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ABSTRACT

Barrett's esophagus (BE) is a condition of the lower esophagus caused by gastroesophageal
reflux disease. Patients with BE have an increased probability of developing dysplasia, an
abnormal growth or development of cells. This dysplasia in BE is a precursor to cancer of
the esophagus, but is currently difficult to detect and diagnose. If the dysplasia is allowed to
progress to cancer, it is very difficult to treat successfully. Treatment for dysplasia itself,
however, is very effective if done at an early stage. The goal of this thesis project will be to
develop a real-time tool that uses spectroscopy to improve upon the methods of detecting
dysplasia in BE. This will involve analyzing spectra acquired from patients with BE using
models and extracting quantitative information on different aspects of tissue morphology and
biochemistry. Using this information, diagnostic algorithms will be developed, optimized
and displayed to the physician through a useful interface.

Thesis Supervisor: Michael Feld
Title: Director, MIT Spectroscopy Laboratory
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Introduction

Optics and medicine

The advancement of medical technology has allowed today's physician to have an array

of techniques to diagnose and treat disease. Imaging techniques, for example, include

such different methods as magnetic resonance imaging (MRI), ultrasound, x-ray, and

computed tomography (CT), to name just a few. The availability of such a wide variety

of options, along with the continual development of new techniques, while undoubtedly

aiding doctors, also suggests that each one of these techniques has its limitations. One

needs look no further than the examples mentioned to find drawbacks in each: both x-ray

and CT use potentially harmful radiation, MRI and ultrasound provide images only at low

resolutions and thus are only effective when larger, morphological changes are involved.

Yet it is these very techniques that are the basis of the current diagnostic methods used to

detect precancerous changes. Early detection is a vital element in the treatment of cancer,

as it is in these stages, before the actual development into cancer that treatment is most
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effective. Unfortunately, another shortcoming of the four techniques that they all have in

common is their inability to diagnose lesions at a microscopic level, the early stage in

which the treatment is easily effective.

A potential solution lies in the use of light. Light has been used in the detection

and recognition of disease beyond its simple reception into the naked eye since the mid-

I 800s and the improvement of the microscope. Since then, the exploitation of light has

evolved into many different forms. Light is used not only to recognize disease, but also

to treat it through such applications as laser ablation, photodynamic therapy, and laser

hyperthermia. Laser ablation is the use of lasers to effect mechanical changes in tissue,

cutting and shaping it by using short pulses of laser light at high powers to remove

irradiated tissue. Photodynamic therapy brings about chemical changes in tissue,

interacting with molecules found or placed in diseased tissue to produce a chemical

reaction. 3  The reaction produced results in cellular necrosis and destruction of the

diseased tissue. Laser hyperthermia induces a thermal change in tissue, raising

temperatures to burn or even vaporize the targeted tissue. 4  These examples of

mechanical, chemical, and thermal changes are but a few of the classifications of the

effects light can have on tissue.

Light does not have the disadvantages found in the current cancer imaging

methods, as it is not harmful to the body, and the short wavelength of light allows for

sub-cellular resolutions of images. In addition, optical techniques and the instruments

that use them are generally not as complex as many of the other current imaging

instruments, costing less money, requiring less maintenance and generally less specified

training. Also, they are typically non-invasive, able to obtain data in vivo and present it

to a physician in real time to make clinical decisions on the spot. Some of these

techniques include reflectance, fluorescence, light scattering, and Raman. Reflectance,

fluorescence, and light scattering will be discussed in further detail later in this thesis.

Raman spectroscopy involves measuring a shift in the frequency of the light waves

created by the vibrations of the molecules in the tissue under examination. These

'Dixon, et al.
2 Itzkan, et al.
3 Dougherty
4 Anghilery, et al.

7



vibrations are dependent upon the chemical composition of the tissue, making Raman

useful for the measurement of the concentrations of various components found in tissue,

such as proteins, glucose, lipids, and nucleic acids. With this concentration information,

the state of the tissue can be discerned; for example, Raman spectroscopy has been used

to diagnose breast malignancies5 and atherosclerosis in the coronary artery.6

Motivation

Barrett's esophagus is a condition in which the cells lining the lower portion of

the esophagus stop looking like normal esophageal cells, and start looking more like the

cells that line the colon. About five to ten percent of people with Barrett's esophagus

develop cancer,7 and compared with the rest of the population, people with Barrett's have

an estimated forty times greater chance to develop lower esophageal cancer, or

adenocarcinoma.8 The incidence in cancers arising in Barrett's esophagus is increasing

more rapidly than any other cancer in the United States.9  Once Barrett's esophagus

advances to the stage of adenocarcinoma, it is, as with all cancers, very difficult to treat.

Dysplasia in Barrett's esophagus, a precancerous condition, on the other hand, is readily

treatable, but current methods of detection are not entirely effective. From these facts, it

is clear that a tool to assist doctors in the detection of dysplasia in Barrett's esophagus

would prevent the development of cancer and ultimately save lives.

This project furthers the development of a diagnostic tool that can potentially be

used to aid physicians in detecting dysplasia in Barrett's esophagus at an early, treatable

stage. This is accomplished through tri-modal spectroscopy, a mode of spectroscopy that

combines reflectance, fluorescence, and light scattering spectroscopy techniques. A

diagnostic algorithm is developed to use this spectroscopic technique in a clinical setting

in real-time to ultimately allow this tool to be used as a guide to take better advantage of

biopsy and make it a less random selection process. In addition, some of the information

8
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obtained through these spectroscopic techniques in diagnosing various stages of

precancer have never been analyzed previously, and should provide a basis for further

understanding of the biochemical changes involved in the early development of

precancerous changes.

9 Fred Hutchinson Cancer Research Center
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2
Background

Epithelial Tissue

Human tissue can be categorized into four types: epithelium, connective tissue, muscle,

and nervous tissue. These tissues are made up of variable quantities of cells and

extracellular matrix, and these tissues in turn make up the functional units called organs.

The esophagus, for example, consists of an epithelial layer on its inner surface covering

layers of connective tissue and muscle containing nerves and blood vessels. Blood

vessels can be considered a specialized subtype of connective tissue. Organs are then

categorized into organ systems, such as skeletal, muscular, circulatory, and in the case of

the esophagus, gastrointestinal.

The epithelial tissue is of particular interest because it is only this surface area that

is readily accessible by light spectroscopy. However, access to only superficial tissue

layers is not problematic, because more than 85% of all cancers occur in the epithelial
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layer, and the detection of precancerous changes in this layer is still considered one of the

greatest challenges of modern medicine.' 0

Epithelial tissue is classified in different ways. Based on the number of cell

layers, it is divided into simple, stratified, pseudostratified, and transitional. Normal

esophageal epithelium is stratified, meaning it is formed by a number of cell layers, but

the epithelium of Barrett's mucosa is simple. The epithelial tissue is also classified

according to the shape of the cells that compose the tissue. These classifications are

squamous, cuboidal, and columnar. The epithelium of the esophagus is squamous, or

flat-shape celled, stratified epithelium, a common subtype of stratified epithelium. This

subtype is made up of cells that flatten out while they move from the inner layer to the

surface layer as the cell matures. The epithelial tissue of the stomach and colon, on the

other hand, is columnar epithelial tissue, or composed of a single layer of cells that are

cylindrically shaped.

Barrett's esophagus

The esophagus is a muscular tube that connects the mouth to the stomach and

provides the channel of transportation of food. The esophagus is separated from the

stomach by a strong muscular valve called the lower esophageal sphincter (LES). This

valve usually remains shut and opens only to allow food to pass from the esophagus to

the stomach. However, if the LES is not functioning properly, the acid found in the

stomach that is used to help digest food can reflux back into the esophagus. This is what

causes the pain of heartburn and indigestion. If this continues to occur over a period of

time, it can lead to an inflammation of the esophagus (esophagitis) or gastroesophageal

reflux disease (GERD), a condition that affects about 20% of the adult population in the

United States." From there, about 12.5% of people with GERD go on to develop

Barrett's esophagus.' 2 ' 3

10 Cotran, et al.
"Gopal
" Winters, et al.
"3 Schnell, et al.
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The squamous cells of the esophagus and the columnar cells of the stomach and

colon are distinctly different in appearance and architecture, and normally there is a clear

border between the end of the esophagus and the opening of the stomach. These cells are

different as they serve different functions; the cells of the stomach need to be resistant to

the acid to which it is constantly exposed, while the squamous cells need no such

protection. If, however, the esophagus begins to be

exposed to stomach acid, as is the case with GERD,

the squamous cells can be replaced by columnar cells,

possibly as a defense mechanism to prevent further

damage to the esophagus. This is called metaplasia,

the finding of cells of another type not normally found

in an organ. In the case of Barrett's esophagus,

mucin-producing cells typically found in the colon are

found comprising specialized columnar epithelium in Figure 2.1

the esophagus. This layer of columnar cells is a

single-cell layer, as opposed to the several layers of squamous cells that normally make

up the esophageal epithelium. With the reduction in thickness, the underlying blood

vessels become more visible, making the metaplastic tissue look more reddish in

appearance (figure 2.1).

