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Abstract

Current Find and Replace tools offer their users only two options when performing
a find and replace: replace one match at a time while prompting the user to confirm
each replace, or replace all matches at once without any user confirmation. Each
of these options can be prone to errors. In this thesis, I investigated, implemented,
and tested a third option when performing a find and replace: a cluster-based find
and replace. Instead of replacing one match at a time or all matches at once, the
user can choose to replace a cluster of similar matches. While I hypothesized that a
cluster-based find and replace interface would make users complete a find and replace
task faster and more accurately, preliminary user studies suggest that a cluster-based
interface may improve speed.

Thesis Supervisor: Robert C. Miller
Title: Assistant Professor
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Chapter 1

Introduction

Repetitive text editing tasks, such as spell-checking and find and replace, are both

tedious and error prone. While conventional interfaces for these tasks allow users to

quickly and easily make changes throughout their documents, they also allow users

to quickly and easily introduce errors throughout their documents.

A typical text editor offers its users only two choices when performing a find

and replace: replace one match at a time while prompting the user to confirm each

replace, or replace all matches at once without any user confirmation. However, when

documents are long or contain a large number of matches, neither option is optimal.

Replacing one match at a time with confirmation can take a significant amount

of time to do, and is prone to errors. If most of the matches are to be replaced, a

user will often start to confirm a replace automatically and miss the few cases where

they would have preferred to pay more attention to the match presented.

Replacing all matches at once, however, can lead to interesting side effects. Ex-

amples include:

e Occurrences of "stogard" instead of "standard" in the Danish users' guide for

Windows for Workgroups 3.11. This error likely occurred when in an attempt

to translate the English version to a Danish version, the translator performed

a global search for the English word "and" and replaced all matches with the

Danish equivalent "og" [7].
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" Occurrence of "eLabourated" in the Wall Street Journal. This error was the

result of running a global search for "labor" and replacing all matches with

"Labour" in order to correct a previous error where the British Labour Party

had been referred to as the British Labor Party [7].

* Occurances of "AmriCzar" in a Reuters news story. This error was the result

of running a global search for "tsar" and replacing all matches with "Czar" [7].

The careful writing of search patterns can mitigate some of these problems, but

this requires that the user either to know the document they are editing well enough

to create a perfect pattern or to have a better grasp on regular expressions than most

users have.

In this thesis I implemented a third possible method for performing a find and

replace: a cluster-based method in which the user is instead presented with clusters

of similar results within his/her search. Instead of replacing one match at a time or

all matches at once, the user can select and replace a cluster of similar matches. Now

when the user is performing a find and replace task, they can choose which clusters

match the desired pattern and ignore the rest of the matches. This method allows a

user to create simple, general patterns and then choose to replace a specific subset of

the matches without needing to write a more complicated search pattern. The user

is also able to quickly replace a subset of matches to their search query, with a lower

risk of unintentionally replacing of any of the other matches to their search query.

For example, in Figure 1-1, all the single and double quote marks have been

rendered as question marks. This incorrect rendering can happen when trying to

copy text from one text viewer and paste it in another. In order to make it readable

again, you would have to change all of the question marks (?) to the appropriate quote

mark. Some of the question marks, however, are meant to be question marks. This

paragraph contains eleven question marks: five are meant to be single quotes, five are

meant to be double quotes, and one is actually meant to be a question mark. Current

find and replace interfaces require the user to look at every instance of the question

mark and figure out if they want to replace it with a double quote, single quote or
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leave it alone. This requires eleven confirmations from the user. Alternatively, you

could try to make a better pattern by first replacing all question marks that have

a space in front or behind them with double quotes, then replace all other question

marks with a single quote, and finally find all examples of a single quote in front of

a double quote and replace them with a question mark and a double quote. That

would require three replace all actions, and with no guarantee to have made perfect

patterns.

Replacing all question marks with either double or single quotes at once would

lead to either Figure 1-2 or Figure 1-3. Neither of these examples is correct. Replacing

all question marks with double quotes leads to do"t and replacing all question marks

with single quotes leads to quotes being surrounded by single quotes rather than

double quotes.

