ratio of sequence lenth to maxlag
ible 'PSDmYSum scaled by ratio seq length to maxlag

Dim k As Long

'Initiate new PSDdes when button turned on
If butGenPSDdes.Value = True Then
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'Execute only if mTargRaw has been created - want to match sequence power
If mTargRawSet = True Then

'initiate sequence
butPSDinit = True

'length of sequence mTargRaw
N = UBound(mTargRaw.Val) - LBound(mTargRaw.Val) + 1

'Calculate ACF, PSD, and total power of raw sequence

'min and max lags
percentLen = sldMaxLag.Value
maxlag = Int(percentLen * (N - 1))
minlag -maxlag
txtMaxLag.Text = Format(percentLen, "#.#0") + *N, " + Format(maxlag, "#")

'ACF and PSD
ACFraw ACF(mTargRaw, minlag, maxlag)
PSDraw = PSDfromACF(ACFraw, None)

'Total power from ACFraw with MaxLag
TotPowACFraw = N * ACFraw.Val(O) 'sequence length * zero lag correlation

'Total power from PSDraw with MaxLag
imin = LBound(PSDraw.Val)
imax UBound(PSDraw.Val)
M = imax - imin + 1 'length of ACF and PSD
SumElemsPSDraw = 0
For i = imin To imax

SumElemsPSDraw = SumElemsPSDraw + PSDraw.Val(i)
Next i
'PSD power is the element sum scaled by ratio of sequence length to PSD length
TotPowPSDraw = (N / M) * SumElemsPSDraw

'Define desired PSD with same sum of elements as for PSDmY
'ACF should be based on PSD so TotPowPSD = (N/M)*SumElems
'Defining the positive frequencies, which must also be mirrored by neg freqs

PSDdes = PSDraw

SampInt = 1# / ((M - 1) * PSDraw.Inc(1)) 'Gives sampling interval
maxFreq= 1# / (2 * SampInt)

'loFreq = sldLoFreq.Value
loFreq = 0
hiFreq = sldHiFreq.Value

'loElem = Int(loFreq * SampInt * (m - 1))
loFreq = 0
hiElem = Int(hiFreq * SampInt * (M - 1))
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'initialize all elements to zero
For i = imin To imax

PSDdes.Val(i)= 0
Next i

'scale elements in desired freq range to have amplitude of 1
For i = loElem To hiElem

PSDdes.Val(i) = 1
PSDdes.Val(-i)= 1 'negative freq elements
'PSDdes.val(imin+imax-i) 'more general relation that allows PSDs

'defined for -0.5 to 0.5 or 0.0 to 1.0
Next i

'scale PSD elements so their sum has same sum as PSDmY

'original sum
SumElemsPSDdes = 0
For i = imin To imax

SumElemsPSDdes = SumElemsPSDdes + PSDdes.Val(i)
Next i

'scale elements so that SumElemsPSDdes equals SumElemsPSDmX
'PSDmX elements
For i = imin To imax

PSDdes.Val(i) = (SumElemsPSDraw / SumElemsPSDdes) * PSDdes.Val(i)
Next i

'recalculate power to ensure match
SumElemsPSDdes = 0
For i = imin To imax

SumElemsPSDdes = SumElemsPSDdes + PSDdes.Val(i)
Next i
TotPowPSDdes = (N / M) * SumElemsPSDdes

'desired ACF
mACFdes = ACFfromPSD(PSDdes)
TotPowACFdes = N * mACFdes.Val(0)
mACFset = True 'Flag that desired ACF created

'clear text box
txtComment.Text

'Turn button off when calculation done
butPSDinit = False

'Plots
plotA.PlotY mACFdes.Val
lab A.Caption = "Desired Ctt"
txtA.Text = "Total power = " + Format(TotPowACFdes, "#.#0")
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PSDdisp = DisplayTensor(PSDdes)
plot D.PlotY PSDdisp.Val
labD.Caption = "Desired PSD (disp)"
txtD.Text = "Total power = " + Format(TotPowPSDdes, "#.#0")

Else 'mTargRaw had not been created
txtComment.Text = "mTargRaw has not been generated."
butGenPSDdes.Value = False 'turn button off

End If

Else 'butGenPSDdes turned off
mACFset = False 'Flag states PSDdes not created
butPSDinit = False

plot A.PlotY 0
labA.Caption "Desired ACF"
txtA.Text = ""

plot D.PlotY 0
labD.Caption "Desired PSD (disp)"
txtD.Text=""

End If
End Sub

Private Sub butGenTorqueValueChanged(ByVal Value As Boolean)
' Description
'Create Torque sequence that executes at intervel mExecInt, but appears to be
'a PRBS being executed at PRBSint. The sequence has niN elements. It takes
'mExpLen secs to execute through entire sequence

'Module variables
'Private mExpLen As Integer
'Private mExecInt As Double
'Private mN As Long
'Private mSettingsSet As Boolean

'Torque sequence
'Private mTorque As Tensor
'Public mTorqueSet As Boolean

'Local variables
Dim reqLen As Long
Dim R As Integer
Dim PRBSint As Double
Dim M As Long
Dim G As Long
Dim gr As Integer
Dim L As Integer

'experiment length in seconds
'interval at which to execute thru sequence
'number of terms in sequence
'flag for experimental settings

'required length of PRBS sequence
'ratio of PRBS to execution intervals
'effective PRBS interval
'PRBS seedlength
'number of complete groups of terms
'group counter
'# elements in last group, no including last PRBS element
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Dim initPRBS As Tensor
Dim TorSeq( As Double
Dim i As Integer
Dim j As Integer

'output of Plexus PRBS algorithm
'array that holds the elements of mTorque tensor

Dim TotPow As Double

'Generate Torque sequence
If butGenTorque = True Then

'Generate torque PRBS only if experiment settings are set
If mSettingsSet = True Then

'Turn butTorInit on. Signals process underway.
butTorlnit.Value = True

'Sequence parameters
R = sldlntRatio.Value
PRBSint = R * mExecInt
M = sldSeedlength.Value
reqLen = 1 + Int((mN - 1) / R)
G = reqLen - 1
L = (mN - 1) - (G * R)

'ratio of PRBS and execution intervals
'interval at which PRBS appears to be executed
'seedlength
'number of PRBS elements required to last for mExpLen
'number of full groups that will be filled
'number of elements in final group
'does not include final PRBS element

'Generate basic PRBS with amp (+/- 1) and dt = I
initPRBS = GenPRBS(M, 0, G, 1)

'change amplitude to +/- 1
For i = LBound(initPRBS.Val) To UBound(initPRBS.Val)

initPRBS.Val(i)= 1 * (2 * initPRBS.Val(i) - 1)
Next i

'plot initial PRBS
'plot A.PlotY initPRBS.Val
'labA.Caption = "PRBS"

'Create mN element array by "filling" in PRBS to execute at mExecInt
'Each PRBS element is first element of a group of the same values

ReDim TorSeq(0 To mN - 1) 'Array for sequence. Will become a tensor.

'Fill complete "groups"
For gr = 0 To G - 1 'cycle through each PRBS element

For i =0 To R - 1 'elements of each group
j = i + gr * R 'array index
TorSeq(j) = initPRBS.Val(gr)

Next i
Next gr

'Fill last group. May be a partial group.
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Forj = (G * R) To (G * R) + L
TorSeq(j) = initPRBS.Val(G)

Next j

'Convert array to a tensor
mTorque = GenTensor(TorSeq, mExecInt, "Amplitude", "", "Time", "s")

'Calculate total power from sequence values
TotPow = 0
For i = LBound(mTorque.Val) To UBound(mTorque.Val)

TotPow = TotPow + mTorque.Val(i) * mTorque.Val(i)
Next i

'plot PRBS
plot A.PlotY mTorque.Val
labA.Caption = "Torque"
txtA.Text = "Total power =" + Format(TotPow, "#.#0")

'Set flag that torque sequence has been created
mTorqueSet = True
txtComment.Text = "Torque PRBS generated."

'Turn butTorInit off when calculation complete.
butTorlnit.Value = False

Else 'mSettingsSet = False
butGenTorque = False 'Will execute just as if button manually turned off
txtComment.Text = "Experiment settings not set."

End If

Else 'if butGenTorque = false (turned off), set flag so settings can be reset
mTorqueSet = False
txtComment.Text = "Reset PRBS parameters."
butTorlnit.Value = False 'Turn butTorInit off.

End If
End Sub

Private Sub butLPFValueChanged(ByVal Value As Boolean)
'Description:
'Convolves swapped sequence with 2 sided LPF.
'Time domaiin LPF is created by invDFT of the ideal LPF spectrum

'Low pass filter mTargSwap, create mTargFilt

'Module level variables
'Target velocity tensors

'Private mTargSwap As Tensor 'swapped for PSD and/or uncorr
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'Public mTargSwapSet As Bo
'Private mTargFilt As Tensor
'Public mTargFiltSet As Bool

'Local variable declarations
Dim N As Long
Dim maxlag As Long
Dim minlag As Long
Dim ACForig As Tensor
Dim PSDorig As Tensor
Dim TotPowACForig As Dot
Dim SumElems As Double
Dim TotPowPSDorig As Dou

'Public flag for swapped target sequence
'LPF filtered target sequence
'Flag for filtered target sequence

'length of mTargSwap
'Max lag set by sldMaxLag.value

'ACF of n-rigi-nanseue

'PSD of original sequence
tble 'N * ACF(O)

'Sum of elements in PSD
ble 'Sum of elements scaled

Dim coFreq As Double 'LP cutoff freq
Dim ACFfilt As Tensor
Dim PSDfilt As Tensor
Dim TotPowACFfilt As Double 'N * ACF(O)
Dim TotPowPSDfilt As Double 'Sum of elements scaled

Dim PSDdisp As Tensor

Dim imin As Long
Dim imax As Long
Dim i As Long
Dim M As Long

'Display 0 freq at 0 element

'length of ACF, set by maxLag

'Start with butLPFinitiated off
butLPFinitiated.Value = False

'Execute when button turned on
If butLPF = True Then

'Execute if mTargSwap has been created
If mTargSwapSet = True Then

'turn butLPFinitiated on
butLPFinitiated.Value = True

'length of sequence mTargSwap
N = UBound(mTargSwap.Val) - LBound(mTargSwap.Val) + 1

'Calculate ACF, PSD, and total power of original mTargSwap sequence
'min and max lags
maxlag = N - I
minlag -maxlag
M = maxlag - minlag + 1

'Generate filtered Target sequence
coFreq = sldLPF.Value
mTargFilt = LPF(mTargSwap, coFreq) 'Convolves sequence with ideal LPF in time domain
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mTargFiltSet = True

'ACF and PSD
ACFfilt = ACF(mTargFilt, minlag, maxlag)
PSDfilt = PSDfromACF(ACFfilt, None)

'Total power from ACFfiltT
TotPowACFfilt = N * ACFfilt.Val(O) 'sequence length * zero lag correlation

'Total power from PSDfiltT
SumElems = 0
For i = LBound(PSDfilt.Val) To UBound(PSDfilt.Val)

SumElems = SumElems + PSDfilt.Val(i)
Next i
'PSD power is the element sum scaled by ratio of sequence length to PSD length
TotPowPSDfilt = (N / M) * SumElems

'turn butLPFinitiated off
butLPFinitiated.Value = False

'plots of filtered sequence and PSD

'filtered
plot A.PlotY mTargFilt.Val
labA.Caption = "LPF vel"
txtA.Text = "Total power(LPF)=" + Format(TotPowACFfilt, "#.#0")

PSDdisp = DisplayTensor(PSDfilt)
plot B.PlotY PSDdisp.Val
lab_B.Caption = "PSD(disp): LPF vel"
txtB.Text = "Total power(LPF)=" + Format(TotPowPSDfilt, "#.#0")

'Swapped sequence not created
Else

txtComment.Text = "Swapped target has not been generated."
butLPF = False

End If

Else 'button turned off
mTargFiltSet = False
mTargPosSet = False
butIntegrate = False

End If
End Sub
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Private Sub butPSDuncorrValueChanged(ByVal Value As Boolean)

'Subroutine uses a two element stochastic swap to order the target sequence
'to have a desired ACF and to be statistically uncorrelated from the torque sequence.
'Cross-correlation is evaluated symmetrically, for equal numbers of neg and pos lags
'Output is the tensor mTargSwap.
'Developed for correlation measures with negative and positive lags

'Module variables
'Common experiment settings

'Private mExpLen As Integer
'Private mExecInt As Double
'Private mN As Long
'Private mSettingsSet As Boolean

'Torque sequence
'Private mTorque As Tensor
'Public mTorqueSet As Boolean

'Target velocity tensors
'Private mTargRaw As Tensor
'Private mTargRawSet As Boolean
'Private mTargSwap As Tensor
'Public mTargSwapSet As Boolean
'Private mSSDswapACF( As Double
'Private mSSDswapCCF( As Double
'Private mGoodSwaps As Long

'Correlation measures
'Private mACFdes As Tensor
'Private mACFset As Boolean
'Private mCCFdes As Tensor

'Local variables
Dim X As Tensor 'Set to torque s
Dim Y As Tensor 'Set to target s(

Dim imin As Long
Dim imax As Long
Dim i As Long
Dim N As Long 'number
Dim Nt As Long

Dim maxlag As Long 'set to th
Dim minlag As Long
Dim M As Long 'number

Dim ACForig As Tensor 'measur
Dim PSDorig As Tensor
Dim CCForig As Tensor

'experiment length in seconds
'interval at which to execute thru sequence
'number of terms in sequence
'flag for experimental settings

'raw sequence to be manipulated
'flag for raw target sequence
'swapped for PSD and/or uncorr
'Public flag for swapped target sequence
'Tracks SSD for ACF after each swap
'Tracks SSD for CCF after each swap
'Tracks number of successful swaps

'Desired ACF
'Flag that ACFdes is set
'Desired CCF

equence, mTorque
equence which will be swapped, mTargRaw

elements in torque and target sequences

e length of niACFdes

elements in ACF and PSD

es for the sequence before stochastic swap
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Dim CCFdes As Tensor
Dim cmin As Long
Dim cmax As Long

Dim ACFy As Tensor
Dim PSDy As Tensor
Dim CCFy As Tensor

Dim ACFswap As Tensor
Dim PSDswap As Tensor
Dim CCFswap As Tensor

Dim ACFcalc As Tensor
Dim PSDcalc As Tensor
Dim CCFcalc As Tensor

Dim ACFdif As Tensor
Dim CCFdif As Tensor

Dim PSDdisp As Tensor

Dim TotPowSeq As Double
Dim TotPowACF As Double

'desired CCF, set to 0 for uncorr sequences

'current measures

'efficiently updated measures

'calculated directly from swapped sequence

'compare ACFcalc to final updated ACFold

'use with DisplayTensor( ) to plot 0 freq 0 position

Dim SumElemsPSD As Double
Dim TotPowPSD As Double

Dim ssdACFy As Double
Dim ssdCCFy As Double
Dim ssdACFswap As Double
Dim ssdCCFswap As Double
Dim MSEorig As Double
Dim MSEswap As Double

Dim j As Long
Dim j2 As Long
Dim MaxSwaps As Long
Dim PossSwap As Long
Dim k As Long
Dim temp As Double

'MSE of original CCF
'MSE of swapped CCF

'randomly selected indices to swap

'Set indicators and tensor flags

'Ensure led indicator turned off
butlnitiated.Value = False

'Set flags for the LPF and position (target) sequences to false.
'This should be done whether butPSDuncorr is turned on, or reset to off.
mTargFiltSet = False
mTargPosSet = False

'Initiate routine if butPSDuncorr turned on, and other swapping routines turned off

357



If (butPSDuncorr = True And butSwap3 = False And butPSDswap = False And butUncorrSwap
False) Then

'Execute only if both torque and raw target tensors have been created,
'are of same length, and desired ACF previously created

'Set N and Nt to sequence lengths
If (mTorqueSet = True And mTargRawSet = True) Then

N UBound(mTorque. Val) - LBound(mToriue. Va1) + 1
Nt = UBound(mTargRaw.Val) - LBound(mTargRaw.Val) + 1

End If

'Execute only if mTorque and mTargRaw created, and of same length
If (mTorqueSet = True And mTargRawSet = True And N = Nt) Then

'Verify that desired ACF has been created
If mACFset = True Then

'Turn butInitiated just before calculation begins
butlnitiated.Value = True

'1. Set algorithm tensors to torque and target sequences
X = mTorque 'X is set to torque sequence
Y = mTargRaw 'Y is sequence to be manipulated for target motion
imin = LBound(Y.Val)
imax = UBound(Y.Val)
N = imax - imin + 1 'sequence length

'2. Randomize sequence that will be swapped; seems to quicken approach to desired ACF
For i = 1 To (5 * N)

ji imin + (imax - imin) * Rnd() 'selects number between imin and imax
j2 = imin + (imax - imin) * Rnd()
temp = Y.Val(jl)
Y.Val(j 1) = Y.Val(j2)
Y.Val(j2) = temp

Next i

'3. Calculate original ACF, PSD, CCF
maxlag UBound(mACFdes.Val) 'maxlag set same as that in desired ACF
minlag = -maxlag
M = maxlag - minlag + 1 'number of elements in ACF and PSD
ACForig = ACF(Y, minlag, maxlag)
PSDorig = PSDfromACF(ACForig, None)
CCForig = CCF(X, Y, minlag, maxlag)

'4. Create desired CCF, CCF = 0
CCFdes = CCForig 'sets information in tensor
cmin = LBound(CCForig.Val)
cmax = UBound(CCForig.Val)
For i= cmin To cmax

CCFdes.Val(i) = 0 'want sequences to be uncorrelated, CCF(j)= 0
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Next i
mCCFdes = CCFdes

'5. Stochastic interchange

'Set initial ACF and CCF to original
ACFy = ACForig
ssdACFy = SSD(ACFy, mACFdes)
CCFy = CCForig
ssdCCFy = SSD(CCFy, mCCFdes)
MSEorig = (1 / M) * ssdCCFy

'Set #swaps, array to track change in SSD
MaxSwaps = N * sldNumSwaps.Value
ReDim mSSDswapACF(MaxSwaps)
mSSDswapACF(O) = ssdACFy
ReDim mSSDswapCCF(MaxSwaps)
mSSDswapCCF(O) = ssdCCFy
mGoodSwaps = 0

'module level tensor

'M is length of ACF & CCF

'set max number of swaps
'SSD of ACF at each swap
'initial SSD, at swap 0

'counts swaps that are effective

'Ensure bounds set for sequence being swapped
imin = LBound(Y.Val)
imax = UBound(Y.Val)

'Two element stochastic interchange with efficient update of ACF & CCF
For PossSwap = 1 To MaxSwaps

'Randomly choose two unequal elements to be swapped
jl=j2
Do While jI = j2

jI = imin + (imax - imin) * Rnd()
j2 = imin + (imax - imin) * Rnd()

Loop

'ACF after swap
ACFswap = ACFafterSwap(Y, ACFy, minlag, maxlag, ji, j2)

'CCF after swap
CCFswap = CCFafterSwap(Y, X, CCFy, minlag, maxlag, ji, j2)

'Calculate SSD for ACF and CCF after swap
ssdACFswap = SSD(ACFswap, mACFdes)
ssdCCFswap = SSD(CCFswap, mCCFdes)

'Exchange elements if swap improves ACF and CCF
If SSD for ACF and CCF are lower after terms swapped, then swap
Y.val(j 1) and Y.val(j2) and update ACFold and CCFold to new

If (ssdCCFswap < ssdCCFy) And (ssdACFswap <= ssdACFy) Then
temp = Y.Val(jl)
Y.Val(jl) = Y.Val(j2)
Y.Val(j2) = temp
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ACFy = ACFswap
ssdACFy = ssdACFswap
CCFy = CCFswap
ssdCCFy = ssdCCFswap
mGoodSwaps = mGoodSwaps + 1

End If

'Set SSD for swap # PossSwap
mSSswaACFPos~wa) =ssACMy".i"i LIJLA 13 VY - xLJ9 L V va OL3 vv a}J) - sU1X~mh ~~Ar ( ~ - A % c'u.

mSSDswapCCF(PossSwap) = ssdCCFy

Next PossSwap

'6. Verify outcome

'Explicitly calculate ACF, PSD, & CCF from swapped sequence
ACFcalc = ACF(Y, minlag, maxlag)
PSDcalc = PSDfromACF(ACFcalc, None)
CCFcalc = CCF(X, Y, minlag, maxlag)
MSEswap = (1 / M) * SSD(CCFcalc, mCCFdes)

'Compare updated ACF to ACF calculated for entire swapped array
"imin LBound(ACFcalc.Val)
"imax = UBound(ACFcalc.Val)
"ACFdif = ACFcalc
"For i = imin To imax

"ACFdif.Val(i) = ACFcalc.Val(i) -ACFy.Val(i)
"Next i

'Compare updated CCF to CCF calculated for entire swapped array
"imin LBound(CCFcalc.Val)
"imax = UBound(CCFcalc.Val)
"CCFdif = CCFcalc
"For i = imin To imax

"CCFdif.Val(i) = CCFcalc.Val(i) - CCFy.Val(i)
"Next i

'7. Total power of swapped sequence

'from ACF
TotPowACF = N * ACFcalc.Val(O)

'from PSD
SumElemsPSD = 0
M = UBound(PSDcalc.Val) - LBound(PSDcalc.Val) + 1
For i = LBound(PSDcalc.Val) To UBound(PSDcalc.Val)

SumElemsPSD = SumElemsPSD + PSDcalc.Val(i)
Next i
TotPowPSD = (N / M) * SumElemsPSD

'8. Set the swapped target tensor
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mTargSwap = Y
mTargSwapSet = True

'Turn butInitiated off after calculation
butInitiated.Value = False

'plots
plotA.PlotY CCFcalc.Val
labA.Caption = "CCF after swap"
txtA.Text = "MSE 1:" + Format(MSEorig, "0.#000000") +" 2:" +

Format(MSEswap, "0.#000000")

"plotA.PlotY ACFdif.Val
"labA.Caption = "ACF difference at end"

"plotB.PlotY CCFdif.Val
"labB.Caption = "CCF difference at end"

plotB.PlotY ACFcalc.Val
labB.Caption = "ACF mTargSwap"
txtB.Text = "Total power =" + Format(TotPowACF, "#.#0")

plot__D.PlotY Y.Val
labD.Caption = "mTargSwap: PSD, CCF"
txtD.Text = ""

PSDdisp = DisplayTensor(PSDcalc)
plotE.PlotY PSDdisp.Val
labE.Caption = "PSD mTargSwap"
txtE.Text = "Total power = " + Format(TotPowPSD, "#.#0")

Else 'ACF not previously created
txtComment.Text = "Desired ACF not created."
butPSDuncorr = False

End If

Else 'Torque and target sequences not previously created properly
txtComment.Text = "Both tensors not created, or not same length."
butPSDuncorr = False

End If

Else 'butPSDuncorr turned off or either butPSDswap or butUncorrSwap already on
If (butPSDuncorr = False And butPSDswap = False And butUncorrSwap = False) Then

mTargSwapSet = False
'Turn off LPF and Integrated buttons
butLPF = False
butIntegrate = False

End If
End If

End Sub
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Private Sub butSwap3_ValueChanged(ByVal Value As Boolean)

Subroutine uses a three element stochastic swap to order the target sequence
to have a desired ACF and to be statistically uncorrelated from the torque sequence.
Cross-correlation is evaluated symmetrically, for equal numbers of neg and pos lags

'Output is the tensor mTargSwap.
'Developed for correlation measures

'Module variables
'Common experiment settings

'Private mExpLen As Integer
'Private mExecInt As Double
'Private mN As Long
'Private mSettingsSet As Boolean

'Torque sequence
'Private mTorque As Tensor
'Public mTorqueSet As Boolean

'Target velocity tensors
'Private mTargRaw As Tensor
'Private mTargRawSet As Boolean
'Private mTargSwap As Tensor
'Public mTargSwapSet As Boolean
'Private mSSDswapACFo As Double
'Private mSSDswapCCF( As Double
'Private mGoodSwaps As Long

'Correlation measures
'Private mACFdes As Tensor
'Private mACFset As Boolean
'Private mCCFdes As Tensor

'Local variables
Dim X As Tensor
Dim Y As Tensor

Dim
Dim
Dim

Yt As Tensor
Ya As Tensor
Yb As Tensor

Dim imin As Long
Dim imax As Long
Dim i As Long
Dim N As Long
Dim Nt As Long

Dim maxlag As Long
Dim minlag As Long
Dim M As Long

with negative and positive lags

'experiment length in seconds
'interval at which to execute thru sequence
'number of terms in sequence
'flag for experimental settings

'raw sequence to be manipulated
'flag for raw target sequence
'swapped for PSD and/or uncorr
'Public flag for swapped target sequence
'Tracks SSD for ACF after each swap
'Tracks SSD for CCF after each swap
'Tracks number of successful swaps

'Desired ACF
'Flag that ACFdes is set
'Desired CCF

'Set to torque sequence, mTorque
'Set to target sequence which will be swapped, mTargRaw

'temporary tensor that holds order after two elements swapped
'3 elements swapped, order a
'3 elements swapped, order b

'number elements in torque and target sequences

'set to the length of mACFdes

'number elements in ACF and PSD
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Dim ACForig As Tensor 'measures for the sequence before stochastic swap
Dim PSDorig As Tensor
Dim CCForig As Tensor

