
A Service Discovery Framework
for a Peer-to-Peer Network

by

Siddhartha Goyal

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

February 10, 2003

Copyright 2003 M.I.T. All rights reserved.

The author hereby grants M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author
Departnimnt ofElectrical Engineering and Computer Science

February 10, 2003

Certified by 2-

Accepted by

Dr. Larry Rudolph
'Thesis Supervisor

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 3 0 2003 BARKER

LIBRARIES

A Service Discovery framework
for a Peer-to-Peer Network

by
Siddhartha Goyal

Submitted to the
Department of Electrical Engineering and Computer Science

February 10, 2003

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

As mobile networks become ubiquitous, and devices like PDAs and cell phones become
commonplace, today's traditional computing paradigms are no longer relevant. Instead,
we now live in a world where computing power is pervasive, and the means to access that
power is as simple as the click of a button or a voice command. However, in order to
make use of that power users need a means to locate it. Specifically, users need a means
to easily query for services within a network without having to necessarily know where
those services are located or even how to query for those services beforehand. The
purpose of this thesis is to present a service discovery framework for an ad-hoc network
of peers that allows users to discover in realtime how to query for a particular service and
particular instances of a service using the query mechanisms presented to them.

Thesis Supervisor: Dr. Larry Rudolph
Title: Principle Research Scientist

2

Acknowledgments

First off I would like to give a hearty thanks to my supervisor, Dr. Larry Rudolph, for
guiding me through this thesis and helping me navigate the pitfalls associated with such a
project.

I would also like to thank Quinton Zondervan for his vision and support as this thesis
progressed.

I would like to thank all my friends who were there for me during these times as I
struggled to make this thesis a reality.

Finally I would like to thank my parents, Arvind and Nalini Goyal, and my sister,
Vandana Goyal for their love, support, and encouragement not only during the writing of
this thesis, but also throughout my life. I wouldn't be where I am today without the three
of you!

3

Contents
C O N TEN T S ... 4

C H A PTER 1 IN TRO DU CTIO N .. 7

1.1 T E PROBLEM .. 8
1.2 TM SOLUTION ... 9
1.3 THE ROADM AP... 10

CHAPTER 2 BACKGROUND WORK ... 11

2.1 PROJECT JX TA .. 11
2.2 IN S .. 14

2.2.1 N am e-specifiers.. 14
2.2.2 INRs.. 15

2.3 JAVA JIN I AND RM ... 17
2.4 RD F ... 18

C H A PTER 3 D ESIG N .. 23

3.1 SERVICE A DVERTISEMENT AND DISCOVERY.. 23
3.1.1 H ailing a cab.. 25

3.2 PEERG ROUPS .. 26
3.3 SERVICE D ISCOVERY FRAM EW ORK.. 26

3.3.1 The "search" element .. 28
3.3.2 The "query " element... 29

3.3.2.1 The "tim e" data type ... 31
3.3.2.2 The "date" data type... 31
3.3.2.3 The "streetAddress" data type.. 31

3.3.3 Q uery Form ulation .. 32
3.4 SERVICE REGISTRATION FRAM Ew ORK... 32

3.4.1 The "register" elem ent .. 33

3.4.2 The "serviceName " and "serviceDesc" elements....................................... 33
3.4.3 The "query Templates " elem ent .. 34

3.4.4 The "template" elem ent.. 34

3.4.5 Service Registration... 35
3.5 INTELLIGENT A GENTS... 36

CHAPTER 4 IMPLEMENTATION DETAILS .. 37

4.1 JX TA ... 37
4.2 QUERIES AND Q UERY TEM PLATES .. 39
4.3 QUERYREADER AND QUERYWRITER CLASSES ... 40

4.4 SERVICETEMPLATE CLASS ... 41

4.5 TEMPLATEREADER AND TEMPLATEWRITER CLASSES ... 41
4.6 SERVICETABLE CLASS... 42
4.7 PEERGROUPCONNECTION ... 43

4.8 PUBLIC A PI.. 44

4

4.9 SAMPLE APPLICATION .. 44
4.9.1 A TM Peers and the Locator Peer .. 46
4.9.2 A TM Peers.. 46
4.9.3 The Locator Application ... 48

CH A PTER 5 C O N CLUSIO N .. 51

5.1 HUM AN CENTERED INTERFACES ... 51

5.2 SERVICE INSTANTIATION ... 52

5

LIST OF FIGURES

FIGURE 2-1: THE JXTA PROTOCOL STACK 13

FIGURE 2-2: A SAMPLE INS NAME-SPECIFIER OBJECT 15
FIGURE 2-3: GRAPH OF A RDF STATEMENT 19

FIGURE 2-4: AN RDF GRAPH WITH STRING LITERALS AS WELL AS URI REFERENCES 20

FIGURE 2-5: A RDF STATEMENT IN XML 22
FIGURE 3-1: AN INS NAME-SPECIFIER FOR A CAB SERVICE 27
FIGURE 3-2: AN XML QUERY FOR A CAB SERVICE 28
FIGURE 3-3: A QUERY BASED ON A SERVICE ATTRIBUTE 30
FIGURE 3-4: A SERVICE REGISTRATION TEMPLATE 33
FIGURE 4-1: A SAMPLE JXTA ADVERTISEMENT 38
FIGURE 4-2: QUERYREADER AND QUERYWRITER 40

FIGURE 4-3: TEMPLATEREADER AND TEMPLATEWRITER 42
FIGURE 4-4: A DEPICTION OF A SERVICETABLE OBJECT 43

FIGURE 4-5: XML SERVICE TEMPLATE FOR AN ATM PEER 47
FIGURE 4-6: ATM INITIALIZATION SCREEN 47
FIGURE 4-7: THE FIRST SCREEN IN THE ATM LOCATOR APPLICATION 49

FIGURE 4-8: THE SECOND SCREEN IN THE ATM LOCATOR APPLICATION 49
FIGURE 4-9: THE THIRD SCREEN IN THE ATM LOCATOR APPLICATION 50

6

Chapter 1 Introduction

Imagine a world where we could walk into a city with only a cell phone, and use that

cell phone to locate things like ATMs that satisfy our withdrawal needs, a cab that will

take us to a certain location, or a restaurant that serves a particular type of food. While

this vision may seem to be a pipe dream, all the technologies needed to make such a

vision a reality exist today. Wireless networks are powerful enough to allow for the

transfer of data almost anywhere, and p2p protocols, like the JXTA protocol suite, make

it possible to connect devices together, independent of platform or network topology. In

addition, with service discovery protocols, like the one in the INS system, it is even

possible to locate things like a restaurant or an ATM using descriptive attributes, instead

of IP addresses. What is not possible, however, is the ability to use such discovery

techniques without a priori knowledge of those techniques.

