
M-Studio: An Authoring Tool

for Context-Aware Mobile Storytelling

by

Carly M. Kastner

S.B. Electrical Engineering and Computer Science
Massachusetts Institute of Technology, 2002

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

December 12, 2002

@ 2002 Massachusetts Institute of Technology. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

/

'/f
~.

/ -/

Department of Electrical Engineering and Computer Science
December 12, 2002

Certified by

Accepted by (

12- / -0/-
Glorianna Davenport

Prci~al Research Associate, Interactive Cinema Group
iedia Laboratory

s Supervisor

Trthur C. Smith
e1-a11111a11, opat tniUHL k mU1lLCe un Graduate Theses

BARKER

Author

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 3 0 2003

LIBRARIES

M-Studio: An Authoring Tool
For Context-Aware Mobile Storytelling

by

Carly M. Kastner

S.B. Electrical Engineering and Computer Science
Massachusetts Institute of Technology, 2002

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

December 2002

ABSTRACT

The pervasiveness of high-speed wireless networks and handheld computers provide a channel
for context-aware video delivery. Mobile cinema is a new form of motion picture experience in
which discrete cinematic events are delivered based on a consumer's navigation through space
and time, via this new channel. M-Studio is an authoring tool that helps mobile story creators
design and simulate location-based narratives. The tool provides the author with a graphical
interface for linking content with a specific geographical space, a framework for developing
story structures for multi-threaded narratives, and a simulator that allows the author to evaluate
the story threads that might unfold depending on the path taken by the viewer. The tool also
directly generates the XML code that is used by a story server to deliver cinematic sequences to
handheld devices. M-Studio has been used in the creation of two mobile narratives.

Thesis Supervisor: Glorianna Davenport
Title: Principal Research Associate, Interactive Cinema Group, MIT Media Laboratory

2

TABLE OF CONTENTS

1. Introduction ... 5
2. M obile Cinem a .. 7
3. The M -Views Project ... I ... 10
4. Related W ork ... 13
5. Goals and M ethodology ... 15
6. System Im plem entation ... 18

6. 1. Storyboard ... 19
6. 1. 1. Location Editor ... 21
6.1.2. Clips .. 22
6.1.3. Location View .. 23

6.2. Flags ... 26
6.2. 1. Flag Types .. 28
6.2.2. Creating and Editing Flags ... 33
6.2.3. Story Tree 35

6.3. Sim ulation .. 38
6.3. 1. Story Sim ulator .. 40
6.3.2. M ap Sim ulator ... 42
6.3.3. Storyline Generation .. 44

6.3.3. 1. Generating with Constraints ... 46
6.3.3.2. The use of storyline generation in "Another Alice 48

6.3.4. Tree Explorer ... 50
6.4. Server Com m unication .. 51

7. Evaluation ... 54
8. Future W ork .. 59
9. Conclusion .. 60
References .. 63
Appendix A : XM L Schem a .. 64

3

TABLE OF FIGURES

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure A:

M -Views System Architecture..11
The M -Views Client.. 12
M -Studio Architecture..18
The Storyboard for "Another Alice"... 20
The Location Editor...21
The Video and Text Clip Editors.. 23
The Location View of "Another Alice"... 25
The Flag Editor... 33
The Story Tree for "Another Alice"... 37
The Story Sim ulator... 40
Specifying Location Constraints.. 41
M ap Sim ulator.. 43
Story Paths for "Another Alice".. 45
The Tree Explorer... 51
A Sam ple XM L Story Event... 53
A Prelim inary Storyboard for "M ind in Hand"... 57
An Exam ple XM L Story Script.. 65

TABLE OF TABLES

Table Al: Default Numerical Expressions/Operations..66
Table A2: Default List Expressions/Operations............................66
Table A 3: Clip Flag Expressions.. 67

4

1. INTRODUCTION

The pervasiveness of mobile networks and handheld devices has created an enormous

potential for context aware research. Furthermore, the increased availability of 802.11 b

networks, with data transfer rates of 11Mbps, has made the playback of video over network

feasible for handheld devices. Although the use of high-speed mobile networks has overcome

the hurdle of storage space for video on mobile devices, there are still limiting factors. With

their small screen size and low resolution, handheld devices cannot compete with desktop

computers and televisions for standard video playback. However, the mobile device's context

aware capabilities can be used to augment the user's viewing experience.

One particularly powerful piece of information is the user's location. With this

knowledge, a system can be designed such that users can experience video in the place it was

actually shot, enhancing their viewing experience by using the surrounding location to create an

immersive environment. Furthermore, a handheld device is always with users, allowing the story

to come to them as they travel through space and time.

This wireless-enabled location-aware handheld device can become a platform for mobile

cinema. Mobile cinema is a motion picture experience that is received over a wireless network

by a human who is moving through space and time. In the case of a full entertainment

experience, mobile cinema may involve tens, hundreds, or even thousands of cinema objects and

sequences. Designed story structures will require that these scenes be delivered discretely in

space and time and perhaps relative to other contextual conditions as well. The characteristic

that a multiplicity of scenes can be delivered discretely in time and space fundamentally

distinguishes mobile cinema from other cinematic forms.

In order to explore mobile cinema, we developed M-Views and M-Studio, consisting of a

Compaq iPAQ handheld computer equipped with a wireless network card and a location

detection system, a central server that delivers story events client iPAQs based on their user's

situation in space, time, and story. M-Studio is an authoring tool designed to aid in the creation

of mobile cinema.

Every genre of cinema and method for content delivery presents its own unique

challenges to story creators. It requires authors and production teams to collaborate in the

planning and development process, changing scenes and storylines as the script evolves. Some

of the specific challenges of mobile cinema include the association of content with context

5

information, understanding the multiplicity of story experiences made possible by the viewer's

navigation through space and time, and reproducing the discrete, non-continuous presentation of

the video that will be experienced by a viewer. The author may also have to confront the

technical details of the delivery mechanism. These challenges can be partially addressed by an

authoring tool that provides story visualization and simulation capabilities from a context-aware

perspective.

One of the first problems confronted by any story designer is the task of tailoring a story

for its delivery medium, in this case, delivery to a handheld device over a mobile network. The

mobile, context-aware platform has many features that can be used to enhance stories, but it can

be difficult to decide how to incorporate them into a story. First, an author must decide what

type of context information to focus on. Location is relevant to most mobile applications, but

additional levels of context can be added. A story can be presented differently depending on the

weather or the time of day. By creating a focus on historical events at a particular location, a

user could be given the ability to "time travel". M-Studio lets authors define contexts and use

them in the planning process, allowing them to concentrate on this information throughout story

development and visualize its role in the story structure.

Another challenge mobile cinema presents involves designing an appropriate story

structure. Since story events are delivered discretely and predicated on a viewer's navigation of

space and time, many possible paths through a story can emerge. The spatial nature of mobile

cinema invites the creation of multi-threaded stories, where many events are taking place at the

same time but in different locations. In this complex world, the viewer may not have all the

information about the story at a given time. However, the system may be designed such that the

user can influence the outcome of the story by making choices about where to physically

navigate to next. To handle this complexity, M-Studio provides a mechanism to define

connections between discrete events and visualize the resulting story structure as a whole.

These multi-threaded story structures can quickly become quite complicated, and the

author must be aware of all the different ways a story can play out as the viewer navigates

through time and space. M-Studio will provide simulation tools that will allow the author to see

how the story will unfold given a certain viewer path, and also generate all the possible plot lines

that can unfold from the story's configuration.

6

Finally, M-Studio will handle the process of server communication during story

distribution. Rather than forcing the author to learn a scripting language, M-Studio will create

story scripts directly from the author's input into a graphical user interface. It will also package

and upload media content directly to the server.

The next portion of this paper looks more closely at mobile cinema and present examples

of different types of content that could be developed for the platform. I then discuss the

evolution of the M-Views project and its need for an authoring tool. Section 4 examines related

work developed from both commercial and academic arenas. Section 5 looks at the

methodology used for developing M-Studio along with the major system goals. In section 6, I

present a detailed description of the technical implementation of the tool and explain major

design decisions. Section 7 gives the results of our preliminary evaluations of M-Studio.

Finally, I discuss future areas for improvement and development of M-Studio, along with current

conclusions about the project.

2. MOBILE CINEMA

In order to understand the purpose of M-Studio, one must first understand the nature of

mobile cinema and some of the complications it presents to the creation of stories. How does

mobile cinema differ from linear cinema? What features are needed in a pre-visualization and

authoring tool in order to help authors construct mobile cinema?

One of the features of mobile cinema that distinguishes it most from other forms of

storytelling is that scenes are delivered discretely depending on a viewer's position in space and

time. This removes the guarantee that events will be delivered in a particular order (or that

events will be delivered at all) that is implicit in traditional story forms. Conventional fiction

stories are comprised of a certain sequence of locations, characters, and actions. Each

character's actions follow a story arc: they are faced with a situation to which they respond.

Their response changes the situation, which may cause a new predicament to arise, calling for

the character to take another action, until we finally reach a conclusion or steady state. These

changes in situation result in changes of the state of the character: worldly wealth, self-

confidence, trust of friend, etc. Jerome Bruner writes in Acts of Meaning, "Perhaps its principal

property is its inherent sequentiality: a narrative is composed of a unique sequence of events,

mental states, happenings involving human beings [usually] as characters or actors. These are its

7

constituents. But these constituents do not, as it were, have a life or meaning of their own. Their

meaning is given by their place in the overall configuration of the sequence as a whole, its plot or

fabula." [1]

Mobile cinema represents a departure from this concept of story. Unlike traditional

cinema, where the physical nature of celluloid imposes a linear sequence on scenes, in mobile

cinema, individual scenes are delivered discretely, and the medium does not guarantee their

sequentiality. Mobile cinema creators must confront this issue as they plan content for a

platform like M-Views. Although there is one overarching story, there can be many different

narrative paths through that story, each composed of discretely delivered story pieces. These

pieces, or clips, must be designed to exist within potentially many different narrative paths. A

tool like M-Studio can aid the mobile cinema creator by providing a way to visualize and

simulate of these paths during the story design process.

To better illustrate the concepts of mobile cinema, I will present several examples of

possible content types for the M-Views platform. One obvious application for mobile cinema is

a game-like story, reminiscent of role-playing games. Viewers would take on the role of a

character in the game and try to accomplish a goal, like finding a missing object or catching a

bad guy. In this type of story, users would be very active, and their actions would influence the

plot of the story a great deal, for both themselves and other participants in the game, perhaps.

On the other end of the narrative spectrum, you can imagine a daily soap opera delivered to

viewers as they move throughout the day. Although viewers would not actively participate, what

they got out of the story would be influenced by where their daily travels take them; perhaps

compelling them to use the M-Views messaging tools to share what they have learned with other

viewers.

Mobile cinema does not need to be narrative. One could use the context-aware features

of the platform to deliver very customized stand-alone scenes to users. M-Views technology

could be used to virtually embed a piece of historical video in a building. The video could be

made to seem more relevant to the user by selecting this piece of video based on what time of

day or what season it was. This idea could be also be used, albeit less enjoyably, to deliver

customized advertising. For instance, a pedestrian a block away from a Starbucks on a cold day

could be invited to drop in for a cup of hot cocoa. On a hot day, they would be impelled to come

and enjoy an iced coffee.

8

The M-Views platform could also be useful as a tour guide. A person new to a place

could be presented with information about a place as they walk by it. The system could also

include suggestions about where the visitor might want to go next. As the tourist makes more

choices, the system might even be able to better customize its recommendations.

In addition to different types of content, different styles of productions can be used to

create mobile cinema. Clearly, a traditional production, with a single director and a centralized

writing process can easily be applied to mobile cinema. In this style, all the scenes in the story

would be written and directed by the same person or persons, just like they would be for

traditional, non-interactive cinema. This type of production would likely arise when one person

has an idea for a story, and brings others together to implement this vision. One advantage of

this approach is that having the same person responsible for all scenes makes it easier to ensure

overall continuity. However, the multi-threaded nature of mobile cinema also suggests a more

distributed production form. Rather than having all scenes in a story designed by the same

people, with very specific notes, a team could decide on central story principles and then work

separately to develop individual threads. This concept could even be taken so far as to have

several production teams working on location simultaneously to produce different parts of a

story. This sort of production would likely be used when several people had stories to tell that

all fell under a unifying concept. The idea works well with some of the central goals of mobile

cinema, allowing a production to provide highly customized content. However, in this case there

needs to be a way for these separate teams to unite their work and ensure that each story element

is effective within many encompassing narrative paths.

These different types of content and productions could be executed using M-Studio. To

explain the features of M-Studio, I will generally rely on examples from the two productions it

has been used in creating. The first, "Another Alice"[2], is a murder mystery with a simple story

structure. In the beginning, viewers receive an email telling them to meet a professor in her

office. When they arrive, they meet one of her assistants, who informs the viewer the professor

is dead. It is the viewer's job to find out what happened by following the characters. In each

clip, the character tells the user where they are going next, compelling the user to follow them.

Characters often run into each other, giving the user a choice of who to follow. The user has to

decide whom to trust, hunt down clues, and chase after characters to catch the killer. The final

outcome of the story depends on what path the user takes.

9

The production for "Another Alice" was quite centralized. One author designed the

general story idea and all the characters. She also determined most of the major plot points in

each character's storyline. There was some collaboration with other production members, who

had ideas for certain scenes, but almost all of the writing, both of overall story and specific

dialogue, was done by one person. Each scene used the same cameraperson and the same editor.

