An Efficient Representation for Multi- Application Accessible Visual Information
by

Alton Jerome McFarland

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science
at the Massachusetts Institute of Technology
_ August 9, 2002

CrniaK DQ)O‘D:E
Copyright 2002 Alton Jerome McFarland. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis
and to grant others the right to do so.

Author i

Department of Electrical Engineering and Computer Science
August 9, 2002
Certifiedby .~ . .
- 'ﬂroris K
Tz ;:;Dﬁ%ﬁm s<Z
Accepted by, (-/ L e e
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

[MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

ARCHIVES
JUL 30 2003

LIBRARIES

An Efficient Representation for Multi-Application Accessible
Visual Information

by

Alton Jerome McFarland

Submitted to
the Department of Electrical Engineering and Computer Science

August 9, 2002

in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

As computers become more and more pervasive in our society, one of the problems that arises is
how to efficiently integrate different types of systems and the information that they collect.
Through cooperation between multi-modal systems, a much broader range of applications
become available. In an attempt to attack this problem on a small scale, this project demonstrates
the coupling of a natural language processing system to a camera-based person tracker for the
purpose of being able to ask informally worded questions about what the tracker has observed in
the MIT Intelligent Room.

Thesis Supervisor: Boris Katz
Title: Principal Research Scientist, MIT Artificial Intelligence Laboratory

Acknowledgements

I would also like to thank David Demirdjian, Neal Checka, and Kevin Wilson for their help with
the Vision Interfaces Group’s person tracker.

I would especially like to thank Boris Katz and the entire InfoLab Group for their help and sup-
port with my thesis (and in general). Special thanks go to Jimmy Lin for helping me get started
with the GUI code and to Luciano Castagnola, Ali Ibrahim, and Jacqueline Lai for being nice
enough to traipse back and forth throughout the Intelligent Room when 1 needed help testing the
system.

Table of Contents

L ITOQUCION et rsstesaessnsaesssssme s s sasesssassatsnessosaesssssnssesesssssansesssnsntonsronastas 5
2. Related WOKK.....coveorniiiiciiiniciiiiiisescssisssssessnrersnsseniserssssessessesssssssasssssssssnssnsessesssssssosses 8
3. BacKground.........eeececsnrensnaisstsnsenesss e s ensnnsssessestsabesbessensensnesnesssensessenbosnen 10
3.1 Person-Tracking SyStEIM.......cccccoiiiiiiiiiiii ettt 10
3.1.1 Foreground DeteCtion.......ccccicciiiiieiorieciies e ee sttt e eeaeeeeeeeeeee e aeeeeeeeeeeaanss 10
3.1.2 CaAMETA SEIVET...c..iiiiiiiieiite ettt ettt e e ee e 11
3.2 START ..ottt e e et e te s eee et e eeseeeemsenee et et earasnens 12
3.2.1 T-@XPIESSIONS......e.iiiiuieiieieieeecessete st eatete e et s e seesesseee s seesess st et ssass ot etereeearansens 12
3.2.2 Native Linguistic Capabillties..........ccueerieerieieiceieie vt eeets s 13
3.2.3 KNOWIEdZE SOUITES......cciiriirienirteeeie ettt e e ee e 14
3.2 ADNNOTAIONS. ... ettt ettt ettt ee e et et ee et e e e e e e eere e 15
4. SYStem DesSig...c.ciiiiiiiiiiisiimeriininscsscienssreersssssnsstinsssasssssssssssssssssssssassnssserssssssssnsnenses 17
4.1 Design ConSIAEIAtIONS........oc.oviirrreriieeeeietiemeetetet et ee et seete e s teteessaeesevosereerseesarees 17
4.1.1 EaS€ OF ACCESS...uiinierinierriieiniiente et etee ettt r et et s et e nae e e e eneeeeeeees 17
41,2 ACCULACY .. teet ettt ettt et et st ettt e et e et e ee et e e e e eee e e e e et eeenrae e 18
4.2 System ATCRIECIUTE.eoieie ettt 19
5. System Implementation.......ccccccnsniniccrsosesssssesssessmernssenserssssasssssrssssasserersessessssns 25
5.1 VISUAIBLOD. ...t e e e 25
5.2 BlOD VECIOT......oieie ettt 26
5.3 Database.coiiiiieieie e e e aerens 26
5.4 Camera INtETTACE.......c.ooviiiiiii et e e e ee e 27
5.5 ROOMINIOSEIVET.......cooiiiiiee et e e e nee e 29
5.0 DISPLAYS....coiiiiriicer ettt ettt st et e et eee e e e e et 31
5.7 Language INterface......ooooiiiece e 31
6. EVAIUALION. ..o ciciccinsniiisniisstsstsisesnesasssnesasernessssnssnsentessestosassssssssasbessesssnsresssesnase 34
6.1 Data TIaNSTEL.......ooiiiiii e ettt 34
6.2 Data SMOOTNING. ..ottt ittt ettt st e seee et e e e e e s e eee e 35
7o FULUFE WOTK..oiriiiirericieininniininniiniinnisiiissnssessiesissnesiessnesasrsssssnesssessersanssssonsessessassesss 36
8. ReEfCIENCES. ittt e e ssns s rsessssss s sasssessasssesassossossnssnssnsssssnssansane 37
0 APPCRAIXu.uenrincieiiicticsrtsnatsnesnrssesstesessassssesansssesess b ssebe s b e rensesaesasnesnnesessnaesasseesnenn 38

1 Introduction

The problem of mapping the complexities of human perception into useful, quantifiable data is an
issue that continues to intrigue the artificial intelligence community. For instance, the seemingly
simple task of determining who, if anyone, is in a room at a given time becomes significantly
more complicated when viewed from a computer’s perspective. First, the ability to process visual
mformation is necessary. Distinguishing where a person ends and a wall begins, while trivial for a
human being, is not an easy determination for a computer program to make. And even when such
determinations can be made, the passage of time introduces a daunting element of instability, as
the positions and orientations of objects in the room constantly change. In order to gain as much
information as possible from such a system, some concept of temporal state must be maintained.
The cameras can provide the static representation of a particular scene, but in order to answer
questions like “What is George doing?”, not only must the system be able to determine that the
blob of pixels in the center of the room is George; it must also be able to decide from the correla-
tion of temporal data relating to the scene, that George’s recent actions indicate that he is using the
telephone.

Another advantage of storing temporal data is the gained ability to perform post-processing on
that data. The aforementioned problem of object-tracking is a very difficult one. The determina-
tion of an object’s actual motion can be made more accurate by taking into account its previous
motion and the motion of the objects around it. For instance, the data might show Blob 0 moving
steadily from position (0,0) to position (0, 2) and then suddenly disappearing just as Blob 1
appears at position (0,2) and continues moving in the same direction that Blob 0 had been going.

In such an instance, it isn’t likely that Blob 1 suddenly appeared in the room at that position just as

Blob 0 exited (perhaps through changes in position that occurred faster than the person-tracker
could update). It is much more reasonable to assume that the object was simply lost for a moment
and was reacquired, and subsequently, renamed. Post-processing of the data can reveal such
glitches and smooth them out by equating the concemed objects. In this case, after the post-pro-
cessing had occurred, Blob 1’s information would ultimately be stored as additional information
for Blob 0. Here the concept of time can pay great dividends, for only through the examination of
ranges of data could such decisions be made.

In a joint project between my own group, the InfoLab Group, and the Vision Interfaces Group,
I implemented a system for the maintenance and dynamic processing of such temporal data called
the Multi-application Accessible Visual Information Storage system (or MAVIS). Positional
information from two cameras located in the Intelligent Room at the AI Lab is coordinated by the
Vision Interfaces group’s person-tracking system [1] and output continuously. That visual data
was dynamically stored in a database to which START [3,4], our natural-language processing sys-
tem, had access. START allows users to ask questions in natural language. Numerous functions
were written to allow the system to make objective determinations (i.e., “Where is George?”).
Eventually, that objective knowledge (time, position, etc.) will enable MAVIS to make subjective
determinations like those previously mentioned (i.c., “What is George doing?”). Stated simply,
the ultimate aim was to dynamically take input from cameras in the Intelligent Room and to effec-
tively represent the transient nature of that input, thereby allowing useful inferences to be made as
to what real-world actions the data corresponds to.

MAVIS tries to integrate the abilities of START and the person-tracker in a way that allows for

distributed access by other programs. By creating a simple, easily-accessible representation for

the state of the Intelligent Room, I hope to make it easier for more complicated interactions to

occur.

2 Related Work

As mentioned previously, many researchers are interested in marrying the capabilities of differing
human-centric systems to attain new and interesting functionality. Over time it has become appar-
ent that one of the most difficult aspects of that endeavor is how to effectively share information
between those systems. One approach that has gained significant popularity is the “blackboard
model” [7]. In a blackboard architecture the shared information, or “problem state”, is stored in a
single location. Accesses to that location are the only means by which the distributed systems
interact. Information can be added, deleted, or modified by those systems, so a means of control-
ling access is necessary.

Koelma and Smeulders [6] proposed an infrastructure for image interpretation that utilizes an
object-based blackboard architecture. An implementation of their system would utilize black-
board “levels” to allow for ordering of data on the blackboard. Those levels could be distin-
guished by level of abstraction, data type, or whatever fits the needs of the particular application.

The Intelligent Room has its own agent-based means of communicating between its compo-
nents [2]. The infrastructure of the Room itself is composed of user and multi-modal interfaces
and systems for context management and resource management. Context management refers to
the maintenance of information about an entity’s “situation” (i.e., its current characteristics). Con-
text management plays a large role in design and operation of the Intelligent Room since proper
responses to user needs and input require contextual information. Meeting those needs is at the
heart of the Intelligent Room’s purpose and is behind most of the work on Human-Centered Inter-
action (HCI). Resource management is performed by a system called Rascal, which is responsible

for providing a buffer between the demands of individual applications and the functionality of the

workspace as a whole. Without such a buffer, uncontrolled contention for resources could quickly
cause significant problems.

The goals of the Stanford project on Interactive Workspaces [&] are very similar to those of the

w.intelligent Room project. They also hope to enhance HCI through research involving the integra-

tion of multiple devices and applications in a single room. As in the Intelligent Room, the Stan-
ford project attempts to incorporate context-based interpretation in its design. Another key focus
of their proposed architecture is the development of separately maintained action-perception cou-
plings. Action-perception couplings, as the name implies, are the relationships between actions
and perceptions. For instance, the perception that a remote-controlled car is responding smoothly
to your manipulation, is an example of an action-perception coupling. The action is what you
actually do with the remote and the perception is how you see the car responding. Separating the
maintenance of those couplings allows for multiple couplings to be simultaneously maintained
(i.e.,0n separate processors).

MAVIS, while meant to be extensible, is intended to serve a more specific purpose than the
ones discussed above. My focus was mainly to achieve a coordination of vision and language to
an extent that the Intelligent Room itself could be made to appear sentient when naturally queried

about what is going on inside it.

3 Background

3.1 Person Tracking System

The Vision Interfaces Group’s person-tracking system [1] was used to generate the visual data
necessary to answer useful queries. In their system, information from multiple cameras, posi-
tioned at different angles, is coordinated through a central server before finally being output to
external applications (i.e., my system). Their system uses learned knowledge of a particular static
background (in this case, the Intelligent Room) to aid in the determination of object position.
Having an idea of the background allows the tracking system to more accurately determine which
elements of a particular camera image are in the foreground (e.g., do not correspond to the learned
background). Contiguous clusters of such foreground points are detected dynamically and labeled

as blobs (i.e., people).

3.1.1 Foreground Detection

To allow for rapid and efficient object tracking, rapid detection of a frame’s foreground is nec-
essary. The person-tracking system does this by computing differences between the pixels in the
current image and the learned background image. If the values at particular pixel place it at a more
shallow depth than the corresponding pixel in the learned background image, the pixel is labeled
as foreground. [1]

Once the system has decided which pixels are in the foreground and which are in the back-

ground, the trajectories of the tracked objects must be determined. This determination is made

10

through the maintenance of quality-weighted possible trajectories. These trajectories are com-
pared with the pixel foreground information of each successive frame and reevaluated to deter-

mine the most accurate description of the object’s motion. [1]

3.1.2 Camera Server

All of the aforementioned calculations take place for each camera in the Intelligent Room. The
information from those cameras is then sent to a server where it can be coordinated. There, infor-
mation acquired from differing camera angles can be correlated, yielding a much more accurate
and precise idea of what’s going on in the room. It is the server’s processed determination of
motion in the room (based on the data from multiple cameras) that is finally output for use by sys-
tems such as MAVIS. [1]

Specifically, the person-tracker assigns a unique number (starting with 0) to each blob it detects
in the room. If Blob 0 already exists in the room, the next blob will be named Blob 1, then Blob 2,
etc. The positional information about each blob, coordinated from each camera, is output as a tab-
separated string containing the object’s x-position, y-position, and z-poéition. The x-position is
measured laterally outward from a plane passing through the center (hence it can be positive or
negative) of the room’s far wall (as viewed from the main entrance to the Intelligent Room), and
the y-position is the straight-line distance from any point in the room to that far wall. So the point
(0,0), in the person-tracker’s coordinate system would correspond to a point in the center of the
far wall, (-3,0) would be the far right corner, (3,0), would be the far left corner, and so on. The z-
position (or blob “height”) is the blob’s height above an imaginary horizontal plane in the room,
located well above the floor. The reason for taking measurements from such a reference point is

that moveable objects in the room (e.g., chairs) clutter the lower regions of the images. Taking

11

measurements directly from the floor would also necessitate telling the difference between a roll-
ing chair and a moving person. Therefore, only objects whose heights exceed a certain value are
tracked.

