
WinNTGen: Creation of a Windows NT 5.0+ Network
Traffic Generator

by

Jesse C. Boothe-Rabek

B.S. Electrical Engineering and Computer Science

Massachusetts Institute of Technology, 2001

Submitted to the Department of Electrical Engineering and Computer Science in partial

fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2003

C 2003 Jesse C. Boothe-Rabek. All rights reserved.

The author herby grants to MIT permission to reproduce and to distribute publicly paper and

electronic copies of this thesis document in whole A in nart.

Signature of Author:

Departmeqt'of Electrical Engineering and Computer Science
January 18, 2003

Certified by:

Robert K. Cunningham
Assistant Group adr, MIT LTcoln Laboratory

Wesis. Supervisor

Accepted by:

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 3 0 2003 BARKER

LIBRARIES

WinNTGen: Creation of a Windows NT 5.0+ Network
Traffic Generator

By
Jesse C. Boothe-Rabek

Submitted to the Department of Electrical Engineering and Computer Science

February 18, 2003

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract
The Lincoln Adaptable Real Time Information Assurance Testbed (LARIAT) project is the first
fully automatable network testbed for the evaluation of information assurance (IA) technologies.
It allows researchers to easily set up experiments that evaluate the accuracy of host-based and
network-based intrusion detection systems (IDSs). Initially, the network traffic it could produce
used UNIX services and protocols as implemented for the Linux and Solaris platforms. However,
due to the widespread deployment of Windows-based systems in production environments, it is
necessary to include Windows-based traffic when testing IA systems in order to provide a
comprehensive evaluation.

This thesis describes WinNTGen, a Windows network traffic generation system that integrates
into the existing LARIAT framework and enables it to produce Windows-based network traffic.
To do this, WinNTGen simulates the actions of a user controlling applications that in turn use
network resources. This frees WinNTGen from the need to re-implement network protocols and
allows it to operate at a higher level of abstraction.

WinNTGen controls applications via loadable libraries that encapsulate the manner in which a
typical user interacts with a particular application. The statistical parameters that specify the
behavior of a user with each application are derived from real users' behavioral data as they
interacted with each application. The system is flexible and extensible so that different versions
of the same application as well as additional applications can be controlled by modifying and
adding libraries.

Finally, the reality and the throughput of the network traffic produced by the WinNTGen system
are evaluated.

Thesis Supervisor: Robert K. Cunningham
Tide: Assistant Group Leader, MIT Lincoln Laboratory

2

Acknowledgements
There are many people that helped me along the way to completing this thesis and I do

not think I could possibly name them all. First and foremost I would like to thank my thesis
supervisor, Rob Cunningham, for his excellent insight, assistance, and encouragement throughout.
Also, I would like to thank Lee Rossey and Gerry O'Leary (aka the LARIAT team) for countless
hours of discussion and advice.

During the entire project, the entire Group 62 staff at Lincoln has been great in helping
me. For the user modeling, Rich Lippmann, Doug Reynolds, and Oliver Dain provided
wonderful expertise and analysis. For every technical aspect of Windows NT, Scott Lewandoski
was a source of invaluable information.

For moral support I want to thank my family, Norman Rabek, Joy Boothe, and Eli Rabek
my girlfriend, Ana Rodrigo; and, of course, all of my brothers at Nu Delta Fraternity.

3

Contents
Chapter 1 Introduction...................................8

1.1 Evaluating Network-Based Information Assurance Systems............................. 8

1.2 The Development of a W indows Traffic Generator.. 10
1.3 Thesis Outline... 10

Chapter 2 Motivation and Background... 11

2.1 Motivation .. 11

2.2 1998 & 1999 DARPA IDS Evaluation .. 12
2.3 Lincoln Adaptable Realtime Information Assurance Testbed 14

2.3.1. LARIAT Director.......................................15
2.3.2. Database16
2.3.3. Traffic Generators.. 16
2.3.4. Evaluation Overview16

2.4 The Need for W indows Traffic.. 18
2.5 Available W indows Traffic Production Systems... 19

Chapter 3 W indows Traffic Generation .. 20

3.1 W inNTGen Goals.. 20
3.2 Generating the Network Traffic ... 21
3.3 User Modeling.. 24
3.4 Obtaining Behavior Data... 27
3.5 Defining Application Use State Machine Behavior ... 28

3.5.1. Training AUSMs from Event Streams .. 29
3.5.2. Setting AUSM Parameters from State Frequencies 34

3.6 Implemented Application Use State Machines .. 35
3.6.1. Internet Explorer .. 35
3.6.2. W indows Explorer.. 37
3.6.3. Outlook39

Chapter 4 Im plem entation ... 41

4.1 Overview...41
4.2 Abandoned Goal: Multiple Virtual Source Addresses 41

4.2.1. User Space Filters ... 42
4.2.2. Kernel Space Filters... 44

4.3 Final Goal: Single Source Address .. 47
4.3.1. Overview..47
4.3.2. System Objects..49
4.3.3. W inGenGina .. 50
4.3.4. W inGenApp .. 52
4.3.5. AUSM Implementation .. 53

Chapter 5 W inNTGen Evaluation .. 55

5.1 Overview.. 55

4

5.2 Realism ... 56
5.2.1. Loginand Logout traffic.. 57
5.2.2. AUSM Generated Traffic.. 58

5.3 Throughput.. 61

Chapter 6 Conclusions and Future Work...63
6.1 Conclusions ... 63
6.2 Future W ork.. 64

5

Index of Figures
FIGURE 1: EXAMPLE LARIAT TOPOLOGY .. 15

FIGURE 2: EXPERIMENT FLOW.................................-.---- .. . ------------... 17

FIGURE 3: WINNTGEN LAYERED OVER APPLICATIONS .. 23

FIGURE 4: COLLECTION OF AU SM S -. --. -------------............................. 24

FIGURE 5: STATE TRANSITION ALGORITHM .. 25

FIGURE 6: EVENT STREAM ...--.---. . ------------------------------.. 28

FIGURE 7: EVENT STREAM SEPARATION .. 29

FIGURE 8: TRAVERSING THE STATE MACHINE .. 30

FIGURE 9: CDF OF TRANSITION DURATIONS... 31

FIGURE 10: FITTED H YBRID CD F .. 33

FIGURE 11: INTERNET EXPLORER AUSM ... 36

FIGURE 12: WINDOWS EXPLORER AUSM .. 38

FIGURE 13: OUTLOOK AU SM 39

FIGURE 14: LAYERED SERVICE PROVIDER... 42

FIGURE 15: COOPERATING KERNEL MODE FILTERS DESIGN .. 46

FIGURE 16: WINNTGEN HIGH LEVEL STRUCTURE.. 48

FIGURE 17: WINNTGEN FLOW CHART.. 49

FIGURE 18: W INGENGINA COMPONENTS... 51

FIGURE 19: W INGENAPP M ODULE DIAGRAM ... 52

FIGURE 20: EVALUATION TESTBED .. --.-................................... 56

FIGURE 21: COMPARISON OF LOGON NETWORK TRAFFIC ... 58

FIGURE 22: INTERNET EXPLORER AUSM (AUSM GENERATED EVENTS AND PACKETS PRODUCED)............ 59

FIGURE 23: OUTLOOK AUSM (AUSM GENERATED EVENTS AND PACKETS PRODUCED) 60

FIGURE 24: WINDOWS EXPLORER AUSM (AUSM GENERATED EVENTS AND PACKETS PRODUCED)........... 60

FIGURE 25: A U SM SCALABILITY ...--------. 62

6

Index of Tables
TABLE 1: COMPARISON OF WINNTGEN TO LARIAT, DARPA IDS EVAL... 21

TABLE 2: INTERNET EXPLORER AUSM TRANSITION PARAMETERS .. 37

TABLE 3: WINDOWS EXPLORER MODEL TRANSITION PARAMETERS .. 38

TABLE 4: EXPORTED DLL FUNCTIONS.. 53

7

Chapter 1

Introduction

1.1 Evaluating Network-Based Information Assurance Systems

Due to the rapid growth of technologies surrounding networked computing resources, it has

become necessary to create fully automated test systems for evaluating network-based

Information Assurance (IA) systems. In a general sense, IA is "knowledge management"[1].

Currently IA technologies are "most closely associated with detection of and response to

vulnerabilities and events relating to cyber attacks"[1] although the area of IA covers many other

technologies such as authentication and cryptology. More formally, IA technologies are

responsible for protecting data, detecting unauthorized manipulations of data, and responding

appropriately to any breaches of security.

There is a large need for comprehensive IA systems. Annual losses by corporations,

universities, and government agencies due to computer crimes is measured in billions of dollars

and many of the attacks go unnoticed or unreported[2]. These attacks can come from both inside

and outside of organizations.

One of the rapidly developing information assurance technologies that warrants focus is

the intrusion detection system (IDS). IDSs attempt to signal system misuse through examination

of network traces, audit logs from individual hosts, or both. Even though there are technologies

to limit abuse, such as firewalls, these systems are fallible since they have incomplete knowledge

and are static in nature. Because computer networks and the applications that communicate

across them are complex and rapidly changing, bugs, flaws, and weaknesses are constantly

8

introduced that could allow a malicious user to gain access to private resources. It is therefore

necessary that these systems be deployed alongside a more sophisticated IDS capable of alerting

system administrators to possible abuses so that vulnerabilities can be eliminated.

In order to evaluate the accuracy of the technical approach of a particular IDS, it is

necessary to create a controlled network environment in which the IDS examines network traffic

and host logs produced in a predetermined manner. This way, specific aspects of the IDS may be

tested by comparing IDS alerts to ground truth. IDS evaluations have been conducted in this

manner by several groups. A summary of some of the more widely known evaluations can be

found in Network Intrusion Detection: An Analyst's Handbook[3].

The DARPA 1998[4] and 1999[5, 6] offline intrusion detection evaluations conducted at

the Massachusetts Institute of Technology's Lincoln Laboratory provided assessments of various

IDSs by supplying the IDS researchers with network traces and host log data that had been

recorded from a network testbed. Researchers reported the alerts generated by their IDSs, and

these were scored using a list of when the attacks actually occurred. In the 1998 evaluation only

UNIX style background traffic and attacks were included. The 1999 evaluation included all the

traffic types found in the 1998 evaluation as well as a limited variety of network traffic produced

by Windows NT 4.0 that was mostly produced by more traditional protocols such as HTTP.

Attacks in both evaluations were executed by a human actor.

The Lincoln Adaptable Real-time Information Assurance Testbed (LARIAT) [7, 8] was

developed to address certain limitations and inconveniencies of the evaluations and its tool set by

automating the time consuming tasks of setting up the evaluation run and collecting run-time

statistics and data. By automating these tasks and allowing for multiple network configurations,

organizations using LARIAT are able to perform experiments tailored to their specific network

environment. LARIAT emphasizes automatically generating repeatable real time background

and attack traffic for evaluating IA systems. This also allows LARIAT to be used in the

evaluation of host-based IDSs, which requires real time network traffic. Initially LARIAT used

9

UNIX services and protocols as implemented for the Linux platform in order to produce the

network traffic. Attacks in LARIAT are completely automated and it is possible to chain together

multi-stage attacks. Recent work on the Thor system [9] built upon the automated attack ideas in

LARIAT and added the ability to vary individual attacks.