Dim CCFdes As Tensor 'desired CCF, set to 0 for uncorr sequences
Dim cmin As Long
Dim cmax As Long

Dim ACFy As Tensor 'current measures for tensor Y
Dim ssdACFy As Double
Dim PSDy As Tensor
Dim CCFy As Tensor
Dim ssdCCFy As Double

Dim ACFt As Tensor
Dim ssdACFt As Double
Dim CCFt As Tensor
Dim ssdCCFt As Double

Dim ACFa As Tensor
Dim ssdACFa As Double
Dim CCFa As Tensor
Dim ssdCCFa As Double

Dim ACFb As Tensor
Dim ssdACFb As Double
Dim CCFb As Tensor
Dim ssdCCFb As Double

Dim ACFcalc As Tensor
Dim PSDcalc As Tensor
Dim CCFcalc As Tensor

Dim ACFdif As Tensor
Dim CCFdif As Tensor

Dim PSDdisp As Tensor

Dim TotPowSeq As Double
Dim TotPowACF As Double
Dim SumElemsPSD As Double
Dim TotPowPSD As Double

Dim MSEorig As Double
Dim MSEswap As Double

Dim jl As Long
Dim j2 As Long
Dim j3 As Long

'calculated directly from swapped sequence

'compare ACFcalc to final updated ACFold

'use with DisplayTensor( ) to plot 0 freq 0 position

MSE of original CCF
'MSE of swapped CCF

'randomly selected indices to swap

Dim nI As Long
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Dim n2 As Long

Dim MaxSwaps As Long
Dim PossSwap As Long
Dim k As Long
Dim temp As Double

'Set indicators and tensor flags

'Ensure led indicator turned off
butlnitiated.Value = False

'Set flags for the LPF and position (target) sequences to false.
'This should be done whether butPSDuncorr is turned on, or reset to off.
mTargFiltSet = False
mTargPosSet = False

'Initiate routine if butSwap3 turned on, and other swapping routines turned off
If (butSwap3 = True And butPSDuncorr = False And butPSDswap = False And butUncorrSwap =

False) Then

'Execute only if both torque and raw target tensors have been created,
'are of same length, and desired ACF previously created

'Set N and Nt to sequence lengths
If (mTorqueSet = True And mTargRawSet = True) Then

N UBound(mTorque.Val) - LBound(mTorque.Val) + 1
Nt UBound(mTargRaw.Val) - LBound(mTargRaw.Val) + 1

End If

'Execute only if mTorque and mTargRaw created, and of same length
If (mTorqueSet = True And mTargRawSet = True And N = Nt) Then

'Verify that desired ACF has been created
If mACFset = True Then

'Turn butInitiated just before calculation begins
butlnitiated.Value = True

'1. Set algorithm tensors to torque and target sequences
X = mTorque 'X is set to torque sequence
Y = mTargRaw 'Y is sequence to be manipulated for target motion
imin = LBound(Y.Val)
imax = UBound(Y.Val)
N = imax - imin + 1 'sequence length

'2. Randomize sequence that is to be ordered;
seems to quicken approach to desired ACF&CCF
For i = 1 To (5 * N)

ji imin + (imax - imin) * Rnd() 'selects number between imin and imax
j2 = imin + (imax - imin) * Rnd()
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temp = Y.Val(j 1)
Y.Val(j 1) = Y.Val(j2)
Y.Val(j2) = temp

Next i

'3. Explicitly calculate original ACF, PSI
maxlag = UBound(mACFdes.Val)
minlag -maxlag
M = maxlag - minlag + 1
ACForig = ACF(Y, minlag, maxlag)
PSDorig = PSDfromACF(ACForig, N<
CCForig = CCF(X, Y, minlag, maxlag

'maxlag set same as that in desired ACF

'number of elements in ACF and PSD

'4. Create desired CCF; CCF = 0 for uncorrelated sequences
CCFdes = CCForig 'sets tensor inform
cmin = LBound(CCForig.Val)
cmax = UBound(CCForig.Val)
For i = cmin To emax

CCFdes.Val(i) = 0 'uncorrelated sequ
Next i
mCCFdes = CCFdes

ation

ences, CCF(j)= 0

'module level tensor

'5. Three element stochastic interchange
'Compare result of swap to Y, ACFy, ssdACFy, CCFy, ssdCCFy

'5a. Set up

'Set initial ACF, CCF values to original
ACFy = ACForig
ssdACFy = SSD(ACForig, mACFdes)
CCFy = CCForig
ssdCCFy = SSD(CCForig, mCCFdes)
MSEorig = (1 / M) * ssdCCFy

'Set #swaps, array to track change in SSD
MaxSwaps = N * sldNumSwaps.Value
ReDim mSSDswapACF(MaxSwaps)
mSSDswapACF(0) = ssdACFy
ReDim mSSDswapCCF(MaxSwaps)
mSSDswapCCF(0) = ssdCCFy
mGoodSwaps = 0

'M is length of ACF & CCF

'set max number of swaps
'SSD of ACF at each swap
'initial SSD, at swap 0

'counts swaps that are effective

'Ensure bounds set to Y
imin = LBound(Y.Val)
imax = UBound(Y.Val)

'5b. Stochastic swap
For PossSwap = 1 To MaxSwaps

'1. Randomly choose three elements to be swapped - ensure they are different
jl = 0

365



j2 =0
j3 =0
Do Whileji =j2 Orj2 =j3 Orjl =j3

jI = imin + (imax - imin) * Rnd()
j2 = imin + (imax - imin) * Rnd()
j3 = imin + (imax - imin) * Rnd()

Loop

'2. Create temporary sequence by swappLIg jL and j2

'swap elements of Y to create Yt
Yt = Y
temp = Yt.Val(j 1)
Yt.Val(j 1) = Yt.Val(j2)
Yt.Val(j2)= temp

'update ACF and CCF from original Y values
ACFt = ACFafterSwap(Y, ACFy, minlag, maxlag, ji, j2)
CCFt = CCFafterSwap(Y, X, CCFy, minlag, maxlag, ji, j2)
ssdACFt = SSD(ACFt, mACFdes)
ssdCCFt = SSD(CCFt, mCCFdes)

'3. Two options for the three element swap

'3a. Option a: swap elements jl and j3

'swap elements of Yt to create Ya
Ya = Yt
temp = Ya.Val(j 1)
Ya.Val(j 1) = Ya.Val(j3)
Ya.Val(j3) = temp

'update ACF and CCF from Yt measures
ACFa = ACFafterSwap(Yt, ACFt, minlag, maxlag, ji, j3)
ssdACFa = SSD(ACFa, mACFdes)
CCFa = CCFafterSwap(Yt, X, CCFt, minlag, maxlag, ji, j3)
ssdCCFa = SSD(CCFa, mCCFdes)

'3b. Option b: swap elements j2 and j3

'swap elements of Yt to create Yb
Yb = Yt
temp = Yb.Val(j2)
Yb.Val(j2) = Yb.Val(j3)
Yb.Val(j3) = temp

'update ACF and CCF from Yt measures
ACFb = ACFafterSwap(Yt, ACFt, minlag, maxlag, j2, j3)
ssdACFb = SSD(ACFb, mACFdes)
CCFb = CCFafterSwap(Yt, X, CCFt, minlag, maxlag, j2, j3)
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ssdCCFb = SSD(CCFb, mCCFdes)

'4. Select which order should be used; a, b, or y
Change sequence order when the swap improved the CCF and the ACF is improved
or remains the same. Of the 2 orders, choose the order with the lower CCF

'Select order a
If (ssdCCFa < ssdCCFb) And (ssdCCFa < ssdCCFy) And (ssdACFa <= ssdACFy)

Then
Y = Ya
ACFy = ACFa
ssdACFy = ssdACFa
CCFy = CCFa
ssdCCFy = ssdCCFa

'Select order b
ElseIf (ssdCCFb < ssdCCFa) And (ssdCCFb < ssdCCFy) And (ssdACFb <=

ssdACFy) Then
Y=Yb
ACFy = ACFb
ssdACFy = ssdACFb
CCFy = CCFb
ssdCCFy = ssdCCFb

'Decide between a and b if CCF equal and less than old
ElseIf (ssdCCFb = ssdCCFa) And (ssdCCFa < ssdCCFy) Then

If (ssdACFa < ssdACFb) And (ssdACFa < ssdACFy) Then
Y = Ya
ACFy = ACFa
ssdACFy = ssdACFa
CCFy = CCFa
ssdCCFy = ssdCCFa

ElseIf (ssdACFb < ssdACFa) And (ssdACFb < ssdACFy) Then
Y = Yb
ACFy = ACFb
ssdACFy = ssdACFb
CCFy = CCFb
ssdCCFy = ssdCCFb

End If

Else 'No change
End If

'5c. Set SSD for swap # PossSwap
mSSDswapACF(PossSwap) = ssdACFy
mSSDswapCCF(PossSwap) = ssdCCFy

Next PossSwap
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'6. Verify outcome

'Explicitly calculate ACF, PSD, & CCF from swapped sequence
ACFcalc = ACF(Y, minlag, maxlag)
PSDcalc = PSDfromACF(ACFcalc, None)
CCFcalc = CCF(X, Y, minlag, maxlag)
MSEswap = (1 / M) * SSD(CCFcalc, mCCFdes)

'Compare updated ACF to ACF calculated for entire swapped array
"imin = LBound(ACFcalc.Val)
"imax UBound(ACFealc.Val)
"ACFdif = ACFcalc
"For i = imin To imax
" ACFdif.Val(i)= ACFcalc.Val(i) - ACFy.Val(i)
"Next i

'Compare updated CCF to CCF calculated for entire swapped array
"imin = LBound(CCFcalc.Val)
"imax UBound(CCFcalc.Val)
"CCFdif = CCFcalc
"For i = imin To imax
" CCFdif.Val(i) = CCFcalc.Val(i) - CCFy.Val(i)
"Next i

'7. Total power of swapped sequence

'from ACF
TotPowACF = N * ACFcalc.Val(O)

'from PSD
SumElemsPSD = 0
M = UBound(PSDcalc.Val) - LBound(PSDcalc.Val) + 1
For i = LBound(PSDcalc.Val) To UBound(PSDcalc.Val)

SumElemsPSD = SumElemsPSD + PSDcalc.Val(i)
Next i
TotPowPSD = (N / M) * SumElemsPSD

'8. Set the swapped target velocity to Y
mTargSwap = Y
mTargSwapSet = True

'Turn butInitiated off after calculation
butInitiated.Value = False

'plots
plot A.PlotY CCFcalc.Val
labA.Caption = "CCF after swap"
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txtA.Text = "MSE 1:" + Format(MSEorig, "0.#000000") + " 2: "+

Format(MSEswap, "0.#000000")

"plot A.PlotY ACFdif.Val
"labA.Caption = "ACF difference at end"

"plot B.PlotY CCFdif.Val
"lab B.Caption = "CCF difference at end"

plotB.PlotY ACFcalc.Val
lab B.Caption = "ACF mTargSwap"
txtB.Text = "Total power =" + Format(TotPowACF, "#.#O")

plotD.PlotY Y.Val
lab D.Caption = "mTargSwap: PSD, CCF"
txtD.Text = ""

PSDdisp = DisplayTensor(PSDcalc)
plotE.PlotY PSDdisp.Val
labE.Caption = "PSD mTargSwap"
txtE.Text = "Total power = " + Format(TotPowPSD, "#.#0")

Else 'ACF not previously created
txtComment.Text = "Desired ACF not created."
butPSDuncorr = False

End If

Else 'Torque and target sequences not previously created properly
txtComment.Text = "Both tensors not created, or not same length."
butPSDuncorr = False

End If

Else 'butPSDuncorr turned off or either butPSDswap or butUncorrSwap already on
If (butPSDuncorr = False And butPSDswap = False And butUncorrSwap = False) Then

mTargSwapSet = False
'Turn off LPF and Integrated buttons
butLPF = False
butIntegrate = False

End If
End If

End Sub
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Private Sub cmdCCFClick()
'Calculates the neg and pos lags

'Module variables
'Common experiment settings

'Private mExpLen As Integer
'Private mExecInt As Double
'Private mN As Long

i orque sequence
'Private mTorque As Tensor
'Private mTorqueSet As Boolean

'Raw Target sequence
'Target velocity tensors
'Private mTargRaw As Tensor
'Private mTargRawSet As Boolean

of cross correlation

'experiment length in seconds
'interval at which to execute thru sequence

'number of terms in sequence

'raw sequence to be manipulated
'flag for raw target sequence

'Local variables
Dim Y As Tensor
Dim Yset As Boolean
Dim SeqName As String
Dim N As Long
Dim Ny As Long
Dim percentLen As Double
Dim maxlag As Long
Dim minlag As Long
Dim Cty As Tensor
Dim Uncorr As Tensor
Dim j As Long
Dim MSE As Double
Dim AmpSpec As Tensor
Dim PhaseSpec As Tensor
Dim PlotSpec As Tensor

'Decide which sequence is to be cross correlated with the Torque
'Even allow the torque sequence

'Begin with sequence flag set false, set true once decide which seq to use
Yset = False

If (optTor = True And mTorqueSet = True) Then
Y = mTorque
SeqName = "torque"
Yset = True

ElseIf (optTargRaw = True And mTargRawSet = True) Then
Y = mTargRaw
SeqName = "Raw target"
Yset = True

ElseIf (optTargSwap = True And mTargSwapSet = True) Then
Y = mTargSwap
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SeqName = "Swap target"
Yset = True

Elself (optTargFilt = True And mTargFiltSet = True) Then
Y = mTargFilt
SeqName = "LPF target"
Yset = True

ElseIf (optTarglnt = True And mTargPosSet = True) Then
Y = mTargPos
SeqName = "Int target"
Yset = True

Else
txtComment.Text = "Specified sequence not created."

End If

'Check lengths of sequences
If (mTorqueSet = True And Yset = True) Then

N = UBound(mTorque.Val) - LBound(mTorque.Val) + 1
Ny = UBound(Y.Val) - LBound(Y.Val) + 1

End If

'Execute only if both tensors have been created and same length
If (mTorqueSet = True And Yset = True And N = Ny) Then

'lags
percentLen = sldMaxLag.Value
maxlag Int(percentLen * (N - 1))
minlag = -maxlag
txtMaxLag.Text = Format(percentLen, "#.#0") + "*N, "+ Format(maxlag, "#")

'CCF
Cty = CCF(mTorque, Y, minlag, maxlag)

'Create zero tensor to represent uncorr ccf
Uncorr = Cty
For j = minlag To maxlag

Uncorr.Val(j)= 0
Next j

'Mean square error between Cxy and uncorr
MSE = (1 / (maxlag - minlag + 1)) * SSD(Cty, Uncorr)

'Cross amplitude and phase spectra
AmpSpec = CrossAmpSpectrum(mTorque, Y, maxlag)
PhaseSpec = PhaseSpectrum(mTorque, Y, maxlag)

'plots
plot A.PlotY Y.Val
labA.Caption = SeqName
txtA.Text = "Crossed with torque"

plotB.PlotY Cty.Val
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labB.Caption = "Tor-" + SeqName + " CCF"
txtB.Text = "MSE CCF = " + Format(MSE, "0.##00000")

PlotSpec = DisplayTensor(PhaseSpec)
plot D.PlotY PlotSpec.Val
labD.Caption = "Phase (deg)"
txtD.Text = "Tor-" + SeqName

PlotSnec = Dis p ayTens .r( Ampp
plot E.PlotY PlotSpec.Val
labE.Caption = "Cross-amp (disp)"
txtE.Text = "Tor-" + SeqName

'clear coment txt
txtComment.Text =

Else: txtComment.Text = "Both sequences not created."

End If
End Sub

Private Sub cmdPSDClick()
'ACF and PSD of mTorque and mTargRaw sequences
'Uses Plexus function ACFO to calculate negative and positive lags,
' and Plexis function

'Module variables
'Common experiment settings

'Private mExpLen As Integer
'Private mExecInt As Double
'Private mN As Long

'Torque sequence
'Private mTorque As Tensor
'Private mTorqueSet As Boolean

'Target velocity tensors
'Private mTargRaw As Tensor
'Private mTargRawSet As Boolean
'Private mTargSwap As Tensor
'Public mTargSwapSet As Boolean
'Private mTargFilt As Tensor
'Public mTargFiltSet As Boolean
'Private mTargPos As Tensor
'Public mTargPosSet As Boolean

'Local variables
Dim Target As Tensor
Dim TargetSet As Boolean

experiment length in seconds
'interval at which to execute thru sequence
'number of terms in sequence

'raw sequence to be manipulated
'flag for raw target sequence
'swapped for PSD and/or uncorr
'Public flag for swapped target sequence
'LPF filtered target sequence
'Public flag for filtered target sequence
'Position sequence
'Public flag for position sequence

'Assiged to hold desired target sequence
'Flag that tensor was set
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Dim N As Long
Dim percentLen As Double
Dim maxlag As Long
Dim minlag As Long
Dim SeqName As String

'length of sequences
'percent of length for lag
'max lag for ACF

Dim Ctt As Tensor 'pos and neg lags
Dim TotPowACF As Double
Dim PSD As Tensor
Dim lenPSD As Long
Dim i As Long

Dim SumElems As Double
Dim TotPowPSD As Double
Dim PSDdisp As Tensor

'Execute only if flags for sequences are set true
' else report tensors not created.

'optTor selected
If optTor = True Then

'PSD of Torque
If mTorqueSet = True Then

'length of mTorque
N = UBound(mTorque.Val) - LBound(mTorque.Val) + 1

'set min and max lag
percentLen = GenSeqs.sldMaxLag.Value
txtMaxLag.Text = Format(percentLen, "#.#0") + "*N, " + Format(maxlag, "#")
maxlag = Int(percentLen * (N - 1))
minlag = -maxlag

'Torque ACF
Ctt = ACF(mTorque, minlag, maxlag)
'total power from ACF
TotPowACF = N * Ctt.Val(O)

'Torque PSD
PSD = PSDfromACF(Ctt, None)
lenPSD = UBound(PSD.Val) - LBound(PSD.Val) + 1
SumElems = 0
For i = LBound(PSD.Val) To UBound(PSD.Val)

SumElems = SumElems + PSD.Val(i)
Next i
TotPowPSD = (N / lenPSD) * SumElems

'Torque plots
plot _A.PlotY mTorque.Val
labA.Caption = "Torque"
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txtA.Text = ""

plot B.PlotY Ctt.Val
labB.Caption = "ACF(+/- lags): Torque"
txtB.Text = "Tot pow (ACF) "+ Format(TotPowACF, "#.#0")

plot D.PlotY 0
labD.Caption =

txt__D.Text = ""

PSDdisp = DisplayTensor(PSD)
plot E.PlotY PSDdisp.Val
labE.Caption = "PSD(disp): Torque"
txtE.Text = "Tot pow (PSD)= " + Format(TotPowPSD, "#.#0")

Else: txtComment.Text = "Torque sequence not created."

End If

'Option selected for one of the target sequences
Else

'PSD of mTargRaw

'Decide which target sequence to use
'Begin with target flag set false, set true once decide which seq to use
TargetSet = False

If (optTargRaw = True And mTargRawSet = True) Then
Target = mTargRaw
SeqName = "Raw target"
TargetSet = True

ElseIf (optTargSwap = True And mTargSwapSet = True) Then
Target = mTargSwap
SeqName = "Swap target"
TargetSet = True

ElseIf (optTargFilt = True And mTargFiltSet = True) Then
Target = mTargFilt
SeqName = "LPF target"
TargetSet = True

ElseIf (optTarglnt = True And mTargPosSet True) Then
Target = mTargPos
SeqName = "Int target"
TargetSet = True

Else
TargetSet = False
txtComment.Text = "Specified target sequence not created."

End If

If TargetSet = True Then
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'length of mTargRaw
N = UBound(Target.Val) - LBound(Target.Val) + 1

'set min and max lag
percentLen = GenSeqs.sldMaxLag.Value
txtMaxLag.Text = Format(percentLen, "#.#0") + "*N, 1+ Format(maxlag, "#")

maxlag = Int(percentLen * (N - 1))
minlag -maxlag

'ACF
Ctt = ACF(Target, minlag, maxlag)
'total power from ACF
TotPowACF = N * Ctt.Val(O)

'PSD
PSD = PSDfromACF(Ctt, None)
lenPSD = UBound(PSD.Val) - LBound(PSD.Val)+ 1
SumElems = 0
For i = LBound(PSD.Val) To UBound(PSD.Val)

SumElems = SumElems + PSD.Val(i)
Next i
TotPowPSD = (N / lenPSD) * SumElems

'clear txtComment
txtComment.Text =

'plots
plot A.PlotY Target.Val
lab_ A.Caption = SeqName
txt__A.Text = ""

plot B.PlotY Ctt.Val
labB.Caption = "ACF(+/- lags): "+ SeqName
txtB.Text = "Tot pow (ACF) =" + Format(TotPowACF, "#.#0")

plot D.PlotY 0
lab_D.Caption =

txtD.Text = ""

PSDdisp = DisplayTensor(PSD)
plot E.PlotY PSDdisp.Val
lab__E.Caption = "PSD(disp): "+ SeqName
txtE.Text = "Tot pow (PSD)=" + Format(TotPowPSD, "#.#0")

End If

End If
End Sub
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Private Sub sldLPFPointerValueChanged(ByVal Pointer As Long, Value As Variant)
'LPF filter frequency

txtLPF.Text = Format(sldLPF.Value, "0.0") + " Hz"

End Sub

Private Sub sldMaxLagPointerValueChanged(ByVal Pointer As Long, Value As Variant)
'Calculates max number of ACF lags as a % of sequence length

'Module variables
'Common experiment settings

'Private mExpLen As Integer 'experiment length in seconds
'Private mExecInt As Double 'interval at which to execute thru sequence
'Private mN As Long 'number of terms in sequence
'Private mSettingsSet As Boolean 'flag for experimental settings

'Local variables
Dim i As Long
Dim N As Long
Dim maxlag As Long
Dim percent As Double

'Execute only if mHvel created
If mSettingsSet = True Then

N = mN
percent = sldMaxLag.Value
maxlag = Int(percent * N)
txtMaxLag.Text = Format(percent, "#.#0") + "*N, "+ Format(maxlag, "#")
txtComment.Text =

Else
txtComment.Text = "Experiment settings must be set."
sldMaxLag.Value = 1

End If
End Sub

Private Sub sldNumSwapsPointerValueChanged(ByVal Pointer As Long, Value As Variant)
'Update text window

txtNumSwaps.Text = Format(sldNumSwaps.Value, "0")
End Sub

Private Sub sldSeedlengthPointerValueChanged(ByVal Pointer As Long, Value As Variant)
'Local variables

Dim P As Long
Dim PRBSint As Double
Dim PRBSdur As Double
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'Turn butGenTorque off, ensures values are not changed after sequence set
butGenTorque.Value = False
mTorqueSet = False

'Can only calculate duration once experimental settings are set
If mSettingsSet = True Then

P = (2 ^ sldSeedlength.Value) - 1 'PRBS length
PRBSint = sldlntRatio.Value * mExecInt 'effective PRBS interval
PRBSdur = P * PRBSint 'duration of PRBS
txtPRBSdur.Text = Format(PRBSdur, "0.0")+ " s"

Else

End If
End Sub
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User defined functions

The user defined functions were programmed using the Plexus programming format

developped by Prof. Ian W. Hunter.

Plexus functions added by J. L. Tangorra
Last update Apr 2002

' GenComplexArray

GenPRBS
GenGWN
GenDualGWN
GenBinary
GenUniform
Gen2Uniform

Convolve2
dtConvolve

ReDFT

ImDFT

InvDFT

DisplayTensor

AutoCorrelation
CrossCorrelation

'ACF
CCF
TwoSidedPSD
PSDfromACF
ACFfromPSD

ReCrossPSD

ImCrossPSD

CrossAmpSpectrum
PhaseSpectrum

SSD

Conducts convolution h*x - causal or noncausal
Convolves h(n)*x(n). Scales by 1/dT.

Calculates the cosine transform of a real valued tensor
AofDFT=A-jB
Calculates the sine transform of a real valued tensor
B of DFT = A -jB
Calculates the inverse DFT from the real and imaginary
components of the DFT = A -jB
Rearranges elements of tensor so elements with negative
indices are moved after the positive indices for graphing.