In ten to twenty percent of Barrett's patients, the specialized columnar cells

exhibit dysplasia. Dysplasia is a precancerous condition with the abnormal growth or

development of cells, histological changes that are present only in the epithelial layer and

not in the stroma. This can be an alteration in size, shape, and/or organization of cells.

The variation in size and shape of the cells and nuclei is called pleomorphism. The cell

nuclei can also become hyperchromatic, or appear darker when stained with nuclear dyes

because of excessive amounts of chromatin. Enlarged cell nuclei and nuclear crowding

are also typical signs of dysplasia. The higher-level organization of the epithelium can

also be disrupted, closely related to the loss of normal maturation of cells. Dysplastic

epithelia progress from low-grade to high-grade dysplasia, diagnosed by the severity and

spread of the deformations in the cells.
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From high-grade dysplasia, the condition worsens to lower esophageal cancer,

which is an adenocarcinoma. As aforementioned, it is difficult to detect these cancers

until they are too advanced to be cured. The condition of dysplasia almost always

precedes that of the development of cancer. Though it does not necessarily result in

cancer, dysplastic cells can be said to have malignant potential. As a result, dysplastic

surveillance is considered a crucial step in cancer prevention, since dysplasias, if

detected, can usually be cured with surgery or other therapies.

Unfortunately, this detection is quite difficult in practice. Currently, esophageal

dysplasia is detected through endoscopy and biopsy. Endoscopy involves using a long

thin tube guided through the mouth to look at and examine the tissue of the esophagus.

The endoscope also has accessory channels that allow the doctor to insert instruments to

perform the biopsy, or in other words, remove small samples of tissue that are analyzed

in a laboratory by a histopathologist. The pathologist takes the removed tissue sample

and places it in a fixative, which cross-links, or fixes the proteins in the cells. This fixed

sample is then embedded in paraffin wax, cut into thin slices, and then stained with a

mixture of dyes that facilitate distinguishing different parts of cells. These slices are

placed in a glass microscope slide and examined under a microscope. The problem with

this procedure is that dysplasia is not visible to the eye during endoscopy, and the

dysplastic lesion can range in size, sometimes found to be as small as one millimeter in

diameter. The current recommended guideline is to obtain random four-quadrant

biopsies (where the esophagus is divided into four quadrants and a sample is taken from

each) at two-centimeter intervals,' 4 but the probability of detecting a small lesion over the

length of two centimeters is not favorable. Moreover, the discipline of pathology is

known to be one of part science and part art. Analyzing biopsies is partially qualitative

and subjective. Studies have shown that the agreement in diagnoses between pathologists

and even between multiple analyses of the same pathologist have in some cases been less

than fifty percent.' 5.1 In addition, biopsies have the inherent delay in taking samples to a

laboratory, analyzing, and then returning with a diagnosis. If further biopsy samples are

desired, this is not discovered until the pathologist is at the lab. This difficulty is

13,
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supported in practice by a Mayo clinic study that suggests that the majority of cases of

dysplasia in Barrett's esophagus in the general population are never detected.' 7 It is clear

that a superior method of diagnosis is necessary.

Spectroscopy

Preliminary studies have assessed the potential of spectroscopy as a tool to

diagnose dysplasia in Barrett's esophagus. Spectroscopy is a study of the way light

interacts with matter. When light strikes matter, several things can happen. It can be

reflected, transmitted, or absorbed. By detecting and measuring the amounts of light that

undergo these and other effects, and taking into account the conservation of energy and

matter, the full interaction of the light with the object can be understood. The different

reactions of light with matter can be used in a number of ways to understand various

factors about the object under study.

Specifically, spectroscopy can be used to observe and analyze tissues at the

cellular and sub-cellular levels. There are many current techniques that make use of the

different ways in which light interacts with cells to provide structural and functional

information about tissue. Since dysplastic tissue is fundamentally different from healthy

tissue in structural and functional ways that are not easily macroscopically differentiated,

spectroscopy can be an effective method for detecting dysplasia. Furthermore, the

advantages of optical diagnostic techniques do apply specifically to spectroscopy. It

works well in diagnosis as it is non-invasive and it can be applied within the body by

using optical fibers that are compatible with an endoscope. Physicians are already

familiar with the use of an endoscope, so little or no special training is needed. Since it

can be applied within the body without any need for tissue removal, unlike the case with

biopsies, information can be conveniently gathered from many different sites with the

results returned in real time. Finally, it also allows for a more objective analysis, as the

returned results are quantitative measurements, as opposed to the potentially subjective

histological analysis of biopsies. As these quantitative measurements are direct

14
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reflections of what is happening in the tissue, the information revealed by these

measurements about tissue morphology and biochemistry will also lead to a better

understanding of the process undergone by tissue in the development of cancer.

Diffuse reflectance spectroscopy

Reflectance spectroscopy is one of the simplest techniques for studying biological

tissue, and has been used by several researchers,'8-19 including specifically the detection

of precancerous and cancerous transformations in the esophagus.2 0 It has been used to

differentiate between dysplastic and non-dysplastic tissue in the cervix2 ' and oral

cavity,22 and also diagnostically in tissues such as colon,23 -24 bladder,,2 and breast,26 to

name a few. The typical instrumentation setup for reflectance spectroscopy involves an

optical fiber probe that is used to deliver white light from a high-power lamp onto the

tissue and to collect the diffuse reflectance. These probes are often incorporated into

endoscopes or catheters, allowing easy, non-invasive access to tissue of several organs

including the esophagus. This probe is used to deliver light to the tissue surface, which

then undergoes multiple scattering and absorption. Part of the light returns as diffuse

reflectance, and this light carries the quantitative information about the tissue's scattering

and absorption properties. Light scattering in tissue is considered one of the main

difficulties in biomedical spectroscopy, as it randomizes the path of the photons in the

tissue, making difficult the calculation of its origin and trajectory. Reflectance

spectroscopy, instead of trying to eliminate this scattering component, uses it to gain

insight into the tissue morphology and organization, as different cellular structures have

distinct scattering patterns. The scattering is caused by disparities in the refractive index

of structures found in tissue like collagen fibrils, cell membranes, cell nuclei, and

" Liu et al.
'9 Zonios et al.
20 Lovat et al.
21 Georgakoudi et al. (2001)
22 Muller et al.
23 Ge et al.
21 Zonios et al.
25 Mourant et al. (1995)
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mitochondria. For diffuse reflectance in the esophagus, it seems the majority of the

scattering can be attributed to collagen fibers,2 7 but the exact contributions of each of

these scatterers and perhaps others is still not well understood and under
28,29investigation. By modeling both healthy and diseased tissue, one can differentiate

between the scattering patterns of the two.

The absorption properties depend on the concentration of components in the

tissue that absorb light at specific wavelengths. A major contributor to the overall tissue

absorption in the visible wavelength range is hemoglobin, which exists in a deoxygenated

and an oxygenated form, each one of which has distinct absorption features (figure 2.2).

Therefore the information
1000000

collected through diffuse
p.l

I I reflectance provides
-100000

information about the

hemoglobin concentration,

or how much blood is in

the tissue and its

W 1000- oxygenation. Other

absorbers include beta-

100 carotene, found noticeably
200 400 600 800 1000

wavelgth (~nm)~I in fatty tissues such as

Figure 2.2 arteries and breast, and

melanin, found in tissues

such as skin. For the esophagus, however, the dominant absorber is hemoglobin. Both

pieces of information, scattering and absorption, can be used in combination to determine

whether or not the tissue is dysplastic, as dysplastic tissue properties include those of

altered tissue morphology and biochemistry.

A variety of models, statistical, empirical, and theoretical, have been developed

using the spectra returned by diffuse reflectance spectroscopy. One empirical algorithm,

26 Bigio et al. (2000)
27 Saidi et al.
28 Leonard et al.
29 Mourant et al.
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for example, computes the area under the normalized reflectance curve between 540 and

580 nm and the area under the curve from 400 to 420 nm and takes this ratio to

differentiate neoplastic from non-neoplastic colon tissues." Another takes the slope of

the reflectance in the 330 to 370 nm range to tell apart malignant from non-malignant

bladder tissues.32 Statistical algorithms based on neural network pattern recognition have

been developed to distinguish neoplastic features in skin, 33 breast,3 4 and colon.35 A more

rigorous theoretical model was also developed describing the tissue reflectance as a

function of absorption and reduced scattering coefficients. This is the model developed

by Zonios, and will be discussed more in depth in chapter four, as it is the model that was

employed in this study.

