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Abstract

One of the most significant applications of Micro-Electromechanical Systems (MEMS)
technology in optical communications today is in building large non-blocking optical
crossconnects based on arrays of tiltable micro-mirrors. The complexity for these
crossconnects to make all possible connections lies in the calibration or fine-tuning of the
mirror tilt angles to optimize the transmissivity through each possible input/output pair.
The result from the fine-tuning process that produces optimization at one point in time,
however, does not guarantee optimization for future attempts. This thesis models the
transmissivity as a function of control variables in the vicinity of an optimal point and
uses this model to re-optimize the connections quickly when a connection is
reestablished. The re-optimization algorithm achieves the goal of optimizing quickly by
requiring that some prior knowledge about each connection is already known. Scalable
methods for representing the per-connection transmissivity model are also studied.
Experimental results of the algorithm performance on real crossconnect systems are
reported, including connection setup in under 50 milliseconds.
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Chapter 1: Introduction

A typical optical communication network consists of transmission line systems that

provide point-to-point links between two nodes, and switch elements at the nodes that

direct traffic to its proper subsequent node. In today's optical networks, the major role of

optics is to provide high-speed information pipes between the nodes. The switching

function is performed in the electronic domain, after the optical signal is converted into

electronic signal. Once the switching activity is performed, the electronic signal then has

to be converted back into optical signal to be launched back into the fibers. The optical-

electrical-optical conversion currently comprises the largest portion of network cost. As

the traffic volume grows, it has been speculated that this type of switching function will

be the bottleneck of the network. An alternate network architecture has been proposed,

where the switching function is performed in the optical domain. In this approach, the

unit of bandwidth to be switched is a wavelength in wavelength division multiplexed

(WDM) transmission system, and the switch is capable of directing wavelengths of signal

to their destinations. Such switch is referred to as an optical crossconnect (OXC). A

schematic system diagram of an optical network is shown in Figure 1 below.

Figure 1: System diagram of an optical network
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Because the OXC operates purely in the optical domain, it is transparent to data

rate and signaling format. The OXC could switch optical wavelength division

multiplexed signals as easily as switch single wavelength signals. With no optical-

electrical-optical conversion, the optical switch provides lower cost and power reduction

over current electronics solutions. These factors enable the OXC to support incremental

and economical network expansion in a much more effective manner as traffic increases.

In a WDM transmission system, each fiber in the network will carry up to W

wavelength channels. Suppose there are D fibers coming into the node. At the node each

fiber would be demultiplexed so that each wavelength channel goes onto its own fiber,

resulting in a total N = DW single-wavelength carrying fibers coming into the switch.

Naturally, we could assume there are also N single-wavelength carry fibers coming out of

the switch. We refer to N as the switch's port count. D is typically small, but N could

potentially get large through the product of D and W. As traffic grows, a switch of large

port counts will become increasingly in demand. When there are N single-wavelength

fibers coming in and N single-wavelength fibers going out, there are N! input-output

configurations. These N! configurations can be realized through combinations of N2

optimal conditions of the switch. So an OXC at this node has to be able to make any of

these N2 possible connections.

One of the key building blocks that allow the concept of optical OXC to be

realized is the advancement of the MEMS (Micro-Electro-Mechanical System)

technology. Because of its inherent advantages such as batch fabrication technology,

small size, integrability, and scalability, MEMS has shown great promise to become the

dominant technology in optical crossconnect switches. Several architectural designs for

the MEMS-based optical OXC switches have been proposed and evaluated in the

research community, as we will discuss later. These MEMS-based designs typically use

microscopic mirrors to reflect light signal coming in from an input fiber to a specified

output fiber in order to make connection. The one design that stands out and proves to be

the most feasible for a large port-count switch is the MEMS-based 3-dimensional (3-D)

design, also known as the beam-steering design. The schematic and details of this design

will be discussed in section 2.1. This 3-D design offers the great advantage of scalability

and better reliability over other competing designs.
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At the same time, the 3-D design also carries some inherent difficulties that need

to be addressed. One such difficulty lies in the tuning of the mirrors to tilt to the precise

position that would optimize the signal power going through and to maintain themselves

at the optimal power position. In the manufacturing process of the switch, each of the

mirrors has to be calibrated to find the precise control voltages that optimize signal power

going through each of the connections involving this particular mirror. A record of all

these calibration values is kept in the database for retrieval during future operations. But

because changes in the environment and setup conditions could have some effect on the

physical characteristic of the switch, the optimal control voltages may change over time.

Mirrors thus need to be re-calibrated upon connection setup and periodically during use

to make certain that they always stay close to the optimal position.

There are various scenarios in which a connection needs to be set up. One is

initially setting up a primary path. Another is setting up a restoration path to recover from

a failure elsewhere in the network. During operation, the time it takes to re-calibrate the

mirrors or to re-optimize the connection dictates the connection's setup and restoration

time. Faster restoration time allows the crossconnect to be able to support a wider variety

of applications which have more stringent quality of service requirements. This factor

leads to a motivation for us to find a method to re-optimize quickly. Various

mathematical modeling and algorithms have been explored for this purpose. In the past, it

has been difficult to find an algorithm to re-optimize connections that converges quickly

enough. This thesis proposes, studies, and implements a method for accelerating the

connection setup and restoration time. The study involves modeling perturbations around

the optimal control voltages and making use of the model to come up with an accelerated

re-optimization algorithm.

In Chapter 2, we will discuss the details of the 3-D design of the OXC switch, the

source of problem that became the motivation of this thesis, and the approach we took to

come up with a solution. Chapter 3 will talk about studies and mathematical modeling of

the physical characteristics of the switch. In Chapter 4, we propose optimization

algorithms that take advantage of the knowledge we have gained from the study on the

nature of the switch from chapter 3. Chapter 5 will show the performance evaluation of
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the chosen optimization algorithm on real optical OXC systems. Chapter 6 will be the

conclusion of this thesis.
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Chapter 2: Background

2.1 Description of the optical OXC switch

An optical connection inside a switch is a path that leads an optical signal from

the source to the destination. In our case, the source is a set of input fibers and the

destination is a set of output fibers. An optical OXC switch is responsible for making and

maintaining multiple optical connections at a time. In NxN non-blocking optical

crossconnect, an optical signal from any one of the N input fiber ports can be directed to

any one of the N output fiber ports that is not being used. Such switching function can be

achieved in a 3-D geometry, schematically shown in Figure 2.

Lenslet

Array

InputV--------- --
Fibers

Micromirror

array

Field lens

Output
calesc Fiber guide Fibers

Figure 2: A top view schematic representation of a 3-dimensional optical crossconnect switch

The schematic shown above is the Optical Switch Module (OSM), which is the

heart of the optical OXC switch. It is where the signals from the input fibers get routed to

the appropriate output fibers according to their destination. The main components of the

OSM consist of the input and output fibers, two micromirror arrays, two lenslet arrays,

and one field lens. The OSM is capable of connecting signals from any input fiber to any

output fiber. Each input fiber is aligned with its own input mirror, and each output fiber is

aligned with its own output mirror. The input and output mirrors are fabricated as arrays
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of micromirrors on two separate silicon chips. The signal path through the OSM can be

traced as follows. The signal would come in from one of the input fibers. The refracted

beam out of the fiber would be collimated as it goes through one of the lenses in the input

lenslet array. The resulting collimated Gaussian beam is then reflected by the

corresponding electronically controlled tilting mirror on the input chip which directs the

beam to the spot on the field lens that would lead to the appropriate mirror on the output

chip. The mirror on the output chip is set to tilt at the angle that would reflect the

Gaussian beam to its corresponding output fiber. The beam is refocused as it passes

through the lens in the output lenslet array and finally coupled into the output fiber.

Each micromirror is attached to two springs or flexures which enable it to tilt up

and down when an appropriate force is applied, and these two springs are in turn attached

to a gimbal which also has two springs attached under it to enable the gimbal and the

mirror to tilt sideways. As a result, with the right combination of forces applied each

micromirror is able to tilt with two degrees of freedom.

The electrostatic forces that are used to tilt the mirrors are generated by the

voltages applied to the four electrodes that are positioned under each mirror and gimbal

while the mirror and gimbal remain grounded at all times. The positions of the four

electrodes and the springs relative to the mirror and gimbal for a typical mirror design are

shown in Figure 3 below.

Figure 3: Micromirror and the four electrostatic electrodes
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Voltage applied to electrode 3 and 4 (V3 and V4) moves the gimbal to the left or

right. Voltage applied to electrode 1 and 2 (VI and V2) moves the mirror up or down.

Instead of applying voltages to two opposite electrodes simultaneously, we choose to

operate in a more limited way - we apply a non-zero voltage to only one electrode and

ground the other electrode (i.e. electrodes 1 and 2, or 3 and 4, are never on at the same

time). The reasons behind this are that 1) this is sufficient to cover all degrees of freedom

of the mirror tilt, and 2) applying high voltage to both electrodes could put too much

stress on the spring. Having chosen this convention, we can describe the control variable

of the mirror in each of the two dimensional directions by just one voltage value which

the difference between the voltages applied to the pair of opposite electrodes in that

direction. We define V, = V4 - V3, and Vr = V 1 - V2. As a result, each mirror is

controlled by two voltage variables, Vc and Vr, and can be tilted to any angle within the

range of ±5 degrees.

2.2 Advantage of the 3-D over 2-D switch architecture

The switch function of an all-optical OXC could be achieved by other switch

architectures as well. What determine whether the design is practical are its reliability,

scalability, and cost. Another prominent MEMS-based design of the switch is referred to

as the 2-D switch architecture, or the crossbar design. In the 2-D architecture, the mirrors

are arranged in a crossbar configuration as shown in Figure 4 below. Every possible

connection has a mirror and a set of hardware dedicated to it, so for an NxN port switch,

a total of N2 mirrors are required for building a non-blocking switch. The mirrors are

placed at the intersections of light paths between the input and output fiber ports. Each

mirror has only two states, on position to reflect the light, and off position to let light

pass.

15



off on

Figure 4: A 2-dimensional crossbar switching architecture

This binary or digital nature of the mirror greatly simplifies the control scheme of

the switch. The control circuitry usually consists of simple transistor logic gates and some

amplifiers to flip the mirrors up and down.

Regardless of its simplicity, however, the demand for so much hardware still

prevents the 2-D architecture from achieving scalability. It is not practical to have N2

mirrors for an NxN switch when N gets large. One alternative approach to increase the

port count is to cascade multiple small switches in a multistage scheme. This cascaded

approach, however, can get very complicated and typically requires a large number of

small switches in order to afford all N2 connections. The overall signal power loss of this

cascaded switch unit is also accumulated. Another pitfall of this design is that when one

mirror is defective, i.e. stuck in the on position, it can potentially be very damaging to the

overall functionality of the switch. Not only will it ruin the usability of that particular

connection, it could also affect all other connections involving either that input channel or

the output channel.

The 3-D architecture as shown in Figure 2, on the other hand, uses a different

approach to make connections. The advantage of this switch architecture is that the

number of hardware components needed is linearly proportional to the port count of the

crossconnect switch. Only 2N mirrors are required for an NxN switch. So, hardware-

wise, this seems to be a very scalable approach. In addition, when there is a malfunction

in any mirror, only the N connections involving that mirror will be affected.

In this 3-D design, the mirrors are analog and free to tilt to any angle within a

small range. The complexity of the crossconnect switch to make all possible NxN

connections thus lies in the analog fine-tuning of the mirror tilt angles so that the light

16



signal through the connection is optimized. Since each connection involves controlling

both the input and output mirrors and each mirror has two control voltages, making a

successful connection requires optimizing optical throughput by controlling four control

voltages. The reliability and effectiveness of this complex analog control scheme is the

challenge we need to overcome in order to make this switch design more practical for

real world use.

2.3 Statement of the problem

During the switch manufacturing process, the precise values of the four voltages

that maximize the amount of optical signal power through each connection are measured

and stored in a database. This process of finding these voltage values is called the

training process. Once the database is generated, one can retrieve the appropriate voltage

values from the database and apply them to the electrodes in order to make any

connection. Since the training process becomes increasingly challenging as the number of

ports grows in the optical switch, it should be done only once in the factory with the hope

that the resulting values stored in the database will be accurate and valid for all future

uses.

In practice, there are many reasons why the voltage values that optimize the

optical throughput of a connection during real operation of the switch may deviate from

those measured at the time of training. If the voltage sources used during training process

and the operation are different, there can be slight calibration errors between them. If the

operating temperature of the switch is different from the temperature during training, the

overall optical assembly shown in Figure 2 can expand or contract and the optimum

voltages can change. Also, if the wavelength of the light used during operation is

different from that used during training, the chromatic dispersion of optical components

can slightly modify the optimum voltages. For all these reasons, there arise cases where

one has to further optimize the connection after the voltage values from the database is

applied, before the connection can be declared good. We need to come up with an

accelerated method or algorithm to handle the case where the re-optimization is required.
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If the re-optimization process is required, the number of steps needed for the re-

optimization process determines the switching time of the optical crossconnect switch.

This switching time, which is also known as the switch's restoration time, is a significant

factor that determines the functionality of the switch in the network. The electronic

switch used in today's network has a restoration time of <= 50 milliseconds. For the

optical switch to find a real niche in the network and be well accepted as a replacement of

the electronic switch, it is crucial for the optical switch to further minimize its connection

setup time requirement. The current technique used in re-optimizing process of the

optical switch requires over 100 ms most of the time, and it is clearly not good enough.