Calculates (-/+)lag values of auto-correlation

PSD calculated from (+) lags of ACF
-0.5 to 0.5 cps PSD calculated from (-/+) lags of ACF
(-/+) lags of ACF from PSD -0.5 to 0.5 Hz

Calculates the real part of the cross spectral density
Sometimes called the co-spectral estimator.
Calculates the imaginary part of the cross spectral density
Sometimes called the quadrature estimator

SqRoot( ReCrossPSD^2 + ImCrossPSD^2)
ArcTan( - ImCrossPSD/ReCrossPSD)

Calculates sum of square difference between two tensors
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IntegrateTR

ScaleTensor
ACFafterSwa
CCFafterSwa

LPF
LPFwind
ModBessIO()
LPFkaiser

Integrates the elements of a tensor using a simple
Trapezoidal Rule

Scales tensor by a constant

p
p

Convolves sequence with non-causal LPF irf found from invDFT of How)
Windowed LPF
Evaluates zeroth-order modified Bessel function of first kind
Creates LPF from sinc with a Kaiser window. Requires ModBessIO()

Public Function GenComplexArray(Y() As Double) As Complexo

'Converts an array of real, double, values into an array of type Complex.
'Values in complex arrays have real and imag parts, x(i).re and x(i).im.
'The motivation is to have a function to convert real arrays in complexo for
'the FFT functions

Dim imin As Double
Dim imax As Double
Dim i As Double
Dim X( As Complex

imin = LBound(Y)
imax UBound(Y)

ReDim X(imin To imax)

For i = imin To imax
X(i).re = Y(i)
X(i).im = 0

Next i

GenComplexArray = X

End Function

Public Function GenPRBS( _
Optional SeedLength As Long = 12,
Optional imin As Long = 0, _
Optional imax As Long = 1000, -

Optional dT As Double = 0.05 _

) As Tensor

'Generates a Plexus Tensor Vector
' prbs(i) i=imin, imin+1,...,imax
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imin (default 0)
imax (default = 1000)
dt domain increment (default 0.05)

'The PRBS repeats after (2^SeedLength)-l elements

'This function was created by following the structure used
'by Ian Hunter for the Plexus functions.
'It was written by James Tangorra
'Last update 03 Aug 2001

'Local variable declarations

Dim prbso As Double
Dim tap 1 As Integer
Dim tap2 As Integer
Dim i As Long
Dim N As Long
Dim SeedSum As Long

'Select XOR tap values based on SeedLength
Select Case SeedLength

Case 6
tapI = 5
tap2 = 6

Case 7
tapi = 6
tap2 = 7

Case 8
tapi = 6
tap2 = 8

Case 9
tapi = 5
tap2 = 9

Case 10
tapi = 7
tap2 = 10

Case 11
tapi = 9
tap2= 11

Case 12
tapi = 11
tap2 = 12

Case 13
tap1 =12
tap2 = 13

Case 14
tap1 = 13
tap2 = 14

Case 15
tapi = 14
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tap2 = 15
Case Else
'default to taps for SeedLength of 12, SeedLength default is 12

tapi = 11
tap2 = 12

End Select

'size prbs( ) and initialize elements to zero
ReDim prbs(imin To imax)
For i = imin To imax

prbs(i)= 0
Next i

'Generate random seeds of 0 or 1, place at rightmost end of array
'If all seed values equal zero, change last seed value to 1
SeedSum = 0
For i = 0 To (SeedLength - 1)

prbs(imax - i) = Int(Rnd + 0.5)
SeedSum= SeedSum + prbs(imax - i)

Next i
If SeedSum = 0 Then prbs(imax) = 1

'Generate PRBS sequence
'place XOR value to left of shift register
'begin at value n = imax - SeedLength
'end at imin
For i = (imax - SeedLength) To imin Step -1

prbs(i)= prbs(i + tap 1) Xor prbs(i + tap2)
Next i

ReDim GenPRBS.Rname(l To 1)
ReDim GenPRBS.Runit(1 To 1)
ReDim GenPRBS.Dname(1 To 1)
ReDim GenPRBS.Dunit(1 To 1)
ReDim GenPRBS.Inc(1 To 1)
GenPRBS.Note "Pseudo-random binary sequence"
GenPRBS.Class = "Vector"
GenPRBS.Type "Signal"
GenPRBS.Rname(l) = "Amplitude"
GenPRBS.Dname(1) = "Time"
GenPRBS.Dunit(1) = "s"
GenPRBS.Inc(1) = dT
GenPRBS.Val = prbs

End Function
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Public Function GenGWN( _
Optional imin As Long 0, _
Optional imax As Long = 1000,
Optional dT As Double =0.05, _
Optional Mean As Double = 0#,
Optional SD As Double = 1#
) As Tensor

x(i) i=imin, imin+1,...,imax
'by adding 20 uniformly distributed (0 to 1) random numbers)
'GenGaussNoise function sets x to the specified

imin (default 0),
imax (default 1000),
dt domain increment (default 0.5),
mean (default 0.0) and,
standard deviation (default 1.0)

'This function was modified from GenGaussNoise.
'It was written by Ian Hunter Jan 14 1999

Dim X( As Double
ReDim X(imin To imax)
Dim i As Long
Dimj As Long
Dim gwn As Double
Dim si As Double
Dim s2 As Double

si = 0#

For i = imin To imax 'Adds 20 elements, each between 0 and 1
gwn = -10# 'Puts sum from -10 to +10
Forj= 1 To 20

gwn = gwn + Rnd()
Next j
X(i) = gwn
si = si + gwn

Next i
sI = sl / (imax - imin + 1) 'mean of sequence

s2 =0#
For i imin To imax

X(i) X(i) - sl 'Makes sequence zero mean
s2 = s2 + X(i) ^ 2

Next i
s2 = Sqr(s2 / (imax - imin)) 'Standard deviation of zero mean sequence

For i = imin To imax
X(i)= Mean + SD * X(i) / s2 'Give sequence desired mean and std deviation

Next i
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ReDim GenGWN.Rname(1 To 1)
ReDim GenGWN.Runit(l To 1)
ReDim GenGWN.Dname(l To 1)
ReDim GenGWN.Dunit(l To 1)
ReDim GenGWN.Inc(l To 1)

GenGWN.Note = "Gaussian white noise"
GenGWN.Class = "Vector"
GenGWN.Type "Signal"
GenGWN.Rname(1) = "Amplitude"
GenGWN.Dname(1) = "Time"
GenGWN.Dunit(1) = "s"
GenGWN.Inc(l) = dT
GenGWN.Val = X

End Function

Public Function GenDualGWN( _
Optional imin As Long 0, _
Optional imax As Long = 1000,
Optional dT As Double 0.05,
Optional Mean As Double = 1#,
Optional SD As Double = 1#
) As Tensor

'Generates a Tensor from two Gaussian distributions.
'The Gaussian distributions are made by adding 20 uniformly
'distributed random numbers, between 0 and 1

'This function was modified from GenGWN.

Dim X( As Double
ReDim X(imin To imax)
Dim i As Long
Dim j As Long
Dim N As Long
Dim jmin As Long
Dim jmax As Long
Dim gwn As Double
Dim sI As Double
Dim s2 As Double

'Split the elements in half
N = imax - imin + 1

'First half, give the negative mean
jmin = imin
jmax = imin + (N / 2) - 1
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s =0#

For i =jmin To jmax
gwn =-10#
Forj = 1 To 20

gwn = gwn + Rnd()
Next j
X(i) = gwn
si = si + gwn

sl = sl / (jmax -jmin + 1)

s2 = 0#
For i = jmin To jmax

X(i) = X(i) - si
s2 = s2 + X(i) ^ 2

Next i
s2 = Sqr(s2 / (jmax - jmin))

'summing elements

'mean of sequence

'give elements zero mean
'summation for variance of zero mean sequence

'standard deviation

For i =jmin To jmax
X(i) = -Mean + SD * X(i) / s2

Next i

'Second half, give the positive mean
jmin =imin + (N / 2)
jmax imax

si = 0#
For i = jmin To jmax

gwn =-10#
Forj = 1 To 20

gwn gwn + Rnd()
Next j
X(i) = gwn
si = si + gwn

Next i
si = sl / (jmax -jmin + 1)

s2 =0#
For i = jmin To jmax

X(i) = X(i) - si1
s2 = s2 + X(i) A 2

Next i
s2 = Sqr(s2 / (jmax - jmin))

'summing elements

'mean of sequence

'give elements zero mean
'summation for variance of zero mean sequence

'standard deviation

For i = jmin To jmax
X(i) = Mean + SD * X(i) / s2

Next i

ReDim GenDualGWN.Rname(1 To 1)
ReDim GenDualGWN.Runit(1 To 1)
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ReDim GenDualGWN.Dname(1 To 1)
ReDim GenDualGWN.Dunit(1 To 1)
ReDim GenDualGWN.Inc(1 To 1)
GenDualGWN.Note "Gaussian white noise"
GenDualGWN.Class = "Vector"
GenDualGWN.Type = "Signal"
GenDualGWN.Rname(1) = "Amplitude"
GenDualGWN.Dname(1) = "Time"
GenDualGWN.Dunit(1) = "s"
GenDualGWN.Inc(1) = dT
GenDualGWN.Val = X

End Function

Public Function GenBinary( _
Optional imin As Long =0,
Optional imax As Long = 1000, _
Optional dT As Double 0.05,
Optional Amp 1 As Double = 1#, _
Optional Amp2 As Double = -1#_
) As Tensor

'Generates a binary sequence with amplitudes amp 1 and amp2.
imin (default 0),
imax (default 1000),
dt domain increment (default 0.05),
ampl (default 1.0) and,
amp2 (default -1.0)

Dim XO As Double
ReDim X(imin To imax)
Dim j As Long
Dim N As Long
Dim jmin As Long
Dim jmax As Long

'Length of the sequence
N = imax - imin + 1

'Give first half an amplitude of amp 1
jmin imin
jmax = imin + (N / 2) - 1
For j =jmin To jmax

X(j) = AmpI
Next j

'Give second half an amplitude of amp2
jmin = imin + (N / 2)
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jmax = imax
For j = jmin To jmax

Xj) = Amp2
Next j

ReDim GenBinary.Rname(1 To 1)
ReDim GenBinary.Runit(1 To 1)
ReDim GenBinary.Dname(1 To 1)
ReDim eniinarr.Duni(1 Tn 1)

ReDim GenBinary.Inc(l To 1)

GenBinary.Note = "Binary sequence"
GenBinary.Class = "Vector"
GenBinary.Type "Signal"
GenBinary.Rname(1) = "Amplitude"
GenBinary.Dname(1) = "Time"
GenBinary.Dunit(1)= "s"
GenBinary.Inc(1) = dT
GenBinary.Val = X

End Function

Public Function GenUniform( _
Optional imin As Long = 0#, _
Optional imax As Long 1000#,
Optional dT As Double = 0.05,
Optional ymin As Double = 0#,_
Optional ymax As Double= _

) As Tensor

'Program created by modifying GenRamp( ) written by I.W. Hunter

Dim i As Long
Dim N As Long
Dim yinc As Double

'Number of elements
N = imax - imin + 1

ReDim GenUniform.Val(imin To imax)
yinc = (ymax - ymin) / (N - 1#)
For i = imin To imax

GenUniform.Val(i) = ymin + i * yinc
Next i

ReDim GenUniform.Rname(l To 1)
ReDim GenUniform.Runit(l To 1)
ReDim GenUniform.Dname(1 To 1)
ReDim GenUniform.Dunit(l To 1)
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ReDim GenUniform.Inc(1 To 1)
GenUniform.Note = "Ramp"
GenUniform.Rname(1) = "Amplitude"
GenUniform.Dname(1) = "Time"
GenUniform.Dunit(1) = "s"
GenUniform.Inc(1) = dT

End Function

Public Function Gen2Uniform(-
Optional imin As Long 0#,
Optional imax As Long = 1000#,
Optional dT As Double = 0.05, _
Optional ylmin As Double = -2#
Optional yImax As Double = 1#
Optional y2min As Double = 1#,
Optional y2max As Double =2#

) As Tensor

'Program created by modifying GenRamp( ) written by I.W. Hunter

Dim N As Long
Dim Rec As Long
Dim j As Long
Dim jmin As Long
Dim jmax As Long
Dim yinc As Double

ReDim Gen2Uniform.Val(imin To imax)

'Number of elements
N = imax - imin + 1

'First record (half sequence)
jmin = imin
jmax =imin + (N / 2) - 1

'Record length
Rec = jmax - jmin + 1

'Increment each value
yinc = (ylmax - y1min) / (Rec - 1#)
For j =jmin To jmax

Gen2Uniform.Val(j) = y1min + (j - jmin) * yinc
Next j

'Second record (half sequence)
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jmin =imin + (N / 2)
jmax = imax

'Record length
Rec = jmax - jmin + 1

'Increment each value
yinc = (y2max - y2min) / (Rec - 1#)
For J = imin To imax

Gen2Uniform.Val(j) = y2min + (j - jmin) * yinc
Next j

ReDim Gen2Uniform.Rname(1 To 1)
ReDim Gen2Uniform.Runit(1 To 1)
ReDim Gen2Uniform.Dname(1 To 1)
ReDim Gen2Uniform.Dunit(1 To 1)
ReDim Gen2Uniform.Inc(1 To 1)

Gen2Uniform.Note = "Two ramps"
Gen2Uniform.Rname(1) = "Amplitude"
Gen2Uniform.Dname(1) = "Time"
Gen2Uniform.Dunit(l) = "s"
Gen2Uniform.Inc(l)= dT

End Function

Public Function Convolve2(-
h As Tensor, -

X As Tensor _

) As Tensor

'Computes the convolution between IRF h and sequence x
'Does not care if h is causal or acausal

y(i) = summation(j = jmin to jmax) h(j)x(i-j)

'Example: h is the irf, h.val(j), where j=jmin,...,jmax
x is the input signal, x.val(i) where i=imin,...,imax
h and x must have the same sampling interval, x.inc(1)
y is the result, Y(i) where i=imin,...,imax

Dim i As Long
Dim j As Long
Dim imin As Long
Dim imax As Long
Dim jmin As Long
Dim jmax As Long
Dim sum As Double
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'bounds of sequence x
imin LBound(X.Val)
imax = UBound(X.Val)

'bounds of irf h
jmin = LBound(h.Val)

jmax = UBound(h.Val)

Convolve2 = X

For i = imin To imax
sum =0#

'conduct sum across bounds of irf, include only terms within bounds of x
For j =jmin To jmax

If (i -j) >= imin And (i - j) <= imax Then
sum = sum + h.Val(j) * X.Val(i - j)

End If
Next j
Convolve2.Val(i)= X.Inc(1) * sum

Next i

End Function

Public Function dtConvolve( _
h As Tensor, _
X As Tensor
) As Tensor

'Convolves IRF h with sequence x.
'Does not care if h is causal or noncausal.

y(i) = (dT)*summation(j = jmin to jmax) h(j)*x(i-j)

'Example: h is the irf, h.val(j), where j=jmin,...jmax
x is the input signal, x.val(i) where i=imin,...,imax
h and x must have the same sampling interval, x.inc(1)
y is the result, Y(i) where i=imin,...,imax

'Local variables
Dim i As Long
Dim j As Long
Dim imin As Long
Dim imax As Long
Dim jmin As Long
Dim jmax As Long
Dim sum As Double

'Bounds of sequence x
imin = LBound(X.Val)
imax = UBound(X.Val)
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'Bounds of irf h
jmin = LBound(h.Val)
jmax = UBound(h.Val)

'Assign dtConvolve tensor info from tensor x
'dT should be the same.

dtConvolve = X

'Convolution sum
For i = imin To imax 'do for all terms

sum = 0#
'conduct sum across bounds of IRF, include only terms within bounds of x
For j = jmin To jmax

If (i - j) >= imin And (i - j) <= imax Then
sum = sum + h.Val(j) * X.Val(i - j)

End If
Next j
dtConvolve.Val(i)= X.Inc(1) * sum

Next i
End Function

Public Function ReDFT(
X As Tensor, _
Optional WindowFunction As WindowFn = Tukey -

) As Tensor

'Returns the real part of DFT(x), where x is a real valued sequence.
'DFT(n)= A(n) - j *B(n)

A(n) = summation {x(k)*cos(2*pi*k*n/N)} for k = 0 to N-I
B(n) = summation {x(k)*cos(2*pi*k*n/N)} for k = 0 to N-1

'A(n) is the real part, and B(n) the imaginary part of the DFT

'Function ReDFT( ) conducts the N to N cosine transformation for the real part
' of the DFT
'ReDFT(x) = A(n)

'Written by JLT, Aug 2001

'Local variable declarations
Dim i As Long
Dim imin As Long
Dim imax As Long
Dim N As Long 'number of elements in sequence
Dim k As Long
Dim freqlnc As Double 'ct frequency increment
Dim wx() As Double 'windowed sequence
Dim cosf As Double
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Dim cosO As Double
Dim cos 1 As Double
Dim cos2 As Double
Dim Pi As Double

Pi = 4# * Atn(1#)

'find bounds of sequence X.val
imin 0
imax =UBound(X.Val)
N = imax - imin + 1 'number of elements in sequence

'redim the array to hold windowed elements
ReDim wx(0 To imax)

'frequency interval, ct Hz equivalent
freqlnc = 1# / (imax * X.Inc(1))

'set output tensor to x to set sequence information
ReDFT = X
ReDim ReDFT.Val(0 To imax)

'Apply a window to sequence
If WindowFunction = Tukey Then 'default

For i = 0 To imax
wx(i) = 0.5 * (1# + Cos(Pi * i / imax)) * X.Val(i)

Next i

ElseIf WindowFunction = Triangular Then '(i.e. Bartlett)
For i = 0 To imax

wx(i) = (1# - i / imax) * X.Val(i)
Next i

Else 'If WindowFunction = None (i.e. rectangular)
For i = 0 To imax

wx(i)= X.Val(i)
Next i

End If

'Calculate ReDFT - a cosine transformation of x

'Do for all frequencies, from 0/N to (N-1)/N
For i = 0 To imax

'initialize cos constants for freq
cosf= Cos(2 * Pi * i / N)
cosO =0#

cosi=0#

'recursive calculation of summation {x(k)cos(2*pi*k*j/N)}
For k = imax To 1 Step -1
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cos2 = 2# * cosf * cos 1 - cosO + wx(k)
cosO = cosI
cosi = cos2

Next k

ReDFT.Val(i) = wx(O) + cosI * cosf - cosO

Next i

ReDFT.Rname(l) = "Power"
ReDFT.Dname(1) = "Frequency"
ReDFT.Dunit(1) = "Hz"
ReDFT.Inc(1) = freqInc
End Function

Public Function ImDFT(-
X As Tensor,
Optional WindowFunction As WindowFn = Tukey _
) As Tensor

'Returns the imaginary part of DFT(x), where x is a real valued sequence
'DFT(n)= A(n) - j *B(n)

A(n) = summation {x(k)*cos(2*pi*k*n/N)} for k = 0 to N-1
B(n) = summation {x(k)*cos(2*pi*k*n/N)} for k = 0 to N-1

'A(n) is the real part, and B(n) the imaginary part of the DFT

'Function ImDFT( ) conducts the N to N sine transformation for the imaginary
' part of the DFT
' ImDFT(x) = B(n)

'Written by JLT, Aug 2001

'Local variable declarations
Dim i As Long
Dim imin As Long
Dim imax As Long
Dim N As Long
Dim k As Long
Dim freqInc As Double
Dim wx() As Double 'windowed sequence
Dim cosf As Double
Dim sinf As Double
Dim sinO As Double
Dim sinI As Double
Dim sin2 As Double
Dim Pi As Double
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Pi = 4# * Atn(l#)

'find bounds of sequence
imin 0 'calculate from zero to end of sequence
imax UBound(X.Val)
N = imax - imin + 1 'sequence length

'redim the array to hold windowed elements
ReDim wx(O To imax)

'frequency interval, ct Hz equivalent
freqInc = 1# / (imax * X.Inc(l))

'set output tensor to x to set sequence information
ImDFT = X
ReDim ImDFT.Val(0 To imax)

'Apply a window to sequence
If WindowFunction = Tukey Then 'default

For i = 0 To imax
wx(i) = 0.5 * (1# + Cos(Pi * i / imax)) * X.Val(i)

Next i

ElseIf WindowFunction = Triangular Then '(i.e. Bartlett)
For i = 0 To imax

wx(i) = (1# - i / imax) * X.Val(i)
Next i

Else 'If WindowFunction = None (i.e. rectangular)
For i = 0 To imax

wx(i) = X.Val(i)
Next i

End If

'Calculate imDFT - a sine transformation of x

'Do for all frequencies, from 0/N to (N-1)/N
For i = 0 To imax

'initialize cos and sin constants for freq
cosf= Cos(2 * Pi * i / N) 'cos term needed to estimate the recursive sine
sinf= Sin(2 * Pi * i / N)
sinO 0#
sinl =0#

'recursive calculation of summation {x(k)sin(2*pi*k*i/N)}
For k = imax To 1 Step -I

sin2 = 2# * cosf * sinI - sinO + wx(k) 'J&W shows cos, not sin, term here!
sinO = sin 1
sinI = sin2

Next k
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ImDFT.Val(i)= sinI * sinf

Next i

ImDFT.Rname(1) = "Power"
ImDFT.Dname(i) = "Frequency"
ImDFT.Dunit(i) = "Hz"
ImnTDFT.LIn(1) = freqinc

End Function

Public Function InvDFT( _
realDFT As Tensor, - imagDFT As Tensor _

) As Tensor

'Call: InvDFT(A as real part of DFT, B as imaginary part of DFT)
'summation(1/N){A(k)cos(2*pi*k*j/N)+ B(k)sin(2*pi*k*j/N)}

'Returns the real part of the inverse DFT from the real
' part of the DFT, A(n), and the imaginary part of the DFT, B(n).
'Where DFT(n)= A(n) - j *B(n)

A(n) = summation {x(k)*cos(2*pi*k*n/N)} for k = 0 to N-1
B(n) = summation {x(k)*sin(2*pi*k*n/N)} for k 0 to N-1

'If the original sequence was real (before DFT) then this will return
'the sequence

'Written by JLT, Aug 2001

'Local variable declarations
Dim i As Long
Dim imin As Long
Dim imax As Long
Dim N As Long
Dim k As Long
Dim freqlnc As Double
Dim AO As Double 'realDFT
Dim BO As Double 'imagDFT
Dim cosf As Double
Dim cosO As Double
Dim cosI As Double
Dim cos2 As Double
Dim sinf As Double
Dim sinO As Double
Dim sinI As Double
Dim sin2 As Double
Dim Pi As Double
Dim SampPeriod As Double
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Pi = 4# * Atn(1#)

'find bounds of sequence
imin 0 'calculate from zero to end of sequence
imax = UBound(realDFT.Val)
N = imax - imin + 1 'sequence length

'redim the array to hold real and imaginary
ReDim A(0 To imax)
ReDim B(0 To imax)

'Sampling period
SampPeriod = 1# / (imax * realDFT.Inc(1))

'set output tensor, InvDFT, to input realDFT to set sequence information
InvDFT = realDFT
ReDim InvDFT.Val(O To imax)

'Set real and imaginary values
For i = 0 To imax

A(i) = realDFT.Val(i)
B(i) = imagDFT.Val(i)

Next i

'Calculate InvDFT

'Do for all frequencies, from 0/N to (N-1)/N
For i = 0 To imax

'initialize cos and sin constants for freq
cosf= Cos(2 * Pi * i / N)
cosO=0#
cosl =0#
sinf= Sin(2 * Pi * i / N)
sinO =0#

sinl =0#

'recursive calculation of summation(1/N){A(k)cos(2*pi*k*j/N)+ B(k)sin(2*pi*k*j/N)}
For k = imax To 1 Step -I

cos2 = 2# * cosf* cosI - cosO + A(k)
cosO = cosI
cosl = cos2
sin2 = 2# * cosf * sinI - sinO + B(k) 'J&W shows cosf, not sinf, term here
sinO = sinI
sinl = sin2

Next k

InvDFT.Val(i) = (1 / N) * (A(0) + cosI * cosf - cosO + sin1 * sinf)

Next i
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InvDFT.Rname(1) = "sequence"
InvDFT.Dname(1) = "Time"
InvDFT.Dunit(1) = "s"
InvDFT.Inc(1) = SampPeriod

End Function

Public Function DisplayTensor( _
X As Tensor _

) As Tensor

'Rearranges the order of a tensor X when there are elements with negative indices.
'The elements with positive indices remain in the same position.
'The elements with negative indices, x.val(k) where k < 0, are moved
'to DisplayTensor.val(len+k)
'Elements 0 to kmax will not change. The negative values will be moved en masse
' after kmax

'Variable declaration
Dim imin As Long
Dim imax As Long
Dim i As Long
Dim N As Long

'set the tensor equal to the argument
DisplayTensor = X

'get bounds of sequence
imin = LBound(X.Val)
imax = UBound(X.Val)
N = imax - imin + 1 'Total number of elements

ReDim DisplayTensor.Val(0 To (N - 1)) 'Redim so there are only positive indices

'positive indices
For i = 0 To imax

DisplayTensor.Val(i) = X.Val(i)
Next i

'negative values, if there are any
If imin < 0 Then

For i = imin To -1
DisplayTensor.Val(N + i) = X.Val(i)

Next i
End If

End Function
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Public Function AutoCorrelation( _
X As Tensor, _
Optional jmin As Long 0,
Optional jmax As Long = 100 _

) As Tensor

'Computes positive lags of the biased auto-correlation function of vector X

'The auto-correlation function returned is Cxx(j) j=jmin,...,jmax
'where jmin is the specified minimum correlation lag (default 0)

jmax is the specified maximum correlation lag (default 100)

'The auto-correlation function is symmetric about j=0 and so
' Cxx(j) = Cxx(-j). Normally jmin will be set = 0 for auto-correlation
'function determination.

'Note that this function determines the biased estimator which reduces
'the variance of the longer lag auto-correlation function estimates.