Fluorescence spectroscopy

In fluorescence spectroscopy, the tissue is excited using a laser or filtered lamp

illumination at certain wavelengths. This excitation is applied similar to diffuse

reflectance spectroscopy, with fiber optics again providing a convenient method to access

tissue. The tissue molecules absorb the energy, become excited, and fluoresce when the

absorbed energy is re-emitted as the molecule returns to its ground state. The

fluorescence is affected by the chemical and architectural composition of the tissue,

namely the presence of tissue fluorophores such as collagen, tryptophan, elastin, reduced

nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD), and

porphyrins. As the tissue undergoes changes in pH, metabolic state, and architecture, the

fluorescence spectra measured change in shape and intensity.36' 37  Fluorescence

spectroscopy has had extensive previous use in detection of such conditions as dyplasia

30 Prahl
Mourant et al. (1996)

31 Mourant et al. (1995)
Wallace et al.

3 Bigio et al. (2000)
Ge et al.

36 Bigio et al. (1997)
3 Zonios et al.
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in the bladder,38 atherosclerosis of the aorta and coronary artery, 39brain stroke,40 and also

cancer41 and dysplasia in the esophagus.42

The fluorescence measurements can be affected by the scattering and absorption

from the tissue particles around it, as tissue is a turbid medium. As aforementioned, these

same distortions that are useful in reflectance spectroscopy, make meaningful

interpretation of the spectra in fluorescence spectroscopy very difficult. If gross enough,

the distortions can mask completely any biochemical changes that the tissue undergoes

from non-dysplastic to dysplastic. Only by removing these distortions can the spectra be

interpreted and the biochemical changes be quantitatively measured.

It has been observed that fluorescence photons and reflectance photons undergo

similar distortions by scattering and absorption. As a result, diffuse reflectance spectra

can be used to remove these scattering and absorption distortions from measured

fluorescence spectra to extract the intrinsic fluorescence. This technique has been

implemented in NAD(P)H monitoring studies in the brain, heart, and liver, and a host of

other experiments. 43 The models developed through these previous works involve both

linear and non-linear combinations of fluorescence and reflectance spectral features at

specific wavelengths, and are discussed in detail in chapter four.

Once the intrinsic fluorescence spectrum is extracted, it can be decomposed into

linear combinations of the chromophore fluorescence spectra to determine concentrations

of the chromophores found in the tissue. In Barrett's esophagus and also in uterine

cervical tissue sites, for example, it was found NADH fluorescence levels increased and

collagen fluorescence decreased as tissues progressed from healthy to dysplastic.4-

Dysplasia found in the oral cavity has also displayed similar differences in NADH and

collagen intensities.46 In the coronary artery, there are four chromophores identified,

38 Arendt et al.
39 Richards-Kortum et al.
40 Schantz et al.
41 Vo-Dinh et al.
42 Georgakoudi et al. (200 1)
43 Ince et al.
44 Georgakoudi et al. (2001)
45 Georgakoudi et al. (2002)
46 Muller

18



three of which may be as useful for diagnosis. As atherosclerosis develops in arteries,

collagen, 47 tryptophan,48 and ceroid 49 are found to increase.

In addition to these endogenous chromophores, or chromophores naturally found

in the tissue, exogenous chromophores can also be used to detect disease. Exogenous

chormophores are substances which are administered either topically or intravenously,

have identifiable fluorescence spectra, and are designed to react differently once

introduced to healthy and diseased tissue. Hematoporphyrin derivative, for example, is

an exogenous chormophore of interest that accumulates preferentially in tumor tissue.

Others that have been used to detect tumors are polyhematoporphyrin, 5 sulphonated
52 5

phthalocyanines, and benzoporphyrin derivative monoacid.

The models used for fluorescence spectroscopy are generally statistically or

empirically drawn algorithms to assess the sensitivity and specificity with which

abnormalities can be differentiated from normal tissue. Empirical algorithms usually

involve an intensity value or ratio of values at specific excitation-emission wavelengths

or wavelength ranges. 54 Most fluorescence imaging diagnostic systems found in clinical

settings use some derivation of this approach.55.56

Statistically, a very useful tool is principal component analysis.57 This is the

method used to decompose the tissue fluorescence spectra into principal component

spectra. Each principal component spectrum is weighted appropriately in a linear

combination to best fit the data. These weight values are typically used to determine the

spectral features that are different between normal and diseased tissues and to develop

corresponding algorithms. Such a technique was used in cervical examination to detect

squamous intraepithelial lesions (SILs), and was able to obtain a sensitivity of 82% and a

specificity of 68%,58 where sensitivity is calculated by the number of positives that are

47 Tammi et al.
48 Laifer et at.
49 Hoff et al.
50 Richards-Kortum et al. (1996)
51 Andersson-Engels et al. (1989)
52 Andersson-Engels et al. (1993)
5 Van Leengoed et al.
54 Panjehpour, et al.
5 Lam,et al.
56 Goujon, et al.
5 Jackson JE
5' Ramanujam et al.
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correctly diagnosed out of the total positives, and specificity is the number of negatives

that are correctly diagnosed out of the total number of negatives.

As mentioned, measured fluorescence can be distorted by scattering and

absorption. A number of models have been developed to remove these distortions, and

thus to extract the intrinsic fluorescence. An empirical model developed by Richards-

Kortum et al,59 who expressed measured fluorescence as a combination of two factors.

The first is a linear combination of all the fluorophore contributions, the intrinsic

fluorescence, and the second is two attenuation factors representing the attenuation due to

scattering and to blood absorption. This model has been used quite effectively in

fluorescence of arterial tissue excited at 476 nm. It was able to extract fluorescence

contributions from structural proteins (collagen and elastin) and ceroid, and the

attenuation factors due to hemoglobin (absorption) and structural proteins (scattering). 60

The diagnostic algorithm developed from this study distinguished diseased from normal

tissue with a sensitivity of 91% and specificity of 85%.

Light scattering spectroscopy

Light scattering has been used to study a wide variety of materials, from single

atoms to complex condensed matter systems.61 Tissue can be seen as another example of

a complex system. The idea behind LSS is similar to DRS, except DRS looks at the

photons that undergo multiple scatterings, while LSS measures only those photons that

are singly backscattered. LSS is primarily useful for determining the different sizes of

sub-cellular particles found in the tissue. For particles with large diameters compared to

the wavelength, the scattering is highly peaked in the forward and backward directions,

making the nucleus of the cell a major scattering center for light scattered in almost

exactly the backward direction. Since the most prominent abnormality found in

dysplastic cells is the enlargement and crowding of cell nuclei and organelles within it,

this analysis is yet another useful technique in detecting the dysplasia of Barrett's

20
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esophagus before it progresses beyond what can be cured. As biopsy is the current

standard in diagnosis of precancerous conditions, this quantitative and more objective

perspective to biopsy can be invaluable to the improvement of the current diagnostic

standards.

The application of this theory, however, is not trivial. Tissue is a turbid medium,

and light entering it is far more prone to multiple scattering than to single scattering. The

signal retrieved, therefore, has a much stronger multiple scattering component. Two

different solutions to this problem are to physically remove multiply scattered photons,

and to theoretically model the diffuse component.

The physical approach would be to use polarized light, as singly back-scattered

light retains polarization, while multiple scattered light becomes depolarized.62  In the

theoretical approach, the LSS spectrum is extracted from the measured reflectance

spectrum, by modeling and subtracting the diffuse background. By subtracting the

diffuse component according to a model developed by Zonios,63 the LSS spectrum is

what is left remaining. This spectrum provides insight into cell nuclear size through the

frequency of its intensity oscillations as a function of wavenumber, and the density of

scatterers, or the nuclear crowding, through the depth of these variations. These insights

are drawn based on the theory of light scattering, 64 As LSS is a newer procedure than

that of reflectance and fluorescence spectroscopy, it does not have as extensive a

background of clinical results. Nevertheless, LSS has been examined in preliminary

studies in precancer detection in Barrett's esophagus,65 the bladder, the oral cavity,

colon, 66 and the uterine cervix 67 with promising results.

62 Sokolov et al.
63 Zonios et al.
6 4 Zonios et al.
65 Georgakoudi et al. (2001)
66 Backman
67 Georgakoudi et al. (2002)
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Tri-Modal Spectroscopy

As each of the techniques depends upon different aspects of change in the tissue

as it goes from healthy to dysplastic, the combination of these three techniques, called tri-

model spectroscopy, has been shown to classify the tissue state with high accuracy in

preliminary studies. Previous work done combining these three techniques for the

detection of dysplasia in Barrett's esophagus has shown that the tri-modal diagnoses were

more consistent with pathology than any of the techniques used individually. 68
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3
Experimental methods

Hardware

The instrument used in this study for data collection is a fast emission-excitation matrix,

or FastEEM, apparatus developed at the Spectroscopy Laboratory, which collects both

florescence spectra and reflectance spectra. It consists of a 308-nanometer (nm) XeCl

excimer laser that pumps a rotating wheel of ten dyes, producing eleven different

excitation wavelengths between 308 and 510 nm. There is also a white light source, a Xe

flash lamp, used for the reflectance. The white and laser excitation light are coupled to a

fiber that delivers light onto the tissue. It is surrounded by six collection fibers that

gather the emitted florescence and reflectance light. The collection fibers feed the

collected light through a spectrograph to a CCD, which converts the information into data

that can be transferred to a computer for analysis. The data for all three types of

spectroscopy were collected through this apparatus in less than one second. It is called an
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excitation-emission matrix because a series of fluorescence emission spectra are collected

at several excitation wavelengths.