For instance, if we want to use a cell phone to locate a cab, an ATM, and a restaurant,

the cell phone must have some pre-existing knowledge of how to query for the cab,

ATM, or restaurant. Otherwise, the cell phone would have to be upgraded with software

that would have the ability to formulate the proper queries for the particular resource or

service. While this may be ok if a user wants to use their cell phone to locate a few

different types of things, it does not scale well. What would be ideal, is to have some

agent on the cell phone that not only would have the ability to use some general

framework for locating completely different services, but also have the ability to learn

7

new means of querying for a service. Furthermore, it would be ideal for this agent to

have the ability to communicate to other agents these new mechanisms for locating a

service.

Using the service discovery framework presented in this thesis, it is possible to

accomplish those goals. The service discovery framework in this thesis provides a

generalized framework for querying for any type of service, a framework for describing

new methods for querying an existing service, and a means to inform others about those

methods for querying for a service.

1.1 The Problem

Many service discovery protocols provide very flexible means for describing a

service. Thus, it is possible to use any number of existing protocols to describe complex

queries, and allow a person to use their cell phone to query for an ATM, a restaurant, and

a cab. However, the common problem that all these protocols have, is that there is no

way to learn a new means for querying for a service.

For instance, the service discovery protocol that is part of the JINI framework allows

service providers to describe themselves in any way they see fit. However, it does not

provide a means for consumers to learn about the attributes that describe a service. Thus,

in order to locate a new service, it is necessary to use software upgrades to query for that

service.

On the other hand, there is the JXTA protocol suite. JXTA provides a means for

advertising over the network the existence of any resource or service. Thus, using JXTA,

8

it is possible to locate a new means for querying for a service, using its advertisement

mechanism. However, JXTA does not provide an explicit framework for actually

querying for a particular service.

What would be ideal is to have the best of both worlds. In other words, we want to

have the ability to advertise the existence of new service attributes using something like

JXTA, while having the ability to specify complex queries, as is possible in JINI.

1.2 The Solution

The service discovery framework presented in this thesis provides that ideal middle

ground. Using the basic concept of JXTA advertisements, it is possible to specify a

service discovery framework that allows applications to dynamically locate new means of

querying for a service, and also to execute complex queries for a particular service. This

is all accomplished through the creation and advertisement of service templates. Service

templates are simple XML structures that describe the attributes that fully describe a

particular service. These templates provide a means for registering new attributes with a

particular service, while the JXTA framework provides a means for informing other

devices about those attributes, and making use of those attributes to specify complex

queries for a service.

9

1.3 The Roadmap

The rest of this paper is laid out as follows. Chapter 2 describes some related

research in this field. Chapter 3 describes the design of the service discovery framework.

Chapter 4 describes the implementation of this design, as well as a sample application

that makes use of the framework. Chapter 5 concludes this thesis with a summary, and

possible directions for future research.

10

Chapter 2 Background Work

The field of pervasive computing is a fast growing field, with many commercial and

research projects ongoing concurrently. Having an understanding of existing research

and commercial projects will provide a clear context in which to place the framework

presented in this thesis. It should be noted that the first project presented in this chapter

was used as a basis for implementing the framework described in the third chapter.

2.1 Project JXTA

Project JXTA started out as a small development team formed by Sun in response to

the perceived need for a set of peer-to-peer networking protocols that would allow

application developers to write any sort of peer-to-peer application, without having to

worry about the details of p2p communication [2].

At its very heart, the JXTA vi.0 specification defines a set of six protocols that are

the building blocks of all p2p communication. These protocols are as follows -

" The Peer Discovery Protocol - This protocol allows peers to discover what

services other peers offer on a particular network.

" The Peer Resolver Protocol - This protocol allows peers to send and process

requests.

11

" The Rendevous Protocol - This protocol handles the propagation of messages

between peers.

" The Peer Information Protocol - This protocol allows peers to obtain status

information from other peers in the network.

* The Pipe Binding Protocol - This protocol provides a mechanism to create a

virtual communication channel from one peer to another.

* The Endpoint Routing Protocol - This protocol provides routing services from a

source peer to a destination peer.

Each JXTA protocol defines a set of XML messages that address one area of p2p

networking. The use of XML was a conscious choice from the start because it allows the

entire JXTA framework to be language, operating system, and transport independent.

Every protocol conversation involves a local peer and a remote peer. The local peer

generates messages and sends them to a remote peer, while the remote peer is responsible

for receiving and processing those messages.

Figure 2-1 depicts the JXTA protocol stack, and how each protocol makes use of the

others to accomplish its tasks. Although protocols such as the Peer Resolver Protocol

rely on other protocols in the protocol stack, each protocol is partially independent of

others that are at lower levels in the stack. That is because some peers might have pre-

configured services built into their operating systems or some other modules that might

make the implementation of one the JXTA protocol layers redundant. For instance, if a

peer already has a pre-configured set of routing peers that it knows about, then there is no

need to implement the Endpoint Routing Protocol. Thus, the protocols at the higher

12

levels in the stack simply need some implementation of the services that are provided by

Via Peer Resolver Protocol

Via Peer Resolver Protocol

Via Peer Resolver Protocol

Via Endpoint Router Protocol

Via Endpoint Router Protocol

ia Installed Network Transport

Network Transport via Installed Network Transports Network Transport

Figure 2-1: The JXTA protocol stack.

the protocols in the lower levels of the stack.

In the context of this thesis and the overall framework discussed in the opening

chapter, JXTA provides a framework that allows -

13

* Peers to form ad-hoc networks without peers having to specify a fixed location.

" Peers to enter and leave the network without the network being disrupted.

" Peers to publish and make use of services within a network.

JXTA also provides a means to discover networks that offer particular services and

peers within a particular network. Howewr, this framework is a low-level framework

that is based on a simple name-value pair specification. It is desirable that there be a

service discovery framework that is more expressive, so as to allow users to specify

queries in a more human- like manner.