?We hope to make the contents of our service courses more clearly known
to other faculty,? said Miller. ?We?re always getting questions from
faculty like: ?Do you really teach complex numbers in your courses??
because students claim they?ve never seen them. Whether the students
have forgotten or just don?t recognize them in another context, we don?t
know. It?s complicated because things often appear in slightly different
language further downstream. [1]

Figure 1-1: A piece of text where every single and double quote has been rendered as
a question mark as a result of copying from one test viewer and pasting in another.

"We hope to make the contents of our service courses more clearly known
to other faculty," said Miller. "We"re always getting questions from fac-
ulty like: "Do you really teach complex numbers in your courses"" because
students claim they"ve never seen them. Whether the students have for-
gotten or just don"t recognize them in another context, we don"t know.
It"s complicated because things often appear in slightly different language
further downstream.

Figure 1-2: Result of replacing all question marks in Figure 1-1 with double quotes.
Errors are shown in bold.

Given the paragraph in Figure 1-1 my cluster-based find and replace interface

presents the user with four clusters: two clusters containing matches that should

9



'We hope to make the contents of our service courses more clearly known
to other faculty,' said Miller. 'We're always getting questions from fac-
ulty like: 'Do you really teach complex numbers in your courses" because
students claim they've never seen them. Whether the students have for-
gotten or just don't recognize them in another context, we don't know.
It's complicated because things often appear in slightly different language
further downstream.

Figure 1-3: Result of replacing all question marks in Figure 1-1 with single quotes.
Errors are shown in bold.

be replaced with double quotes, and two clusters containing matches that should be

replaced with single quotes (Figure 1-4). Because the example is very short, the

match that should not be replaced is mixed into the cluster containing matches that

should be replaced with double quotes. In a larger document, this error would not

happen. The clustering algorithm depends on the features of the text surrounding

the question marks to group the examples in to similar clusters.

There are four key differences and advantages between a cluster-based find and

replace interface and current find and replace interfaces.

1. Matches are grouped by similarity. Grouping the matches allows the user

to make one decision about a group of matches rather than a decision for each

match in the group.

2. Matches are not presented in document order. A user can select and

replace an entire group of similar matches located throughout the document

without accidentally replacing any other matches.

3. All matches in a single group can be replaced all at once. Only one

action is needed to replace multiple matches.

4. Matches which cannot be grouped can be replaced one at a time.

A user can carefully go through matches that do not easily fit into any larger

groups.

I have approached this problem in two parts. I designed an extension to LAPIS, a

usable cluster-based find and replace interface and tried to make that user interface as
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Cluster Find and Replace

Find What

Match Case Find Whole Words Only

Find All

11 total matches shown Select All Unselect All I

El 3 related matches:
:aculty,? said Miller. ?We?re z
courses?? because students clz
ourses?? because students clai

El 3 related matches:
.im they?ve never seen them. WV
ust don?t recognize them in ar

we don?t know. It?s complical
El 2 related matches:

er. ?We?re always getting ques
.now. It?s compli cated because

El 3 miscellaneous matches:
?We hope to make the cc

iller. ?We?re always getting c
like: ?Do you really teach cc

0 matches selected for replacement in

Replace With:

Close

Figure 1-4: Screenshot of the cluster-based find and replace interface which presents
the user with four clusters. The first cluster contains matches that should be replaced
with double quotes, except for the second match which should be replaced with a
question mark. This error occurs because the example is too short. The second and
third clusters contain matches that should be replaced with single quotes. The fourth
cluster contains matches that should be replaced with double quotes.
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intuitive as possible so that people familiar with standard find and replace tools can

seamlessly transition to a cluster-based find and replace. I then tested and compared

the speed and accuracy of users performing find and replace tasks with a cluster-based

interface and a conventional find and replace interface to discover whether or not it

improved user performance.

I hypothesized that a cluster-based find and replace interface will allow users to

complete find and replace tasks faster and more accurately than a standard find and

replace interface. I found that a cluster-based interface did not help as much as I

hoped it would.

Chapter 2 explains previous work done in find and replace interfaces and cluster-

ing.

Chapter 3 explains the process of designing, prototyping, and implementing the

cluster-based find and replace interface.

Chapter 4 explains the testing of the cluster-based find and replace interface and

the results of the user study.