The XeCl laser used is an excimer laser, a compound of the words excited dimer,

or diatomic molecules. This laser produces a beam 7.5 mm by 4.5 mm, with pulse

energies as high as 14 mJ, duration of 15 ns, and rates as high as 200 Hz. It emits at 308

nm, which is lower than the nitrogen laser used in the previous version of the FastEEM.

This is valuable, as it allows for the excitation of an additional fluorophore, tryptophan.

Although this excitation wavelength can be potentially harmful to human tissue at high

intensities, the power used for tissue fluorescence is very weak and does not approach

these dangerous levels.

This laser is used to excite the tissue at ten other wavelengths by using a wheel of

dyes and filters. Each dye is in its own small container at the edge of a rotating wheel

powered by a motor at approximately 0.2 seconds per cycle. As each dye cell falls into

position between two mirrors, a trigger signal is generated that fires the laser, and the

laser beam is focused at the edge of the dye cell. Dye fluorescence is emitted and

amplified as it bounces between the two mirrors. The resulting beam from each dye is

focused using another combination of lenses into the optical fiber that delivers the light to

the tissue.

This fiber optic probe carries light from both light sources, the laser and the flash

lamp. It also consists of the six collection fibers, each three meters long and surrounding

the central excitation fiber at the distal tip. The seven fibers are fused together at the tip,

serving dual purposes of keeping the fibers together and creating an optical shield. The

shield is beveled at an angle of seventeen degrees and polished to minimize the internal

reflections when the light passes from the glass tip to the tissue surface. It also provides a

fixed delivery and collection geometry, allowing for quantitative study. This probe tip is

brought into contact with the tissue sample being measured. Each set of measurements

takes about 0.2 seconds to acquire, allowing minimal time for the physician or patient to

move.

To further improve data accuracy, a standard calibration procedure is performed

before taking measurements. A mercury lamp is used to calibrate the wavelength scale of

the spectrograph. A spectralon disk with approximately 20% reflectance over the entire
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visible spectral region is used for white light reflectance calibration, to offset the xenon

lamp's inherent line shape and intensity. A standard rhodamine B in ethylene glycol

solution calibrates for fluorescence intensity, which then allows data sets to be compared

despite small system alignment variations. This rhodamine fluorescence response also

allows for calibration of the FastEEM system to the varying laser power used at each

excitation wavelength, by comparing its response to that of a well-calibrated

spectrofluorimeter. Finally, to correct for dark counts of the CCD and fluorescence and

reflectance background created by the fiber itself, a background spectrum is taken in open

air and subtracted from the data.

Software

The software written for this instrument controls the system, from acquisition to

processing of the data. The front end is a Labview-driven graphical user interface that

allows the user to see the various spectra, and to compare current data with previously

obtained sets. Labview also allows simple data processing such as normalization, and

provides a method to interface with the back end data processing procedures through

externally called dynamic link library routines. The back end is written in C++ and

incorporates the mathematical manipulations the spectral data needed to undergo to be

analyzed using quantitative theoretical models and classified using the extracted

parameters.

The entire time required for computation, from data acquisition to display with

this software is, of course variable dependent on processor speed. Nevertheless, the time

is on the order of seconds, entirely reasonable for real time analysis and use in clinical

environments to guide physicians as they perform endoscopies to better select biopsy

sites.
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4
Analysis models

Two types of spectra were collected: fluorescence and reflectance. Using models, the

data is analyzed to acquire three types of information based on diffuse reflectance,

intrinsic fluorescence, and light scattering spectroscopy. Finally, information from all

three techniques is combined in a modality called tri-modal spectroscopy.

Diffuse reflectance model

Initial data analysis steps involve the measured reflectance spectra, which are fit

to a mathematical model based on diffusion theory, in which the reflected light is

described as a function of the absorption and reduced scattering coefficients of the tissue.

Consequently, approximations must be made with appropriate assumptions to make the
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scattering problem an approachable one. The model used in this study,69 one based on

diffusion theory, characterizes the scattering behavior as a reduced scattering coefficient,

PS', defined as

PS' =us (I - g), /4.1/

where ps is the scattering coefficient (unreduced), and g is the anisotropy coefficient, or a

parameter describing how much of the scattering is forward directed. The scattering

coefficient is defined as

Ps = /sp, /4.2/

where p is the density of scattering particles and as is the scattering cross section. Mie

theory is a standard way of estimating a-s numerically. The anisotropy coefficient is

g = 2I f p(O) cos 0 sin 10 . /4.3/

where p(O) is the phase function. One approximation for this phase function is

1 1 - g /4.4/
47 (1g2 + 2g cos 0)

but g is also numerically estimated using Mie theory, as none of the phase function

approximations have the correct physical properties characterized by Mie theory.

The reduced scattering coefficient parameter essentially simplifies calculations

and allows the intensity of multiple scattered, diffusely randomized light to be

characterized by two parameters, the reduced scattering coefficient and the absorption

coefficient, ua. The absorption coefficient is a counterpart to the scattering coefficient,

and its definition is similar:
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p a = ap, /4.5/

the absorption cross section multiplied by the molecule density. It can be calculated as a

function of hemoglobin concentration by

p (A) = 2.3c(aeHh() (A + (I - a)eh (A)), /4.6/

where c is the total hemoglobin concentration, a is the oxygen saturation parameter, or

the oxy-hemoglobin concentration divided by the total hemoglobin concentration, and e is

the extinction coefficient, which describes the attenuation of radiation traversing the

subscripted medium.

The model used in this study was developed by Zonios et al, 70 derived from a

model based on the diffusion approximation to the light transport equation.71

Specifically, this model was simplified to account for the light delivery/collection

geometry of the optical fiber probe used in the measurements and it resulted in an

analytical expression for the collected reflectance spectrum, which is described by the

following expression:

I '. - + " A'zo e'r, e-"Ar
R,(r)= - IV e-") + e- 3 ezo - + 4 A z0 /4.7/

2 /473/

where

2 - 1/2
r, = z2 +0 r zo + zo ,A Z 0 + , and pi= 3p (p,'+p)
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Intrinsic fluorescence model

In order to extract intrinsic fluorescence, a rigorous, analytical model was

developed based on a photon migration picture from Monte Carlo simulations. 72 This

model holds for fluorescence and reflectance measurements acquired over the same

wavelength range using identical light delivery and collection geometries. This model

was then further improved to be applicable in ranges of significant absorption. 73 This

model relates intrinsic fluorescence,fm,, measured fluorescence, F,,, and reflectance, Rm,

according to the following equation:

1 ROR Ro ( R /4.7/
p ,,, RX Rm + ,

R, is the reflectance in the case of no absorption, subscripts x and m refer to excitation

and emission wavelength, / is a constant dependent on the probe geometry, and E is also

approximately a constant, dependent on the probe geometry and the tissue anisotropy

coefficient. This model holds as long as the fluorescence and reflectance are measured

with the same probe at the same instant of time, and has been validated using physical

tissue models with known optical properties and through clinical studies extracting

intrinsic fluorescence from Barrett's esophagus, 74 the uterine cervix,75 and the oral

cavity. 76

The basis spectra for decomposition of the extracted intrinsic fluorescence also

needed to be modeled, as obtaining the spectral features through fluorescence of

commercially available versions of the chromophores would not take into account the

local environment of the chromophore in the tissue. Instead spectra acquired during

progressive deoxygenation of esophageal tissue were decomposed using a multivariate

72 Wu et al.
73 Zhang et al.
74 Georgakoudi et al. (2001)
75 Georgakoudi et al. (2002b)
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curve resolution algorithm, and the resultant components were consistent with collagen

and NADH.77 The multivariate curve resolution technique was employed also to obtain

component spectra at the 308 nm excitation wavelength for tryptophan, and at the 400

and 412 nm excitation wavelengths for porphyrin fluorescence spectra, detailed in a later

section.