Information about the positions of all blobs in the room is sent out continuously at a rate that is
usually around 12Hz. If there are two blobs detected in the room (for instance, blobs “0” and “1”)
the system will repeatedly output a line about Blob 0 and a line about Blob 1. If at any point, Blob
0 disappeared (from having left the room or being lost by the camera) the system will simply

begin sending continuous updates about Blob 1 alone.

3.2 START

START [3,4] is a Natural Language Processing System created by Boris Katz and uséd by the
InfoLab Group of the MIT Artificial Intelligence Laboratory. START parses naturally formulated
(1.e., normal English) questions and statements into an efficient representation and allows for the

construction of similarly natural answers and responses.

3.2.1 T-expressions

Ternary expressions (T-expressions) are the most basic form of knowledge representation
within START. T-expressions store information in a directed subject-relation-object format that
allows for easy retrieval and search. When posed with a query, START translates the input into
appropriate ternary expressions. For instance, the query “Does Jim own a car?” would be parsed
into the T-expression (Jim - own - car). Those expressions would then be matched against the
information currently stored in START’s knowledge base. If the statement “Jim owns a red car.”

had been entered previously, thereby creating the T-expressions (Jim - own - car) and (car - is -

12

red), the query would find a positive match and START would formulate an answer such as “Yes.
Jim owns a red car” Since T-expressions are directed, however, the query “Does a car own Jim?”
would not find a match and START would respond with an “I don’t know.” answer, indicating that
it has no knowledge to support such a ludicrous assertion.

Through the creation of an extensive knowledge base of stored T-expressions, START is able to
answer questions about a wide range of topics. The only requirements for matching are that the
formulated query follows grammatical rules and that the information contained in a previously
stored T-expression corresponds to the desired information. Once a match has been achieved,
START has several methods of actually answering the posed question. Some information is stored
natively in START, some might be retrieved from external databases, and some might even be

pulled live from the Web. [5]

3.2.2 Native Linguistic Capabilities

In addition to their usefulness as an input interface for information retrieval, START’s natural
language processing capabilities also allow an underlying system to output the relevant informa-
tion in a user-friendly format. Questions like “Is John in the room?” can be answered with natural
responses like “Yes, John is in the room. He has been in the room for 2 hours.” As that example
demonstrates, START has the ability to perform informed lower-level language processing in
addition to simply wrapping the answer in natural text. Since START knows that “John” is a mas-
culine name, it is able to use the pronoun “He” to refer to “John” if so desired. This is necessary as
the use of “John™ over and over in every sentence, would quickly become repetitive and sound

very unnatural.

13

In addition to knowledge about names’ gender, START has several other types of native knowl-
edge that allow it to process language more effectively. Parts of speech, pluralizations, synonyms
and other valuable grammatical information are also able to be stored within START. These useful
bits of word-level information allow START to better understand the true meaning of a sentence/

question and to construct appropriate and variable responses.

3.2.3 Knowledge Sources

For some queries, the best strategy is for START to store knowledge natively for use in ques-
tion answering. Storing the parsed representation of “Jim owns a red car.” allows for the answer-
ing of several different questions about that statement. To facilitate answering of even more
queries, START uses a system for outside information retrieval called Omnibase. [5]

The core of Omnibase consists of scripts that, when given an appropriate input, can indepen-
dently (of START) retrieve information. These scripts are separated into classes, so that, based on
the type of question posed to START, an appropriate script may be chosen to find the answer. For
instance, when asked “Who directed Gone with the Wind?”, START would, knowing that ‘Gone
with the Wind’ is an IMDB (Internet Movie DataBase) movie, access the DIRECTOR script for
the class imdb-movie and pass it the movie title as input. In this particular case, the script would
go to the IMDB webpage for Gone with the Wind, and parse out the relevant information from the

HTML. START would then take that information and wrap it in a natural sounding sentence:

“Gone with the Wind (1939) was directed by George Cukor, Victor Fleming, and Sam Wood.”

14

Other scripts might simply return a piece of HTML that was cut directly ﬁ'Qm the page. The level
of complexity involved in generating the answer format is completely variable. The constant in
the Omnibase-START relationship is that START deals with language while Omnibase deals with
information retrieval. However, for START to know which things Omnibase has information
about, there has to be a coupling between the two systems. That coppling takes the form of Omni-
base symbols. Stored in Omnibase, these symbols (“Gone With the Wind”, “Tom Cruise”,
“Trance”, etc.) constitute the set of things (movies, people, countries, etc.) that Omnibase has
information about. START has access to those symbols and when parsing queries, it tries to deter-
mine whether or not a question is being asked about one of those symbols. For instance, it would
be silly to load the names of all movies into START, a language processing engine. However, for
START to efficiently determine that “Gone with the Wind” is a single entity about which the user
is asking a question, those symbols need to be stored somewhere. The logical place to store those
names is in Omnibase, an information retrieval engine. In essence, Omnibase is like an encyclope-
dia in that it is a gateway to large amounts of information. START simply has access to the index

to that encyclopedia.

3.2.4 Annotations

The T-expressions that match a particular query are generated by system inputs called annota-
tions. Annotations are a way to encase the relationships of T-expressions in a more intuitive struc-
ture. An annotation could look something like “us-state’s flag”. After parsing these annotations,
START stores the generated T-expressions with pointers back to the original information segment.
The aforementioned annotation implies that there is a possessive relationship between the symbol

“us-state” and the noun “flag”. So if the question “Does us-state have a flag?” were asked, START

i5

would give a positive response. In practice, though, “us-state” will be a variable that maps to the
names of any of the 50 US states. So START would be able to confirm that Florida, Texas, Utah,
etc., all have flags. Synonymy/hyponymy, ontologies, and structural transformation rules are all

utilized when trying to match user queries to stored T-expressions. Through its use of annotations

2

START 1s able to bridge the gap between language and understanding. [4]

16

4 System Design

4.1 Design Considerations
4.1.1 Ease of Access

One of the significant problems that arises when dealing with large amounts of data, such as
the data that comes from the Intelligent Room’s cameras, is how to efficiently store that data while
allowing for easy access. One of the project’s goals is to create a sort of “blackboard” from which
multiple distributed systems could read. Though use of visual data is the primary focus here, any
number of applications could potentially benefit from such information. For instance: a graphical
user interface could show the current (or past) activity in the room, an audio system might utilize
the stored positional information to better determine who was speaking at a given moment, and, of
course, a natural language processing system could use the data to answer questions about things
that happen in the room. Since the cameras are constantly outputting positional data, current
information will be constantly changing. That volatility requires that there be a way to retrieve
static information, so that numbers aren’t changing while they’re being read. Essentially, changes
in room state must be atomic so that readers can trust that the information they’re receiving is
valid and complete, even if that means the data may be a few milliseconds behind the most recent
data. In addition to designating some of the data as the room’s “current state”, the sheer volume of
the total input must be dealt with. With the person-tracking server sending updates several times a
second for multiple blobs, the amount of stored information will get very large, very quickly. It
seemed desirable to minimize the amount of data stored, while retaining the pertinent overall

information, to save space, save processing time, and avoid redundancy as much as possible.

17

4.1.2 Accuracy

Another concern that needed to be addressed was the accuracy of the information received from
the person-tracker. Sometimes non-existent people, or artifacts, are detected and positional
updates about them are output erroneously. The occasional appearance of such artifacts, coupled
with the fact that, on occasion, the tracker can lose a person for a period of time, can cause signif-
icant problems. When the tracker loses a person, aside from the obvious issue of not having cur-
rent information for a particular person in the room, identification errors can occur. Upon
reacquisition of a temporarily lost person, the system sometimes mislabels that person. Some-
times it might decide that it has detected a new, different person. For instance, assume there are
two people in the room, labeled “1” and “0”. If the tracker loses Person 1 just as an artifact is erro-
neously detected, the artifact will be labeled “1” and the second person, upon reacquisition, will
be labeled “2”. These sorts of glitches can cause serious problems when trying to use the stored
data to determine what was happening in the room. As Person 1 is mistakenly changed to Person
2, aside from the mysterious appearance of a third person, the corresponding data would suggest
that Person 1 made a sudden and unexpected jump in position. Also, from that point on, the infor-
mation that should have been associated with Person 1 will now be associated with Person 2. This
sort of error makes it difficult to draw conclusions based on a person’s actions over time. The data
associated with Person 1 would, at some point, become useless as it begins to cotrespond to an
artifact. It is impossible to tell that such a thing has occurred when looking at each bit of data sep-
arately. In order to catch such errors, the decision was made to try and build in an expectation of
what future data for a particular person should look like, based on what data had already been

received.

18

To discern what the data actually represented, it became clear that some sort of “replay” feature
would be needed. Live data could be simulated easily enough by writing programs that simply
pretend to be the person-tracking/server and send updates to my system. What was most impor-
tant, though, was to be able to select portions of real data and to rerun them and see (graphically)
exactly what sort of room activity they correspond to. This, of course, should be able to be done
without the added complexity involved in checking the data for changes, checking it for accuracy,
or storing it for later use.

Also, for the system itself to be practical it seemed clear that it was important to detect when a
person had left the room. This required both a mechanism for determining whether or not a person
who had entered the room had left and a means for making the person’s exit clear in the stored

data.
4.2 System Architecture

To effectively coordinate and execute the various tasks that I felt were integral for useful oper-

ation, I originally envisioned a system with five main components.

19

@ Backbone Storage System

Compression
Protocol

Input Interface | g

Hime={

Compressed,
Representation

y

Qutput Interface

v

Natural Language I/0

1. backbone storage system - the data from the cameras (and any other input devices) goes here.

2. input interface - it would be impractical to store the raw data “as-is” for any long period of
time. Such storage would quickly become unmanageable. The cameras in the Intelligent Room

output x-y position information at a rate of around 12Hz, but not all of that information needs to

be stored permanently.

3. compression protocol - Since permanent storage of the raw visual data is undesirable, some
other processing has to be done to avoid wasting time and space. The stored data will need to be
compressed into a more efficient representation. For the types of inferences I hoped to make, I felt
that the important features of the data could be captured by representing changes in the informa-

tion and keeping track of the times that those changes occur. So, if the system’s interface with the

20

camera had some idea of the “current room state”, it need only modify its representation when

that state changes.

4. compressed representation - the data will be stored in a compressed format to save space and

processing time.

5. output interface - external applications must be able to easily access the information in the stor-

age system.

6. natural language I/0 - questions and answers concerning the stored data will be input to and

output from the system in natural language.

The obvious choice for the backbone storage system was a relational database. Their optimized
searchability and ease of manipulation made databases clearly preferable to files or other possible
options. Simply put, databases are used for the storage and coordination of large amounts of infor-
mation, which is exactly what I needed.

To ease that coordination before the actual storage, I decided that, as part of the input interface,
I would create a central server to interface with the other parts of the system. This server is the
controlling force behind the entire system. It has access to the current state of the room and is the
only entity that can update the official “locked” version of the current state. The central server is
responsible for listening to the input interface and, when alerted that a change (or changes) has
occurred in the room, it must accordingly update the “locked” current state and store the new data

permanently in the backbone storage system.

21

Another integral part of what I term the “input interface” is the portion of the system that actu-
ally interfaces with the person-tracking server. This “camera interface” directly receives all of the
updates that the person-tracker sends out. It is here that the checking is done to determine whether
or not changes have been made to the current room state. If the interface determines that changes
have been made, it alerts the central server, which then propagates those changes to the locked
current state and to the permanent storage. The two types of changes that the camera interface can
detect are the appearance of a new person in the room and an update to an existing person’s phys-
ical attributes (i.e., X-position, y-position, or height). Since the person-tracker itself only sends
updates for the people it currently detects in the room, a person leaving the room must be detected
by an entity that has a sense of the larger picture (i.e., time between updates, trajectories, etc.),
hence such detection is done in the central server.