Therefore, the focus of this new re-optimization method should be to reduce the number

of measurement steps and time required for retraining to the least possible. Even if this

comes at the expense of having to store more information, as long as the storage

requirement does not prevent scalability of the algorithm usage, it is worthwhile for us to

focus our best effort on reducing the number of measurement steps required.

2.4 Approach

In order to come up with effective control algorithm, it is important to have good

knowledge about the loss characteristics of each connection in the vicinity of the

optimum optical throughput spot. If one plots the transmissivity through a particular

connection as a function of the four control voltages near the optimum point, the result is

a four dimensional function we refer to as a hill, with the optimum throughput spot being

the peak of the hill. Hill shapes describe how much loss is introduced when the applied

voltages deviate from the optimum control voltage values. A good knowledge of the hill

shapes is the key to developing efficient re-optimizing process, which reduces the

switching time. Such efficient re-optimization process can also affect the demands on the

electrical hardware, in this case meaning a good knowledge of the hill shape may also

allow some relaxation of the specifications on the voltage drivers and other parts of the

switch hardware.

The approach for this study is divided into three steps. First, we will make

measurements on prototype devices, study hill shapes, and systematically look at the
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statistics of the hill shapes across the switch. Second, we will apply the knowledge from

studying the hill shape to come up with an accelerated re-optimization algorithm and

some variations of it that are robust and practical for real world use. After we accomplish

the first two steps, we will then move on to the third step, which is to implement the

chosen algorithm on prototype systems.

2.5 Prototype systems

In addition to an OSM, a prototype system also has to include other components

to control the mirrors and to detect the optical power going through the switch. The two

main boards in the system are what we call the high voltage digital-to-analog converter

(HVDAC) board, and the power monitoring board. The HVDAC board contains a digital

to analog converter in order to convert the digital signal coming in from the main

processor into an analog voltage value to control the mirror tilt. The interface between

the HVDAC board and the OSM is thus in the electrical domain. The interface between

the OSM and the power monitoring board is, on the other hand, in the optical domain.

The power monitoring board has tap devices to read the optical power coming into the

connection and going out from the connection in order to determine how much power is

lost inside. Photo-detectors and amplifiers are used on the power monitoring board to

convert detected photons into electric current and amplify the current to produce the

power reading. This optical power reading will then go through an analog-to-digital

converter (ADC) on the same board in order to be sent back as digital signal to the main

processor. Because of these circuitry components outside the OSM, we are able to just

supply the values of control variables and get the output readings on prototype systems.

The system diagram of the switch is shown in Figure 5.
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Figure 5: System diagram of the OXC

Prototype systems used in this study are of two different sizes. One is a switch of

the size 1296x1296 while the other is of the size 64x64. The 1296 switch is roughly 20

times bigger in terms of the number of micromirrors on each mirror array, and in terms of

number of connections, it is more than 400 times bigger. This means that there are 400

times more optimal positions and optimizations that need to be performed. The bigger

size comes with many additional complications and issues. It is a good setting for us to

test the scalability of the switch design and its control scheme. The arising issues

associated with bigger switch fabrics and their effects on the performance of our

algorithm will be discussed when we talk about performance evaluation on real systems

in Chapter 5.

Aside from the size difference, the two prototype systems have different system

architectures and maturities. The 1296 OSM line has been developed and gone through

many manufacturing iterations. More than a dozen of the OSM's of this size have been

produced, and many improvements have been made. The switch is therefore by nature

more reliable and well understood. In addition, the test-bed and the hardware-controlling

software have been well set up and implemented. Complete sets of data for several 1296

OSM's were available and this has helped us tremendously in terms of trying to

understand the behavior of the switch. All the studies in this thesis that involve

simulations will be based on the data from the 1296 OSM. Simulations based on these

data is of a tremendous use to us since they give us the opportunity to do preliminary

evaluation of our models and algorithms without requiring any real-time activity or any

real-world complications. All the discussions in Chapters 3 and 4 are based on
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preliminary evaluation done on the 1296 OSM's measurement based simulations. Once

we have gained insights from the simplified setting of the simulations, we can go on to

apply our algorithm on the prototype systems in real time.

The 64 OSM, however, was only going through its first iteration when the thesis

work was done. The system level architecture of the OSM is much different from the

1296 version. The focus here is much more on the system-level performance rather than

just the OSM as in the 1296 case. The underlying motivations for developing this

particular 64 OSM module are the following. First is to take advantage of the

technological improvement of the hardware components. The HVDACs, ADCs, and

optical connections in the market can all perform better, have more resolution, or can be

integrated into a smaller physical packaging than the ones available when the 1296

OSM's were built. Since the circuitry components are smaller and better integrated, we

could reduce the space requirement of the system substantially. Second, we want to make

improvements in terms of system architecture in order to make our design achieve more

modularity. The new system architecture focuses on the communication between

electronics and system controller. We want to introduce more intelligence into the system

and eliminate all unnecessary dependence among different parts of the system. Third,

since this 64 OSM module has a small manageable size, it is a perfect candidate for us to

attempt many system level testings and optimizations.

In terms of evaluating the performance of our optimization algorithm, there is not

much difference between the two types of switches. Although the system architecture and

circuitry components might be different, the heart of the switch which is the OSM design

remains the same in the two cases. We can judge the performance of our algorithm by

looking at the number of measurement steps it requires before reaching the optimal value,

and be blind to other system components outside the OSM. These other components of

the system only come into the picture when we need to convert from the number of steps

into the actual length of time the switch requires to restore a connection.
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Chapter 3: Studying the Hill Shape

The approach for modeling and finding efficient re-optimization algorithms for

this optical switch system consists of three steps. First, we make measurements on a

prototype system, study hill shapes, and systematically look at the statistics via fitting a

quadratic model. Second, we apply the knowledge gained from studying the hill shape to

come up with an accelerated re-optimization algorithm and some variations of it that are

robust and practical enough for real-world use. Third, we implement the algorithms on

some prototype systems so we can evaluate their real-time performance. In this chapter,

we will focus on the first step of studying the hill shapes. The other two steps will be

discussed in the following chapters.

Before we go on, let's remind ourselves of the schematic of the switch again. The

main components of the switching core consist of the input and output fiber arrays, two

micromirror arrays, two lenslet arrays, and one field lens. We sometimes refer to each of

the two micromirror arrays as input chip and output chip. In order to make a light pass

from one input fiber to one output fiber, the input mirror needs to tilt so that it directs the

light to the output mirror, and the output mirror has to tilt so that it directs light to the

output fiber. Our problem focuses on the dynamic of the inner core of the switch,

meaning that we assume all light signal from each input fiber is already properly

collimated and perfectly aligned with an input mirror in the micromirror array and each

output fiber is properly aligned in a similar fashion to its own output mirror. So the only

controlling variables we have left that affect the light throughput are the voltages that tilt

the mirrors. For each mirror, the controlling voltages consist of the horizontal component

and the vertical component, V, and Vr.

23



Lenslet
Array

Input -
Fibers

Micromirror
array

Field lens

Electric Output

cables Fiber guide Fibers

Figure 6: A schematic representation of optical crossconnect switch

The hill shape, in essence, is the transmissivity characteristic of each connection

between any given input fiber and any output fiber. Every connection consists of four

control variables, two being the horizontal and vertical control voltages of the input

mirror, and other two being those of the output mirror. The optimum point of each

connection is defined as the spot where the transmissivity or the optical throughput of the

connection is maximized. If one plots the transmissivity of a connection as a function of

the four control voltages near the optimum point, the result is a four dimensional hill,

with the optimum throughput spot being the peak of the hill. Each and every connection

has its own unique hill profile. Studying the hill shapes is crucial because a good

knowledge of the hill shapes is the key to developing efficient re-optimization algorithm.

Before we study the hill shapes, it is important to discuss the spaces or coordinate

systems that we will look at our hills in. The first section of this chapter will discuss that.

Studying the hill shapes in itself also involves two processes. First we study and extract

parameters from each individual hill. Then we search for global patterns that might exist

among the parameters of hills across the switch. These two processes are described in

more detail in sections 3.2 and 3.3 of this chapter.
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3.1 Voltage and Beam displacement spaces

This section will describe the idea of changing the working coordinates or spaces

of our problem. There are many reasons why changing the problem's coordinate might be

desirable. One is that a different coordinate might enable the problem to be described in a

simpler way. Here we will focus on the two specific coordinates for our hills and the

method of transforming back and forth between these two spaces. The two spaces

referred to in this case are the voltage space and what we call the beam displacement

space. In voltage space the independent variables are the voltage values that we apply to

the electrodes to control the movement of the mirrors whereas in the beam displacement

space the independent variables directly describe the reflected beam spot's position on a

fixed plane in front of the mirror array. A good fixed plane to use can be the plane of the

opposite (target) chip. We could use standard distance units such as millimeters to

describe the beam displacement space. But a more convenient unit to use is mirror units,

with one unit being equivalent to the distance from the center of one mirror to the center

of its adjacent mirror.

The relationship between the two spaces of each connection is based directly on

the voltage/beam displacement characteristic of the two mirrors involved in the

connection. A few observations were made on the general nature of the mirrors. First, for

small voltages, beam displacement is approximately proportional to the square of the

applied voltage. However, as the voltage gets larger, a higher order terms are required to

describe this relationship. Second, even though Vc seems to essentially control the

horizontal movement of the beam while V, does the vertical, there is still some cross

coupling. This means that if we change the value of Vc, not only does the C or the

column component of the beam displacement change, but also the R or the row

component of the beam displacement is affected, although in a much smaller scale.

Typical plots of squared voltage as a function of position in beam displacement space are

shown in Figure 7. The voltage squared referred to in this case is not exactly the square of

each voltage, but rather the product of the voltage and its absolute value, VIVI. The left

plot shows the column voltage component, so the vertical axis of the graph is VJVJ. The

horizontal axes are the beam displacement position, whose unit has been centered and
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normalized into mirror units and referred to by a row and column number. The right plot

shows the analogous relationship of the vertical voltage component, VIVr.

X l-

-0 20

010

-00

Row ('irror unts) -20 -20
Column (mirror units)

20 -
1202
10 2

0 10
-0

-10 - (0

Row (mirror urdts) -2 -20 Colun (mirror ts

Figure 7: Voltage squared as a function of beam displacement position

The fact that the plots look relatively smooth suggests that we should be able to

find a parsimonious model to capture these characteristics. One simple model that works

reasonably well is the two dimensional quadratic functional form. The voltage squared

can be approximated as a quadratic function of the horizontal and vertical components of

the mirror's beam displacement. The exact form of the quadratic function used to model

each mirror is:

Vc JVe|~ a1C2 + a2R2 + a3CR + a4C + a5R + a6  (3.1)

Vr IVrI bIC2 + b2R2 + b3CR + b4C + b5R + b6  (3.2)

In order for this model of voltage/beam displacement characteristic to be reasonably

accurate, we model each of the four voltage space quadrants separately. The motivation

here comes from the fact that 1) we can see in the plots above that there appear to be four

separate regions, and 2) each quadrant involves activation of a different electrode pair.

Modeling each of the four voltage quadrants separately means that each of the quadrants

will have its own set of six quadratic coefficients to best represent the real characteristic

of the mirror in that quadrant. Since we also model the two voltage components of each

mirror, V, and Vr, separately, we end up having a total of eight sets of quadratic

coefficients, resulting in a total of 48 coefficients, to represent each mirror.
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Now we go back to the issue of representing the hills. Each hill can be described

in voltage and beam displacement spaces. Figure 8 below shows the physical origin of

the two spaces of a chosen input mirror.

Voltage Space

Vri

dVe*

Output chip

7
ft~~

Input chip

0

Ri

beam spot

Ci

mirror

Beam displacement Space

Figure 8: The voltage and beam displacement space of a chosen input mirror

In the voltage space, we plot the logarithm of optical power as a function of the

four varying voltages, where two voltages control the input mirror and the other two

control the output mirror. We denote the function and its four arguments as P(Vei, Vri,

Vc0, Vro). Vei is the voltage applied to control the movement of the input mirror in the

column or the horizontal direction. Vrl is that of the input mirror in the row or the vertical

direction, while Vco and Vro are those of the output mirror. In the beam displacement

space, as mentioned before, we plot the optical power as a function of the beam position

reflected by the tilting mirrors onto the opposite chips. Similar to the voltage space, the

beam displacement space is made up of four dimensions, each representing the vertical or

horizontal component of the reflected beam spot from the input or output mirror. The

four components in the beam displacement space are (Ci, Ri, C0, RO), where Ci is the
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position in the column or horizontal direction on the output chip where the input mirror

reflects the beam spot to, R; is the that in the row or vertical direction, C0 is the position

in the column direction on the input chip where the output mirror reflects the beam spot

to, and RO is that in the row direction.

Since making a connection involves controlling two mirrors, the relationship

between the connection's two working spaces has to include the voltage/beam

displacement characteristics of the two mirrors. For any connection, we can thus extend

the relationship presented in Equations 3.1 and 3.2 as follows:

VC IVciI ~ a1C0
2 + a2RO2 + a3CORO + a4 CO + a5RO + a6

Vri |Vril - bIC0 2 + b2 Ro2 + b3CORO + b 4 CO + b5RO + b6

Vc0 |Vco0 ~ c1C 2 + c2Rj2 + c3CjRj + c4Ci + c5Rj + c6  (3.3)

Vro IVro~ dCj2 + d2Ri2 + d3CjRj + d4 Ci + d5Ri + d6  (3.4)

The subscripts i and o refer to the input mirror's and output mirror's values

respectively. The first two equations refer to the voltage/beam displacement

characteristics of the input mirror, while the latter two refer to those of the output mirror.