Light scattering model

The LSS analysis uses the same spectrum as used by the DRS. As discussed, LSS

involves singly backscattered photons as opposed to DRS, which analyzes multiply

scattered photons. The measured reflectance spectrum contains both of these data. The

spectrum used for LSS is therefore extracted by taking the reflectance spectrum and

subtracting from it the spectrum of multiply scattered photons, leaving behind a singly

backscattered photon spectrum. This is then analyzed using an approximation for the

scattering cross section developed by van de Hulst, 78 which applies for scattering by

particles larger than or comparable to the wavelength of light. His approximation is

dependent on the phase shift of the ray as it enters and exits the particle, which in turn

depends on the particle shape and refractive index. It is obtained as

a., (2,r)= I z 1  sin(23/2) ( sin(8 /)) 2  /4.8/
2 (51A t53/

where 6 22r(n-i), I = 2r, and n the relative refractive index, or the ratio of the scattering

particle's refractive index to the index of its immediate surroundings.

Previous work using LSS on Barrett's esophagus analyzed the degree of nuclear

crowding, looking at the number of nuclei per square millimeter, and the percentage of

76 Muller et al.

7 Georgakoudi et al. (2002a)
78 Van de Hulst
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enlarged nuclei, defined as nuclei having a diameter greater than that of 10 micrometers

(ptm). 79

Logistic regression model

Regression analysis uses information about a variable x to draw some type of

conclusion concerning another variable y. The bivariate case involves only two variables,

but analysis can be done on multivariate cases as well. Generally for biomedical

purposes, and for the purpose of this study, the multivariate model is usually involved,

and a dummy variable is also used. This dummy variable is simply a variable that is used

to identify the classification group into which a particular data point belongs. For

example, 1 can be used to identify dysplastic tissue sites and 2 to identify non-dysplastic

tissues. Then using this variable and the appropriate parameters extracted from the

spectroscopy, a probabilistic model can be computed. The logistic regression model is of

the form

ln =a+ ax + a2 X2 +...+ e, /4.9/
1 - p

where p is the probability of the event's occurrence (i.e. a particular data point belonging

to group 1 or group 2), a are the coefficients of x, the independent variables, and e is

random deviation. The logistic regression model is useful as it constrains the resulting

estimated probability to lie between 0 and 1, and the calculation of this model is not

computationally intensive. Using a calibration set of initial values, the coefficients for

this model can be calculated and used to establish a threshold line or surface which is

used to express that data points lying on either side of the surface belonging to a

particular group with a certain probability p. This surface can then be used to assign

classifications to a prospective data set for which the classification is unknown.
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5
Results

Introduction

As already mentioned, a previous study had demonstrated that diagnostically useful

information can be extracted and used for the detection of dysplasia in BE using TMS.80

For such a technique to be clinically useful, data analysis has to be performed in real

time, so that immediate feedback is provided to the physician, guiding him to areas that

are likely to be diseased. To achieve this aim, a second generation FastEEM was

designed and constructed. The main goal of this study was to confirm the original

findings using spectra collected with this new instrument and to further develop and

optimize diagnostic algorithms to be used as a real-time guide to biopsy. To accomplish

this goal, a small set of spectra collected with the new FastEEM was studied and used as

a calibration set. After this calibration, the results could be evaluated through prospective
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data analysis, i.e. applying the diagnostic algorithms developed to a new, larger data set

to validate the accuracy of the diagnostic thresholds.

The diagnostic algorithms would be based not only on the analysis performed

previously, but would also include additional spectroscopic information provided by the

second generation FastEEM. For example, the diagnostic potential of fluorescence

spectra collected at 308 nm excitation could be assessed. As 308 nm is the excitation

wavelength for tryptophan, the role of this fluorophore in the development of dysplasia

could be studied to help understand in more detail the biochemical changes involved with

dysplasia.

Along with tryptophan decomposition in the intrinsic fluorescence analysis,

porphyrins also could be analyzed. In the previous study, spectra were decomposed into

collagen and NADH contributions, while principal component analysis of IFS at 397 and

412 nm excitation suggested that porphyrin fluorescence could also be diagnostically

useful.

Another aim was to focus on the real time aspect of the tool and to improve its

speed. This could be done through optimizations in the data analysis code, in both

syntactic optimizations and optimizations in program flow and design to minimize

unnecessary calculations. This would allow for a more responsive program for the

physician to use for guidance in taking biopsy samples.

Data set

The data used in this analysis consisted of over 500 sites from 168 patients

undergoing routine surveillance for Barrett's esophagus at the Medical University of

South Carolina. The measurements were taken over the span of two summers, 100

patients the summer of 2000 and the remaining 68 the summer of 2001. The patients'

consent was obtained for all measurements, and the protocol used received approval from

the Institutional Review Board of MUSC and the Committee on the Use of Humans as

Experimental Subjects at the Massachusetts Institute of Technology. Biopsy samples

were also taken from each of these sites so that a pathological diagnosis could be made to



verify the spectroscopic diagnoses. These pathologies were classified as high grade

dysplastic, low grade dysplastic, non-dysplastic, or indefinite for dysplasia by two or

three pathologists at both MUSC and the Children's Hospital Boston.

Of these data points, a subset of twenty-six data sites was taken to use as a

calibration set, with fourteen non-dysplastic, four low grade dysplastic, and eight high

grade dysplastic sites. Using this calibration set, the diagnostic algorithms developed in

the previous study with the first generation FastEEM machine could be corroborated and

any scaling discrepancies between the two FastEEM machines could be found and the

algorithms adjusted as needed. After scaling, the remainder of the data could be used as a

prospective set to verify the algorithms.

Analysis of calibration data set

Diffuse reflectance spectroscopy

As described previously, the initial step of the analysis involves a diffuse

reflectance model fit to the measured reflectance spectra. Only by fitting the measured

data to the model can the values of the parameters be determined that are then used in the
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Figure 5.1: reflectance fit. Data in black, fit in gray.
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diagnostic algorithms. In the earlier study, this fitting presented no

problem, and the fits modeled the data reasonably well. For this calibration set, however,

consistent discrepancies between the model and the data were clearly noticeable. Figure

5.1 shows a model fit of typical quality. It can be seen that at the long wavelengths, the

portion that corresponds to the red part of the visible spectrum, the fit noticeably lies

below the data.

Although the fits were not as good as expected, values of the diffuse reflectance

model parameters seemed reasonable. The extracted wavelength dependent

characteristics of the reduced scattering coefficient, p,', were consistent with those of the

previous study. A linear fit to the coefficient data from the entire wavelength range was

computed and extrapolated to calculate the slope and intercept of this fitted line. As

shown in figure 5.2a, the slope and intercept of the line describing the wavelength

dependence of p,' decrease with dysplasia, consistent with the original findings. The

original data plot is shown in figure 5.2b, and while the scales on the two graphs and the

ranges of the values are different, the consistency in trend is evident.
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Intrinsic fluorescence spectroscopy

At 337 nm excitation, the overall intensity lowers and shifts to the red region of

the spectra as the tissue becomes more dysplastic. This shift in the peak indicates an

increase in concentration of NADH and a relative decrease in collagen in the tissue. At

397 and 412 nm excitation, an increase in the relative intensity of the spectra in the red

region correlated with dysplasia, consistent with an increase in porphyrin fluorescence.

Fluorescence spectra exhibited similar changes with dysplasia as seen previously. Figure

5.3 shows the mean intrinsic fluorescence spectra at each of these excitation wavelengths

are shown below, with the corresponding peak intensity normalized spectra, to highlight

the lineshape differences.
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Figure 5.3 (continued on next two pages): intrinsic fluorescence spectra for 337,
397, and 412 nm excitation wavelengths. Non-dysplastic mean is in black, low

grade dysplastic in dashed, and high grade dysplastic in gray.
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397 nm excitation
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Figure 5.3: intrinsic fluorescence spectra for 337, 397, and 412 nm excitation
wavelengths. Non-dysplastic mean is in black, low grade dysplastic in dashed, and

high grade dysplastic in gray.
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6U

0

40

35

30

25

20

15

10

5

0
300 350 400 450 500 550 600 650 700 750

wavelength (nm)

412 nm excitation

0

0
C

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
300 350 400 450 500 550 600 650 700 750

wavelength (nm)

Figure 5.3 (continued from last two pages): intrinsic fluorescence spectra for 337,
397, and 412 nm excitation wavelengths. Non-dysplastic mean is in black, low

grade dysplastic in dashed, and high grade dysplastic in gray.
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Light scattering spectroscopy

Analysis of LSS spectra had exhibited in the previous study the highest sensitivity

and specificity for detecting dysplasia compared to IFS and DRS. Unfortunately, this is a

technique that relies heavily on successful subtraction of the multiply scattered photon

contributions to the measured reflectance spectra. This is achieved by subtracting the

diffuse reflectance model fit from the measured spectra. Since problems in this initial

analysis step were encountered, it was expected that those would limit the ability to

perform LSS analysis. Indeed, as shown in Figure 5.4a, it is difficult to differentiate the

three different types of tissue in any convincing manner. While the two high grade

dysplastic triangles in the upper right are where they would be expected, the remaining

dysplastic sites portray rather non-dysplastic results, more so than the non-dysplastic sites

themselves. In contrast, figure 5.4b shows the LSS findings from the earlier study.
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Figure 5.4a: results from LSS analysis. Non-dysplastic in black diamonds, low grade in
gray squares, high grade in light gray triangles.
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Figure 5.4b: plot from Georgakoudi et al (2000). Non-dysplastic in black squares, low
grade dysplastic in filled black diamonds, and high grade dysplastic in black circles.
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Another indication of the poor quality of the fits was the inability to extract an