Chapter 5 explains what was learned about building a cluster-based interface,

future work, and the contributions to user interface research this thesis made.
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Chapter 2

Background

2.1 Find and Replace Programs

Most text editing programs (i.e. MS Word (Figure 2-1(b)), notepad, and emacs)

contain a Find and replace tool. A quick search of downloads.com yields over 50

different find and replace programs. Examples include Advanced Find and Replace

1.5.0, HandyFile Find and Replace 1.2 (Figure 2-1(a)), and EFR (Extended Find and

Replace) 1.0. All of these tools force users to come up with very specific patterns for

their search queries themselves either through the use of regular expressions or by

the use of check boxes which allow a user to specify restrictions such as "match case"

or "match whole word only". None of these tools allow users to pick a subset of the

matches to replace without picking each member of the subset individually.

Regular expressions can be difficult to create, especially with the use of wild

cards that may find matches other than the ones intended. When used in a global

context, this can lead to errors throughout an entire document. As one user of a find

and replace product complained "A one-character typo resulted in hours of restore

operations" [2]. Another user mentioned that regular expression matching forced the

user "to stay strict with the code" and that it would be an improvement if a find and

replace program had "some intelligence in choosing where and when to change" [3].
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(a) Handy File Find and Replace (b) MS Word find and replace interface

Figure 2-1: Examples of find and replace utilities (a) HandyFile Find and Replace

(b) MS Word

2.2 Clustering

In machine learning, clustering is a form of unsupervised learning [4]. Unsupervised

learning is the process of classifying a set of unlabeled data. This classification method

allows one to skip the step of creating and labeling a set of data for future data to

be compared against. A standard clustering algorithm takes a set of unclassified

data, creates a feature vector for each piece of data, and then groups pieces of data

together given their distance from each other in the feature space. The distance

between samples in the same cluster should be smaller than the distance between

samples in different clusters. Clustering requires that the features used are significant

(i.e. a feature that distinguishes just one sample from all other samples is probably

not useful).

In the find and replace world, a cluster is a set of matches to a search query

that share the same features. Features in the find and replace world include text

stylization (bold, italics), surrounding text, and position in the document (in a table

or a list). For example, in a search query for the word "hello", a possible cluster of

matches might include all examples of the word "hello" that appear in bulleted lines.
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2.3 LAPIS

Cluster-based find and replace was implemented as a addition to LAPIS. LAPIS is a

lightweight structure text-editing program and the basis for my work. The premise of

this program is that users often deal with text that contains some structure they may

wish to repetitively edit. Examples of structured text include: e-mails (To, From,

and Reply-To fields), HTML code (tags that format the way you see a web page), and

web pages (links, advertising blocks, and stylized text. Even this paper contains some

structure (headings and the format of the bibliography). Lightweight structure is the

combination of the models of various text structures (i.e. tables, HTML or code), a

library of structure abstractions (such as phone numbers or words), and the algebra

to combine these models and abstractions to create even more powerful abstractions

[5]. LAPIS also allows the user to make multiple selections in a document, either

manually, through pattern matching, or through inference (having the user highlight

a few examples and inferring the type of selection that the user wants to make).

In the find and replace world, the ability to make multiple selections in a document

and edit all of them simultaneuosly will be useful in performing a single action on a

group of matches to a search query rather than performing an action for each match.

LAPIS uses outlier finding [6] to focus a user's attention on possibly incorrect

inferences during multiple selection. In statistics, an outlier is a piece of data that

does not look like most of the rest of the data, or a piece of data significantly different

from most of the rest of the data. Miller's outlier finder takes the set of text regions

that match the pattern being searched for and generates a list of features for each

match. In LAPIS features include text stylizations (bold, italics, or font size), position

in document (being in a table cell or a bulleted line), and word specific features such as

capitalization style, and part of speech. The outlier finder then clusters the matches

with identical features together and ranks the clusters based upon their Euclidean

distance of the cluster from the median match in the feature space. Matches that are

furthest away from the mean are considered to be the outliers of the matched set.

In the find and replace world, the ability to identify outliers will be useful in

15



identifying clusters of matches to search queries that may need more careful attention

paid to them. The ability to apply features to text regions will be helpful in grouping

text regions by similarity.
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Chapter 3

User Interface

There were three phases in building the user interface: designing, prototyping and

testing, and implementation. The designing and prototyping phases were intermixed.

After a design was decided on, it would be tested with a small number of users and

evaluated according to usability heuristics. Changes to the design would be made

based upon the evaluation and the new design would be prototyped and evaluated

again. Iterative design enabled rapid improvements in the design.