Each mirror has its own unique relationships in the vertical and horizontal components

and therefore any connection is made up of a total four voltage-beam displacement

relationships. Each equation above models the voltage controlling the mirror in the

vertical or horizontal direction on one chip as a function of the position of the reflected

light beam spot on the opposite chip's plane referred to by the column and row number.

Although the hill profile of each connection can cover areas far beyond the

position of its peak, the part of the hill that is relevant to us is only around of the hill's

peak. Thus, instead of taking into considerations the four complete quadratic

relationships as presented in Equations 3.1-3.4, we can simply approximate them around

the local spot using linear slopes. Since a range of voltages that any one connection

covers is significantly smaller than the whole voltage range a mirror can swing, using a

linear approximation around the connection peak to model the voltage/beam

displacement relationship of the whole connection seems to be a practical and sufficient

approach. The range of any one hill is very small relative to the curvature of the whole
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voltage/beam displacement function. This approach in effect turns the task of

transforming back and forth between the two sets of coordinates into a simple linear

transformation process. The procedure for making the transformation is described below.

We start with the four equations describing the voltage/beam displacement

characteristics of the connection's two mirrors as shown in Equations 3.1-3.4 above. All

connections would use these same common functional forms, but each connection would

use the least square fitting technique on each of its two particular mirrors to obtain its

own set of unique coefficients. The data points to be used in the least square fitting come

from the database. The database contains all the voltage values required for making

connections from any specific mirror on one chip to all the mirrors on the opposite chip.

Therefore, for each mirror the database would provide us with the number of data points

equal to the number of mirrors on the opposite chip. We however do not use all those

available data points for the fit. The idea of looking at each of the four voltage quadrants

separately was already mentioned earlier. We want the fitting coefficients to be

customized to best represent the voltage/beam displacement characteristic around the

peak of the connection, so we only use the points that are in the same voltage quadrant as

the connection peak's voltage. There are around a fourth of the total number of mirrors

on the chip in each quadrant.

Once we have obtained the fitting coefficients for all four equations, the next step

is to approximate the voltage/beam displacement relationships locally with linear slopes.

This is done by taking partial derivatives of the voltage with respect to the C and R

variables of the beam displacement space and then substituting the actual values of the

connection's C and R into the calculation in order to find the local slopes. Assuming that

we are characterizing an input mirror A (that is making a connection with an output

mirror B) whose position on the output chip is specified by column number X and row

number Y, the mathematical form of the derivatives is as follows. We start with the

column voltage component.

Let We = VCJVC = VC2sign(Vc) ~ a1C2 + a2R2 + a3CR + a4C + a5R + a6,

VC = -IWcI" 2 sign(Wc) (3.5)

Then,
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dVc/dC = 1Wc1- 2 (dlWcI/dC) sign(Wc)

= IWc- 2 (dWc/dC)

= (a1 C2 + a2R2 + a3CR + a4 C + a5R+ a6) -1/2 (2a 1C + a3R +a4 )

(3.6)

Similarly,

dVc/dR = (a1 C2 + a2R2 + a3CR + a4C + a5R+ a6) -2 (2a 2R + a3C +a5 )

(3.7)

Therefore,

Y27I+' I3Y a4+aY 6 1/2(dVc/dC) C=X,R=Y = 2 (aIX 2 + a2Y2 + a3XY + a4 X + a5Y+ a6) (2a 1X + a3Y +a4 )

(3.8)

(dVc/dR) C X, R =Y = 2 (a1X2 + a2Y2 + a3XY + a4X + a5Y+ a6) 1/2 (2a 2Y + a3X +a5 )

(3.9)

The relationships hold similarly for the V, component of the same mirror:

Wr = VrIVrI = Vr2sign(Vr) ~ bIC2 + b2R2 + b3CR + b4C + b5R + b6, (3.10)

(dVr/dC) C = X, R Y = (bIX2 + b2 Y2 + b3XY + b4X + b5Y+ b6) -1/2 (2b]X + b3 Y +b4 )

(3.11)

(dVr/dR) C= , R = Y = (bIX2 + b2 Y2 + b3XY + b4X + b5Y+ b6) 1/2 (2b 2Y + b3X +b5 )

(3.12)

An output mirror B that is making connection with this input mirror A would obtain its

own set of local slopes in a similar manner its own version of Equations 3.18, 3.19, 3.11,

3.12. So for any connection, we need a total of eight local dereivative values.

Let X1, Y1, X0, Y0 be the physical position, denoted by the column and row

numbers, of the input and output mirrors on the chips, and let Vcj), Vii0, VC0 , Vro0 be the

voltages that maximize the optical power of the connection. The connection's eight local

derivative values can be arranged into a matrix form as followed:

aVci a Vci

Ji = =,R=Yo C=Xo=Y(3.13)

aVri aVri
3C = 3R

CX0 ,R=Y 0 C=Xo, R=Y
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VCo Co

J, =. Y C=-"' X0=-R-=Y" (3.14)

aVro ro
~3C _ 3R_

C=Xo,R=Yo =XRY

The task of finding the local derivatives and the connection's Ji and J0 is quite

tedious, since it had to go into the memory to retrieve the data points in the relevant

quadrant in order to do a least square fitting on them. So it should be done only once

when the connection is first attempted. Once the values of Ji and J0 are found, they should

be stored locally so that they can be used to transform back and forth between the two

spaces in all future attempts.

Now that Ji and J0 matrices have been obtained, they can be used to transform

coordinates of the point around the peak of the connection from beam displacement space

to voltage space, referred to as a forward transformation, as follows:

[Vci, Vri]T = [Vci, V1 00]T + Ji [ACi, AR]' (3.15)

where AC = Ci - X0 and AR = Ri - Yo

T 0 0TT[Vco, Vro] = [VC0 , Vro ]I + JO[AC,, ARO]' (3.16)

where AC, = C - Xi and ARO = R0 - Yi

The backward transformation, going from voltage space to beam displacement space, is

exactly the reversal:

[C, R]T = [Xi, Yi]T + J[Vci-Vcio, Vfi-Vrij]T (3.17)

[Co, Ro] = [X 0 , Y0]T + Jo [Vc 0-Ve0 , Vro-Vroo]T (3.18)

In reality, since the hardware is controlled by the voltage values, the natural or

default space of the hardware control is always the voltage space. The backward

transformation needs to take place first in the case where we want to model our problem

in beam displacement space. Once we are in the beam displacement space, we can model

and do all the calculations required. But whenever we need to take new data points on the
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hill of the hardware, we need to use the forward transformation to get back to the voltage

space.

3.2 Measurements and Description of Individual Hills

The goal of this section is to gain knowledge about the individual hill shapes and

explore whether they can be modeled with a simple common functional form. In other

words, we want to see whether we can extract finite sets of parameters to represent the

hills. A consequence of Taylor's theorem is that any smooth function can be well

approximated by a quadratic function near any local maximum. In our case, the

transmissivity in a connection can be approximated as a quadratic function of beam

displacement when the beam alignment is close to optimal. The quadratic model holds

over a wider range when transmissivity is expressed on a log scale (e.g. decibels). This

may be explained partly by the fact that light beams have approximately Gaussian cross-

sections, so that the hill inherits some Gaussian behavior. The connection's input and

output power are read from the tap devices that detect the intensity of the beam going into

the input mirror and that of the beam coming out from the output mirror. If the input

power is known or at least known to be constant, the output power can be used as a proxy

optimization function in place of transmissivity.

3.2.1 Typical hills

Samples of the data points in the vicinity of the hilltops from many connections

were collected and studied. Since our hills are four dimensional, it is rather difficult to

visualize them. One way of trying to do so is to fix the values of two dimensions and plot

the transmissivity as a function of the other two dimensions. This way we get to see

different two-dimensional slices of the hill depending on which other two dimensions are

chosen to be fixed and the values at which they are fixed. Some views of a hill are shown

in Figure 9.
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Figure 9: Mesh plots of the 2-dimensional hill slices

The left plot shows a slice of the hill when we fix the input mirror's voltages at

their peak values and let the output mirror's voltages vary. The right plot shows the slice

of the hill when we fix the output mirror's voltages and let the input mirror's voltages

vary. The location of this connection's input mirror is around the edge of the input chip

while the location of the output mirror is close to the center of the output chip. The fact

that the left hill slice is steeper than the right hill slice shows that the connection'

transmissivity is much more sensitive to changes in the output mirror's voltages than

changes in the input mirror's voltages. This makes perfect sense since the close-to-the-

edge position of the input mirror requires the output mirror to be tilted by high voltage

values. The high voltage values are in a more sensitive region of the mirror's

voltage/beam displacement characteristic plot, meaning that a small change in voltage in

this region would result in a big change in beam displacement. A big change in beam

displacement implies a big change in transmissivity. The same idea applies to the shallow

hill slice case. The close-to-the-center position of the output mirror only requires the

input mirror to be tilted by small voltage values. This means that we operate close to the

origin of the voltage/beam displacement characteristic of the mirror so even a big change

in voltage value will result in a small change in beam displacement. Therefore, the

change in transmissivity is also small and the hill slice looks shallow. In addition to

showing characteristics that reflect the mirrors' positions, these plots support the fact that

a quadratic function should be able to model the hill quite well close to its peak.
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The same two-dimensional hill slices shown above can be visualized in the form

of contour plots as well. While mesh plots allow us to look at the hill from the side,

contour plots give us the top view of the hill. Each contour line outlines the parts of the

hill that have the same height. In our case, while the mesh plots let us see the smoothness

of the hill surface more easily, the contour plots give us a better view of the overall

picture of the hill, i.e. the overall size, shape, symmetry, and orientation of the hill. Figure

10 below show the contour plots from the exact same hill as the one in the mesh plots

above. In addition to plotting the contours of the two dimensional slices in the voltage

space, we also transform the hill data points into beam displacement space using the

backward transformation process discussed in the previous section (section 3.1) and plot

a set of two-dimensional slices of the same hill in beam displacement space.
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Figure 10: Contour plots of the same 2 dimensional hill slices. The top two are in voltage

space and the bottom two are in beam displacement space

The top two graphs in Figure 10 are the contour plots in voltage space while the bottom

two are those in beam displacement space. It is evident from the graphs that by

transforming the hill into beam displacement space, we effectively reduce the coupling
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between dimensions of the problem. The hill's major and minor axes in beam

displacement space are much more closely aligned to the problem's dimensional axes.

We give the credit to a good voltage/beam displacement relationship model that we used

in transforming the problem from voltage to beam displacement space. Because the

model approximates the actual relationship well, the coupling between axes is almost

entirely accounted for in the space transformation process and therefore does not appear

much at all in the beam displacement space.

Other advantages of transforming the problem into beam displacement space can

be seen when we compare the contour plots from different connections. Contour plots of

a different connection are shown in Figure 11. The transformation to beam displacement

space seems to normalize the size and shape of the hills to some degree, making the hill

profiles of different connections more uniform across the chips. In voltage space, the

relationship between voltage/mirror's beam displacement is roughly quadratic. When we

look at a particular connection that involves the two mirrors right in the middle of the

chips, the required voltages around the peak of the hill are small. Since the quadratic

curve is shallow at small values, a small increment in voltage step applied to that small

starting voltage value produces a small increment in the beam displacement. But when

we look at a connection involving the mirrors towards the edges of the chips, the voltages

required to get to the peak are large. Since a small increment in voltage step applied to a

large starting voltage value produces a bigger increment in the mirror's beam

displacement, the hill profile of a connection close to the edges of the chips is by nature a

lot steeper than that of connection in the middle of the chips. In effect, when we look at

the variation of the hill profiles of the connections across the chips, we would start from

very shallow hills in the middle, and as we move further out towards the edges of the

chips the hill profiles get steeper and steeper. The existence of this prominent variation in

the hill profiles across the chips affects us in two ways. First, this makes it harder for us

to characterize and model the hill profiles as a whole, meaning that the variation

introduces a uniqueness to each hill and a more complicated model is required in order to

capture that. A simple model might no longer be good enough. Second, when the hill

profiles vary a lot, with some hills being very steep while others being very shallow, it

puts more pressure on the robustness requirement for the hill climbing algorithm that will
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be discussed in the next chapter. When the hill is very steep, a small move can lead to a

very big change in the function's value. In other words, a small error in the step size can

in effect make us fall off the hill very easily. The tolerance for noise and error is very

small in this case. Therefore, we prefer having the hill profiles being more uniform in

size and shape to avoid the requirements for more complicated models and algorithms for

the extreme cases.
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Figure 11: Contour plots of a different connection's 2 dimensional hill slices

In beam displacement space, we plot the relationship between the mirror's beam

displacement and the connection's optical power directly without having to take into

account the quadratic behavior of the mirror's voltage/beam displacement characteristic.

Since the relationship between the mirrors' beam displacement and the connection's

optical throughput is quite consistent across the chips, we achieve our goal of reducing

the big variation among the hill profiles.