Given the facts that LARIAT was not initially capable of producing extensive network

traffic from Windows NT, and that and it is common for a network to include hosts running the

Windows NT OS, as can be seen from Section 2.4, it was necessary to create a system capable of

producing Windows NT traffic that could integrate with LARIAT.

1.2 The Development of a Windows Traffic Generator

This thesis describes the design and implementation of WinNTGen, a system that produces

realistic Windows NT network traffic and integrates into the existing LARIAT system. The

system generates traffic associated with Microsoft implementations of cross-platform services,

such as HTTP traffic, as well as Microsoft-specific traffic that results from communication

between Windows Workstations and Windows Servers, such as SMB over TCP/IP.

1.3 Thesis Outline

Chapter 2 describes the previous work in the area of traffic generation and evaluation of

information assurance technologies, as well as the motivation for creating a Windows traffic

generation system. Chapter 3 covers the way in which Windows NT users are measured and

modeled and how these models are used to produce network traffic. Chapter 4 provides

implementation details of the WinNTGen system, several attempted and rejected designs, and a

description of how WinNTGen is integrated into LARIAT. Chapter 5 evaluates the performance

of the system in terms of traffic throughput and resemblance to actual traffic. Finally, Chapter 6

draws conclusions about WinNTGen and describes future directions it could take.

10

Chapter 2

Motivation and Background

2.1 Motivation

Given the potential of large financial losses [2] and other immeasurable damages caused by

compromised information as a result of a cyber attack, it is desirable for institutions to deploy IA

systems capable of protecting themselves from such threats. However, if the IA system itself is

flawed it only serves to provide a false sense of security which is certainly worse than having no

system at all. It is therefore necessary to evaluate such systems in order to determine their true

effectiveness. Network-based and host-based IA technologies, specifically IDSs, are evaluated

by providing them with network traffic, host log data, or both, and then examining the alerts

generated in order to determine if the IDS did indeed detect everything it should have.

There is a temptation for an institution interested in deploying an IDS to perform an

evaluation of several IDSs on their own network to determine which one performs best in their

particular network environment. However, this quickly becomes an expensive proposition since

time must be spent in installing and configuring each IDS in their network environment as well as

evaluating experiment results. A recent IDS evaluation performed by Network World took three

months, involved three full time staff, and cost tens of thousands of dollars[l 0]. For an institution

evaluating a small subset of IDSs for their own use, there is no guarantee that the IDSs that they

choose to evaluate perform the best in their type of network environment.

11

A more viable, cost effective approach to the IDS evaluation problem is to use a network

testbed that is designed for rapid reconfiguration and testing of IDSs. Using a testbed approach

there are several possible ways in which an IDS can be evaluated.

The first possibility is that vendors can be provided with a testbed environment with

which they can evaluate their own IDSs before they are deployed. The advantage to this

approach is that it allows vendors to shorten their evaluation and improvement cycle as well as

perform thorough evaluations of their final product before it is released. However, this does have

the disadvantage that vendors could create experiments that make their IDS appear to perform

better than it actually does. In order to address concerns about inaccurate evaluations by vendors,

there is another possibility that a centralized IDS evaluation can be performed by an independent

group in which multiple IDSs are evaluated on several common network configurations.

Organizations could then take the two or three IDSs that performed the best in the network

configuration that most closely resembled their own and, if they choose, perform further

evaluations on this subset in order to select the best one of these to use.

Section 2.2 gives an overview of the 1998 and 1999 DARPA IDS evaluation which is the

original research that uses a variety of testbed generated network traffic as a part of IDS

evaluation. Section 2.3 describes LARIAT which grew out DARPA IDS evaluation and sought

to address some of the most important limitations of the previous system.

2.2 1998 & 1999 DARPA IDS Evaluation

The IDS evaluation conducted at the Massachusetts Institute of Technology's Lincoln Laboratory

[6] is the first to provide a system to evaluate the technical accuracy of DARPA funded IDSs.

The research built upon previous approaches to evaluating IDSs [11-13], substantially increasing

the number of attacks and expanding the breadth of background traffic. Its purpose was to

provide rich data sets for testing and experimentation with various ID algorithms and

technologies, to evaluate ID approaches by analyzing the strengths and weaknesses of each, to

12

facilitate analysis of how and why alternate approaches to IDSs differ, and to report to DARPA

information necessary to guide and focus future research directions [6].

The authors indicate that future evaluations should include more Windows NT traffic and

that the traffic should be scriptable. The first part of the statement is motivated by the fact that the

Windows OS is widely deployed, and should be included in a comprehensive IDS evaluation.

The second part of the statement was made because in the 1999 DARPA IDS Evaluation during

the traffic generation sessions, human actors would perform on the order of one to three manual

actions each day. These tasks included, but were not limited to, upgrading software, adding users,

and changing passwords. As a result, the recorded audit data could no be perfectly recreated.

Scripting these actions would add more accurate simulation repeatability and better ground truth.

Also relevant to this thesis is the fact that in the 1999 DARPA IDS Evaluation network

traffic produced by the Windows NT machines was limited in scope in that many of the Windows

NT-specific protocols were not used. Specifically, in that evaluation there were three different

types of Windows NT background traffic present. The first was from telnet connections to a

Windows NT host made by simulated users from RedHat Linux hosts. The second was from an

auto-browser module residing on the Windows NT host that simulated a user browsing to

different predefined web pages. The auto-browser was built using JavaScript and ran out of

Netscape browser and so did not produce or receive HTTP traffic characteristic of the native

Windows OS browser, Internet Explorer. The last type of traffic resulted from a human actor

performing various administrative tasks such as running statistics generating scripts and posting

the results in Excel spreadsheet form to a web site.

There were other types of Windows NT traffic, but this traffic resulted from attacks being

carried out against the Windows NT host and are not considered part of the general background

traffic.

13

2.3 Lincoln Adaptable Realtime Information Assurance Testbed

LARIAT's two design goals are to create a system capable of real-time evaluations and to create

a deployable, configurable, easy-to-use testbed that could be easily integrated into an

organization's existing network. By integrating LARIAT into an existing network, IA

technologies, as well as any other network component, can be evaluated in a relevant network

configuration with relevant background traffic. It is also able to generate both single-component

attacks and multi-component attacks, and automate many of the time consuming tasks of past IDS

evaluations.

In order to achieve these goals, LARIAT is designed so that a user of the system can

interact with a central director, the experiment configuration and automation tool. The director

alleviates the need for the user to have detailed knowledge of the testbed itself. The director is

responsible for the actual configuration and subsequent running of an evaluation. A possible

LARIAT topology is depicted in Figure 1.

14

.L.IA .rd~ .. .

RLARtAT

S~iu~ate Router

:Lndot: IA Technology
a e Under Evaluation Intemnal Web Server External Web Server

Figure 1: Example LARIAT Topology

Since WinNTGen is integrated into LARIAT, the following sections provide an

explanation of the roles of different components in a LARIAT setup and a summary of the

evaluation process. A more detailed description is available in the original LARIAT paper[7].

2.3.1. LARIAT Director

The LARIAT director controls almost all aspects of the testbed. A user of LARIAT needs only

interact with the director in order to run experiments once the testbed is set up. The director is

capable of producing network traffic profiles based on the parameters provided by experimenter.

These proffles dictate the production of network traffic by the traffic generating hosts. The

profiles currently in use in LARIAT were created from analyzing traffic from a United States Air

Force base. In order to simplify the setup of experiments, the LARIAT director has prefabricated

traffic profiles, user profiles, and attack configurations that can be modified and tailored to a

15

particular experiment. It is not necessary to specify all aspects of an experiment every time it is

run.

2.3.2. Database

The database is responsible for storing a representation of the network, the experiment parameters,

the traffic and user profiles, run time logging, and experiment results. Using a database

centralizes the information, eases deployment and reconfiguration of the testbed, and standardizes

the structure of information.

2.3.3. Traffic Generators

A traffic generator may contain on the order of 2500 virtual IP addresses or may contain a few or

even just one. It may be responsible for background traffic such as web surfing and sending

emails or it may be involved solely in attacking another host or being attacked.

There is a common required functionality in the traffic generators, however. Each traffic

generator must be capable of communicating with the director and the database. From the

director it obtains the address of the database and directions of when to start, stop, reread

parameters from the database, and report run information to the database.

2.3.4. Evaluation Overview

An experiment in LARIAT is comprised of eight steps, as depicted in Figure 2. In the first step

the user selects and edits attack and background traffic profiles for the session. The remaining

seven steps are automated and controlled by the director. In these steps, the director initializes

the network, distributes the configuration to the traffic generators, verifies pre-conditions, runs

the traffic, verifies that the traffic ran as desired and collects results, and then cleans up in

preparation for a fresh run. The following is a detailed description of these steps.

16

Select Profile
- select & edit traffic profile
- select attacks & strike time

Network Discovery
Verify accessibilty of hosts and services

InitIalize Network Clean Up
S- reset user accounts CenU

- remove old traffic - reinstate corrupted files
Distribute Configurations - clear logs -remove pre-conditions
- distribute profiles to hosts - clear process table - archive traffic scripts

- clear process table

Pre-conditions Verify / Score
- setup network conditions required - examine attack ogs

for the test (eg. Anonymous ftp) - verify attack success
- generate traffic & attack scripts - exanine IDS output (future)
- schedule attack + traffic scripts - score IDS (future)
- start loggers Run Traffic

-view progress in -real-time"
- attacks. IDS output

Figure 2: Experiment Flow

The experimenter first selects a profile on the director for the run. As mentioned before,

network traffic profiles consist of host, user, and attack configurations. The host configurations

contain host details such as services offered, accounts, etc. User configurations contain

information such as the type of user (secretary, administrator), frequency of ftp and telnet

sessions, and periods of activity. The attack configuration contains attack components organized

into scenarios that recreate the attacker actions as he performs all the steps required to penetrate a

network. Several representative attack scenarios are provided[8].

Following the specification of the profile by the user, the director distributes the

configuration information to a database and then indicates the start of an experiment to the traffic

generators via a simple custom network protocol. The traffic generators respond by fetching the

experiment parameters relevant to them from the database.

Once the traffic generators have obtained their configurations, they prepare themselves

for the experiment which typically involves initializing user models and scripts that will define

the behavior of the traffic generator for the duration of the experiment.

17

Following the preparation, the evaluation commences. Each traffic generator produces

traffic according to the aforementioned scripts and models. The director does not need to be

active during this phase. Real time statistics on the run can be observed, but the experimenter

must be aware that the affects of this control traffic may interfere with the evaluation.

After the evaluation run or at certain points during the run, the director can query the logs

on the various machines and the database to determine the success or failure of any of the scripts

or items in a queue. For example, in an evaluation involving a multi-stage attack on a victim host,

the success or failure of each stage may be observed from the director.

2.4 The Need for Windows Traffic

Both the DARPA IDS evaluations and LARIAT systems had network traffic produced by

Windows NT computers, but lacked the capability to produce much of the traffic that is

characteristic of Windows NT. As the Department of Defense and many commercial companies

use more Widows-based products, IDS evaluation systems will need the capability to incorporate

realistic Windows network traffic into their experiments.

Statistics taken from browser traffic in spring 2002 [14-16] indicate that Microsoft holds

roughly 80 to 90 percent of the workstation OS market with Windows 2000 and XP making up

between 20 to 30 percent of the total. A March 2000 study of the web-server OS market [17]

indicates that Microsoft's Internet Information Server (IIS) comprises around 23 percent of all

web servers, and 30 to 40 percent of commercial web servers.