3.1 Design

The design phase starts off with brainstorming and ends with a preliminary design.

During this phase general layout, component functionality, labeling, and component

interactions are tentatively decided upon. In this phase designers attempt to iron out

any ambiguity in functionality and labeling of the interface. The design phase also

takes into account representation of information, feedback, and usability heuristics.

As an extension of current find and replace interfaces, Cluster-Based Find and

Replace has the following design issues:

* Consistency with current find and replace interfaces: How can the cluster-based

find and replace interface be made intuitive for users of current find and replace

interfaces? What needs to remain the same? What can be changed?

17



" Cluster description: What's the best description of a cluster? Should a cluster

be described by its features as a list? Or should clusters be described using

examples? Should the user be allowed to specify features it wants the clusters

formed around?

" Cluster selection: Should a user be able to select more than one cluster at a

time? Should a user be able to select individual matches out of a cluster? How

can a cluster be shown to be selected? How should clusters be displayed in the

document?

" Cluster display: Should clusters be displayed in a hierarchical manner, such as

a tree where users are first presented with large general clusters and can then

progress through the tree to smaller, more specific clusters? Or should clusters

be displayed in a flat manner such as a table where each row or column contains

a cluster of matches?

Initial designs explored the possibilities of displaying clusters in tabular (showing

the heads of all the clusters in one list, then showing the members of the cluster in

another list when the user selected a cluster), tree (showing the heads of the clusters

to the user then allowing the user to expand a cluster-head and view the members in

the cluster), and user-driven categorization (give the user fields to split the matches

by and make their own matches). I also explored how clusters could be selected,

whether multiple selection should be allowed, how selections should be represented

in the document being edited, how matches should be represented in the document.

Following the usability heuristics as laid forth by Nielson [8], I placed the buttons

related to finding clusters in one area, and replacing clusters in another. There is very

little color used in the interface except to call attention to certain areas of interest (ie

the clusters). Button labels were carefully selected to convey to the user what would

happen when they clicked on it. In order to provide exits, the close button is clearly

marked and present at all times in the interface.

18



3.2 Paper Prototyping

Once a user interface has been tested against usability heuristics, it must be tested

with actual users. In the prototyping phase of user interface building, the preliminary

design is turned into a paper prototype. Paper prototyping is a process in which a

user interface is laid out on paper, and tested on users [9]. The user can interact

with the paper modules of the design by using a finger as a mouse and a pencil as

a keyboard-like input, while a member of the design team imitates the responses of

the program by moving and displaying the components of the paper prototype in

response to the user's' actions. This method of prototyping allows a user interface

design and function to be tested before committing anything to code. In this phase,

ambiguity in functionality missed by the design phase will be discovered and the user

interface modified as a result.

For this interface I used a hybrid paper and computer prototype. Users were

presented with a paper version of the cluster based find and replace interface and

interacted with it via a finger and a pencil. The document they were performing

the find and replace task on was shown on a computer screen and all changes (re-

placements and text highlights upon cluster selection) they made to the document

through the find and replace task were reflected on the screen. Users could also scroll

through the document on the screen, but all editing had to be done through the paper

prototype.

3.2.1 Initial Prototype

The initial paper prototype, shown in Figure 3-1 and Figure 3-2, had two modes which

allowed users to switch between one-at-a-time unclustered replacement and a cluster-

based interface. The Matches column gave the number of matches in the cluster,

the Confidence Level was a bar graph showing how different or strange the cluster in

comparison to the most normal cluster. The stranger the cluster, the shorter the bar,

indicating a lower confidence in the cluster being a normal cluster. The description

explained the similarities in the cluster. A user could indicate selection of a match
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Figure 3-1: The simple mode of the original prototype was meant to emulate standard

find and replace interfaces as much as possible while leading the user to become

comfortable with the idea of a different find and replace interface.
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string and allows the user to replace a cluster of matches at a time.
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or cluster by clicking on the row, at which point the cluster of matches would be

highlighted in the document and the row itself would also be highlighted. Pushing

"Yes, Replace" would replace the words highlighted in the document with the text

in the Replace With field. Pushing "No, Omit" would make the row in the interface

disappear while not making any changes in the document. "Replace Remaining"

would replace all matches visible in the find and replace interface with the text in

the "Replace With" field. A summary of these functions are shown in Figure 3-1 and

Figure 3-2.