3.2.2 Modeling the hills with a quadratic function

The next step after studying the hills and somewhat normalizing them by

transforming into beam displacement space is to find a simple model to capture
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characteristics of the hills. A fitting of the hill tops with the four dimensional quadratic

function is performed and evaluated. All the hills are fitted with the same quadratic

functional form, but each hill will obtain its own unique set of parameters through the

least square fitting technique. The parameters of the fitting thus capture characteristics of

each individual hill. The procedure of how to form a least square fit problem will be

described shortly. Since the hills are more uniform and normalized in beam displacement

space, it makes sense to do the fitting in the beam displacement space as well so that the

values of the fitting parameters from different hills across the chips are somewhat within

the same range. Let x1, yI, x2, Y2 be the values of the connection's four components in

beam displacement space, and let T be the logarithm of the measured transmissivity when

the voltages are set to the these values. The functional form of the hilltop's four

dimensional quadratic fit is given by the equation:

T = a, + a2x1 +a 3y1 +a 4x 2 + a 5y 2 + a6x12 + a 7y1 2 + a8x22 + a 9y22 + aoxjy

+a, x1x2 + a12x1y2 + a13ylx2 + a14yly2 + a 15x 2y 2  (3.19)

To form a least square problem, assume we have a total of m sample points. Each

sample point i would have its own Ti, x1j, yi1 , x2i, and y2i. We would like to form a vector

T of size m by 1, a matrix M of size m by 15, and a vector a of size 15 by 1. We put the

value of Ti into the ith row of vector T. For the ith row of matrix M, we put the values of

1, x1 i, yii, x 2i, y2i, Xi2 2, x 2i 2, y21 2, XliYli, x1ix 2i, xiy2i, ylix2i, yliy2i, x2iy2i into the 15

columns. We do the same for all m samples. The goal here is find a solution set for a that

minimizes IIMa_- T112. This least square problem can be solved by standard linear algebra

techniques.

From the equation above, a1-a15 are the 15 quadratic fitting parameters. They can

roughly be divided into two groups. a1-a5 are considered the linear terms while a6-a15 are

the quadratic terms. The above equation can be arranged and written in another form,

which gives more insight to the physicality of the system. Let A = (x1, yI, x 2 , y 2)T be a

column vector of the four beam displacement space components. The quadratic terms are

arranged into a real 4x4 symmetric matrix Q, while the linear terms can be written as a

4x1 vector u and a real number c. All these would yield another equivalent form of the

equation above as:
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T= A QA +uT A+c (3.20)

2a6  ao a 1  a12  a 2

ao 2a7 a3 a43
where Q = ,a a8 a5U a and c = a,

[a 12  a, 4  a15  2a 9 j a5]

When written in this form, the analysis and interpretation of this mathematical system can

be done and visualized more simply. First of all, the symmetric matrix Q captures all the

quadratic component of the hill, and the fact that it is symmetric will allow us to do

further analysis in various forms. The symmetry of Q has two implications: the

eigenvalues will be real and the eigenvectors will be orthogonal. These two implications

will be useful to us later on. Second, the peak position of the hill based on this quadratic

model can be calculated easily. Let a 4x1 vector p be the predicted position of the peak

based on this quadratic model of the hill. By taking partial derivatives of Equation 3.19

with respect to the four beam displacement variables and setting the partial derivatives

equal to zero, we can obtain an expression for the predicted optimal point or the peak

position in beam displacement space as:

p = Q'(-u) (3.21)

It should be noted here that p represents a global maximum of L if and only if Q is

a negative definite matrix. In our case, Q is clearly a negative definite matrix since ATQA

< 0 for every nonzero vector A. All diagonal terms of Q are negative. More discussion

regarding the analysis of the Q matrix will be presented later on. With p being the

position offset that corresponds to the peak position of the model and d being a scalar

offset, the quadratic functional form can again be written in another equivalent form as:

T = / (A - p)Q (A - p) + d (3.22)

A decision as to how far down the hill top we should include in the model also

needs to be made. There is a tradeoff involved here. Including more points down the hill
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will enable us to handle the possibility of more drifting and shifting of the hill. However,

if the accuracy of the quadratic model in representing the real hill decreases as we go

down the hill, then it might not be wise to include the area further down the hill into the

model. In our case, based on the assumption that the connections are quite stable, we

decide to model the hills down to around 3-5 dB from the peak.

Since our hills are smooth around the top, the quadratic function discussed above

should fit them quite well. Let Td(A) be the real data or the measured power as a function

of A, and Tm(A) be the power calculated from the quadratic model above. A way to

quantify how well the quadratic model fits the data near the peak is to look at the degree

to which Tm(A) ~- Td(A). Another figure of merit here is how close the peak of the model

is to the true optimum position, i.e. the degree to which p Z argmax Td(A). We do the

fitting on 25 hills across the chips which involved 5 chosen input mirrors and 5 chosen

output mirrors. Sample points for the fitting of each hill are taken on a four dimensional

grid in beam displacement space. The size of the grid for each hill is pre-determined so

that the edge of the grid is roughly 3 dB from the peak. With 164 sample points from each

hill all taken within 3dB from the peak of each particular hill, the mean of the overall loss

difference between the actual hill and the fitted model, XITm(Aj)-Td(Ai)I/n, is around 0.05

dB. The error in the peak position prediction or the distance from the predicted peak

position to the actual peak position, |Lp - argmax Td(A)II, is around 0.03 mirror units.

These small error numbers confirm our belief that the quadratic function does indeed fit

our hills very well.

In practice, it becomes quite impractical to collect as many data points as 164 in

order to have a good hill model. Since a large optical switch can have more than 1 million

connections, we want to reduce the number of data points collected for each hill as much

as possible. The tradeoff here is that with less number of points, the accuracy or how well

the model fits the actual data will be not be as good, but the time it takes to collect the

data and the amount of data to be processed is much less. The minimum number of data

points required to do a four-dimensional quadratic fitting is equal to the total number of

quadratic fitting coefficients which is 15 in this case. We want to have well over the

minimum number in order to average out the effect of noise or any strange unexpected

behavior at any particular point, so we decide on the total of 81 points. The positions of
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these 81 points are again chosen to form a grid in the four-dimensional beam

displacement space, and the size of the grid is again chosen so that the edge of the grid is

no more than 3 dB down from the peak. We take one point right at the peak of the hill,

and go 0.1 mirror unit to both sides of the peak in each dimension. This totals to 3 points

in each dimension and with 4 dimensions we have in the end 34 = 81 points. Instead of

taking data points from only 25 hills across the chips, now we choose every third mirror

on the 36x36 input and output mirror arrays. So for each of the 144 input mirrors, we

make connections to each of the 144 output mirrors. The total number of possible

connections involving theses chosen mirrors is 144x144 = 20736. For these 20736 chosen

connections, we take 81 data points from each hill and obtain the quadratic fitting

coefficients a1-a] 5 for each of them. The distributions of the quadratic terms, a6 -a15 , from

these different hills across the chips are shown in Figure 12.
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Figure 12: Distributions of the quadratic fitting coefficients in beam displacement space

We call the coefficients a6 -ag the diagonal terms since they are on the diagonal of

the Q matrix and they are the coefficients of the purely squared terms. We call the rest of

the hill's quadratic coefficients, ajo-a 15 , the cross terms since they tell us about the degree
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of coupling between any two dimensional variables. The diagonal terms are all negative

and much larger in magnitude than the cross terms: the distributions of a6-ao are centered

at around -100 while those of the cross terms are centered at either zero or a relatively

small number. This is as expected because the diagonal numbers are directly proportional

to the second derivatives of the hill with respect to each of the four dimensions. The

negative second derivatives tell us about the curvature of the hill and our hills are strictly

concave by nature. The diagonal terms' large magnitudes are as expected as well since

the purely squared terms should be dominant compared to the effect of couplings

between axes. Since the coupling effect is minimized in beam displacement space, all the

cross terms are very small in magnitude. All except a11 and a14 are centered around zero.

The coefficient a,1 shows the coupling effect between input and output mirrors'

horizontal movements, and its distribution in the plot above is centered at a small positive

number. It is reasonable to have the horizontal movements of input and output mirrors

being slightly positively correlated, since if we tilt an input mirror in a positive horizontal

direction, in order to maintain the light beam spot going towards an output fiber at the

same position we have to tilt the output mirror in a positive horizontal direction as well.

The same argument with a slight twist goes with the coefficient a14, which shows the

coupling effect between the vertical movements of input and output mirrors. These two

movements are slightly negatively correlated, because when we tilt an input mirror in a

positive vertical direction, we have to tilt an output mirror in a negative vertical direction

to compensate it. The theory behind tilting a mirror to compensate for the movement on

another mirror on the opposite chip is the same for both vertical and horizontal directions.

The only difference that makes one of them positively correlated while the other is

negatively correlated is our convention of which way is considered a positive movement.

For the horizontal direction, a mirror has to tilt so that the reflected light beam spot is

moving to the right to be considered a positive direction. So when we take a top view of

the two chips, if mirrors on both chips are tilting in a positive horizontal direction, the

two mirror plates would be parallel. However, for the vertical direction, when we take a

side view of the two chips, positive vertical movements from mirrors on the two chips

would make the two mirror plates anti-parallel. An illustration of this is shown below in

Figure 13.
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Figure 13: Conventions of vertical and horizontal movements

3.2.3 Relationship between quadratic model in beam displacement and voltage

spaces

Even though we have decided to do the fitting in beam displacement space, it's

important to note here that the quadratic fitting of the hills can be done in the voltage

space as well. The task of performing the quadratic fitting in voltage space to obtain its

corresponding Q, u, and p values can be achieved in two different ways. First, we can

take the same set of sample data points that we used for the fitting in beam displacement

space, but instead of having to transform the coordinates of the points from voltage into

angle, we leave them in voltage space and use the least square fitting technique to obtain

the corresponding fitting parameters a1-a15 in voltage space directly. Once we have the

new a-a 1 5, we follow the exact same calculations as in voltage space above to obtain the

new Q, u, and p. The second option for obtaining Q, u, and p in voltage space is to derive

them from their corresponding values in beam displacement space. Remember again that

A=(xi,yi,x 2,y2)T is a column vector consisting of the four corresponding components in

the beam displacement space,. Let V= (vi,v 2,v3,v4)T be a column vector consisting of the

~Ji 01
four controlling voltages, and J = 0 be a 4x4 transformation matrix where Ji and

L0 Jo]
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J0 are 2x2 voltage/beam displacement transformation matrices for the input and output

mirror as mentioned in Chapter 3. Let us now denote the original set of Q, u, and P in

beam displacement space as Qa, !!a, and pa and the new set in voltage space as Q, I!, and

pv. The quadratic fitting form in Equation 3.20 above can be written again as:

T = AT Qa A + UaTA + c

Since the transformation relationship between V and A is V = JA,

T = 2 (J' V)T Qa (J1 V) + qaT(j IV) + c

= V T ((j-)T Qa J1 )V + (!aTJ-I)V + c

= VTQV + v V + c

Therefore, Q, = (J-I)TQaJ-l.

3.3 Global patterns and statistics of hills across the switch

The set of model parameters a1-ai 5 or Q, u, c for each hill shape extracted by the

process in section 3.2.2 is the property of each individual connection. Therefore, the

2
number of sets of parameters to be extracted and stored scale as N , which becomes

increasingly costly as the number of ports N grows. It becomes impractical to measure

and store the parameters of all the hills as N becomes large. For a practical solution, we

need to exploit regularity among the connections and try to further parameterize the hill

shape parameters. First, we collect data from dense set of connections, and extract the

associated models parameters Q, u, c. The next step is to quantify the statistical variation

of these parameters and see whether this variation could be reduced by predictive models.

Regularities in the pattern of the extracted parameters are expected to exist, especially as

functions of mirror locations. The goal of this stage is so that we would only need to

measure a small subset of hills and use the extracted parameters of these measured hills

to estimate the parameters of all unmeasured hills. Good hill shape estimate would then

be derived for all connections, with only modest measurement and storage complexity.

Here we focus only on the variations of quadratic coefficients a6 -a 15 composing

the Q matrix. As later sections will discuss, the quadratic coefficients represent the hill

shape or curvature, while the linear terms can be thought of as determining the hill

location. Knowledge of the (relatively constant) hill shape will be used to enhance fast
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algorithms for tracking small changes in the hill location. Three methods for modeling

the hill shape coefficients as a function of connection parameters were explored and are

described below.

3.3.1 Methods used to model the variation

Since regularities in the pattern of the extracted parameters might exist as a

function of mirror location, the three methods attempted in this section are aimed to

explore that possibility. Let i be an index of the quadratic coefficient of interest, j be an

index of the connection's input mirror, k be that of the output mirror, Col and Row be

column and row numbers of the mirror. All the quadratic coefficients ai are in beam

displacement space. The three methods, their forms, and the numbers of parameters

required to represent each coefficient ai are summarized in Table 1 below.

Method Form Number of
parameters
needed to
represent each
coefficient ai

1) Mean ai of any connection j,k = mean of ai from all 1 (the mean value)
connections

2) Linear ai = c1 + c 2Colj + c3Rowj+ c4 Colk + c5Rowk 5 (cI-c 5 )
fitting

3) Quadratic ai = dl + d2Colj + d3Rowj + d4 Colk + d5Rowk 15 (di-d]5)
fitting + d6Colj2+ d7Rowj2+ dsColk2 + d9Rowk2

+ dioColj*Rowj + dllColj*Colk + dl2 Colj*Rowk
+ dl 3Rowj*Colk+ d 4Rowj*Rowk + dl5 Colk*Rowk

Table 1: Three methods used to model variation of quadratic coefficients across the chips

Assume there are m sample hills, each of the hill has its own set of quadratic fitting

coefficients a6-a15. Method 1 just takes the mean of each coefficient ai across all m hill

samples. For methods 2 and 3, we use the least squares fitting technique determine the

values of fitting parameters cI-c 5 and dI-dI5 . The minimum numbers of connections

required in the process of retrieving fitting coefficients are 5 for the linear fitting case,

and 15 for the quadratic fitting case. In practice, we need far beyond the minimum
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numbers to minimize noise and the set of connections used in the fitting also needs to be

chosen to cover all areas of the chips.