LSS analysis at all, regardless of its accuracy. The LSS analysis incorporated several

checkpoints, in which the data is examined to ensure it is appropriately being modeled

and the theory is being correctly implemented. For example, at one point in the data

analysis, a second-order polynomial fit is made to the data, and this fit is compared to the

diffuse reflectance fit. If these two fits are too similar, it is indicative that the modeled fit

is not correctly accounting for hemoglobin absorption, and therefore, the LSS analysis is

rejected. Such rejections, while a safeguard against incorrect diagnoses, were occurring

far too frequently with this data set, with only nine sites yielding LSS spectra that could

be analyzed. This was to be expected, with the consistently poor fits to the data. The

only definite conclusion that could be drawn was the need to address the issue of the poor

reflectance fits.
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Solutions

This problem could be fundamentally approached in two ways. The first, and

ideally better, solution would be to find the root cause of the discrepancy. This cause

could be one or a combination of many different reasons-optics distortion problems and

background calibration problems are just two possibilities. The second solution would be

more of a "quick fix," finding a way to take the measurements as they are and applying

some sort of algorithm that would make it correspond to the proper diagnosis. The focus

of this thesis is the latter solution. While more superficial than the first, the advantages to

this solution are many, the most obvious of which is the difference in time scale. But

perhaps more importantly, this second solution may be of great guidance in discovering

the root problem, and devising a more permanent solution. It may also very well be the

case that even when the deeper problem is discovered, the solution is not feasible or

practical to implement, in which case this quick fix will be a necessary component in the

use of this tool.

A number of approaches were explored that could potentially improve the quality

of the diffuse reflectance model fits, and, thus the quality of the LSS spectra. The first

approach employed was to relax the restrictions placed on the allowed values of diffuse

reflectance fitting parameters when calculating the best fit to the data. The idea behind

this would be that while it might make the parameters for the reflectance slightly less

physically accurate, this sacrifice would be made up for by the more accurate light

scattering analysis. Any loss in the direct reflectance analysis could be avoided by doing

two fits, one for the purpose of extracting direct reflectance parameters, and the second

for extracting light scattering parameters. The obvious drawback would be the increased

time needed for the analysis, but computation time could be improved in other ways.

Additionally, the effects of optimally fitting distinct spectral regions, such as the

415 nm hemoglobin absorption region, on the quality of the extracted LSS spectra were

also explored. In determining the best fit to the data, the error between the data and the

model is weighted so as to preferably minimize discrepancies in certain spectral sections.

The sections that are more or less heavily weighted and how much they are weighted

were manipulated to improve the fits.
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The results of this approach, however, forewent any further need for considering

the tradeoffs between time and accuracy. While the fits were improved remarkably, the

LSS results were still inconsistent. Figure 5.5 shows a sample of the improved

Figure 5.5: data in black, old fit in dark gray, new fit in light gray.
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reflectance fit, compared with the original, unrelaxed parameter fit. The resulting scatter

plot comparing the nuclear density and enlargement for all the calibration data set is

shown in figure 5.6. With the improved fits, a larger percentage of the sites provided

LSS spectra, fifty percent, as opposed to the forty from the original fits. Although the

accuracy of the information seems slightly improved, distinction of dysplastic

progression could not be made.

Another solution came about while examining the raw data from the measured
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spectra. Looking for commonalities between the spectra that provided good fits versus

those that resulted in poor ones, one characteristic seemed to be that the relative

intensities of the data and the backgrounds were significantly higher in those that resulted

in good fits. This seemed to imply the importance of a good signal to noise ratio in the

measured data. In an attempt to artificially improve this ratio, the effect of subtracting

either fractions or multiples of the measured background from the measured reflectance

was examined (figure 5.7). This would affect the signal to noise ratio by increasing the

remaining intensity of the spectra. This is true because the background is subtracted from

both the measured reflectance and the white standard, and the intensity is a ratio of these

two.
Figure 5.7: original fit on top, same as Figure 5.1, same data with double the
background subtracted below. Dark line is data, lighter line is fit.
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As learned from the first approach, an improved fit does not necessarily result in a

more accurate LSS analysis. The result was no different with the manipulation of the

background. None of the constants used for scaling the background produced a

consistently accurate light scattering spectrum.

To gain a better understanding of the origins of the discrepancy between the

reflectance model and the measured data, a series of diffuse reflectance measurements

were performed using physical tissue models, or phantoms, that consisted of water,

polystyrene beads (1 pm in diameter) and hemoglobin. The concentration of beads was

varied to simulate p,' in the physiologically relevant range between 0.5 and 6 mm'. The

hemoglobin concentration was varied between 0 and 2 g/l to simulate physiological

ranges of pa. Fits of the model to reflectance spectra acquired from such models

exhibited a similar discrepancy in the red region of the spectra as that seen for the in vivo

reflectance fits. These phantom measurements also indicated that the deviation between

model and data was dependent only on the p,' value, not on pa. Specifically, the smaller

the value of the u' was, the higher the deviation. Based on the phantom measurements, a

P,' dependent correction surface was developed, in which the modeled reflectance was

multiplied by a correction factor at each wavelength, which depended on the value of the

fitted ,u'. As shown in figure 5.8, this correction factor increases in the red region of the

spectrum, and it becomes higher as the p decreases.

Figure 5.8:
2.5 - the black line

corresponds to
2 -- --- M'values of

0.52, the dark
gray line to

1.5-- values of 1.32,
light gray,
4.47.
Correction
factors for

0.5 -4 - --- ---- - intermediate
mus' are
interpolated

0 based on
250 3 70 370 430 490 550 610 670 730 790 these curves.

wavelength (nm)
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A further modification involved the look-up table that is used during the fitting

routine to estimate the value of u' at different wavelengths based on the fitted parameter

values for scattering particle size and density. For example, looking at the scattering

cross section for a particle with a diameter of 1.7 pm, it exhibits strong wavelength

dependent oscillations. Previous studies suggest that the tissue p,' is a smooth

monotonically decreasing function of wavelength. Thus, to better approximate the

physiological characteristics of p,', the scattering cross sections corresponding to

different scattering particle sizes given by Mie theory were replaced by their

corresponding second order polynomial fits. Figure 5.9 illustrates this adjustment.
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0.007

u.0uu
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wavelength (nm)

Figure 5.9:
gray line
indicates
former Mie
surface,
smoother
black line
represents
new surface,
both showing
scattering
cross sections
for particles
with radii of
one micron.

In addition to exploring the possibilities of scaling the model fit, the program used

to extract the light scattering spectrum itself was also assessed to ensure there were no

bugs in the code. Upon inspection, a few areas in which improvements were required

were identified. For example, one of the checkpoints mentioned checks to ensure that

there is a dominant frequency in the Fourier transform of the LSS spectrum.

Circumstances in which either a false negative or a false positive could pass through this

checkpoint were discovered. The code was modified to assess the form of the Fourier

transform in a more rigorous way. Such implementation errors were found and
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debugged, and at the same time, minor optimizations were made to clarify the code and

decrease program runtime.

Analysis of recalibration data set

Using the modifications to the Mie surface and the p,' dependent reflectance

intensity correction factor (figure 5.8), new fits were made to the data set in order to

achieve the original goal of calibrating the algorithms to the new machine. These new

fits were significantly better than the fits that were being returned with the original

calibration set. Figure 5.10 shows the clear difference in the quality of the fit, especially

in the red region where the original fit was unable to model the data correctly.
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Figure 5.10: data in black, new fit dark gray, old fit light gray.

Using these improved fits, the data was analyzed as a calibration set for developing

diagnostic algorithms once again.
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Diffuse reflectance spectroscopy

The fitted magnitudes of the reduced scattering coefficients at 600 nm for the data

showed a clear distinction between non-dysplastic and dysplastic tissue sites. Looking at

the slope and intercept of the wavelength dependent ps' data, however, the differences

were not as clear. Figure 5.11 shows the differentiation that can be made looking at

intensities, where non-dysplastic is overall generally higher, compared with the

inconclusive data of the slope and intercept. It seems as though the incorporation of the

wavelength dependent correction factor interfered with the capability to extract reliably

the slope of the p'.
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Figure 5.11: p,' values at 600 nm plotted above, slope vs. intercept below.
Non-dysplastic in black, low grade gray, and high grade light gray.
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Although these parameters of slope and intercept of the u,' were the primary ones

used in the previously developed algorithm, they are not the only parameters returned and

the only information that diffuse reflectance spectroscopy provides. As explained

previously, there is also an absorption parameter that provides information about the

hemoglobin concentration, as hemoglobin is the dominant absorber in the visible

wavelength range. The hemoglobin concentration could also be used to detect dysplasia,

as it has been found to be a diagnostically useful parameter in the detection of

adenomatous colon polyps.8 1 Looking at the Hb concentration, along with the intensity

of the reduced scattering coefficient at 600 nm, a much more diagnostically useful pattern

can be seen in the data, as shown in figure 5.12. The decision lines were drawn using

logistic regression.
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Figure 5.12: black diamonds non-dysplastic, dark gray squares low
grade, light gray triangles high grade. Solid line is logistic

regression line dividing dysplastic from non-dysplastic, dotted line
separates high grade from the other two.
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Although this departs from the originally developed algorithm, its consistency with this

recalibration data set is undeniable, and its validity can be verified through the

prospective data analysis.