These numbers indicate that there is a significant presence of both workstations and

servers with some version of the Windows OS installed. The ability to produce both Windows

background and attack network traffic will enable evaluation systems to perform more

comprehensive assessments of IDSs.

18

2.5 Available Windows Traffic Production Systems

Prior to the creation of the Windows traffic generator, a survey of commercially available traffic

production systems was performed to determine if they were suitable for use in an evaluation

network such as LARIAT. In order for a system to be usable in an IA technology evaluation, it

needs to be capable of producing a broad range of reasonably realistic network traffic whose mix

and rate can be configured. Several systems were reviewed that were capable of generating

Windows NT traffic in some capacity. These systems fell into three different categories.

The first category of tools is the stress testers [18-20]. These tools are used in the

evaluation of an individual host's ability to handle high throughput of a specific protocol. Neither

inter-packet timing nor packet contents matches what is commonly seen on real networks, so

these tools are not appropriate for general use in LARIAT.

The second category of tools is used for evaluating network configuration [21]. These

tools observe network traffic and provide statistics, graphs, and/or topologies of the network. The

network traffic generation ability of these tools is limited and is provided only for playing back

captured or generated packets in order to verify the functionality of network resources.

Finally, the third category includes tool with the combined functionality of the above

tools [22].

Since all of these systems did not meet the requirements described above, it was

necessary to develop a Windows NT traffic generation system.

19

Chapter 3

Windows Traffic Generation

3.1 WinNTGen Goals

The goal of the WinNTGen traffic generation project was to create a system capable of producing

realistic Windows NT-specific traffic that would complement the existing network traffic

producing capabilities of LARIAT. Specifically, the mechanisms used should allow for the

generation of any type of network traffic producible by Windows NT and be extensible enough so

that unforeseen sources of network traffic, such as new applications, services, etc., could be

added later and easily integrated into the system.

Since most network traffic is due to humans directly or indirectly controlling applications,

the WinNTGen system design includes a model of human-computer interaction (HCI). Some

parts of the original DARPA IDS Evaluation included user sessions for the Linux traffic

generators in which simulated users would telnet to a host, perform sets of actions such as using

ftp, etc, and then log out. Similarly, traffic produced in the WinNTGen system comes as a direct

result of the simulation of user actions rather than the emulation of lower level protocols.

However, the models of the users' sessions in the DARPA Evaluation came directly from

recorded network sessions, whereas the models in the WinNTGen system come from recorded

user interactions with various applications' GUIs on the host. For the evaluation of host-based IA

technologies, it is important that users are being modeled at this level since the series of events a

user performs may be used to detect illicit users or suspicious behavior. For the network-based

IA technologies, it makes little difference at which level the traffic generation occurs since it has

20

no access to events occurring on the host. However, by controlling applications directly, the

network traffic timings and eccentricities of application implementations are accurately

reproduced. The application and operating system correctly formats, transmits, receives, and

interprets the network packets.

Table 1 summarizes the differences in traffic generation models between WinNTGen,

DARPA IDS Evaluations, and LARIAT.

DARPA IDS Eval LARIAT WinNTGen
(1999-2002) (2000 - Present) (2002)

Network Primarily UNIX with Primarily UNIX and Only Windows 2000 and
traffic some Windows NT some Windows NT above

produced
Traffic Simulated user sessions Simulated user sessions Simulated session of
generated by per individual per individual user interacting with

applications. Protocol applications. Protocol multiple applications
level interaction. level interaction. simultaneously

Traffic Recorded network traffic Recorded network traffic Recorded user actions
Generation
Model based
on
Per physical Thousands of users Thousands of users Single user
machine

capabilities
Network Fixed Variable Variable
Configuration

Table 1: Comparison of WinNTGen to LARIAT, DARPA IDS Eval

Originally, the system was to produce realistic multi-sourced multi-user network traffic.

To achieve this, each physical Windows host was to log on multiple simulated users

simultaneously and modify outgoing source specific host information in network packets.

However due to operating system constraints discussed in later sections, the original project goals

were altered. The modified project goal is to have one simulated user per physical host.

3.2 Generating the Network Traffic

In WinNTGen, a user simulator creates network traffic by interacting with multiple applications

such as using Outlook, telnet, ftp, or the Windows Explorer shell. All generation of user activity

21

occurs at the session and application layers [23]. At a session level, the user simulator models a

user interacting with a set of applications simultaneously, interleaving different activities much

like a real user would. At the application level, the user simulator models the way in which a user

interacts with individual applications.

There are several advantages to this approach as compared to modeling lower level

application or protocol behavior. This level of abstraction increases the forward compatibility of

WinNTGen. The system is more resistant to problems created by upgrades in software because it

only needs to be concerned with interacting with the software at a higher level, rather than having

an understanding of the internal workings and protocols that produce network traffic. Also, by

controlling the application directly rather than implementing the protocols it uses, timing

characteristics, implementation eccentricities, and other identifying features of that particular

application appear in the network traffic automatically. For example, T. Lau and E. Horvitz used

a large set of distributions in modeling how web requests arrive at a server [24]. Given the

existence of embedded references in HTML documents such as images, part of their modeling

had to incorporate the behavior of the browser when retrieving these references. In WinNTGen,

by modeling the way in which the user interacts with the browser, all of the network traffic

characteristics resulting directly from the browser are already present. In Figure 3, WinNTGen

can be seen controlling several different applications which use an overlapping set of protocols.

The protocols in turn utilize the drivers which then use the hardware. Each of these layers can

affect the timing and content of data flowing out of the system. One action at the User Model

level can cause multiple packets being sent out on the network. For example, when a user

accesses a shortcut for the first time that points to a Windows network share there are multiple

network conversations that occur. First, the remote host name would need to be resolved via

DNS or WINS. Next, authorization would be carried out using LANMAN or Kerberos

authentication schemes. Finally the contents of the directory would be transferred via SMB over

22

NetBIOS and TCP/IP. A single user action results in multiple actions being carried out at the

lower levels.

User Model WinNTGen

. Network File
Applications Web Browser Email Client Browser

Session Layer Protocols HTTP, POP, IMAP, DNS, SMTP

Transport Layer Protocols TCP, UDP, ICMP

Network Layer Protocols IPv4, IPv6

Hardware Layers Network Card

Figure 3: WinNTGen Layered Over Applications

The approach of modeling users in terms of user sessions is different from the rest of the

traffic producing mechanisms currently in use in LARIAT

The Linux based network traffic production systems in use in LARIAT currently produce

sets of Expect-based scripts [25] for each user session or service for the entire evaluation run.

Since all of the sessions are generated prior to the start of an experiment, the traffic generators are

not able to react to dynamic experiment conditions such as failures of network components. In

contrast, the Windows traffic generators are producing completely real-time sessions and are able

to react to changes in the testbed. For example, a simulated user might react to a downed telnet

server by choosing a different one to log-in to, rather than repeatedly trying to connect the broken

one.

In general, simulating user events is best done at the level at which users actually interact

with the system. In the case of UNIX based systems, a sequence of user events can be

represented by a character stream, the series of commands a user types. However, in the case of

Windows OSs, the sequence of user events is the set interactions with the GUI. As a result, a

different approach must be taken to model a user.

23

3.3 User Modeling

Individual users are modeled as a collection of application use state machines (AUSMs). Each

AUSM encapsulates a user's behavioral pattern for a particular class of network traffic presence

such as browsing the web, sending email, etc., as depicted in Figure 4. Details of the individual

state machines appear in Section 3.6.

Transition
State

P(Web Browsing) P(Email)

(P,
a A

P, D)

(P, D)
A

P, D)

(P((,)P, D C ,D)

B (,D CD B (,Q CD
(P, D) (P, D)

(P, D) E P, D) (P, D) E P, D)

(P, D) (P, D)

Web Browsing Email

Figure 4: Collection of AUSMs

Each state within a particular AUSM is a single action that the user can do such as

composing an email, sending an email, or navigating a web page as represented by A, B, C, D,

and E in Figure 4. Note that the granularity of a single user action is dependent upon the AUSM.

The collection of AUSMs will be referred to as the user simulator and is itself a state

machine consisting of a central transition state and all of the AUSMs in use. Note that many

states within an AUSM have edges that transition out of the AUSM. This simulates the way in

which real users interleave tasks when using a computer. For example, a user may be surfing the

web and then decide to email a link he ran across to a friend. Upon returning to surfing the web,

the user will start exactly where he left off. The transitions to the different states and different

AUSMs form a serial stream of user actions. There is currently no standard mechanism through

24

which AUSMs can interact with one another. As a result, more complicated series of events are

not directly supported, such as a simulated user copying a URL from a browser window and then

pasting into an email to send to a friend. Although this behavior is possible to emulate, it has not

been explicitly built into the system in the interest of simplicity.

A more formal description of the user simulation process is as follows. At the beginning

of a simulation session, the user simulator selects an AUSM at random according to the AUSM-

use probabilities, denoted as P(Email) and P(Web Browsing) in Figure 4. Inside the chosen

AUSM, a start state is entered such as "Open a web browser." Then, transitions occur between

the different states depending on the edges. The edges have two values associated with them: P,

the normalized probability that this edge is taken out the current state versus another, and, D, the

set of parameters for some distribution that dictates the duration until this transition occurs.

Transitions between states inside the module are made by the algorithm appearing in Figure 5.

Transition(State CurrentState)

Begin
Edge NewEdge = CurrentState.PickEdge(;
Wait (NewEdge.GetValueFromDist));

CurrentState = NewEdge.DestinationState;

End

State: :PickEdge ()
Begin

Total = 0;
Value = Rand();
For(Edge = FirstEdge; Edge; Edge.GetNextEdge()

Total = Total + Edge.P;
If(Value < Total) Return Edge;

End
End

Edge: :GetValueFromDist ()
Begin

Return GenerateValueFromDist(Edge.D);

End

Figure 5: State Transition Algorithm

25

From the current state, pick an edge at random out of the state according to the weights

and a time to wait until transition according to the distribution for that edge. Finally after waiting

that amount of time, make the transition. This process is repeated.

In order to vary the behavior of the AUSMs and, more generally, the simulated users, the

concept of a user class is introduced. Each class of user is defined by a different profile.

Examples of classes include secretaries and software developers. Each user class is defined in

terms of a profile. A profile for a particular user class is a collection of parameters that define

properties of the simulated user's behavior such as the frequency of email sent and file types of

attachments. For example, a user model of type secretary might have high transition probabilities

to the email AUSM, and the internal parameters for the email AUSM might include the email

addresses of the group for which he works and maybe even some typical emails that the secretary

would send.

This approach of completely defining the behavior for individual users is similar to that

of the work in the DARPA IDS Evaluation [4]. Although in that research, the user models were

monolithic. For example, the traffic generator would have the simulated user telnet into a server,

use finger and ping among other utilities, and then log out the user. The telnet traffic generator

had to be aware of the existence of the use of the other utilities.

The traffic generators in LARIAT are similar to the traffic generators from the DARPA

IDS evaluation in that a single user is chosen to log in via telnet to perform some action.

However in LARIAT, the simulated user performs actions that produce mainly one type of traffic.