In order to evaluate the performance for each method, we determined how close

the prediction values based on that particular method are to the real values. The real

values in this case are the actual quadratic coefficient values that we extracted by

overfitting the four-dimensional quadratic model on 81 data points around each

connection's peak spot. For this particular evaluation, we extracted the quadratic

coefficient values for 144x144 connections and used these connections and their

coefficients to further retrieve global pattern parameters c1-c5 , d1 -d15. With these global

pattern parameters available, given the locations of the two involving mirrors we can

figure out the predicted value of any particular connection. We call the difference

between the real value and predicted value of the hill coefficients the residual. If we plot

the distribution of this residual, a good modeling method should result in a distribution

centered around zero with a very small standard deviation. The actual results from using

the same 144x 144 connections in the three methods are shown below.

Mean

coeff a6
3000

2000

1000

0
-100 -50 Cta7 '0 100

3000

2000

1000

0
-100 -50 c0 a 50 100

3000

2000

1000

-100 -50 Ce 9 50 100

3000

2000

1000

0 -
-100 -50 0 50 100

Linear

3000

2000

1000

0
-100 -50 0 50 100

3000

2000

1000

-100 -50 0 50 100

3000

2000

1000

01
-100 -50 0 50 100

3000

2000

1000J

100 -50 0 50 100

Quadratic

3000

2000

1000

-100 -50 0 50 100

3000

2000

1000

-100 -50 0 50 100

3000

2000

1000

-100 -50 0 50 100

3000

2000

1000

0 -
-100 -50 0 50 100

Figure 14: Distributions of the 4 diagonal coefficients' residual when modeled by the
Mean, Linear fitting, and Quadratic fitting methods
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The residual distributions shown above are of the four diagonal quadratic coefficients, a6 -

ag. These diagonal coefficients are of more importance to us than the cross-terms since

they have far larger magnitude and hence are the dominant terms in our modeling. The

distributions of the diagonal residuals shown above are centered around zero as expected.

It turns out the variations in the diagonal coefficient values across the chips can indeed be

modeled to a certain extent as a function of mirror location. As we move from the Mean

method to the Linear fitting method and to the Quadratic fitting method, we essentially

increase the degrees of freedom used in modeling. More degrees of freedom allow us to

model the variations better, thus reducing the standard deviation of the residual

distributions. Figure 15 shows that the same rationale applies to the cross-term

coefficients as well.
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Figure 15: Distributions of the 6 cross-term coefficient residuals when modeled by
the Mean, Linear fitting, and Quadratic fitting methods

Table 2 shows the standard deviations of these residuals shown in Figures 14 and 15. For

all 10 coefficients, we see the decreasing trend of the residual value as we go from Mean

to Linear fitting to Quadratic fitting methods.
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Table 2: Standard deviation of the residual distributions seen in Figures 14 and 15

But a higher degree of freedom comes at a price; it requires more parameters to be

stored. As shown earlier in Table 1, the number of parameters needed for making a

prediction of each hill coefficient goes from 1 to 5 to 15 as we move from the Mean to

Linear fitting to the Quadratic fitting method. In practice, for each connection or hill, we

need to make a prediction for all of its 10 quadratic coefficients a6-a15. So the total

number of parameters needed to be stored is 10 for the Mean method, 50 for Linear

fitting, and 150 for Quadratic fitting. It is a tradeoff between performance and complexity

in terms of measurement and storage. An even higher order functional form is expected

to reduce the standard deviation of the residual distribution even further, but it will also

increase the amount of coefficient-retrieving process and stored parameters substantially.

For our application, the Quadratic fitting scheme is the method of choice since it provides

adequate predictions without introducing too much complexity.

3.3.2 Benefits of global variation modeling

By choosing to use the Quadratic fitting method to model the global variation

pattern, we essentially reduce the measurement and storage requirement from scaling

with N2 to a constant number of 150 parameters. We accomplished the goal of measuring
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Coefficient Mean Linear fitting Quadratic fitting

a6  17.2066 14.5852 13.8734

a7  10.9976 10.5511 8.7243

a8  18.5105 14.5207 13.6093

a9  11.0035 10.2388 8.4491

aio 12.1721 9.6184 8.6365

all 24.3166 15.5128 9.9822

a12  4.2967 3.6012 2.8456

a13  4.6210 3.9683 3.3298

a14  22.6646 17.0868 10.8222

a15 11.6901 9.3662 8.3605



a small subset of hills and using the extracted parameters of these measured hills to

estimate the parameters of all unmeasured hills. This is vital to the scalability of the

algorithm usage, meaning it makes the algorithm practical for use for switches of all

sizes. In addition, the process of global modeling could be a useful tool for outlier

detection. That is, when any hill breaks the global patterns, it gives an opportunity for the

system designer to look into why that particular connection behaves differently from

others. Guided fault analysis can help to improve future implementations of the hardware.
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Chapter 4: Applications of hill shape modeling

The goal for this chapter is to take advantage of hill shape models developed in

the last chapter to come up with efficient algorithms to improve the switch's

performance. Hill shape knowledge is particularly useful in the case of re-optimizing the

connection, when we start from somewhere not too far from the hill peak and want to get

to the hill peak as quickly as possible. The first section in this chapter will introduce an

algorithm that could be used in this particular situation. The second section will briefly

discuss other possible applications of hill shape knowledge.

4.1 Accelerated Re-optimization Algorithm

This section describes an accelerated re-optimization algorithm to be used in our

switching system. The basic idea underlying this type of algorithm is that it assumes

some partial knowledge of the hill it is climbing is already available prior to the start of

the algorithm. As discussed in Chapter 3, 15 coefficients describing each hill may be

estimated when the optical switch module is initially calibrated. When a connection is

later re-established in the field, we assume that the 10 quadratic terms, a6 -a15, can be

trusted, while the remaining terms ai-a 5 are subject to error due to unknown perturbations

of the hill location. The reasoning behind this assumption is discussed below. Note that

the hill coefficients used to accelerate re-optimization may be stored explicitly, or may be

computed from the model discussed in Section 3.3.

4.1.1 Modeling hill shape perturbations

If the hill shape is completely constant over time and over various operating

conditions, then there is no need for re-optimization, as the optimum control voltages

determined during the initial training stage remain optimal. In practice however, the

optimum voltages may change slightly under different operating conditions. It was

mentioned earlier that when we model the hill with a quadratic functional form, quadratic

coefficients naturally represent the general shape or the curvature of the hill while the

linear coefficients represent the location of the hill in the four dimensional space. For our
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algorithm, we made an assumption that despite a possibility of the hill's position shifting

over time or an effect of any small perturbation that might happen on the system, the

general shape of the hill should remain roughly the same. This is justified since the shape

of the hill is mostly determined by the physical design and implementation of the

Gaussian beam propagation between the input and the output fiber. The parameters for

microlenses are chosen so that when the mirror angles are optimized, the light coming out

of the input fiber is focused at the core of the output fiber. As either mirror tilts away

from the optimum position, the focused light spot at the tip of the output fiber is

displaced from the core, leading to non-optimal coupling and increased loss. The pattern

of this process determines the shape of the hills, and they are mostly determined by the

parameters of the microlenses and how the fibers are aligned with respect to them. Since

these parameters are relatively constant over the lifetime of the switch we can safely

assume that the quadratic coefficients stay roughly constant throughout future attempts to

reestablish or maintain the connection. The linear terms, however, should be allowed to

change freely in order to capture the possible movement of the position of quadratic

response function as operating conditions of the switch change. Three possible scenarios

which could alter the voltage conditions to achieve an optimum connection are the

following.

First is the case where the whole voltage/beam displacement curve shifts in

voltage. A possible cause for this is the charging and discharging behavior of the mirrors.

It has been noted that some of the mirrors we have seen has a finite settling time

(between the voltages are first applied and the mirror reaches a steady-state angle), due to

charging of the dielectric material around the electrodes. Since it takes some time for the

charges to accumulate on the dielectric material, the voltage required to achieve any

specific angle tilt or beam displacement when the mirror plate is free of charge is likely to

be different from that of when the mirror plate has already had a chance to accumulate

charges and reached a steady state. In this case, the voltage/beam displacement curves

from these two different instances would have the same general shape but they will be a

voltage-shift copy of each other. We can see that the slopes of the two curves at the same

height or beam displacement space value would still be the same. This means that

although the voltage positions of the peak are different in the two cases, the incremental

50



change in voltage around the peak would result in the same incremental change in angle.

The general shape of the hill should thus be the same for the two cases as well, while the

location of the hill gets changed.

To set this scenario up mathematically, let's define the hill as a function of

voltage as T(v) = f(g(v)). Here, x = g(v) is the voltage/beam displacement curve, and f(x)

is the power as a function of displacement. In the voltage shift effect, g(v) is replaced by

g1(v) = g(v-dv). Then TI(v) = f(g1 (v)) = f(g(v-dv) = T(v-dv). So the hill T, is a shifted

version of the original hill T.

Second case is when the operation temperature of the switch is modified. In our

implementation, the change in output voltage from the high voltage digital-to-analog

converters (HVDACs) as a function of temperature is negligible. However, the overall

switch core might experience an expansion or contraction as the temperature changes,

resulting in a different angle requirement to optimize a connection as a function of

temperature. The mechanical design of the switch core was done to minimize this effect,

but the angle requirement is so stringent that a considerable temperature change will

result in shifting of the hills. We argue here that the change in the parameters affecting

the hill shape (for example, focal length of the microlenses, or the distance between the

microlens and the fiber) over a similar temperature range is much too small to modify the

shape of the hill considerably.

Third case is the wavelength dependent effect. This happens when the light

sources used at two different instances have different wavelengths. In this case, different

wavelengths will result in different degree of light diffraction due to the dispersion of the

field lens, and therefore the same voltage value applied to the mirrors might not result in

the same light beam spot position. This would result in a vertical shift in the

voltage/beam displacement characteristic curve. Again, assuming that the shift or the

change in the scaling is small, the slope at any specific angle value should not change

significantly. Therefore, we argue that in this case the shape of the hill should remain

roughly the same as well.

This can be explained by the same mathematical terms. The function g as defined

above will be replaced by gi(v) = g(v)+y, where y is the beam position offset due to the

vertical shift in the voltage/displacement relationship. If g(v) is accurately modeled as
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g(v) = g(vo) + Jo(v-vo), for v near vo, then g1(v) = g(vo) + Jo(v+JV y-vo). So g1(v) =

g(v+dv) where dv = Jo-'y. Now TI(v) = f(gl(v)) = f(g(v+dv)) = T(v+dv). The hill T, is

again just a shifted version of the original hill T.

The three cases above are presented to show that our assumption of the hills

retaining their shapes regardless of any effect from drift and small perturbation should

hold. Another way to think of this is that small perturbation of any kind can be roughly

modeled as a linear shift of the hills. In our case, by keeping only the quadratic

coefficients, we hope to capture the effect of perturbation by allowing the linear

coefficients to change in value.

4.1.2 Description of the five-point algorithm

Now that we have justified the idea that the quadratic coefficients of the hill shape

are relatively stable, we can go on to the details of the re-optimization algorithm itself.

The goal here is use knowledge of the hill shape to be able to get to within some small

distance from the peak as quickly as possible.

Before we go into the details, let's remind ourselves again of one of the three

equivalent forms of the four-dimensional quadratic function that we used to model our

hills:

T=1ATQA+uTA+c (4.1)

2a 6  alo a a12  a 2

where Q a 3  a,4  a 3  andc=a,
al, a,3  2a, a15  a 4

a12  a14  a,5  2a 9  a 5

Note that A = (xi, y1, x2 , y2)T is a column vector of the four beam displacement space

components. When written in this form, the peak position p of the hill based on the

quadratic model can be expressed as:

P = Q '(-u) (4.2)

Since we imposed the requirement that all the quadratic terms or the Q matrix are already

known, the only parameters left to be fitted are u and c. When Q is known, u and c are
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unknown, we can write uTA + c = T(A) - 1/2ATQA. Because u is a vector consisting of

four parameters, the total number of actual parameters to be fitted is five. We are required

to take at least five additional measurements or steps before we could take advantage of

the quadratic model to predict the peak position of the hill. That is, given the value of Q
we need five additional measurements to obtain the value of u and c, and only after we

have obtained u that we could find the peak position prediction p. This is why we call this

algorithm the five-point algorithm.

Given a set of five measurements, the question now is whether or not there is a

unique set of parameters u and c for these five measurements. A unique set of parameters

would exist if the five points were well distributed in the problem's four-dimensional

space. In other words, we should try to avoid picking points that lie too close to any

subspace of dimension less than 4. One general technique that ensures a valid set of four

measurement positions is to choose the four points in a set of four orthogonal directions.

Taking one start point, plus points coming from steps in four orthogonal directions, will

ensure that the measurement matrix is non-singular.