Intrinsic fluorescence spectroscopy

The modifications implemented in the analysis of the diffuse reflectance spectra

did not affect in any significant way either the lineshapes or the intensities of the

corresponding intrinsic fluorescence spectra. Figure 5.13 shows the characteristic shifts

and changes in intensity seen at 337, 397, and 412 nm excitation wavelengths.

The intrinsic fluorescence spectra excited at six wavelengths between 337 and

425 nm were further decomposed into NADH and collagen contributions, using a linear

least squares fitting algorithm, with NADH and collagen basis spectra extracted from a

previous study as described in chapter four.82 A general trend can still be seen (figure

5.14), especially between the high grade dysplastic and the non-dysplastic sites. The

dysplastic tissue plots are found more to the upper left, indicating as expected with the

biochemistry, an increase in NADH concentration and decrease in collagen concentration

with the development of dysplasia. The low grade dysplastic measurements were not as

clear, which is not surprising. Two lines were drawn using logistic regression to compute

diagnostic thresholds using these points. The solid line is to separate non-dysplastic sites

from dysplastic, both low grade and high grade. The dashed line is to separate high grade

dysplastic from the other two. These lines are used to diagnose the prospective data set

before corroborating them with the pathologic diagnosis. These prospective results are

given later in this chapter.
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Figure 5.13 (continued on next two pages): intrinsic
fluorescence data. Black line non-dysplastic, dashed
line low grade dysplastic, gray line high grade
dysplastic
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Figure 5.13: intrinsic fluorescence data. Black line
non-dysplastic, dashed line low grade dysplastic,
gray line high grade dysplastic
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20 - - -

18-----

16 - ---- --

3 14 -

12
10

8 

0 6

2-

0
300 350 400 450 500 550 600 650 700 750

wavelength (nm)

397 nm excitation

1I .......... . ...... -. . ........ ......-..- . - . ........... -. - . ...

09 ------ - - -- --

0.9 - -.-

0.8

0.7

0.6

0.5

0.4
N

0.3 --

0 .2----

e 0.1 --- - .-- --~--- -. - -_- -

0

300 350 400 450 500 550 600 650 700 750

wavelength (nm)

52



412 nm excitation
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Figure 5.13 (continued from previous two pages): intrinsic fluorescence
data. Black lines non-dysplastic, dashed lines low grade, light gray
lines high grade.
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Figure 5.14: intrinsic fluorophore decomposition. Solid line for
non-dysplastic and dysplastic, dashed line for high grade and

non-high grade
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To make this decomposition algorithm more effective, porphyrin spectra were

also examined at 397 and 412 nm excitation wavelengths, where the dysplastic spectra

displayed a relative increase in intensity in the red region. The porphyrin spectra were

experimentally extracted from these spectra using multivariate curve resolution. These

extracted spectra were then reapplied to decompose the remaining 397 and 412 nm

fluorescence spectra into porphyrin and collagen concentrations.

In figure 5.15, there can be seen a relatively clear distinction between the non-

dysplastic characteristics and the dysplastic characteristics. The non-dysplastic sites have

the higher collagen concentrations and lower porphyrin concentrations as the

fluorescence spectra indicated, and the high grade dysplastic sites display the opposite

features.
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One last fluorophore could be used in decomposition, the previously unexamined

tryptophan fluorescence in the 308 nm excitation wavelength. The mean intrinsic

fluorescence spectra at this excitation can be seen in figure 5.16. At this wavelength, the

contributing fluorophores are collagen and tryptophan. The collagen contribution is in

the 400-500 nm emission range, while tryptophan fluoresces in the lower 300 nm range.

The relative peak intensities are reversed, as tryptophan concentration increases in

dysplastic tissue, resulting in the higher peak intensities for dysplastic spectra. The shift

in the spectra is found in the normalized curves in the 400-500 nm range, the collagen

differentiation, where the three curves clearly delineate themselves from each other when

they so closely overlapped before and after this range. This consistency with observed

biochemistry makes this new excitation wavelength another promising one to improve

the diagnostic algorithm. Extracting the tryptophan spectra as done with the porphyrin

spectra, the decomposition of the fluorescence spectra yielded results as expected. Figure

5.17 shows the decomposition into tryptophan and collagen components.
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Figure 5.16: intrinsic fluorescence spectra for 308 nm excitation. The small
peak found at 680 nm is the result of second order effects, reflecting the
first order peak at 340 nm.
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Figure 5.17:
black diamond
non-dysplastic,
dark gray square
low grade, light
gray triangle
high grade, solid
line dysplasia
division, dashed
line high grade
division

L
0.
,*
CL

35

30

25

20

15

10

5

0

000

--

---- --

- - -

zo4,
&--- -

0 2000 4000 6000 8000 10000 12000 14000

collagen

As the differences were clear in the fluorescence spectra, the decomposition result shows

a clear delineation especially between non-dysplastic and dysplastic tissue sites.

Combining, then, three of the fluorophore concentrations into one three-

dimensional plot would improve the differentiation between the different types of tissue.

As the collagen, porphyrin, and tryptophan decompositions gave the most promising

results, these three were used for the three-dimensional plot. The resulting figure is

shown on the following page. These plots differentiate very clearly between the three

types of tissue. NADH was also incorporated for a four-dimensional decision surface,

using the resultant equation to diagnose, but the results were no better than the three-

dimensional plots shown.
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As with tri-modal spectroscopy as a whole, the combination of three techniques shows a

drastic improvement over any of the four techniques alone. The exact figures for the

results of this combined intrinsic fluorescence analysis are given in table 5.1, with the

analysis of the other two spectroscopy types and the tri-modal spectroscopy results.

Light scattering spectroscopy

Finally, the light scattering spectra were analyzed, and the results were far clearer

than found previously in the initial calibration set. From figure 5.19, although the yield

of only half the points was lower than expected, the dysplastic development can be

readily distinguished. Along with the nuclear enlargement and density parameters

returned before, the analysis was also modified to return a distribution width parameter,

which correlates to the range of nuclear sizes found in the tissue sample. Using these

three parameters, three different plots were made, plotting two at a time. Each one had

clear thresholds of differentiation between dysplastic and non-dysplastic. It seems with

the improved reflectance fits drawn with this new Mie correction surface, the LSS

algorithm can again be effectively applied. Although the delineations are quite clear,

the high grade versus low grade and non-dysplastic threshold was not as effective, as the

low grade dysplastic sites seemed to display the dysplastic characteristics to a greater

magnitude than the high grade dysplastic (figure 5.19). This greater effectiveness in

diagnosing dysplastic from non-dysplastic for light scattering spectroscopy, however, is

consistent with what was found previously. 83

Tri-modal spectroscopy

With these newly modified diagnostic thresholds for each of the three types of

spectroscopy, the three types can again be combined to be used as tri-modal

spectroscopy. The preliminary study took a simple majority diagnosis among the three
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spectroscopy types, with effective results, and the same was done for the calibration set.

The results from the calibration set can be seen in table 5.1.
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Table 5.1

Non-dysplastic vs. dysplastic High grade vs. low grade & non

Sensitivity Specificity Sensitivity Specificity

DRS 64% 100% 75% 100%

IFS 91% 93% 100% 78%

LSS 100% 83% 100% 71%

TMS 91% 100% 91% 84%

While some of the individual results are somewhat low, particularly the diffuse

reflectance sensitivity, the combination of the three techniques again shows a dramatic

improvement over any one of the three techniques used alone, and its results are very

reasonable. For this analysis, spectra that did not return LSS were counted as dysplastic,

and IFS diagnosis was taken using a simple majority of the three fluorophore charts. It

may be said that sensitivity is the more important statistic, as any false positives can be

ruled out by the ensuing biopsy, but false negatives will result in a skipped biopsy and

therefore an undetected dysplasia site. With that in mind, light scattering alone seems to

have the best sensitivity, but alone, LSS has the drawback of being unable to analyze

every data point, and thus becomes more of a corroborating technique to the other two.