The second production, "Mind in Hand", is less demanding than "Another Alice". Clips

are designed to come to users as they move through campus, rather than having the user track

down clips. The story is designed to lend a dramatic flavor to the life of several MIT students as

they journey through the day. The production mixes in documentary scenes to convey the spirit

of the campus and the Institute. Someone visiting campus for the first time would not only get

information and history about the places they visit, but would also learn about the motivations of

some "typical" MIT students. Some of the major storylines include two people being set up on a

blind date by a friend, a student who is contemplating dropping out to pursue a music career, and

a girl who receives a mysterious email from another student, saying that he had found her

father's class ring. Although the path the user takes affects what characters they learn about, the

story itself is not changed by user choices.

The production for "Mind in Hand" was highly collaborative, with several people

working together to develop story threads and weave them together. Characters were initially

developed completely independently by separate people and brought together in a group decision

after seeing how these characters could be related. Once the basic characters and major plotlines

were set, several members of the writing team fleshed each character's day out into a set of

scenes. A few story team members then wrote dialogue for each of the selected scenes. So,

there are scenes with different final authors. A single filming team shot each scene, to create a

consistent look across the piece. However, different people edited the footage into individual

scenes.

3. THE M-VIEWS PROJECT

The M-Views project is a platform for exploring the potential of mobile cinema from the

perspective of both creators and consumers. It was originally conceived of by Pengkai Pan and

the Interactive Cinema Group at the MIT Media Laboratory. Its research has encompassed the

10

development of the hardware and software that comprise the platform, as well as the

aforementioned story productions.

M-Studio

Story Structure Playback
Context Data Evaluation

Media Content

Storyboard Simulator

XML Story Scnpt, Media Content

M-Views Server
Data Importer

Story
User Scripts Story

Registration ._..... Interpreter Media Server
User
State

Login Content URL Context Data

M-Views Client URL
M-Views Client Software

URL
Content

Sensors Media Player
...........

Figure 1: M-Views System Architecture

The design for the M-Views delivery system consists of a location-aware handheld

computer with a wireless network connection that communicates with a central server and

receives video clips streamed over the wireless network. Both the client and the server have

gone through a few revisions. The current client consists of a Compaq iPAQ with an 802.1 lb

wireless network card and a positioning system. Several different location detection schemes

have been tried, including GPS, infrared beacons, and 802.1 lb triangulation. Each scheme has

its advantages and disadvantages, which are discussed in Section 6.1.1. The iPAQ could be

11

outfitted with further sensors to provide more context information. The client software is

designed to emulate an email program, where story events are received as messages in the user's

inbox. The client also works as an instant messaging tool, allowing multiple users to

communicate by sending text messages or forwarding video events.

The client communicates with a central server by sending it its current position and

context information every few seconds. The server returns a story event if there is one under

those conditions. The server has gone through several iterations that have increased its

flexibility in presenting stories. In initial designs, it was only able to look up events based on

location and time conditions. The new version, developed along with the messaging client by

David Crow, maintains a user state, allowing for more control over narrative structures. The

server also provides web-based story administration capabilities.

Figure 2: The M-Views Client

M-Studio was developed fairly early in the M-Views project, although its role changed

quite dramatically. Most initial concepts for M-Views productions focused on the idea of

customized individual scenes rather than structured narratives. So, my initial project, done as a

UROP, was a tool that allowed the easy annotation of video clips with location and time

information and provided a map to see where scenes in a story were located. The annotation

12

0- -_ wwm

information could then be exported to the early server along with the video clips that comprised

the story. As the story productions teams began working, however, we found a desire to do more

narrative productions, like "Another Alice". To allow this, the server was adjusted so clips could

be placed into parallel storylines and looked up based on what track the author was following.

To cope with this change, the annotation tool had to be changed to allow the author to place

these scenes into parallel storylines as well as annotate them with context. It soon became clear

that for full narratives, a tool like this would be necessary to allow authors to structure their

stories and examine story threads through simulation. As the project progressed, new production

forms were suggested, and all the tools of the M-Views platform were updated to accommodate

more creative desires and provide a more flexible platform for authoring and presenting content.

4. RELATED WORK

There are many examples of desktop multimedia authoring tools. In addition to

providing sequencing utilities, these tools also provide controls for user interactions and scripting

languages. For example, Macromedia Director[3] allows video and graphical elements to be

arranged with score or a timeline. It also offers keywords to allow interactive control of

elements. It provides a visual interface for editing multimedia presentations, allowing authors to

inspect and edit the properties and behaviors of multiple content objects. Director's Lingo

scripting language allows for a greater of control over interactive elements and supplies data

tracking between objects for advanced users. Another Macromedia tool, Authorware[4], offers

interactive controls, including conditional statements and the tracking of data between

multimedia elements. However, these tools are targeted for desktop multimedia applications.

They only handle a limited set of predefined user interactions, like clicking a button. In order to

fully harness the capabilities of mobile storytelling, one must be able account for indirect

interactions, such as changes in location or other context. Furthermore, these tools do not allow

for the development of parallel storylines.

Authorware and Director both use scripting languages to provide fine control and

customizability to their productions. Scripting languages can be time consuming to learn and

work with, which places a burden on authors which may make them not want to invest time in

using these tools in early production stages, when there might be major revisions.

13

There has been research into developing several rapid prototyping tools that facilitate the

preproduction process. DEMAIS[5] provides a sketch-based storyboard, which allows users to

turn rough sketches into a story prototype. It also supports integration with multimedia and

interactive controls. This tool allows users to experiment with layout and behavioral aspects of

their production. MediaDesc[6] is a similar tool that uses a timeline with different views,
allowing a user to visualize and test early design ideas. M-Studio offers similar initial design

capabilities. Story design is an iterative process, requiring many revisions and changes to story

structure. M-Studio should let users to prototype stories easily, allowing them to quickly change

story structure. However, these other prototyping tools are intended for the design of flexible

multimedia presentations. M-Studio is used to develop stories for the mobile M-Views platform,
which imposes certain constraints on the way content will be viewed. So, while M-Studio must

be a flexible prototyping tool like DEMAIS or MediaDesc, it must also make the limitations and

requirements of the mobile platform clear to the author, who can then incorporate these ideas

into the story design.

To understand how to provide structure to multi-threaded stories, we can look to other

research in the area of interactive narrative. One such project, Kevin Brooks' Agent Stories [7],
provides "a story design and presentation environment for non-linear, multiple-point-of-view

cinematic stories." The tool is intended to aid the writer of non-linear story in structuring and

revising narratives before they are produced as video. In order to provide story structure, Agent

Stories allows the author to provide structural links between clips. Links are used to define

relationships between story elements. For instance, clips can be said to precede or follow each

other or have to be seen along with another clip. Less explicit connections can also be made by

specifying which clips tend to support or oppose ideas in other clips. This structure of clips and

links define a story web that can be navigated by traveling its links as narrative paths. M-Studio

uses a similar technique to provide structure to a non-linear narrative using flags. Like story

links, flags are used to express connections between clips that can be understood by both M-

Studio simulation tools and the M-Views server. M-Studio can travel these flag links to find

possible narrative paths through the story.

Another example of a tool that allows authors to annotate a database of clips and then

play out resulting paths is the LogBoy/FilterGirl toolkit [8]. This project also targets cinematic

experiences that vary depending on viewing context. The LogBoy tool allows authors to create

14

annotations for clips that will be used to determine playback of the story. FilterGirl allows the

author to specify and test a set of playback constraints that will be applied to the annotated video

database. M-Studio provides similar tools, targeted at the mobile platform. The flag editor

allows the user to provide structural annotations, while the story simulator allows authors to

create, test, and save different sets of contextual constraints to simulate against.

The Viper project [9] is a tool for creating responsive video programs. The tool allows a

user to create relationships between clips in a database that express their structure. It also uses

heuristic measures to express what a particular clip represents or other content information like

how it was shot. This tool is used to provide some automatic editing capabilities for the database

of video. Clips are selected from the database by specifying properties and constraints, based on

the annotations made for the previous stage. The system can also create templates to determine

these viewing parameters. Again, M-Studio will provide similar capabilities for annotation and

simulation.

While these tools provide some simulation capabilities, M-Studio must allow users to

simulate in a mobile context. Another context-aware content delivery system, GeoNotes [10],
provides a similar simulation feature. GeoNotes allows users to annotate real positions in space

with virtual Post-Its. In order to demonstrate and test its functionality, QuakeSim was

developed. QuakeSim is based on Quake III Arena, and allows the user to simulate walking

around an area, posting notes and discovering those left by others. M-Studio uses a similar idea

for its simulation interface. A simulator sends context information to the system, which returns

clips that the simulator can play back for the user. The M-Studio simulators will have to

accommodate different kinds of context information and keep track of other possible user

interactions with the story.

5. GOALS AND METHODOLOGY

From the beginning of the M-Views project, one of our goals has been to make our

platform widely available to both viewers and authors. Our hope is that by making content

creation accessible to a large audience, we will encourage the growth of mobile cinema as new

type of cinematic experience. Many novel systems for presenting content have been developed.

For instance, there are context-aware virtual tour guide systems such as CyberGuide[11] that

provide customized, interactive tours of cities and landmarks. Role-playing games and other

15

video games can present stories in an interactive way. However, these systems have not focused

on allowing independent users to create content for the platform. The story creators usually

work with people who have knowledge of the backend of the system. So, only people associated

with the platform developers can produce content.

There are arguments for this sort of proprietary system. If content developers work

directly with the platform developers, they can create highly customized content and ensure its

quality and appropriateness for the delivery system. However, one of the goals of the M-Views

project was to create a platform that could be used by people who have no knowledge of the

implementation of the backend. Therefore, it was necessary to develop tools that would allow

anyone to author for the platform. However, we did not just want to create a publicly available

scripting language, since there is usually a learning curve associated with them, and some

experience with programming is often necessary, especially when creating complex stories.

Therefore, it was necessary to creating an authoring tool with a simple-to-use graphical interface

to facilitate in story creation.

The main component of the story structuring system is the flag model. The flag system

allows authors to specify as much or as little ordering or structuring onto a story as they need.

The model is simple. Each clip has a set of flags that must be true in order for the clip to play.

These flags are evaluated by looking at a table of global values that are maintained during the

playback of the story. After a clip is viewed, the flag table is updated as specified by the clip.

This system allows authors to make seeing one clip contingent on having seen another, or on

having met a particular character or visited a certain location. This flags are also used to

implement more extensive context information, like time of day, or weather.

The mobile nature of our platform also begged for simulation tools that would allow the

author to visualize play out of the story based on projected movement of the viewer through

space and time. Even if a story creator was comfortable using a lower level scripting language to

create a story structure, without authoring tools, there would be no way to test this without

actually running the story on the server and experimenting with it using a client iPAQ. Given

that location based stories require users to physically move through space, this becomes very

impractical. The use of more extensive context information, like time of day or weather, makes

a full simulation even more inconvenient. Furthermore, this method of evaluation gives the

16

author no convenient way to record the paths he or she has taken, making it difficult to keep

track of story problems that may exist in the script.

From the beginning, we envisioned an authoring tool that could not only to write the low

level code, but could also allow authors to understand the salient features of content designed for

the mobile platform. The authoring tool can reinforce the notion that story events are always tied

to their locations. Furthermore, it can make it easy to understand that by giving the story spatial

as well as temporal dimensions, it is possible for many things to be unfolding at once in the story

at different places. Finally, the authoring tool can support the role of the active viewer in stories.

End users can make decisions that change how the story unfolds. These aspects are quite

different from linear, passively experience narratives, and thus require the author to approach the

story creation process from a new perspective.

By simplifying the creation process and making these tools widely available, we hope to

encourage independent content creation. We believe this is necessary for widespread adoption of

the platform. When dealing with a new form, like non-linear mobile narratives, it is important to

have a supply of compelling content that is frequently updated, which is difficult to achieve this

if all content is being created 'in house', especially considering the time-consuming nature of

video production. By allowing any interested party to create content, we not only achieve the

goal of having more stories available, but the stories can become more customized. Although it

is possible to create a location-based story that could be adapted to work in many different

places, using generic locations, most of the content will likely be localized to a particular place,
like a city or campus. So, rather than having one centralized team struggle to creation a

production that is generalized enough for it to play well in many different venues, it would be

better to rely on local production groups, who could make their content more appealing by

tailoring to the special aspects of their area. By supporting these independent productions, we

can increase the supply of engaging content, and thus increase interest in and use of the M-Views

platform.

The development of M-Studio was closely tied with both the development of the M-

Views client and server, and the M-Views story productions. As story teams developed new

concepts, the software developers had to work together to find new means to accommodate

different story forms and features. The two teams worked together to focus on how to support

content creators from the authoring side and mobile viewers in the content delivery side. These

17

new ideas were then tested with existing and emerging story content to validate and refine our

designs.

6. SYSTEM IMPLEMENTATION

M-Studio seeks to support authors throughout the mobile cinema design and production

process. To do this, it provides several utilities that work together, as shown in Figure 3.

Storyboard

Location Editor C ip Editor r Flag Editor

Add/chnVigc locition Add/ch irije cip

Story Grid
Provides an interface for organizing clips;
keeps track of clips and their associated positions

land data; sends this information to server
and simulator

Build state table from storyboard

Simulator Interfaces Story State Table

Story Simulator Mapping of
user enters series locations to clips
of locations, clips P b p

_______I slebs clip
play back in order

........ I Select best clip

Map Simulator I <Update flags
user associates
content with locations Current state
and previews story of flags

Simulator

Figure 3: M-Studio Architecture

It allows authors to layout multi-threaded stones that unfold in time and space using a

storyboard where the user can enter and annotate clips with locations. M-Studio also provides

authors with a flag-based system for developing story structures by defining relationships

18

between clips. It also offers simulation capabilities that allow authors to see how a story would

unfold given a particular physical user path. An author can also generate all the possible paths

through a story. Finally, the tool helps to abstract away details of server implementation by

automatically generating XML story scripts and exporting them to the server along with media

content. M-Studio was implemented entirely using Java and Swing, primarily for ease of

development and portability across platforms.