The size of the measurement steps is also another important issue. If the

measurement is noisy, we want to make sure that the step size is big enough to reduce the

effect of noise. At the same time, we do not want the step to be so big that we risk falling

off the hill too far when taking the measurement, to a point where our quadratic modeling

is not accurate. Large power hits are also to be avoided if the connection being re-

optimized is carrying live data. The eigenvectors of the Q matrix are a useful set of

orthogonal vectors when it comes to choosing the step sizes. We could use knowledge

about the curvature of the hill in each eigenvector direction to determine an appropriate

step size for the measurement. This knowledge is embedded in the eigenvalue that

corresponds to each particular eigenvector. If the magnitude of the eigenvalue is big, we

know the hill is steep in that direction. We should then be cautious and use only a small

step size. If eigenvalue is small in magnitude and the hill is shallow, then we can afford

to take a larger step. So the step size should be inversely proportional to the magnitude of

the eigenvalue. For our application, we decided to use F A as our step size, with F

being any small constant and k being the eigenvalue of that direction. In this case, we use

c = 1. The reason for choosing this step size is that if the eigenvalue does represent the
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curvature of the hill in that direction well, walking in that eigenvector direction with this

step size will move us up or down the hill by roughly 1 dB. And I dB seems conservative

enough for our application. Now that we have considered the two important issues

regarding the positions and the sizes of the steps, we are ready to describe the re-

optimization algorithms.

In order to maximize the transmissivity T, we propose measuring the current

power To at the current (base) position A0 with the current offsets u and c as unknowns.

Then we take a step proportional to the inverse square root of an eigenvalue of Q in the

direction of its corresponding eigenvector. We refer to this as position A1. Now, see if the

measured power at this position T, > To. If it is, then set A1 as a new base, otherwise,

leave the base at A0. Then take steps in directions of other eigenvectors from the base

point, with step sizes proportional to the inverse square root of the corresponding

eigenvalues, measure power, reset the base if the new point is higher in measured power

than the current base. This process would give us a set of measurements Ti, with i =

0,1,2,3,4, taken at positions Ai. These measurements are enough to uniquely determine

the values of u and c. Once we know u and c, the peak position p can be easily predicted.

We then take another measurement at A = p to confirm if this position indeed yields the

maximum power or is within an acceptable range from the maximum spot. If

measurement noise is significant, we can greatly reduce its effect by overfitting 1_ and c

with a few additional measurements.

If the start point Ao is very far from the peak, we may find that our algorithm does

not converge to the peak within 6 measurements. This is understandable, considering that

the areas further away from the peak are not modeled well by a simple quadratic function.

In a case like this, we have found that continuing the algorithm can lead to the peak

quickly. We use the 6 measurements to predict the position of the seventh measurement

point. If the seventh measurement is still not close enough to the peak, we use all 7 points

to make another prediction. If we are still not there, we keep going in the same manner.

As the algorithm continues, we oversample by keeping the seven highest power

measurements in order to reduce the effect of noise. We keep the highest points because

we believe the closer the measurements are to the peak, the better our model's prediction

of the peak location. It is important to note that after step 7, if the algorithm is still
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continued, we have to remember to step out in eigenvector directions once in a while to

ensure that the set of 7 highest measurements we keep still cover the whole 4-

dimensional space well.

Now we go back to the issue of picking the first 5 measurements. In addition to

scaling the step size according to the eigenvalue magnitude, we could also choose to

measure points in the four eigenvector directions in a particular order to help reduce the

possibility of falling off the hill too far while taking measurements. As mentioned before,

a measurement point that is too far from the peak is not as useful or effective when it

comes to predicting the peak position. Because the base point keeps moving closer to the

hill peak as the algorithm progresses, the risk associated with falling off the hill too far

while taking measurements gets smaller as well. Since the most risky stage is at the very

beginning, meaning the general slope of the hill at this point is likely to be the steepest, a

slight error in terms of step size could result in a big fall. So we choose to go in the

eigenvector direction with the smallest eigenvalue first. As the base point gets closer to

the peak, the hill is less steep and we are less sensitive to error in step size. Hence, we go

with the increasing order in the eigenvalue magnitude.

The algorithm is summarized again below.

1. Retrieve the quadratic coefficients a6-a1 5, or the Q matrix, from memory.

2. Retrieve the first position point from database. Take power measurement at

this point. Set index i = 1. Set the base point xb to this position.

3. Take measurement at xi=(xb + U /F ) in the direction of eigenvector i, with i

= 1 being the direction with smallest eigenvalue and i = 4 being the direction

with the biggest eigenvalue. k; is the eigenvalue of the eigenvector i. E can be

any small constant.

4. If the power Li is greater than the base point power Lo, then set base point to

this new position. Otherwise, leave the base point at the same position.

5. Set i to i+1. If i <= 4, then go to step 3. If i = 5, go to step 6.

6. Set index i = 0. Use the least square fitting technique on up to seven highest

measurements to obtain the values of vector u and offset c.

7. Use the resulting u to predict the peak position according to equation 4.2
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8. If the predicted peak position is within a reasonable distance d (d = 0.1 mirror

units for example) from the base point, then measure the power at the

predicted position. If the predicted peak position is not within a reasonable

distance from the base point, we move in the predicted peak direction but

scale the step size down so that we are not moving more than distance d from

the base. Measure the power at this new position.

9. If the power at this predicted peak position is within 0.5 dB of the real peak

power, stop. Otherwise, set i = i+1 and go to step 5.

4.1.3 Variations of the five-point algorithm

In addition to the standard form of the five-point algorithm, we also explored

some variations of it. The motivation here is to see whether we can come up with a

slightly different algorithm that uses the same principle of utilizing prior knowledge of

hill shape to reduce the number of measurements required before getting to the peak, but

also increases the accuracy of the peak position prediction. The two notable ones are

what we call the bi-directional algorithm and the line search algorithm. They are

described below.

a) The bi-directional algorithm - We mentioned before that since the simple

quadratic function does not model the actual hill far from the peak well, we would

like to have a measurement that is higher in power, or closer to the hill peak, than

the base point for each eigenvector direction. An eigenvector only specifies a

general line that our new measurement position should be on, but it does not

specify whether we should go left or right on that line. Therefore, when we pick

to go to the right on that eigenvector line, for example, we could be either

climbing up or falling down the hill. This bi-directional algorithm specifies that if

it turns out that the step we took results in us falling down instead of climbing up,

we should then turn around to take another step of the same size in the opposite

direction to make sure we get one measurement point higher up than the base

point on that eigenvector line. If the first step we take in an eigenvector direction

is, however, already higher than the base point, we can move on to the next
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eigenvector direction in a normal manner as in the five-point algorithm without

having to turn around to take another step in that same eigenvector direction. So

the total number of measurements taken before we can make the first peak

position prediction can range from 5 to 9, since there could be up to 2

measurements per eigenvector direction.

b) The line search algorithm - This is a slight improvement over the bi-

directional algorithm. It has the same motivation of trying to make sure that we

have a measurement that is higher up than the base point in each of the four

eigenvector directions. But instead of just turning around and taking another step

with that same standard step size, we could try to use the base point and that

"wrong" measurement (the measurement in that same eigenvector direction that

has lower power value than the base point) to sensibly predict the position of the

highest point on that eigenvector line. In other words, the extra step taken in each

direction would not just be a random step; rather, it would be at a position

predicted to be the peak in that direction. The prediction is made based on the

one-dimensional quadratic model in that eigenvector direction. Similar to the bi-

directional algorithm, the total number of measurements taken before we can

make the first global peak position prediction ranges from 5 to 9. But in this case

the probability of the base point being close enough to the actual peak before we

even make the first peak position prediction is higher than both the five-point

algorithm and the bi-directional algorithm. This is because it involves more

intelligence while picking the measurement positions. The base point should keep

moving closer to the peak in at least every third step and we are thus more likely

to be close enough to the peak before we have gathered all measurement points in

all four eigenvector directions.

Comparison in terms of performance of the three hill climb algorithms is shown

in Figure 16 below. The three algorithms were tested using measurement-based

simulations. A dense set of sample points around the peak were taken from a set of

connections, and we interpolated this set of sample points to obtain smooth functions
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describing power as a function of displacement. Perturbations in hill position were

modeled by using random starting point for the re-optimization algorithms. The simulated

hill measurements did not include any simulated measurement noise.

There are two things involved in the testing here. First is how fast the algorithm

could get to the peak. Second is how robust the algorithm is to error in the hill's quadratic

coefficient values. There are two main sources of error. First comes from the fact that the

set of coefficients we obtained through the least square fitting technique on a set of 81

sample points around the hill peak is not necessarily the best possible set to begin with.

That is to say, with a limited number of measurements, the model does not necessarily

give the best possible approximation of the real hill. There is a clear tradeoff between the

number of sample points we are willing to take (in the factory) and the accuracy level of

the obtained coefficient values. Second, we discussed in section 3.3 different methods to

model the variation of the coefficient values across the chips. For very large port-count

crossconnects, it is clearly impractical to extract coefficient values for all the connections

and explicitly store all these values (which already contain some error to begin with as

mentioned above) in memory so that they could be retrieved whenever a hillclimb

algorithm is called. It makes more sense to store only a model that could be used to

estimate the coefficient values for all the connections. The tradeoff here is between

storage space savings and accuracy of the retrieved coefficient values. Therefore, if we

choose to reduce the storage space requirement by storing only a model instead of all the

actual coefficients, we have to pay the price of introducing error into the value of

retrieved quadratic coefficients. Our hillclimb algorithm of choice should thus be able to

tolerate this error introduced in the retrieved coefficient values decently well.

The histogram in Figure 16 shows the number of steps or measurements required

for each algorithm to get to within 0.5 dB from the peak height given that the start point

is randomly distributed within 3 dB from the peak. We could clearly see that the five-

point algorithm always get to the peak within 6 steps. A big majority of the trials got to

the peak in the 6th step, and it is as expected because the 6th step is the prediction step.

The starting point was close enough to the peak that even a step in the wrong direction,

meaning a sample point is further down the hill than the base point at the time, could still

give us good enough information to predict the peak position. The bi-directional
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algorithm was the one expected to improve the accuracy of the peak position prediction

and to help us gain more useful measurement points. It did indeed improve the accuracy

of the predicted peak position, but it comes at the expense of having to go through a lot

more intermediate measurements before we could make the peak position prediction. So

in the case where the start position is not too far from the actual peak position, we see

that the bi-directional algorithm is not considered an improvement over the standard five-

point algorithm. The line search algorithm is on the other hand an improvement in some

aspects. Since the second measurement in any eigenvector direction is at a carefully

chosen position which is thought to be the peak in that direction, the base point moves

closer to the peak at a faster rate than the previous two algorithms. We can see that higher

percentage of trials get to the peak before the 6th step than in the five-point algorithm. But

since the number of intermediate measurements can range from 5 to 9, the 6 step is not

always the prediction step and some trials thus require many more steps before the peak

is reached.

Performance of hillclimb algorithms on simulated hills

1

0.8 *5-point alg
S0.6

0 bi-directional alg
S0.4-

CL 0.2 1M%___E3 line search aig

1 2 3 4 5 6 7 8 9 10

Number of measurements required before
reaching the peak

Figure 16: Performance of the three hillclimb algorithms on simulated hills

According to our results above, in the case where the start point is not too far off

from the peak, the five-point algorithm seems to be the most efficient. Although a large

majority of trials have to wait until step 6 th to reach the peak, no trial takes longer than 6

measurement to get to the peak of our stationary hills. The prediction step is the crucial
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step and we should focus on getting to the prediction step as quickly as possible instead

of hoping that the base point would move close enough to the peak during the

measurement process. The five-point algorithm lets us get to the prediction step with the

least number of intermediate steps required. We will therefore from now on focus on the

five-point algorithm.

4.1.4 Further studies on the five-point algorithm

This section presents further studies done on the five-point algorithm on

simulated hills. The purpose is so that we learn and gain as much insight about the

algorithm performance as possible before implementing it on a real system.

We have mentioned before that the goal of this project is to come up with an

algorithm that offers a great improvement over other previous techniques used in terms of

the number of measurement steps required before reaching the peak. It might be useful to

show an evidence of that by showing a performance record of one of the previous

hillclimb techniques used for a comparison. Figure 17 below shows an algorithm

performance of the Nelder-Mead simplex algorithm. This simplex algorithm is a different

approach and it does not require or rely on any prior knowledge about the hill being

climbed. The plot below has the start point randomly distributed within 3dB from the

peak, and the algorithm stops climbing when it is within 0.5 dB from the peak.

Performance of the simplex algorithm
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Figure 17: Performance of the Simplex algorithm
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The advantages of using the simplex algorithm for our application are that it is robust and

it does not require any additional data, advance preparation, or any storage space. In other

words, it does not require any hill shape data. But the downfall of it is obvious. It requires

many steps to reach the peak. Given start points that are within 3 dB from the peak, most

of the trials took many more than 6 steps get within 0.5 dB from the peak. The worst-case

scenario could take up to almost 35 steps

Now to give a comparison, a performance graph of the five-point algorithm is

shown here in Figure 18. Here, the plot contains three sets of data. Each set has a

different location bound for start points. Start points are randomly distributed within 3 dB

from the recorded peak for the first set, within 4 dB for the second set, and within 5 dB

for the third set. Contrary to the simplex method, all trials are able to get with 0.5 dB

from the peak within 6 steps, even when the start point is a further down as 5 dB from the

peak.

Performance of the five-point algorithm on simulated hills
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Figure 18: Performance of the five-point algorithm on simulated hills
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The similarity among the 3 sets of data shown in Figure 18 above shows the robustness of

the five-point algorithm against the variation of the start point position. In other words,

the performance of the algorithm does not deteriorate much when the start point is further

down the hill.