'This function was adapted by J.Tangorra from the auto-covariance function
' written by Ian Hunter in the System Id section
'Last update 31 Jul 2001

Dim i As Long
Dimj As Long
Dim imin As Long
Dim imax As Long
Dim sum As Double
imin = LBound(X.Val)
imax = UBound(X.Val)

'Set AutoCorrelation equal to tensor x to set all increments the same
AutoCorrelation = X
AutoCorrelation.Type = "Auto-Correlation Function"
AutoCorrelation.Rname(1)= "Correlation"
AutoCorrelation.Dname(1) = "Lag"
ReDim AutoCorrelation.Val(jmin To jmax)

For j = jmin To jmax
sum=0#
For i imin + j To imax + jmin

If i - j >= imin And i >= imin And i -j <= imax
sum = sum + X.Val(i - j) * X.Val(i)

End If
Next i
AutoCorrelation.Val(j) = sum / (imax - imin + 1)

Next j
End Function

And i <= imax Then

'biased estimator

397



Public Function CrossCorrelation( _
X As Tensor,_
Y As Tensor,_
Optional jmin As Long 0,
Optional jmax As Long = 100
) As Tensor

'Comnutes the biased Cross-Covariance function between vectors X and Y
'which must have the same lengths.
'The CrossCorrelation function returned is Cxy(j) j=jmin,...,jmax
'where jmin is the specified minimum CrossCorrelation lag (default 0)
'jmax is the specified maximum CrossCorrelation lag (default 100)

'The CrossCorrelation function is not symmetric and so

'Cxy(j) is not equal to Cxy(-j).

'Note that this function determines the biased estimator which reduces
the variance of the longer lag cross-covariance function estimates.

'This function was adapted by JLT from the CrossCovariance function
'written by Ian Hunter.
'Last update Jul 31 2001

Dim i As Long
Dim j As Long
Dim imin As Long
Dim imax As Long
Dim sum As Double
Dim MeanX As Double
Dim MeanY As Double
imin LBound(X.Val)
imax = UBound(X.Val)
'note that we do not check that y has the same imin and imax

CrossCorrelation = X
CrossCorrelation.Type = "Cross-Correlation Function"
CrossCorrelation.Rname(1) = "Correlation"
CrossCorrelation.Dname(1) = "Lag"
ReDim CrossCorrelation.Val(jmin To jmax)

For j = jmin To jmax
sum =0#

For i = imin + j To imax + jmin
If i - j >= imin And i >= imin And i -j <= imax And i <= imax Then

sum = sum + X.Val(i - j) * Y.Val(i)
End If

Next i
CrossCorrelation.Val(j) = sum / (imax - imin + 1) 'biased estimator

Next j
End Function
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Public Function ACF( _
X As Tensor,
Optional jmin As Long = -100,
Optional jmax As Long = 100 _

) As Tensor

'Computes the (-/+) lags biased auto correlation function of vector X

'The ACF function returned is Cxx(j)j=jmin,...,jmax
where jmin is the specified minimum auto correlation lag (default -100)
jmax is the specified maximum cross correlation lag (default 100)

'The auto-correlation function is symmetric; Cxx(j)= Cxx(-j).

'Note that this function determines the biased estimator which reduces
'the variance of the longer lag auto correlation function estimates.

'This function was adapted by JLT from the AutoCovariance function
' written by Ian Hunter.
'Last update Sep 17 2001

'Variable declarations
Dim N As Long 'sequence length
Dim i As Long 'sequence element
Dim imin As Long 'lower bound for correlation sum
Dim imax As Long 'upper bound for correlation sum
Dim j As Long 'lag values
Dim sum As Double

'Length of tensors
N = UBound(X.Val) - LBound(X.Val) + 1
'note that we do not check that y has the same bounds

'Set ACF info, redim to hold lags
ACF = X
ACF.Type = "Cross Correlation Function"
ACF.Rname(l) = "Correlation"
ACF.Dname(l) = "Lag"
ReDim ACF.Valomin To jmax)

'ACF
For j = jmin To jmax

sum = 0
'set bounds for correlation sum
Ifj <0 Then

imin = -j
imax = N - 1

Elself j >= 0 Then
imin = 0
imax=N- I -j

End If
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'sum elements
For i = imin To imax

sum = sum + (X.Val(i) * X.Val(i + j))
Next i

ACF.Val(j) = (1 / N) * sum
Next j

End Function

Public Function CCF( _
X As Tensor,
Y As Tensor,
Optional jmin As Long = -100, _
Optional jmax As Long 100
) As Tensor

'Computes the biased (-/+) lags of cross correlation function between vectors X and Y
'which must have the same lengths.

'The CCF function returned is Cxy(j) j=jmin,...,jmax
'where jmin is the specified minimum cross correlation lag (default -100)

jmax is the specified maximum cross correlation lag (default 100)

'The cross correlation function is not symmetric and so
'Cxy(j) is not equal to Cxy(-j), but Cxy(j) does equal Cyx(-j)

'Note that this function determines the biased estimator which reduces
'the variance of the longer lag cross correlation function estimates.

'This function was adapted by JLT from the CrossCovariance function
' written by Ian Hunter.
'Last update Sep 17 2001

'Variable declarations
Dim N As Long 'sequence length
Dim i As Long 'sequence element
Dim imin As Long 'lower bound for correlation sum
Dim imax As Long 'upper bound for correlation sum
Dim j As Long 'lag values
Dim sum As Double

'Length of tensors
N = UBound(X.Val) - LBound(X.Val) + 1
'note that we do not check that y has the same bounds

'Set CrossCorr info, redim to hold lags
CCF = X
CCF.Type = "Cross Correlation Function"
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CCF.Rname(l) = "Correlation"
CCF.Dname(l) = "Lag"
ReDim CCF.Val(jmin To jmax)

'CCF
For j = jmin To jmax

sum = 0
'set bounds for correlation sum
If j < 0 Then

imin = -j
imax= N - 1

Elselfj >= 0 Then
imin = 0
imax=N- 1-j

End If
'sum elements
For i = imin To imax

sum = sum + (X.Val(i) * Y.Val(i +j))
Next i

CCF.Val(j) = (1 / N) * sum
Next j

End Function

Public Function TwoSidedPSD( _
Cxx As Tensor,
Optional WindowFunction As WindowFn = Tukey _
) As Tensor

'Created by modifying AutoSpectrum function

'TwoSidedPSD( ) calculates the two sided PSD by taking the cosine
'transformation of an ACF with positive lags only. The two sided PSD calculates
'the transform from 0 to on increment below 1.0 dtHz. The output is symmetric
'about the 0.5 dtHz value, with the exception of the 0.0 Hz value.
' The ACF argument has positive lags only, so is not actually even.
'When the ACF is not even, the Fourier transform is not real. The cosine
'transform ignores the imaginary content.
' The ACF function is multiplied by the specified window weighting
'function which can be:
' Tukey (default),
' Triangular (i.e. Bartlett), or
' None (i.e. rectangular).
' If the ACF function has already been windowed using the windowo
'function then WindowFunction should be set = None.
'Note that for the Tukey and Triangular windows a sinusoid of amplitude 1.0 will
'have a power of 1.0, and a sinusoid of amplitude 2.0 will have a power of 4.0.
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Dim i As Long
Dim j As Long
Dim k As Long
Dim imin As Long
Dim imax As Long
Dim N As Long 'sequence length
Dim freqInc As Double 'frequency increment in ctHz
Dim wCxx() As Double 'windowed ACF
Dim cosO As Double
Dim cos1 As Double
Dim cos2 As Double
Dim cosf As Double
Dim Pi As Double

Pi = 4# * Atn(1#)

imin = LBound(Cxx.Val) 'not used (start at 0)
imin = 0
imax = UBound(Cxx.Val)
N = imax - imin + 1 'length of ACF

ReDim wCxx(0 To imax) 'array of windowed ACF values

freqlnc = 1# / ((N - 1) * Cxx.Inc(1)) 'Cxx.Inc(1) is the sampling period

TwoSidedPSD = Cxx 'set equal for information values
ReDim TwoSidedPSD.Val(0 To imax)

'Window ACF values
If WindowFunction = Tukey Then 'default

For i = 0 To imax
wCxx(i) = 0.5 * (1# + Cos(Pi * i / imax)) * Cxx.Val(i)

Next i
ElseIf WindowFunction = Triangular Then '(i.e. Bartlett)

For i = 0 To imax
wCxx(i)= (1# - i / imax) * Cxx.Val(i)

Next i
Else 'If WindowFunction = None (i.e. rectangular)

For i = 0 To imax
wCxx(i)= Cxx.Val(i)

Next i
End If

'Perform cosine (real part of Fourier) transform

'Calculate for 0 to 1 freq increment below 1.0 dtHz, else 0 Hz would be calculated twice
For j = 0 To imax

'initial cos terms for freq j/N
cosf = Cos(2 * Pi * j / N)
cosO =0#
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cosi = 0#

For k = imax To 1 Step -1 'recursive calculation of summation {cos(2*pi*k*j/N)}
cos2 = 2# * cosf * cos 1 - cosO + wCxx(k)
cosO = cosI
cosi = cos2

Next k

'using one sided ACF, so amplitude should be doubled
'but calculating for 0 thru 1.0 dtHz so don't double value of entire sequence
TwoSidedPSD.Val(j) = wCxx(0) + 2# * (cos1 * cosf - cosO)

Next j

TwoSidedPSD.Rname(l) = "Power"
TwoSidedPSD.Dname(1) "Frequency"
TwoSidedPSD.Dunit(l) = "Hz"
TwoSidedPSD.Inc(1) = freqInc

End Function

Public Function PSDfromACF( _
Cxx As Tensor,
Optional WindowFunction As WindowFn = Tukey _
) As Tensor

'Works in conjunction with ACF()
'Created by modifying TwoSidedPSD function

Dim i As Long
Dim j As Long
Dim k As Long
Dim imin As Long
Dim imax As Long
Dim N As Long
Dim M As Long
Dim freqInc As Double
Dim wCxxO As Double
Dim cosO As Double
Dim cosi As Double
Dim cos2 As Double
Dim cosf As Double
Dim Pi As Double

'sequence length

'frequency increment in ctHz
'windowed ACF

Pi = 4# * Atn(l#)

'Bounds of ACF argument, pos and neg lags should be symmetric
imin = LBound(Cxx.Val)
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imax = UBound(Cxx.Val)
If imin <> (-imax) Then imin = 0
N = imax + 1
M imax - imin + 1

'some terms
freqlnc = 1# / ((M - 1) * Cxx.Inc(l))
PSDfromACF = Cxx

'Window ACF values
ReDim wCxx(imin To imax)

If WindowFunction = Tukey Then
For i = imin To imax

verify that function is symmetric else just use pos lags
'represents 0 through poslags
'length of ACF

'Cxx.Inc(l) is the sampling period
'set equal to esatblish information

'array for windowed ACF values

'default

wCxx(i)= 0.5 * (1# + Cos(Pi * i / (M - 1))) * Cxx.Val(i)
Next i

ElseIf WindowFunction = Triangular Then '(i.e. Bartlett)
For i = imin To imax

wCxx(i)= (1# - i / (M - 1)) * Cxx.Val(i)
Next i

Else 'If WindowFunction = None (i.e. rectangular)
For i = imin To imax

wCxx(i) = Cxx.Val(i)
Next i

End If

'Perform cosine (real part of Fourier) transform

'Calculate for -0.5 to 0.5
For j = imin To imax

'initial cos terms for freq j/M
cosf= Cos(2 * Pi * j / M)
cosO=0#
cosi =0#

'Recursive calculation of summation {cos(2*pi*k*j/N)}
'Only necessary to sum from k = imax to 1, since the cos of the
' negative k indices is equal to the cos of the positive indices.
'But, must double the amplitude of the sum.
For k = imax To 1 Step -I

cos2 = 2# * cosf * cosI - cosO + wCxx(k)
cosO = cos1
cosl = cos2

Next k

'Only summed from imax to 1, so double amplitude of sum to acoount for -1 to imin
PSDfromACF.Val(j) = wCxx(0) + 2# * (cosl * cosf - cosO)

Next j

PSDfromACF.Rname(l) = "Power"
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PSDfromACF.Dname(1) = "Frequency"
PSDfromACF.Dunit(l) = "Hz"
PSDfromACF.Inc(1) = freqlnc

End Function

Public Function ACFfromPSD(-
PSD As Tensor _

) As Tensor

'ACFfromPSD( ) transforms a two sided PSD into an ACF with a
' cosine transform (real part of the inverse Fourier transform).
'The PSD argument is real and even, so the invDFT just has a real part
'which is the cosine transformation.
'The ACF found from this algorithm is symmetric.

'JLT, Sep 2001

Dim i As Long
Dim j As Long
Dim imin As Long
Dim imax As Long
Dim N As Long 'length of PSD
Dim M As Long
Dim sampPer As Double
Dim cosO As Double
Dim cos1 As Double
Dim cos2 As Double
Dim cosf As Double
Dim Pi As Double

Pi= 4# * Atn(l#)

'Bounds of input PSD
imin = LBound(PSD.Val) 'not used (start at 0)
imax = UBound(PSD.Val)
If imin <> -imax Then imin = 0
N = imax + 1 'length of positive lags, and original sequence
M = imax - imin + 1 'length of entire PSD

'Sampling period
sampPer = 1# / (imax * PSD.Inc(l))

'Set aCF tensor equal to PSD for sequence info
ACFfromPSD = PSD
ReDim ACFfromPSD.Val(imin To imax)

'Perform real part of the invDFT.

405



'This calculation is the same as the real Fourier transform (cosine xform)
'scaled by 1/M

For j = imin To imax

cosf= Cos(2 * Pi * j / M)
cosO=0#
cos =0#

For i imax To 1 Step -1
cos2 = 2# * cosf * cosi - cosO + PSD.Val(i)
cosO = cosI
cosi = cos2

Next i

ACFfromPSD.Val(j) = (1 / M) * (PSD.Val(O) + 2 * (cosi * cosf - cosO))

Next j

ACFfromPSD.Rname(1) = "ACF"
ACFfromPSD.Dname(1) = "Time"
ACFfromPSD.Dunit(1)= "s"
ACFfromPSD.Inc(l) = sampPer

End Function

Public Function ReCrossPSD(
X As Tensor,_
Y As Tensor,
maxlag As Long _
) As Tensor

'Calculates the real part of the cross spectral density by taking the DFT of the
' cross-correlation of tensor X and Y.
'The two tensors should be the same length, and should have been
' sampled at the same rate.
'MaxLag sets the largest lag used in the calculation of the CCF

'CrossPSD(n) = sum{ Cxy(k)*cos(2*pi*n*k/M)} - j sum{Cxy(k)*sin(2*pi*n*k/M)}
= ReCrossPSD(n) -j ImPSD(n)

'Algorithm exploits Cxy(-j)= Cyx(j). By using only the positive lags
'of Cxy and Cyx, the cosine/sine terms in the summation can be
'calculated with a recursive method from Jenkins and Watts

'Local variables
Dim Pi As Double
Dim Nx As Long 'length of X
Dim Ny As Long 'length of Y
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Dim N As Long 'min length of X and Y
Dim Cxy As Tensor
Dim Cyx As Tensor
Dim jmin As Long
Dim jmax As Long
Dim M As Long 'equivelent length of - and + lags for correlation
Dim freqlnc As Double

Dim j As Long
Dim k As Long

Dim cosf As Double
Dim cosO As Double
Dim cosI As Double
Dim cos2 As Double

'define Pi
Pi = 4# * Atn(1#)

'lengths of X and Y
Nx = UBound(X.Val) - LBound(X.Val) + 1
Ny = UBound(Y.Val) - LBound(Y.Val) + 1

'set N to smallest tensor length
If Nx < Ny Then

N =Nx
Else: N = Ny
End If

'Calculate pos lags of both Cxy and Cyx
'Ensure maxlag is less than min length
If maxlag > N - 1 Then

maxlag = N - 1
Else: maxlag = maxlag
End If

Cxy = CCF(X, Y, 0, maxlag)
Cyx = CCF(Y, X, 0, maxlag)

'some terms
jmax = UBound(Cxy.Val)
jmin = -jmax
M = jmax - jmin + 1 'equivelent length of neg and pos lags values for one CCF
freqlnc = 1 / ((M - 1) * Cxy.Inc(1))

'Set bounds of Cross PSD
ReCrossPSD = Cxy
ReDim ReCrossPSD.Val(jmin To jmax)

'Windowing - do later
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'Perform cosine transformation.
'Split into two sums, one with Cxy and other with Cyx.
'Realize that the summation indices can be combined to
'get a single summation that uses the sum of Cxy and Cyx

For j = jmin To jmax

cosf= Cos(2 * Pi * j / M)
cosO 0
cos= 0

'recursive calculation
For k = maxlag To I Step -1

cos2 = 2 * cosf * cosI - cosO + (Cxy.Val(k) + Cyx.Val(k))
cosO = cosI
cosI = cos2

Next k

'set Re(spectrum) value
ReCrossPSD.Val(j)= Cxy.Val(0) + (cosi * cosf - cosO)

Next j

ReCrossPSD.Rname(l) = "Power"
ReCrossPSD.Dname(l) = "Frequency"
ReCrossPSD.Dunit(1) = "Hz"
ReCrossPSD.Inc(1)= freqInc

End Function

Public Function ImCrossPSD( _
X As Tensor, -

Y As Tensor,
maxlag As Long _
) As Tensor

'Calculates the imaginary part of the cross spectral density by taking the DFT of the
' cross-correlation of tensor X and Y.
'The two tensors should be the same length, and should have been
' sampled at the same rate.
'MaxLag sets the largest lag used in the calculation of the CCF

'CrossPSD(n) = sum{ Cxy(k)*cos(2*pi*n*k/M)} -j sum{Cxy(k)*sin(2*pi*n*k/M)}
= ReCrossPSD(n) - j ImPSD(n)

'Algorithm exploits Cxy(-j)= Cyx(j). By using only the positive lags
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'of Cxy and Cyx, the cosine/sine terms in the summation can be
'calculated with a recursive method from Jenkins and Watts

'Local variables
Dim Pi As Double
Dim Nx As Long 'length of X
Dim Ny As Long 'length of Y
Dim N As Long 'min length of X and Y
Dim Cxy As Tensor
Dim Cyx As Tensor
Dim jmin As Long
Dim jmax As Long
Dim M As Long 'equivelent length of - and + lags for correlation
Dim freqlnc As Double

Dim j As Long
Dim k As Long

Dim cosf As Double
Dim sinf As Double
Dim sinO As Double
Dim sinI As Double
Dim sin2 As Double

'define Pi
Pi = 4# * Atn(l#)

'lengths of X and Y
Nx = UBound(X.Val) - LBound(X.Val) + 1
Ny = UBound(Y.Val) - LBound(Y.Val) + I

'set N to smallest tensor length
If Nx < Ny Then

N = Nx
Else: N = Ny
End If

'Calculate pos lags of both Cxy and Cyx
'Ensure maxlag is less than min length
If maxlag > N - 1 Then

maxlag = N - 1
Else: maxlag = maxlag
End If
Cxy = CCF(X, Y, 0, maxlag)
Cyx = CCF(Y, X, 0, maxlag)

'some terms
jmax UBound(Cxy.Val)
jmin = -jmax
M =jmax - jmin + 1 'equivelent length of neg and pos lags values for one CCF
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freqInc = 1 / ((M - 1) * Cxy.Inc(l))

'Initialize and set bounds of Cross PSD
ImCrossPSD = Cxy
ReDim ImCrossPSD.Val(jmin To jmax)

'Windowing - do later

'Perform sine transformation.
'Split into two sums, one with Cxy and other with Cyx.
'Realize that the summation indices can be combined to
'get a single summation that uses the difference of Cxy and Cyx

For j = jmin To jmax

'Initialize
cosf =Cos(2 *P *j / M)
sinf= Sin(2 * Pi * j /M)
sinO 0
sinl =0

'recursive calculation
For k= maxlag To 1 Step -I

sin2 = 2 * cosf * sin1 - sinO + (Cxy.Val(k) - Cyx.Val(k))
sinO = sin 1
sin1 = sin2

Next k

'set Im(spectrum) value
ImCrossPSD.Val(j) = (sini * sinf - sinO)

Next j

ImCrossPSD.Rname(l) = "Power"
ImCrossPSD.Dname(1) = "Frequency"
ImCrossPSD.Dunit(1) = "Hz"
ImCrossPSD.Inc(l) = freqlnc

End Function

Public Function CrossAmpSpectrum( _
X As Tensor, -

Y As Tensor,
maxlag As Long -

) As Tensor

'Calculates the Cross amplitude spectrum of tensor x and y,
'By taking the DFT of the cross correlation function.
'Uses Plexus functions ReCrossPSD and ImCrossPSD.
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'Want X and Y to be of same length and to have been
' sampled at same frequency

'MaxLag sets the largest lag used in the calculation of the CCF

'The output tensor will have neg and pos frequencies
'Know that before displaying the tensor values
'May want to use DisplayTensor function

'Local variables
Dim ReCross As Tensor
Dim ImCross As Tensor
Dim i As Long

'Find real and imaginary parts of spectrum
ReCross = ReCrossPSD(X, Y, maxlag)
ImCross = ImCrossPSD(X, Y, maxlag)

'Initialize tensor information
CrossAmpSpectrum = ReCross

For i = LBound(CrossAmpSpectrum.Val) To UBound(CrossAmpSpectrum.Val)
CrossAmpSpectrum.Val(i) = Sqr(ReCross.Val(i) ^ 2 + ImCross.Val(i) 2)

Next i

CrossAmpSpectrum.Rname(l) = "Power"
CrossAmpSpectrum.Dname(1) = "Frequency"
CrossAmpSpectrum.Dunit(1) = "Hz"
'CrossAmpSpectrum.Inc(1) = freqlnc 'already set by ReCross

End Function

Public Function PhaseSpectrum(
X As Tensor,
Y As Tensor, _
maxlag As Long -

) As Tensor

'Calculates the Phase spectrum of tensors x and y.
'Output in degrees.
'Uses Plexus functions ReCrossPSD and ImCrossPSD.
'Want X and Y to be of same length and to have been
' sampled at same frequency
'MaxLag sets the largest lag used in the calculation of the CCF

'The output tensor will have neg and pos frequencies
'Know that before displaying the tensor values
'May want to use DisplayTensor function
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'Local variables
Dim Pi As Double
Dim ReCross As Tensor
Dim ImCross As Tensor
Dim i As Long

'define Pi
Pi = 4#Y * At+"(1#)4- T1 ~ I Ik X 1U 1 If)

'Find real and imaginary parts of spectrum
ReCross = ReCrossPSD(X, Y, maxlag)
ImCross = ImCrossPSD(X, Y, maxlag)

'Initialize tensor information
PhaseSpectrum = ReCross

For i = LBound(PhaseSpectrum.Val) To UBound(PhaseSpectrum.Val)
PhaseSpectrum.Val(i)= Atn(-ImCross.Val(i) / ReCross.Val(i)) * 180 / Pi

Next i

PhaseSpectrum.Rname(1) = "Phase"
PhaseSpectrum.Dname(1) = "Frequency"
PhaseSpectrum.Dunit(1) = "Deg"
'PhaseSpectrum.Inc(1) = freqlnc 'already set by ReCross

End Function

Public Function SSD(X1 As Tensor, X2 As Tensor) As Double

'Calculates the sum of the square difference between the elements of
'two tensors of the same length.
'SSD = 101010101010101010 returned if tensors not of same length.
'Written originally to be used to compute the SSD between the ACF of a sequence
'and a desired ACF in the Swap4PSD function

Dim kmin As Long
Dim kmax As Long
Dim k As Long

kmin = LBound(X1.Val)
kmax UBound(X1.Val)

If LBound(Xl.Val) = LBound(X2.Val) And UBound(X1.Val)= UBound(X2.Val) Then
'conduct SSD calculation
SSD = 0
For k = kmin To kmax

SSD = SSD + (X1.Val(k) - X2.Val(k)) ^ 2
Next k
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Else
'Give error message
SSD = 1.01010101010101E+17

End If
End Function

Public Function IntegrateTR(X As Tensor) As Tensor
'Integrates X using a simple Trapezoidal Rule
'Similar procedure in Sys ID section "Integrate( )"

'Local variable declarations
Dim N As Long 'length of X

Dim SampInt As Double 'sampling interval of sequence

Dim imin As Long
Dim imax As Long
Dim i As Long

'set output tensor to X
IntegrateTR = X

'Sampling interval
SampInt = X.Inc(1)

'length of sequence
imin = LBound(X.Val)
imax = UBound(X.Val)
N = imax - imin + 1

'initial integral value is 0
IntegrateTR.Val(imin) = 0

'add update to previous val
For i = imin + 1 To imax

IntegrateTR.Val(i) = IntegrateTR.Val(i - 1) + (1 / 2) * SampInt * (X.Val(i - 1) + X.Val(i))
Next i

End Function

Public Function ScaleTensor(X As Tensor, A As Double) As Tensor
'Returns X.val(i) = A*X.val(i)

'This function has not been copied or adapted from any software.
'It was written by JLT
'Last update 15 Oct 2001
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Dim i As Long

'set new tensor info to old tensor info
ScaleTensor = X

'Scale amplitude
For i = LBound(X.Val) To UBound(X.Val)

Sca1eTensor.Val(i) = A * Xa(i)
Next i

End Function

Public Function ACFafterSwap(-
Y As Tensor, _
ACFold As Tensor, _
minlag As Long, _
maxlag As Long, _
ji As Long, _
j2 As Long
) As Tensor

'Procedure updates the ACF of a sequence after a swap of j I and j2
'Arguments

Y - sequence to be swapped
ACFold - ACF of sequence before swap
minlag, maxlag - lags to be considered fo update
ji, j2 - elements of sequence to be swapped

Dim k As Long
Dim imin As Long
Dim imax As Long
Dim N As Long
Dim Dacf As Double

'Begin with update set to old
ACFafterSwap = ACFold

'Bounds of the sequence being swapped
imin LBound(Y.Val)
imax = UBound(Y.Val)
N = imax - imin + I

For k = minlag To maxlag
'Calculate effect of swap on ACFold, CCFold at every lag value.
'Define update as ACFnew, CCFnew.