6.1 Storyboard

In the initial design for the M-Views server, each path through the story was represented

as a separate storyline. Events in the storylines were associated with locations laid out in

absolute time, with each clip playing only in a given stretch of time after the viewer had started

the story. When there were multiple clips available at a given time and location, the clip would

be selected based on what storyline the user had been following. The only opportunities to

switch paths occurred when two characters were in the same place at the same time. No

additional data beyond location, time, and storyline was used. Thus, the storyboard was

developed with this structure in mind, providing an easy way to layout parallel storylines and

associate clips with locations.

The storyboard is the central component to the authoring system, providing data to both

the simulators and the server. It is the space where the author builds his or her story. It keeps

track of the different locations where clips can take place, the possible storylines, and the

positions of all the clips.

To create a storyboard, the user first specifies the length of time of the story, and a list of

storylines (Both of these attributes can be later modified). With this information, a new

storyboard is built. The storyboard is displayed as a grid of cells, with each cell representing a

particular time in a storyline. Each of these cells can be filled with a clip. In addition to

displaying the clips, the grid keeps track of the relationship between clips as they are entered.

This can be useful in structuring the story.

Parallel storylines are a useful abstraction for a multi-threaded story. Multi-threaded

stories allow authors to create stories where the viewer does not have all the information in the

story, introducing the element of user choice. The goal of this system is to allow an author to

visualize all story interactions in a snapshot and as they would play out. Storylines can be used

19

in different ways depending on the author's goals. They can represent completely independent,

self-sufficient plot lines, or pieces of a story that can come together or diverge.

File Edit Insert View Tools Help

0~~~~~ 1 2 3 4 5 7 Lations

*Bldg 68
D a i T S ta tio n

OAu Bon Pain
MMed center

___IM Wa I ke r

* Student Center
office

--- -IM Library--Bldg 14N

* Kresge Oval

Figure 4: The Storyboard for "Another Alice"

The storyboard layout, as shown above, seeks to present the maximum amount of

information about clips and the overall story structure. Images and short titles provide a

convenient reminder about the content of clips. This technique of annotated thumbnails is used

in many video-sequencing utilities. However, M-Studio must also put forth context information.

We chose to use color as a compact way to represent the location associated with each clip.

Location is the most crucial piece of context to view, because it influences story structure. By

seeing every clip in the context of its location, it is easy to see places where different storylines

can intersect and imagine the physical path each character might take. The user can easily refer

to the color-coded location list to the right of the storyboard to recall which location is which,

and can view the location on a map by selecting it from the list. The user can also view more

detailed information about each clip, including any notes made about it by simply clicking on a

clip.

20

_Row

6.1.1 Location Editor

Once the storyboard has been set up, the user can begin by entering locations that will

represent the settings for clips with the location editor. This tool provides a convenient way for

users to define and visualize the locations where their clips take place. Each location is assigned

a name and a unique ID, used by the storyboard for tracking purposes. Each also has a visual

representation, consisting of a position on a map and a color. The use of colors for locations

allows for a simple visual representation. Authors can easily see what color is associated with

each clip, and then refer to the location list to determine the name of the location. In the location

editor, shown in Figure 5, they can associate the name on the list with a physical location on the

map. Locations are extensible, so they can be used to accommodate new location detection

schemes where the context information that is passed to the server is changed.

Oto Eioor C) x
Outdoor Indoor

Nt

GPS Wireless

F8ld 68

1. ~L 142 361389

1-71,087989

[Change color...

Change Map...

Change Delete

Clear Close

Figure 5: The Location Editor

21

M-Studio currently supports three different location detection schemes. The first scheme,
which was used for "Another Alice", is the Global Positioning System. So, we created GPS

locations that used latitude and longitude coordinates for context information. Since GPS does

not work indoors, we created infrared locations that were read by scanning infrared beacons. For

these locations, the identification string of the beacon is the context information. The problem

with infrared beacons is that they are difficult to set up in uncontrolled and outdoor locations.

However, 802.1 lb wireless networks were becoming more pervasive, providing complete

coverage to areas like the MIT campus. So, the server was able to triangulate position based on

signal strengths from wireless access points, allowing for a consistent location detection

framework that did not rely on extra hardware on the client. This implementation uses maps that

are coordinated with the server, so a location's map position works as its context information.

The server then matches that position to a predetermined set of signal strength data.

The maps used in the location editor provide a visual frame of reference for the author,

letting them remember the exact position for a location. The map can also provide other useful

information, like what other locations are nearby, or the approximate distance from one location

to another. Authors can input new map images using the map editor to represent new areas where

location hotspots can be placed. A story can unfold over many different maps. There are both

indoor and outdoor maps. The only difference is that indoor maps allow the author to

consolidate the different floors for a building into one map, adding an extra dimension to the

representation.

6.1.2 Clips

After some locations have been specified, the author can start entering clips. Clips are

abstractions that encapsulate all the data known about a clip. Clips know the files associated

with them and their metadata, in this case time, storyline, and location. It is necessary to track

this information with the clip to make saving and loading storyboards more convenient. This

information also allows for users to easily move clips around the board. Users can also provide

thumbnail images for their clips, making them easy to identify on the storyboard.

There are two different types of clips, one that represents a standard video clip, and one

that represents other forms of clips, such as images, text, or sound. These other kinds of clips

can be useful in the process of writing the initial story. An author could include a textual

22

description of the scene, a photo of the location where it would be shot, or an audio clip of

possible dialogue or music for the scene. These pieces can be combined as the user sees fit. If

the user wants to provide something more complicated (like a series of shots staging a scene), the

user can insert a web page. Video clips can replace these clips when shooting and editing has

been completed. Alternatively, they could be left in and used in the final story, depending on

what file formats the target server accepts.

Video Clip xther Clip

Me Lac ea~ts Lunch

Select a File INDOWbRah li IF-Isaac Walker Foodi -1 3wmv

Select an Icon ,file /MININDOWiSalicellsac Walker Food1 gli

Walker

Repeatable

Isaac tuns into Janette while eating lunch at Walker

OK Cane

Video Clip Other Clip

Bett eats lunch

Select an Icon

i s Walker

A image andior Text

Select an Image

Select a Sound

Oetty has luncn with Claudia They discuss Bettv's upcoming
Ohnd date

HTML. FOPe

jRepeatable

OK Caticel

Figure 6: The Video and Text Clip Editors

6.1.3 Location View

After the preliminary version of M-Studio was developed, a new version of the server

was created. This new server sought to improve the flexibility of the story structure. Location

was still the most important piece of information in deciding which clip to play, we wanted to

allow users to create more complex and interesting story structures where the outcome could be

influenced by what path the viewer chose to take. Whereas previously the storylines were very

strict, and crossover could only take place when two clips occurred at the same place and time,

the new server would allow for greater possibilities. We also wanted to be able integrate the new

server smoothly with M-Studio. So, we developed a flag-based system for stories. Like before,

23

each clip would be associated with a location. However, now instead of being placed into a strict

storyline and time slot, it would be associated with a set of flags. The flags would represent a set

of global conditions maintained by the server. Each clip would require certain flags to be true in

order to play. After the clip was played, it would update the global flags, thus influencing what

other clips could be played, allowing authors to develop a more complex story structure. We

also decided on an XML schema to simplify the task of communication between the authoring

tools and the server.

Clearly, M-Studio needed to be altered to accommodate these new features. In addition

to providing a way for users to create flags and associate them with clips, there needed to be

different ways to view and layout clips that allowed the author to analyze more complicated or

less defined structures. To decide what other tools would be necessary to support these new

story structures, I observed the story meetings for the development of the new story.

At the first story meeting, the authors began by planning characters. Each writer

separately developed a character that would be on the MIT campus for a day. Some examples

were students, professors, staff members, prospective students and parents, and tourists. The

characters were given short biographies and a central conflict in their lives. Then, the authors

decided what their character would be doing at three different times of the day, morning,

afternoon, and evening. Each participant brought his or her character to the first story meeting.

The goal was of this meeting was to produce two short scenes at two different locations.

We began by comparing the characters everyone had created. We started to build a list of

possible locations for scenes based on the characters' days and other locations we wanted to

include because they had historical or architectural significance. Immediately, there was interest

expressed in having one big chart that could encapsulate all the information about characters,

locations, and time. There was some debate over how to pick the two scenes to write first.

Picking two locations first might cause us to steer characters to places they would not go. At the

same time, picking characters to start with might cause us to force some unnatural intersection

between stories. So, we started out by plotting each character's day separately, to decide where a

good starting point would be. The authors made a grid with time slots and decided where each

character would be at any given time on a normal day. Using this chart, the authors found

similarities in these schedules and were able to find very logical places that certain characters

would meet.

24

This first story meeting made it clear that the original storyboard design was on the right

track, particularly for a story like this one. Since this story focused on different lives unfolding

at the same time, parallel story threads were a good starting point for development. This view

allows an author to develop the stories first, and then see what locations emerge as the key points

in a story.

At the next story meeting, the authors had condensed their character information into a

new chart, which had been divided into three major time slots, morning, afternoon, and evening,

and was then sorted by location. Although this view made it harder to follow what path any one

character took, it is easier to see where character's lives intersected, facilitating the writing

process. Also, as the story moved into production, it was also useful to be able to organize

scenes to be shot on the basis of location, so scenes at the same location could be grouped

together. Since this production was also intended to play across the span of a day, the location-

sorted chart was also useful in determining story density. Once the list of story locations was

finalized, it was easy to decide where to place certain scenes in order to produce the fullest

possible coverage of campus.

File Edit Insert View Tools Help
x

Figure 7: The Location View of "Another Alice"

25

Bldg 68 T Station Au Bon Pain Med Center IWalker |Student Ce-, Office Lbraiy-Bld Kresge Oval
10avid at6

jlsaac eat

Janette at 68e

Janette at Lit laac at Kre

David at B Janette at Std
->4-4m~~~~ -- U-- - -- -- -~vda fIaca

avid at ffilsaa~

..

Cu p ifoma

Janette at Med Center
File, file:JC:MINDOWSlali e12!23-Premed before N1 4wmv

Since both the storyline and location views had clear benefits, I decided to use them both

in M-Studio. The original storyline structure was maintained, and a new location table was

added. Both views were synchronized. When adding a clip to the location table, the user was

prompted to select what storyline the clip belonged in so it could be placed in the story view.

Both views still had the same clip sequencing and editing utilities. The display for the location

table was kept simple, with a timeline associated with each location, illustrating what happened

at that place throughout the day. Each cell in the table could contain a list of clips, representing

that more than one thing could be happening in the same place at the same time. For simplicity,
clips in the location table could only be displayed by their titles rather than with thumbnails.

As writing made way for shooting and production, it also became important to have

easily distributable copies of the story charts and production notes. So, I added tools that could

quickly export the storyboard to HTML in several different formats. One option is to generate

an HTML version of the storyboard, sorted either in location or storyline views, using either

thumbnail images or text to represent the clips. Each clip is linked to either its associated video,
or an automatically generated web page containing all of its information, depending on the clip

type. All of this material could then be copied and placed on a website in a central location so all

team members could refer to it. Alternatively, the authors could produce a full script containing

all of the text and images that had been entered for each scene. The scenes could be sorted by

storyline or by location, whichever is more convenient for the authors. These scripts could be

generated and printed for use on location during shooting.

6.2 Flags

One important thing to note about the location and story views is that, under the new

server structure, they do not necessarily represent anything concrete about the story structure. If

an entire storyboard was created with no flags and exported, the server would have no

information how to structure the story beyond the location of each clip. The user must create the

necessary flags to provide the desired story structure. To help alleviate that burden, M-Studio

can automatically generate flags based on the relative positions of the clips in the storyboard. To

understand the process of generating flags, we must first understand what flags are and how they

are used in the story creation process.

26

Flags are a way of maintaining the state of a story, which allows for the creation of

structure. Under the previous server model, if a person walked to the right place at the right

time, it was as if a clip was waiting there for them. With the flag model, the story experience

does not just depend on a user's position, but rather the whole of how the user has interacted

with the story. For instance, a user's decision to follow one character instead of another could

not just cause them to miss one clip, but could change the course of the narrative altogether. So,

rather than a user's story experience just being a function of context, it is also a function of past

actions.

There are many different ways to provide structure to a narrative. The common form for

cinema is linear narrative, where events unfold in a predetermined sequence. Although this

model could be useful for some mobile applications, like a guided tour, it fails to fully exploit the

potential of the platform. A better model could be represented by the old server implementation,

where events are embedded in space and time, and the user has to navigate through them.

However, this does not provide the ability to actually change the narrative based on the user's

behavior. A programmatic model would be able to do this. This would be a model that could be

represented by the game engine in a role-playing or other narrative-based video game. Although

this provides almost limitless flexibility, it would almost definitely require the use of a scripting

or programming language, which would create a barrier of entry for story developers. Also, once

the story was created, it would be difficult for others not involved in development to modify it.