In effect, the camera interface acts as both a portion of the input interface and as the compres-
sion protocol. Originally I had envisioned a scenario in which compression of the data would be

performed asychronously to data storage.

Database

Compression
Protocol

Raw Data Compressed

Representation

22

In that scenario, every bit of information received from the person-tracker would be stored,
regardless of redundancy. I had intended to write a program that would crawl over the database
after the mitial storage and filter out the redundant entries, leaving only the entries that designated
a change of some sort. I eventually realized, however, that there was no need to do that post-pro-
cessing when I could simply utilize the existing notion of “current state” and filter the input for
changes against that state while the system was running. The camera interface performs that filter-

ing and, as a result, the central server ends up storing only essential information.

Database

Raw Data l Filtering :: Compressed

Representation

Another issue that had to be addressed was how to best allow external applications to access the
current room state. I decided that it was reasonable to assume that only the person-tracker would
need to actually modify the information. All other applications would simply be allowed to view
the “locked™ current state (i.e., output interface). At any point in time, that state would simply
consist of the people in the room at that time and the physical and temporal (time first seen and

time last modified) values associated with them.

23

For debugging and demonstration purposes, and to test the output interface, I decided to create
two graphical user interfaces to interact with the system. The first is a live display, which shows
“person” movement in the room as soon as the information is passed to the system. The second is
a replay display, which enables a user to select a segment of data (presumably copied from the
storage system) and to replay that data in sequence. These interfaces allow a user to ask questions
about a person’s position, time in the room, etc., and be able to verify the correctness of the
returned answers by simply watching what’s happening with their own eyes, either live or through
replay.

Since creating a connection between the Intelligent Room and START is the main goal of my
system, [of course needed to interface the data collection and storage portions of my system with
natural language. Starting from the START-Omnibase model that I described earlier, and given
that Omnibase already allows access to SQL databases, I felt that T could modify that existing
implementation to use the Intelligent Room, rather than the Web, as the source for external infor-
mation. This worked out well, as the Intelligent Room can be viewed as a large, specifically

focused, data-collection system,

24

5 System Implementation

I used the JAVA programming language to implement several portions of the system. I chose
JAVA for two reasons. Besides ease of programming, I have previous experience interfacing with
my own group’s natural language system (written in Scheme), from JAVA. This decision was

made to speed the eventual front-end integration between my system and START.

5.1 VisualBlob

To ease the manipulation of “people” in the room, I created a class called VisualBlob to contain
all the essential information pertaining to that person. Besides the person’s name, VisualBlob con-
tains both temporal and physical information. The temporal information consists of the time the
person was first seen, the time the person was last seen, and the time the person’s physical infor-
mation was last modified. The physical information consists of the person’s x-position, y-position,
z-position, and a boolean flag that shows whether or not the person’s physical state has been
updated since the last time it was seen. Equality between people is determined by equivalence
between name and each of the physical attributes. Since it was easy to do so, I decided to store the

number anyway, in case it were to be utilized once again.

class VisualBlob implements Serializable {
String dateAndTimeCreated;
String dateAndTimeModified;
long createdMillis;
long modifiedMillis;
long lastSeen;
String name;
float xPos;
float yFPos;
float zPos;
boolean stateUpdated;

25

5.2 Blob Vector

For the central server to know when to update the “locked” room state, it needed to know both
when changes had occurred and what those changes were. To facilitate this, T decided to create the
BlobVect class as a container for the constantly updated state of the room. It contains all the Visu-
alBlobs that currently exist in the room. The camera interface is responsible for modifying the
state of those blobs as it receives new information from the person-tracking server. When it does
so, it marks the BlobVect as having been updated. As with individual blobs, that marking is done
via an internal boolean called stateUpdated. 1 implemented the BlobVect class as a remote JAVA
object so that it could be shared by separate programs. Through its access to that remote object,
the central server is able to check the stateUpdated boolean and, if the state has in fact been

updated, make the appropriate changes to the “locked” room state.

5.3 Database

A PostgreSQL database is where both the “locked” current room state and the accumulated room
data are stored. The database contains seven tables. When the central server iterates through the
shared BlobVect and decides that a new blob should be added or that an existing blob’s informa-
tion should be updated, the new blob is copied into tables called TempLastUpdates and TempCur-
rentData. Once the server has finished its iteration, the entire TempLastUpdates table is copied to
the table LastUpdates and cleared. LastUpdates is then copied to the table RoomData for perma-
nent storage. The main reason for all the copying involved is to avoid incomplete updates. Copy-

ing information for final storage in RoomData should be an atomic operation. Since the

26

RoomData table can potentially be very large, it is preferable to access it once for a large copy
command than multiple times for smaller copy commands. The intermediate step involving copy-
ing to the LastUpdates table is performed so that a listing of which blobs most recently changed
can be quickly retrieved without doing an intensive search through the RoomData table. Since

LastUpdates is only cleared just before it is modified, that listing can be retrieved at any point.

Just as when updating RoomData, updates to CurrentData (the “locked” representation of the cur-
rent room state) should be atomic. The aforementioned copying of new or updated blobs to
TempCurrentData serves the same purpose as copying them to TempLastUpdates. Similarly,
when the server’s iteration through the BlobVect is complete, the data from TempCurrentData is
atomically copied to the CurrentData table. The reason for having two separate “Temp” tables is
that all blobs, even when not updated, are copied to TempCurrentData. This is so that the table
will always have complete information on all the blobs in the room. In effect, a new snapshot of
the room is added every time. This keeps the CurrentData from having “in between” times where
only part of the data for a particular update (i.e., central server iterating through the BlobVect) has

been added.

The tables I have yet to mention, Symbols and Attributes, play an important role in the language

portion of the system and will be discussed later.

5.4 Camera Interface

The Cameralnterface class is the direct interface between the person-tracker and my central

server. When idle it simply sits on a port listening for connections. Once the person-tracker con-

27

nects and starts rapidly sending updates in String form, the camera interface is responstble for

parsing, packaging, and forwarding the information it receives.

Each line read from socket represents a “blob” being detected in the Intelligent Room. The first
thing the person tracker does with a received line is to parse out the necessary information. The

string 1s tokenized and used to create a new VisualBlob based on the values retrieved.

The camera interface then tests to see whether or not that blob already exists in the BlobVect.

// reading line of input from camera server
String currentBlobString = infoReader.readLine();
VisualBlob currentBlob = parseBlobFromCameraString (current-
BlobString) ;
int blobIndex = remoteBlobs.blobExists (currentBlob);

if (blobIndex == -1) {
//blob didn’t exist previously
//s0 add it to the set of blobs currently in the room
currentBlob.setUpdated(true);
remoteBlobs.add (currentBlob) ;
remoteBlobs.setUpdated(true);
System.out.println("added blob");
}
else |
//blob already exists
//80 retrieve old versgsion of this blob to test for differences
VisualBlob oldBlob = (VisualBlob) (remote-
Blobs.vec()).get (blobIndex) ;

This is done by comparing the new blob’s name to the names of those in the BlobVect. If the blob
doesn’t exist, it is simply added to the BlobVect and both it and the BlobVect are marked as hav-
ing been updated. If the blob did exist, then the BlobVect version of that blob is retrieved for more

comparisons and the time that the blob was last seen is updated for both versions. If the two blobs

28

are equivalent (using the VisualBlob notion of equality), nothing is done. Hence, updates to my
representing of the room state are only made when actual changes occur. If the two blobs are dif-
ferent, however, the permanent temporal information (i.e.,the time created) of the old blob (the
one stored in the BlobVect) is copied into the new blob (which contains the latest positional infor-
mation) and the old blob is replaced by the new one. Both the blob and the BlobVect are marked

as having been updated.

5.5 RoomlInfoServer

As stated previously, the purpose of the central server (class RoomInfoServer) is to monitor the
shared BlobVect for changes and to make the appropriate updates to the database. In my imple-
mentation, the central server queries the BlobVect every 20 milliseconds to find out if the Blob-
Vect’s state has been updated. If it has, the server begins an iteration through the blobs. For each
VisualBlob, the blob is first tested to see whether or not it is still inside the room. This is deter-
mined by checking the current system time against the time that blob was last seen (by the camera
interface). If the difference is larger than a threshold value, which I set at 30 seconds, the blob is
marked as being outside the room. When this happens, the String “OUTSIDE ROOM?” is stored in
the positional attributes of the blob’s database representation and the live version is given large,
normally unachieveable negative values for all of its location info. The blob is then checked for
existence in the database. If it doesn’t exist, the blob’s name is added to the database’s Symbol
table (again, the significance of this table will be discussed later). Finally, each blob is individu-

ally tested to find out whether its state has been updated.

if (! (postgresConnection.symbolExists (currentBlob.getName()))) {

29

//if the symbol didn’t exist previously, add it to the "sym-
bols" table
postgresConnection.addSymbol (currentBlob.getName()) ;

}

if (currentBlob.stateUpdated()) {
//1f blob has been updated, the new data gets inserted into
//both the "permanent data" table and the

//"current room state” table.

postgresConnection.insertBlobIntoTempLastUpdates (current-
Blob) ;

currentBlob.setUpdated(false)

}
else
//1if the bloh hasn’t been updated, the data gets
//inserted only into the "current room state" table
//this allows the server to keep track of when the
//blob was last detected for making determinations
//1ike when a person has left the room
currentBlob.setModifiedMillis(oldMillis);
postgresConnection.insertBlobIntoTempCurrentData (current-
Blob};

If it has, it is inserted into both the TempLastUpdates and TempCurrentData tables. If it hasn’t
been updated, it is only inserted into TempCurrentData. Again, this ensures that CurrentData will
contain a complete snapshot of the current room state while RoomData will only be updated when
changes are made to a particular blob. Once it has iterated through all the blobs, the server ini-

tiates all the appropriate transfers of information between database tables.

If the BlobVect’s state was not updated, the server simply iterates through each blob and tests

whether or not the blob is still considered “inside the room™. If it isn’t (because too much time has

passed since it was last seen), the BlobVect entry for that blob is updated with the aforementioned

30

large negative positional information. Of course, the next time an update for that blob is received,

that information will be overwritten with new, valid positional data.

5.6 Displays

For both debugging purposes and aesthetics I also implemented a simple GUI to show what is
going on in the room at a particular moment. The display consists of a blank area, meant to repre-
sent the Intelligent Room, where every 100 milliseconds the display draws whatever blobs arc
current in the shared remote BlobVect. The display writes the blobs’ names at the positions speci-
fied by their internal data. If data is coming in live, the blobs can be seen moving around the dis-

play as their positions change and are constantly updated on the screen.

In order to be able to perform “replays” of chunks of saved data, I also implemented a modified
version of my display that takes input from a file. The file takes the same format as an SQL dump
of the permanently stored data. As it is read in to my replay program, each line (representing a
particular blob’s characteristics at that moment) is written to a port where it is used to update a
remote BlobVect (a different one than is used by the live display and other external programs).
Those lines are written to the port at intervals determined by the times specified in the blobs’
information. For instance, if a particular data line of the file corresponds to blob “1” being seen at
time ¢ and the succeeding line corresponds to blob “2” being seen at time g, then there will be q -
¢ milliseconds between the update for blob “1” and the update for blob “2”. That way the replay

display shows blob movement at the same rate that the information was originally received.

5.7 Language Interface

31

To allow questions to be asked about the room’s information I modified the existing START-
Omnibase interaction to allow for interactions between START and MAVIS. Basically, instead of
getting information from Omnibase, [had START get its information from MAVIS’ database. To
accomplish this I first wrote scripts (in Scheme, the language used for Omnibase scripts) to return
what I considered useful information from the database. For example, given a particular blob’s
name, [wrote scripts to return stored information such as its position, its height, the time it was
first seen, etc. Here is the script to retrieve the x-position of a particular blob:

(lambda (name)
(1ist (get-currentdata-column name "xpos")))

where get-currenidata-column is a general function that accesses the “current data” table in the
database and “xpos” is the name of the column containing the x-position.

(define (get-currentdata-column name column)
(let* ((a (sgl (string-append

"select "

column

" from currentdata"

" where name = " (sglstr name)))))

(if (null? a) #f (caar a))))

Then I moved on to writing slightly more complicated scripts to calculate information like the dis-
tance between two blobs, the distance between a blob and a stationary object in the room (like a
telephone), the amount of time a blob has been in the room, etc. What those scripts output consti-
tutes the information that I can give in response to a user query from START. As mentioned ear-
lier, schemata are necessary to match those queries to the information that answers them. T wrote
schemata to answer questions like “Where is X?”, “How long has X been in the room?”, “Is X

near the telephone?”, etc. Here is an example schema:

32

; /Answers questions of the form:
;;"where is jerome?”