This allows a more precise, higher level control of the distribution of protocols seen during an

experiment. For example, instead of logging into a server via telnet, using ftp, using ping, using

nslookup, and then logging out as in the DARPA IDS evaluations, the simulated user would log

in, use ftp for some period of time, and then log out.

The AUSMs currently in use in WinNTGen do not model user behavior in terms of goals,

operators, methods, and selection rules (GOMS)[26, 27]. In that research, a user is modeled by

26

first selecting a set of goals that user wants to accomplish, and then deciding upon the series of

atomic actions the user should take in order to reach that goal. The AUSMs currently in use in

WinNTGen provide a set of actions the user can take at any point with no notion of a greater

intent. The knowledge that is embedded into the AUSM allows it to reproduce typical courses of

actions that the user takes, such as opening an email client, then checking email, sending email,

and finally closing email client, thereby creating a user plan[28]. If a greater level of

sophistication is desired in the user models in the future, it can be easily added by updating only

the AUSM and leaving the rest of the system intact.

In order to model user behavior on a larger time scale, such as over the course of a day or

work week, several mechanisms are employed. For controlling when a user from a particular

class logs in for the day, a mean daily start, mean daily finish, and distribution parameters for

both are used. This allows an experimenter to define when simulated users typically start using

network resources and when they stop. For example a group leader user class may have a mean

daily start of 8:30am with a low variance distribution indicating that he usually arrives the same

time every day whereas a developer may arrive uniformly between 9:00am and 12:00pm.

Also, during the course of the day user activity rates change. For example, during lunch

there is a noticeable drop in network activity. In order to model this, hourly rates are used. The

hourly rates simply scale the level of user activity by modifying inter-event and inter-AUSM

timings.

3.4 Obtaining Behavior Data

In order to obtain realistic timings for the simulated users, it was necessary to create a system for

recording real user's timings. A component object model (COM) plug-in [29] was created

capable of recording user events from Windows Explorer and Internet Explorer [30]. Events

were recorded from these applications in order to determine the user behavior for network file

share browsing and internet browsing, respectively. The plug-ins recorded user actions as a serial

27

stream of events. Examples of an event stream can be seen in Figure 6. Note that in the figure,

events are numbered according to process ID in order to differentiate the parts of the stream

produced by different applications.

Open Browse Link on Open Open Wndows Browse Link on Browse Link on
internet Explorer - Page - Internet Explorer th Explorer fPage -Page

11 2 3 21

Noe atk thoe dFaiy l iBrowse Down One Close Inteoet Close Intedet Close Wand ows
coe akta _l rw th ork -y Level tExplorer - Explorer Expkoe

123 12 3

Figure 6: Event Stream

These events were then used to set the weights and transition times of the AUSM as discussed in

the next section. The actual event streams that were used to train the models discussed in this

paper came as a result of seven members of the Information Assurance group performing normal

daily internet and file browsing activities over the course of one week.

Note tri th Se daily log in and log off times were not recorded and modeled and were

chosen arbitrarily with the work day defined to be 8:30am to 5:00pm with an exponential

distribution that dictates the deviance from the mean for both. A more accurate model of login

and logoff times will be developed in the future.

3.5 Defining Application Use State Machine Behavior

There are two possible approaches that can be used to define A USM behavior. The first approach

is to train the AUSMs from the stream of recorded user events. This approach has the advantage

of realism, but requires real user data in order to set the transition parameters in the A USM. The

Windows Explorer and Internet Explorer AUSMs' parameters were set using this approach.

The other approach is to explicitly define the frequency of a certain states, such as Send

Email, and then use these frequencies to set the transition parameters in the model. The

advantage of this approach is that it allows an experimenter to set rates of certain actions and does

not require the AUSMs to be trained. The produced traffic will not be realistic in terms of user

28

timings, but can be used to stress components of IA systems. The parameters in the Outlook

AUSM were set using this approach.

3.5.1. Training AUSMs from Event Streams

In order to define the behavior of an AUSM based on a stream of recorded events, each

recorded stream was fed through a program which set the parameters of state machines that

matched those found in the various AUSMs. As depicted in Figure 7, the program separated each

stream according to event source (i.e. the application that generated it) and process ID. Each of

these smaller streams was then fed through the appropriate internal state machine.

Event Type A Event Type I Event Type D Event Type 2
Time: 0 -> Time: 2 -y Time: 8 -y Time: 10 -

Single event PID: 1 PID: 0

stream recorded
from one user

Event Type C Event Type A Event Type C Event Type 4
10 Time: 20 -y Time: 25 -y Time: 28 -y Time: 33

PID: 0 PID: 2 PID: 2 PID: I

Streams
Separated by

Process ID

Event Type A Event Type D Event Type C
Time: 0 Time: 8 Time: 20
PID: 0 PID: 0 PID: 0

Event Type 1 Event Type 2 Event Type 4
lime: 2 Time: 10 Time: 33
PID: 1 PID: 1 PID: I

Event Type A Event Type C
Time: 25 Time: 28

PID: 2 PID: 2

Figure 7: Event Stream Separation

Each of the internal state machines has a predefined start state, such as Open Internet

Explorer that it assumes will appear first in each stream. Once the start event appears in the

stream, the program traverses the state machine according to the events in the stream as depicted

29

in Figure 8. The application keeps track of how often a particular edge was followed out of a

state as well as the time until that transition occurred. Once all the separated event streams had

been fed through their respective state machines, the transition probabilities and transition time

distributions were determined.

Note that it is not necessary to have a static model of the user's actions (i.e. one with a

fixed number of states). Only for simplicity were the static models used. Since the internal

behavior of the AUSMs is not predefined by WinNTGen, it is completely possible to use any type

of model of user behavior such as simply playing back recorded user events.

Evert A to D
Stat. A Total Traverses: 1

Times: {}

State B State C State D

STotal Traverses: I
Tr Times: 14a}

o StatuE -

Figure 8: Traversing the State Machine

A transition probability was assigned to each edge leading out of a particular state by

normalizing the number of times each edge was taken out of that particular state. Only the

current state rather than the series of states leading up a transition was considered when

determining transition probabilities, or more formally, the probability model was first-order.

Empirical evidence from research conducted by L. Jung Jin and R. McCartney [31] suggests that

the two approaches produce similar probabilities when considering sequences of user actions.

In modeling the transition time for each edge in the various models, a single distribution

type was chosen rather than having a separate one for each edge. This was done due to the

current simplicity of the models and the lack of extensive user data. A more complicated

30

distribution was deemed unnecessary since a cursory inspection of the collected user data

indicated that the distribution shapes were sufficiently similar.

This general distribution was derived from data collected from Internet Explorer usage

since the vast majority of recorded user data came from there. For each edge in the Internet

Explorer model, a CDF of the transition times was plotted in order to determine the features of

the distribution. An example of the general shape of the CDF of the collected data can be seen in

Figure 9. This particular plot is of the elapsed time between a user following a link on a web

page and then following a link on the new page.

Duration Betw een Choose Link and Choose Link

1
0.9
0.8
0.7
0.6
0.5 - umrative Distributbof

0.4- Recorded Data

0.3
0.2
0.1

0
1 10 100 1000 10000

Time in Seconds

Figure 9: CDF of Transition Durations

An appropriate distribution would need to capture two features of cumulative distribution

of the recorded data. The first feature is the large number of data points around zero indicating

that a user performed an action then very quickly performed another action. The second feature

is the heavy tail that is present indicating that sometimes users perform actions and then do

nothing for long periods of time as previously noted by V. Paxon and S. Floyd [32].

The first feature can be captured by a general exponential distribution (Equation 1) since

it can be heavily weighted around zero. However, the exponential distribution does not have

heavy tails and therefore does not capture the second feature. The Pareto distribution (Equation 2)

31

does have heavy tails, but it is not heavily weighted around zero. Therefore, in order to model the

observed data it was decided that a hybrid distribution would be used. The hybrid distribution

uses an exponential distribution to produce values close to zero and the Pareto distribution to

produce values for the tail as seen in Equation 3.

D(x) =1 -e~" Equation 1

D(x) =1 - Equation 2
x

1 -~ CA x:5 b

D(x)= - f x Equation 3
1- -x>b

The hybrid distribution has a breakpoint parameter, b, in addition to the parameters for

the Pareto and the exponential distributions. The breakpoint is the point at which the values

change from appearing to be exponentially distributed to being distributed according to a Pareto

and is derived from a ratio of the low mean values to the high mean values. To derive the

breakpoint, the values are bucketed according to the ratio, the top n% in one bucket and the

remaining 100-n% in the other bucket. The breakpoint is then chosen to be greater than the

maximum value of the lower bucket and lesser than the minimum value in the higher bucket.

The hybrid distribution fitted to the recorded data appearing in Figure 9 can be seen in

Figure 10. For this plot, the values used for X, a, 0, and b are 9, 1.1, 5, and 10 respectively. The

breakpoint in this case was based on inspecting and fitting this particular data.

32

Fitted Distribution for Duration Betw een Choose Link to Choose Link

I

0.9 -

0.8
0.7
0.6 Cumlative Distribution of Recorded Data

0.5
0.4 - - Exponential (A=9)

0.3 ----- Pareto (a=1.1, P=5)
0.2-
0.1

0
1 10 100 1000 10000

tine in seconds

Figure 10: Fitted Hybrid CDF

In order to set the distribution parameters for the other edges, a general approach was

used so that each distribution in the future would not need to be explicitly fit by hand. After

examining the transition-time data for all edges, it was apparent that roughly 40% of the transition

times were produced by a heavy tailed process and 60% by a light tailed process. Therefore, the

breakpoint for each edge was set so that 40% of the data lie above the breakpoint and 60% of the

data lie below.

In order to derive the actual distribution parameters, the inverse CDF for the Pareto

(Equation 4) and general exponential (Equation 5) distributions were solved for their parameters

and evaluated at x, where x is equal to the breakpoint. For the Pareto distribution, a was set to be

1.1 since there was not enough high value data to justify deriving a different value for each

transition.

x x
$= _ Equation 4

1.1

-x xA. = _ - Equation 5
In(0.4) 0.91

33

3.5.2. Setting AUSM Parameters from State Frequencies

The other approach to define the behavior of the model is to explicitly set how often each state

should appear in the produced event stream. This allows a researcher, for example, to set roughly

how much POP traffic he would like to see in the generated network data in relation to SMTP

traffic while still maintaining the constraints present in the model such as the need for a user to

log in to a POP server before he can check his email.

Since there is more concern for rates than realistic state transitions, a simpler transition

model can be adopted. The motivation behind adopting a simpler model is to reduce the

complexity of the calculations inherent in working backwards from state frequencies to edge

probabilities and distribution parameters.

For this paper, the discrete time Markov model is used. In using a discrete time model,

the simplification is made that every edge takes a fixed amount of time thus leaving only the edge

probabilities to be determined.

The problem is as follows. Given r, r2 ,..., rk , the rate of occurrence of each of the states,

p , the probability of transitioning from state i to state j for all i and j, needs to be determined.

First the rates r, r2,..., r need to be converted into z, ,)r2 , -,k , the probabilities that the current

state in a model will be 1, 2,...,k at some time in the future. To do this, each rate r needs to be

normalized by the total of all rates (Equation 6).