Prospective analysis and verification

The remaining data was analyzed using the methods and thresholds developed

above, and diagnoses were assigned to each site according to the thresholds, without prior

knowledge of their pathological diagnoses. A portion of the data sites had to be rejected

because the data was unusable due to several factors. Some of the data had extremely

low intensity, making the signal to noise ratio too low for the data to be reliable. Other

sites had nothing wrong with the data measurements, but the calibration measurements of

the spectralon and rhodamine were taken incorrectly. After all the filtering of unusable
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data, 396 points remained. These spectroscopic diagnoses were then compared with the

diagnoses of the biopsies. The results as a whole were not quite as expected.

As detailed, the diagnostic thresholds were determined through rigorous analysis

and after many modifications to yield the best results with the calibration set. And yet,

when applied to the prospective set, the results were as described following.

Diffuse reflectance analysis

Figure 5.20 shows the diffuse reflectance results, plotting again the intensity of u'

at 600 nm with the hemoglobin absorption.
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Figure 5.20: black diamonds non-dysplastic, dark gray low grade, light gray
high grade. Solid line dysplasia, dashed line high grade divisions.

While the specificity is reasonable, the sensitivity is not as much. There are several

possible reasons why these results came out as they did. While the idea of this
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prospective set is that it would be large enough to make the general trends very clear,

there are only three high grade dysplastic data sites. It is therefore impossible to assume

that these three sites are representative of high grade dysplastic sites in general, and on

the contrary, imply they do not fit the characteristics, as the eight high grade sites

analyzed previously would provide a more representative sample. This also explains why

the specificity is good while the sensitivity is not. Because there are so many non-

dysplastic sites, the general trend is revealed, supporting the diagnostic thresholds

developed, while the lack of dysplastic data results in an inconclusive outcome.

Another insight can be found in the segregating of the set into the two summers in

which the data was taken. Looking at only the data taken in the summer of 2000, the

same ps' plot looks instead like the following, shown in figure 5.21a. The remaining

data, from the summer of 2001 is shown in figure 5.2 1b.
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While the calibration set was a mixture of data points from both years, the majority of the

dysplastic data came from the former summer. The consistent discrepancy found

between the two sets suggests there was some unexpected change between the two data

gathering sessions. The fact that the two plots by themselves exhibit similar trends in the

low grade dysplastic sites with only some scaling factor separating them supports this

idea. The intrinsic fluorescence analysis results also support these explanations.

Intrinsic fluorescence analysis

The following pages contain plots for all data with each of the decompositions

into the four fluorophores: collagen, NADH, porphyrin and tryptophan.
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Figure 5.22 (continued on next two pages): intrinsic fluorescence decompositions
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Figure 5.22: intrinsic fluorescence decompositions
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Figure 5.22: intrinsic fluorescence decompositions
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Figure 5.22 (continued from previous two pages): intrinsic fluorescence decompositions
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Figure 5.23: dysplasia division surface above, high grade surface below. Slope is different only
because the axes have changed for a better angle. Non-dysplastic in blue diamonds, low grade

green squares, and high grade red triangles.
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It may be somewhat difficult to identify the few dysplastic points among the numerous

non-dysplastic, but what can be drawn is that the trend found with the diffuse reflectance

is the same. Looking especially at the NADH and tryptophan decompositions, the

specificity is again quite good. The high grade results are again too few to be reliable,

and the low grade results are again divided into two groups, those taken from two years

ago which fit the trends and give correct diagnoses, and those from last year which do not

fit the diagnoses. Particularly in the tryptophan decomposition (figure 5.22c), two

distinct groupings can be seen. Figure 5.24 shows the collagen and porphyrin

concentrations for the 2000 data set.
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Figure 5.24: porphyrin and collagen decomposition for 2000 data set

The difference is clear, with this set having 100% sensitivity for dysplastic tissue from

non-dysplastic. While this may be a fortunate case, as the high grade dysplastic data is

no more reliable for this plot than with any of the previous, the argument for some

unexpected change in the measuring apparatus or calibration between the two years is

strong.
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Light scattering analysis

The light scattering analysis is also in support of this theory, but in a slightly

The three result plots are shown in figure 5.25.
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What is immediately evident is that very few of the dysplastic sites returned a light

scattering spectrum. Only 45% of the sites were able to pass all the checkpoints. What is

interesting is that the data that has been fitting the diagnoses gave a 55% yield rate for

points that returned an analysis, better than that of the original calibration set, compared

to only 25% for the later year's data set. In many of the cases, even though the model

reflectance fits were better than those from the 2000 set, they failed to pass the

checkpoints.

Tri-modal analysis

Given this unfortunate discovery and the small amount of dysplastic data, a tri-

modal analysis would be inconclusive at best. Even to run an analysis only on the older

data set would not provide much useful information, as the two high-grade dysplastic

tissue data seem to be outliers. With that in mind, the tri-modal figures can be seen in

table 5.2.

Non-dysplastic vs. dysplastic

Sensitivity Specificity

37% 81%

78% 88%

40% 64%

87% 82%

Table 5.2

High grade vs. low grade & non

Sensitivity Specificity

33% 89%

33% 91%

100% 64%

33% 91%
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6
Conclusion

The main goal of this study was to assess in a prospective manner the value of tri-modal

spectroscopy as a real-time guide to biopsy for the detection of dysplasia in Barrett's

esophagus. Specifically, diagnostic potential of three spectroscopic techniques, diffuse

reflectance, intrinsic fluorescence, and light scattering, were assessed individually and in

combination. Diffuse reflectance gave information about the scattering and absorption

properties of the tissue, revealing changes in the prominence of collagen and hemoglobin

as the tissue advances in dysplastic stages. Intrinsic fluorescence showed the changes in

fluorophore concentrations, namely collagen, NADH, and porphyrins to distinguish

between the tissue states. And light scattering provided information on the cell nuclei,

their enlargement and crowding as the nuclei underwent the changes found typically in

dysplastic tissue.

Using methods developed to model the light's interactions with the tissue,

quantitative information was extracted, which is not only diagnostically useful, but also

provides insights into the development of dysplasia. With diffuse reflectance, the
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decrease in scattering and increase in absorption are quantitatively evident and are useful

diagnostic parameters. In intrinsic fluorescence, it would seem that the concentration of

porphyrins increases in the tissue before there is an increase in NADH concentration,

allowing for a distinction of dysplastic grades. Tryptophan also shows an increase in

concentration, and as shown its potential to be a contribution in the diagnostic process.

Light scattering spectroscopy analysis revealed the diagnostic value of the modeled

nuclear crowding and enlargement and also the new parameter for the distribution of

nuclear sizes.

The algorithms developed and results found in the preliminary study have been

corroborated and modified to work with the new generation FastEEM instrument. The

diagnostic algorithms have been further improved to include information from porphyrin.

Fluorescence component spectra for both porphyrin and tryptophan were experimentally

extracted and used to examine the interaction of these biochemicals in the development

of dysplasia. The real time aspect of the instrument was also examined and improved.

All these things contributed to making a diagnostic tool that can be used in real time to

aid physicians in better detecting dysplasia.

The one encountered misfortune is the unexplained systematic shift in the data

from between the two times of measurement. As long as there is no such change in the

future, a recalibration of the diagnostic thresholds to fit the current data would provide an

accurate and valuable tool. With the prospective data set now also available to be used

for further calibration, the modifications should become more accurate and sensitive as

more data is used.

Future work

There are still several ways in which this instrument can be further improved.

The first is evident, the determining of what it is that caused the change in data between

the two years. Such changes, obviously, must be guarded against, as a recalibration for

every set of data taken is impractical and unfeasible. Once this is discovered, more

dysplastic data should be taken to finalize a recalibration. Several of the excitation
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wavelengths are still not currently used in diagnosis. These wavelengths can be studied

and examined in greater depth to determine if they are diagnostically useful. In

particular, some of the fluorophores known to be present in the esophagus, such as flavin

adenine dinucleotide, can be examined to see if they display some pattern of behavior

with the development of dysplasia. If they are determined to be not useful, these

wavelengths can be removed from the dye wheel and from the program to simplify and

expedite the entire process. Replacing of the dye wheel itself may be another direction

into which can be looked, as other system configurations that are more cost effective and

easier to maintain may be found and more appropriate for a commercial clinical setting.

For example, a third generation instrument could consist of only two to three excitation

wavelengths, which provide the most diagnostically useful information. Furthermore, the

software code still has room for optimizations in speed to further improve the real time

feedback of the system.

As for expanding into new directions, there is no need to limit the use of this

system for dysplasia in Barrett's esophagus. The principles behind this tool can be

readily converted to be used in the detection of other forms of precancerous conditions in

other parts of the body. Much of the spectroscopic experimentation has already been

done, as referenced in the background, and so the initial steps to develop diagnostic

algorithms have already been taken. Each tissue does, however, have its own

characteristic biochemistry and morphology, and while models and diagnostic algorithms

need to be modified to account for these differences, the potential is undeniable.
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