'ACF update
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'Developed from perspective of Cyy(k) = (l/N)*summation[y(i+k)*y(i)]
Dacf= 0
If ((jl + k) >= imin And (i + k) <= imax And (jl + k) <> j2) Then

Dacf = Dacf - Y.Val(jl) * Y.Val(jl + k) + Y.Val(j2) * Y.Val(jl + k)
End If

If ((jl - k) >= imin And (ji - k) <= imax And (j1 - k) <> j2) Then
Dacf = Dacf - Y.Val(j1) * Y.Val(jl - k) + Y.Val(j2) * Y.Val(jl - k)

End If

If ((j2 + k) >= imin And 02 + k) <= imax And 02 + k) <>j 1) Then
Dacf = Dacf - Y.Val(j2) * Y.Val(j2 + k) + Y.Val(jl) * Y.Val(j2 + k)

End If

If ((j2 - k) >= imin And 02 - k) <= imax And 02 - k) <> jl) Then
Dacf = Dacf - Y.Val(j2) * Y.Val(j2 - k) + Y.Val(jl) * Y.Val(j2 - k)

End If

ACFafterSwap.Val(k) = ACFold.Val(k) + (Dacf/ N)

Next k
End Function

Public Function CCFafterSwap( _
Y As Tensor, _
X As Tensor, _
CCFold As Tensor, _
minlag As Long, _
maxlag As Long, _
jI As Long, _
j2 As Long
) As Tensor

'Procedure updates the CCF of a sequence after a swap of jl and j2
'Arguments

Y - sequence to be swapped
X - remains the same
CCFold - CCF of sequence before swap
minlag, maxlag - lags to be considered fo update
j 1, j2 - elements of sequence to be swapped

Dim k As Long
Dim imin As Long
Dim imax As Long
Dim N As Long
Dim Dccf As Double

'Begin with update set to old
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CCFafterSwap = CCFold

'Bounds of the sequence being swapped
imin LBound(Y.Val)
imax = UBound(Y.Val)
N = imax - imin + 1

For k = minlag To maxlag

'CCF update
'Developed from perspective of Cyx(k) = (I/N)*summation[y(i)*x(-k)]
'where y is sequence being swapped
Dccf = 0
If ((jl - k) >= imin And (j1 - k) <= imax And jl <> j2) Then

Dccf = Dccf - X.Val(j - k) * Y.Val(j 1) + X.Val(j - k) * Y.Val(j2)
End If

If ((j2 - k) >= imin And (j2 - k) <= imax And j2 <> jl) Then
Dccf = Dccf - X.Val(j2 - k) * Y.Val(j2) + X.Val(j2 - k) * Y.Val(jl)

End If
CCFafterSwap.Val(k) = CCFold.Val(k) + (Dccf / N)

Next k

End Function

Public Function LPF(X As Tensor, CutOffFreq As Double) As Tensor
'Convolves X with the IRF of a finite impulse response (non-recursive) low pass filter
'Filter IRF approximated as the inverse Fourier transform of the filter FRF. This algorithm does
'not apply a tapering window the IRF, so will be affected by Gibbs phenomenon and other
problems of "rectangular"
'windowed sequences.

'Local variable declarations
Dim N As Long '1
Dim maxlag As Long

Dim ACForig As Tensor
Dim PSDorig As Tensor
Dim M As Long '1

Dim LPFfreq As Tensor
Dim LPFtime As Tensor

Dim SampInt As Double
Dim CutOffElem As Long

ength of X

'ACF of original sequence
'PSD of original sequence

ength of ACF, set by maxLag

'Filter's spectrum
'Time domain filter elements

'sampling interval of sequence
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Dim imin As Long
Dim imax As Long
Dim i As Long

'set output tensor to X
LPF = X

'length of original sequence
N = UBound(X.Val) - LBound(X.Val) + 1

'ACF & PSD original sequence
maxlag = N - 1
ACForig = ACF(X, -maxlag, maxlag)
PSDorig = PSDfromACF(ACForig, None)
imin = LBound(PSDorig.Val)
imax = UBound(PSDorig.Val)
M = imax - imin + 1

'Define filter spectrum with same num of elements as PSDorig
LPFfreq = PSDorig 'set equal for info
SampInt = X.Inc(1)

'initialize all filter PSD elements to zero
For i = imin To imax

LPFfreq.Val(i) = 0
Next i

'Scale elements in desired freq range to have amplitude of (1/sampInt)
'accounts for sampling interval necessary in convolution

CutOffElem = Int(CutOffFreq * SampInt * (M - 1))
For i = 0 To CutOffElem

LPFfreq.Val(i) = 1 / SampInt 'positive freq elements
LPFfreq.Val(-i)= 1 / SampInt 'negative freq elements

Next i

'Time domain filter IRF - no windowing applied
LPFtime = ACFfromPSD(LPFfreq) 'essentially the inverse Fourier transformation to get the

Filter IRF

'Convolve filter IRF with sequence to be filtered
LPF = dtConvolve(LPFtime, X)

End Function
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Public Function LPFwind(X As Tensor, CutOffFreq As Double, win As Integer) As Tensor

'Convolves sequence X with an acausal IRF of a finite impulse response (non-recursive)
'low pass filter. By default the IRF is 2x the length of the sequence. This means that
'much of the IRF is ~ zero, and significantly, and unecessarily, lengthens the calculation.

'The ideal LPF filter IRF is approximated by taking the inverse Fourier transform of the
'filter FRF. An alternate method would be to specify the IRF sith the sinc function. Using
'the invDFT allows the desired freqs rnd amtudes to be spccificd.

'This algorithm applies a window to the IR
'win = 0 (rectangular)
'win = 1 (Hanning)
'win = 2 (Hamming)
'win = 3 (Blackman)

'Local variable declarations
Dim N As Long 'length of sequence X
Dim maxlag As Long

Dim imin As Long
Dim imax As Long
Dim i As Long

Dim ACForig As Tensor 'ACF of original sequence
Dim PSDorig As Tensor 'PSD of original sequence
Dim M As Long 'length of ACF, set by maxLag

Dim LPFfreq As Tensor 'Filter's spectrum
Dim LPFirf As Tensor 'IRF: time domain filter elements
Dim winLPFirfO As Double 'Windowed LPF IRF

Dim SampInt As Double 'sampling interval of sequence
Dim CutOffElem As Long

'0. Set output tensor to X to give it the appropriate tensor information
LPFwind = X

'1. Create unwindowed LPF IRF tensor from invDFT of desired filter PSD - LPFirf

'ACF & PSD unfiltered sequence
N = UBound(X.Val) - LBound(X.Val) + 1 'length of original sequence
maxlag = N - 1 'set maxlag to full sequence length
ACForig = ACF(X, -maxlag, maxlag)
PSDorig = PSDfromACF(ACForig, None)
imin = LBound(PSDorig.Val)
imax = UBound(PSDorig.Val)
M = imax - imin + 1 'length of ACF and PSD
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'Define filter spectrum with same num of elements as PSDorig
'Initially set all elements to zero

LPFfreq = PSDorig 'set equal for info
SampInt = X.Inc(l)
For i = imin To imax

LPFfreq.Val(i) = 0
Next i

'Scale elements in the desired freq range to have amplitude of (1/samplnt).
'This amplitude accounts for sampling interval necessary in convolution.

CutOffElem = Int(CutOffFreq * SampInt * M)
For i = 0 To CutOffElem

LPFfreq.Val(i) = 1 / SampInt 'positive freq elements
LPFfreq.Val(-i) = 1 / SampInt 'negative freq elements

Next i

'Estimate LPF IRF as the invDFT of the desired 2 sided PSD.
LPFirf = ACFfromPSD(LPFfreq)

Create windowed LPF IRF. Window is symmetric and the same length as the IRF
win = 0 (rectangular)
win = 1 (Hanning)
win = 2 (Hamming)
win = 3 (Blackman)

imin LBound(LPFirf.Val)
imax = UBound(LPFirf.Val)
M = imax - imin + 1
ReDim winLPFirf(imin To imax) 'array to hold windowed ACF values

If win = 1 Then
'Hanning window
For i = imin To imax

winLPFirf(i) = 0.5 * (l# + Cos(2 * Pi * i / (M - 1))) * LPFirf.Val(i)
Next i

ElseIf win = 2 Then
'Hamming window
For i = imin To imax

winLPFirf(i) = (0.54
Next i

ElseIf win = 3 Then
'Blackman window
For i = imin To imax

winLPFirf(i) = (0.42
* LPFirf.Val(i)

Next i

+ 0.46 * Cos(2 * Pi * i / (M - 1))) * LPFirf.Val(i)

+ 0.5 * Cos(2 * Pi * i / (M - 2)) + 0.08 * Cos(4 * Pi * i / (M - 2)))

Else
'Rectangular window
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For i = imin To imax
winLPFirf(i) = LPFirf.Val(i)

Next i

End If

LPFirf.Val = winLPFirf

'3. Convolve filter IRF with sequence to be filtered
LPFwind = dtConvolve(LPFirf, X)

End Function

Public Function ModBessIO(X As Double) As Double
'Returns the modified Bessel function 10(x) for any real x
'Uses polynomial approximation from "Numerical Recipes in C" which
'is based on the algorithm in Abramowitz and Stegun.

'Local variable
Dim ax As Double
Dim sqrtax As Double
Dim ans As Double
Dim Y As Double
Dim pl, p2 As Double

'Algorithm

ax = Abs(X)
If ax < 3.75 Then

Y = X / 3.75
Y=Y*Y
'ans = 1# + y * (3.5156229 + y * (3.0899424 + y * (1.2067492 + y * (0.2659732 + y *

(0.0360768 + y * 0.0045813)))))
'full expression too complex, so breakdown
pl = (0.2659732 + Y * (0.0360768 + Y * 0.0045813))
p2 = (3.0899424 + Y * (1.2067492 + Y * pl))
ans = 1# + Y * (3.5156229 + Y * p2)

Else
Y = 3.75 / ax
sqrtax = ax ^ (1 / 2)
'ans = (Exp(ax) / sqrtax) * (0.39894228 + y * (0.01328592 + y * (0.00225319 + y *

0.00157565 + y * (0.00916281 + y * (-0.02057706 + y * (0.02635537 + y * (-0.01647633 + y *
0.00392377))))))))

pl = (-0.02057706 + Y * (0.02635537 + Y * (-0.01647633 + Y * 0.00392377)))
p2 = (0.00225319 + Y * (-0.00157565 + Y * (0.00916281 + Y *pl)))
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ans = (Exp(ax) / sqrtax) * (0.39894228 + Y * (0.01328592 + Y * p2))

End If

ModBessIO = ans

End Function

Public Function LPFkaiser( _
Optional Wpassband As Double = 0.15 * 3.141592654, _
Optional Wstopband As Double = 0.25 * 3.141592654, _
Optional derr As Double = 0.0001,
Optional dT As Double = 0.01 _

) As Tensor

'Creates a LPF with a Kaiser window. The filter IRF is based on an FRY with an
amplitude of 1. When convolved with a sequence, the convolution must be scaled by
1 /dT to produce an estimate of a sampled sequence (see Plexus dtConvolve( ) function)

'The window is created in terms of the normalized frequencies. Passband cutoff of
'the LPF is the highest freq such that the freq response IH(w)I> 1-derr, and the
'stopband freq is defined as the lowest freq such that IH(jw)< derr.

' It is important to inspect the window before using. It can sometimes oscillate
'quickly between zero and non-zero values.

'Local variables
Dim Wtrans As Double
Dim Wco As Double
Dim A As Double
Dim B As Double
Dim Mtemp As Single
Dim M As Integer
Dim Mhalf As Single
Dim Mhalfint As Integer
Dim Rmndr As Single
Dim N, nmin, nmax As Integer
Dim Num As Double
Dim NumArg As Double
Dim Den As Double

Dim ncLPFideal() As Double
Dim LPFwind( As Double
Dim Pi As Double
Pi = 4# * Atn(l#)

'transition region
'cutoff freq of ideal LPF

'shape parameter

'integer length of filter

'non-causal, ideal LPF IRF
'windowed filter IRF
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'1. Calculate necessary filter length (M) and shape parameter (B) to achieve desired specs

Kaiser intermediary terms
Wtrans = Wstopband - Wpassband
A = -20 * Log(derr) / Log(10) 'Log base 10

Shape parameter (B)
If A > 50 Then

B = 0.1102 * (A - 8.7)
Elself (A >= 21) And (A <= 50) Then

B = 0.5842 * (A - 21) A 0.4 + 0.07886 * (A - 21)
Else: B = 0# 'equilent to a rectangular window
End If

Filter length (M)
Mtemp = (A - 8) / (2.285 * Wtrans)
M = Mtemp + 0.6
'If M is even, add term to make odd so IRF is even about n=0
Mhalf= M / 2#
Mhalfint = M / 2#
Rmndr = Mhalf - Mhalfint
If Abs(Rmndr) < 0.01 Then M = M + 1

'2. Define Kaiser window elements from n = -(M-1)/2 to (M-1)/2
Evaluates modified Bessel with function ModBessIO()

nmin -(M - 1) 2
nmax =(M - 1)/ 2
ReDim w(nmin To nmax)
If B <> 0 Then ' If B = 0 then window is equivelent to a recangular window

For N = nmin To nmax
NumArg = B * (1 - (2 * N / (M - 1)) A 2) A (1 / 2)
Num = ModBessIO(NuniArg)
Den = ModBessI0(B)
w(N) = Num / Den

Next N
Else 'Rectangular window

For N = nmin To nmax
w(N) = 1

Next N
End If

'3. Define ideal and windowed IRF. Both are created only so a comparison can be made.
'a. Ideal LPF IRF

ReDim ncLPFideal(nmin To nmax)
'ideal cutof freq
Wco = (Wpassband + Wstopband) / 2
'n = 0
ncLPFideal(0) = Wco / Pi
'n > 0
For N = 1 To nmax
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ncLPFideal(N) = Sin(N
Next N
'n < 0
For N = nmin To -1

ncLPFideal(N) = Sin(N
Next N

* Wco) / (N * Pi)

* Wco) / (N * Pi)

'b. Windowed LPF IRF
ReDim LPFwind(nmin To nmax)
For N = nmin To nmax

LPFwind(N) = ncLPFideal(N) * w(N)
Next N

'4. Set output tensor to windowed LPF IRF
ReDim LPFkaiser.Val(nmin To nmax)
For N = nmin To nmax

LPFkaiser.Val(N) = LPFwind(N)
Next N
'Scale by 1/dt so summation can be done with dtConvolveO function
LPFkaiser = ScaleTensor(LPFkaiser, (1 / dT))

'5. Define LPFkaiser tensor information
ReDim LPFkaiser.Rname(l To 1)
ReDim LPFkaiser.Runit(1 To 1)
ReDim LPFkaiser.Dname(l To 1)
ReDim LPFkaiser.Dunit(l To 1)
ReDim LPFkaiser.Inc(1 To 1)
LPFkaiser.Rname(l) = "Amplitude"
LPFkaiser.Runit(1) = ""
LPFkaiser.Dname(1) = "time"
LPFkaiser.Dunit(l) = "s"
LPFkaiser.Inc(1) = dT 'value set in function call
LPFkaiser.Dim = 1

End Function
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Appendix D

VOR experiment conditions

Experiment date: 28 Nov 01
Experiment Visual target Torque perturbation

trial len (s) samp (Hz) PDF deg PSD (Hz) PRBS (c/s) amp (N.m) seed
1 60 100 GWN 25 3.0 14.3 0.20 10
2 60 100 GWN 25 3.0 14.3 0.20 10
3 60 100 PRBS 30 3.0 14.3 0.20 10
4 60 100 uniform 30 3.0 14.3 0.20 10
5 60 100 GWN 30 4.0 14.3 0.20 10
6 60 100 uniform 30 4.0 14.3 0.20 10
7 60 100 uniform 30 4.0 12.5 0.20 10
8 60 100 uniform 35 4.0 20.0 0.20 11
9 60 100 GWN 25 3.0 14.3 0.20 10
10 60 100 GWN 25 3.0 14.3 0.20 10
11 60 100 PRBS 30 3.0 14.3 0.20 10
12 60 100 uniform 30 3.0 14.3 0.20 10
13 60 100 GWN 30 4.0 14.3 0.20 10
14 60 100 uniform 30 4.0 14.3 0.20 10
15 60 100 uniform 30 4.0 12.5 0.20 10
16 60 100 uniform 35 4.0 20.0 0.20 11

note 1: EOG gain 600, subject distance 1550 mm.

note 2: Calibration trials were run between each tracking trial.

note 3: Second 8 trials were a repeat of the first 8 trials.
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Experiment date: 10 Dec 01

Experiment Target

len (s) s amp (Hz) se q # PS

67 100 cal
67 100 cal
/6f 10 9W
UIV IV~

30 100 12
67 100 cal
60 100 10
45 100 13
67 100 cal

1: EOG gain set to 600, subject

2: "cal" means calibration trial.

D (Hz)
cal

cal
I. t

2

cal

1.5
2

0.00
0.25

0.25
0.00

cal
distance 1530 mm.

note 3: "seq #" refers to sequence from "sequences" data folder.

Experiment date: 11 De c 01 - no torque perturbations

Target

samp (Hz)

100
100
100
100
100
100
100
100
200
200
200

seq#

cal

cal

9

12
cal

10
13
cal

15
16
cal

PSD (Hz)
cal

cal

1.5
2.0
cal

1.5
2.0
cal

3.5
3.5
cal

Torque

amp (N.m) PRBS (c/s)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

n set to 600, subject distance 1560

note 2: sequences from "sequences" data folder
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Torque

amp (N.m) PRBS (c/s)trial
0
1

3
4

5
6
7

note

note

0.0
15.4

15.4
0.0

Experiment

trial
0
1
2
3
4
5
6

7

8
9

10
note

length (s)

67
67
120
60

67
120
90

67
60

60

67
1: EOG gait



Experiment date: 16 Dec 01 - no torque perturbations

s amp (Hz)

100
100
100
100
100
100
100
100
100
100

100
100

Target

se q # PSD (Hz)
cal cal

12 2.0
9 1.5

cal cal

16 3.5
14 3.0

cal cal

13 2
15 3.5
11 2.5

cal cal

17 3

Torque

amp (N.m)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

trial
1
2
3
4
5
6
7
8
9

11

12
13

note

note 2: EOG gain 600, subject distance 1550 mm

note 3: sequences from "sequences" data folder

Experiment date: 18 Jan 02

Experiment

trial length (s) samp (Hz)

60
60
60
60
60
60
60
60
60
95
60
95

1: trial #2, #1

100
100
100
100
100
100
100
100
100
100
100
100

Target

seq #

cal

12
cal

12
cal

16
cal

16
16
13
cal

13

cal
2.0
cal
2.0
cal
3.5
cal

3.5
3.5
2.0
cal

2.0

0.00

0.20

0.20

0.20
0.20
0.00

0.25
1 were not sampled properly

note 2: EOG gain 200, subject distance 1550 mm

note 3: sequences from "sequences" data folder
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Experiment

PRBS (c/s)length (s)

65
60
120
65
60
90
65
90
60
120

65
90

1: trial #10 was not sampled properly

Torque

PSD (Hz) amp (N.m) PRBS (c/s)
1
3
4
5
6
7
8
9

10
12
13
14

note

0.0

14.3

14.3

14.3
14.3
0.0

14.3



(s) samp (Hz)
200
200
200
200
200
200
200
200
200
200
200
200
200

seq
cal
12

cal
12

cal
16

cal
16
cal
13

cal
13

cal
note 1: EOG gain 600, subject dista

Target

# PSD (Hz)
cal

2.0
cal

2.0
cal

3.5
cal

3.5
cal

2.0
cal

2.0
cal

nce 1500 mm

Torque
amp (N.m) PRBS (c/s)

0.00

0.24

0.00

0.20

0.20

0.00

0.0

15.4

0.0

15.4

15.4

0.0

note 2: sequences from "sequences" data folder
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Experiment date: 24 Jan 02

Experiment
trial

1
2
3

4
5
6
7
8

9
10

11

12

13

length

50
60
50

60
50

60
50

60
50

90
50

90
50



Experiment date: 12 Mar 02

Experiment

trial
1

2

3

4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19

length (s)

40
45
40
45
40
45

40
45

40
45

40
45
40
45
40
45

40
30
30

samp (Hz)

200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200

note 1: subject distance 1530

EOG gain
600
600
600
600
600
600
600
600
200
200
200
200
200
200
200
200
200
200
200

mm

Target

seq # PSD (Hz)
cal cal

30 2.0
cal cal

30 2.0
cal cal

31 2.0
cal cal

31 2.0
cal cal

6 2.5
cal cal

6 2.5
cal cal

30 2.0
cal cal

30 2.0
cal cal

sin 0.5 Hz

sin 0.5 Hz

Torque

amp (N.m) PRBS (c/s)

0.00

0.25

0.00

0.20

0.00

0.25

0.00

0.25

0.00
0.25

0.0

15.4

0.0

20.0

0.0

15.4

0.0

15.4

0.0
15.4

note 2: sequences from "seq45" data folder
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Experiment date: 15 Mar 02

Experiment
trial

0
1
2
3
A

5
6
7

10
11
12
13
14
15
16
17
18
19

length (s)

40
40
45
40
4A f

40
45
40
40
45
40
45
40
45
40
45
30
30

samp (Hz)
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

EOG gain
200
200
200
200
200

200
200
200
200
200
200
200
200
200
200
200
200
200

Target

seq# PSD (Hz)
cal cal

cal cal

30 2.0
cal cal

30 2.0
cal cal

32 2.0
cal cal

cal cal

36 2.0
cal cal

36 2.0
cal cal

2 2.0
cal cal

2 2.0
sin 0.5 Hz

sin 0.5 Hz

Torque

amp (N.m)
0.20

0.00

0.25

0.25

0.00

0.25

0.25

0.00
0.00
0.25

PRBS (c/s)
10.0

0.0

15.4

10.0

0.0

10.0

10.0

0.0
0.0
10.0

note 1: subject distance 1530 mm

note 2: sequences from "seq45" data folder

Experiment date: 18 Apr 02

trial
1
2
3
4
5
6
7
8
9

10
11
12

length (s)

50
100
50
100
50
100
50
100
50
100
50
100

xperiment

samp (Hz)

100
100
100
100
100
100
100
100
100
100
100
100

Target

EOG gain

800
800
800
800
800
800
800
800
800
800
800
800

seq#

cal

30
cal

6
cal

3b
cal

6
cal

1
cal

3b

Torque

PSD (Hz) amp (N.m) PRBS (c/s)

cal
1.0
cal
1.0
cal
1.0
cal
1.0
cal
1.0
cal
1.0

0.00

0.20

0.22

0.00

0.22

0.00

0.0

15.4

15.4

0.0

15.4

0.0
note 1: subject distance 1550 mm

note 2: sequences from "seq90" data folder
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Experiment date: 31 May 02

Experiment
trial

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
25
26

length (s)

45
95
45
95
45
95
45
95
45
95
45
95
45
95
45
95
45
95
45
30
30
45
30

samp (Hz)

100
100
100
100
100
100
100
100

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

note 1: subject distance 1550

Target

EOG gain
600
200
200
200
200
200
200
200
200
600
600
600
600
600
600
600
600
600
600
600
600
600
600

mm

seq#

cal

22
cal

6
cal

15
cal

16

cal

20
cal

22
cal

6
cal

15
cal

16
cal

stat

stat

cal

20

PSD (Hz)
cal

1.7
cal

1.0
cal

2.0
cal

1.2

cal

1.4
cal

3.0
cal

1.0
cal

2.0
cal

1.2
cal

0.0
0.0
cal

1.4

Torque

amp (N.m) PRBS (c/s)

0.22

0.00

0.22

0.00

0.22

0.00

0.22

0.00

0.22

0.22
0.22

0.24

10.0

0.0

15.4

0.0

15.4

0.0

15.4

0.0

15.4

15.4
10.0

15.4

sequences from "seq90" data folder

"stat" means that target was stationary

note 2:

note 3:
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Experiment date: 14 Jun 02

trial
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

note

le ngth

45
95
45

95
45
95
45
95
45
95
45
95
45

95
45
95
45
95
45
95
45
95
45
95
45
30
45
30
45
30

1: subje

TargetExperiment

(s)s amp (Hz)
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

EOG gain seq#
600 cal
600 29
600 cal
600 30
600 cal
600 26
600 cal
600 24
600 cal

600 25
600 cal

600 23
600 cal
600 29
200 cal
200 30
200 cal
200 24
200 cal
200 26
200 cal
200 25
200 cal
200 24
200 cal

200 stat

200 cal
200 stat

200 cal
200 stat

Torque

% (NV. ") PRBS (/s)PSD (Hz)
cal
1.5
cal

1.8
cal
2.0
cal
1.5
cal
1.7
cal
1.2
cal
1.5
cal
1.8
cal
1.5
cal
2.0

cal
1.7
cal
1.5
cal
0

cal
0.0
cal
0.0

0.00

0.30

0.30

0.00

0.30

0.30

0.30

0.00

0.30

0.30

0.00

0.30

0.30

0.30

0.25
distance 1520 mm

note 2: sequences from "seq90" data folder

note 3: "stat" means that target was stationary
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0.0

10.0

10.0

0.0

10.0

10.0

10.0

0.0

10.0

10.0

0.0

10.0

10.0

10.0

10.0
ct



Experiment date: 04 Mar 03

Experiment

trial
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

length (s)

45
95
45
95
45
95
45
125
45
95
45
95
45
125
45
95
45
95

samp (I
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

note 1: subject distance 1

Target

z) EOG gain
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600

540 mm

seq#

cal

34
cal

26
cal

29
cal

2
cal

31
cal

30
cal

1
cal

24
cal

stat

PSD (Hz)
cal

1.8
cal

2.0
cal

1.5
cal

1.8
cal

2.0
cal

1.8
cal

1.8
cal

1.5
cal

0.0

Torque

amp (N.m) PRBS (c/s)

0.35

0.32

0.32

0.31

0.32

0.33

0.33

0.30

0.30

15.4

10.0

10.0

9.1

15.4

10.0

9.1

10.0

10.0

note 2: seqs 1 & 2 from "seq120" data folder, others from "seqs90"
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Appendix E

Analysis programs

E.1 MakeFiles

E.2 G2 G4 Velocity

E.3 G3 FRF IRF

E.4 UserDefinedFunctions

The analysis programs were written in Mathcad 2001i (MathSoft, Inc., Cambridge, MA).
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MakeFiles

Program creates processed position and velocity data files for further analysis in Matlab and Mathcad.

filename: MakeFiles 04Mar03 16b (seq 24)

Description
1. Process raw data into sequences for analysis
2. Inspect sequences, spectra, correlations (use radians)
3. Create Mathcad .mcd files

A. User defined functions

5 point equal-abscissa derivative function: Deriv5pt(X, At)

Trapezoidal integration: Pos(vel, At)

Watson sensor 14150 calibration correction: HVcorrl4l5O(hv)

Noncausal LPF with Kaiser window: ncLPFkaiser(At, fpb, fsb, 8)

noI

Noncausal convolution with IRF symmetric about 0: ncSymDtConvolve(h, x, At)

Mean square difference: MSD (x, y)
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B. Raw data signals - tp, ep, hv

1. Raw data, DAQ gains, sensor scales
folder: 04Mar03
data set: 16
target: Seqs90 / 24 ; PSD 1.5 Hz, tma 9.0 s, length 90s, exec 200 Hz

torque: PRBS, 0.3 v

DAQ @ 100 Hz for 95 sec

Select files, set EOG calibration, apply median and low pass filters, remove transients.

admin file (adm)

adIm :=

0

2

3

4

5

6

7

0
96

100

20

5

20

2

0
0

admo = exper length

admg = fsma 1 samp

adm 2 = ch 0 gain

adm 3 = ch 1 gain

adm 4 = ch 2 gain

adm5 = ch 3 gain

adm6 = DC voltage
adm7 = PRBS voltage

eye position (ep)

ep :=

C:\..\EOG16fix.dat

head velocity (hv)

hv :=

target position (tp)

tp :=

C:\..\Head16fix.dat C:\..\Targ16fix.dat

torque (tor)

tor

C:\..\Torql6fix.dat

file length: N := length(ep)

sampling frequency (Hz) f

N = 9.601 x 103

samp := admI

indices i := 0..N- 1

fsamp = 100

sampling period
1

At
fsamp

At = 0.01
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2. Inspect raw signals before scaling by gains

Raw eye signal

I 
ve

0 2000 4000 6000
i

Raw head signal

Ii~ I Li I~.I I 1.