)ri = ,'Equation 6

This also guarantees the constraint present on Markov chains (Equation 7) is satisfied.

kI =1 Equation 7

Next, the balance equations (Equation 8) are set up in order to determine the probabilities.

)r, = k p Equation 8

34

Now, values for p, can be chosen with the only other constraint being that all the probabilities

leaving a state must sum to one (Equation 9). Note there can be multiple solutions for a given set

of rates.

k

Vil5 i! k, X pLj =I Equation 9
j=1

Once the edge probabilities have been chosen, the edge transition time for every edge is set

(Equation 10). In order to clarify the equation with an example, if there is a total rate of ten

events per minute then transition the time for each edge should be six seconds.

At = rj) Equation 10

3.6 Implemented Application Use State Machines

This section presents the Internet Explorer and Windows Explorer AUSMs, which were trained

by recorded user data, and Outlook model which was defined in terms of state frequencies.

3.6.1. Internet Explorer

The Internet Explorer AUSM models a user's interaction with the web browser as depicted in

Figure 11 with transition parameters appearing in Table 2. Note that the transition probabilities

also appear in the figure with the value of P(A-*B) appearing next to B. While this state machine

could be used for modeling a user interacting with any web browser, Internet Explorer was

chosen since it is predominantly used on the Windows OS.

The state machine attempts to capture the manner in which users browse the web by

defining an entrance and exit state (e.g. open and close the browser) and then a group of

completely connected intermediate states that define how a user browses web pages (e.g. follow a

link on the current page, browse to a favorite or book-marked link). This is a simple model and

does not capture more complicated behaviors such as how link appearance affects its probability

35

of being chosen, which favorites a user chooses most often, or how a user refines web searches

[24], although this capability can be added if a more sophisticated model is needed.

Note that the Unknown state refers to the case when the source of the URL being

navigated to is unknown such as when a user types the URL directly into the address bar, clicks

on it from an email, or the URL is dynamically generated by JavaScript on the page.

1.00

Open a now
browser

0.2 0.01

0.50 0.30 0.32 .1-

Follow a link 0.26 0.38 Choose a

on the page .29 Unknown 0.01 link from
favortes

0.001
0.6 0.24 .55

.11

.2 0.08

Go Back

0.12

0.04 00

0.05 Close 0.10
Browser

Figure 11: Internet Explorer AUSM

Open Browser Follow Link 0.26 4.40 1.1 7.69 7 4

36

Choose Favorite 0.01 6.29 1.1 10.99 10 2

Close Browser 0.40 6.92 1.1 12.09 11 63
50Unknown 0.32 1 4.40 1 1.1 7.69 1 7

Follow Link Follow Link 0.50 6.29 1.1 10.99 10 1037

Go Back 0.25 9.43 1.1 16.48 15 519

Choose Favorite 0.01 6.29 1.1 10.99 10 21

Unknown 0.20 6.29 1.1 10.99 10 415

Close Browser 0.05 9.43 1.1 16.48 15 104

Choose Favorite Follow Link 0.30 5.03 1.1 8.79 8 14

Go Back 0.08 4.40 1.1 7.69 7 4

Choose Favorite 0.14 9.43 1.1 16.48 15 7

Unknown 0.38 5.66 1.1 9.89 9 19

Close Browser 0.10 2.52 1.1 4.40 4 5

Go Back Follow Link 0.60 6.29 1.1 10.99 10 469

Go Back 0.12 3.14 1.1 5.49 5 94

Choose Favorite 0.001 6.29 1.1 10.99 10 1

Unknown 0.24 4.40 1.1 7.69 7 188

Close Browser 0.04 3.77 1.1 6.59 6 45

Unknown Follow Link 0.29 6.29 1.1 10.99 10 195

Go Back 0.11 3.14 1.1 5.49 5 74

Choose Favorite 0.01 4.40 1.1 7.69 7 7

Unknown 0.55 6.29 1.1 10.99 10 367

Close Browser 0.04 6.29 1.1 10.99 10 27

Close Browser Open Browser 1 1.89 1.1 3.30 3 17

Table 2: Internet Explorer AUSM Transition Parameters

3.6.2. Windows Explorer

The Windows Explorer AUSM attempts to capture the way in which users browse a network

share directory tree as depicted in Figure 12 with the transition parameters appearing in Table 3.

The entrance state is a user opening up an Explorer window for a network path such as

\\somemachine\someshare. The exit state is the user closing that particular browser window. The

intermediate states model how a user navigates a directory tree on a remote share.

Once again this is a simple model that only captures a user's directory browsing style. It

does not take into account which directories are browsed most frequently by users or other more

complicated behaviors.

Also, the file browsing AUSM does not currently attempt to open any files it finds while

traversing the directory tree. If this type of behavior is desired, another state could be added,

Open File, which would simply call ShellExecute(NULL, "open", Filename, CurrentDir,

SW.HIDE) where Filename is the file to be opened. This would let the shell choose the

application that is capable of opening files for the particular type. This would appear more

37

realistic in terms of network traffic since the application would access the file across the network

in a realistic way. For example, if the file was a media stream, it would most likely be accessed

in a linear fashion.

This functionality was not implemented in the current version of this AUSM since every

call to ShellExecute resulted in another application being started and over the course of a long test

run this would slow the machine as more memory and CPU resources were utilized.

Compensating for this involves determining which applications were launched as a result of the

ShellExecute and then terminating them after some amount of time. Modeling arbitrary

application use was not approached in this thesis and so was not included in this AUSM.

1.00

Open
Explorer

0.21 0.56 0.27

Browse Up 0.4 Br 1 9e

0.34 0.52

Close

Explorer

Figure 12: Windows Explorer AUSM

Open Explorer Browse Down 0.56 3.77 1.1 6.59 6 22

Close Explorer 0.44 2.51 1.1 4.39 4 17

Browse Down Browse Down 0.27 3.14 1.1 5.49 5 19

Browse Up 0.21 2.51 1.1 4.40 4 15

Close Explorer 0.52 3.14 1.1 5.49 5 37

Browse Up Browse Down 0.45 1.89 1.1 3.30 3 30

Browse Up 0.21 1.89 1.1 3.30 3 14

Close Explorer 0.34 1.89 1.1 3.40 3 23

Close Explorer Open Explorer 1 2.51 1.1 4.40 4 52

Table 3: Windows Explorer Model Transition Parameters

There are several interesting points to note about the transition parameters. First, the

existence of more data points around zero (i.e. lower X parameters) as compared to the Internet

38

Explorer data indicates that users browse directory trees faster than the internet since directory

trees have a more rigid hierarchical structure and users are generally file browsing for a specific

file. Second, the fact that roughly half of the time the user does no browsing at all after opening

an Explorer window would indicate that users have shortcuts to network shares they use most.

3.6.3. Outlook

The Outlook AUSM controls Microsoft Outlook. Currently the model, as depicted in Figure 13,

only encapsulates the behavior surrounding sending and receiving emails, but it would be

straightforward to add such functionalities as adding a contact to the address book or scheduling

an appointment.

Open
Figure3: Outlook 1US

0 8/10
2 3

Send 314 Check
Email V10g Email

1/4 41/10

Outlook

Figure 13: Outlook AUSM

Instead of defining the Outlook model edge parameters according to recorded user data,

they will be derived from the rates of occurrence using the approach described in Section 3.5.2.

First the balance equations for the AUSM are derived (Equation 11).

7C1 'r 4 P41

r2 A 2 2 P2 2 + 3 P 3 2 Equation 11
)T3 . 7trP 13 +)r 2 P 2 3 +)r 3P 33

)T4 = ,C2 P 24 +)r 3P 34

39

Next, the state frequency rates for the experiment are set. Assume that the experimenter

would like to see the simulated user send emails at a rate of four times per minute and check

emails at a rate of twenty times per minute. The number of times the simulated user opens and

closes Outlook is of little importance to the experimenter and these will be set arbitrarily at three

times per minute each. The two rates must be equal since every time the simulated user enters the

state Close Outlook he must transition to the state Open Outlook. The steady state probabilities

for Open Outlook(nI), Check Email(n2), Send Email(n3), and Close Outlook(n4) are therefore 3/30,

20/30, 4/30, and 3/30 respectively. Substituting in the steady state probabilities and solving with

the aforementioned constraints yields the possible solution below (Equation 12).

p i -p =P12 3 3' P13 3

P32 10I'33 10 P34 10 Equation 12
P23 =4 9 P22 0 1 P24 =4

P41 =1

As explained before, the transition time is set to two seconds per edge since thirty transitions per

minute need to occur.

40

Chapter 4

Implementation

4.1 Overview

This chapter provides a detailed explanation of the implementation of the Windows Traffic

generator. Section 4.2 provides a summary of the attempted implementations and what prevented

those approaches from working, as well as reasoning behind the decisions leading to the current

implementation. Section 4.3 details the actual implementation of WinNTGen.

4.2 Abandoned Goal: Multiple Virtual Source Addresses

Initially, the goal was to implement a Windows NT network traffic generation system capable of

producing traffic from one host that would appear to be from multiple physical Windows NT

hosts. This is similar to the existing LARIAT Linux network traffic generators. A single host

traffic generation system capable of producing multi-sourced network traffic would be more

scalable than a system in which each host could only produce network traffic that appeared to be

from only that host. To achieve this, the project would have had two major parts. The first part

would be the actual user simulator capable of simulating the actions of multiple users. The

second part would be the mechanism through which source IP addresses and host information

would be changed so as to make the actual network traffic appear to be from multiple Windows

hosts.

Several solutions for single-host multi-sourced Windows network traffic were considered

and subsequently rejected for multiple reasons, including unacceptable losses of realism, low per-

41

host throughput, and lack of forward compatibility. The problems arose strictly from

implementing the second major part of the system that changes the source host information.

4.2.1. User Space Filters

The first attempt at a solution was to use a Winsock 2 layered transport service provider[33]. The

service provider is implemented in a dynamic link library (DLL) and sits between the Winsock 2

API functions [34] and the base service providers (e.g. TCP/IP) in user space as depicted in

Figure 14. This solution involved using the existing network configuration mechanisms on

Windows to define multiple IP addresses on a host. Once the multiple IP addresses were defined,

the transport service provider could modify an application's calls to the bind and connect API

functions for a particular socket before they reached the base service provider. Upon intercepting

one of these calls, the socket would be bound to one of the locally defined IP address based on

process ID of the caller.

Winsock 2 Winsock 2
Application Application

Winsock 2 API

Winsock 2 DLL
ws2_32.dl

Transport Namespace
Functions Functions

Wlnsock 2 Winsock 2
Transport API Namespace API

Transport Namespace
Service Providers Service Providers

Base Service Providers

Figure 14: Layered Service Provider

There are multiple advantages of this approach. It is forward compatible since it only

uses the Win32 API. It is lightweight since even though each process will load this DLL into

their virtual address space, only one copy need be present in physical memory. Finally, it is

42

capable of catching all user mode socket operations since at some level they must use the sockets

API to make a connection.

The main disadvantage of this approach and the reason that it was abandoned is that none

of the network traffic originating in the kernel can be filtered, such as network file sharing or

active directory browsing. Drivers and services use the native Windows network stream

mechanism, the transport data interface (TDI), in order to send network packets. Winsock is in

fact a user mode wrapper that translates user space application calls into 10 control calls for a

kernel mode driver which makes the connection on the user space application's behalf. Section

4.2.2 gives a more in-depth explanation of network streams at the kernel level.