;;7"where 1s jerome located?”
;;"what 1s jerome’s position?”
;7 %“1s jerome in the room?”

(def-schema
:Phrases
“f
"any-smartroom-blob’s position"

)

:Sentences

it
"any-smartroom-blob is located near the wall"
"any-smartroom-blob is in the room"

)
:Long-Text
"((show-smartroom ‘any-smartroom-blob ’‘get-current-position))

')
Also, consistent with the way Omnibase handles symbols, I implemented a Symbols table to
allow START to know what “blobs” it has information about. When detailing the operation of the
RoomInfoServer I mentioned that newly detected blobs would be added to the Symbols table.
This allows the system to dynamically “learn” about new blobs as they are first seen. This is nec-
essary for the system to be able to answer questions about things happening live in the room. The
answers to those questions, as retrieved from the scripts, are then wrapped in natural-sounding

text by functions I wrote which utilize STARTs language capabilities.

===> who 1is in the room?
<P>jerome and bill are currently in the room.

===> where 1s Jerome?

<P>jerome has been in the room for 00:00:49.
<HR>

<P>jerome’'s current position is (-2.4, 0.2).

33

6 Evaluation

In testing and using MAVIS, I was able to attain the basic functionality that I had hoped for.
When people move around in the Intelligent Room, MAVIS can answer questions about their
number, position, persistence, etc. It is also simple to combine those bits of information to make
more subjective assessments about things like “nearness” to a particular object. Although I was
happy with the system’s eventual performance, I do believe that with a few key changes, it could

be made to work significantly better.

6.1 Data Transfer

The most essential part of MAVIS is the connection to the Intelligent Room’s person-tracker.
Though the constant receipt of string updates was sufficient for my purposes, a system that would
hope to track large amounts of people might be better served with some other method of informa-
tion transfer. The main problem with the current method is that it is difficult for me to tell when
the information from a particular snapshot of the Intelligent Room has been completely sent.
Since the receipt of the strings is sequential and there is no delimiter between sets of strings, it’s
impossible to know when you’ve gotten everything. I was able to get around this problem by
updating so quickly that the differences in timing weren’t noticeable. For instance, a string update
for one blob might be read in at 00000001 milliseconds and another blob’s update might be read
in at 00000005 milliseconds. Those two blobs were most likely seen by the camera (at their
respective positions) at the same moment. When they are sent serially to my server, however, I
have no way of knowing for sure whether they were actually seen at the same time or 4 millisec-

onds apart. All that I can know is the times that I received them. For a system on a larger scale,

34

o
oF G

this could become an important issue. I tried to design the system to be as independent as possi-
ble, but I believe that this problem could best be solved through closer integration with the person-
tracker. More information transfer, and likely a different method of transfer, between the storage
system and the tracker itself would lead to more accurately stored information.

In keeping with the need for more effective information transfer between the person-tracker
and MAVIS, I believe that the movement of data between my central server and the database
could also be improved. Though designed partially to cope with the aforementioned temporal
uncertainty concerning the receipt of updates, my implementation is vulnerable to performance
degradation if a lot of information is being transferred. Copying and clearing multiple tables in the
database is slow, so the less frequently that needs to be done, the better. I believe that this could be
remedied both through the aforementioned closer interaction with the person tracker
and through implementation of the data “locking” in the central server rather than in the database

itself.

6.2 Data Smoothing

I'had originally intended to build in a “smoothing” system that would crawl over the data and
attempt to correct what seemed like obvious glitches in tracker detection. In the end, I wrote a
program that attempted to perform that function, but didn’t incorporate it as an automatic portion
of the overall system for fear of making mistakes and ruining the original data. Instead, I left it as

an external program that could be run over portions of the data if so desired.

35

7 Future Work

The most important aspect of a system like MAVIS is accuracy. Whether temporal or positional,
storing the correct numbers for the correct objects is essential. [previously mentioned that my
system could be improved through more efficient receipt of information from the person-tracker,
but that is only a beginning. To really maximize the potential of the interaction, there should be a
feedback loop between the person-tracker and the database. Having access to previously stored
information could allow the tracker to make smarter decisions about whether or not the sudden
appearance of a person in the center of the room is a momentary glitch or whether there is existing
data to support it. I experimented with post-processing stored information in an attempt to smooth
the data (i.e., correlate sudden appearances of new blobs on a previously seen blob’s trajectory to
the old blob), thereby allowing me to display more sensible results on retrieval. It would be much
more effective, however, to allow the person-tracker to access that information for its own use.

Also, more generally, any number of systems could potentially be connected to make use of the
stored information. For that matter, more and different types of information could be stored (for
instance: audio, video, etc.). The integration of multi-modal systems is a complicated tésk, but
there are worthwhile benefits to be attained from a scenario in which all systems are aware of, and

accessible to, one another.

36

References

[1] Darrell, Trevor, David Demirdjian, Neal Checka, and Pedro Felzenswalb. Plan-view Trajec-
tory Estimation with Dense Stereo Background Models. Proceedings of the International Confer-
ence on Computer Vision, 2001.

[2] Hanssens, Nicholas, Ajay Kulkarni, Rattapoom Tuchinda, and Tyler Horton. Building
Agent-Based Intelligent Workspaces. To appear in Proceedings of The International Workshop on
Agents for Business Automation. Las Vegas, NV, 2002

[3] Katz, Boris. Using English for indexing and retrieving. In Proceedings of the 1st RIAQ
Conference on User-Oriented Content-Based Text and Image Handling (RIAO ¢88), 1998.

[4] Katz, Boris. Annotating the World Wide Web using natural language. In Proceedings of the
5th RIAO Conference on Computer Assisted Information Searching on the Internet (RIAO “97),
1997.

[5] Katz, Boris, Sue Felshin, Deniz Yuret, Ali Ibrahim, Jimmy Lin, Gregory Marton, Alton Jer-
ome McFarland, and Baris Temelkuran. Omnibase: Uniform access to heterogeneous Data for
question answering. In Proceedings of the 7th International Workshop on Applications of Natural
Language to Information Systems (NLBD 2002), 2002.

[6] Koelma, Dennis and Arnold Smeulders. 4 blackboard infrastructure for object-based image
interpretation. Computing science in The Netherlands, eds: E.Backer, CWI, Amsterdam, 1994,
136-147.

[7]1 Nii, Penny H. The Blackboard Model of Problem Solving and the Evolution of Blackboard
Architectures (Parts 1 & 2). The Al Magazine, 1986.

[8] Winograd, Terry. Towards a Human-Centered Interaction Architecture. Working paper for
Stanford project on Interactive Workspaces. Stanford University, Version of April, 1999.

37

Appendix

B e 39
BTt 39
O ot 43

SOOI CO0E. oo 48
SCTIptS........... e 48

ot 50
10D COMANCT L1455 oo 50
et SE CIASS 54
Ca(aDASE COMECHON CAS.... oo 58
T AMETACE ClASS. ot 62
oy e STV ClaSS 65
(8 SOOMELS oo 72

38

smartroom-schemata.lisp

(in-package :start)

(make-neuter-proper-nouns

(any-smartroom-blob2
:gens (any-smartroom-blob)
:prop ((matching-symbol t))
)

(any-smartroom-object
:gens (table chalkboard)
:prop ((matching-symbol t))
)

)

; ANSWERS QUESTIONS
;; who is in the room?

(def-schema
‘Phrases
(
)
:Sentences
(
"someone is located in the room™

)
:Long-Text
’((show-smartroom ’fake *GET-PEOPLE-IN-ROOM))
:Sons
’(*no-db-links*)
:Liza
0
:function-call T

)

;ANSWERS QUESTIONS
;; where is jerome”?

;; what is jerome’s position?
;3 1s jerome in the room?

(def-schema
:Phrases

(

"any-smartroom-blob’s position”

e e sty o e e o v e

)

:Sentences

(
"any-smartroom-blob is located near the wall"
"any-smartroom-blob is in the room"

)
:Long-Text

’((show-smartroom "any-smartroom-blob ’GET-CURRENT-POSITION))
:Sons

'(*no-db-links*)

:Liza

0

function-call T

)

 ANSWERS QUESTIONS
;; how far is jerome from mary?
;; what is the distance between mary and jerome?

(def-schema
:Phrases
(
"the distance between any-smartroom-blob and any-smartroom-blob2"

)

:Sentences
(
"any-smartroom-blob is very far away from any-smartroom-blob2"

)
:Long-Text

>((reply-current-distance-between *any-smartroom-blob "any-smartroom-blob2))
:Sons

’(*no-db-links*)
‘Liza

0

function-call T
)

;; ANSWERS QUESTIONS
;; has jerome been in the room for a long time?
;» how long has jerome been in the room?

(def-schema
:Phrases

(
)

40

:Sentences
(
"any-smartroom-blob has been in the room for a very long time"
"any-smartroom-blob has been in the room for quite long"
)
:Long-Text
’((show-smartroom ’any-smartroom-blob "GET-CURRENT-TIME-IN-ROOM))
:Sons
’(*no-db-links*)
:Liza
0
:function-call T

)

;; ANSWERS QUESTIONS
;; 1s jerome sitting?
;; 1s jerome standing?

(def-schema
‘Phrases

(
)

:Sentences
(
"any-smartroom-blob is sitting"
;;"any-smartroom-blob is seated”
"any-smartroom-blob is standing"
)
:Long-Text
’((reply-sitting any-smartroom-blob))
:Sons
’(*no-db-links*)
:Liza
"0
function-call T

)

HANSWERS QUESTIONS
;; 1s jerome near the telephone?
;; 1s jerome near the chalkboard?

(def-schema
:Phrases

(

41

)
:Sentences
(
"any-smartroom-blob is near the any-smartroom-object”
)
:Long-Text
"((reply-neamess-to-object ’any-smartroom-blob "any-smartroom-object))
:Sons
’(*no-db-links*)
:Liza
"0
:function-call T

)

;; ANSWERS QUESTIONS
;; when did jerome enter the room?
;; did jerome enter the room yesterday?
(def-schema
:Phrases

(
)

:Sentences
(
"any-smartroom-blob entered the room yesterday"

)
:Long-Text
’((show-smartroom ’any-smartroom-blob 'GET-CREATED-TIME))
:Sons
’(*no-db-links*)
:Liza
0
:function-call T

)

42

smartroom-functions.lisp
(in-package :start)
;;Creating smartroom service

#+genera

(net:define-protocol :start-smartroom (:start-smartroom :byte-stream)
(:invoke (service-access-path)

(apply "invoke-omnibase-service service-access-path

(neti:service-access-path-args service-access-path))))

#+(or lucid allegro)

(define-protocol :start-smartroom (:start-smartroom :byte-stream)
(:invoke #’invoke-omnibase-service))

(eval-when (:load-toplevel :execute)
(add-tcp-port-for-protocol :start-smartroom 8064))

(use-start-host “kiribati)
(setq *omnibase-service* :start-smartroom)

;s SMARTROOM-SPECIFIC FUNCTIONS

(def-omnibase-class smartroom-blob
:source-name "Intelligent Room"
.gender :neuter

)

(defun show-smartroom (matching-word field)
;; (pvalues matching-word field)
(let* ((blobname (get-matching-value-root-singular matching-word))

)

(show-smartroom-aux matching-word blobname field 0))}

(defun show-smartroom-aux (matching-word blobname field counter)
;;(pvalues blobname counter)
(let* ((value (omnibase-get "smartroom-blob" (string-downcase

blobname) field :use-cache nil)))

(if (equal (car value) *NIL)
(if (equal counter 5)

"NIL

(progn

(sleep 1)

(show-smartroom-aux matching-word blobname field (+ counter 1))))
(cond ((eq field ’"GET-PEOPLE-IN-ROOM)

43

(reply-people-in-room value))

((eq field "GET-CURRENT-XPOS)
(reply-current-xpos blobname value))

((eq field "GET-CURRENT-YPOS)
(reply-current-ypos blobname value))

((eq field ’"GET-CURRENT-POSITION)
(reply-current-position blobname value))

((eq field 'GET-CURRENT-TIME-IN-ROOM)
(reply-current-time-in-room blobname value))
((eq field "GET-CREATED-TIME)
(reply-time-entered-room blobname value))
(else "didn’t work")))))

(defun get-distance-between-two-points (pointl point2)
(let* ((xpos1 (car pointl))
(xpos2 (car point2))
(ypos1 (cadr pointl))
(ypos2 (cadr point2))
(straight-line-dist (sqrt (+ (expt (- xpos1 xpos2) 2) (expt (- yposl ypos2) 2)))))
;3 (pvalues xposl yposl xpos2 ypos2 straight-line-dist)
straight-line-dist))