8000

I. Ii .1 I

0 2000 4000 6000 8000 1-104
i

mean(ep) = 0.08623

var(ep) = 1.72352

1 .104

mean(hv) = -2.59273

var(hv) = 13.22132

Raw target signal
I I

- -I

0 2000 4000 6000

Raw torque signal

mean(tp) = -0.02673

var(tp) = 6.74961

8000 1 -104

mean(tor) = -0.39098

var(tor) = 26.92009

0 2000 4000
i

6000 8000 1 -104
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hv.I0

-10

10

5
tp.
-- -- 0

-5

-10

tor.

-10
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3. Scale signals to output voltages, then to appropriate physical units

scales and gains
EOG: scale to electrode voltage before amplification of signal conditioning board.
head: scale to voltage, correct calibration error, scale to deg/s
target: scale to radians, account for different distance to screen between subject and mirror,

and then convert to degrees.
torque: scale to N.m

DAQ board gains: ktor := adm2

khead := adm 3

keog := adm4

ktarg := adm 5

set sensor scales:

EOG amplifier gain:

EOG calibration:

head sensor scale (deg/sec/volt):

target feedback scale (rad/volt):

torque xducer (rad/volt):

geog := -600

caleog : 65500

ghead := 29.99

gtarg := 0.186

gtor := -0.8

(balancing circuit inverts signal)

(deg/volt at electrode, cal set # 15)

(0.523 rad/s per volt or
29.99 deg/s per volt)

(0.186 rad/volt or 10.65 deg/volt)

put target in rads so can use atan()

(-0.8 N.m per volt)

Convert signal voltaves to appropriate units

Eye position: convert to degrees
caleog

ep:= k-ep
geog- keog)

Head velocity: convert measured voltage to Watson output voltage:

correct sensor 14150 voltage for calibration: hv

scale voltage to deg/s:

1
hv := *hv

khead

:= HVcorrl4l5O(hv)

hv := ghead-hv
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ktor = 20

khead 5

keog 20

ktarg = 2



Target position:
(gtarg>

initially make radians tp = gtarg p
ktarg)

convert target angle (radians) into angle (degrees) viewed by subject

mirror distance md := 1690 subject distance sd:= 1540

md 180
radians tp := atan -- tan(tp) degrees tp := -- tp

sd a7

convert to N.m
gtor

tor := - -tor
ktor)

4. Median filter
Use median filter to remove aberrant data, not as a substitute for a LPF. Too large a neighborhood

changes the sequence shape. Median filters are nonlinear, so do not want to abuse.

set median filter neighborhood: nh := 5

epil := medsmooth(ep, nh)

tpfil := medsmooth(tp,nh)

equates to nh- At = 0.05 seconds of data

hvfil := medsmooth(hv,nh)

torfil := medsmooth(tor, nh)

How does thefilter change the PSD? N = 9.601 x 103

Sepf := pspectrum(epfl, nr, ol, win)

Shvf := pspectrum(hvfl, nr, ol, win)

Stpf := pspectrum(tpfil, nr, ol , win)

Storf := pspectrum(torfil, nr, ol, win)

Sep := pspectrum(ep , nr, ol, win)

Shv := pspectrum(hv, nr , ol , win)

Stp pspectrum(tp , nr, ol, win)

Stor := pspectrum(tor, nr, ol, win)

K
K := last(Sepf) k := 0.. K

5

n := 1600.. 2000
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Torque:

nr := 10 ol := 0.5 win := 6



Effect of median filter: nh = 5 , nh- At

1700

= 0.05

Eye signal

1800 1900 )00

n

EP: median filter vs. unfiltered

- -

0 5 10 15 2

k

K-At

Head signal

1700 1800 1900

n

HV: median filtered vs. unfiltered

- -

5 10

k

K-At

15

0

)00

20
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20

10
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5+epfil
n

0

I I

I I- L
'600

Sepk 1

Sepfk

-105

-104

-103

100

10

1

0.1

0.01

100 I I

hvn

30+hvfil

50
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-106

1
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Shvk 1

Shvfk
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100
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20

tpn

5+tpfiln 10

AL

1600

1 -10 5
1-104

S 1 -10 3

Stpk 100
10

Stpfk I
0.1

111 -10_-4
1 -10-5
1 -10

0

1

tor n

0.5+torfill

0.5

0

". 6 00

Target position

17 00 1800 1900

n

TP: median filter vs. unfiltered

5 10 15

k

K-At

Raw target signal

-

1700 1800 1900

n

Tor: median filter vs. unfiltered
I I I

-

5 10

k

K.At

15

Set sequences to median filtered version ep := epfil hv := hvfil tp:= tpfil tor := torfil

443

I I

2000

20

2000

1

Stork

Storf
lj

0.1

0.01

-3-10

1 -104

1-10-5 0 20

-



5. LPF with Kaiser window
It is especially important to filter the eye position before differentiating the signal into eye velocity.

Since linear relations are being made, all the signals must be filtered.

set Kaiser window LP filter settings:

generate filter IRF:

fpb:= 10 fsb := 12 8 := 0.000001

hlpf := ncLPFkaiser(At, fpb, fsb, 6)

M := length(hipf) M = 196

LPF impulse response function

20 40 60 80

m

convolve acausal filter with sequences

epil := I ncSymDtConvolve(hlpf , ep, At)
At

tpfil := A ncSymDtConvolve(hlpf, tp, At)At

calculate eye velocities:

hvfil:= - ncSymDtConvolve(hlpf , hvAt)
At

toril :=1 ncSymDtConvolve(hlpf tor, At)
At

evafil := Deriv5pt(epfil, At)

eva := Deriv5pt(ep, At)

444

M
m := 0.. -

2

hlpf m
0.2

0

-0.2 0
I I I I

100



How does the LPF change the PSD?

Spectral densities

Sepf pspectrum(epfil , nr, ol, win)

Sevf pspectrum(evatil, nr, ol, win)

Shvf pspectrum(hvfi, nr, ol, win)

Stpf pspectrum(tpfil, nr, ol, win)

Storf := pspectrum(torfil, nr, ol, win)

set plot indices: Al := 1800

Effect of LPF: fpb = 10 , fsb = 12

10

epn

5+epfiln

i'J ~

0

'1800

Sep := pspectrum(ep, nr, ol, win)

Sev pspectrum(eva, nr, ol, win)

Shv := pspectrum(hv, nr, ol, win)

Stp := pspectrum(tp,nr, ol, win)

Stor := pspectrum(tor, nr, ol, win)

n

K
K := last(Sepf) k:= 0.. K

5

:= A1.. A1 + 150

8 = I x 10 6

Eye position signal

1850 1900 1950

n

EP: LPF vs. unfiltered

10

k

K-At
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Sepfk

0 5 15 20

N = 9.601 x 10 3 ol := 0.5 win := 6nr := 10

-



Eye velocity signal

1850 1900

n

EV: LPF vs. unfiltered

10

k

K*At

Head velocity signal

1850 1900

n

HV: LPF vs. unfiltered

10

k

K-At
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Target position

1850 1900

n

TP: LPF vs. unfiltered

10

k

K-At

Raw target signal

1850 1900

n

Tor: LPF vs. unfiltered

5

Set EP, HV, & TP to the LPF version

10

k

K-At

ep := epfil
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15

hv:= hvfil
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6. Remove transient data points at beginning and end of sequence that may be due to starting/stopping the trial

identify data points to be removed: beg := 10

ep := submatrix(ep, beg, N - 1 - end, 0, 0)

tp := submatrix(tp, beg,N - 1 - end, 0, 0)

reset indices N := length(hv) N =

end := 160

hv:= submatrix(hv, beg, N - 1 - end, 0, 0)

tor := submatrix(tor, beg, N - 1 - end, 0, 0)

9.431 x 103 i := O..N- 1

Seauences with Droner units: offset and drift not vet removed

Eye position signal (deg)

I I I

2000 4000 6000
i

Head velocity signal (deg/s)

2000 4000 6000

Target position signal (deg)

I -

2000 4000 6000
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C. Remove drift and offset from hv and ep, then calculate head and gaze positions

The target signal is position feedback from a galvanometer and should not have appreciable drift, but

may have an offset. This offset can be removed by identifying zero position regions and averaging the signal in

these regions.
Although the Watson sensor claims to be a "dc" sensor, it does drift. Watson reports a drift of 0.001

deg/s per sec. The variance of the signal when measured at rest was 0.032, and the sensor appears to have a

slight linear drift. The protocol begins and ends at zero position, so the mean head velocity should be zero in

these regions. Consider fitting line to, and removing from the velocity, assuming a linear drift between beginning

and end regions, or setting mean to zero.
Can expect the EOG sensor to drift, hopefully only a little, during the experiment. Despite careful

referencing, using a differential measurement, reducing external light, and letting the subject's eyes acclimate to

the environment, the signal will drift unless processed by a HPF, which would affect the dc data. Ideally the

drift should be calculated and removed from the measurements. However, it is difficult during experimentation

to force the eyes and head to a reference positon, from which the drift can be calculated, without interfering

with the subjects natuiral use of the head and eyes. Testing with the eyes in one place has shown the drift to be

slow and small.

1. Target position: Estimate the bias as the mean of the reference regions.

50

tpi
0

-50
0

Target position (deg)

2000 4000 6000 8000 1 .104
i

identify regions of zero position - use "track data" of trace

region 1: al := 0

region 2: a2:= 9134

zpl := submatrix(tp,al,bl,0,0)

zp2 := submatrix(tp, a2, b2, 0, 0)

mean(zpl) = -0.08921

mean(zp2) = -0.08163

define bias as ave of regions:

remove bias from target:

Targbias := mean(zp1, zp2) Targbias = -0.08287

tp := tp - Targbias
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bl := 57

b2 := N - 1



2. Head velocity and eye position; calculate head position and gaze position
The subject is instructed to bring head and eyes to rest with zero displacement and zero velocity

during the reference regions. Decide on drift and offset under the assumption that the head is at rest and the
gaze is at zero during the reference regions.

Inspect the torque, head, and eye sequences

Torque (N.m)
0.5

tor.
0

-0.5
0

50

hv 0

-50

-100
0

2000 4000 6000 8000
i

Raw head velocity (deg/s)

2000 4000 6000 8000

1 -104

1 .104

Raw eye position (deg)

- -

2000 4000

a. Consider the regions of head and eye data that represent when gaze was upon the target zero

regions set from target position

reset b1 and a2:

bl = 57

bl 57

a2 = 9.134 x 103

a2 9200
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-20

-40
0 6000 8000 1-10

i
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Do the head and eye signals drift from beginning to end ?

Head velocity hvl := submatrix(hv, al, b1,0,0)

hv2 submatrix(hv, a2, b2, 0, 0)

phvl mean(hvl)

phv2 mean(hv2)

pIhvl = -16.00356

phv2 = -16.47485

hv ave "drift" per second:
p-hv2 - p-hvl -

NL -A l = -4.99721 x 10
N- At

Probably safe to assume that the head velocity is nearly zero at the beginning and the end of the trial.
Harder to make the same assumption about head position. In this case there seems to be a constant
decrease in the velocity, which indicates a constant acceleration, which probably is not the case.

ep1 := submatrix(ep, al, b1,0,0)

ep2 := submatrix(ep, a2, b2, 0, 0)

tepj := mean(epl)

pep2 := mean(ep2)

ptepl = 3.36547

ptep2 = 3.20756

pep2 - pepl - 3
e n = -1.67442 x 1

ep ave "drift" per second: N- At

b. Torque - estimate bias from the zero reference regions set for the head and eye zero positions.

al = 0

tori := submatrix(tor,al,bl,0,0)

tor2 := submatrix(tor,a2,b2,0,0)

mean(torl) = 2.08451 x 10 3

mean(tor2) = 0.02735

define bias as ave of regions:

remove bias from target:

torbias := mean(torl , tor2)

tor := tor - torbias ptor := meanl

torbias = 0.02228

(tor) 9tor = -6.78183 x 10- 3

c. Remove head velocity drift
a. Fit line between the offsets at beginning and end; remove. Does not give data a zero mean
b. Fit line to all data. This essentially makes the data zero mean which may not be the case, but is not

a bad approximation because the head ends the experiment at nearly the same position as it began.
c. Zero mean velocity data
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c. (a) Remove linear change between offsets at beginning and end

Create linear drift sequence between first and last zero reference regions.

set drift to mean value in reference regions e al .. bi hvdrift :-=hvle

e := a2.. b2 hvdrifte := 9hv2

assume linear change between reference regions:

elems := a2 - bl

Jhv2 - 9hv1
incr :=

elems

e := 1 .. elems - 1

hvdriftb+e := hvl + e-incr

remove line from data:

calculate head position:

hva := hv - hvdrift

hpa := Pos(hva, At)

Jhva := mean(hva) Xhva := var(hva)

Raw head velocity (deg/s)
50 1 1

hv.0

hvdrift 
i

-50

-100

10

tp.

hpa

I I

'y I I's

Jthva = 0.47013

Xhva = 474.14142

0 2000 4000 6000 8000 1 -10

a. Head position (deg)
0 1 I I I I

50

0

-50
0 2000 4000 6000

Inspect the resulting head position (hpa):
1. Does it move in synch with the target ?
2. Do the positions at the beginning and end make sense?

hpl := submatrix(hpa, al, bl, 0, 0) p1hpal := mean(hpl)

hp2 := submatrix(hpa, a2, b2, 0, 0) p1hpa2 := mean(hp2)

8000 1 -104

phpal = 2.27359 x 10- 3

p'hpa2 = 43.86639
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c. (b). Fit line to head velocity data, remove.

define vector of x points:

least sq line : 4

remove line from data:

calculate head position:

-15.6584
v := line(x, hv) Ohv = -2.4389 x 10 5 hvline.:= Ohv -xi + Ohvo

hvb := hv - hvline phvb := mean(hvb) Xhvb := var(hvb)

hpb := Pos(hvb, At)

Raw head velocity (deg/s)
50

0

-100

50

0

-50

I. lid .1 LLI

I I I

phvb = 1.07681 x 10 15

Xhvb = 474.13594

'z

0 2000 4000 6000 8000 1 -10

b. Head position (deg)

I I I I

0 2000 4000 6000 8000 1 -104

Resulting head position (b):
1. Does it move in synch with the target ?
2. Do the positions at the beginning and end make sense?

hpl := submatrix(hpb,al,bl,0,0)

hp2 := submatrix(hpb, a2, b2, 0, 0)

pLhpbl := mean(hpl)

Phpb2 := mean(hp2)

pthpbl = -0.09596

Ihpb2 = 0.20958
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c. (c). Zero mean head velocity data

remove mean from data:

calculate head position:

pyhv mean(hv) hvc := hv - pIhv phvc := mean(hvc) Xhvc var(hvc)

hpc Pos(hvc, At)

Raw head velocity (deg/s)

I i I d I liii

v' ri

0 2000 4000 6000 8000 1 -104

c. Head position (deg)

0 2000 4000 6000 8000

thvc = 0

Xhvc = 474.14035

1 .104

Resulting head position (c):
1. Does it move in synch with the target ?
2. Do the positions at the beginning and end make sense?

hpcl := submatrix(hpc,al,bl,0,0)

hpc2 := submatrix(hpc , a2, b2, 0, 0)

phpcl := mean(hpcl)

phpc2 := mean(hpc2)

phpcl = -0.06332

pIhpc2 = 0.33966
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d. Eye position
Consider eye sequence with regard to possible head positions. Removing a line fitted to the eye position

canot be justified in the same manner as for the head velocity. This would give the eye data a zero mean, which
may or may not be the case for the position sequences.

Eye drift/offset methods:
a. EOG drift found by connecting line to offsets at beginning and end.
b. EOG offset calculated from mean of zero regions.

50

ep.

tp. 0

-50

Raw EOG (deg)
SI I

0 2000 4000 6000 8000 1 -104

d. (a) Fit linear drift sequence between first and last zero reference regions.

Set drift to mean value in reference regions e := al .. bi ePdrifte := Iepl

e := a2.. b2 epdrifte := P'ep2

Assume linear change between reference regions:

elems := a2 - bl

incr tep2 - Itepl
elems

e := 1 .. elems - 1

epdrift bl := ep1 + e-incr

remove drift from data: epa := ep - epdrift

50

0

a. Eye position (deg)

0 2000 4000 6000 8000 1 .104
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d (b). Remove first offset, assume no drift.

Remove initial offset from data:

50 1

epb.

tp. 0

-50

epb := ep - mean(p~ep I, gep2)

b. Eye position (deg)

0 2000 4000 6000 8000 1 -104

3. Create gaze position - decide which eye-head combination makes sense

100

50 1

0

-50

a. Head and target position (deg)
I I I I |

0 2000 4000 6000 8000 1-104

50

0

-50

b. Head and target position (deg)
I T I I

0 2000 4000 6000 8000 1 -104

c. Head and target position (deg)

I T 8 0I0 -1

0 2000 4000 6000 8000 11
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a. Eye position (deg)

l i-

0 2000 4000 6000 8000 1 -104

Sequences
hpa - assumed linear drift between offsets at beginning

hpb - line fitted to, then removed from velocity data

hpc - velocity given zero mean

20

0

-20

-A

b. Eye position (deg)

I I II

LL .. I. I

0 2000 4000 6000 8000 1 -104

and end of velocity sequence

epa - drift estimated as line fit between offsets at zero regions

epb - offset estimated as mean of zero regions. Assumes no moving drift.

Create gaze: gp hpc + epb

ge tp - gp

MSDgp := MSD(gp, tp)

mean(ge) = 1.2222

MSD9p = 4.71267

stdev(ge) = 1.79413

0

-5

-10

Target (red) and gaze (blk) position

0 23.75 47.5 71.25 95

time (s)

Gaze error
0 . I I

0 23.75 47.5

time (s)

71.25 95
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4. Define the sequences to be used

measured head velocity

head position:

measured eye position:

gaze position:

gaze position error:

head velocity statistics

head position statistics

eye position statistics

pge := mean(ge)

age := stdev(ge)

phv := mean(hv)

Ghv := stdev(hv)

hvmax := max(hv)

hvmin := min(hv)

hp := mean(hp)

chp := stdev(hp)

hpmax := max(hp)

hpmin := min(hp)

tep := mean(ep)

Gep := stdev(ep)

epmax := max(ep)

epmin := min(ep)

pge 1.2222

age = 1.79413

pLhv 0

ahv = 30.48467

hvmax 80.74318

hvmin -67.10871

pthp = 2.52671

Ghp = 10.25277

hpmax 28.32808

hpmin -26.35789

ptep = -3.8115

aep = 7.18542

ePmax 14.79346

epmin = -25.5895
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Head velocity (deg/s)

0 2000 4000 6000 8000 1.104

y = 0 
0 hv = 30.48467

ihp = 2.52671 ahp = 10.25277

50

0

-50

Head position (deg)
I I I

I I ~

0 2000 4000 6000

hvmax = 80.74318

hpmax = 28.32808

8000 1-104

hvmin = -67.10871

hpmin = -26.35789

Target and gaze position (deg)
I I I I

I I I-I

0 2000 4000 6000 8000

Iep = -3.8115 aep = 7.18542

50

0

-50
1.104

Eye position (deg)
I I I

I I -

0 2000 4000 6000 8000

epmax = 14.79346

Gaze error; gaze - target (deg)
I I

I I

0 2000 4000 6000 8000

epmin = -25.5895

MSDgp = 4.71267

pge = 1.2222

age = 1.79413

1-104
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D. Calculate velocities - 5 pt derivative followed by median filter. Also consider effects of mean filter.

Set elements of mov ave elem:= 10 elem- At = 0.1 j := 1400.. 2000

Target and gaze velocity (deg/s)

1600 1800

200

100

0

2000 1U4400

Eye velocity (deg/s)

1600 1800

atv = 9.1861

agv = 18.93931

tvmax = 23.74911

gvmax = 115.7328

tvmin = -26.6056

gvmin = -95.19488

Gaze slip; gv - tv (deg/s)

1600 1800

100

50

0

50

-10 9400o
2000

Head velocity (deg/s)
I I

1600 1800

pgs = -1.10602 x 10- 3 Tgs = 17.58891 gsmax = 92.4133 gsmin = -115.59538

Head and eye velocity (deg/s)
I I I 

AA-

ahv = 30.48467

hvmax = 80.74318

hvmin = -67.10871

Gev = 30.66935

evmax = 114.25608

evmin = -116.53452
15 16 17 18 19 20

j-At
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Velocity after running through moving average filter; elem. At = 0.1

Target and gaze velocity (deg/s)
I I

1600 1800

100

0

2000

Eye velocity (deg/s)

1600 1800

atvm = 9.06255

agvm = 13.65113

tvmtnax = 23.36072

gvmmax = 74.0963

tvmlmin = -26.09157

gvmmin = -54.30527

Gaze slip; gv - tv (deg/s)
I I A

1600 1800

100

50 I

0

-50

-10q400
2000

Head velocity (deg/s)

1600 1800

ptgsm = 1.83752 x 10 3 agsm = 11.74658 gsMmax = 73.34833 gsmmin = -48.45093

Head and eye velocity (deg/s)
I I I I

- ~

Ghvm = 28.0186

hvmmax = 73.85167

hvmmin = -62.3822

Uevm = 26.19748

evmmax = 92.41708

evmmin = -84.56116

15 16 17 18 19 20

j-At
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E. Write files for urther analysis in Mathcad

Sequence information

sampling period

LP filter cutoff

SeqInfoo := At

SeqInfo :=pb +
2

SeqInfo= 11

SeqInfo2 := fpb Seqlnfo3 := fsb Seqlnfo4 := 5

Mathcad files (.csv) - folder d:/ VOR / Proc data

I I I

C:\..\tor_16b.csv C:\..\tpl6b.csv

tp

I

C:\..\SeqInfo_16b.csv

SeqInfo

C:\..\ep_16b.csv

ep

I

C:\..\tv_16b.csv

tv

C:\..\ev_16b.csv

ev

C:\..\hp_16b.csv

hp

C:\..\hv_16b.csv

hv
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G2 G4 Velocity

filename: G2 G4 Vel 04May03 2b 8b
data filtered with 10 Hz LPF

last update: OlApr 03

Description: The worksheet estimates the IRF and FRF for the head's visually mediated response

(g2) and response of the head-neck to perturbations (g4).