Testing

The paper prototyping was run on three subjects, each of who were asked to perform

the following two tasks.

1. Shown a modified copy of the MIT finals schedule (Figure 3-3), change all

examples of "M" to "Monday", but only where M actually represented Monday.

When finished the final results should look similar to Figure 3-4.

SUBJECT SUBJECT NAME INSTRUCTOR(s) LOCATION DATE/TIME
10.32 Separation Processes M Mohr Johnson M 12/16

Morning

Figure 3-3: Header Row and sample row from the MIT finals schedule shown to
subject. (All M's are in boldface for emphasis. Table shown to subject did not use
boldface.)

SUBJECT SUBJECT NAME INSTRUCTOR(s) LOCATION DATE/TIME
10.32 Separation Processes M Mohr Johnson Monday 12/16

Morning

Figure 3-4: Header Row and sample row from the MIT finals schedule after correct
changes were made. (Monday and all M's are in boldface for emphasis.)

2. Shown a copy of the proposal for this project, change all occurrences and forms

of the word "cluster" to "group", but do not change the phrase "cluster-based"

to "group-based". Attempt this task using one search pattern rather than
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changing all matches of "clusters" to "groups", then changing all matches to

"clustering" to "grouping", etc.

Paper prototyping showed that users did not find the confidence level useful. Most

thought that it showed the same information as the Matches column. Descriptions

were also found to be confusing. For example, many users did not understand what

in [p] meant. There was also some concern about non-homogeneous clusters. Users

did not trust that the individual clusters would be perfect enough and contain either

only matches they wanted to replace or only matches they were not interested in

replacing. As a result, users were frustrated by the fact that they could not select

individual matches to replace.

During paper prototyping, most users did not attempt to use the Omit button.

When questioned, users responded they didn't know what clicking it would do. Some

felt that clicking Omit would cause the selected clusters to disappear from the docu-

ment (similar to a delete).

There was also some confusion with the layout. After typing in a word to find,

users were unable to quickly spot the button that would cause the matches to show

up (Find All). Users were also observed to hit the Replace button before filling in the

Replace With field. Some also would hit Replace before Find All and were confused

as to why nothing happened (they hadn't selected any matches). Some of these

problems were due to the reduced capabilities of a paper prototype, for example,

buttons can't easily be made to look disabled, and the mouse cursor can't be changed

to add feedback.

3.2.2 Second Iteration of Prototype

The second iteration of the interface, shown in Figure 3-5, removed the Confidence

Level column, the Omit and Replace Remaining buttons, and the two level design

which would allow users to switch between a one-at-a-time mode and a clustered

view mode. Select All and Unselect All buttons were added. The label for the button

that performed the replace action was changed to Replace, as I discovered that a
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Figure 3-5: Second iteration of the paper prototype. This iteration investigated

changing the layout to better match the user's work flow. Areas not labeled have the

same function as previous iteration.
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more descriptive button label did not help the users and took up too much screen

space. The layout of the panel was also changed to better match the user's work

flow. By putting the Find All button below the Find What field and the replace

related actions below the displayed matches, users followed the components down the

screen, could then select the appropriate matches and then do the appropriate replace

actions. Descriptions of the clusters remained as they were in the first iteration of

the prototype.

Testing

This iteration was prototyped on three users on the same tasks as the previous itera-

tion. Paper prototyping this iteration showed that users did not miss the information

regarding confidence level, or the ability to remove clusters. No one asked for these

features. There was also less confusion as to what the next step should be. Users were

able to quickly locate the Find All button and didn't attempt to click the Replace

button before having found anything.

Users still found the descriptions confusing and intimidating. Those that did try

to decipher them, appeared confused. Users were also observed to click on a cluster

of matches in the interface and not notice that the matches were highlighted in the

document. There was also some confusion as to why there wasn't just "one correct

cluster". Some users felt that they should only need to select the one correct cluster.

A surprising thing noticed during prototyping was that users would try to select

all the correct clusters before performing a replace, rather than replacing one or a

few clusters at a time as we thought they would. It wasn't clear at the time whether

or not this was an artifact of the paper prototyping. As it turned out, this behavior

continued to appear in user studies of the implemented interface.