2.2 INS

The Intentional Naming System, or INS, is a service discovery system designed for

mobile and dynamics networks of computers [3]. INS is built on two main concepts,

name-specifiers and INRs.

2.2.1 Name-specifiers

Name-specifiers are a hierarchy of attribute-value pairs used by client applications to

indicate the intended destination of a request. These specifiers are essentially a

replacement for static IP addresses, and allow clients to make requests for services

without having to know where exactly those services are located at any given time.

14

The hierarchy of attribute-value pairs can be easily visualized as a tree, where a node

anywhere in the tree (an attribute-value pair) is dependant on the node above it. Thus, a

child only has meaning in the context of its parent. Figure 2-2 illustrates an example

name-specifier.

[city = washington [building = whitehouse
[wing = west
[room = oval-office]]]]

[service = camera [data-type = picture
[format = jpg]]

[resolution = 640 x 480]]
[accessibility = public]

Figure 2-2: A sample INS name-specifier object.

The nested pairs indicate a containment hierarchy. Therefore, in figure 2-2, the

attribute-value pair "building=whitehouse" is a child of "city=washington", and likewise

"wing=west" is a child of "building=whitehouse". A single node can also have more than

one child, as is the case for the "service=camera" node. This simple fixed structure

makes it easy to build standard processing tools for search queries, but is powerful

enough to allow any search query to be satisfied.

2.2.2 INRs

In the INS system a client will send a message, like the one in figure 2-2, out onto the

network to locate a service with the characteristics specified. These messages are sent to

network nodes known as Intentional Name Resolvers, or INRs. INRs act much like DNS

servers [8]. They form an "application-level overlay network to exchange service

15

descriptions and construct a local cache based on these advertisements [3]." When an

INR receives a message from a client, it does one of two things based on the type of

client request. If the early-binding flag is included in the request, the INR simply returns

to the client a list of IP addresses where the specified service is located. This is similar to

the existing DNS system, and "is useful when services are relatively static [3]." If the

client has chosen late-binding, the INR forwards the request directly onto one or more

nodes (depending on whether the client has specified intentional anycast or multicast)

that match the request query. Late-binding is useful in situations where services are

dynamic, and not necessarily fixed at one node.

INRs know the location of various services by listening to advertisements of the

existence of those services. Those advertisements are sent periodically over the network

on a well-known port that all INRs listen on. When a service advertisement is received,

the INR adds the service advertisement to its database of service advertisements, and

disseminates that advertisement to other INRs in the network. This brings a degree of

fault-tolerance to the network.

In the context of this thesis, the INS system is interesting because of name-specifiers.

These simple, yet powerful structures provide a better means for service description and

service discovery than the core JXTA service discovery framework provides. In addition,

their fixed nature allows applications to use a single service discovery API for searching

for any type of service.

16

2.3 Java JINI and RMI

Sun's Remote Method Invocation, or RMI, was a project initiated to make remote

method calls over a network transparent to an application [9]. RMI is built on three main

concepts - the RMI registry, service providers, and clients. In the RMI architecture, the

registry is a repository for well-known services available over the network. Service

providers populate the repository in the following manner. A stub describes each service.

The stub is responsible for marshalling calls to the service and unmarshalling responses.

This stub, along with instance specific data, is sent to the registry along with a service

specified name. When a client is looking for a service, it queries the registry for the

service by name, and the stub, along with the instance data, is then returned to client.

The JINI framework builds on top of the RMI framework by providing a more

powerful framework for service discovery, and also a framework for distributed events

[10]. Whereas in RMI a service is described simply by name, JINI allows services to be

described by an arbitrary set of attributes, which are defined by the service itself. Clients

looking for a service find the service by querying for specific attributes instead of the

service name. The distributed event framework is interesting in the context of this thesis

because it breaks the traditional client/server request/response paradigm. This framework

allows services to push data to clients, instead of requiring clients to poll for data from

services, thus allowing for a peer-to-peer topology.

JINI's service discovery protocol is not as structured as the INS system, and thus

allows a service to describe itself in any way it sees fit. Of course, while this gives

services considerable flexibility in describing themselves, it makes it difficult to build

17

client applications using a single service discovery framework. In fact, for each service

that a client is interested in, it is quite likely that the client will need a specialized module

for service queries.

2.4 RDF

The Resource Description Framework, or RDF, is a framework developed by the

World Web Consortium to represent "information about resources in the World Wide

Web [4]." This information can be about resources that can be retrieved on the web, such

as web pages or documents, or about resources that can be identified on the web, such as

"items available from online facilities (e.g., information about specifications, prices, and

availability), or the description of a Web user's preferences for infornation delivery [4]."

The basic concept behind RDF is that every resource on the web has properties, which in

turn have values. Furthermore, it is possible to make statements about those resources,

and specify properties and values for those resources. These statements are built using

subjects, predicates, and objects. In RDF, the subject of a statement is the part of the

sentence that identifies the resource being talked about. The predicate of the statement is

the part of the statement that identifies the property of the resource being talked about.

The object of the statement is the part of the statement that identifies the value of the

property described.

While the main goal of RDF is to provide a uniform framework for resource

description, another goal is to also build a machine-processable language. In order for

that to happen, it is necessary that the language has a system by which subjects,

18

predicates, and objects can be identified uniquely, and also that the language allows these

statements to be exchanged between different platforms. To that end, RDF is built upon

URIs [5] and XML [7]. URIs allow for the unique description for anything in a

statement, and XML gives a powerful meta- language for representing and exchanging

statements. Furthermore, in RDF URIs are used as a meaw for identifying any resource.

Based on this, it is now possible to describe the actual framework. Take the following

statement -

htt:/_/www exampLe org/indexfht -has a creator whos
value is John Smith

In RDF the statement is broken down as follows -

* subject - http: //www. example. org/index.html

* predicate - http: //purl.org/dc/elements/i.1/creator

* object - http: //www.example.org/staf fid/85740

Figure 2-3: Graph of a RDF statement.

The string literals "creator" and "John Smith" have been replaced by the URI

references, " http: //purl .org/dc/elements/i . 1/creator" and

"http://www.example.org/staffid/8574o" respectively. The reason for this will be

explained shortly, but first the means by which RDF represents statements as graphs of

nodes and arcs will be described.