;; NATURALLY FORMULATED REPLIES

(defun reply-people-in-room (lst}
;5 (pvalues Ist)
(recording-query-reply ('t :p t)
(cond

((and (eq (length Ist) 1) (equal (car lst) "ROOM IS EMPTY™))
(format t "No one is currently in the room."))
((endp (cdr Ist))
(format t "~A is currently in the room." (car Ist)))
(t

(format t "~A are currently in the room." (gen-np Ist :how :bare :stream nil))))))

(defun reply-current-xpos (blobname value)

(recording-query-reply ("t :p t)
(gen-np blobname :how :bare :stream t)))

(defun reply-current-ypos (blobname value)

(recording-query-reply ('t :p t)
(gen-np blobname :how :bare :stream t)))

44

(defun reply-current-position (blobname value)

;5 (pvalues blobname value)

(1f (and blobname value)
(recording-query-reply ('t :;p t)

(if (or (equal (car value) "OUTSIDE ROOM™) (equal (cadr value) "OUTSIDE ROOM™))
(format t "~A is currently outside the room." (gen-np blobname :how :bare ‘stream nil))
(format t "~Acurrent position is (~A, ~A)." (gen-np blobname :case ’genitive :how :bare

:stream nil) (car value) (cadr value))))

"NIL))

(defun reply-current-distance-between (matching-word1 matching-word?2)
(let* ((namel (string-downcase (get-matching-value-root-singular matching-word1)))
(name2 (string-downcase (get-matching-value-root-singular matching-word2))))
(if (or (equal namel "nil") (equal name2 "nil™))
"nil
(let* ((values (omnibase-get "smartroom-blob" (string-append namel "&" name?) "GET-
CURRENT-DISTANCE-BETWEEN" :use-cache nil))
(pos1 (list (car values) (cadr values)))
(pos2 (list (caddr values) (cadddr values))))
5 (pvalues pos]1 pos2)
(if (member *NIL values)
(reply-current-distance-between-aux namel name2 0)
(recording-query-reply ('t :p t)
(if (member "OUTSIDE ROOM" posl :test ’equal)
(format t "~A isn’t in the room right now." namel)
(if (member "OUTSIDE ROOM" pos2 :test equal)
(format t "~A isn’t in the room right now." name?2)
(format t "~A and ~A are currently ~A apart." namel name? (sqrt (+ (expt (- (car values)
(caddr values)) 2) (expt (- (cadr values) (cadddr values)) 2)))))))))))

(defun reply-current-distance-between-aux (namel name2 counter)
(let* ((value (omnibase-get "smartroom-blob" (string-append namel "&" name2) "GET-CUR-
RENT-DISTANCE-BETWEEN" :use-cache nil))
(posl (list (car values) (cadr values)))
(pos2 (list (caddr values) (cadddr values))))
- (if (member *NIL values)
(if (equal counter 5)
"NIL
(reply-current-position-aux namel name?2 (+ counter 1)))
(recording-query-reply ('t :p t)
(if (and (member "OUTSIDE ROOM" pos]1 :test equal) (member "OUTSIDE ROOM" pos2
‘test “equal}))
(format t "Neither ~A nor ~A is in the room right now." namel name?2)
(if (member "OUTSIDE ROOM" pos1 :test *equal)
(format t "~A isn’t in the room right now." namel)

45

(if (member "OUTSIDE ROOM" pos2 :test ’equal
q
(format t "~A isn’t in the room right now." name?2)
(format t "~A and ~A are currently ~A apart." namel name?2 (sqrt (+ (expt (- (car posl) (car

Pos2)) 2) (expt (- (cadr pos1) (cadr pos2)) 2)))N))))

(defun reply-current-time-in-room (namel value)
awe. 55 (PValues namel value)
(if (and name] value)
(recording-query-reply ('t :p t)
(format t "~A has been in the room for ~A_" (gen-np namel :how :bare :stream nil) (car value)))
"NIL))

(defun reply-time-entered-room (namel value)
;;(pvalues namel value)
(if (and name1 value)
(recording-query-reply (’t :p t)
(format t "~A entered the room at ~A " (gen-np namel :how :bare :stream nil) (car value)))
"NIL))

(defun reply-sitting (matching-name)
(let* ((blobname (string-downcase (get-matching-value-root-singular matching-name)))
(value (omnibase-get "smartroom-blob"
blobname "GET-CURRENT-HEIGHT" :use-cache nil))
(status-string (if (> (string-to-number (car value)) 3)
" is standing."
" 1s sitting.")))
53 (pvalues blobname value status-string)
(1f (and blobname value status-string)
(recording-query-reply (’t :p t)
(format t status-string (gen-np blobname -how :bare :Stream t)))
"NIL)))

(defun reply-nearness-to-object (matching-name matching-object)

(let* ((blobname (string-downcase (get-matching-value-root-singular matching-name)))
(object (string-downcase (get-matching-value-root-singular matching-object)))
(chalkboard-pos *(0.0 0.0))

(table-pos (0.0 3.0))
(blob-pos (omnibase-get "smartroom-blob" blobname "GET-CURRENT-POSITION"))
(object-pos (cond ((string-equal object "chalkboard™)
chalkboard-pos)
((string-equal object "table")
table-pos)
(t 'nil)))
(dist-between (if (or (eq object-pos 'nil) (eq blobname ’nil))
“nil

46

(get-distance-between-two-points blob-pos object-pos))))
;3 (pvalues blobname blob-pos object object-pos dist-between)
(if (and blobname object dist-between)
(recording-query-reply ('t :p t)
(format t "~A 1s ~A from the ~A." (gen-np blobname :how :bare :stream nil) dist-between
(gen-np object :how :bare :stream nil)))

'nil)))

47

smartroom-scripts.scm

;; returns the names of all the people currently in the room

smartroom-blob GET-PEOPLE-IN-ROOM

(lambda (fake)

(let* {(a (sql "select name from currentdata where xpos!="OUTSIDE ROOM’")))

a))

;;returns the last time the positional data changed for a particular blob
smartroom-blobGET-LAST-MOVEMENT-TIME
(lambda (name)

(list (get-currentdata-column name "modifiedtime")))

;;returns the time a particular blob was created
smartroom-blobGET-CREATED-TIME
(lambda (name)

(list (get-currentdata-column name "createdtime™)))

;;returns the current "unknownfloat” for a particular blob
smartroom-blobGET-CURRENT-UFO

(lambda (name)

(list (get-currentdata-column name "unknownfloat")))

;;returns the current x-position for a particular blob
smartroom-blobGET-CURRENT-XPOS

(lambda (name)

(list (get-currentdata-column name "xpos")))

;;returns the current y-position for a particular blob
smartroom-blobGET-CURRENT-YPOS

(lambda (name)

(list (get-currentdata-column name "ypos™))

;;returns the current height for a particular blob
smartroom-blobGET-CURRENT-HEIGHT
(lambda (name)

(list (get-currentdata-column name "zpos")))

;;retumns the current coordinate position for a particular blob
smartroom-blobGET-CURRENT-POSITION
{lambda (name)

(let* ((xpos-str (car (get "smartroom-blob" name¢ "GET-CURRENT-XPOS")))
(ypos-str (car (get "smartroom-blob" name "GET-CURRENT-YPOS™))
(xpos (if (equal? xpos-str "OUTSIDE ROOM™)

"OUTSIDE ROOM"

(string->number xpos-str)))

48

(ypos (if (equal? ypos-str "OUTSIDE ROOM")
"OUTSIDE ROOM"
(string->number ypos-str))))

(list xpos ypos)))

;;returns the current distance between two blobs

. smartroom-blobGET-CURRENT-DISTANCE-BETWEEN

(lambda (inputstr)
(let* ((namel (match:prefix (match "&" inputstr)))
(name2 (match:suffix (match "&" inputstr)))
(posl (get "smartroom-blob" namel "GET-CURRENT-POSITION"))
(pos2 (get "smartroom-blob" name2 "GET-CURRENT-POSITION"))
(values (append posl pos2)))
values))

;;returns the length of time a particular blob has been in the room
smartroom-blob GET-CURRENT-TIME-IN-ROOM (lambda (name)

(let* ((a (sql (string-append "select age('now’, (select min(createdtime) from roomdata where
name=""name ""))"))))

(car a)))

49

VisualBlob.java

package smartroom;

import java.io.*;
import java.util.*;

class VisualBlob implements Serializable {
//container class for room "blobs". Each blob represents a person.

String date AndTimeCreated,;
String dateAndTimeModified,;
long createdMillis;

long modifiedMillis;

long lastSeen;

String name;

float unknownFloat;

float xPos;

float yPos;

float zPos;

boolean stateUpdated;

//constructor

public VisualBlob(String n, float ufo, float x, float y, float z) {
dateAndTimeCreated = getDate AndTime();
createdMillis = getCurrentMillis();
modifiedMillis = createdMillis;
dateAndTimeModified = dateAndTimeCreated,;
name = n.toLowerCase(); //store names as lowercase
unknownFloat = ufo;

xPos = x;

yPos =y;

zPos=z;

lastSeen = System.currentTimeMillis();
}
//constructor

public VisualBlob(String date, long dateMillis, String dateMod, long dateModM illis, String n,
float ufo, float x, float y, float z) {
unknownFloat = ufo;

xPos =x;
yPos =y;
zPos = z;

50

date AndTimeCreated = date;

createdMillis = dateMillis;

dateAndTimeModified = dateMod;

modifiedMillis = dateModMillis;

name = n.toLowerCase(); //store names as lowercase
lastSeen = System.currentTimeMillis();

-

//sets updated state for this

public void setUpdated(boolean x) {
stateUpdated = x;
dateAndTimeModified = getDate AndTime();

}

//returns true if this has been updated
public boolean stateUpdated() {
return stateUpdated;

b

//sets state variables for this

public void setXPos(float x) { xPos =x; }

public void setYPos(float y) { yPos=1y; }

public void setUnknownFloat(float ufo) { unknownFloat = ufo; }
public void setZPos(float z) { zPos = z; }

public void setDateModified(String d) { dateAndTimeModified = d; }
public void setDateCreated(String d) { dateAndTimeCreated = d; }
public void setCreatedMillis(Jong m) { createdMillis = m; }

public void setModifiedMillis(long m) { modifiedMillis = m; }
public void setl.astSeen(long 1) { lastSeen=1; }

//retrieves state variables for this

public float getXPos() { return xPos; }

public float getYPos() { return yPos; }

public float getZPos() { return zPos; }

public float getUnknownFloat() { return unknownFloat; }
public String getDateCreated() { return dateAndTimeCreated; }
public String getDateModified() { return date AndTimeModified; }
public long getCreatedMillis() { return createdMillis; }

public long getModifiedMillis() { return modifiedMillis; }
public long getlLastSeen() { return lastSeen; }

public String getName() { return name; }

//returns String representation of this

public String toString() {

String s = name + """ + dateAndTimeCreated + "" + createdMillis + "" + dateAndTimeModified
+ """ + modifiedMillis + """ + unknownFloat + " + xPos + "" + yPos + """ + zPos + "\n";

51

return s;

}

//tests for equivalece between this and b
/if the name, x-position, y-postion, and z-position are all
//the same then this and b are equal
public boolean equals(VisualBlob b) {
if (!(name.equals(b.getName()))} {
return false;

}

if (1(xPos == b.getXPos())) {
return false;

}

if (!(yPos == b.getYPos())) {
return false;

}

if (1(zPos == b.getZPos())) {
return false;

}

return true;

}

//sets status of this as being outside the room
public void setOutsideRoom() {
System.out.println("SET BLOB OUTSIDE ROOM");
setUnknownFloat(-1);
setXPos(-200);
setYPos(-200);
setZPos(-200);

}

//returns current date and time

public String getDateAndTime() {
GregorianCalendar cal = new GregorianCalendar();
int month = cal.get(Calendar MONTH) + 1;
int day = cal.get(Calendar. DAY_OF_MONTH);
int year = cal.get(Calendar. YEAR);
int hour = cal.get(Calendar HOUR_OF_DAY);
int minute = cal.get(Calendar MINUTE);
int second = cal.get(Calendar. SECOND);
java.util. Date calDate = cal.getTime();
TimeZone zone = cal.getTimeZone(),
boolean daylight = zone.inDaylightTime(calDate);
String timezone = "";

52

if (daylight) {
timezone = "EDT";

}

else {
timezone = "EST";

}

String currentdatetime = year + "-" + month + "-" + day + " " + hour + ":" + minute + ":" + second
+" AD " + timezone;

return currentdatetime;

b

//returns current milliseconds
public long getCurrentMillis() {
return System.currentTimeMillis();