Flags provide a balance between the flexibility and simplicity needed for story creators. Since

flags allow events to be dependent on past user state, they allow for the possibility of creating

changing storylines that unfold based on the user's actions. Flag structures can be as simple or

complex as the author desires. It would be very simple to use flags to emulate simpler narrative

models, such as linear stories or independent clips only associated with time and space. With

customization, flags can even approach the story control provided by a scripting language.

However, they are still easy to use. In M-Studio, they are created and manipulated through

simple graphical user interfaces. Flags can even be automatically generated based on the

structure laid out in the storyboard, using simple rules.

The structure of flags is very simple. Each clip has two sets of flags associated with it: a

requirement clause and results clause. Each clause contains a mapping from flags to their values.

A flag can be thought of as a global variable, a piece of information about the story state. The

27

value of the flag can change as the story continues. M-Studio tracks this information for use

during simulation by keeping an internal flag structure. Flags for a story are kept in a central

table, mapped to their current values. The flags in the requirement clause all must evaluate to

true in order for the clip to play. To evaluate a flag for a clip, the current value of the flag is

looked up in the table. That value is compared to the required value for the flag according to

rules specified by the flag value. If the condition is met, the flag evaluates to true, and the next

flag is checked. If all of a clip's flags are true, then the clip will play. If the clip does play, the

flags in the results clause are evaluated, updating the current values in the flag table according to

the specified function. In the M-Views system, location is used as top-level constraint. So,

when the user arrives at a particular location, the server makes a list of clips associated with that

location, and then evaluates which ones could play based on their flags.

6.2.1 Flag Types

M-Studio provides several different flag types for authors to use to customize their

stories. The most basic type of flag is the globalflag. A global flag consists of a single integer

value that is evaluated and updated as clips play. When used in the requirement clause, a global

flag is given a comparative operator and an integer value. When it is evaluated, the current value

for the flag is fetched from the flag table and compared against the given value using the given

comparator. In a simple case, a global flag requirement might state that a clip can play if the

current value of f oo is greater than five. In the results clause, the global flag is updated by a

value using an operator. For instance, after a clip plays, the result might be that the value of f oo

is incremented by two. Global flags are extremely flexible and can be used to implement almost

anything, if used cleverly enough. One obvious use would be using these flags to keep track of

health in a game. Every time users see a clip where they are injured, their health is decremented.

All of the clips in the game require health to be greater than zero in order to play. If the value of

the health flag drops below zero, a game-ending clip might play. That clip would require that

health be less than zero in order to play. Global flags can also provide an easy approximation for

Boolean values by using the equality and setting operators. Seeing a clip could set the value to

one or zero, depending on the circumstances. Clips requiring the flag could then test whether the

value was true or false using the equality operator.

28

A logical extension of the global flag is the multi-valuedflag. The multi-valued flag

consists of a list of values. So, clips can require that a certain value be a member or not be a

member of the list. When a clip is seen, items can be added to or removed from the list

associated with a flag. The requirements can also be multiple valued, requiring that at least one
item in the requirement list also be a member of the current flag value list. A good example for

this would be keeping track of characters a user had met. This technique was used in a version

of "Another Alice". Viewers meet one of three characters based on what time the story begins.

After that, viewers can only see clips with characters they have already met. However,

sometimes the character they are watching meets another character in the story. That character is

added to the list of characters met, and the viewer can start seeing clips starring the second

character. The flag structure to represent this is very simple. Each clip in a character's storyline

has the characters met flag placed in its results clause, with the action to add the character's

name to the list when the clip is played. For every clip in a storyline after the introductory clip,
the characters met flag is also placed in the requirement clause with the character's name, stating

that the given character must be in the current list of characters met in order for the clip to play.

For clips with more than one character, both characters are placed in the requirement clause,
stating that if either character has been met, the clip can play. Both characters are placed in the

results clause, too, since after having seen the clip, the viewer will have met both characters.

When structuring a story, one of the most important things to know is what clips the user

has already seen. To provide this facility, we use a special structure to keep track of the clips

that have been seen. Clips are listed in the order they were seen, and mapped to the time they

were seen by the user. Then, the author can refer to this data to impose a structure on the clips.

These clipflags are an extension of the multi-valued flags, allowing the author to require a set of

clips to have been seen or not seen in order for another clip to play. This is clearly important to

maintaining narrative structure. For instance, suppose that a key plot point is introduced in one

clip. Other clips that refer to this point will not make sense unless the viewer has seen the first

clip. Therefore, all clips that refer to that issue can be made to require that the first clip has been

seen. Additionally, the author can require that another clip be the last clip seen by the user in

order for a certain clip to play. This technique can be used to enforce linearity between clips by

simply creating a flag that requires that the previous clip be the logical precedent in for each clip.

29

This creates a structure where there are only specified linear stories. The viewer will have to

find the entire story.

Clip flags cannot be set. Although this would have been possible to implement, we

decided to maintain the abstraction that the clip structure could not be modified, mostly due to

security concerns for the server. Instead, authors can use global flags to create desired effects.

For instance, to achieve the effect of having multiple clips be counted as seen when one clip

plays, an author would use a global flag that is set to true any time one of that group of clips

plays. All the clips in the group would be predicated on that global flag's value being false,
meaning that none of the clips in the group had been seen yet.

There are also other types of flags that cannot have their values set. Instead, the values

must be supplied from another source. These flags represent factors the users cannot influence

by their actions, such as the passage of time or external conditions, like weather.

One type of flag that relies on external information is the relative timeflag. This allows

the author to set timing between clips. An author would specify a trigger clip and the minimum

and maximum amount of that can pass and associated this flag with a clip that would be

triggered. When checking to see if the clip can play, the system consults the clip table to find out

what time the trigger clip played and compares this with the current time to see how much time

has passed. If the amount of time passed falls within the specified range, the flag evaluates to

true. If the clip has not played yet, the flag is assumed to be true. (The author can add a clip flag

to force the trigger clip to have played). One example of the usage of this flag would be the

ending to "Another Alice". At the end, the viewer catches the killer as she is attempting to flee.

To simulate the effect of a chase, two possible ending clips were created, one where the killer

was caught, and one where she gets away on the train. The viewer five minutes to catch up to

the killer. To achieve this, each clip was created with a timing flag that triggered off the clip

where the killer started to escape. The clip where the killer was captured was given a time

requirement of less than five minutes, while the clip where the killer got away was given a

requirement of more than five minutes, to prevent the clips from overlapping. This idea could be

used to create an active game-style story or enforce pacing. For instance, if there are multiple

possible clips that could play at a single location, and they are not mutually exclusive, a timing

flag could be used to stagger them over time.

30

Sometimes, an author might want to focus on absolute rather than relative time. For this,
M-Studio provides flags that allow the user to set a range of dates and times that a clip can play

during. In M-Studio's flag structure, this date/timeflag is evaluated using date and time

information supplied by simulators. If the current time falls in the acceptable range, then the flag
evaluates to true. Obviously, these flags cannot be set because the user cannot affect the passage

of time. There are many uses for these flags. An author might want to increase realism by
providing alternate versions of clips shot at different times of the day to match the viewer's

experience. Or, these flags can be used in story structure. For instance, in "Mind in Hand",
there are several starting points set throughout the day. So, depending on what time the viewer

starts the story, different pieces of the story will play, allowing the viewer's day to be

synchronized with the day of the characters in the story. A viewer who starts the story in the

morning will see clips of characters waking up for class or going for a morning run, while a

viewer starting in the afternoon might see a character at lunch or working in lab. To implement

this, the clips were divided into groups of morning, afternoon, and evening. These groups were

all given flags corresponding to different blocks of time during the day. Thus, a user who spent

the whole day on campus could see the entire story, but the pieces would be spaced out across

the day.

There are other possible types of context information the server could obtain from clients

and keep track of. To support this possibility, M-Studio provides context flags. Contextflags

provide a generic framework for authors to associate clips with any other kind of context data

they need for their stories. Of course, this requires some advanced knowledge or contact with

the server and client. The server does allow for importing custom evaluators, but the author

would still need to find a way to get the context information to the server from the client. In M-

Studio, however, this kind of information can be entered directly by the user during simulation.

There are two kinds of context flags, one that handles numerical values and one that just matches

descriptive strings. The numerical flags exist for cases when the data being used will definitely

have a number value, like the current temperature, for instance. These flags are implemented

using the same framework as global flags, allowing the user to test the current value. The string

matching flags allow the author to implement any basic non-numerical context idea, such as

triggering clips based on the current weather conditions. These flags are based on multi-valued

flags, allowing the author to specify all the possible values that would satisfy this context

31

condition. So, if it were rainy, windy, or snowy, a clip might play of a few students on campus

complaining about the Boston weather. If it were sunny, they might instead be expressing relief

to finally have a nice day. This idea again leverages the mobile context-aware capabilities of the

platform to allow for more customization in a story. Another use for context flags could be a

multi-player game. The server could track the positions of all the players, and when two of them

got near each other, incite some event. To do this, a video clip for the event would be created

and tagged with a numerical context flag that represented a user's distance from another player.

The server would automatically update that value each time a user's position was updated, and if

it got low enough, that event would be allowed to play.

Even after creating flags, there may be a set of conditions under which there are multiple

clips available to the user at a given location. At this point, the server must choose which clip to

deliver to the user. There are several different methods the server could use. It could always

pick the first clip in the list. Or, it could pick a random clip to introduce an element of

uncertainty in the story. It could also use a rotating stack model, where after a clip is used once

in that situation, it is moved to the bottom of the list and the next clip used. This would ensure

that the same result is never given twice in a row. Another idea is to use heuristics to break these

ties. A heuristic is a particular semantic term associated with a clip. These terms are given

ratings within the clip. So, a clip dealing with a romantic subplot would be given a high rating

for romance, while an action-packed clip would get a high rating for action. Or, the terms could

refer to specific plot elements. For instance, in "Mind in Hand", you could create a heuristic

referring to the missing ring and associate it with all the clips that deal with the issue. Heuristics

are tracked just like flags. Each time a user views a clip, its heuristic values are incremented by

the ratings associated with that clip. This keeps a running score of the types of clips the user has

seen most. When the server has multiple possible clips at the same time, it looks at those clips

heuristics and rates them based on the user's scores. The clip that best matches the user's

heuristics is played. Since there is an element of user choice involved in these stories, this model

tries to pick the clip the user would be most interested in. For instance, in the case of the missing

ring, if a user had a high rating for the ring heuristic, it would imply that the user had been trying

to follow the ring plot. Therefore, the viewer would probably prefer to see a ring clip over any

other, to learn more about that story.

32

6.2.2 Creating and Editing Flags

In order to enable the users to create and edit flags, M-Studio provides a flag editor,

which allows users to view and change all the flags associated with a given clip. The flag editor

is sorted into three sections, one to edit requires flags, one to edit results flags, and one to edit

heuristics. The editor consists of two components, a flag table and an editing panel. The flag

table lists all the flags currently associated with the clip and their values. Selecting a flag from

the table opens it in the editing panel. The editing panels are customized for the given flag types.

For instance, the editing panel for clip flags provides users with a list of clips to choose from

while the global flag-editing panel allows a user to choose from a list of operations. This

interface allows the user to quickly examine and specify flag values, rather than using a direct

scripting language. The flag editor also allows the author to create new flags, or add existing

flags to other clips. Also, the author can specify a flag for one clip, and then add it to related

clips. The flag editor gives the option to add flags to all clips, or to clips in a particular time slot,

storyline, or location. For example, to create the previously described flag specifying what

characters had been met, one would first make a new multi-valued flag. In the flag editing panel,

one would specify that the character met in this clip was the character corresponding to the

storyline.

Requires Sets 'fHeuristics

FlgValue _
finale Clip Janette runs a.
seI.me 1= 15
notseen Not Seen Janette c
clipl sseern
previous seen Previous: Janette ru.,

Add Flag Start jf New Flag.

[,; (7ype : Clips Seen Clips Not Seen 4 Previous Clip Seen

Janette runs away David at Office
Isaac at Office
Isaac eats Lunch
David at Bldg 68
Janette at Office

PRnow David at Office aft
Janette Eats LunchI
David at Au Bon P
Isaac at Kresge 0
David meets Alice

Janette at Med Ce

Change this cip Delete

Close

Figure 8: The Flag Editor, shown here editing a clip flag

33

Then, the flag would be added to all clips in the storyline. This process would be

repeated for all storylines, and then specific clips where crossover occurred would be edited

manually. This provides a powerful capability. In essence, the author creates a rule for clips of a
certain type. Then, the storyboard uses its data structures to find all these clips and apply the rule

to them, simplifying the production process.

This idea was extended to allow the storyboard to automatically generate certain flags

that might be commonly used to structure stories. M-Studio can examine the structure of the

story grid and analyze what clips might precede and follow each other. So, as the user adds and

moves clips, it can automatically assign and update flags. Users can turn the flagging rules on

and off as they go, allowing them to create an initial flag setup, and then move on to fine-tuning.

One convenient rule imposes sequential time on all the clips. This rule assumes that any

events placed in the same time slot happen at the same time. Therefore, after seeing an event in

a certain time slot, the user can no longer see events from earlier time slots because they are

assumed to have occurred already. The user can jump into the future, but cannot backtrack in the

story. This is useful in any linear narrative, because it prevents the viewer from seeing clips out

of order. To generate this effect, the storyboard creates a flag, and places it in the requires clause

of every clip, requiring the flag's value to be less than the time index of that clip in order for it to

play. After each clip plays, the value of the flag is set to that clip's time index. This is easily

updated as clips are moved around the storyboard.