19

In figure 2-3, the subject is represented by a node, and is labeled with an URIref. The

object is also represented by a node, and is labeled with an URIref. The predicate is

represented as an arc, also labeled with an URIref, directed from the subject to object. To

make additional statements about the same subject all that is required is the addition of

more nodes and arcs to the graph. For instance, take the following statements about the

same web page.

http: //www. example. orgindexhtml has a creation-date whos Vale i
August 16, 1999

http.: //www.example.org/index.html has a language whose value is English

The previous graph would be expanded, as in figure 2-4, to include two additional

arc-node pairs to describe the "creation-date" and "language" properties.

Again the string literals "creation-date" and "language", or predicates, have been

replaced by Uklrefs. However, the two objects have remained as string literals. Notice

that these string literals are enclosed in boxes as opposed to ellipses. In an RDF graph,

string literals are enclosed in boxes and URIrefs in ellipses.

tig re 2 -4:~y~$3. .F. A F g p s .ri g . ter s as we..sU..ef r

Figure 2-4: An RDF graph with string literals as well as URI references.

20

So why exactly is it advantageous to replace string literals with URlrefs? For one,

URIrefs are unambiguous, and allow machine processors to uniquely identify a resource.

Secondly, since URIrefs represent resources in RDF, it is possible to build complex

statements using URlrefs for object values. For instance, using an URIref for the object

"John Smith" allows for the possibility of making additional statements about "John

Smith", and for the expansion of the graph in figure 2-4. For a detailed discussion of

how this is accomplished see [4].

The graphical representation aids in the understanding of the relationships between

various parts of a statement, but obviously it is not possible to send graphs between

different platforms to represent these relationships. That is where XML comes in. RDF

statements are described as XML documents. Figure 2-5 depicts the XML document

representation for the original statement shown earlier. The "Description" element

indicates the subject of the statement, with the "about" attribute giving the value of the

subject. The "creator" element indicates the predicate of the statement, and its value is

the object. In the example in figure 2-5, the value of the element is a text node, which is

meant to represent a string literal for the object. However, if the object were an URIref

instead, the value of the element would be another "Description" element. In this manner

it is possible to build documents describing complex statements.

The value of RDF in the context of this thesis is great because it provides a rich XML

based framework for describing resources. Although RDF is meant for describing web

resources, the parallels between RDF and the framework described in this thesis are

obvious, as the framework presented in this thesis is used for describing and searching for

services.

21

Figure 2-5: A RDF statement in XML.

22

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns: dc="http: //purl.org/dc/elements/i. 1">

<rdf:Description rdf:about="http://www.example.org/index.html">
<dc:creator>John Smith</ex:creator>

</rdf:Description>

Chapter 3 Design

The purpose of this chapter is to provide a detailed description of the framework that

was introduced in the opening chapter. In particular, this chapter will describe how

peers get together to form ad- hoc groups that offer a particular service, how peers locate

and join those groups, how peers locate services within a particular group, and how a

peer publishes its own services to a group.

3.1 Service Advertisement and Discovery

In the previous chapter, many different systems that incorporated service discovery

and service publishing mechanisms were described. In addition, one framework was

described, RDF, which focused entirely on how to describe meta-information about

resources. In each of the systems that offered service discovery and service publication

services, nodes within the system could query for services or register services based on

the idea of describing a service using attribute-value pairs. In INS, the attribute-value

pairs are constrained to a fixed structure, yet it is possible to build powerful naming

structures. In JIN, the attribute-value pairs are not constrained to any fixed structure,

thus allowing for the description of basically anything. A common thread in each of

23

these systems is that the service provider has the freedom to describe the service in any

way he or she sees fit.

While this makes sense, since a service provider knows exactly how to describe itself,

it makes it necessary for consumers of these services to have pre-existing knowledge of

how to query for that same service. This makes it impossible to create a system that is

truly dynamic. Every consumer of a particular service has to be pre-configured with the

attributes of that service so that the consumer can search for that service. Likewise, every

service provider has to be pre-configured with the same set of attributes so that it can

advertise its own services.

Thus, in these systems, it is not possible to publish the existence of a service using

different attributes on the fly without having a network administrator reconfigure every

node in the system to have knowledge of the new service attributes. In addition, if a

service is modified in any way, it is likely that the way in which the service is described

will change as well. Again in order to make use of the service, a network administrator

must intervene to update every node with the new parameters of the service.

What is desirable is a framework that offers service providers and consumers the

following capabilities -

" A means for consumers to discover in real time how to search for a particular

service within the group.

" A means for new service providers within a group to discover in real time how to

advertise their services.

* A means for service providers within a group to publish new ways of locating a

service.

24

3.1.1 Hailing a cab

To give more motivation as to why these three properties are important, take the

example of hailing a cab. When a person hails a cab they often ask for a cab that is close

to a certain location. However, this is not the only method of hailing a cab. In some

situations a cab may not offer service to the final destination, and therefore it is necessary

to look for cabs based on a desired final destination. In yet another situation, suppose

that a person has no cash in their wallet, and needs a cab that accepts payment by credit

card. Clearly what is evident is that there is no single "right" way to hail a cab. In

addition to the methods previously described, there may be other methods of hailing a

cab. Because of the difficulty in imagining the all the means to hail a cab, it is nearly

impossible to build a system that allows users to hail cabs, without requiring there to be

some way to update software every time a new means of service discovery is published.

If a new means of service discovery were to be introduced into the system, it would

require the following actions to be taken by some software provider -

1) The upgrade of all consumers (those peers in the system looking for a cab) with

modules to allow them to use the new discovery technique.

2) The upgrade of all service providers (the cabs in this case) with modules that

would allow them to advertise their services using the new service attributes.

25

3.2 PeerGroups

Before discussing the details of how to locate a particular service instance, and how

to register templates for discovering a particular service, it is necessary to define the

concept of a peergroup. A peergroup is a logical grouping of a number of peers that is

based on some common characteristic. This characteristic could be something like a

location, a set of services that each peer is interested in, or some platform commonality.

For instance, in a home we might create peergroups based on different rooms within the

house. There might be a family room peergroup, a bedroom peergroup, and a kitchen

peergroup. In this situation, each peergroup would probably offer a number of different

services as opposed to a single service. The advantage of the peergroup concept is that it

creates a scoping mechanism for interactions amongst peers. This reduces the amount of

traffic sent over the network, and it also provides boundaries for service discovery and

service registration, as both operations are executed in the context of a peergroup.