A. User defined functions

B. Read processed data files, create gaze position and velocity

Read from file: c:\ VOR \ Proc data \ 04May03 \ 2b (1.8 Hz) 8b (1.8 Hz)

sequence information: SeqInfo: At (s); fc, fpb, sb (Hz)

1. Read processed data from .csv file. Data created by MakeFiles 04May03 2b & 8b

Trial 2b

:\..\ep_2b.csv

:\..\hp_2b.csv

ev

hv

pt :=

C:\..\Seqlnfo_2b.csv

C:\..\ev_2b.csv

C:\..\hv_2b.csv

C:\..\tor_2b.csv

last(ep) = 9.46 x 103

last(hv) = 9.46 x 103

last(pt) = 9.46 x 03

last(tv) = 9.46 x 103

C:\..\tp_2b.csv C:\..\tv_2b.csv
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ep

C

hp

C

SeqInfo :=

tp := tv :=



C:\..\ep_8b.csv

C:\..\hp_8b.csv

ev1

hv:

C:\..\ev_8b.csv

C:\..\hv_8b.csv

last(epl) = 1.247 x 10

last(hvl) = 1.247 x 104

ptl :=
SeqInfo :=

last(ptl) = 1.247 x 10 4

C:\..\Seqlnfo_8b.csv C:\..\tor_8b.csv

last(tvl) = 1.247 x 104

C:\..\tp_8b.csv C:\..\tv_8b.csv

stack data into single array: ep := stack(ep, epl)

hp stack(hp,hpl)

tp := stack(tp,tpl)

pt := stack(pt,ptl)

ev := stack(ev,evl)

hv := stack(hv,hvl)

tv := stack(tv,tvl)

clear out unnecessary arrays: epl :=0 tpl :=0 hp :=0

evl :=0 tvl :=0 hvl :=0

sequence length and indices: N := length(tp) N = 2.193 x i := 0.. N - 1
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Trial 8b

ep:

hpl:

tp1 := tvl :=

ptl := 0



sequence sarnpling ana LP filtering

sampling period: At := SeqInfo0

LPF cutoff: fc:= SeqInfo1

LPF passband: f:= SeqInfo

LPF stopband: fs := Seqlnfo3

LPF overshoot: 5 := Seqlnfo4

At = 0.01

fco =11

p= 10

fsb= 12

6 = 1 x 10- 6

2. Create gaze position, gaze error, gaze velocity, gaze slip

gaze position and gaze error: gp := ep + hp

gaze velocity and slip: gv := ev + hv

ge := tp - gp

gs := tv - gv

3. Means and standard deviations

Upt stdev(pt) ppt := mean(pt)

tp :=stdev(tp) t := mean(tp)

Ygp :=stdev(gp) g := mean(gp)

Yge := stdev(ge) ptge := mean(ge)

hp :stdev(hp) pthp := mean(hp)

aep := stdev(ep) pg := mean(ep)

4. Mean filter velocity data for comparison

Set number of elements for mean filter:

tvm :movavg(tv, elem) hvm:=

evm := movavg(ev, elem) gvm :=

at :=stdev(tv)

gv := stdev(gv)

Ggs := stdev(gs)

ahv := stdev(hv)

aev := stdev(ev)

ptv := mean(tv)

ptgv:= mean(gv)

ptgs := mean(gs)

phv := mean(hv)

ptv := mean(ev)

elem := 20

movavg(hv, elem)

evm + hvm
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C. Sequences, spectral measures, covariances

al := 3000 j:=al.. al + 1000

Target and gaze position

0 50 100 150 200 25(

i-At

Head and eye velocities (mean)

32 34 36 38 40

j-At

Torque and head position
I I7

-_

32 34 36 38 40

j-At
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Set parameters for spectral calculations

N 3
nr := 21 -= 1.44 x 10

nr

N = 2.193 x 104

ol := 0.5

N- At = 219.32

win := 6

Power spectral densities

Spt :pspectrum(pt, nr, ol, win)

Stv :=pspectrum(tv, nr, ol, win)

K:= length(Spt)

Shv := pspectrum(hv, nr, ol, win)

Non-normalized cross correlations and input PSD

Cpttv := pt'*tv-lcorr(pt, tv)

Cpt :=-- Cpt' apt- Icorr(pt , pt)
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Ctypt := Cpt*'otv-lcorr(tv, pt)

Ctv := (Ttv'Cytv-lcorr(tv, tv)



1
frequency increment (Hz): - = 0.05

K- At

10

1

0.1

S 0.01

1 -1 0 -3

1-10-4

1-10-5

1 -10-6

n := 0.. 1200

0.03

0

0

0

0.017

0

-0.01

PSD: tv (red), pt (blk), hv (brn)

frequency (Hz)

amp: 0.03

Corrs: tv (red), pt (bik), pt-tv (blu)

0 2 4 6 8 10 12

lag (s)
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K
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D. Coherence and FRF for multi-input, single-output system

SYuk' SYuk
The coherence squared function between input u and output y is defined as coherk :=

S S
SYk uuk

For a two input, single output case, where the inputs are perfectly uncorrelated, the sum of the
coherences between each input and the output is bounded by 1. When the inputs are not perfectly
uncorrelated, the coherence sum that is bounded by unity includes additional terms; the coherence
between the two inputs, and two "triple term" coherences between both inputs and the output.The
sum of these five coherences is reduced from unity by noise, nonlinearities, and from the correlation
between the inputs.

Set params for spectra calcs: N = 2.193 x 104

K = 1.992 x 10 3

nr = 21 ol = 0.5

1 = 0.05
K- At

1. Calculate coherence squared functions

Yhypt:= CohSqdMC(hv,pt,nr,ol,win)

Yhtv := CohSqdMC(hv,tv,nr,ol,win)

7typt := CohSqdMC(tv,pt,nr,ol,v

head vel - torque

head vel - target vel

target - torque

torque - torque

target - target

head - head

H := last(7hvpt) h := 0.. H

Ypttv := CohSqdMC(pt, tv, nr, ol, win)

Shvpt cspectrum(h, pt, nr, ol, win)

Shvtv cspectrum(hv, tv , nr, ol, win)

Stvpt cspectrum(tv, pt, nr, ol, win)

Spt := espectrum(pt, pt, nr, ol, win)

Stv :=espectrum(tv, tv, nr, ol, win)

Shv cspectrum(hv, hv, nr, ol, win)
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Shvtvh' Shvpth' Stvpth

trih ! Shv Stv' Spth

Shvtvh'Shvpth' Stvpth
y2 triph - Shvh S ' Spth

Yltrip:= Re(yltrip)

y2 trip := Re(y2trip)

Ysumh = vhypth + Yhvtvh + Ytypth - Yltriph - y2 triPh

H := length(yhypt)
H

h:= 0..-
10

Cohere sqd: hv-targ (blu), hv-torq (blk)

0 2 4 6 8 10

frequency (Hz)

Coherence squared between inputs
I I I

0 2 4 6 8 10

frequency (Hz)
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Sum of coherence sqd measures

II I

....................................................... ............

0 2 4 6 8 1
frequency (hz)

"Triple" coherences

0 2 4 6
frequency (Hz)

0

8 10

2. Calculate frequency response functions (apparent transfer function)
G2 = head response to visual target
G4 = head response to torque perturbations

visually mediated head response (G2) G2 F RF
Shvtv

Stv

head-neck response (G4)

magnitude: magG2 := IG2FR

magG4 := G4FR

G4 FRJ Shvpt

Spt

F1 P := last(magG2)

rl P last(magG4)
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phase (radians): G2:= arg(G2FRF)

#G4:= arg(G4FRF

degrees: G2 := -- -G2J

degrees: G4 := 1 (G4)

FRF G4: gain

5
frequency (Hz)

FRF G2: gain

1.25

frequency (Hz)

200

100

-o
rJ)

10

-o

0

-100

200

-10

-20

0

0

0

300
2.5

FRF G4: phase

0 5 10
frequency (Hz)

FRF G2: phase

) 1.25
frequency (Hz)

2.5
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E. Time domain head response to torque perturbations, 4, and to target velocity, g2

1. Analysis description
The head has a reflexive response to the torque perturbations, p, and a voluntary response

to track the visual target, t. The causal input-output convolution relation is:

M-1 M-1

hn := At. g4 k-pn-k + At. Y g2k-tn-k for n >= M-1

k=0 k=0
a. Correlation based equations

The correlation based relation, with respect to the input torquej, is:
M-1 M-1

Cph := At. Z g4 kCPPj-k+At- g2 k-Cptj-k
k=0 k=0

where Cph is the input-output cross-correlation with the input perturbation, p, lagged wrt the head
velocity output, h.

If the torque-target cross-covariance is assumed equal to zero for all relevent lags, then the
relationship simplifies to:

M-1

Cph := At. Z g4 k-CPPj-k
k = 0

and g4 can be found by deconvolving Cpp from Cph.
A similar analysis can be done for the head's response to the target's velocity. The voluntry

reponse to the visual targetshould be expected to be time variant, since the hed does not have to
match the target's motions; the gaze must match the target's motion. Expect that this is much less
significant, and that the head is sensitive to the target's position.

b. Matrix manipulations
The covolution can be expressed as as a series of equations: H = P AT G4 + T AT G2.

All elements of the IRF are in each equation for elements n = M-1 to N-1. The equations are
overdetermined so should be solved with the "pseudo" inverse. Relations very similar to the
correlation equation are created when multiply the equations by the transverse of the perturbation

matrix, pT, to form pT H = PTP AT G4 + PTT AT G2.
The matrix relations are slightly different mathematically than the correlation relations.

However, if the sequences are considered ergodic and wss, PT H, PTP, and PTT provide essentially
the same estimate of the second order statistical properties of the system as the correlations
estimators.
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2. Calculate IRF relating torque (pt) and target (tv) to head velocity (hv)

a. Consider making sequences for analysis zero mean
Use lcorr to estimate the correlations. Use zero mean sequences. The sequences can

therefore be considered perturbations. Must account for the offsets afterwards.

mean(pt) = -0.011 mean(tv) = -5.678 x 10 mean(hv) = 0

pt := pt - mean(pt) tv := tv - mean(tv) hv:= hv - mean(hv)

Ypt := stdev(pt) ltv := stdev(tv) lThv := stdev(hv)

b. Set length of IRF (M):
N = 2.193 x 104

M:= 300

recLen := 3000

ovlap := 1.5-M

N-At = 219.32

M-At = 3

recLen-At = 30

ovlap-At = 4.5

j 0.. M - 1

c. Solve for G2 and G4 using user-defined finctions

correlation IRFs g2 cor := IRF(tvmhvmAtM)

g4 cor := IRF(pt, hv, At, M)

multiple record IRF g2 ave aveIRF(tv , hv, At, M, recLen, ovlap)

g4 ave aveIRF(pt, hv, At, M, recLen, ovlap)
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F. Fit 2nd order parametric model to the g4 covariance IRF

choose IRF and length to be fitted: hest := g4 ave V := M v:= O..V- 1

set initial parameters

calculate model system:

gain := 0.25 (On:= 11

hguess := h2 dmod(v. At, gain, on, )

estimate FRF from the DTFT of the position IRF

H4 vel := cfft(hest) H4 vel := magVect(H4vei) LH := length(H4vel)
LH

lh := 0..
10

H4 guess := cfft(hguess)

100

-o 50

0

-50

15

-o

10

5

H4guess := magVect(H4guess)

IRF (red) and 2d model guess (blu)

0 0.5 1 1.5 2 2.5

time (s)

FRF (red) and 2d model (dft) (blu)

v 0 2 4 6 8 10

frequency (Hz)
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Solve for parameters that minimize mean square error

Define objective function to be minimized with parameter choice

set starting data point: U

sum of square differences:

0 end point: V = 300

V-1

SSdif (gain, (On, ) := I (hest - h2dmod(j- At, gain, con 2

j =U

Minimize objective function with non-linear method (Lev-Marquardt, conj grad, or quasi-Newton)

Given

SSdif(gain, on, ) = 0

! gain

(On :=Minerr(gain,

Using Minerr in a solve block manner. Minerr requires as
many equations after the "Given" command as there are
parameters for which to solve. The "equals" sign is ctrl
the "constrained to be equal to" operator.

On,)

parameter values:

settling time:

rotational inertia:

damping:

spring stiffhess:

parametric model response function

FRF from the DTFT of the position IRF

gain = 0.197

4
ts:=

J := 2

gain. (on2
.2

gain. :

gain

Wn = 11.92

ts =0.657

J = 0.0356

B = 0.434

K = 5.064

4 = 0.51

g4 parv := h2dmod(v- At, gain, co n, )

H4 par := cfft(g4par) H4 par := magVect (H4par)
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G. How well do the IRFs predict the output?

hv predictions, % VAF, and mean square difference

truncate IRFs to the same length

g2 cor submatrix(g2cor, 0, M - 1, 0, 0)

g2 ave submatrix(g2ave, 0 , M - 1 , 0, 0)

g2 par submatrix(g2parOM - 1,0,0)

k := 8000.. 9000

g4 eor := submatrix(g4cor, 0, M - 1, 0, 0)

g4 ave := submatrix(g4ave,0 , M-1 ,0,0)

g4 par := submatrix(g4par, 0, M- 1,,o)

head velocity predictions - calculate components stimulated by torque (pt) and by target (tv)

from single correlation IRF

hvcorpt := At- convol(g4cor, Pt)

hvcor := hvcorpt + hvcorty

from avg correlation IRF

hvavept := At. convol(g4ave, pt)

hvave := hvavept + hvavetv

from parametric IRF

hvparpt := At. convol(g4par, Pt)

hvr :hv t +hv thpar :=hparpt +hparty

hvcortv := At. convol (g2cortv)

hvavetv :=At. convol(g2ave, tv)

hvpa At. convol(g2par, tv)

477



% VAF and MSD
Remove the same number of elements from end as there are in the impulse response function.

measured hv

hv2 := submatrix(hv, M, last(hv) , 0, 0)

chv2 := stdev(hv2) %hv2 = 0.452

from single correlation IRF

hv2 cor:= submatrix (hvcor, M, last(hv), 0, 0)

hv2corpt submatrix(hvcorpt, M, last(hv) , 0, 0)

hv2cortv submatrix (hvcortv, M, last(hv), 0, 0)

from avg correlation IRF

hv2ave:= submatrix (hvave, M, last(hv) , 0, 0)

hv2 avept submatrix(hvavept, M, last(hv) , 0, 0)

hv2 avetv submatrix(hvavetv, M, last(hv) , 0, 0)

from parametric IRF

hv2 par:= submatrix(hvpar, M, last(hv),0,0)

last(hv2) = 2.163 x 10 4

last(hv2cor) = 2.163 x

last(hv2corpt) = 2.163

last(hv2cor) = 2.163 x

last(hv2ave) = 2.163 x

last(hv2avept) = 2.163

last(hv2avetv) = 2.163

104

x 104

104

104

x 104

x 104

last(hv2 par) = 2.163 x 104

correlation estimate head velocity

hverr := hv2 cor - hv2 Gerr := stdev(hverr)

2
Gerr

%VAF VAFhvc := 100 1 ~ 2
hv2 )

aerr = 0.187

MSDhvc:= MSD (hv2, hv2cor)
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Of the VAF, what portion is due to which component of the hv

hverr : hv2 corpt - hv2

hverr hv2cortv - hv2

aerr:= stdev(hverr)

Terr stdev(hverr)

VAFhvcpt= 100 iK

VAFhvctv:= 100 1

Shvcor := pspectrum(hvcor, nr, ol, win)

average estimate

hverr := hv2ave - hv2

%VAF VAFhva= 100K

err := stdev(hverr)

2
Cerr

1 - 2I21
c"hv2)

Gerr = 0.192

MSDhva := MSD (hv2, hv2ave)

Of the VAF, what portion is due to which component of the hv

aerr: stdev(hverr)

Yerr stdev(hverr)

VAFhvapt

VAFhvatv

2
aYerr100 1 - Gr
ahv2

2

0 a Gerr 2

Chv2

hverr:= hv2 avept - hv2

hverr hv2 avetv - hv2

parametric estimate of head velocity

hv hv2 - hv2err par CIerr := stdev(hverr) Gerr = 0.206

%VAF VAFhp := 100 1

2)
Gerr

2
ahv2 )

MSDhp := MSD(hv2, hv2 cor)

Shvpar := pspectrum(hvpar, nr, ol, win)
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1 .104

g2: head driven by target
-o

-a
S

Cl

50(

-500

g4: head driven by torque

2d order params

gain = 0.197

On = 11.92

( = 0.51

J = 0.036

B = 0.434

K = 5.064

7L)

1000

500

0

-500

ts = 0.657

15

101

5

0

g2 IRF: covariance eqs

0

0

0 0.25 0.5 0.75 1
time (s)

Correlation IRF (red), 2d model (blk)

0 0.25 0.5 0.75 1

time (s)

g4 FRF (red) and 2d model (blk)

0 2 4 6 8 10

frequency (Hz)

480

. . . --- -- -- I- - - - -= -- - - - - -I --- - - --- - j I - I I



g4: head driven by torque

'*0

120

0

2d order params

gain = 0.197

On = 11.92

( = 0.51

J = 0.036

B = 0.434

K = 5.064

ts = 0.657

15

10 t

5

0

Ave IRF (red) and 2d model (blk)

I I

0 0.25 0.5 0.75 1

time (s)

FRF and 2d model (dft)

0 2 4 6 8 10

frequency (Hz)
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How well do correlation or parametric IRFs model the measured head velocity?

hv: correlation est (red), meas'd (brn)

_ I

VAFhvc = 82.872

VAFhvcpt = 75.555

VAFhvctv = 7.662

82 84 86 88 90 MSDhvc = 0.035

time (s)

hv: avg corr est (red) meas'd (brn)

_ I

VAFhva = 81.943

MSDhva = 0.037

82 84 86 88 90

time (s)

hv: parametric est (blu), meas'd (brn)

82 84 86 88
time (s)

90

VAFhvp= 79.183

MSDh yp 0.035

180
-. MSDhvp = 2.004

7C
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G3 FRF IRF

Program calculates the impulse response function and frequency response function for the VOR.

filename: G3 FRF 14 Jun 02 6b 20b last update: 07Apr03

10 Hz LPF

A. User defined functions

B. Read processed data files, create gaze position and velocity

Read processed data from .csv file. Data created by MakeFiles
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C. Is the torque-target CCF zero?
The analysis of the VOR relies upon the tor-targ CCF being approximated as zero. The

CCF is measured relative to the off-impulse level of the torque ACF. During the calculation of g3
IRF, Cpttv is assumed zero, Cpthv is treated as the input, and Cptev is treated as the output.

calculate standard devs:

perturbation torque ACF:

head velocity ACF:

torque - target velocity CCF:

torque - target position CCF:

torque - head velocity CCF:

torque - eye velocity CCF:

head vel - target vel CCF:

head vel - eye vel CCF:

ypt :=stdev(pt)

Ghv :stdev(hv)

at:v stdev(tv)

aev :=stdev(ev)

2
Cpt Cypt 2lcorr(pt, pt)

Chv hv 2-lcorr(hv, hv)

Cpttv Cpt' otv-lcorr(pt ,tv)

C pttp pt* ctp- lcorr(pt, tp)

Cpthv Gpt' hv-lcorr(pt, hv)

Cptev apt* ev-lcorr(pt, ev)

Chvtv ahv' tv-lcorr(hv, tv)

Chvev chv' ev-lcorr(hv, ev)

Non-normalized covariances

plot ranges: j := 0.. 2000

ti
set range for 2-norm: t1 := 0.2 x1 := -

At

t2
t2: 8 x2:=-

At
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Torque-target CCF vs. ACF of PRBS torque - important for design, but these are not the actual

correlations that are used in the calculation of the VOR IRF.

pt-tv CCF (blk) & pt ACF (mag)
I I A

- -

5 10
lag (s)

15 20

Norm2(Cpt,xl,x2) = 0.016

Norm2(Cpttv,x1,x2) = 3.406 x

Norm2(Cpttv, x1, x2)

Norm2(Cpt, x1, x2)

The analysis uses the CCF between the torque and the head velocity, and the torque and the eye

velocity. These can be compared against the torque target CCF.

CCFpt-hv (brn), pt-ev (blu), pt-tv (blk)
I I I

I I ~

5 10
lag (s)

15 20

Norm2 (Cpthv, 0, x2)
.= 37.939

Norm2 (C pttv, 0, x2)

Norm2 (Cptev, 0, x2) = 38.087

Norm2(Cpttv,0, x2)
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D. FRF and coherence calculations

set spectral parameters:

calculate G3 FRF

"output meausure"

"input measure"

L := length(Sptev)

complex FRF:

Sptev : spectrum(pt, ev, nr, ol, win)

Spthv := cspectrum(pt, hv,nr, ol, win)

1
freqhncr :=

Sptev
Spthv

mSptev := mag(Sptev)

mSpthv := mag(Spthv)

freqIncr = 0.057

magnitude: mG3 := G3FRF

phase (rad): G3 := arg(G3FRF)

freqlncr = 0.057

P := last(mG3)

180
deg: OG3 := - ---0G3J

P
p := 0..-

25

OG3 := Unwrap(OG3)

FRF G3: gain

+

4- j

1 2

frequency (Hz)

3 4

0

g -100

-200

FRF G3: phase
I I

I I

0 1 2

frequency (Hz)

3 4
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1. Coherence squared: two-input, single-output system

SYuk* SYuk
The coherence squared function between input u and output y is defined as coherk :=

SS
SYk uuk

For a two input, single output case, where the inputs are perfectly uncorrelated, the sum of the
coherences between each input and the output is bounded by 1. When the inputs are not perfectly
uncorrelated, the coherence sum that is bounded by unity includes additional terms; the coherence
between the two inputs, and two "triple term" coherences between both inputs and the output.The
sum of these five coherences is reduced from unity by noise, nonlinearities, and from the correlation
between the inputs.

The single output is the eye velocity. The inputs are the target velocity and the head velocity.

pt input, ev output Y evpt CohSqdMC(ev, pt, nr, ol, win)

tv input, ev output Yevtv CohSqdMC(ev, tv, nrol, win)

between the inputs Ypttv CohSqdMC(pt , tv, nr, ol, win)

7typt CohSqdMC(tv , pt , nr, ol, win)

eye vel - torque

eye vel - target vel

target - tor

tor - tor

target - target

eye - eye

Sevtvh' Sevpth* Stvpth

Sevh tvh pth

Sevtyh'*Sevpth Stvpth
y2triph 

S evh Stvh *Spth

H := last(yevpt) h := 0.. H

Sevpt cspectrum(ev, pt, nr, ol, win)

Sevtv cspectrum(ev, tv, nr, ol, win)

Stvpt cspectrum(tv, pt, nr, ol, win)

Spt cspectrum(pt, pt, nr, ol, win)

Stv cspectrum(tv , tv, nr, ol, win)

Sev cspectrum(ev, ev, nr, ol, win)

71trip Re(Yltrip)

Y2 trip Re (y2trip)
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sum of the coherence-squarefunctions Ysumh = Yevpth + Yevtvh + 7typth - 1tPh -y2tri

coh-squared due to inputs being correlated Ycor := yptty - yltrip - 72trip

H
H := length(Yevpt) h := 0.. 1

Sum of coh-sqd measures

0.5 -
0

0

0 1 2 3 4 5 6

frequency (Hz)

Coh sqd: ev-pt (blk), ev-tv (blu)

0.5
0

0

00 1 2 3 4 5 6

frequency (Hz)

"Coh-sqd" due to non-zero CCF
1 I I I I

0.5
C

0

0

0 1 2 3 4 5 6

frequency (Hz)
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Coh squared between inputs pt-tv
1

C 0.5
0

0

0 2 4 6
frequency (Hz)

"Triple" coherences
1

0.5

0
0 2 4 6

frequency (Hz)

489



2. Model FRF as high pass system

a. Second order high pass system

set initial parameter guess gainhf2 := 1.0 L := 0.5 R := 0.5

define frequency range over which to fit the model fmin:= 0

C := 1

fmax:= 4

Calculate 2d HP system models and initial guess

2d FFP G n ; C f :
2dhpsks-h29 .).1

(j-2 f) + -. (j-27 f) + L
L L-C

magnitude: mG2 dhps(gainhf2, L, R, C, f):= G2dhps(gainhf2, L, R, C,f

fre ncr = 0.057

phas: ~ G~dps~ainh2 ,,R~~f) 180
phase: EGdhps(gaihf2, L, R, C, f) := --- arg(G 2 dhps(gainhf2, L, R, C, f))

fmin
imin := floor Ifreqlncr)

fmax
imax := floor afreqIncr

j := imin -- imax

Calculate initial model: mG2 dmod := mG2 dhps(gainhf2, L, R, C, j. freqlncr)

FRF data and 2d HP guess

+

2

frequency (Hz)

31 4
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Calculate parameters to minimize the SSD fit of 2d HP systemfromfl tof2

Define objective function to be minimized

imax
ssdG3(gainhf2, L, R, C) := I

i = imin

ssdG3(gainhf2, L, R, C) = 2.726

Minimization of 2d order
HF system parameters:

(mG3j - mG2 dhps(gainhf2, L, R, C, j- freqhncr)) 2

Given

ssdG3(gainhf2, L, R, C) = 0

1= 1

1 =1

1 =1

Lgainhf2
L

R

C

:= Minerr(gainhf2, L, R, C)

"Min" values: gainhf2 = 0.969 L = 2.203 R = 0.761
1

C = 1.755 = 0.749
R*C

Calculate model system:

1.5

-o

1

0.5

0

mG 2 dmod := mG2 dhps(gainhf2 , L, R, C, j- freqIncr)
J

ssdG3(gainhf2, L, R, C) = 0.31

FRF data and 2d HP model

++ I

0 2

frequency (Hz)
1 3 4
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b. First order high pass system

Set initial parameter guess rc := 1.2

Calculate ld HP system models and initial guess

Define 1st order HF system and initial models

FRF:

gainhfl := 1.0

gainhfl -rc-j- 2t f
G1dhps(gainhf, , rc) := 1 rc~j*27f freqIncr = 0.057

magnitude: mG 1dhps(gainhf, rc, f) := Gldhps(gainhfi, rc , f

phase:

Calculate initial model:

2

mG3.
J

mGl dmod 1

0 0

G r 180Gldhps(gainhf , rc , f) G ps(gain ,rc ,f))

4

mGldmod - := mGldhps(gainhf , rc , j- freqIncr)

FRF data and ld HP guess

1 2

P
P*At

3
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Calculate parameters to minimize SSD fit of 1st order HP system

Define objective function to be minimized

imax

ssdG31d(gainhfl,rc) 
:

i =min

ssdG31d(gainhfl,rc) = 1.251

Minimization technique

Given

(mG3j - mG1dhps(gainhf , rc, j- freqIncr))
2

ssdG3Id(gainhfl , rc) = 0

gainh' : Minerr(gainhfl 
, rc)

rc

Calculate model with least squares fit system:

2

1

0
0

mGldmod. := mGldhps(gainhfl , rc , j.freqIncr)

ssdG3Id(gainhfl , rc) = 0.621

FRF data and id HP model

++|

1 2
frequency (Hz)

3 4
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E. IRF calculations

Analysis description
The convolution relation for the eye motion is

M-l M-1

en := At. I gli-tn-i + At- g3i-hn-i + En

i=0 i=0

The target and the head inputs are not uncorrelated, so g3 cannot be found from a
straightforward cross-correlation analysis between h and t. The experiment was designed so the
target velocity would be uncorrelated with the perturbation torque. To find g3, the input and
output sequences must be cross-correlated with the perturbation torque.