The other key structural element that the story grid can determine is which clips logically

precede and follow other clips. To execute a stricter linear narrative, clip flags need to be used to

enforce sequencing between clips. M-Studio can automatically generate flags to this effect if it

assumes that any clip that structurally precedes another needs to be seen in order for the clip to

play. It does this by looking for the previous clip in the timeline for the same storyline as the

given clip that has been inserted in the storyboard. It places this clip in the requirement clause of

a flag listing the clips that have to be seen. It then finds all the clips that would logically follow

it (if there are any) and updates those clips' requirement clauses to contain the inserted clip. M-

Studio can even detect opportunities for crossover between storylines. If there is another clip at

the same time and location as another possible preceding clip, it can also be added as another

option in the requirement clause. This can also be done with for stricter plots by sequencing

using previous clips. With this technique, a clip does not only require that a preceding clip have

34

been seen, but that it was the last clip to be seen. This method creates very tight plot lines, with

the only option for divergence coming at crossover points between two storylines.

To generate these flags, the storyboard relies primarily on the physical layout of clips

within the story grid. However, when clips are being moved or deleted, there needs to be a way

to find all clips that are related by flags that might be affected by these actions. So, the

storyboard maintains an additional graph structure to track relations between clips. The graph

consists of a mapping from parent clips to a list of child clips. Clip A is the parent of Clip B if

the requires clause of Clip B contains a clip flag or a timing flag that refers to Clip A. So,
whenever a clip is moved or deleted, the flag structure can quickly provide a list of clips that will

be affected by this action. The graph structure is updated any time a clip is added and when clip

or time flags are created or updated. When a clip is updated, its flags are analyzed, inserting

itself as a child clip where appropriate.

The graph also keeps track of possible entry points into the story. Entry points are clips

that can play before anything else in the story happens, when no other clips have been seen, and

all global flags are initialized to zero. When a clip is updated in the graph, it is checked to see if

it is an entry point. This is done by comparing all the requirement flags to initial conditions and

seeing if they would pass. Context flags are ignored because it is assumed that the circumstances

under which they would be met could occur at the beginning of the story. This knowledge of

starting clips is needed for the simulators to determine possible locations to start from.

Overall, the uses for the graph structure in this form are fairly limited. However, they are

necessary because determining which clips directly affect other clips would otherwise require a

search of every flag of every clip in the storyboard. To balance this tradeoff between memory

usage and speed, M-Studio only maintains a small graph of clip relationships. There are

obviously other relationships between clips that are not represented here. In theory, any two

clips that both modify and require the same flag can affect each other. However, this

information is irrelevant to making sure flag relationships are still valid when clips are

repositioned, so it is excluded.

6.2.3 Story Tree

The full scale of relationships between clips becomes important when a user wants to

view all the possible paths through the story. One downside to the storyline and location views

35

is that they do not accurately represent splitting in a storyline. For instance, in one of the finales

for Another Alice, the killer can either be caught or get away, depending on how quickly the

viewer chases after her. Both of these scenes involve the same character, so it would be logical

to place them in the same storyline. However, they are mutually exclusive, so they should not

follow each other in sequential order. Although the storyboard does not necessarily impose this

order with flags, the layout could still be confusing for the user. The author could create a

separate storyline to handle a character's diverging path, but this is cumbersome, and still does

not provide an easy-to-read visualization that the events in one path are happening instead of the

events in another, rather than just concurrently with them.

The tree view was created to address this concern among authors. This view represents

all the possible paths a user could take through the story in a tree form. Each node in the tree

represents a clip, and from that clip branches all the other possible clips that could be seen after

the current path had unfolded. This tree is a good way to see the effects of the flag settings by

allowing the user to view which clips can follow others. The author can also see where story

threads can branch and come together by opening and closing different story paths.

We do not maintain the entire story tree in memory because it can become very large and

change greatly when minor flag modifications are made. Therefore, it makes more sense to

rebuild the necessary portions of it from scratch when modifications are made. Also, this tree is

not needed for reference when straightforward modifications are being made to the storyboard.

The story tree only needs to exist in memory when the author wants to interact directly with it,

examining story threads and altering the flag structure. It is not a data structure used in the

backend of the storyboard.

The story tree is composed of nodes. Each node has a single parent node and a list of

child nodes. In this tree, each node corresponds to a clip. Since each node can only have one

parent, clips can appear many times in the tree. Each path is drawn out explicitly. To build the

tree, a root node is first created. The entry clips to the story are determined and they are added to

the root node. Each of these clips is now a leaf in the tree. This data structure is operated on

recursively. When it is called, it iterates through each of the current leaf clips in the tree. Each

of these clips has a story path from the root node. For each of these paths, a flag structure is

created, giving the state that would occur if the given set of clips had been played. For this state,

all other possible clips are tested to see if they would be able to play. All of those that could play

36

are added to the current leaf node. If no clips are found to add to the current path, the path is

completed and the end node removed from the list of leaf nodes. This process is repeated for all

leaf nodes. Then, the recursive process is called on the new tree structure. When no more clips

can be added to the structure, the whole tree is returned, encapsulated into one root node.

File Edit Insert View Tools Help

Start
9 David at Office

9 David at Bldg 68
9 David at Office after 68

9 David atAu Bon Pain
9 David rneets Alice at Office

9 David at Bldg 68wAlice
9 David at Med Center

? David at Walker
David at Office

9 Alice at Bldg 68
9 Janette caught at Office

9 Janette runs away
Janette escapes on T
Janette caught at T

9 Isaac at Library-Bldg 14N
Isaac at Office

9 Isaac at Office
9 Isaac eats Lunch

9 Isaac at Kresge Oval
9 Isaac at Bldg 68

9 David at Office after 68
9 David at Au Bon Pain

9 David meets Alice at Office
9 David at Bldg 68 w Alice

9 David at Med Center
9 David atWalker

Cli 1Kv r ~o

ii

Figure 9: The Story Tree for "Another Alice"

37

La ations

* Bldg 68
UT Station
OAu Bon Pain
O Med Center
ED/Walker

EStudent Center
E Office

Library--Bldg 1 4N
Kresge Oval

iril X1_=_1.=j -

The resulting graph will vary in size depending on the nature of the constraints placed on

the story. If there were no constraints on a story except that the clips were not repeatable, the

number of possible paths through the story would be equal to the factorial of the number of clips

in the story. Of course, a story that explicitly specified many possible preceding clips could also

be quite large. In contrast, the internal graph structure of an unconstrained story would be

empty, while the graph for the widely constrained story would be quite large.

To reduce the amount of computation needed every time the story tree is altered, the tree

can be rebuilt from a specific point. So, if a clip in the graph is edited, the tree assumes that this

will not affect the ordering of the clips in the path before this clip. This results in a smaller

portion of the tree that needs to be built. To do this, M-Studio refers to the graph structure to

find all the current parent clips of the clip being edited and starts rebuilding from those points.

In addition to allowing for conventional editing functionality, the story tree also allows

for further automatic flag generation using the adding and removing of connections between

clips. When one clip is dragged or pasted onto another, M-Studio tries to make that clip the child

of the clip it was dropped on. It does this by creating a clip flag, making a parent-child

connection in the graph structure and removing any negative clip flags that would prevent one

clip from following another. Of course, this will not necessarily have the intended effect, as

other global flags might be interfering in the ordering. Similarly, removing a connection only

deletes any clip flags that might tie the parent and child clips together.

6.3 Simulation

From the beginning of the development of M-Studio, it was clear that a static visual

representation could not fully capture all the possible ways in which a story could unfold. An

author could look at individual threads in the storyboard and see where paths could cross, but it

was difficult to immediately understand what would happen if the viewer took a certain path

through space and time. Also, there way no way to get an idea what the user experience would

be in watching a certain path without manually playing each clip, one by one. The creation of

flags and additional context data only further complicated the issue. An author needed to know

if the flag structure was creating the desired effects, and ensure that clips were not being shown

out of order. Even when the general order was correct, an author needed a way to determine if

the sequences made sense, even under certain conditions, like when a user may have missed a

38

piece of the story. For instance, at the end of "Mind in Hand", two characters who are supposed

to meet for a blind date are shown missing each other on their way to meet. However, if viewers

have never seen any clips related to their date, they have no way of knowing that there is any

significance to this event. To address these difficulties, a set of simulation tools was created.

The story simulation tools are all built on the same interface. When a simulation is

started, a new, empty flag table is created. The simulation interface queries the flag table with

location and context data, much like the M-Views client would query the server. The flag table,

which also maintains a mapping from locations to clips, first finds a list of all the clips that could

play at the requested location. It then iterates through these possible clips and checks their

requirement flags against the current state of the flag table with the extra given context

information, if provided. It maintains a list of all the clips that pass these flag tests. If there are

multiple clips that could play at this time, it then arbitrates between them, first by picking out all

the clips that are in the same storyline as the previously seen clip. (This action represents the

assumption that the user is attempting to follow a particular storyline). If there are still several

choices, it will make its choice by picking the clip that would logically follow the previously

seen clip according to time slot.

If there are no clips from the same storyline as the previous clip, M-Studio will try to use

heuristics to decide between clips. For each clip, a score will be computed based on how well

the clip's list of heuristic values matches the current heuristic table, which represents the

categories that the user has shown interest in so far. This score will be calculated by treating the

clip's and the user's set of heuristic values as a vector (with zeroes for any values that are

unspecified) and taking the dot product. So, a clip that is rated highly in categories the user has

shown interest in will produce a higher score that is rated higher in other categories. The clip

with the highest heuristic score will be returned. If there are no heuristic values specified, M-

Studio will again refer to relative time slots to narrow down the list, and then choose a clip at

random.

After a clip is selected, the flag structure acts as if it has been played, and updates the flag

table accordingly. Each flag in the results clause of the selected clip is evaluated, and the

corresponding entry updated according the specified operation and value. The categories in the

heuristic table are also incremented by the amount specified in the heuristic list of the clip. The

simulator interface can then query the table again with new location and context data. When the

39

simulation is complete, the flag table will be set back to its empty state, ready for a new

simulation.

Based on this model, the simulator interfaces must gather context information to query

the flag table with, and present the resulting clip back to the user. M-Studio currently provides

two such tools, the story simulation and the map simulator. The story simulator allows for rapid

playback of possible sequences through the story, while the map simulator tries to emulate the

end user experience.

6.3.1 Story Simulator

The story simulator provides the author with a timeline to enter a sequence of locations

and other context data. The simulator then produces a sequence of the video that would be seen

by an end user who took that path. This tool allows for the easy viewing of sequences. The

author can enter locations into the timeline by simply clicking on clips in the storyboard. Entire

storylines can be entered automatically, allowing the author to watch the entire path of one

character, or check that the flag settings are allowing this path to unfold properly.

File Edit

UBldg 68

Location Path r P
Fie View Play Tools Help

* U144 44 O WH4

Figure 10: The Story Simulator, in timeline view, simulating "Another Mlice"

40

This tool is also useful for examining sequences that cross between storylines. When

crossing into one storyline from another, a viewer comes into that story with a lack of knowledge

about what has previously happened. Authors would want to check these sequences carefully for

continuity and understandability. Also, the author might want to check the effects of changing

context and time information on the story. For instance, the ending of "Another Alice" is time

dependent. This tool would allow authors to compare the results of a path that reaches the final

location quickly versus the path that reached it slowly by entering in two different times at the

ending location.

The story simulator uses two different views. The timeline view allows a user to quickly

enter a series of locations. The location table view allows a user to specify what the exact time

and contextual conditions would be as these locations were visited. In the table view, each cell

can contain a list of values for the different types of context information used by the story, with

the column of the cell denoting which location this event takes place at and row representing

sequence in the timeline.

File EM Simulate View Qptions

Bd 6 TStationAuBon Me Cente Walker ;Student Oente Office rarIres e

weather: sunny

Date: 1:01 AM

F DateisAM C

Figure 11: Specifying Simulation Constraints in the Location View

41

To ease the task of entering context information, default values can be set, and the times

can be automatically generated off a starting time, based on time slots. The timeline view and

table view are synchronized, so the user can easily switch between them. If the user has entered

in a path of locations in the timeline, and date or context information is needed, the user is

prompted to enter that information before simulation begins, and those values are used as default

throughout, with times incrementing at one minute per slot in the timeline.

To produce the simulation, the simulator queries the flag table as previously described

with each piece of location and context data. It keeps a list of the returned clips, and then builds

a simulation based on the type of clip that is used. If the clips are all video, a temporary WVX

play list is created and launched in Windows Media Player, allowing the author to view the

entire sequence. If entirely text and image clips are used, they are joined together into a web

page, producing a kind of script for the whole sequence. If a mixture of video and text clips is

used, they are combined by embedding Media Player elements into a web page along with the

text and images.

6.3.2 Map Simulator

The goal of the map simulator is to allow an author to understand how a story unfolds in

space and time without actually playing it on the client. Obviously, no desktop simulation can

reconstruct the mobile experience, since one of the platform's major objectives is to exploit the

viewer's surroundings in the video experience. Also, desktop simulations cannot detect technical

subtleties, such as the actual quality and range of location detection systems. Clearly, story

creators should execute a physical run-through of a production before widely releasing it.

However, it is not feasible to do this every time the story structure changes. Narratives like

"Mind in Hand" are intended to unfold over the course of an entire day, making it impractical to

physically simulate it all at once. The map simulator allows the author to interact with an

animated map and adjust time and context information as the story plays out.

A map simulation begins with the user selecting a starting point for the story. After the

introductory clip plays, the map simulator asks the user to select where to go next and supply the

current time and context information, as needed. When the user selects the next location, a

marker appears on the map and "steps" towards the next location. When it arrives, the flag table

is queried with the current context information. If there is a clip at this location, it is played.