}

53

BlobVectImpl.java
package smartroom;

import java.rmi.*;

import java.rmi.server.*;

import java.util. *; o
import java.io.*;

public class BlobVectImpl extends UnicastRemoteObject implements BlobVect, Serializable {
//Remote object implementation of the BlobVect interface

private Vector blobsVect;
private boolean stateUpdated,
private boolean lock;

//constructor
public BlobVectImpl() throws RemoteException {
blobsVect = new Vector();

}

//adds a blab to this
public synchronized void add(Object o) {
blobsVect.add(o);

}

//removes a blob from this

public synchronized void remove(Object 0) {
int index = findFirst((VisualBlob)o);
blobsVect.removeElementAt(index);

}

//returns the number of blobs in this
public int size() {
return blobsVect.size(),

}

//returns the Vector of blobs in this
public Vector vec() {
return blobsVect;

}

//returns the index of the first blob contained in this that is
//VisualBlob.equals() to b

54

public int findFirst(VisualBlob b) {

for (int 1=0; 1<blobsVect.size(); i++) {
VisualBlob current = (VisualBlob)blobsVect.get(1);
if (current.equals(b)) {

return 1;
1

}

return -1;

}

//set updated state for this
public synchronized void setUpdated(boolean x) {
stateUpdated = x;

}

//returns true if this has been updated
public boolean stateUpdated() {
return stateUpdated;

}

//tests for equivalence between this and another BlobVect

//if the blobs in this are in the same order as the blobs

//in bVect and are VisualBlob.equals() to the blob at the

{/corresponding index, then the BlobVects will be deemed

/lequivalent

public boolean equals(BlobVect bVect) throws RemoteException{
boolean foundBlob = false;

if (bVect.size() == this.size()) {
return false;

}

Vector currentVec = this.vec();
Vector testedVec = bVect.vec();

for (int i=0;i<currentVec.size();i++) {
VisualBlob current = (VisualBlob)currentVec.get(i);

foundBlob = false;

for (int j=0;j<tested Vec.size();j++) {
VisualBlob tested = (VisualBlob)tested Vec.get(j);
if (cutrent.equals(tested)) {

foundBlob = true;

55

break;

}
}

if (!foundBlob) {
return false;

}
}

return true;

}

//replaces the Vector of blobs in this with Vector v

public synchronized void setVec(Vector v) throws RemoteException {
Vector clonedVec = (Vector)v.clone();
blobsVect = clonedVec;

}

//returns the index of the first occurance b in this or -1

//if this doesn’t contain b

public int blobExists(VisualBlob b) throws RemoteException {
for (int 1=0; 1<blobsVect.size(); i++) {

VisualBlob current = (VisualBlob)blobs Vect.get(i);

if ((current.getName()).equals(b.getName())) {
return i;

}
}

return -1;

}

//returns true if this is locked
public boolean locked() throws RemoteException {
return lock;

}

/Isets locked state for this

public synchronized void setLock(boolean I} {
lock =1;

}

//replaces blob at specified index with b
public synchronized void setBlobAt(int index, VisualBlob b) {
blobsVect.set(index, b);

}

56

//deletes all blobs from this

public synchronized void clearBlobs() throws RemoteException {
blobsVect = new Vector();

stateUpdated = trug;

}

57

SmartroomConnection.java

package smartroom;

import java.net.¥;

import java.rmi.*;

import java.sql.*;

import java.io.*;

import java.util. *;

mmport java.lang.¥;
1mport java.lang.reflect.*;

class SmartroomConnection {

//fmaintains connection to PostgreSQL database and performs actions
//on that database

private String driver;
private String url;
private String user;
private String password,
private Connection con;

//constructor

public SmartroomConnection(String driver, String url, String user, String password) throws
java.net.UnknownHostException, IOException, SQLException, RemoteException, ClassNot-
FoundException {
this.driver = driver;
this.url = url;
this.user = user;
this.password = password,;

Class.forName(this.driver);
this.con = DriverManager.getConnection(this.url, this.user, this.password);

}

//returns true if "symbol" exists in the symbols table
public boolean symbolExists(String symbol) throws SQLException {
String testQuery = "select symbol from symbols where symbol="" + symbol + "*":
Statement testStmt = con.createStatement();
ResultSet returnedSet = testStmt.executeQuery(testQuery);
if (returnedSet.next()) {
return true;

}

58

else {
return false;

}
}

//adds a symbol to the symbols table
public boolean addSymbol(String symbol) throws SQLException {
String ins = "insert into symbols values (*smartroom-blob’, *" + symbol + ", *" + symbol + "*)";
Statement insStmt = con.createStatement();
boolean inserted = insStmt.execute(ins);
System.out.println("in addSymbol");
return inserted;

}

//copies data from the lastupdates table to the roomdata table
public void updateRoomData() throws SQLException {

String insertString = "insert into roomdata select * from lastupdates";

Statement ins = con.createStatement();
boolean inserted = ins.execute(insertString);
ins.close();

}

//moves data from templastupdates to lastupdates
public void updateLastUpdates() throws SQLException {

String insertString = "delete from lastupdates; insert into lastupdates select * from templastup-
dates; delete from templastupdates";

Statement ins = con.createStatement();
boolean inserted = ins.execute(insertString);
ins.close();

}

//moves data from tempcurrentdata to currentdata
public void updateCurrentData() throws SQLException {

String insertString = "delete from currentdata; insert into currentdata select * from tempcurrent-
data; delete from tempcurrentdata”;

Statement ins = con.createStatement();

boolean inserted = ins.execute(insertString);

ins.close();

59

//inserts a blob into lastupdates
public void insertBlobIntoLastUpdates(VisualBlob b) throws SQLException {

String insertString = "insert into lastupdates values (*" + b.getName() + "’, *" + b.getDateCre-
ated() +"°, " + b.getCreatedMillis() + ", *" + b.getDateModified() + ™, *" + b.getModifiedMil-
lis() +", *" + b.getUnknownFloat() + "*, " + b.getXPos() + ", " + b.getYPos() + "*, *" +
b.getZPos() + "*)",

Statement ins = con.createStatement();
boolean inserted = ins.execute(insertString);
ins.close();

}

//inserts a blob into templastupdates and tempcurrentdata
public void insertBlobIntoTempLastUpdates(VisualBlob b) throws SQLException, RemoteEx-
ception {

String insertString = "";
if ('(RoomInfoServer.blobInsideRoom(b))) {

insertString = "insert into templastupdates values (" + b.getName() + ™, *" + b.getDateCre-
ated() + ", ”" + b.getCreatedMillis() + ", *" + b.getDateModified() + ", *" + b.getModifiedMil-
lis(Q) + ", ’"OUTSIDE ROOM”’, *OUTSIDE ROOM’, "OUTSIDE ROOM”, *OUTSIDE ROOM’);
insert into tempcurrentdata values (*" + b.getName() + "°, *" + b.getDateCreated() + "*, *" + b.get-
CreatedMillis() + ™, *" + b.getDateModified() + ", " + b.getModifiedMillis() + ", " + b.getUn-
knownFloat() + ™, *" + b.getXPos() + "*, ’" + b.getYPos() + ", *" + b.getZPos() + "")";

}

else {

InsertString = "insert into templastupdates values (*" + b.getName() + "*, *" + b.getDateCre-
ated() + ", ”" + b.getCreatedMillis() + ™, " + b.getDateModified() + ", *" + b.getModifiedMil-
lis() + ", *" + b.getUnknownFloat() + ", *" + b.getXPos() + "*, *" + b.getYPos() + ", "' +
b.getZPos() +"’); insert into tempcurrentdata values (" + b.getName() + ", *" + b.getDateCre-
ated() + ", " + b.getCreatedMillis() + "°, *" + b.getDateModified() + ", *" + b.getModifiedMil-
lis() + ", " + b.getUnknownFloat() + ", *" + b.getXPos() + "°, ’" + b.getYPos() + "*, ™" +
b.getZPos() +"")";

}

Statement ins = con.createStatement();
boolean inserted = ins.execute(insertString);
ins.close();

60

}

/finserts a blob into tempcurrentdata
public void insertBlobIntoTempCurrentData(VisualBlob b) throws SQLException {

String insertString = "insert into tempcurrentdata values (" + b.getName() + "*, *" + b.getDate-
Created() + ", " + b.getCreatedMillis() + ", " + b.getDateModified() + ", *" + b.getModified-
Millis() + ™, *" + b.getUnknownFloat() + ", *" + b.getXPos() + ", ™" + b.getYPos() + ", *" +
b.getZPos() + "")";

Statement ins = con.createStatement();
boolean inserted = ins.execute(insertString);
ins.close();

}

/freturns a ResultSet containing the data stored in currentdata
public ResultSet loadRoomState() throws SQLException {

Statement stmt = con.createStatement();
String query = "select * from currentdata”;
ResultSet returnedSet = stmt.executeQuery(query);

return returnedSet;

}

61

Cameralnterface. java
package smartroom;

import javax.swing.*;
import java.awt.event.*;
import java.net.*;
import java.io.¥;

import java.rmi.*;
mmport java.util.*;

public class Cameralnterface implements Serializable {

/laccepts input from cameras and updates the remote object
//representation of room state

private static BlobVect remoteBlobs;

private static BlobVect localBlobs;

private static Socket dataSock;

private int socketTimeoutSeconds = 300;

private int socketTimeoutMillis = socketTimeoutSeconds * 1000;

//MAIN
public static void main(String|] args) {

try {
InetAddress localAddr = InetAddress.getLocalHost();

String localHostName = local Addr.getHostName();
String url = "rmi://" + localHostName + ".ai.mit.edu/";

int infoPort = 8060;
remoteBlobs = (BlobVect)Naming.lookup(url + "Room Blabs");

//Create socket to receive room info

ServerSocket infoSocket = new ServerSocket(infoPort);
while (true) {
System.out.printIn("waiting for connection");

//waits for information from the cameras

dataSock = infoSocket.accept(),

System.out.println("got connection");

InputStreamReader temp = new InputStreamReader(dataSock.getInputStream());
BufferedReader infoReader = new BufferedReader(temp),

// start loop

62

while (true) {
try {

String currentBlobString = infoReader.readLine(),
VisualBlob currentBlob = parseBlobFromCameraString(currentBlobString);
int blobIndex = remoteBlobs.blobExists{currentBlob);

if (blobIndex == -1) {
//blob didn’t exist previously
currentBlob.setUpdated(true);
remoteBlobs.add(currentBlob);
remoteBlobs.setUpdated(true),
System.out.printin("added blob"};

1

else {
//blob already existed
VisualBlob oldBlob = (VisualBlob)(remoteBlobs.vec()).get(blobIndex);
String oldCreatedDate = oldBlob.getDateCreated();
long oldCreatedMillis = oldBlob.getCreatedMillis();
oldBlob.setLastSeen(System.currentTimeMillis());
currentBlob.setLastSeen(System.currentTimeMillis());

//tests whether the current blob is equivalent to

//the previously seen blob

if (currentBlob.equals(oldBlob)) {
//if so, do nothing

}

else {
//if not, update remoteBlobs with new information
currentBlob.setDateCreated(oldCreatedDate);
currentBlob.setCreatedMillis(oldCreatedMillis);
currentBlob.setUpdated(true);
remoteBlobs.setBlobAt(bloblndex, currentBlob);
remoteBlobs.setUpdated(true);

}
}

}

catch (Exception ¢) {
dataSock.close();

System.out.printin("Connection closed. Exception: " + ¢);
break;

}

63

}
}

catch (Exception e) {

System.out.println("Error in main: " + ¢);

}

}

//parses String received from cameras and creates a

//VisualBlob based on the data

public static VisualBlob parseBlobFromCameraString(String s) throws Exception{
VisualBlob tempBlob = null;

StringTokenizer sTok = new StringTokenizer(s, " ™);
String positionAsWord = sTok nextToken();

String name = sTok.nextToken();

String unknownFloat = sTok.nextToken();

String xPos = sTok.nextToken();

String yPos = sTok.nextToken();

String height = sTok.nextToken();

/**
System.out.println("name:" + name);
System.out.println("ufo:" + unknownFloat);
System.out.println("xpos:" + xPos),
System.out.println("ypos:" + yPos);
System.out.println("height:" + height);

* */

float ufo = Float.parseFloat(unknownFloat);

float x = Float.parseFloat(xPos);

float y = Float.parseFloat(yPos);

float z = Float.parseFloat(height);

tempBlob = new VisualBlob(name, ufo, x, y, z);
return tempBlob;