Consider the cross-correlation with the perturbation torque:
M-1 M-1

Cptevn := At. Z gli- Cptty + At. Z g3 i-Cpthvn-i + CptEn
i=0 i=0

Under the assumption that Cpttv and Cpte are zero, g3 is estimated from:
M-1

Cptevn := At. I g3i- Cpthvn-i
i = 0

Linear algebra solution
The convolution equation for elements M-1 to N-1 can be put in a matrix form:

E := T-AT-G1 + H-AT-G3 + 6

Following the same argument as for the correlation solution, multiply through by PT to form:

P E := P H- AT-G3

Methods
1. Correlation method - set first M-1 elements of output to 0
2. Correlation method - ave IRF from multiple records, set elements to 0

Sequence lengths: N = 1.857 x 104 N- At = 185.72

1
Set desired IRF length M := 300 M- At = 3 lowest FRF frequency: - 0.333

M. At

Set record length and overlap: lenIRF := M lenOL := 1.5-M

N
lenRec := - lenRec-At = 37.144

5
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IRF calculations

a. IRF using covariance - first M-1 output elements set to zero

g3 IRF: g3 cz:= g3corZ(M, At, pt, hv, ev)

G3 FRF = DFT(irf): G3cz := cfft(g3cz) mG3cz := mag(G3cz)

Estimate vor component of eye velocity

evcz:= At-convol(g3cz,hv)

evcz := submatrix (evcz, 0 , last(ev) , 0, 0) evcz:= Re(evCz)

Sevcz := pspectrum(evcz, nr, ol, win)

VAFczev:= VAF% (evcz, ev, M)

VAFczhv:= VAF% (evcz, -hv, M)

What remains of eye velocity must have been driven by target or other
Mean filter to get rid of noise etc..

evcztv v= - evcz evcztv := movavg(evcztv, elem)

b. IRF averaged from records

ave IRF: g3 avcz:= g3avcorZ(pthv, ev, At, lenIRF, lenRec, lenOL)

G3 FRF = DFT(irf): G3qVO7 c fft(g3 2V.7) mG3-k. 7  mag(
avez : -,fft

Estimate vor component of eye velocity

evavcz At. convol(g3avcz, hv)

evavcz submatrix (evavcz, 0, last(ev), 0, 0) evavcz := Re(evavcz)

495

Gi3.qP



Sevavcz := pspectrum(evavcz, nr, ol, win)

VAFavczev:= VAF% (evavcz, ev, M)

VAFavczhv := VAF%(evavcz, -hv, v)

What remains of eye velocity must have been driven by target or other
Mean filter to get rid of noise etc..

evavcztv ev - evavcz evavcztv := movavg(evavcztv, elem)

plot ranges

IRF plot range:

FRF plot range:

estimate plot:

PSD of estimates

target velocity plot

j := 0.. 100

H := length(mG3cz)

n:= 1200.. 1600

K := length(Sevcz)

r:= 2000.. 6000
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IRF estimates from covariance, zeros set in first M elements

g3 IRF - covariance
I -

0.25 0.5 0.75 I
lag (s)

IRF estimates from IRF averaged from multiple records

g3 IRF - ave

0.25 0.5
lag (s)

0.75 1
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IRF estimates from covariance, zeros set in first M elements

VOR ev (red), measured ev (blu)

-V -

I I I
12 13 14 15 1

time (s)

VOR ev (red), measured hv (brn)

12 13 14

time (s)

15

M = 300

VAFczev = 67.234

6

VAFczhv = 88.519

16

The portion of the ev that is not driven by the VOR is driven by the target. However, the target
drives the gaze, so the eye velocity may not look like the target

0
0-1

Mean tv (blk), target driven ev (red)

3000 4000

time (s)

5000

elem- At = 1

6000
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User Defined Functions

A. Derivatives and integration

5 point equal-abscissa derivative function: Deriv5pt(X, At)

Differentiation for sampled sequence with equally spaced abscissas. There are N elements, 0
through N-1. Algorithm from Abromowitz and Stegun, Handbook of Mathematical Functions,
25.3

The algorithm approximates the derivative p time steps from center value, xO. f(xo.1) indicates

the function evalated at t. - 1 Dt.

The derivative is found with the expansion:

fdot(x 0 + p-At) := 1(a(p)- f(x0-2) + b(p)- f(x0- 1 ) + c(p)- f(x0 ) + d(p)- f(xi) + e(p)- f(x2 ))
At

where the coefficients:

2p3 - 3p - p +

12
4-p3 - 3p - 8p + 4

6

2p - 5p
c(p) := 2

2p3 + 3p2 p_ i
e(p) : 12 d(p) :=

34p3 + 3p - 8p - 4

6

p := 2

a(p).12 = s b(p)-6 = m c(p)-2 = @ d(p)-6 = e

This particular form of the algorithm calculates the deriv at elements 2 through N-3 as the center
point of the 5 point expansion (p = 0). Elements 0 and 1, and N-2 and N-1, cannot be calculated
with p = 0. p = -2 for element 0, p = -I for element 1, p = 1 for element N-2, and p = 2 for
element N-1.
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Deriv5pt(X, At) N <- length(X)

for i e 0

1 -25 4 1
Xdoti +- 1- -- Xi + 4-Xi+ + 3*X 2 +--Xi+ 3 - -- Xi+ 41

At 12 3 4

for i ( 1

1 (-1
Xdoti <- - -Xi

At 4

for ie2.-(N- 3)

1(1
Xdoti +- A - Xi-2

At 12

for ieN-2

1 (-1
Xdoti <- -I -Xi-3 +

At 12

for i E N - 1

Xdoti <- -i -Xi -
At 4

Xdot

5 3
-- Xi + - Xi+1 -

6 2

1
Xi+ 22

1
+ - Xi+ 3I12 )

2 2 1
3XiI + - Xi+ - Xi+2I3 3 12)

1
-Xi-2-
2

4
-Xi- 33

3
-Xi-i
2

5 1
+ -Xi + -Xi+i

6 4

+ 3Xi-2 - 4XiI + -X
12 '

Trapezoidal integration: Pos(vel, At)

N <- length(vel)

poso +- 0

sum <- 0

for ie l..N-1

posi <- posi-I + 0.5. At.(veliI + veli)
pos
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B. Correlations and covariances

Biased auto-correlation estimator: AutoCorr(x, maxiag)

This estimator is not normalized by the sequence variance, so the zero lag value is equal to
the sum of the squares of all terms - a measure of total sequence power. Though much
slower than Mathcad compiled function, this function is explicitly defined. Similar functions
are Mathcad's lcorr( ), the normalized covariance, and correl(), the non-averaged
correlation.

AutoCorr arguments: x, the sequence; maxlag, maximum lag desired. If maxlag is less than
or equal to zero, a default maxlag is set to the number of terms in the sequence.

AutoCorr(x, maxlag) := M <- length(x)

J +- last(x) if (maxlag = 0) v (maxlag > last(x))

J +- maxlag otherwise

for je0..J

1 M-1-j
Rx j - Mxi-xi+j

i=0

Rxx

Biased auto-covariance estimator: AutoCovar(x, maxlag)

Covariance removes the sequence mean.

This estimator is not normalized by the sequence variance, so the zero lag value is equal to
the sum of the squares of all terms - a measure of total sequence power. Though much
slower than Mathcad compiled function, this function is explicitly defined. Similar
functions are Mathcad's lcorr( ), the normalized covariance, and correl( ), the
non-averaged correlation.

AutoCovar arguments: x, the sequence; maxlag, maximum lag desired. If maxlag is less
than or equal to zero, a default maxlag is set to the number of terms in the sequence.
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AutoCovar(x, maxIag) := M +- length(x)

p <- mean(x)

z +- x - p

J +- last(z) if (maxIag = 0) v (maxiag last(z))

J - maxiag otherwise

for jeO 0..J

1M-1-j

Cxx<-;j Z_
C xx

Zi-Zi+j

C. Gaussian related functions

Gaussian PDF: PDFgauss(x I I I i

(a-ps )2

2

PDFgauss(a,pg,,) 2 2 2 _

Gaussian CDF: CDFgauss(binmiin, z, pI a)

2

11
* e 2 a

bin min
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Gaussian, white sequence: GWN (At,durSec, ,a,numSwaps)

GWN(At, durSec, pi , a , numSwaps)

Function arguments:
Dt - the desired sampling period
durSec - desired duration of the sequence in seconds
m - desired mean
s - desired standard deviation
numSwaps - number of stochastic swaps.

If numSwaps = 0 , then default is 4*sequence length.

(durSec
GWN(At, durSec, p , a, numSwaps) := numElem - floor I +1

At

for j e 0.. numElem

j- At
x. +-

durSec + At

for j e 1.. numElem- 1

Yold. <- qnorm(xj, 0 , 1)

N +- last(yold)

for c e 0.. if(numSwaps = 0, 4N, numSwaps - 1)

ACFold -- lcorr(yold, Yold)

SSold <- last(ACFold) ACFold)
2

i = 0

j1 +- floor(rnd(N))

j2 <- floor(md(N))

Ynew - Yold

Ynew I-- Yoldj2

Ynewj 2 +- Yold.I

ACFnew <- lcorr(ynew, Ynew)

last(ACFnew)

SSnewe (AC~new.)2
i = 0

Yold <-- 'f(SSnew < Ssold, Ynew, Yold)
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My - mean(yold)

ay +-- stdev(yold)

yold *- r Yold - +y

ay

Yold

D. Probability

PDF and CDF algorithm
Spread 100 (for example) amplitude bins across 8 standard deviations centered

at the mean. Count how many outcomes fall into each bin. Divide by total sequence
length to find the probability density function.

Plot: The PDF should be plotted with an index of "bin", with the indep index

(binmin + A bin- bin). It is Best to keep this as an algorithm rather than a function so

can keep values for bins available for plotting.

set temp array: ta := hvel ata := stdev(ta)

pta := mean(ta) pta =

sequence length: D := length(ta) D = e

set number of bins: numbins := 100 bin := 0.. (numbins - 1)

set number of deviations (+/-) over which to spread bins: bindevs := 4

calculate bin bounds and increments

binmin 1 'ta - bindevs- ata binmin =

binmax N= ta + bindevs- ata biflmax =

binmax - binmin
Abin numbins Abin = H

D-1

PDF: Ptabin 1D D if(binn + A bin-bin) < tai [binmin + A bin-(bin + 1) ,1,0
bn = 0

set PDF of orig to temp: Phvel =ta
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Cumulative distribution function
The CDF function evaluated at xO represents the probability of an outcome being less

than x0 . The distribution finction is the integral of the density function.

Cumulative distribution function: CDFtabin N 1 N tai < (binmin + Abin 10

i =0

set CDF of orig to temp: CDFhvel:= CDFta

plot on a X-Y plot with axis graph, same arguments as for PDF

E. Spectrum

Coherence squared function (Mathcad functions): CohSqdMC(x, y, nr, ol , win)

Function uses Mathcad function pspectrum and cspectrum calculate the coherence function
between input x and output y. User sets record length, overlap, windowing

CohSqdMC(x, y, nr, ol, win) := Sxx <- pspectrum(x,nr, ol, win)

Syy <- pspectrum(y, nr, ol, win)

S +- cspectrum(y, x, nr, ol, win)

for r e 0.. last(S )

SYxr Syxr
cohsqdr , <

S crSI

cohsqd
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PSD function: PSD(za, zb, RecLen, overlap)

PSD() pulls records of length RecLen from sequences za and zb, calculates the record's DFTs,
Za(f) and Zb(f), using Mathcad's complex fft, cfft(), and estimates the record's cross power
spectrum as Za(f)Zb*(f). The PSDs of each record are averaged to estimate the average PSD of
the original sequence. Since the DFTs are calculated with Mathcad's cfft( ) Me FO.' is t;
square magnitude of the DFT with no additional scale factor.

PSD(za, zb, RecLen, overlap) := las <- min(last(za) , last(zb))

zahold <- submatrix(za, 0 , las , 0, 0)

zbhold +- submatrix(zb, 0, las , 0, 0)

L <- RecLen

numRec +- 0

PSDsumL-1 0

while L length(zahold)

numRec <- numRec + 1

zat +- submatrix(zahold, 0, L - 1 , 0, 0)

zbt +- submatrix(zbhold, 0, L - 1, 0, 0)

zaDFT <- cfft(zat)

zbDFT +- cfft(zbt)

PSDrec +- (zaDFT zbDFT)

PSDsum +- (PSDsum + PSDrec

a <- floor[(1 - overlap)- L]

zahold <- submatrix(zahold, a, last(zahold) , 0, 0)

zbhold <- submatrix(zbhold, a, last(zbhold) , 0, 0)

PSDsum
PSD <-

numRec

PSD
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Coherence squared function: CohSqd(x, y, reclen, overlap)

Function uses user defined PSD( ) to calculate the coherence function between input x and
output y. User sets record length and overlap.

CohSqd(x, y, reclen, overlap) := <- PSD(x, x, reclen, overlap)

Syy +- PSD(y, y, reclen, overlap)

SY +- PSD(y, x, reclen, overlap)

for r e 0.. lat(SyX)

c(

cohr +-
S Yr S Xr

h

S * S
r r

F. Correction filters for sensors

Watson sensor 14150 calibration correction: HVcorrl4l50(hv)

Algorithm adds a correction to the measured voltage so voltage represents velocity

N +- length(hv)

for ie O..N-1

I corr <- 0

corr <- 3.98. 10 3.hvi + 0.0398 if -10 hvi < -7.49

corr <- 0.01 if -7.49 hvi < -4.99

corr <- -4.0. 10- 3.hvi - 0.0096 if -4.99 hvi < 0.01

corr <- -0.01 if 0.01 hvi < 10.00

hvcorri +- hvi + corr

hvcorr
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hv =(i - 20)
2

hv.

hvnew:= HVcorrl4l5O(hv)

corr.

corr := hvnew - hv

Correction curve

hvnew.

F. Low pass filter algorithms

Noncausal LPF with Kaiser window: ncLPFkaiser(At , fb, )

This algorithm generates the positive elements of a LPF with a Kaiser window. The
filter is intended to be used with the convolution function, ncSymDtConvolve(halg, x, At),

which should also be scaled by I/Dt. This was developed using Oppenheim and Schafer,
Discrete-Time Signal Processing, chaps 5-7.
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ncLPFkaiser(m) := fsamp
1

Atj

pb <- (2n At)fpb

CO sb +-- (27c At)fsb

(0co
opb + osb

2

0trans <- 0sb - (pb

A +- -20 log(8)

A - 8

2. 2 8 5 o trans

M +- floor(Mmin + 1)

rmdr +- mod(M, 2)

M -(M + 1) if Irmdr < 0.001

p +- 0.1102(A - 8.7) if A > 50

p <- 0.5842 (A - 21) 04+ 0.07886(A - 21)

<- 0.0 if A < 21

M - 1
for me l.. 2

2

numArg +<- p-1
_2m 2I

if (A > 21) A (A 50)

2

Wnum <- I0 (numArg)

wden <-1

hkaiser wnum sin(m. o co)
m wden 7Cm

hkaisero

hkaiser

(0 CO

7r
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Noncausal convolution with IRF symmetric about 0: ncSymDtConvolve(h, x, At)

This algorithm separates the causal (indices >= 0) and noncausal portions of the
convolution. Expresses the noncausal portion in terms of positive indices. This implementation
requires the filter IRF (h) to be symmetric about 0. Scales by Dt to approximate the dt of the
continuous convolution equation.

ncSymDtConvolve(h, x, At) Mmax <- last(h)

Nmax +- last(x)

for i e 0.. Nmax

min(Mmax, i)

Ycausi +- I hj-xi-j

j = 0

for i e 0.. (Nmax - 1)

min(Mmax, Nmax-i)

Ync. - hk-xi+k

k

YncN 0

for i e 0.. Nmax

yi +- At- (Ync + Ycaus)

y
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G. IRF algorithms

Correlation (covariance) based IRF: IRF(input, output, At, lengthIRF)

Calculates IRF between input and output using covariance. Vectors should either have zero
mean vectors or user should account for offset when using the IRF to predict output. The
algorithm assumes that the input and out vectors have the same number of elements.

The calculation is conducted by setting the first M elements of the output to zero. This has
the effect of only considering output responses that are a result of all elements of the IRF.

IRF(input, output , At, lengthIRF) N <- length(output)

M <- lengthIRF

Yrec <- output

xrec +- input

for neO 0..M-2

Yrecn +- 0

ay <- stdev(yrec)

ax <- stdev(xrec)

Cxy + Gx-ay-lcorr(xrec, Yrec)

Cxx +- ax21 corr(xrec , xrec)

for re-O..M- 1

for ceO..M- 1

D r, c +- CXXr-C|

invcF, <-cv

Cxy <- submatrix(Cxy,0, M- 1,0,0)

1
IRF +- -inv@ -Cxy

At

IRF
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Multiple record IRF: aveIRF (input, output , At, lenIRF, lenRec , lenOL)

The function breaks apart the input and output sequences into records of lenRec length.
Each successive record begins lenOL terms before the end of the previous record. The IRF for
each record are calculated for lenIRF terms.

The function used the lcorr( ) function which is a covariance, so the user must account
lr sequences tha' do not have zero mean.

aveIRF(m) :=

512

N +- length(output)

M +- lenIRF

R <- lenRec

OL <- lenOL

for ne O..M- 1

IRFn <- 0

nr +- floor (N - 1) - OL
R - I - OL_

for rec e I .. nr

yrec <- submatrix[output, (rec - 1)(R - 1 - OL) , rec.(R - 1) - (rec - 1) OL,

Xrec <- submatrix [input, (rec - 1)(R - 1 - OL) , rec.(R - 1) - (rec - 1)- OL, C

for neO..M-2

Yrecn - 0

ay +- stdev(yrec)

ax <- stdev(xrec)

Cy +- -c* a Y-lcorr(xrec, Yrec)

Cxx +- 2-Q. lcorr(xrec, xrec)

for re O..M- 1

for ce O..M- 1

r, C + CXXIr-c

inv +-O

Cy <- submatrix(Cy,OM- 1,O0,0)

1
IRFrec <-- -invox- Cxy

At



IRF & IRF + IRFrec

1
IRF +-- IRF

nr

IRF

Input Toeplitz matrix (N-M+1 x M): InputToeplitzM(M, x)

InputToeplitzM( ) puts an input signal into a Toeplitz matrix that represents input when
the convolution is broken into a series of equations for elements M-1 to N-1.

InputToeplitzM(M, x):= N +- length(x)

for reO..N-M

for cecO..M- 1

Xr,c <- XM-1-c+r

X

IRF based on series of correlation equations: IRFlinalg(input, output, At, lenIRF)

The algorithm calculates the IRF using the pseudoinverse to solve the matrixe series
of equations that relate outputs M-1 through N-I to the convolution sum. The function
requires the user defined function InputToeplitzM( ) which arranges the input elements into a
matrix.

IRFlinalg(input, output , At, lenIRF) := x <- input - mean(input)

y <- output - mean(output)

N +- length(y)

M +- lenIRF

AT <- At. identity(M)

invAT +- AT 1

Y - submatrix(y, M - I, N - 1, 0, 0)

X <- InputToeplitzM(M, x)

invXTX - (X X) 1

IRF <- invAT. invXTX- T Y

IRF
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(MxM) cross-covariance matrix: CrossCovarMatrixM(x, y, M)

Calculates a cross covariance matrix with 0 lag on the diagonal, negative lags in upper triangle,
and positive lags in lower triangle. Sequence x is lagged relative sequence y, e.g. Rxy

CrossCovarMatrixM (x, y, M) : a +- stdev(x)

ay <- stdev(y)

Rxy <- Tx*-a Y- corr(x, y)

Ryx <- a Y- CX- corr(y , x)

for re0..M- 1

for ccEO..M- 1

XYr, c <- if (r - c) > 0, Rxy Rcyxc-r

XY

Percent variance accounted for: VAF% (xest, x, M)

VAF%(xest,x,M) := N +- length(x)

Xest <- submatrix(xest, M, N - 1, 0, 0)

x +- submatrix(x, M, N - 1, 0, 0)

Xerr <~ Xest - X

kx <- var(x)

Xerr <- var(xerr)

VAF <- 100 1 - k_

VAF
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g3 IRF - Single record, covariance, output elements set to zero: g3corZ(M, At, pt, hv, ev)

The "input" is the pt-hv ccf, and the "output" is the pt-ev ccf. The first M-1 elements of the ev
sequence are set to 0.

g3corZ(M, Atpt,hv, ev):= N +- length(ev)

for neO..M-2

evn - 0

apt *- stdev(pt)

Ghv <- stdev(hv)

a ev 4- stdev(ev)

Cpthv *- apt. ahv. lcorr(pt, hv)

Chvpt Ghv apt. lcorr(hv, pt)

for r e0 .. M- 1

for ce 0.. M - I

pthvr, - if[(r - c) 0, Cpthvr- , Chvpt-r

invIpth <- %pthv I

Cptev <-- apt aev- lcorr(pt, ev)

Cptev < submatrix(Cptev, 0 , M - 1, 0, 0)
1

g3 < -- invcpthv- Cptev
At

g3
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g3 IRF - multi-rec, covar, M-1 output set to zero: g3avcorZ(pt, hv, ev, At, lenIRF, lenRec, lenOL)

The function breaks apart the input and output sequences into records of length lenRec.
This length mjust be chosen so the record is representsative of the system, and large relative to the
IRF. Each successive record overlaps the previous record by lenOL terms. Zeros are set in the
first M-1 elements of each record. lenOL should be greater than M to ensire all data is considered.
The IRF for each record is calculated for lenIRF terms.

The function used the lcorr( ) function which is a covariance, so the user must account
for sequences that do not have zero mean.

g3avcorZ(u) := N <- length(ev)

M <- lenIRF

R <- lenRec

OL <- lenOL

for ne O..M- 1

IRFn <- 0

nr <- floor (N - 1) - OL
R - 1 - OL_

for rec e I .. nr

ptrec - submatrix[ pt, (rec - 1)(R - 1 - OL) , rec-(R - 1) - (rec - 1)- OL

hvrec <- submatrix[ hv, (rec - 1)(R - 1 - OL) , rec-(R - 1) - (rec - 1)- OL

evrec <- submatrix[ ev,(rec - 1)(R - 1 - OL), rec.(R - 1) - (rec - 1)- OL

for ne0..M-2

evrec + 0

Upt *- stdev(ptrec)

Ghv <- stdev(hvrec)

Gev <-- stdev(evrec)

Cpthv -- upt cyh.lcorr(ptrec,hvrec)

Chvpt <- chv. apt. lcorr(hvrec, ptrec)

for re O..M- 1

for ceO..M-1

%pthvr, c <- if (r - c) > 0, Cpthvr-c Chvpt-r
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inv4Dpthv - %pthv

Cptev < apt Gev-lcorr(ptrec, evrec)

Cptev <- submatrix(Cptev, 0 , M - 1 , 0, 0

IRFrec - -inv Cpthv-Cptev

IRF <- IRF + IRFrec

1
IRF <- --- IRF

nr

IRF
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