3.3 Service Discovery Framework

At a basic level, searching for a service simply involves describing the attributes for a

service that we are looking for. However, by examining some common examples

searching for a service involves specifying a lot of information. Take the example of

looking for a cab that can pick us up at 77 Massachusetts Avenue in Cambridge. When

we say we want a cab at a certain location, we are specifying three pieces of information.

26

1) We are saying that we want a cab service as opposed to some other service.

2) We are saying we want to search for a cab based on a location.

3) We are saying that the location search is based on a street address (as opposed to

something like a landmark).

These are the components that make up search queries. We specify the type of

service we are looking for, how we wish to search for that service (e.g. location based

search), and something specific about that type of search (e.g. a specific street address).

In a more general case, it is possible that a search will be more complex, and contain

more than one criterion for searching.

Given these components, it is now possible to come up with a framework for

describing these queries in some machine-readable format. One such method is through

the use of INS name-specifiers. In INS, a search for a cab could be specified as in figure

3-1.

[service=cab [searchType=location
[locationType=streetAddress
[street = 77 Massachusetts Avenue]
[city = Cambridge]

[state=MA]]]]

Figure 3-1: An INS name-specifier for a cab service.

XML can be used to describe the same query. Figure 3-2 depicts an XML representation

of the same query. While both representations are equally valid for query representation,

the framework presented in this thesis uses XML to represent service queries, as well as

registration requests, because XML provides a slightly more powerful syntax than INS

27

does. It also allows for queries to be processed by readily available processing tools.

<search xmi ns="urn:search:peer"
service="urn:service:cab">

<query queryT ype="urn:queryType: proximity"
dataType="urn:dataType:streetAddress">

<street>77 Massachusetts Avenue</street>
<city>Cambridge</city>
<state> MA</state>

</query>
</search>

Figure 3-2: An XML query for a cab service.

The following sections define each element within a query in more detail.

3.3.1 The "search" element

The "search" element is the container element for an actual query. It has two

attributes. The first attribute defines the default namespace for the elements contained

within the element. The second attribute, the "service" attribute, defines the name of the

service that the query applies to. In general, the "service" attribute takes on the form -

urn:service:<serviceType>.

The serviceType defines the actual service. In the previous example, since a cab was

the object of the search, the string "cab" is in the serviceType field. If the serviceType

were an ATM machine, then the field would have "ATM" in the serviceType field.

28

3.3.2 The "query" element

The "query" element serves as a container for the actual query predicate. It is always

a child of the search element. In general, there can be more than one query element in a

search. This indicates that a search is based on multiple query predicates. Each query

element has two required attributes.

The first attribute is named "queryType", and defines the specific type of query. The

attribute takes on the form of the URN [6]- urn:queryType:<queryType>. The

queryType field can take on one of three possible values -

1) proximity - This value means that the peers should be located based on their

proximity to the location specified in the query predicate.

2) name - This value means that peers should be located based on their name. The

name does not have to be unique, so this could possibly return multiple matches.

3) serviceAttribute - This value means that peers should be located based on a

specific service attribute of that peer. If this is specified as the "queryType", then

the "query" element must also have an additional attribute that is named

"attribute". This attribute defines the name of service attribute. The attribute

value is another URN - "urn:attribute:<attrName>". The attrName field is the

name of the service attribute. As an example, suppose that a user specified a final

destination in their query for a cab. That type of query would be represented by

the query shown in figure 3-3.

29

The second attribute that is required for a "query" element is the "dataType" attribute.

The "dataType" attribute defines the data type of the fields contained by the "query"

element. This attribute is another URN of the general form - um:dataType:<dataType>.

The dataType field can take on one of the following values -

" string - a simple string data type.

" integer - a simple integer data type.

" time - a compound data type for defining a time.

* date - a compound data type for defining a date.

9 streetAddress - a compound data type for defining a street address.

The child elements of the "query" element depend on the value of the "dataType"

attribute. In the case of the simple types "string" and "integer", the child elements of the

"query" element are either "string" or "integer" elements. In the case of compound data

types, there are multiple child elements for each data type.

<search xmins="urn:search:peer"
service="urn:service:cab">

<query query Type="urn:queryType:serviceAttribute"
dataType="urn:dataType:streetAddress"
attribute="urn:attribute:destination">

<street>77 Massachusetts Avenue</street>
<city>Cambridge</city>
<state>MA</state>
<zip>02139</zip>

</query>
</search>

Figure 3-3: A query based on a service attribute.

30

3.3.2.1 The "time" data type

In the event that the data type of the query is specified as "time", then the "query"

element has two child elements - "hour" and "minute" - that define the hour and minute

of the time.

3.3.2.2 The "date" data type

In the event that the data type of the query is specified as "date", then the "query"

element has three child elements - "day", "month", "year" - that define the day, month,

and year of the date.

3.3.2.3 The "streetAddress" data type

In the event that the data type of the query is specified as "streetAddress", then the

"query" element has three child elements - "street", "city", "state" - that define the

street, city, and state of the address.

31

3.3.3 Query Formulation

A peer formulates a query for a particular service based on service registration

templates (section 3.4). Using an API described in chapter 4, agents can generate queries

for a particular service instance, without having a priori knowledge of how to query for a

particular service. In that way, it is possible to have an intelligent agent on peers that can

adapt to different situations, without the necessity for constant software upgrades.

3.4 Service Registration Framework

This section describes how to register new service discovery mechanisms within a

particular network. In the previous section, the conponents of a peer discovery message

were described -

1) The service we would like to find.

2) The means of querying the service (e.g. through service attributes, proximity, or a

name).

3) The actual query predicate.

Service registration messages are a means by which service providers can describe as

to how they would like to be queried. Service providers simply send messages that

indicate they are willing to accept certain query types. In the cab example, the cab

service provider would send a message, like the one in figure 3-4, to register a specific

query type on the network. The following sections define each element within a service

registration message.

32

<register xmins="urn:search:peer:">
<serviceName>cab</serviceName>
<serviceDesc>This is a cab service. </serviceDesc>
<queryTemplates>

<template type="proximity">
<location dataType="urn:dataType:streetAddress"/>
<location dataType="urn:dataType:landmark"/>

</template>
<template type="serviceAttribute"

dataType="urn:dataType:streetAddress">
<attrName>destination</attrName>
<attrDesc>The destination where we'd like to go</attrDesc>

</template>
</queryTemplates>

</register>

Figure 3-4: A service registration template.