}

64

RoomlinfoServer.java
package smartroom;

import javax.swing.*;
import java.awt.event.*;
import java.net.*;
import java.io.*;

import java.rmi.*;
import java.util. *;
import java.sql.*;

public class RoomInfoServer {

//central server that constantly checks the remote represenation of
//the room state. when that state has changed, it makes the appropriate
//updates to the database.

public static boolean clientConnected;

public static Socket clientSocket;

public static PrintWriter clientWriter;

public static ServerSocket serverSocket;

public static String currentState;

public static BlobVect blobs;

public static SmartroomConnection postgresConnection;
public static boolean markedForAnotherUpdate = false;

//constructor
public RoomInfoServer() throws IOException {

clientConnected = false;
clieniSocket = null;
clientWriter = null;
serverSocket = null;
currentState = null;
postgresConnection = null;

try {

String driver = "org.postgresql.Driver”,
Class.forName(driver);

InetAddress locallnetAddr = InetAddress.getL.ocalHost();
String host = locallnetAddr.getHostName();

String url = "jdbe:postgresql://" + host + ":5432/smartroom”;
String user = "start";

String password = """,

65

//makes connection to database
postgresConnection = new SmartroomConnection(drver, url, user, password);
blobs = new BlobVectImpl(),
loadRoomState();
Naming.rebind("Room Blobs", blobs);
;
catch (Exception e) {
System.out.println("Error in RoomInfoServer constructor: " + ¢);
}

}

//1oads initial room state from locked version in database
public void loadRoomState() throws SQLException {

try {
ResultSet retuimedSet = postgresConnection.loadRoomState();
int rowCount = 0;

while(returnedSet.next()) {
rowCount ++;
String name = returnedSet.getString(1);
String createdTime = returnedSet.getString(2);
String createdMillis = returnedSet.getString(3);
String modifiedTime = returnedSet.getString(4);
String modifiedMallis = returnedSet.getString(5);
String unknownFloat = returnedSet.getString(6);
String xPos = returnedSet.getString(7);
String yPos = returnedSet.getString(8);
String zPos = returnedSet. getString(9);

if (xPos.equals("OUTSIDE ROOM")) {
unknownFloat="-1";

xPos ="-200";
yPos ="-200";
zPos = "-200";

!

String stateLine = name + "" + createdTime + "" + createdMillis + "" + modifiedTime + " + mod-
ifiedMillis + "" + unknownFloat + "" + xPos + "" + yPos + """ + zPos;
loadStateLine(stateLine);

}

if (rowCount == 0} {

66

currentState = "No State Information Available\n";

}
}

catch (Exception err) {
System.out.println("Exception while trying to load room state. " + err.toString());

}
}

//parses a String containing blob information, creates that blob

//then loads it into the current (remotely accesible) state

public void loadStateLine(String currentStateLine) throws RemoteException, SQLException {
try {

StringTokenizer sTok = new StringTokenizer(currentStateLine, "");

String name = sTok.nextToken();

String dateAndTimeCreated = sTok.nextToken();

String cMillis = sTok.nextToken();

String dateAndTimeModified = sTok.nextToken();

String mMillis = sTok.nextToken();

String unknownFloat = sTok.nextToken();

String xPos = sTok.nextToken();

String yPos = sTok.nextToken();

String height = sTok.nextToken();

long createdMillis = Long.parseL.ong(cMillis);
long modifiedMillis = Long.parseLong(mMillis);

float ufo = Float.parseFloat{unknownFloat);
float x = Float.parseFloat(xPos);

float y = Float.parseFloat(yPos);

float z = Float.parseFloat(height);

VisualBlob currentBlob = new VisualBlob{dateAndTimeCreated, createdMillis, dateAndTime-
Modified, modifiedMillis, name, ufo, X, y, z);

blobs.add(currentBlob);

if (!(postgresConnection.symbolExists(name))) {
postgresConnection.addSymbol(name);

}
}

catch (Exception ¢) {
System.out.println("Error in loadStateLine: " + e.toString());

b
}

//iterates through each blob in the remotely accessible version of

67

//the current state. if a particular blob has been updated, it loads
//the updated version into the locked version of the current state.
//as the locked current state changes, the old current state is written
//into permanent storage

public static void writeNewState() {

try {

/I blobs.setLock(true);

Vector b = blobs.vec();

long currentTime = System.currentTimeMillis();
for (int i=0;1<b.size();i++) {

VisualBlob currentBlob = (VisualBlob)b.get(i);
long oldMillis = currentBlob.getModifiedMillis();
//change made 7/05/02 currentBlob.setModifiedMillis(currentTime);

if (!(postgresConnection.symbolExists(currentBlob.getName()))) {
postgresConnection.addSymbol(currentBlob.getName());

}

if (currentBlob.stateUpdated()) {
if (!(bloblnsideRoom(currentBlob))) {

setBlobOutsideRoom(currentBlob);
postgresConnection.insertBlobIntoTempLastUpdates(currentBlob);
blobs.remove(currentBlob);
blobs.setUpdated(true);
markedForAnotherUpdate = true;

}

else {

postgresConnection.insertBlobIntoTempLastUpdates(currentBlob);

}

currentBlob.setUpdated(false);

}

else {

if (!(blobInsideRoom(currentBlob))) {
setBlobOutsideRoom(currentBlob);
}
currentBlob.setModifiedMillis(oldMillis);
postgresConnection.insertBlobIntoTempCurrentData(currentBlob);
}
}

68

//System.out.println("Updating set of most recent changes: " + System.currentTimeMillis());
postgresConnection.updateLastUpdates();
//System.out println("Finished updating set of most recent changes: " + System.current-
TimeMillis());
// System.out.printIn("Copying updates to final storage: " + System.currentTimeMillis());
postgresConnection updateRoomData();
// System.out.println("Finished copying updates to final storage: " + System.currentTimeMil-
lis());
// System.out.println("Updating current data: " + System.currentTimeMillis());
postgresConnection.updateCurrentData();
// System.out.println("Finished updating current data: " + System.currentTimeMillis()); //
blobs.setLock(false);
}
catch (Exception e) {
System.out.println("Error in writeNewState: " + ¢);
}
}

/freturns true if the blob is inside the room

public static boolean blobInsideRoom(VisualBlob b) throws RemoteException {
long lastSeenThreshSeconds = 30;
long lastSeenThreshMillis = lastSeenThreshSeconds * 1000;
long removal ThreshMillis = (lastSeenThreshSeconds + 15) * 1000;
long currentTime = System.currentTimeMillis();
long diff = currentTime - b.getLastSeen();

double diffSeconds = diff / 1000;

if (diff > removal ThreshMillis) {

}

1f (diff > lastSeenThreshMillis) {
System.out.printin("HAVEN’T SEEN BLOB NAMED: " + b.getName() + " in " + diffSeconds
+ " seconds ago.LAST SEEN: " + b.getLastSeen() + " CURRENT TIME: " + currentTime);
return false;
}
else {
return true;

}
}

/fretruns a String representation of all the blobs in a BlobVect
public static String getAllBlobVectString(BlobVect vi) throws RemoteException {
Vector v = vi.vec();
String out="";
VisualBlob rb = null;
for (int i=0;i<v.size();i++) {

69

rb = (VisualBlob)v.get(i);
out = out + rb.toString();

}

return out;

h

//returns a String representation of all the updated blobs in a BlobVect
public static String getUpdatedBlobVectString(BlobVect vi) throws RemoteException {
Vector v = vi.vec();
String out ="",
VisualBlob rb = null;
for (int 1=0;i1<v.size();i++) {
rb = (VisualBlob)v.get(i);
if (rb.stateUpdated()) {
out = out + rb.toString();
rb.setUpdated(false);

}
}

return out;

}

//returns a String representation of the current (remotely accessible)
//room state
public String getRoomState() throws RemoteException {

return getAllBlobVectString(blobs);

}

/IMAIN
//waits for connections and checks to see if the remotely accessible state
//has been updated
public static void main(String[] args) throws IOException {
try {

RoomInfoServer rInfo = new RoomInfoServer();

System.out.println(" Awaiting connections");
while (true) {
Thread.sleep(20);
if (blobs.stateUpdated()) {
writeNewState();
if (markedForAnotherUpdate) {
markedForAnotherUpdate = false;
writeNewState();

}

70

else {
blobs.setUpdated(false);

h
}

else {
Vector b = blobs.vec();
for (int 1=0;i<b.size();i++) {
VisualBlob currentBlob = (VisualBlob)b.get(1);

if (!(blobInsideRoom(currentBlob))) {
{

setBlobOutsideRoom(currentBlob);

}
}

}
}

/fallowing timer to continue ticking

;
}

catch (Exception e) {
System.out.println ("Error in main: " + ¢);

}
}

//marks a blob as being outside the room

public static void setBlobOutsideRoom(VisualBlob b) throws RemoteException {

b.setOutsideRoom();
b.setUpdated(true);
blobs.setUpdated(true);
}
}

71

DataSmoother.java
package smartroom;

import java.io.*;
import java.util, *;
import java.lang.*;

public class DataSmoother {

private static HashMap infoHash = new HashMap(100);

private static HashMap glitchHash = new HashMap(100);

private static HashMap equivalenceHash = new HashMap(100);

private static HashMap linesHash = new HashMap(100);

private static HashMap lastSuspectedGlitchHash = new HashMap(100);
private static float errorThresh = (new Float(0.15)).floatValue();

private static String[] linesArray = new String[500];

private static int lineCount = 0;

private static int resetSeconds = 3;

private static long resetMillis = resetSeconds * 1000;

private static int glitchTimeoutSeconds = 5;

private static long glitchTimeoutMillis = glitchTimeoutSeconds * 1000;
private static boolean setLastGlitch = false;

private static boolean verbose = false;
private static boolean superVerbose = false;

public static void main{String[] args) throws IOException {
String verb = args[0];
String superVerb = args[1];
String filename = args[2];
if (verb.equals("true")) {
verbose = true,

if (superVerb.equals("true™)) {
superVerbose = true;

}

boolean done = false;
FileReader fReader = new FileReader(filename);
BufferedReader bufReader = new BufferedReader(fReader);

while (!done) {

String currentInput = bufReader.readLine();

72

StringTokenizer sTok = new StringTokenizer(currentInput, "");
String name = sTok.nextToken(),

String dateAndTimeCreated = sTok.nextToken();

String createdMillis = sTok.nextToken();

String dateAndTimeModified = sTok.nextToken();

String modifiedMillis = sTok.nextToken();

String unknownValue = sTok.nextToken();

String xVal = sTok.nextToken();

String yVal = sTok.nextToken();

String zVal = sTok.nextToken();

float x = Float.parseFloat(xVal);
float y = Float.parseFloat(yVal);
float z = Float.parseFloat(zVal);

long modMillis = Long.parseLong(modifiedMillis);
String outputLine = currentInput;

if (linesHash.isEmpty()) {
if (verbose) {System.out.println("********CLEARING GLITCH MEMORY **####:%n). 1
/lequivalenceHash.clear();

glitchHash.clear();

for (int 1 = 0; 1 < lineCount; i++) {
if (superVerbose) { System.out.println("CLEARED EQ HASH: Printing Line: " + i); }
System.out.printin(linesArray[i]),

}

lineCount = 0;

}

linesArray[lineCount] = outputLine;

if (equivalenceHash.containsKey(name)) {
// this blob is really a previously seen blob
// so update the previously seen blob’s info with the
// new information
String realName = (String)equivalenceHash.get(name);
outputLine = nameSubstitute(realName, currentInput);
linesArray[lineCount] = outputLine;

InfoContainer realContainer = (InfoContainer)infoHash.get(realName);
realContainer.updateInfo(modMillis, x, y, z);

73

lastSuspectedGlitchHash.put(name + "" + realName, new Long(modMillis));

}

else {

if (infoHash.containsKey(name)) {
/falready in hash
InfoContainer currentContainer = (InfoContainer)infoHash.get(name);
long timeDiff = currentContainer.timeDiff(modMillis);

float expX = currentContainer.expectedX(modMillis);
float expY = currentContainer.expected Y (modMillis);

if (superVerbose) {System.out.println("Name: " + name + "Time Seen: " + modMillis + "Time
Since Last Seen: " + timeDiff);

System.out.println("XVelocity: " + currentContainer.getXVel() + "Expected X Position: " +
expX + "Actual X Position: " + x);

System.out.printin("Y Velocity: " + currentContainer.getY Vel() + "Expected Y Position: " +
expY + "Actual Y Position: " +y + "\n");

}

float xErr = abs(x - expX);

float yErr = abs(y - expY);

if ((XxErr > errorThresh) || (yErr > errorThresh)) {
if (superVerbose) { System.out.printin("ERROR EXCEEDS THRESHHOLD: XErr =" + xErr
+ "YErr =" + yErr); }

}

currentContainer.updateInfo(modMillis, x, y, z);
infoHash.put(name, currentContainer);

}

else {
//first time seen

InfoContainer newInfo = new InfoContainer(modMillis, x, v, z);

infoHash.put(name, newInfo);
if (verbose) { System.out.println("First Time Seen******"). 1

74

}

testForGlitch(name, x, y, modMillis);

lineCount ++;

if (!(bufReader.ready())) {
done = true;

}

if (verbose) { System.out.println("lineCount: " + lineCount); }

if (superVerbose) { displayAllStoredLines(); }
tidyStoredLines(modMillis);

}

//finish printing lines

for (int i=0;i<lineCount;i++) {
if (superVerbose) { System.out.println("END: Printing Line: " +1); }
System.out.println(lines Array[i]);

}
}

public static void testForGlitch(String name, float x, float y, long modMillis) {
int newGlitchCount = 0,
Set hashKeys = infoHash.keySet();
Iterator keylter = hashKeys.iterator();
while (keylter.hasNext()) {
String currentKey = (String)keylter.next();

String glitchKey = name + "" + currentKey;

if (!(name.equals(currentKey))) {
InfoContainer checkedContainer = (InfoContainer)infoHash.get(currentKey);

float expectedX = checkedContainer.expected X (modMillis);
float expectedY = checkedContainer.expected Y(modMillis);
float xErr = abs(x - expectedX);
float yEir = abs(y - expectedY);
if (superVerbose) { System.out.printin(xErr + "" + yErr); }

75

if (xErr < errorThresh) && (yErr < errorThresh)) {
// possibility of equivalence... this blob is on the same trajectory as the checked blob
storeLine(glitchKey, lineCount);

if (verbose) {System.out.println("****IS " + name + " REALLY " + currentKey + "777****").