The other disadvantage to defining multiple IP addresses for a single Windows host is

that since Windows is aware that it has multiple IP addresses it will communicate this fact to

servers and other hosts when using certain protocols [35] such as WINS and NetBIOS, thus

defeating much of the desired realism in the Windows NT specific traffic.

When performing evaluations of networked based IA components, especially more

sophisticated ones, it is important that the network traffic produced by a single network traffic

generating host either appear to be only from that host or appear to be from completely different

hosts. Semi-realistic network traffic has the potential of producing many false alarms on the

networked based IA component since the network traffic will most likely be flagged as suspicious.

Even though this solution was abandoned as the main IP traffic generation approach, this

method of intercepting user space socket calls could still used by WinNTGen in the future in

cases where an experiment's goals warrant more volume in the form of non-Windows specific

traffic protocols such as HTTP and POP. This type of traffic can be multi-sourced easily using

the described method with few artifacts linking the different packets that are generated to a single

physical host.

43

4.2.2. Kernel Space Filters

In order to catch all network traffic regardless of whether it originated from user space or kernel

space, a two layer system of filters was designed that would allow WinNTGen to modify all

network packets leaving and entering the system.

Host information in packets leaving the system would be modified based on the user

token of the process responsible for producing the traffic. This way, from a network standpoint,

all processes owned by a user would appear to be running on a separate physical host than

processes owned by a different user. Packets entering the system would need to be modified so

as to not be rejected as they pass back up the driver stack to the destined application or service.

The upper layer filter would be responsible for tagging any data originating from kernel

or user space bound for the network based on its original source. For example, this would include

network bound data directly originating from applications such as the result of a socket or send

call, or indirectly as in the case of an application calling CreateFileEx on a file residing on a

remote device. The upper layer filter is needed since it will be intercepting calls while the context

of these calls (i.e. the process making these calls) can still be determined. Once the data has

reached the network card, there is no way to determine which application produced it unless it is

tagged or exists in a table somewhere.

One part of the upper filter layer is a kernel driver that layers over TCPIP.sys as depicted

in Figure 15. This filter driver implements the transport driver interface (TDI) as TCPIP.sys

does and sits at the top of the driver stack thereby intercepting all calls originally bound for

TCPIP.sys. After modifying the appropriate data, the driver uses the TDI interface of TCPIP.sys

to pass on the calls. The difference between this driver and the Winsock service provider

mentioned before is that this upper layer driver will catch all of the socket style requests. It is

important to note that the upper layer filter would not need to modify incoming traffic since the

OS would properly hand the data to the right application or service.

44

There would also need to be another part of the upper layer filter handles calls that

indirectly create network traffic such as CreateFileEx. This part was never built as the approach

was abandoned before this stage of implementation was reached.

The lower level filter consists of a single driver, a network driver interface specification

(NDIS) miniport, which is able to modify packets right before they are sent out on the network

(also depicted in Figure 15). It would need to modify the source IP address and any host specific

data present in the outgoing packets according to the tagging performed by the upper layer filter.

It would also need to monitor all packets on the network so as to listen for any packets bound for

any of the virtual hosts being emulated by the machine. Upon receiving an applicable packet, it

would need to modify the packet in such a way so that it would not be rejected as it is passed up

the network driver stack.

45

Windows Sockets
Kernel Mode Driver

(Afd.sys)

TDI Filter over
TCP

- m m

TCPIP.sys

m... -m

TDI Filter over
UDP

m m

Other NDIS
Protocol Drivers

m- -.- m -

NDIS Hooking Filter

NDIS Intermediate

NDIS Wrapper

NDIS Miniport

Transport Data
Interface (TDI) API

Network Driver
Interface Specification

(NDIS) API

Network Card

Figure 15: Cooperating Kernel Mode Filters Design

Initially, using a pair of kernel drivers as described appeared to be ideal. However, such

was not the case since there is a large quantity of application layer data present in each packet that

reveals that the data is originating from a single host. This data can be extremely difficult to

change. For example, Kerberos traffic contains encrypted information about the hosts that are

communicating [36]. When a client in a Kerberos realm transmits a ticket across the network,

46

Other TDI
Client
Drivers

Filter
Driver Pair r

part of the ticket is the client's identity along with its network address encrypted in the server's

private key. Changing the network address in this case is not feasible.

Other problems existed with solution as well. The development time for kernel drivers is

considerably longer than a user space program of equal size and complexity due to difficulties in

debugging and poorly documented events that occur in the kernel. Some of the system functions

that were to be used were undocumented and therefore might not be supported in future releases

of the operating system. For these reasons this approach was abandoned as a method for

modifying network packets.

4.3 Final Goal: Single Source Address

The final design of WinNTGen assumes one simulated user per physical host in which only user

mode applications are manipulated. This solution allows total realism and forward compatibility

since all simulation happens though the control of user-space applications. The disadvantage is

that the number of hosts scales with the number of simulated users, which is a large hardware cost.

However, this cost may be mitigated by using a package such as VMWare [37] on a machine of

sufficient resources.

4.3.1. Overview

WinNTGen consists of two parts as depicted in Figure 16. The first part is a substitute graphical

identification and identification (GINA) module, herein referred to WinGenGina. This part is

responsible for communicating with the LARIAT director and the database and for logging in

simulated users. The second part is an application, herein referred to as WinGenApp, which is

run automatically when the simulated user logs in. WinGenApp is responsible for interacting

with installed applications via AUSMs according to the simulated user's profile. When the time

comes for the user to log-out, WinGenApp terminates the user session and logs the user out, thus

returning control to the WinGenGina. A high level flow chart for the entire traffic generation

47

process appears in Figure 17. In the figure solid lines represent program or application flow and

dotted lines represent network communication. Note that actions can occur outside of the normal

experiment flow. For example, any time the LARIAT director indicates that results should be

written to the database, WinGenGina will do so regardless of the current status of the experiment.

Windows Host
LARIAT System Context User Context
Director

WinGenGina o n WInGenApp

I AUSMs

Logout Applications

LARIAT
Database

Figure 16: WiNTGen High Level Structure

48

Contexts

LARIAT Director System (WinGenGina) User (WinGenApp)

Start DWnGenApp
periment Launched

Configure Starting?
Experiment and Put

Parameters in
Database yes Load and

Initialize
AUSMs

Signal to Windows Fetch
Traffic Generators Parameters

that an Experiment is From TeI AUSMs to
Beginning Database prduce

events
No

All Indicate to LARIAT
Windows - -- Director that Traffic

Traffic Generator Generator is Ready duEiment

eady
Yes yes

Signal to Windows . ime to Begin
Traffic Generator that Experiment? Dump Results to

Experiment Should Shared Memory
Commence No Region

Yes

Experiment Wait Until User Log Off User
Over? Login Time

and then Log-
No on user

Yes

Signal Windows Traffic Generators Key
to Dump Experiment Results to ----- ,---

Database Write Experiment Network
Results from Communication--- -~~-

Shared Memory Application Flow
End Region to Database

Figure 17: WinNTGen Flow Chart

4.3.2. System Objects

There are several important objects in the WinNTGen system that appear as a part of both

WinGenGina and the WinGenApp and provide an abstraction for key, common functionalities.

Each of these objects resides locally on each WinNTGen traffic generator.

The first object is the Run Log. An instance of this object is passed to all other objects in

the system upon their creation so that they can make reports about the experiment and any

problems encountered. The Run Log object maintains a single log, common to all objects and

49

synchronizes access to it. At the end of the experiment, the Run Log object's contents are sent to

the LARIAT database.

The next object is the Parameter Database object. A copy of this object is passed to

almost all of the other objects in the system. Its role is to obtain configuration settings from the

local machine as well as store retrieved parameters from the LARIAT database on the network. It

maps disparate parameter sources into one namespace for convenience and abstraction. Given a

context and a variable name, the Parameter Database object will return the appropriate parameter.

Context refers to which category the parameter falls under. Typical categories include Host

Parameters, User Parameters, etc. By having such a database locally, AUSMs will not have to

be rewritten when the format of the data changes in either the LARIAT database on the network

or on the local host.

As mentioned before, AUSMs are used to drive the applications. In order to manage these

AUSMs as well as report statistics and information about them, a Module Manager object is used.

This object allows for easy enumeration and manipulation of the loaded AUSMs.

4.3.3. WinGenGina

As depicted in Figure 18, when the Windows host is booted, the OS loads the WinGenGina

replacement graphical identification and authentication DLL (GINA)'. Upon being loaded,

WinGenGina loads the original MSGina.dll and maps all the function entry points to its locally

defined function pointers. It also set up a listening TCP port in order to receive commands from

the LARIAT director2. Until the particular Windows host is contacted by the LARIAT director,

WinGenGina will behave like the original MSGina by transparently passing all calls from the

WinLogon process to MSGina.

This is done via modification of the registry value stored under HKEYLOCALMACHINE\
SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon
2 Currently, no authentication is being performed to verify the source of the connection. Deployable
versions will need to have authentication to prevent a potential security hole.

50

From a GUI perspective, on the user logon screen alongside the normal logon dialog

there is another WinNTGen dialog box present that provides status information as well as letting

the experimenter know that WinNTGen is installed on the system.

Windows Host
System Context

WinLogon

LARIAT
Director WinGenGina

Communicator Dispatch D1 Memrry
Segment

LARIAT
Database

MYSGina

Figure V 18: WiCniaCmoet

When an experiment begins, the LARIAT director contacts each Windows host to

communicate the IP address of the LARIAT database to use. The WinGenGina then fetches the

parameters from the specified database on the network, including the user profile, host specific

parameters, and specific parameters requested by the AUSMs loaded by the Module Manager. It

then stores them in the Parameter Database object. After this is done, WinGenGina replies that it

is ready. When all of the hosts in the testbed are ready for the experiment, the director informs

them that the experiment is starting. WinGenGina then waits to the appropriate log in time of the

simulated user as dictated by the user profile. When the appropriate time arrives, WinGenGina

disables the interactive login and sends a custom secure attention sequence (SAS) to log in the

simulated user. Before the user is actually logged in, the Parameter Database is serialized into a

51

J.

shared memory segment so that it can be read by the WinGenApp. Upon the simulated user

being logged-in, the WinGenApp is launched', which then assumes control of the user simulation

and traffic generation.

4.3.4. WinGenApp

The WinGenApp is responsible for driving applications according to the simulated user's profile.

As with the WinGenGina, a copy of the application must be installed on every Windows NT

machine taking part in the experiment. As mentioned previously, it creates network traffic by

controlling applications that utilize the network. It can be extended through AUSMs that allow it

to control more applications. A detail diagram of the WinGenApp appears in Figure 19.

Windows Host

WinGenApp

Simulation
Driver

Module
SParameter Manager

RunLogJ

User ContextSystem
Context

WinGen
Gina

E 'I
Application

Application

Figure 19: WinGenApp Module Diagram

3 This is done by placing the WinGenApp in the startup folder of the simulated user.

52

A complete course of execution for WinGenApp during an experiment is as follows.

After the simulated user is logged-in by the WinGenGina, the WinGenApp is launched.

WinGenApp creates an instance of the Parameter Database by reading the from the shared

memory segment created by the WinGenGina. It then creates an instance of the module manager

which loads the available AUSMs on the system and prepares them for use. The complete

process of AUSM selection and event generation was detailed in Section 3.3. When it is time to

logoff, WinGenApp simply ends the current user session and logs off.