3.4.1 The "register" element

This element is the container element for the registration message. This elemert also

has a "namespace" attribute, which defines the default namespace for all elements

contained within this element.

3.4.2 The "serviceName" and "serviceDesc" elements

The "serviceName" element simply indicates a shorthand name for the service being

registered. This is the name that will be used to generate the full URN for the "service"

attribute of the "query" element described previously. The "serviceDesc" element

provides a longer description of the service. This can be used to describe the service to a

user if they are confused about what the service provides.

33

3.4.3 The "queryTemplates" element

This element serves as a container for each query template that the service is

registering. A "queryTemplates" element can contain multiple query templates.

3.4.4 The "template" element

This element is a container for an actual query template, or a set of query templates.

This element has one required attribute, named "type". The attribute can have one of two

values -

" proximity - In this case, the template is for searches based on proximity to a

certain location. If the "type" attribute has a value of proximity, then the children

of the template are "location" elements. Each "location" element has a

"dataType" attribute that defines the data type supported for a proximity query.

For instance, if the dataType is "urn:dataType:streetAddress", then the proximity

search should be based on a street address. All "location" elements are lumped

under a single "template" element, so as to ease in readability and machine

processing.

* serviceAttribute - In this case, the template is for searches based on a specific

service attribute. If the "type" attribute has this value, then the "template"

element must also have a "dataType" attribute, which defines the data type of the

34

service attribute. The "dataType" attribute has a value that is a URN of the form

defined previously (see section 3.3.2). A "template" element of this type must

also have two child elements - "attrName" and "attrDesc". The "attrName"

defines the nan-r of the service attribute. The "attrDesc" defines a description of

the attribute.

3.4.5 Service Registration

Service providers register a service query template using the public API described in

the next chapter. When service providers create a template and register it using the

public API, the following events occur -

1) The service query template is registered into the service provider's own service

table. This table is a container for all the query templates for a particular service.

There can be multiple services, and multiple templates for each service in the

table. The reason for this is that in a particular network there may be multiple

services offered. For instance, in a home network there may be a music service, a

movie service, and a video service.

2) The service query template is sent over the network to all other peers in the

network. When a peer receives a template it adds it to its own table of service

templates, if it already has not done so.

35

3.5 Intelligent Agents

Using service templates and service queries, it is possible to build intelligent agents

that can adapt to different situations. For example, in a cell phone there could be an

agent that would have the ability to handle requests for a cab, and an ATM, using the

same framework. It would require no software upgrades, and would dynamically adjust

to different situations. This is the ultimate vision for this framework, and although this

idea is not investigated fully in this thesis, it is a step in the direction of making pervasive

computing a reality.

36

Chapter 4 Implementation Details

This chapter describes some of the implementation details of the framework

described in the previous chapter. In addition, a sample application that was

implemented using this framework is described.

4.1 JXTA

The implementation of the framework was done on top of the JXTA peer-to-peer

connection framework. There are a few reasons for this -

" It provides an infrastructure for propagating messages to peers within a network.

" It provides a service for creating a virtual connection between two peers within a

network.

" It provides a framework for creating peergroups.

Sending messages, creating connections between peers, and creating peergroups is all

accomplished through the sending and receiving of Advertisements. "Advertisements are

one of the basic building blocks of JXTA [1]," and provide a mechanism for describing

any resource or service in a JXTA network. When a peer in the JXTA framework is

looking for a resource or service, it simply looks for an advertisement describing that

resource or service. Advertisements are nothing more than XML documents, and thus

37

<?xml version="1.0"?>

<IDOCTYPE jxta:MIA>

<jxta:MIA xmlns: jxta="http: //jxta.org">
<MSID>

urn: jxta:uuid-DEADBEEFDEAFBABAFEEDBABEOOOOOOO10306
</MS ID>
<Comp>

<Efmt>
JDK1 .4

</Efmt>

<Bind>
V1.O Ref Impl

</Bind>
</Comp>
<Code>

net.jxta.impl.peergroup.StdPeerGroup

</Code>
<PURI>

http://www.jxta.org/download/jxta.jar

</PURI>
<Prov>

sun.com
</Prov>
<Desc>

General Purpose Peer Group Implementation
</Desc>
<Parm

<Svc>
<jxta:MIA xmlns : jxta="http: //jxta .org">

<MSID>
urn: jxta:uuid-DEADBEEFDEAFBABAFEEDBABE000000030106

</MSID>
<Code>

net.jxta.impl.discovery.DiscoveryServiceImpl
</Code>
<PURI>

http://www.jxta.org/download/jxta.jar
</PURI>
<Prov>

sun.com
</Prov>
<Desc>

Reference Implementation of the DiscoveryService service
</Desc>

</jxta:MIA>
</Svc>

</Parm>
</jxta:MIA>

Figure 4-1: A sample JXTA Advertisement.

provide a platform independent representation of any sort of object. Figure 4-1 depicts a

38

sample advertisement document. In the implementation of the service discovery

framework, advertisements are used for describing service discovery queries and service

registration templates. These two advertisement types are transparent to application

developers, as they are used internally to exchange queries and templates. From a

development standpoint, all developers need to worry about is how to create queries and

query templates.

4.2 Queries and Query Templates

In the previous chapter, two messages types were defined - queries and query

templates. Peers can send queries to other peers to locate an instance of a particular

service, and peers can also send, or register, query templates within a peergroup, which

describe how to formulate queries for a particular service. Three simple classes define

these two messages.

The ServiceQuery class is the base class for all queries and query templates. It

contains the following pieces of information -

" The type of the query or query template. Class instances can either represent

proximity or service attribute query or query templates. Future extensions to this

scheme could include a name-based query.

" The data type of the query or query template. For possible data types see section

3.3.2. In this prototype implementation there is support for only tle string data

type.

" The fields in the query or query template.

39

The ProximityQuery and AttributeQuery classes represent queries or query templates

that are based on proximity and service attributes respectively. These classes are

implementations of the abstract base class ServiceQuery. The ProximityQuery class

contains no extra fields, as all the information necessary in that query type is contained in

the ServiceQuery class. The AttributeQuery class extends the ServiceQuery class by

adding attribute name and attribute description fields.

4.3 QueryReader and QueryWriter classes

The QueryReader and QueryWriter classes are used for writing and reading

ServiceQuery objects to and from XML streams. They operate as shown in figure 4-2.

XML ServiceQuery
stream QueryReader Object

ServiceQuery QueryWriter XML
Object stream

Figure 4-2: QueryReader and QueryWriter.