}

lastSuspectedGlitchHash.put(glitchKey, new Long(modMillis));
if (glitchHash.containsKey(glitchKey)) {
Integer glitchCount = (Integer)glitchHash. get(glitchKey);
newGlitchCount = glitchCount.intValue() + 1;
glitchHash.put(glitchKey, new Integer(newGlitchCount));

}

else {

ghitchHash.put(glitchKey, new Integer(newGlitchCount));

}

}

Jeds

else if ((modMillis - checkedContainer.getLastModifiedMillis()) > resetMillis) {
// weaker test for equivalence
storeLine(glitchKey, lineCount);

if (verbose) {System.out.println("****IS " + name + " REALLY " + currentKey +
"y xWEAKER TEST"); }

lastSuspectedGlitchHash.put(glitchKey, new Long(modMillis));

if (glitchHash.containsKey(glitchKey)) {

Integer glitchCount = (Integer)glitchHash. get(glitchKey);
new(GlitchCount = glitchCount.intValue() + 1;
glitchHash.put(glitchKey, new Integer(newGlitchCount));

}
else {

glitchHash.put(glitchKey, new Integer(newGlitchCount));

}

76

**/

r

if (newGlitchCount >= 2) && ((modMiillis - checkedContainer.getLastModifiedMillis()) >
resetMillis)) {
/{/ equivalence decided
// two straight glitches and it’s been more than resetMillis milliseconds since the checked blob
was last seen

if (verbose) { System.out.printin("****#*¥*¥*" + name + " IS " + currentKey + "*¥#*xkkkmy,

equivalenceHash.put(name, currentKey);
changeLines(glitchKey); '
clearStoredLines(glitchKey);
glitchHash.remove(glitchKey);

}

public static void changeLines(String glitchKey) {
StringTokenizer sTok = new StringTokenizer(glitchKey, "™);
String oldName = sTok.nextToken();
String newName = sTok.nextToken();

Vector lines = (Vector)linesHash.get(glitchKey);
for (int i=0;1<lines.size(};i++) {

int currentLine = ((Integer)lines.get(i)).intValue();

//retrieving old line

String oldLine = linesArrayjcurrentLine];

if (superVerbose) { System.out.println("Current index: " + currentLine + "Corresponding line:
"+ oldLine); }

//modifying line

linesArray[currentline] = nameSubstitute(newName, oldLine);
}

}

public static void storeLine(String glitchKey, int lineCnt) {

if (linesHash.containsKey(glitchKey)) {
Vector lines = (Vector)linesHash. get(glitchKey);

77

lines.add(new Integer(lineCnt));
linesHash.put(glitchKey, lines);
}
else {
Vector lines = new Vector();
lines.add(new Integer(lineCnt));
linesHash.put(glitchKey, lines);
}
}

public static void clearStoredLines(String glitchKey) {
linesHash.remove(glitchKey);
if (superVerbose) { System.out.printin("removed key: " + glitchKey); }

}

public static void displayAllStoredLines() {
Set hashKeys = linesHash keySet();
Iterator keylIter = hashKeys.iterator();
while (keylter.hasNext()) {
String key = (String)keylter.next();
System.out.print("Key: " + key + " Lines:");
Vector lines = (Vector)linesHash.get(key);
for (int i=0;i<lines.size();i++) {
int lineNum = ((Integer)lines.get(i)).intValue();
System.out.print(" " + lineNum);

System.out.println();

}
}

public static void tidyStoredLines(long modMillis) {
Set hashKeys = lastSuspectedGlitchHash keySet();
Iterator keylter = hashKeys.iterator();
while (keylterhasNext()) {
String key = (String)keylter.next();
long glitchTime = ((Long)lastSuspectedGlitchHash. get(key)).long Value();
long timeSinceGlitch = modMillis - glitchTime;
if (superVerbose) { System.out.println("Key: " + key + "Time Since Glitch: " + timeSinceG-
litch); }
if (timeSinceGlitch > glitchTimeoutMillis) {
linesHash.remove(key);
if (superVerbose) {System.out.println("Glitch: " + key + " timed out™); }

}
}
;

78

public static String nameSubstitute(String newName, String input) {
StringTokenizer sTok = new StringTokenizer(input, "");
String name = sTok.nextToken();
String dateAndTimeCreated = sTok.nextToken();
String createdMillis = sTok.nextToken();
String dateAndTimeModified = sTok.nextToken();
String modifiedMillis = sTok.nextToken();
String unknownValue = sTok.nextToken();
String xVal = sTok.nextToken();
String yVal = sTok.nextToken();
String zVal = sTok.nextToken();

String outString = newName + "" + dateAndTimeCreated + "" + createdMillis + "" + dateAnd-
TimeModified + "" + modifiedMillis + "" + unknownValue + "" + xVal + "" + yVal + "" + zVal;
return outString;

}

public static float abs(float f) {
if (f<0){

f=1*-1;
}

return f;

}

79

DataSmootherSimple. java
package smartroom;

import java.io.*;
import java.util.*;
import java.lang.*;

public class DataSmootherSimple {

private static HashMap infoHash = new HashMap(100);
private static HashMap glitchHash = new HashMap(100);
private static HashMap equivalenceHash = new HashMap(100);

private static float errorThresh = (new Float(0.15)).floatValue();
private static int resetSeconds = 3;

private static long resetMillis = resetSeconds * 1000;

private static long lastSuspectedGlitchMillis;

private static int printLineCount = 0;

private static boolean verbose = true;

public static void main(String[] args) throws IOException {
String filename = args[0];

boolean done = false,

FileReader fReader = new FileReader(filename);
BufferedReader bufReader = new BufferedReader(fReader);

while (!done) {
/I System.out.println("LINECOUNT: " + lineCount);

String currentInput = bufReader.readLine();

// System.out.println(currentInput);
StringTokenizer sTok = new StringTokenizer(currentInput, "");
String name = sTok.nextToken();

String date AndTimeCreated = sTok.nextToken();
String createdMillis = sTok.nextToken();

String dateAndTimeModified = sTok nextToken();
String modifiedMillis = sTok.nextToken(),

String unknownValue = sTok.nextToken();

String xVal = sTok.nextToken();

String yVal = sTok.nextToken();

String zVal = sTok.nextToken();

float x = Float.parseFloat(xVal),

80

float y = Float.parseFloat(yVal);
float z = Float.parseFloat(zVal);

long modMillis = Long.parseLong(modifiedMillis);

String outputLine = currentInput;

if (infoHash.containsKey(name)) {
InfoContainer currentContainer = (InfoContainer)infoHash.get(name);
long timeDiff = currentContainer.timeDiff{modMillis);

}

if (equivalenceHash.containsKey(name)) {
// this blob is really a previously seen blob
/I so update the previously seen blob’s info with the
/! new information
String realName = (String)equivalenceHash.get(name);
outputLine = nameSubstitute(realName, currentInput);

InfoContainer realContainer = (InfoContainer)infoHash.get(realName);
realContainer.updateInfo(modMillis, X, v, z);
lastSuspectedGlitchMillis = modMillis;

i

else {
testForGlitch(name, x, y, modMillis);

if (infoHash.containsKey(name)) {
//already in hash
InfoContainer currentContainer = (InfoContainer)infoHash get(name);
long timeDiff = currentContainer.timeDiff(modMillis);
float expX = currentContainer.expectedX(modMillis);

float expY = currentContainer.expectedY (modMillis);

// System.out.printin("Name: " + name + "Time Seen: " + modMillis + "Time Since Last Seen: "
+ timeDiff);

81

//System.out.println("XVelocity: " + currentContainer.getX Vel() + "Expected X Position: " +
expX + "Actual X Position: " + x);

//System.out.println("Y Velocity: " + currentContainer.getY Vel() + "Expected Y Position: " +
expY + "Actual Y Position: " +y + "\n");

float xErr = abs(x - expX);
float yErr = abs(y - expY);

if (xErr > errorThresh) || (yErr > errorThresh)) {

/I System.out.println("ERROR EXCEEDS THRESHHOLD: XErr ="+ xErr + "YErr =" +
yEm);
}

currentContainer.updateInfo(modMillis, X, y, z);
infoHash.put(name, currentContainer);

}

else {
//first time seen

InfoContainer newInfo = new InfoContainer(modMillis, x, vy, z);

infoHash. put(name, newInfo);
if (verbose) { System.out.println("First Time Seen******"). 1

System.out.println(outputLine);

if (!(bufReader.ready())) {
done = true;

}

82

public static void testForGlitch(String name, float X, float y, long modMillis) {
int newGlitchCount = 0;
Set hashKeys = infoHash.keySet();
Iterator keylter = hashKeys.iterator();
while (keyIter.hasNext()) {
String currentKey = (String)keylter.next();

String glitchKey = name + " + currentKey;

if (! (name.equals(currenthy))) {
InfoContainer checkedContainer = (InfoContainer)infoHash. get(currentKey);

Hoat expectedX = checkedContainer.expectedX(modMillis);
float expectedY = checkedContainer.expectedY(modMillis);
float xErr = abs(x - expectedX);

float yErr = abs(y - expectedY);

// System.out.println(xErr + " + yErr);

if (xErr < errorThresh) && (yErr < errorThresh)) {
// possibility of equivalence. . this blob is on the same trajectory as the checked blob

if (verbose) { System.out.println("****IS "+name +"REALLY " + currentKey + PPk,
lastSuspectedGlitchMillis = modMillis;

if (glitchHash.containsKey(intchKey)) {
Integer glitchCount = (Integer)glitchHash. get(glitchKey);
newGlitchCount = glitchCount.intValue() +1;
glitchHash. put(glitchKey, new Integer(newGlitchCount));

else {

glitchHash.put(intchKey, new Integer(newGlitchCount));
h

if (newGlitchCount >= 3) && ((modMillis - checkedContainer, getLastModiﬁedMillis()) > reset-
Millis)) {

// equivalence decided

// three straight glitches and jt’s been more than resetMillis milliseconds since the checked blob
was last seen

if (verbose) { System.out.println("#**#srskn 4 name + " IS " + currentKey + "*## ks "); }
equivalenceHash.put(name, currentKey);

83

glitchHash.remove(glitchKey);
1

}

}
}
}

public static String nameSubstitute(String newName, String input) {
StringTokenizer sTok = new StringTokenizer(input, "");
String name = sTok.nextToken();

String dateAndTimeCreated = sTok.nextToken();
String createdMillis = sTok.nextToken();

String dateAndTimeModified = sTok.nextToken();
String modifiedMillis = sTok.nextToken();

String unknownValue = sTok.nextToken();

String xVal = sTok.nextToken();

String yVal = sTok.nextToken();

String zVal = sTok nextToken();

String outString = newName + "" + dateAndTimeCreated + "" + createdMillis + "" + dateAnd-
TimeModified + " + modifiedMillis + "" + unknownValue + "" + xVal + "" + yVal + " + zVal;
return outString;

}

public static float abs(float f) {
if(F<0){
f=f*-1,

84