42

Then, the user is prompted to enter the next location. This interaction allows the user to better

understand how clips are related to their locations and how a viewer actually has to traverse

space to see a clip. Actually viewing the map may also help detect technical difficulties, such as

sequential clips that are situated at locations spread too far apart. Although the map simulator

does not directly detect this, the author might also notice that another location is passed by quite

closely when a viewer moves between two other locations. This could cause other clips to be

triggered. Furthermore, the map simulator solidifies the idea of decision-making on the part of

the viewer and how this impacts the structure of the unfolding narrative.

Outdoor Indoor
1-1 : 7 lvr

: 1 01 AM

I xat Waker

OK Cancel

1<W

A..'iI.iiL .. L.....

6 I

GPS W reless

r1 Office

Pd 42 360532

LonI tdE e-71,08847

Change color...

Change Map..

Change Delete

Clear Close

*Bldg 68
ETStation
EAu Bon Pain
[Med Center
IMWalker
N Student Center

SOffice
Library--Bldg 14N

* Kresge Oval

Figure 12: Map Simulator

43

IA

I
if' I

....

6.3.3 Storyline Generation

Although simulation was always a necessary component of M-Studio, the creation of the

flag structure made it even more critical. An author needed a way to test that the flag setup was

producing desirable story paths. An incorrect flag structure can both allow for unwanted paths

and prevent logical paths. Furthermore, it is hard to actually predict which paths should be

allowed without actually seeing them. Although it is possible to test all the different paths

through the story with the story simulator, this would be cumbersome, particularly for a loosely

constrained story with many events. Therefore, M-Studio needed a way to generate all the paths

through the story automatically, allowing the user to quickly understand the scope of the

possibilities for the viewer experience and identify problems. Thus, the path generator was

created to parse all the possible paths through the story structure. Since the number of story

paths could be numerous, it also gave the author the ability to generate paths subject to

constraints of location, time, and context.

The story tree, which gives the author the ability to view paths through the story and

directly manipulate flags, was actually built using the path generator. So, the path generation

algorithm is similar to the one previously described. However, instead of using nodes, it builds

up individual paths. When there are no constraints, the generation function starts off with an

empty flag table and a list of all the clips in the story. It then determines which clips could play

under these initial conditions by evaluating flags. It then creates a path for each of the possible

starting clips. The generating function is then called recursively with each of these paths. Each

time the generating function is called, it evaluates the given path to update the state of the flag

table. Then, it again looks through all the possible clips that could be next in the path and finds

those whose flags allow them to be added. For unconstrained generation, context flags are not

used. However, timing flags are evaluated. To do this, the generator assumes that one minute

passes between seeing two clips. If a clip fails because less than the minimum amount of time

needed to meet a timing constraint has passed, the function will increase the time increment until

the flag evaluates to true. The time that each clip would be able to play is saved along with the

clip when it is added to a path.

44

Fle Edit Simulate View gptions

124

I~~ 4 i

Figure 13: Story Paths for "Another Alice"

After the generator has determined a list of possible clips, it creates a new path for each

clip by adding them to the previous path the generator was currently working on. The generation

function is then called again on each of these new paths. When the generator finds that there are

no further clips to be added to a path, it adds it to a list of completed paths and goes on to work

on the next path. Of course, it is possible for the viewer to stop the story part way through a path

45

U Bldg 68
UT Station

EJAu Bon Pain

l Med Center
EWalker

1 Student Center
O Office
M Library--Bldg 14
* Kresge Oval

- UM _? j

and never reach the end during actual playback, but the generator will keep adding clips as long

as they are available, just like the user would continue to receive clips as long as they played the

game. When all paths are completed, the list of paths is returned to the simulator. The display is

simple, with each path laid out in a table, with the option to play each one. The clip display is

the same as the one used by story layout panel, allowing the user to see the clip's location and

title or thumbnail image.

To optimize the search, the generator tries to immediately eliminate clips it knows that

cannot be played, given the last clip in the path, before passing the new path to the next round of

generation. For instance, if the last clip is not repeatable, it is eliminated from the list of possible

next clips. Or, any clip that requires a previous clip that is not the last clip seen is removed.

Similarly, any clip that requires that the last clip not be seen is eliminated. For a well-specified

story, these optimizations provide a dramatic speedup. For less specified stories, the overall

performance decreases slightly.

Large and unconstrained stories can generate a huge amount of possible paths. To handle

this issue, the storyline generator produces 150 paths at a time. When it reaches the limit of

paths, all calls to the generator are saved with their current state. It then notifies the user that

there are more paths to be seen. The user can then restart the generation after examining the

current set of paths. If clips are repeatable, then a path could theoretically be infinite. To

prevent this, M-Studio places a constraint three times the total number of clips in the story on the

length of any possible path.

6.3.3.1 Generating with Constraints

Although it is important to understand the scope of all the possible paths that can unfold

during story play, an author may be more interested in what is possible under a specific set of

circumstances, particularly in the cases when the total number of possible paths is large. So, the

storyline generator allows users to generate subject to constraints of location, time, and other

contextual information. This information can be entered directly through the story simulator's

user interface. The author can then select any combination of the three types of information, and

generate all the possible paths that would occur, given those conditions.

Since location is a key component to all M-Views stories, it is clear why an author would

want to know all the possible story outcomes for a particular path through space. Location is

46

also an easy way to narrow down a large set of paths. Or perhaps, the author knows that the user

will always start at the same place, making storylines with other starting points irrelevant. The

storyline generator allows the author to specify a complete or partial path through space, and find

all the possible storylines that could unfold given that path. When the generator looks at the path

the user specified, it assumes the locations correspond to an ordering. Therefore, the first clip

played in the path must be at the first specified location, with the second clip at the second

location and so forth. If a slot in the timeline is left blank, it is considered to be a wild card.

This means that a clip can be seen at any location between the previous location and the next

location. However, there could also be no clip that played between these two locations.

Similarly, if a user left three blank slots between two locations, then at most three clips could

play at any location between the two specified locations.

The generation method with location constraints works similarly to unconstrained

generation. It first checks flags to see what clips could play under the current user state. If there

is a location constraint specified for this slot in the story, then it must be met for the clip to be a

possibility. Also, each path must be sure to match the given location path before it can be

confirmed as a viable path through the story. To match the pattern, it goes through each location

constraint one by one to see if it is met by the appropriate point in the story path. If the path

matches, it can continue to be operated on. This search also performs the same optimizations as

the unconstrained search. However, for each slot with a location constraint, it can quickly reduce

the number of clips it has to search by only checking clips at the given location.

Time information can be used on its own or in combination with the location information.

Time can be useful to help focus on a specific set of paths for a story. For instance, in "Another

Alice", the viewer is assigned a character to start following based on the time of day the story

starts. So, specifying a start time would allow the author to focus on one character. For "Mind

in Hand", the day is split up into three discrete sections based on time. So, time constraints

would allow the author to analyze one section of the day at a time. When locations are involved,

those constraints are evaluated first. Then, it is determined if a clip could play at the specified

times. As with location generation, the entire path can be explicitly specified, or wild cards can

be used. With a time wild card, any clip is allowed, so long as that clip can be played between

the previously and next specified times. If there are multiple wildcards, a one-minute spacing

between clips is assumed. For instance, imagine there were two time constraints, each associated

47

with a location, one at 12:00 and the other at 12:06. They are separated by three wildcards. If

the generator were to find a wildcard clip that played at 12:05, the next clip would have to meet

the 12:06 time constraint and the associated location constraint, because there would be no time

for another wildcard clip to play. Without locations, the time-based generation still follows the

same wildcard rules. The time specifications are also used in evaluating timing flags. So, when

determining how much time has passed between two clips, it will look directly at the specified

times.

Context-based generation can be used for the same reasons as time-based generation, to

narrow focus on particular story paths. Or, it can be used in combination with location and time

constraints to evaluate a particular set of circumstances. Again, context constraints can be fully

or partly specified. When a slot in the specification is left blank, all context flags are ignored

during evaluation. If the context for a particular slot is not fully specified, and a flag refers to an

unspecified value, the flag is evaluated to false.

6.3.3.2 The use of storyline generation in "Another Alice"

One practical example of the usefulness of the storyline generator is the creation of two

different flag structures for "Another Alice". This story was created for the original server

structure, and thus did not have any direct flag specification. However, there was a general idea

of how the story should work. The story always starts out with the viewer receiving an email

telling them to go to the office. There, the viewer meets one of three characters, depending on

the time of day. At the end of every clip, the characters tell the user where they are going next,

though they are not always truthful. Characters had independent story threads, except when they

were at the same place at the same time as another character. Users could only see scenes from

one storyline until they met another character. Then they could see scenes from either storyline.

Also, one of the possible endings involves the viewer chasing after the suspected killer. The

ending depends on whether the user arrives at the final location fast enough to 'catch' the killer.

The first attempt at a flag structure for the story assumed that the user would go where

the character told them. Thus, in order to see one clip, the viewer would have to have seen the

clip before it, except in crossover situations, where there were two possibilities for the previous

clip. Thus, the entire story was implemented using clip flags requiring the previous clip. Time-

of-day flags were created to decide which introductory clip would be shown. The finale was

48

implemented using timing flags. The overall story was very easy to create using a few custom

timing flags in addition to the automatically generated clip flags. A quick check in the storyline

generator showed there were 18 possible paths through the story, and each one made sense. This

was somewhat interesting, because by the original author's estimation, there were only 12 paths

through the story, again highlighting the importance of automated testing. However, this made

for a very narrowly constrained story. It did not allow the viewer to miss clips. If the user did

not follow the character's directions, the story would simply stall until the user went to the right

location to get the next clip, even if, according to the idea of the story, there could be something

happening at the user's current location.

To make the story experience closer to the original intent, a new flag structure was

created. The time flags to choose a starting point and the timing flags to create the ending stayed

in place, but all the clip flags were removed. Instead, a multi-valued flag representing characters

met was created, and added to each storyline. The crossover clips were updated by hand to allow

for viewers who had met either character in the clip to view it. The sequential time flag was also

used so the clips would still execute in order. This setup seemed to capture the original design

for "Another Alice" much better than the first flag structure.

However, doing a storyline generation on this version revealed that the total number of

paths through the story had jumped from 18 to a few thousand. It quickly became clear that

several undesirable effects were occurring. One problem that immediately became clear was

more of a technical one. It was possible for clips that occurred at the same location to all happen

in a row. Given the design of the client, which queries the server every five seconds, it would be

almost impossible to get away from a location hotspot quickly enough to not receive all the clips

at that location at once. One way to deal with this would be to create a flag that keeps track of

the location of the most recent clip seen and have each clip require that the previous location

visited was not the same as the location for the clip. A less restrictive model could instead use

timing flags, and enforce a minimum amount of time that has to pass between clips at the same

location.

Generating with location constraints revealed another problem. When there were clips in

the story that played at the same location, it was possible to get a later clip before an earlier clip,

jumping the user ahead in the story and preventing them from ever seeing the early clip. To

49

avoid this, a flag was created to determine whether or not the early clip could still play. If the

early clip was still available, then the later clip could not play.

Another major issue was that while the remaining storylines were still technically correct,

they were ultimately unsatisfying. If the user happened to wander into the location of a clip that

happened late in the story, time was pushed forward and the bulk of the story was missed. To fix

this issue, a flag was created to track the number of clips that had been seen so far. Each clip

was then associated with a minimum number of clips that had to have been seen in order for it to

play. So, if the user had just started the story and walked through the location of the final scene,

it would not play until the user has viewed more scenes.

The final version of "Another Alice" approximated the desired results more closely than

the first version, but it required a significant amount of changes from the original plan. This

highlights the need for an author to carefully test the story structure before publishing the story to

the server. The effects of flags are difficult to determine by hand, and the author can often be

hampered by assumptions of what valid story paths should be.

6.3.4 Tree Explorer

In order for the author to be able to better understand how the user decision process

affects how a story unfolds, we created the tree explorer. This tool allows the user to see all the

possible clips that can be seen at any time in a story path. The user can then select a clip and see

how that decision effects how the rest of the story unfolds.

When started, the tree explorer determines all the possible starting clips and displays

them. The user can then select which one to start with. The explorer then evaluates what all the

next possible clips could be, given that the user made that first choice. It determines this by

checking all possible clips against the flag table, just as it does when it is building the story tree

or generating story paths. These options are presented to the user, who can then select another

clip to add to the path. If at any time, only one clip is available, the explorer will automatically

add it to the path, and find the next set of possible clips. This process will continue until it has a

choice to present to the user.

Since the tree explorer prunes possible paths as it goes, it requires far less memory and

time to run than the story tree or the storyline generator, making it a good solution for stories that

are too large to be viewed as a whole story tree. It also provides an easy way for authors to

50

visualize what the possible choices could be available at any given time. They might discover an

unwanted choice is present, or that a clip is being unnecessarily restricted. The explorer also

provides a mechanism for the user to back up as far as necessary in the tree so they can see what

would happen if a different choice had been made.

Options
Bldg 6 T Stton Au Bon P Med nte Walker Studen enter Office iar g 4 KreseOval

Janette at Office

F Jan t te tr LunE

.anette aM a aCe

Jnette at 68

a s . s s te y t y ftath libsrasw
Janette t ftudentb'

Janette at Walker

WieBld68

ei anette caught at

janritte runs away:

Janettecaught;

Figure 14: The Tree Explorer

6.4 Server Communication

Communication between M-Studio and the M-Views server was designed to be as simple

as possible. The server is contacted only at the very end of the story creation process, when the

author is prepared to publish the story. This eliminates most of the burden of handling M-Studio

requests from the server, and allows authors to use the authoring tool without an active network

connection.