The stream of generated user events is recorded by WinGenApp since the AUSMs return

an opaque description of each event executed. This stream may be replayed by handing back the

events one at a time to the appropriate AUSM for execution. Note that during playback the

individual AUSMs will not be able to make alternate transitions based on error conditions or

configuration changes since the stream is predetermined. However, playback is useful when

there is a phenomenon in the experiment that the experimenter would like to try to reproduce.

4.3.5. AUSM Implementation

AUSMs are implemented as dynamic link libraries (DLLs). Each DLL exports a set of functions

that enables it to be used by WinGenApp as described in Table 4. Note that the return type of

each function is void since errors are reported using structured exception handling.

GetModuleInfo Return information about the AUSM including a description and the types of
parameters it will need from the database

Initialize Verify that relevant applications are present, initialize data structures, retrieve
parameters from the local parameter database, and perform all general start
up operations

Generate Generate a series of events according to the internal model of the module
Update Reread relevant parameters from the local parameter database object
Reset Module should reset to the start state and prepare to be run again
Exe cut e Take the passed in event and execute it
Des cEvent Return a textual description of the passed in event
DeleteEvent Free memory used by this event

Table 4: Exported DLL Functions

53

The DLLs may link into WinNTGen libraries to have access to convenient classes such as a value

generator for the hybrid distribution discussed in 3.5.

54

Chapter 5

WinNTGen Evaluation

5.1 Overview

In order to evaluate various performance characteristics of the WinNTGen system, a

network was set up as depicted in Figure 20. In order to isolate the traffic produced by

WinNTGen and thereby produce a more meaningful evaluation some elements of a typical

LARIAT testbed, such as the Linux network traffic generators, are not present.

The test network, testbed.edu, consists of four hosts connected by a hub. The first host,

Director.testbed.edu, is a LARIAT director and database in order to provide the necessary

framework for the evaluation. The second host, GenXP.testbed.edu, is running WinNTGen on

Windows XP (NT 5.1) Pentium III with 640 MB of RAM. The third host, Server.testbed.edu, is

the domain controller for the testbed.edu domain and is configured with a local DNS, Active

Directory, Exchange Server, and several network shares. The fourth host is a sniffer and was

responsible for recording all network traffic for the testbed.edu network that was used in the

analyses. An external router/DNS forwarder was used so that the Internet Explorer AUSM could

browse real web pages thereby permitting a better evaluation.

55

WinNTGen on Windows 2000
LARIAT Director Windows XP Domain Controller

and Database Workstation Exchange Server
(Director.testbed.edu) (GenXP.testbed.edu) (Server.testbed.edu) Sniffer

Hub

Internet

External Router
DNS Forwarder

Figure 20: Evaluation Testbed

Two different analyses were performed in order to evaluate the WinNTGen system. The

first analysis verifies that the contents of the packets produced by WinNTGen are reasonably

realistic. The second analysis examines system throughput.

5.2 Realism

The realism of the WinNTGen system was evaluated by comparing network traffic produced by

the stream of artificially generated events to the network traffic produced by a real user executing

the same series of events.

Specifically, the sniffer recorded network traffic as WinNTGen executed a login

sequence for a simulated user, then produced different series of user events via the different

AUSMs for a four hour period, and finally logged out the simulated user. Subsections of this

traffic were compared to network traffic recordings resulting from the same sequences of user

events executed by a human user. The results appear in the following sections.

56

5.2.1. Login and Logout traffic

There should be no difference in network traffic resulting from WinNTGen simulated user logins

and real user logins due to the way in which WinNTGen implements this functionality. When

logging in a simulated user, WinGenGina enters the username and password of the simulated user

directly into the login dialog box via the FindWindowEx and SetText functions. WinLogon

is not able to differentiate between this programmatically controlled login and a real login and

therefore the resulting network traffic should appear to be the same as compared to a login

initiated by a real user.

A side-by-side comparison of packets recorded from the WinNTGen login and the real

user login, Figure 21, reveals that the two are indeed effectively the same. In the figure there are

three packet sequences. The top one is from the LARIAT Director communicating with

WinGenGina. The middle one shows a case in which a WinNTGen logon produced the same

traffic as a real user logon. Finally, the last sequence shows a case in which there are several

overlapping conversations. The differences between the two sides in the last sequence results

from the packets from different startup operations, such as downloading the user's profile,

downloading the policy settings, and calls to the MS NT Directory DRS Endpoint, being

interspersed differently. The WinNTGen and real user logout sequences exhibit this type of

variability as well.

57

Traffic Produced by WnNTGen Traffi

Souce Deoiliulon Src Prt Dot Prt Size Proocol SoGuM

D*rwctor tsstbed.edu genxp.testd.edu 7021 12001 66 LARIAT

Director.tsstbed.edu genxp.tested.edu 7021 12001 64 LARIAT

D Orectortestbed.edu genxp.tes9bd.edt 7021 12001 111 LARIAT

Dctor.testbed.edu genmp.testbed.edu 7021 12001 68 LARIAT

Director.testbed.edu genxp.testbed.edu 7021 12001 66 LARIAT

gunxp testhed eti sener.testbed.edu 1101 66 346 IEP Kerbe ul msp testbed edu

sanertestbed .4d genxp.testbed.edu 68 1101 1402 WP Kubrel Isnrtsbed edu

genxp.testbed.edu senertestbed.edu 1102 88 1360 L.EP Krbwwp testbededu
senr.tlestbed.d gmp.tetbed .edu 88 1102 1362 DP Kbwrt estb.edu

genxp.testbed.ec serwlestbed edu 1103 4488 66 SMeL .enp testbed.edu

senr.tstbed.edu genxp.tested du 446 1103 66 SJDP .6mw testbed.edu

genxp.testbed.ed6 saerw.tstbed.edu 1103 445 64 SME1B .estbed.edu

gexp.testbed.ed6 senertestbed.edu 113 44 166 SMB l .-testbededsu

senw.testbed.edu gensp.testbed.edu 446 1103 23 6 MB er.tested.edu

genxp.testbed.e46 sew.testbed.edu 1103 445 1518 SMB .testbeduedu

genxptestbed mdt smnwr.testbed.edu 1116 66 1361 LDP Kurbecs .. p.testbed.edut

sertestbededtu genxp.tested.edu 445 1103 160 SMB sener.testbed.edu

genxp.testbed.e6 sw.testbed.edu 1103 445 20 SM gnxp testied.edu

senrutestbed.edu genxp.testbed.edu 68 1118 1364 LIP K---- & poestbed.edu

seer.eetbed.edu genxp.testbed.edu 445 1103 166 SM IIII
gexp testbed.et sener.testbed.edu 1103 446 286 SM f j.testbed.edu

sertestbed.edu gemp.tested.edu 445 1103 186 SMB testededt
genxp.testbed.et snw.testbed.edu 1103 445 200 0MB .testededu

serwrtestbed.edu genxp.tested.edu 446 1103 166 SMB .testbed.edu

geixp testbed.ed smw.testbed.edu 1114 446 1818 SMS ffertestbededu

gep.testbed.e4 smw.testbed.edu 1114 446 125 6MB .tested.edu

ensertestbed.edu

c Produced by Real User

Denelalon Src Pit Dot Prt Size Protcol

snrWts
gnUxple
SNW.
ganxp t
ser.
genxp le
seryer.
senr.ts
genxpte
sermr.te

sener.

genxupte
seer.to
s~nr.t

ganxp Is
Sener.t

genxpte
seWAR

genxpte
seAr.t
genxp-te

stbeduedu 1127
stbed.edu 88
stbed.edu 1128
stbed.edu 8
stbeded 1129
stededIU 445
stbed.edu 1129
stbed.edu 1129
stbed.edt 446
stbed.edu 1129

stbed.edu 1143
stbed.edt 88
stbeduedu 1140
stbed.edt 1140

stbededt 446
stbed.edu 1129
stbed edo 445
steduedt 1129
stbed.mk 446
stbed.edu 1129
stbed.edu 445

se
1127

as
112B
446

1129
445
445

1129
445

1143
445
445

1129
446
1129
446
1129
446

1129

345 tVP Kerbucs
1402 UDP Kerbeis
1380 UDP Kerberms
1352 LP Kerbeics

660 MB
66 SMB
64 SMB

195 SMB
238 SMB

1518 SMB

1381 LOP Kerbeics
134 LIDP Kerbercs
1518 SMB
1296 SMB

190 0MB
290 SMB
lag SMB
286 SMB
166 SMB
290 SMB
186 SMB

Figure 21: Comparison of Logon Network Traffic

5.2.2. AUSM Generated Traffic

It was hypothesized that there would be slight differences between the WinNTGen and the user

generated network traffic for the same sequence of user actions because of the granularity at

which the existing AUSMs choose to operate. For example, when composing an email, the

Outlook AUSM currently does not model the times between resolving a recipient's email address

with the Exchange server, composing a message, and finally sending the email. Rather, when

arriving at the Send Email state, it performs these actions in under a second and does not produce

any traffic that results from interacting with the U1 at a key stroke by key stroke basis such as

auto-completion of the recipient's name as it is being typed. A real user performs the actions

sequentially with delays between them.

Given that these types of differences exist and come directly as a result of model

granularity, a more useful analysis is to expose any errors directly resulting from choosing to

control applications through automation. Note that it is not meaningful to compare the user

58

events generated by WinNTGen to that of a real user since the user models in use are not

predictive[38], nor is it meaningful to test for self similarity[39] in the traffic [32, 40] since the

timing in the AUSMs are generated by a heavy tailed process and therefore self similar by

definition.

In order to generate network traffic for analysis, WinNTGen was run for a four hour

period with the Internet Explorer, Windows Explorer, and Outlook AUSMs loaded. The resulting

network traffic was recorded and then filtered so that only traffic produced directly as a result of

WinNTGen was retained. From this recorded traffic, three random segments were chosen that

each contained traffic produced mostly by one AUSM. Any traffic not produced by the AUSM in

interest was filtered out. The chosen segments appear in Figure 22, Figure 23, and Figure 24.

Internet Explorer AUSM
(AUSM Generated Events and Packets Produced)

1000-

100
o Packets

m AUSM Generated Events

10-

1 22 I- E A (U G

Figure 22: Internet Explorer AUSM (AUSM Generated Events and Packets Produced)

59

Outlook AUSM
(AUSM Generated Events and Packets Produced)

45-

40
35.

30

25 o Packets

20 s AUSM Generated &vent -

15

10
5
0 -

Figure 23: Outlook AUSM (AUSM Generated Events and Packets Produced)

Windows Explorer AUSM
(AUSM Generated Events and Packets Produced)

35

30

25
o3 Packets
2 AUSM Generated Event

15

10

5-

Figure 24: Windows Explorer AUSM (AUSM Generated Events and Packets Produced)

There are several aspects of the traffic that are worth noting. In Figure 22, as expected,

whenever a user event occurs, such as navigating to a hyperlink in a document, the browser

produces large bursts of packets as the new page and all its embedded references (e.g. images) are

retrieved. In Figure 23, the packets that are being produced without user action are from Outlook

periodically checking the simulated user's inbox. Also in this figure is a large spike of packets

around the 3:15 mark that result from the simulation user deciding to download the actual

60

messages. Finally, in Figure 24, the correlation between user browsing events and packets

produced can be seen.