Another type of robustness that we want to evaluate is the algorithm's robustness

against errors in the values of the retrieved hill coefficients. We want to see how accurate

the given hill coefficient values have to be for the algorithm to give a good performance.

So we added noise into the hill coefficient values and used these noise-added coefficient

values together with the five-point algorithm to climb the hill. The results are shown in

Figure 19. The noise added had a normal distribution with the standard deviation

specified as a percentage of the coefficient magnitude. The standard deviation of the

noise added is different for each of the four cases as noted in the figure. Again, there are

3 sets of data in each plot. Each set has a different location bound for start points. Start

points are randomly distributed within 3 dB from the recorded peak for the first set,

within 4 dB for the second set, and within 5 dB for the third set. It should also be noted

that on the horizontal axes of these plots, the 13 bar represents trials that required 13 or

more measurements.

It is clear from Figure 19 that the algorithm performance does deteriorate as the

errors in the hill coefficient values used get bigger. This is as expected, because the

algorithm relies on the information provided by the coefficient values to give a prediction

of the peak position. The quality of the prediction does depend on the accuracy of the

coefficient values. But again, the level of deterioration is not significant until we added

the noise with the standard deviation value of 20%. The last plot on the bottom right is

when we start to see some noticeable tail. So we can conclude here that the five-point

algorithm is robust enough against small errors in the coefficient values used.

So far all the evaluations we have shown were done on simulated hills. Now that

we have gained a lot of insights about our algorithm of choice, the five-point algorithm,

the next step would be to implement the algorithm and evaluate its performance further

on a real switch. This will be the focus of Chapter 5.
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Figure 19: Performance of the five-point algorithm with added noise in the hill coefficient values

4.2 Other applications of the hill shape studies

It should be pointed out that there are other possible applications besides the

hillclimb algorithm that could also benefit from the hill shape studies. One promising

application is an ability for the switch to introduce variable loss into the optical signal.

This way, the optical switch can perform power equalization as well as its switching

function. Introducing variable loss into the signal can be done simply by sliding off the

peak of the hill. There are certainly many ways and many paths to slide down the hill.

The question is how can we slide down the specified height in the most efficient manner

and without ever letting the overall signal loss go beyond the intended loss. By

understanding hill shape, we should be able to find a path to slide down that is the most

conservative. It is important to note that one intended loss value does not specify just one
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specific point on the hill. Rather, it specifies one whole contour which consists of all the

points that have that same specific height. So we can pick to operate at any point on that

contour. A connection operating on the side of a hill will typically be more sensitive to

perturbations than a connection sitting at the peak. Using the knowledge gain from the

hill shape studies, we should be able to find the most stable operating point for any height

specification. Although this variable attenuation application was not explored in this

project, we believe it has a great potential and could be the focus of further studies.
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Chapter 5: Performance evaluation on real systems

An important aspect of this project is quantitative evaluation of the performance

of the optimization algorithm on real systems. Conditions on real systems are far from

ideal. The first section of this chapter will discuss some of the systems' constraints and

non-ideal conditions, as it is crucial for us to realize and understand what effects they will

have on the performance of our algorithm. The following section will then present the

actual results and analysis of the algorithm performance.

5.1 Real system's constraints and non-ideal conditions

In previous sections so far we have done all our preliminary testing on simulated

hills. The testing gave us an opportunity to gain insights about the general nature of our

hillclimb problem without having to worry about the added complexities of the real

system. Once we have gained those insights and made decisions accordingly, it is time to

move on to the real system. The algorithm is not useful if it could only work well on

simulated stationary hills. As mentioned, our switching systems have many non-ideal

characteristics or conditions that could potentially affect the performance of the hillclimb

algorithm. In this section, we will discuss two major conditions; the mirror settling time

and the discretization noise.

5.1.1 Mirror Settling time

Mirror settling time depends largely on physical properties of the mirror and the

spring or flexures that connect it to the chip. We consider the mirror and the springs

connecting it to the chip as a mechanical harmonic oscillator system. Most of our systems

have shown the characteristics of underdamping. It takes several oscillation periods for

the system to settle to its final state. But the resonance frequency of our system is also

shown to vary as a function of the mirror's tilt angle. This phenomenon is known as the

electrostatic softening of the springs. The resonance frequency decreases as the tilt angle

increases. So the connections involving the mirrors at the edges would naturally take

longer to settle than those involving the mirrors in the middle of the chips.
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Past experimental data has suggested that the time it takes for the mirror to settle

or to reach its steady state should roughly be a factor of 2-3 from the resonance

frequency. Since the system controller in the past did not have the speed to control the

mirror so precisely in terms of time, only the "order-of-magnitude" estimation was

thought to be sufficient. We used this rough factor of 2-3 from the estimated resonance

frequency to determine the length of time we should wait for the mirrors to settle in

general. However, as the system controller becomes more advance and could handle

more precision, it has become quite clear that the factor of 2-3 that we assumed and the

order-of-magnitude estimation might no longer be good enough. We have experienced

that the hill shape could look significantly different if we do not allow enough time for it

to reach its final state before taking the reading. While the mirrors in the middle might be

able to comfortably reach its steady state within a specified waiting time, the edge

mirrors might require a lot longer. An example is shown in Figure 20 below. The

connection in the figure above involves two mirrors close to the edge of the switch fabric

of size 1296x1296. Again, for each plot we fix the value of two variables and vary the

other two. So each plot is a two dimensional slice of the real hill. The two surfaces on

each plot represent the hill slice profiles taken after different waiting times. One was

taken after 10 ms of waiting time, while the other was after 20 ms.

conn 1258 1258 fix 3 4 conn 1258 1258 fix 1 2
0-

-1 -

-2 -

3 -

-44

-6

-0. : - 2 0 1 -07o0 0.2
S-0.2 -002 02 01

Figure 20: Hill slices of an edge connection taken at two different instants

We can see clearly from the plots that the shapes or curvatures of the hill from the

two instances are vastly different. Since the curvatures are different, the hill's quadratic
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coefficients from these two different instances are bound to be very different as well. The

fact that these two sets of coefficients are not the same will violate our hillclimb

algorithm's assumption. The problem of history dependence is introduced here: the

mirror position depends on where it has been and is no longer a simple function of

current voltages. For this reason, we have to make sure that we leave enough time for the

mirrors to settle both when we collect the hill shape data at the manufacturing site and

when we climb the hill at the customer's site. Otherwise we might be using a set of hill

shape parameters that have little to do with the hill being climbed.

As mentioned earlier, this issue of mirror's long settling time is more likely to

affect the connections involving edge mirrors more than those involving center mirrors.

Figure 21 shows the two hill slices each taken after lOms and 20 ms wait time of the

connection involving two mirrors close to the middle of the chips. We can clearly see that

the two surfaces are almost on top of each other. They look much more similar to each

other than those of the connection shown in the previous figure. In this case, the quadratic

coefficients from the two instances are very similar and the assumption made by our

hillclimb algorithm about the quadratic terms retaining their values over time is well

justified here.

conn 370 370 fix 1 2
conn 370 370 fix 3 4

-2-

10 0 .2 0 0 0.2

02 0-0.2 01 0 0 -02 0. 2 -0 1 

Figure 21: hill slices of a middle connection taken at two different instants

5.1.2 Quantization Noise or Finiteness of granularity of steps

Although the mirror's tilting and the actual optical power of the switch are on the

analog scale, the processing of information and computations are done in the digital

realm. The signal sent to the HVDAC which generates the exact voltage to control the
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mirror's tilt angle is a digital signal. So is the output of the ADC that gives us the value of

the detected output power. Therefore, quantization noise is bound to exist. The HVDAC

and the ADC introduce noise into the system in slightly different ways. This is shown in

Figure 22 below.

Here we show the hill profile as a one-dimensional hill, with the horizontal axis

specifying the voltage and the vertical axis specifying the optical power of that hill. The

noise from HVDAC would create some uncertainty in the applied voltage. In other

words, it is considered a horizontal noise on the figure. The corresponding uncertainty in

power depends on the slope of the hill. The ADC on the other hand introduces

uncertainty in the value of the optical power, so we can view it as a vertical noise.

Optical power

Bit size of ADC

Quantizati > i= Quantization noise

from HVI AC

Voltage applied

Bit size of HVDAC

Figure 22: Vertical and Horizontal noise

The question now is whether all these noises are significant enough to affect the

performance of our algorithm. One way to determine this is to compare the size of the

steps we take in the hillclimb algorithm to the size of one digital bit. If the former is

much larger than the latter, we can assume that the effect of quantization noise is not very

significant. In our case, one digital bit corresponds to roughly 25 mV. The specification

for the worst-case sensitivity for the mirror angle vs. voltage of our mirrors is 0.3

degrees/volt. 0.3 degrees roughly correspond to 1 mirror unit (center-to-center spacing) in

beam displacement space. The mirror design typically achieves 0.1-0.2 degrees/volt, even

in the worst case of process variation. Therefore, the requirement in the current mirror

design is enough to avoid the susceptibility to quantization noise. For the ADC side, since
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we are using the log (dB) scale while the amplifiers that follow the photodiodes have

linear gain, the quantization noise from the ADC should be insignificant as we operate

near the top of the dynamic range of the ADC. So we conclude here that both the vertical

and horizontal noises do not have significant effect on our hill-climbing procedure.

5.2 Real system's performance and analysis of the performance

In this section, we now describe the performance evaluation of our algorithm on

real systems. We ran our algorithm on two types of real systems- the 1296x1296 switch

model and the 64x64 switch model. Aside from the size difference, these two systems

have different characteristics that allow us to test different aspects of the hillclimb

algorithm on. For example, the 1296x1296 switch is very large, so it gives us a perfect

setting for testing the idea of using a model to estimate the values of the hill coefficients

instead of storing and retrieving the actual hill coefficient values for each and every hill.

However, at the same time the tilting range of each mirror has to be reasonably big since

it has to be able to reach the edge of the opposite chip. While at the high tilting position,

we run into the risk of having problems with long mirror settling time and greater

sensitivity to error of the model. In other words, we get to see traces of problems

associated with scalability of our modeling and algorithm approach. The 64x64 switch is,

on the other hand, of a very manageable size, so each mirror does not have to tilt much in

order to reach its mirror pair on the edge of the opposite chip. We have an advantage of

not having to worry about the problem associated with big tilting angle. But the idea of

using interpolated hill coefficients instead of actual ones is not that as helpful or relevant

here.

We will discuss the results of our algorithm performance on each of these two

systems separately in the two sections below.

5.2.1 Performance of the algorithm on the 1296x1296 switch

Before we get to the stage of performance evaluation, major efforts had to be

devoted to the implementation of the algorithm. The algorithm was implemented, using

the system controller software as an interface between the algorithm itself and the
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hardware of the switch. The default waiting time used by the system controller for the

mirror to settle to its steady state was 10 ms. As mentioned before, since the switch has a

large size, it is a good setup for us to see whether the hillclimb algorithm is robust enough

to tolerate errors in the retrieved quadratic coefficient values introduced by the estimation

model.

The implementation of this hillclimb scheme can be separated into two parts. First

is the part that needs to be executed at the manufacturing site of the switch. Details of this

have been discussed earlier in section 3.3. We take a dense set of 81 data points around

the hill peak of 124 connections of the switch. Recall that the switch of size 1296x1296

consists of two MEMS chips, each having 1296 micromirrors on it, arranged in the 36x36

array pattern. The 124 connections are picked so that the 122 input mirrors that are

involved form a grid that contains every third mirror on the input chip, and the 122 output

mirrors involved form the grid in the same nature on the output chip. The pattern of the

mentioned grid in shown in Figure 23 below. This way we can be certain that the

connections we use as a basis to construct the coefficient estimate model cover the whole

chips and represent all parts of the chips well.

36 mirrors Figure 23: Grid pattern of mirrors used in

extracting the hill quadratic coefficients

- 36 mirrors -

We used 81 points in each hill to each hill to extract the hill coefficients for that

particular hill. After this step, we now have 124 sets of extracted hill coefficients. For

each set, using the argument discussed in section 4.1.1, we decide to keep only 10

quadratic terms out of 15 total terms. We model each of these 10 terms as a quadratic

function of the connection's input and output mirror locations and use the least square

technique to extract the value of this model's 15 parameters. Since there are 15
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parameters required to reconstruct the estimation model for each of the 10 hill

coefficients kept, the total number of parameters we need to store is 15x10 = 150. We

store these 150 estimation model parameters in memory so that they could be readily

available when any connection is to be restored in the field. At the manufacturing site, we

also need to find the position of the hillpeak or the optimal values of the hill's four

control variables for all 1296x1296 connections and store these values in the database.

We also store the optical power of each connection at its peak in the database.

The second part of the hillclimb implementation is to be executed in the field

during operation. The implemented algorithm for the 1296x1296 switch proceeds in the

following steps.

1.

2.

3.

4.

5.

Retrieve the estimation model that is used to estimate the quadratic hill

coefficient values from memory.

Find out which mirror pair is involved in the connection. Use the

location of the mirror pair to obtain the estimate of the quadratic hill

coefficients, a6-a]5, for this particular connection.

Use the database and the location of the mirror pair to obtain the J and

J-1 matrices to be used in the voltage-beam displacement and beam-

displacement-voltage transformations. Store the values of J and J-1 in

local memory so that they are readily available for use whenever space

transformation is needed for this connection.