These two classes are used inside the framework when a query needs to be written or

read from a stream. An application developer does not make use of these classes to

develop agents or applications that make use of the framework.

40

4.4 ServiceTemplate class

The ServiceTemplate class contains the following pieces of information -

o The name of the service that the query templates are meant for.

o The description of the service that the query templates are meant for.

o One or more query templates that indicate how a user can query for the

particular service.

Query templates are simpiy represented by ServiceQuery instances. The only

difference to a developer between a query and a query template is the context the

ServiceQuery is used in. When a ServiceQuery instance is contained within a

ServiceTemplate object, the field values for that ServiceQuery instance are ignored by

other components in the system.

4.5 TemplateReader and TemplateWriter classes

The TemplateReader and TemplateWriter classes are used much like the

QueryReader and QueryWriter classes. They are used to read and write

ServiceTemplates to and from XML streams. They operate as shown in figure 4-3.

41

XML Te ServiceTemplate
stream TemplateReader Object

ServiceTemplate ha t XML
Object stream

Figure 4-3: TemplateReader and TemplateWriter.

Again these two classes are internal classes, and are not used by application

developers directly. The framework makes use of these classes when reading and writing

templates.

4.6 ServiceTable class

This class is used to store the names of the services that are registered with a

particular peer, and the methods for querying for those services. This table is maintained

by the internal system. Whenever a new service template is discovered through the

JXTA framework, the table is updated with the new service template. The table has a

public API that allows applications to locate service names that are discovered, and also

to locate the queries that can be used to locate service instances. Abstractly, the table can

be pictured as in figure 4-4.

42

ServiceName 1 ProximityQueries

ServiceQuery
dataype Object

ServiceAttributeQueries

attr~ameServiceQuery
attr~ameObject

ServiceName2 roximityQueries

ServiceQuery
datarype Object

ServiceAttributeQueries

ServiceQuery
attr~ameObject

Figure 4-4: A depiction of a ServiceTable object.

4.7 PeerGroupConnection

This class is the main class that all applications use to locate peergroups, join a

peergroup, send service queries, and register new templates. It contains a simple API that

allows for all of these operations to occur. Two methods in this class are asynchronous.

The first is the locatePeerGroupo method. Applications must register a listener with this

method that receives notifications when new peergroups are found. What an application

does when a new peergroup is found is beyond the scope of the framework. It can

display a notification to the user, update a list that shows peergroups, etc. The second

43

method is the getServiceTemplateso method. Applications should call this method after

they join a peergroup. This method also requires a listener that is notified when new

service templates are located. The default listener is the ServiceTable class.

4.8 Public API

The public API for developers to develop applications that make use of the search

framework include the ServiceQuery, ServiceTemplate, and ServiceTable classes. The

ServiceQuery is used for creating search queries and search templates for a particular

service. The ServiceTemplate class is used to register a set of ServiceQuery objects with

a particular service. The ServiceTable class is used to locate the type of queries that a

particular service accepts. Finally, the PeerGroupConnection class is used to locate a

peergroup, connect to a peergroup, and to make use of the search framework.

4.9 Sample Application

One scenario where the service discovery framework presented is useful is in a city,

where users often need to locate something like a cab, a parking meter, or an ATM.

While we normally want to locate these things using a location-based query, there are

times when we want to add more attributes to our query. For instance, when we are

looking for an ATM, we don't just look for an ATM that is nearest to us, but we also may

want to locate an ATM that belongs to a particular financial institution, accepts deposits,

44

or is capable of dispensing stamps. This type of search is perfect for the service

discovery framework, as it allows users to specify queries based on attributes.

To demonstrate the viability of this service discovery framework, a simple ATM

locator application was built. This application allows users to locate ATMs based on

various attributes. The application demonstrates the major pieces of functionality that are

present in the service discovery framework -

* PeerGroup Creation - While it would be ideal for every ATM, regardless of

financial institution, to belong to one single network, it is likely that each

institution would have separate networks of ATMs. In the context of this

framework, this equates to creating peer groups of ATMs. In the application,

when an ATM comes online, it joins an existing group of ATMs, or creates a new

group if it cannot locate the group it is looking for.

* Query Template Registration - Each ATM network may have different service

characteristics, and when a user is searching for an ATM in a particular network,

they need the ability to figure out dynamically how to query for an ATM. The

application allows ATM peers to register query templates within the network.

* Query Dissemination - Once a user has created a query, the JXTA framework

disseminates that query throughout the network. ATMs that have attributes that

match the service request respond to the peer using a published pipe.

The following sections describe in detail how the ATM locator application works.

45

4.9.1 ATM Peers and the Locator Peer

Using the ATM locator application involves running not only the application that is

used to query for an ATM, but also running multiple instances of ATM peers. ATM

peers are the peers that are capable of creating peer groups, registering service templates

within a peer group, and responding to requests from the ATM locator application. The

ATM locator application is the application that is capable of joining a specific ATM peer

group, and querying for an ATM using the attributes described in the service templates

advertised within that peer group.

4.9.2 ATM Peers

Bringing an ATM online involves a three-step process. The first step in the process

involves the ATM peer reading an XML file that specifies the attributes used to describe

the particular ATM, and also the peer group to which the ATM belongs to. This XML

file is a service template file that the ATM also publishes within the peer group. Figure

4-5 shows the service template for describing ATMs within a peer group of FleetBank

ATMs.

The second part of the initialization process involves using the administration

depicted in figure 4-6 to specify values for the attributes for the ATM, and also its street

location.

. The last step in the initialization process involves the ATM joining or creating the

peer group specified in its initialization file. The ATM peer creates the peer group if it

46

cannot locate tle peer group on the network after ten tries. If it does locate the peer

group, it joins that peer group.

<register xmlns='urn:search:peer">
<serviceName>Fleet ATM Network</serviceName >
<serviceDesc> Network of Fleet ATMs </serviceDesc>
<queryTemplates >

<template tvpe="serviceAttribute" dataType="urn:dataType:string">
<attrName >city </attrName >
<attrDesc>The city this ATM is located in</attrDesc>

</template>
<template type="serviceAttribute" daitaType ="urn:dataType:string">

<attrName>dispensesStamps</attrName>
<attrDesc> Determines whether this ATM dispenses stamps </attrDesc>

</template>
</queryTemplates>

</register>

Figure 4-5: XML service template for an ATM peer.