In the server model, a story is comprised of a list of events that are associated with

locations. Each event also has requires and results flags, just like in M-Studio. Every time the

client queries the server with context data, the server first determines if the client is at a location

where it could receive events. If it is, the server examines all the events at that location and

determines which ones could play given the current user state. Ties can be broken using

51

heuristics or a random selection model. If an event is sent to the client, its results flags are

evaluated and the user state is updated.

We decided on an XML schema for communication between the server and M-Studio.

M-Studio iterates through all the clips in the storyboard and formats them as server events to

produce the XML document. This document is then sent to the server along with all the media

content for the story. The server then stores this XML story script until a client requests to play

the story. It then parses the script into story events so it can start evaluating queries from the

client.

All the information needed to create an XML story event is contained in an M-Studio

clip. To describe the process of creating these events, we will refer to Figure 15, an XML story

event from "Another Alice". Each story event must be tagged with an identification number, so

the clip's own unique ID is used. Within the event header, there are several fields. M-Studio

generates the context field by looking at the location associated with the clip. Within the

implementation of each location type, there is a function to produce a string describing the

location in a form the server can understand. In this story, GPS was the location detection

system, so latitude and longitude coordinates represent the context. Along with location, it is

specified whether or not the clip is repeatable. These two pieces of information are in the event

header to allow the server to quickly narrow down the choices for a particular query before it

starts parsing flags. The story field is used to keep track of what story events are coming from

when an end user is subscribed to multiple stories at once. This field is derived from the name of

the M-Studio file. The remaining fields in the header are used to create the message to send to

the client, which was designed to resemble an email browsing program. All the fields except the

subject will be filled in automatically when the server sends the event to the client. The subject

field is derived from the clip's title.

<ID24 Context="42.3595596,-71.09008984" Date=""
From="" Repeatable="false" Story="alice" Subject="Isaac

eats Lunch" To="">
<Requires>

<_ expr="?LS" value="ID25"/>
<seqtime expr="LTE" value="1"/>

</Requires>
<Message>

<MediaURL>
/alice/F-Isaac Walker Foodl-13.wmv

52

</MediaURL>
<Text>

Isaac tries to enjoy lunch at Walker,
but runs into some unexpected company.

</Text>

</Message>
<Results>

<seq_ time oper="="1 value="2"/>

</Results>

<Heuristics>

<Food value="3">
</Heuristics>

</ID24>
Figure 15: A sample XML story event

After the header, the XML object is divided up into four subsections. The first section

corresponds to the requirement clause of a clip. It contains a list of requirement flags that must

all evaluate to true in order for the clip to be able to play. Each requirement flag is tagged by the

flag name. In the case of special flags, like clip flags, timing flags, or date and context flags, the

null tag is used to point the server to a special evaluation function stated in the expression field.

In the case of clip flags, the expression ?L S tells the server to refer to its user state table of clips

that have been seen, and find which was the last clip to play. The server will then see if its ID

matches the value required by this flag. The second required flag is the sequential time operator.

This is a global flag, so it simply looks up its value and determines if it is less than or equal to

one, in this case.

The next part of an event is the message. This is used to create the message object that is

sent to the client and displayed in a user's inbox. In addition to the message headers already

specified, each message can also have a text component and a media component. When a

message is opened on the client, its text will be displayed. The user can then press a button to

open the associated media file in the appropriate player. The text is taken from the notes the

author enters about each clip. The media URL refers to the location the clip will be placed on

the server when it is uploaded.

After a clip is sent to a client, the results section of the event is evaluated. Results flags

work like requirement flags. They are tagged with the name of the flag they modify. Clip flags,

timing flags, and context flags cannot be updated. Like with requirement flags, there are two

53

fields, an operator and a value. The server will retrieve the current flag value and update it by

applying the requested operation with the given value.

The final section is optional. It allows authors to specify heuristics to break ties when

multiple clips can be played at the same time. A heuristic is specified like a flag, except it only

needs one field to specify its value. This value will be used to determine the best match when

the server is picking clips. It will also be used to update the current heuristic values when a clip

is played.

The full details of the XML schema with all currently supported keywords and operations

can be found in Appendix A.

Once M-Studio has generated this XML document, it will contact the server. The server

will create a directory for the story, and M-Studio will upload the story script along with all the

media content. The server will then make the story available for subscription by M-Views users.

7. EVALUATION

Evaluating M-Studio is a challenging task. Although scenarios can be created to test the

usability and intuitiveness of the tool, these tests do not address the issue of how M-Studio

affects the task of story creation for the mobile platform. To truly understand these issues, we

must examine the role of M-Studio in the development of actual mobile cinema productions.

Therefore, the evaluation of M-Studio has focused on its use in the two M-Views productions,

"Another Alice" and "Mind in Hand".

"Another Alice" was designed for the first iteration of the M-Views server, which relied

on strict storylines and absolute time along with locations when choosing clips, so flags were not

used. M-Studio was still in early development at this point, so only the main storyboard and

story simulator existed. To evaluate the tool, we asked the author of "Another Alice" to use the

storyboard to build her version of the story. She had no problems doing this, because the story

conformed very well to the model of distinct storylines and it unfolded in absolute time. She

found the interface for associating clips with locations to be intuitive. After looking at the

storyboard, she commented that the story would have been designed differently had she started

off using this tool. She said that had she designed the story with M-Studio, she would have made

it denser, so there were fewer time gaps between clips. She also said she would have made it

more complex, adding in more crossovers. She commented that she had been trying to do a

54

similar grid layout on paper, to help visualize the crossovers, but that it was difficult to do. The

simulator was useful to viewing sequences of clips together, but because the crossover was so

strictly defined, there were no unexpected results.

Another lesson learned in the field evaluation of "Another Alice" is that M-Studio cannot

completely replace field tests. While M-Studio is useful in understand story structure, it cannot

simulate some of the more practical aspects of the mobile experience, such as GPS signal being

blocked by buildings or going too far out of range to receive wireless signal. The story

developers must investigate all these issues when they decide where to place their story in space.

After the new server was developed and the flag system was introduced, "Another Alice"

was updated to fit this new model. As described in the earlier section on storyline generation, it

was not immediately clear what the best flag structure would be for the story, and it took a great

deal of testing to finally determine the optimal setup for capturing the original intent of the piece.

It was obvious that the addition of the flag structure, while adding much needed flexibility, had

complicated the design process. Now, the author did not just have to layout the clips in the right

order, but had to understand the subtler aspects of the story structure. Automatically generated

flags made it easy to create a fast prototype of the story structure, while the generation tools

helped to analyze that structure and find what changes were needed. So, while the new flag

structure added complexity to the design process, the additional tools in M-Studio preventing it

from overwhelming the user.

The development of the flag structure was also a major issue in "Mind in Hand". One

major goal of the story team was to produce each clip so that it could stand alone as a mini-

movie in the story. So, theoretically, the overall story structure should not have been affected by

the content of each clip. The initial plans involved five major storylines, each corresponding to a

major character, who was the primary star of a clip. The issue then became how to time these

clips. Each storyline had its own order, but the clips had to be ordered in relation to clips in

other storylines. The design team initially thought they needed fewer timeslots than they ended

up using, because they did not realize how explicitly clips would need to be sequenced to

produce the desired effect.

At first, the clips were divided into three time periods, morning, afternoon, and evening.

However, within those periods, they needed to be laid out with respect to each other. For

instance, one character's morning focuses on him going for a run. Since this takes place over

55

several clips, they could not all happen at the same time. Furthermore, a user could not see the

first clip of him tying his shoes in preparation for the run after seeing him running already. So,

sequential time was used within each of the three major blocks to prevent seeing clips out of

order. This became our initial prototype for simulation.

Simulation raised several issues. One major point was causality. For instance, one of the

final clips of the story involves one character returning a ring he found to its owner. It was

discussed whether or not a user should be able to see this clip without having seen any of the

previous clips pertaining to the ring. While all the scenes for this story were designed to work as

standalone scenes, there are story arcs that travel through the story. The question became

whether or not to enforce them. Also, there was the issue of the time buckets. A user who

shows up late in a time division or turns off his or her iPAQ for a period of time can miss many

clips. Also, the sequential time model was preventing some backtracking that did not result

incoherent storylines. Furthermore, simulation showed that if a user went to a location from the

last time slot of a block, no more clips could be received until the next time block started.

Clearly, a different model was needed.

The next proposed model involved starting the story based on time of day, but then

requiring a certain number of clips to run to switch time segments. This would give the time

ambience effect desired by the authors, but not trap viewers in a particular time of day.

However, this conflicted with another important goal of "Mind in Hand", to encourage

messaging between users. If an absolute timeline were used, the users would be having the same

experience at the same time, and would be more likely to share and discuss it. This would be

less likely to occur if the stories were happening asynchronously. This is a point that was not be

revealed through simulation, but rather through some knowledge of the design of the client and

messaging system.

Another idea for handling the time issues was to trigger clips off the time that had passed

from when the user started the story. This would require the use of numerical context flags and a

custom evaluator for the server. This would prevent users from getting stuck in a certain time of

day, while also keeping them from leaving a time block too quickly and missing out on a large

chunk of the story. It was also decided that the time blocks were too large for the amount of

content that currently existed. A denser and more realistic experience could be had by breaking

time into smaller pieces. This would also eliminate much of the need for a strict sequential time

56

operator. The possible bad orderings that could still exist would be easy to detect with the

storyline generator and could be fixed with individual flags.

File Edit insert View Tools Help

y tBldg 1
*8Bldg 26

e sketch sketv he met i C Bldg 68Stata kiiiiqn Ngilt -n no
_----- ----- rLobby 7

Claudia Claudia East Campus

Co od athena f Killian Court

Ock*Kendall Square
StE Mass Ave
S Media Lab

Fred Fred Student Center
doesraIker
hack nose

Figure 16: A preliminary storyboard for "Mind in Hand"

A major benefit of M-Studio in this production was that the effects of these different

structures could be easily simulated from the desktop. After entering the basic story paths, we

could produce many different versions of the flag setup and run simulations on them. The

simulator allowed us to input location and time information, so we could recreate many different

possibilities that we were considering to ensure that users got a desirable experience no matter

how they used the device. One major goal of "Mind in Hand" was that it could be enjoyed by

anyone visiting the campus. This meant that the story had to accommodate people who had to do

things other than chase after clips in the story. M-Studio's ability to generate paths constrained

by times allowed us to create a simulation where the user turns the iPAQ off for an hour. This

simulation could be saved and tested all the different story structures. Using the map simulator,

we could follow several different likely paths through campus to see how an ordinary user might

travel through the story. This allowed us to see if these paths produce a compelling storyline or

57

if a user had to go out of his or her way to find key pieces of the story. Although it is impossible

for an author to predict all the different scenarios in which a viewer will user the device, being

able to see the results for a given path is a powerful tool. Doing physical, real-time tests with the

iPAQ would be very time consuming, particularly for a story like "Mind in Hand", which is

intended to unfold over the course of a day.

Also, since the video for "Mind in Hand" was being edited while this evaluation process

was occurring, the ability to make text clips was a convenient feature. All the scenes were

entered with text comments from the story scripts. As more video became available, it was

easily placed into the story. Laying out "Mind in Hand" was also easy, even though it was not as

linear as "Another Alice". There was still a fairly strong structure based on storylines, although

there were several clips where we had to decide which story to place them in because they

included more than one main character. M-Studio's interface for manipulating clips within the

storyboard made the task of rearranging clips' timing with respect to other storylines fairly

simple.

Since software development for M-Studio has been taking place concurrently with story

development, it has not been possible to examine a case where authors used M-Studio

extensively in pre-production. It would be interesting to perform a test in which authors actively

used the tool from the beginning of the creation process and compare the results with a test

where it was not used to see how it would influence story structures. Would it cause people to

impose unnecessary constraints on their story creation? Would authors plan their scenes

differently when they understood the many possible sequences that they seen in? An author

might approach a scene differently knowing all the different events that might lead up to it, and

what different pieces of information a user might have when viewing that scene. The author

might decide that there should actually be different versions of the scene that depended on the

previous path taken.

Another goal of "Mind in Hand" is that it be evolving. The hope is that other story teams

could produce their own segments about MIT campus life in the past, present, and future. As

these segments are added into the story, a complex and changing web should emerge, creating an

ongoing and expanding experience for visitors to campus. Clearly, M-Studio will play a role in

the creation of this story web. Will the visual interfaces to the story allow new creators to find a

58

place to incorporate their content? What other tools might be necessary for authors to integrate

and connect separately produced stories?

To fully understand the implications of M-Studio and the M-Views platform, long term

study will be needed. When M-Views if fully and publicly deployed, we will be able to see the

effects of M-Studio on independent user content creation. Will people take advantage of the

tools provided to produce their own content for the M-Views system? What will this content

look like? Most importantly, will this supply of original content attract more users to the M-

Views platform?

8. FUTURE WORK

Evaluation showed us that the most challenging part of developing the story seemed to be

selecting an appropriate story structure and designing a flag setup to produce this structure.