It is apparent that some user actions produce no traffic. For example, in the case of

Internet Explorer, cached web pages are usually not downloaded again when the user browses

back to them. Also, the action of closing Windows Explorer produces no traffic. These events

should still be included, however, since they affect the OS state, and it is possible that in the

future these events will produce packets on the network.

5.3 Throughput

Even though the goal of the WinNTGen system is to produce realistic network traffic, it is also

necessary in some experiments to be able to produce large amounts of traffic of a certain type in

order to stress test network services or, more generally, in cases where realism is not the primary

goal.

To test the throughput of WinNTGen on a single machine, the delays between simulated

user events were removed and the AUSMs were tested independently for increasing numbers of

running instances of WinNTGen. In these tests, the actual data rate was not considered since it is

based completely on content such as the size of the emails, and does not meaningfully measure

the performance of WinNTGen. Rather, the tests measured the packet producing ability of each

AU SM. The results of this test appear in Figure 25.

61

AUSM Scalability

300 -

250

&200
-*--- Windows Explorer

C
150 -- - Outlook

m 100 -- -U- -- Internet Explorer

S 50 . -"'-.

0
1 2 3 4 5 6 7 8

Number of Running Instances

Figure 25: AUSM Scalability

For the Outlook AUSM there is a constant traffic rate regardless of the number of

instances of WinNTGen. This can be explained by the fact that each Outlook AUSM instance is

controlling the same instance of Outlook. Since a single AUSM instance is able to completely

utilize Outlook, adding additional instances does not increase the rate at which Outlook can

perform tasks.

For the Internet Explorer AUSM there are initial increasing returns in packet rates to the

number of instances of the AUSM since each AUSM controls a different instance of Internet

Explorer. However, as more instances are added they begin to compete with one another for local

resources and the local machine begins to thrash.

Finally, for the Windows Explorer AUSM, an increase in packet rate was observed as the

number of instances of the AUSM was increased. However, eventually there is are decreasing

returns to adding more instances of WinNTGen as the separate instances begin to compete for

local system resources as the Internet Explorer AUSMs did.

62

Chapter 6

Conclusions and Future Work

6.1 Conclusions

It is clear that network based IA systems need to be thoroughly evaluated before they are

deployed so that their true performance may be ascertained. To do this, they must be examined in

controlled, evaluation network environments that are representative of actual production network

environments. Due to the ubiquity of hosts running Windows OSs, it is necessary to include

network traffic generated by Windows hosts in these evaluations. WinNTGen was shown to be a

tool capable of producing such realistic network traffic, as well as being able to integrate into the

existing LARIAT framework.

Through modeling user behavior at an application and session layer, WinNTGen is

capable of producing complex, realistic network traffic though simple models of application use.

By controlling applications via AUSMs, WinNTGen is modular and easily extensible.

In implementing WinNTGen, it became evident that modifying and hooking into the

Windows NT OS at the kernel level in order to create multiple virtual hosts on one physical host

is time consuming and difficult and still does not result in the production of realistic network

traffic. Clearly, a better approach was to assume one user per physical host, to perform user

modeling instead of application and protocol modeling, and to allow the Windows NT OS to

perform much of the network traffic generation through its normal activity.

63

6.2 Future Work

There are several ways in which WinNTGen can be further developed. In order to add variety to

the generated traffic, more AUSMs can be added to the system in order to increase the number of

applications that could be controlled.

Also, the AUSMs can be made more complex in order to produce chains of events that

more closely resemble those produced by a human. There are many improvements that can be

made in this area, but there are a couple of key ones.

First, by adding daily goals for the user to achieve, sequences of user events would

appear to have a purpose. That way, when the simulated user went web surfing, he would tend to

follow links more related to what he needs and would send emails that are more relevant to the

daily goal. For a network based IA system looking for suspicious browsing behavior, this might

be important. These systems may flag suspicious activities such as a user performing web

searches for the word "sploits" and browsing to sites known to host malicious code.

Second, by adding requires and provides concepts to the modules, a control interface

could be used for classes of applications. For example, web browsers and email clients could be

controlled without dependence on the actual client. This way, for example, a simulated user

could be browsing and choose to forward a URL to a friend with the user's favorite email client.

WinNTGen already provides limited modeling of user interaction with a Windows user

interface and the network traffic it produces is realistic. Its architecture and implementation will

support these and other additions.

64

References

[1] "IEEE Task Force on Information Assurance," http://www.ieee-tfia.org. 2002.

[2] "2002 CSI/FBI Computer Crime and Security Survey," in Computer Security Issues and
Trends, vol. 3: Computer Security Institute, 2002, pp. 24.

[3] S. Northcutt, Network Intrusion Detection: An Analyst's Handbook, 2nd ed: New Rider's
Publishing, 1999.

[4] R. Lippmann, D. J. Fried, I. Graf, J. W. Haines, K. R. Kendall, D. McClung, D. Weber, S.
E. Webster, D. Wyschogrod, R. K. Cunningham, and M. A. Zissman, "Evaluating
intrusion detection systems: the 1998 DARPA off-line intrusion detection evaluation.
Proceedings DARPA Information Survivability Conference and Exposition," Hilton Head,
SC, USA, 1999.

[5] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das, "Analysis and results of the
1999 DARPA off-line intrusion detection evaluation. Recent Advances in Intrusion
Detection," Toulouse, France, 2000.

[6] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das, "The 1999 DARPA off-
line intrusion detection evaluation," Computer Networks, vol. 34, pp. 579-95, 2000.

[7] J. W. Haines, L. M. Rossey, R. P. Lippmann, and R. K. Cunningham, "Extending the
DARPA off-line intrusion detection evaluations. Proceedings DARPA Information
Survivability Conference and Exposition II," Anaheim, CA, USA, 2001.

[8] L. M. Rossey and R. K. Cunningham, "LARIAT: Lincoln Adaptable Real-time
Information. Assurance Testbed," presented at IEEE Aerospace, Big Sky, Montanna,
2002.

[9] R. Marty, "Thor: A Tool to Test Intrusion Detection Systems by Variation of Attacks,"
Diploma Thesis. IBM Zurich Research Laboratory, 2002.

[10] D. Newman, J. Snyder, and R. Thayer, "Crying wolf: False alarms hide attacks," Network
World Fusion. http://www.nwfusion.com/techinsider/2002/0624securityl.htm. 2002.

[11] N. J. Puketza, K. Zhang, M. Chung, B. Mukherjee, and R. A. Olsson, "A methodology
for testing intrusion detection systems," IEEE Transactions on Software Engineering, vol.
22, pp. 719-29, 1996.

[12] A. Seleznyov, 0. Mazhelis, and S. Puuronen, "Learning temporal regularities of user
behavior for anomaly detection. Information Assurance in Computer Networks,"
presented at Information Assurance in Computer Networks: Methods, Models, and
Architectures for Network Security, International Workshop, St. Petersburg, Russia, 2001.

[13] G. Shipley, "ISS RealSecure Pushes Past Newer IDS Players," in Network Computing,
1999.

65

[14] W3Schools.com, "Browser Statistics,"
http://www.w3schools.com/browsers/browsers stats.asp. 2002.

[15] TheCounter.Com, "OS Stats," http://www.thecounter.com/stats/2002/April/os.php. 2002.

[16] "Google Zeitgeist - Search patterns, trends, and surprises according to Google,"
http://www.google.com/press/zeitgeist.htm. 2002.

[17] BizNix, "The Business Web Server Survey," http://www.biznix.org/surveys/. 2000.

[18] "eTest suite: Web Test + Monitoring,"
http://www.empirix.com/Empirix/web+test+monitoring/products/e-test+suite.html. 2002.

[19] "Smbtorture, the Samba suite stress testing tool," http://www.samba.org. 2002.

[20] "InterWorking Labs, Inc: SNMP Agent,"
http://www.iwl.com/Resources/Papers/winsnmp.html. 2002.

[21] "Sunrise Telecom: LanExplorer,"
http://www.sunrisetelecom.com/lansoftware/lanexplorer.shtml. 2002.

[22] "LanTraffic V2: IP Traffic Test & Measure," http://www.zti-
telecom.com/pages/ptraffic-test-measure.htm. 2002.

[23] H. Hlavacs and G. Kotsis, "Modeling user behavior: a layered approach," presented at 7th
International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, College Park, MD, USA, 1999.

[24] T. Lau and E. Horvitz, "Patterns of search: analyzing and modeling Web query
refinement," presented at Seventh International Conference on User Modeling, Springer
Wien, Austria, 1999.

[25] "National Institute of Standards and Technology (NIST) Expect," http://expect.nest.gov.
2001.

[26] S. K. Card, T. P. Moran, and A. Newell, The psychology of human-computer interaction.
Hillsdale, NJ: Lawence Erlbaum Associates, 1983.

[27] B. E. John, "The GOMS Family of User Interface Analysis Techniques: Comparison and
Contrast," ACM Transactions on Computer-Human Interaction, vol. 3, pp. 320-351, 1996.

[28] D. Kupper and A. Kobsa, "User-tailored plan generation," presented at Seventh
International Conference on User Modeling, Springer Wien, Austria, 1999.

[29] D. Rogerson, Inside COM. Seattle, Washington: Microsoft Press, 1997.

[30] Microsoft, "Handling HTML Element Events,"
http://msdn.microsoft.com/library/default.asp?url=/workshop/browser/mshtm/tutorials/si
nk.asp. 2002.

66

[31] L. Jung Jin and R. McCartney, "Predicting user actions using interface agents with
individual user models," presented at Second Pacific Rim International Workshop on
Multi-Agents, Kyoto, Japan, 1999.

[32] V. Paxson and S. Floyd, "Wide-Area Traffic: The Failure of Poisson Modeling,"
IEEE\A CM Transactions on Networking, vol. 3, pp. 226-244, 1995.

[33] Wie Hua, Jim Ohlund, and B. Butterklee, "Unraveling the Mysteries of Writing a
Winsock 2 Layered Service Provider,"
http://www.microsoft.con/msj/defaultframe.asp?page=/ms/0599/layeredservice/layereds
ervice.htm&nav=/msj/0599/newnav.htm. 1999.

[341 MSDN, "Windows Sockets 2,"
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/winsock/apistart 9gle.asp?frame=true.

[35] "Multihomed Issues with Windows NT (Q181774)," Microsoft Product Support.
http://spport.microsoft.com/default.aspx?scid=kb;EN-US-g181774.

[36] J. Kohl and C. Neuman, "The Kerberos Network Authentication Service (V5),"
http://www.fags.org/rfcs/rfc15l0.html. 1993.

[37] "VMWare -- Virtual Computing Throughout The Enterprise," http://www.vmware.com.
2002.

[38] N. Lesh, C. Rich, and C. L. Sidner, "Using plan recognition in human-computer
collaboration," presented at Seventh International Conference on User Modeling,
Springer Wien, Austria, 1999.

[39] J. Beran, "Statistics on Long-Memory Processes," in Monographs on Statistics and
Applied Probability. New York, NY: Chapman and Hall, 1994.

[40] Mark Crovella and A. Bestavros, "Self-Similarity in World Wide Web Traffic: Evidence
and Possible Causes," presented at ACM SIGMETRICS Conference, Boston, MA, 1996.

67