Figure 4-6: ATM initialization screen.

This three-step process brings the ATM

requests. Once online, the ATM listens for

online, and has it prepared to process

queries within the peer group. Upon

47

receiving a query, the ATM processes the query by matching the values of the attributes

in the query with its own values for the same attributes. If all the values match, the ATM

responds to the peer making the request with its own street address.

4.9.3 The Locator Application

The ATM locator application allows users to join a specific group of ATMs, and

query for ATMs within that group. When the application is first started, the user is

presented with a screen that allows the user to see the peer groups that are online, and to

join a specific peer group. The user must click on the "Locate Groups" button to start the

peer group discovery process. When a peer group is discovered, that group is added to

the list of groups known to the locator peer. Clicking the "Join Group" button causes the

peer to join the highlighted peer group. The second screen in the application is used to

display to the user the list of peers that responded to a query request. To make a query

for a specific ATM, a user clicks on "Locate ATM providers" button on that screen. To

leave the peer group, the user clicks on the "Leave Group" button. The last screen in the

application is used to specify the terms of a search query. When a user clicks "OK"

button a query of the form specified in chapter 3 is sent out in the peer group. Figures 4-

7 through 4-9 show the three screens in the ATM locator application.

48

Figure 4-7: The first screen in the ATM locator application.

Figure 4-8: The second screen in the ATM locator application.

49

Figure 4-9: The third screen in the ATM locator application.

50

Chapter 5 Conclusion

In the previous chapters, the design and implementation of a framework that allows

peers to dynamically register and discover different methods for service discovery was

described. In this chapter, some directions for future research in this, and related fields,

will be briefly discussed.

5.1 Human Centered Interfaces

The framework proposed in this thesis is a low level framework for service discovery

and registration. In the real world, we want to be able to say a query like, "I want a cab at

77 Massachusetts Avenue in Cambridge." Saying this should translate down into the

type of queries discussed in the third chapter. In addition, in the event that new types of

service discovery templates are located, it should be possible to inform a non-technical

user how to use those templates. Ideally, there should be some sort of workflow process

that explains to a user how to make use of a new discovery technique. All of this work

involves a lot of different disciplines, one of which is natural language processing.

Taking sentences spoken in a conversational manner, and breaking them down into

pieces that a machine can understand is a big problem. The Spoken Language Systems

51

Group at MIT's Laboratory for Computer Science is currently conducting research in this

area.

5.2 Service Instantiation

Once a specific service, or service instance, is discovered there is the need for a

framework for invoking that service. For instance, suppose we use a device equipped

with the service discovery framework for finding open parking meters within a certain

location. Once we have found a parking meter, we would like to be able to pay that

parking meter electronically. In order to do this, we must go through the following

process -

1) We must tell the parking meter how long we want to stay for.

2) The parking meter must tell us how much money that will cost.

3) Our device must be able to contact our financial institution to initiate a transaction

to pay the parking meter.

4) Our device must send to our financial institution a security certificate that

authenticates us as a valid user of the account we are withdrawing funds from

5) Once authenticated our device must send to the financial institution a payment

request that includes the amount we are paying, who we are paying, and some

service specific parameters. In this case, our device would have to send to the

financial institution some piece of information that uniquely identifies the parking

meter we are paying for.

52

6) The financial institution would then send to the parking meter company the

payment, and the parameters that tell the company which parking is being paid

for.

7) The parking meter company would okay the payment, and our financial institution

would send us a confirmation saying that a payment had been made.

While this is a fairly straightforward workflow for this type of application, we must

remember that this application is not likely to come pre- installed on every peer. That

would be cumbersome, as it would be necessary to install applications for every type of

service we would want to make use of. What is desirable is the ability to dynamically

load the necessary components on a device, after establishing a connection with the

parking meter. It is likely that the device we are using has some component that has the

ability to contact our financial institution, but beyond that the device might not have the

components to accomplish the negotiation process with the parking meter (i.e. the

components that ask a user how much time they would like to stay for, tell a user how

much that will cost, and add to the payment slip the parking meter identifier).

In order to support this specific service, and other services, the following questions

must be answered -

1) How is a peer able to dynamically load software modules from another peer, and

how are those modules intelligently configured to run on the platform they will

execute on. For instance, if we are using a cell phone to pay the parking meter,

then there may be some speech-based interface to our service. Whereas if we are

using something like a PDA, there may be some GUI interface to our service.

53

2) How is possible to securely conduct transactions in an ad-hoc network of peers?

There needs to be some authentication framework that allows one peer to

authenticate another. This authentication mechanism must be flexible enough to

support multiple authentication types, such as a simple password based system or

a more complex certificate based system. In addition, there must be support for

data encryption when passing around sensitive data, such as bank account

information.

As is evident there are many pieces that must be put together to provide a system that

is easy to use and intelligent enough to adapt to different situations. The purpose of this

thesis was to provide insight into one of those pieces that will allow us to live in a world

where computing is truly pervasive, and as easy to use as the air we breathe.

54

References

[1] Scott Oaks, Bernard Traversat, Li Gong, "JXTA In a Nutshell," 2002

[2] Brendon J. Wilson, "JXTA," 2002

[3] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy Lilly, "The

Design and Implementation of an Intentional Naming System," I 7h A CM SOSP,

Dec. 1999

[4] Frank Minola, Eric Miller, Brian McBride, "RDF Primer,"

http://wwv.w3.org/TR/rdf-primer/, 2001-2002

[5] T. Berners-Lee, R. Fielding, L. Masinter, "RFC: 2396 Uniform Resource Identifiers

(URI): Generic Syntax," http://vwvw.ietf.org/rfc/rfc2396.txt, 1998

[6] R. Moats, "RFC: 2141 URN Syntax", http://wxvw. ietf.org/rfc/rfc2 141 .txt, May 1997

[7] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, "Extensible Markup

Language (XML) 1.0 (Second Edition)," http://www.w3.org/TR/REC-xml, October

2000

[8] P. Mockapetris, "RFC: 1035 DOMAIN NAMES - IMPLEMENTATION AND

SPECIFICATION," http://www.ietf.org/rfc/rfc1035.txt, November 1987

[9] Sun Microsystems Inc., "Java Remote Method Invocation Specification," 2002

[10] Sun Microsystems Inc., "Jini Architecture Specification, Version 1.2," 2001

55