Therefore, one area of future work for M-Studio should be to provide further flag generation

tools. Presently, flags can only be generated on explicit structural elements, like relative

ordering, crossover, and location. It would be more desirable to be able to generate structure

based on narrative elements within the story. To do this, users could annotate their clips with

semantic information. This information could be used to imply connections between clips that

do not have any obvious relation in the physical story structure. For instance, in Mind in Hand,

if each clip focusing on the ring was annotated as such, the tool could suggest flag connections

between those clips. A rule could then be created to enforce an ordering amongst clips that refer

to the same plot point. To further extend this idea, the semantic annotations could be combined

with a common sense reasoning tool, allowing M-Studio deduce structural elements, like that

finding a ring would have to precede returning a ring. This would take some of the burden off

the author in determine how to arrange flags to express such connections.

The use of semantic information will also make stories more extensible. One goal of

"Mind in Hand" is that it be an evolving story web that can be contributed to by many story

makers from the MIT campus. If the web grows very large, however, it will be difficult for new

contributors to find places to insert their storylines. However, if annotated, the creators will be

able to search the web for pieces that refer to similar topics as they ones they are considering

making stories about.

59

In the longer term, we hope to be able to construct multi-player context-aware narratives

using M-Studio. Although the server currently allows messaging and video sharing between

users, it does not allow them to actively collaborate in a situation where one user's actions could

affect another user. This idea could result in a very compelling interaction model where users

work could together to follow different paths through the story, or compete against each other in

a real-time, mobile game. However, the addition of these possibilities can make storylines even

more unconstrained, and places an additional burden on the story creator. To help the author

tackle these issues, M-Studio would need to provide a way for authors to predicate clips on

conditions shared globally throughout the game. Simulation tools would also need to be

enhanced to take into account the effects of multiple viewers, perhaps allowing several people to

participate in the same simulation at once. This new model may be the compelling form that

encourages widespread use of the M-Views platform and the availability of tools to support

authors in story creation may inspire more creation of original content.

9. CONCLUSION

The field of context-aware research offers exciting potential for the development of new

technologies in many areas, including story delivery. The ability to gather data about a viewer's

environment provides for many possibilities in customized video and narrative. The M-Views

platform was designed to examine these possibilities by using handheld computers, positioning

systems, and the wireless network to allow for the playback of location-based stories. This

platform created the possibility for story structures that go beyond the standard linear story.

Mobile storytelling creates the potential for multiple storylines to be unfolding in different places

at the same time, making it possible for a viewer to navigate between these storylines by

physically moving through space. Stories can be customized to match a viewer's interests,

designed to provide an immersive experience, or used to augment a physical space.

Although these new story forms offer exciting possibilities, they can be quite difficult to

realize due to their potential complexity. It became clear early on that authors would need tools

to allow them to associate their content with context information, layout and visualize parallel

story threads, and simulate all the paths users could take through their narratives. M-Studio was

developed with these goals and tasks in mind. The location editor allows authors to quickly add

the element of context to their clips. Several different storyboard views provide simple ways for

60

authors to layout their content in parallel story threads. The flag editing system creates a

framework for developing flexible story structures. To allow authors to understand these

structures, several simulation tools were created. These simulators allow the author to specify

paths through space and time and view the resulting story playback. Additionally, story path

generation tools provide a means for authors to see all the possible ways a story could unfold.

Since authors are working in a new medium, their tools should ideally help them to better

understand the platform and allow them to target their stories to it. That is why M-Studio was

designed to also be a pre-production tool, allowing creators to build storyboards out of textual

descriptions and images prior to shooting. By evaluating their proposed story structure early on,

authors can identify issues with their plans before investing energy in the costly and time-

consuming shooting process. Since mobile cinema is a new technology, authors may not

understand what will and will not work on the mobile platform. M-Studio allows authors to

create simple prototypes of their stories and understand how they will work in a mobile context

from their desktop computers.

We also hoped to make the technical details of the client and server invisible to the story

creator. To this end, we created an XML schema that could be automatically generated by M-

Studio. This alleviates the burden of hand-scripting a story from the user. Authors do not have

to learn a scripting language to create a complex story structure. Rather, they can rely on M-

Studio's graphical interface to design and test a story, and then export the resulting story script

and video directly to the server, without having to focus on any technical details of

implementation. Advanced users who do want more fine control have the option of creating

custom flag evaluators for the server and manually editing M-Studio's generated XML.

Evaluation of M-Studio has illustrated its usefulness for both planning and simulating

stories. Without this kind of tool, it is difficult to understand the possibilities presented by each

arrangement of clips and flags. We learned many important lessons working with the two M-

Views productions, "Another Alice", and "Mind in Hand". The original version of "Another

Alice" showed the importance of examining the relationship and densities of parallel story

threads. Reworking "Another Alice" for the new server structure gave us an understanding of

the complexities of designing a flag structure and the importance of simulation. When

developing "Mind in Hand", M-Studio allowed for the creation of many different prototypes for

flag structures, and the simulation tools allowed the authors to select the best one. However, the

61

examination of story threads cannot provide the full scope of the experience, making field

simulation also necessary.

Emerging technologies like handheld devices and high bandwidth wireless networks will

continue to revolutionize the way that we receive and experience information and content.

However, for these new platforms to gain acceptance and widespread usage, they will need to

provide a supply of compelling content. While these new ideas for cinematic experiences

present an exciting potential, this potential will not be realized unless support is provided for

authors venturing into these forms. Hopefully, tools like M-Studio can offer the necessary aid to

encourage the examination of novel ideas in storytelling, thus opening new channels for delivery

of information and content.

62

REFERENCES

1. Bruner, Jerome. Acts of Meaning. Cambridge: President and Fellows of Harvard College,
1990.

2. Pan, P., C. Chen, and G. Davenport. The Birth of "Another Alice". Computers and Fun 4.
University of York, November 2001

3. Macromedia Director: http://www.macromedia.com/software/director/

4. Macromedia Authorware: http://www.macromedia.com/software/authorware/

5. Bailey, B.P., J.A. Konstan, and J.V. Carlis. DEMAIS: Designing Multimedia Applications
with Interactive Storyboards. Proceedings A CM Multimedia, 2001.

6. Caloini, A., D. Taguchi, K. Yanoo, and E. Tanaka. Script-free Scenario Authoring in
MediaDesc. Proceedings A CM Multimedia, 1998.

7. Brooks, K.M. Do Story Agents Use Rocking Chairs? The Theory and Implementation of
One Model for Computational Narrative. Proceedings, ACM Multimedia, 1996.

8. Evans, R. LogBoy Meets FilterGirl: A Tool for Multivariant Movies. 1994.

9. Bove, V.M. and S. Agamanolis. Responsive Television. MIT Media Lab.

10. Bylund, M. and F. Espinoza. Using Quake III Arena to Simulate Sensors and Actuators
when Evaluating and Testing Mobile Services. In Proceedings of the CHI 2001
Conference on Human Factors in Computing Systems, 2001.

11. Abowd, G., C.G. Atkeson, J. Hong, S. Long, R. Kooper, and M. Pinkerton. Cyberguide: A
mobile context-aware tour guide. Wireless Networks, 3(5): 421-433, October 1997.

63

APPENDIX A: XML Schema

This appendix is intended to give more specific detail about the XML story scripts that M-Studio
generates for the M-Views Server. This may be useful to people who wish to alter the way M-
Studio produces XML or authors who want to write their own custom story scripts.

General Format

The M-Views XML story script can be viewed as a list of possible story events. Each story
event would correspond to a clip in M-Studio. The format of the XML file is very simple. It
starts with the XML header tag. Then, a tag corresponding to the name of the story
(s t or yName in Figure A1) is inserted. This story tag will wrap all the story events.

Each story event has a unique ID, shown here as I D1, I D2, etc. This header tag also has several
attributes that are used to generate the corresponding message for the M-Views client. The
Cont ext field refers to the loc at ion of the event, and should be a string representation for
whatever location detection system (GPS, infrared, 802.1 lb triangulation, etc) is being targeted.
The Repe at able field determines whether the event can be seen more than once, and can take
a value of true or false. The Story field should refer back to storyName, the name of the
overall story this event takes place in. The Subj ect field should be the title of the event. The
server automatically fills in all the other fields when the event is sent, and should be left empty.

Within this event header, there are four major subheadings. The first, the Re quir e s clause,
consists of a list of flags that must evaluate to true in order for the clip to play. Each tag refers to
a specific flag (or the null flag in the case of special flags) and provides an expression that will
be evaluated with respect to the given value to determine the state of the flag. More detail about
the structure of flag tags is given in the next section.

The second section is the Me s s age clause, which contains information about what content to
send to the viewer. The MediaURL tag should be a pointer to the media file associated with this
event. It can be the local address of the media on the server, or a globally available URL. The
content type of the media is not restricted, but it should correspond to whatever media players
are available on the target client. The Text field specifies the text message that will accompany
the media when the user receives the event in the client inbox.

The Re sult s clause is the next section of the story event. It consists of a list of flags that are
altered after this clip has been played. The tag refers to a specific flag that is updated, and gives
an operation to perform on the selected flag with a certain value. Special operations are
discussed in the next section.

The final section, Heuristics, is optional. If it is provided, the server will use heuristics to
break ties when more than one clip is available to play at a given time. Heuristics are descriptive
terms that provide some information about the content of the clip. Each heuristic tag
corresponds to a category that describes something about what happens in a clip. Each tag also
has a value, which describes how strongly the given category is represented in a clip. When
breaking ties, the server will look at the current state of the heuristics for the story and see which

64

possible clip has values that best match this. When a clip plays, the categories it represents are
incremented by the given value in the heuristic table.

<?xml version="1 0"?>
<storyName>

<ID1 Context="location" Date="" From="" Repeatable="false"
Story="storyName" Subject="clipTitle" To="">

<Requires>
<variableName expr="evaluator" value="number"/>
<OR>

< expr="?S" value="cliplID"/>
<_ expr="?S" value="clip2ID"/>

</OR>

</Requires>
<Message>

<MediaURL>
storyName/filename.mov

</MediaURL>
<Text>

Text message to be displayed along with video.
</Text>

</Message>
<Results>

<variableName oper="operation" value="number"/>
<listVariable oper="$+" value="string"/>

</Results>
<Heuristics>

<categoryName value="number"/>

</Heuristics>
</ID1>
<ID2>

</ID2>

</storyName>

Figure Al: An Example XML story script

XML Flags

In XML, tags represent flags. The tag names correspond to the flag names. Each of these tags
has two fields, the expression/operation field, which corresponds to the action taken on the flag,
and the value field, which corresponds to the value used in the requested comparison or
operation. All flag tags must end with a closing backslash.

65

Numerical Flags

The most basic flags correspond to integer values. By default, basic mathematical operations
and comparisons are supported. If any expressions are preceded by a ! (logical not operator),
they are negated. The value field should always be an integer.

Table Al: Default Numerical Expressions/Operations

Expression Description
Comparisons

== equals
!= not equals

#LT less than
#GT greater than
#LTE less than or equal to
#GTE greater than or equal to

Operations
+ increment

decrement

divide by
* multiply by

List Flags

The server also supports flags that perform list operations. These lists can be tested to see if they
contain a string or list of strings. They are updated by adding and removing values from the list.
The value field for both comparisons and operations should be of the form of comma delimited
values, e.g. value="stringl, string2, string3".

Table A2: Default List Expressions/Operations

Expression IDescription
Comparisons

$= List contains
$= List does not contain

Operations
$ + Add to list
$ - Remove from list

Clip Flags

Clip flags can be used in the requirement clause to test if certain clips have or have not been
seen. Because they refer to the list of clips that have been seen, rather than using a specific tag
name, they use the null tag (an underscore). The value of a clip flag should be a string
corresponding to the tag name of a single event being referred to. Multiple clips can be

66

referenced by using <AN D>/<OR> blocks (described later). The form of a clip flag tag should
look something like this:
<_ expr="?S" value="ID1"/>
One special tag is used to express the fact that no clips can have been seen for this clip to play:
<_ expr="!?S" value="-1"/>

Table A3: Clip Flag Expressions

Expression Description
?S Clip must have been seen
!_?SClip must not have been seen
?LS Clip must have been the last clip seen
!?LS Clip must not have been the last clip seen

Date/Time Flags

There are XML formats for both absolute and relative time flags. They can only be used as
requirement flags. Again, since they do not refer to the actual flag table but other values, the null
operator is used.

Absolute Date/Time Format:
The value field is of the form D<MM/DDI-MM/DD2>, T<HH:MM AAl-HH:MM AA2>,
where the first item is the span of dates (in month/day format) and the second is the span of
times. If only date or only time is used, only one item should be used, but it should still be
preceded by a D or T. An example:
<_ expr="?DT" value="D01/01-02/02, T9:00 AM-5:00 PM"/>

Relative Time Format:
This flag expresses the minimum and maximum time that can have passed since a previous clip
has been seen for this clip to play. Its value string should have three entries: the ID of the clip
being triggered from, the minimum amount of time that has to pass for the clip to play, and the
maximum amount of time that can have passed for the clip to play. All times are in minutes. If
there is no limit to how much time can pass, then the maximum amount of time should be -1.
This example shows that between 5 and 10 minutes should have passed since ID 1 played to see
this clip:
<_ expr="?RT" value="ID1, 5, 10>

<AND>/<OR> Tags

Sometimes, an author might want to make a clip trigger if any one of a group of flags is true.
However, by default, all flags listed under the requirement clause must be true for a clip to play.
By nesting flags inside <OR> tags, the author can specify that the requirement is met if any of
these flags evaluate to true. <AND> tags can be nested inside <OR> tags to allow for more
control over statements. For instance, the following expression states that either flag A or both

67

flags B and C must be true for this clip to play. Clearly, <AND>/<OR> tags are not legal within
the results clause.
<OR>

<A ... />
<AND>

<B .. ./>
<C.. ./>

</AND>
</OR>

68