Retrieve the old optimal values of this connection's four control

variables from database and apply them to the connection's two mirrors.

Apply the 5-point hill climb algorithm (using the steps presented in

section 4.1.2).

Because the wavelengths, temperatures, and other factors in the laboratory were

fairly constant, the hills held a constant optimal position. To simulate changes in hill

position, we added random offsets to the optimal voltages retrieved in step 4. In this way

we were able to measure the robustness of our algorithm while increasing the size of the

offsets in a controlled manner.
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With the implementation following the guideline above, we are now ready to

evaluate the performance of the algorithm. We break the evaluation process into two

cases: one is on the connections close to the middle of the chips or in the middle zone, the

other is on the connections close to the edge of the chips or in the edge zone.

a) Performance on connections in the middle zone

The performance of our hillclimb algorithm on connections in the middle zone is

shown in Figure 21 below. We ran the algorithm over 5,000 trails on more than 100

connections in this zone. We plot the distribution of the number of steps or measurements

the algorithm requires in order to reach the peak on these connections. The plot contains

three sets of data. Each set has a different location bound for start points. Start points are

randomly distributed within 3 dB from the recorded peak for the first set, within 4 dB for

the second set, and within 5 dB for the third set. For performance evaluation purpose,

what we refer to as reaching the peak is not reaching the exact value of the recoded peak.

We stop the algorithm and declare a connection good whenever we are within 0.5 dB

from the recorded peak. This decision is justified because our goal is to use this

accelerated hillclimb algorithm to get us to within an acceptably small range from the

peak as fast as possible during the setup or restoration of the connection. Once we are

within an acceptable range, we can as much more time as we want to climb up to the

absolute peak.

The plot shows a significant jump in the number of trials that reach within 0.5 dB

distance from the peak at the 6th step. This is as expected since the 6th step is the

algorithm's peak position prediction step. More than 80% of the trials get to within 0.5

dB from the peak within 6 steps. The majority of those that require more than 6 steps get

to the peak within 7 steps. This is clearly a major improvement over the previous method

used, i.e. the simplex hillclimb method, which almost always took a lot more than 6 steps

for all trials regardless of how close the start point was to the peak.
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Figure 24: Performance of hillclimb algorithm on connections in the middle zone

Comparing the three data sets on the plot, we can see that cases with start

points closer to the peak require fewer number of steps to reach the peak in general. This

argument is supported by the fact that the distribution of the first set is more front-loaded

than the second set, and that of the second set is more front-loaded than the third set.

Regardless of that, however, the plot clearly shows that our hillclimb algorithm is robust

enough to handle start points 5 dB down from the peak without sacrificing much of its

performance merit. Although we do not expect the old optimal values stored in database

to ever be as far down as 5 dB from the peak, the result of this testing gives us additional

confidence on the robustness of our algorithm.

Possible reasons for the tail of the distribution after step 6 are the following. First,

it might be the result from the errors introduced in the quadratic coefficients that we

derived from the estimation model or that certain hills may not be well modeled by any

quadratic. A second possible source might be the fact that the default waiting time of

lOms might not be enough for some of these connections' mirrors to settle to their final

state before measurements were taken. These possible sources of error are believed to

have a more much pronounced effect in the edge zone, as we will see next.
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b) Performance on connections in the edge zone

As mentioned before, the edge zone is different from the middle zone in a way

that it has additional issues related to longer mirror settling time and greater sensitivity to

the errors since hills at the edge are much steeper than hills in the middle in general. The

result of the hill performance on connections in the edge zone is shown in Figure 25. The

default waiting time was also 10 ms in this case.

1 3 5 7 9 11 13
and

number of steps up

Figure 25: Performance of hillclimb algorithm on connections in

the edge zone with the wait time of 10 ms

The plot shows the performance that is much worse than that of the middle zone

case. Many more connections require more than 6 steps to reach the peak. There are a

number of possible sources that might have led to this. We explored each possible source

one by one to see which effect is responsible for deteriorating the performance of the

algorithm on the edge connections.

The first source might be from the fact that there is simply too much error

introduced in the estimated hill coefficients that we use. In other words, the predicted

values of the coefficients might be too far off from the actual values that our hillclimb

algorithm cannot handle. To investigate further into this, we ran the algorithm on the

same set of edge connections but used the actual extracted hill coefficients, not the
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estimates extrapolated from the model according to the mirror locations. The results came

out looking very much like the plot in Figure 25 above. There is a slight improvement,

but the improvement is not significant enough to conclude that it is the error introduced

in the hill quadratic coefficients that was the main source of problem here. This agrees

with what we learned earlier from the simulations shown in Figure 19 that the five-point

algorithm should be able to handle some small errors in the hill coefficient values

decently well.

We then moved on to explore the second possible source, which was that the

default wait time we use might be too short to allow the mirrors to settle properly. For the

same set of edge connections, we collected the hill shape data and extracted the hill

coefficients for each hill using the least square fitting technique again, but this time we

changed the default wait time from 10 ms to 20 ms. By this, we allow 10 ms longer for

the mirrors to settle into their steady state. Since we only extracted a new set of hill

coefficients for a small number of edge hills, we did not have enough information to

construct a new model of hill coefficient estimate as a function of mirror location. We

thus used the actual hill coefficient values to run our hillclimb algorithm on these edge

connections and the result is shown in Figure 26.
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Figure 26: Performance of hillclimb algorithm on connections in the edge

zone with the wait time of 20 ms (using actual hill coefficient values)
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The plot above shows an enormous improvement over the result in Figure 24. We

were able to get to within 0.5 dB from the peak within 6 steps for all trials. This is the

best result we could ever hope for. Because of the vast improvement we see here, we

could safely claim that it is the fact that the wait time was not long enough for the mirrors

to reach their final state that deteriorated the performance of our hillclimb algorithm

earlier in Figure 25. In that case, the extracted hill coefficients were not correct, since the

hills were not at their steady state when the measurements were made, and the hills we

ran our hillclimb algorithm on were also not at their steady state when we climbed. So we

essentially used the hill coefficient values that were off to climb the ghost hills that did

not actually represent our real hills. In contrast, what we did in Figure 26 above is we

used the good hill coefficient values to climb the right hills. It is thus no surprise that the

performance of the hillclimb algorithm improved very significantly.

Other than the two possible sources discussed above, we believe that the accuracy

of the database that we used to do the coordinate or space transformation from voltage

space to beam displacement space (as discussed in section 3.1) also affects the

performance of the hillclimb algorithm, especially on the edge connections. Since edge

connections have steeper hill profiles by nature, even small errors could result in a

significant difference in the hill's height. So the edge connections are more sensitive to

any errors we might have in the database and to rounding errors when we convert back

and forth between exact voltage values applied to the hardware and the beam

displacement space values used in the algorithm. Because of the steep hill profiles, the

edge connections are more sensitive to all types of noises as well. Due to all these

sensitivity to errors, a poorer performance of the hillclimb algorithm on edge connections

is justified.

5.2.2 Performance of the algorithm on the 64x64 switch

The testing of the algorithm on the 64x64 switch was geared more towards system

optimization, meaning that not only were we trying to demonstrate that this new hillclimb

algorithm could reach the peak with the minimal number of intermediate steps or

measurements required, we were also hoping to show the actual length of time the system

takes in order to restore any connection. The results in this section should be of more
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interest to people in the network level, since it shows the system performance of the

switch. The conceptual part of the algorithm is the same as discussed in section 5.2.1

above, so there is no need to go into details of that again. The only important underlying

difference is that this 64x64 switch has a much smaller size, so the mirrors never have to

tilt beyond small angles. We thus do not have any complications related to edge

connections as we had in the 1296x1296 switch. In a way, we could treat all connections

in this 64x64 switch as connections in the middle zone of the 1296x1296 switch.

Since the switch is small, the idea of having a model to estimate the values of the

hill coefficients instead of extracting and storing all actual hill coefficients is not that

relevant or useful here. The number of connections is much less, and we could afford to

extract and store all actual hill coefficients without much difficulty. So we used the actual

hill coefficients for all our evaluation here.

In terms of testing the performance of our algorithm, we also did not intentionally

move the start point further down the hill. We used the old optimal values stored in the

database as our start points. As a result, this testing condition is very close to what we

would get in a real switch operation.
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Figure 27: Result of algorithm and system performance of the 64x64 switch

The histogram on the left in Figure 27 shows the algorithm performance on the

switch while the one on the right shows the system performance of the switch. Note that

the vertical axes of the two plots are on a log scale. First we look at the left plot, we see

that almost all connections make it to 0.5 dB from the peak in the first step. This means
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that the hill has stayed relatively stable, no major drift has occurred, and the old optimal

values remain very close to the hill peak. For the rest of the connections, the number of

steps or measurements required to reach the peak ranges from 2 to 6. This means that our

attempt to move the base point gradually up the hill during the measurement steps also

paid off. The 6th step, which was the prediction step, was also very effective here, since

there were no trials that required more steps beyond this prediction step. We give credit

to stability of hill profile, accuracy of hill coefficients used, and the fact that start points

were not that far off the peak for contributing to good performance of the hillclimb

algorithm.

The plot on the right of Figure 27 shows the system performance of the switch in

terms of how long it takes for a connection to be restored. This histogram shows the

distribution of the amount of time the switch takes to get the optical throughput of a

connection to be maximized. As we can see, the restoration time specification of the

system is dictated mainly by the algorithm performance, meaning that if the algorithm

requires more steps, the system will most likely take more time to restore the connection

as a result. There is a strong correlation between the number of steps and the total time

required. But the system performance is also affected by system components other than

the algorithm performance. For example, aside from the required wait time for the

mirrors to settle to their final state, added delay could also come from communications

within the system and the operating system of the switch. The default wait time set for

this particular experiment was -7 ms. In the plot above, we see that all connections were

stored within 45 ms, and the mean was around 11.8 ms. But since then we learned

through some additional experiments that the optimal wait time for the mirror to settle the

first step was -9 ms, whereas for subsequent steps 5 ms was sufficient. With the new wait

time assignment of 9 ms for the first step and 5 ms for the rest, we could potentially

reduce the overall restoration time of the distribution tail and further improve the system

performance.
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Chapter 6: Conclusion

This thesis consists of a study, implementation, and performance evaluation of a

modeling and algorithm scheme that can be used to accelerate re-optimization in the

MEMS-based 3D optical crossconnect design. The scheme models the transmissivity

characteristic of each connection as a four-dimensional quadratic function. A set of

fifteen coefficients is extracted to represent each connection. Each connection is

considered a successful or active connection only when the transmissivity of the optical

signal going through is close to the maximum achievable value. Significant effort is

required to generate a database containing optimum control voltages for every connection

of the switch. However, these optimum voltages are not guaranteed to remain the same

over time. Changes in the environment and setup conditions could potentially perturb the

optimal condition of a connection. When this is the case, an accelerated re-optimization

process is needed to ensure that the connection is restored to become active again as

quickly as possible.

The proposed modeling and algorithm scheme allows the voltage/beam

displacement curve to be modeled as locally linear. The perturbations are modeled as

shifts in either the ordinate or the abcissa of this function. This leads to the assumption

that the transmissivity characteristic function of each connection retains its general shape

over time, while its location with respect to the values of the four control variables is

allowed to change. Ten out of fifteen coefficients from the four-dimensional quadratic

model are kept to represent the retained hill shape of the each connection. These ten

coefficients need not be explicitly kept for each connection. We may instead describe

each of these coefficients as a quadratic function of the mirror locations. This

parameterization substantially reduces the memory required, making this modeling and

optimization approach practical even for a large switch with ~1000 ports.

By taking advantage of the stored coefficients, the proposed optimization

algorithm was able to get back to the maximum spot with a minimal number of

measurement steps. Almost all connections were able to reach within 0.5 dB from the

optimum transmissivity level within 6 measurement steps, when the start point is within

an acceptable distance (-5 dB) from the optimum level. For the 64x64 OSM prototype,
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all connections tested reached the optimal region within 6 steps. With some other system-

level optimization efforts, the switch showed the average restoration time of less than 12

milliseconds and the worst-case restoration time of less than 45 milliseconds.

For the 1296x1296 OSM prototype, while the majority of the connections tested

were also able to reach the optimal region within 6 steps, there was a visible tail in the

distribution. We concluded that these poorer performances could come from

combinations of 1) not having allowed enough time for mirrors to reach their steady state

before taking measurements, 2) errors introduced by the coefficient parameterization

process, and 3) higher sensitivity to any noise and inaccuracy in the database of the

mirrors when tilting to high angles. Among these three, we believed the first reason to be

the primary source of poorer performances by the algorithm. In general, when the optics

range of a switch is large, the edge connections are more prone to experience the effects

of all these three factors. As a result, the algorithm is more likely to show better

performance on the middle connections than the edge connections. However, given a

proper operating condition and enough accuracy in the database, the algorithm proves to

be as effective in optimizing the edge connections.

In this thesis we focused on the application of accelerated re-optimization, and the

result of our study has shown a great promise. But in addition to this, there are other

applications that could greatly benefit from further research in the hill shape studies as

well. Hill shapes could be useful for other control problems, such as introducing variable

loss into the optical signal within the switch for dynamic gain equalization. Hill shape

models could also be used for fault detection, to learn about the sources of variation in

the transmissivity function, in order to reduce insertion losses and improve uniformity

among connections within the switch. Guided fault analysis can be of great help in the

attempt to improve future implementations of the hardware.
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