3.2.3 Third Iteration of Prototype

In the third iteration, shown in Figure 3-6, I replaced the description of the clusters

with an excerpt of the text surrounding the match in the document, with the match
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Figure 3-6: Third iteration of paper prototype. This iteration presented the matches

in a tree structure grouped by similarity. Matches are now described by excerpts from

the document.
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itself highlighted in blue as it would appear if it were in the document and selected.

The representation of the matches and descriptions were changed from a table repre-

sentation to a tree representation. Clusters were ordered from largest cluster on the

top to smallest cluster. Matches to the search string that were unclusterable were

displayed at the end. Initially the entire tree was closed. To open a cluster, the user

had to click on the + sign. Matches could be selected individually by clicking on its

corresponding row, or as a cluster by selecting the top row of the cluster.

We also briefly tried a few users with a version of the Omit button under a different

label (Reject, Exclude and Discard).

Testing

This iteration was prototyped on three users. Their first task was the same as the first

task in previous iterations (replacing the letter M with Monday where appropriate).

The second task was on the same document as the second tasks in previous iterations,

but subjects were instead asked to replace all examples of the words "clusters" and

"clustered" with "groups" and "grouped" respectively, but not to change the words

"clustering" or "cluster".

Paper prototyping this iteration showed that users appreciated the ability to par-

tially select a cluster in the case of heterogeneous clusters. Users appreciated the

excerpts of the document. They found it made it easier to quickly scan the list and

pick out which examples matched the pattern they were looking for. An interesting

behavior was noticed, however. Users did not tend to select an entire cluster at a

time. User instead would scan the list of matches and decide on each match if it

was correct or not, very similarly to the way users would handle a standard find and

replace interface.

When we first presented the collapsed tree, users complained that in order to

perform the task, they were required to open up every cluster to scan it as they

didn't know why a cluster was grouped the way it was. Presenting a completely

expanded tree, though, led to the one-at-a-time selection for replace where the user

would scan through the tree as though it were a list and chose whether or not to
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select that row.

The Omit-type button was universally considered confusing, regardless of its label,

as noted in the first iteration. Subsequent designs omit it entirely.

3.2.4 Fourth Iteration of Prototype

In this fourth iteration, shown in Figure 3-7, I changed to a two list format. The

cluster headings were in the list labeled Matches. When users clicked on one of the

clusters, the Description section would be populated with the individual matches

belonging to the cluster. Users could chose to select all the matches in the cluster

by clicking Select All, or select the matches individually per cluster if they desired. I

hoped that this would encourage users to deal with whole clusters at a time rather

than individual matches at a time.

The rest of the functionality of the interface remained the same.

Testing

This iteration was prototyped on two users on the same tasks as the previous iteration.

Paper prototyping this iteration showed that users really wanted to be able to select

all the correct matches to replace before performing a replace. Some users attempted

to display all the matches at once so they could go through the entire set of matches

at once.

I also asked users to compare this interface to the second iteration. Users preferred

context descriptions of the matches over feature description of the clusters.

There remained some confusion as to why matches were clustered the way they

were. Users were also not happy about needing to interact with each cluster on its own

since they didn't know anything about the cluster from the description "30 matches".

3.3 Implementation

From the user feedback from the paper prototyping I decided to implement a tree

representation similar to the third iteration (Figure 3-8).
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Figure 3-7: Fourth iteration of paper prototype. This iteration explored presenting
the matches in a two-list structure where clusters were presented in the left list and
the individual matches of the selected cluster were presented in the right list.
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Figure 3-8: Screenshot of Tree Representation of clusters. Matches are clustered into

groups by similarity and are ordered by the number of matches in each group.
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When users are first presented with the interface, they see only the Find What

field, check boxes for controlling case sensitivity and whole words search and the

Find All button. The Find All button is disabled until something is typed in the

Find What field. By only presenting the users with a few things they could do, this

minimized the confusion as to what the next step should be as there were a limited

number of options.

After typing a search string into the Find What field and either hitting the Enter

key or the now enabled Find All button, users were presented with the matches to

their search query grouped by similarity and sorted by size of the resulting groups.

When the user clicks on one of the matches in the find and replace interface, the

corresponding match is highlighted in the document in blue and the selected row is

highlighted in the interface. Until the user selects at least one match, the Replace

button is disabled.

Match selection is toggle on click. If the user clicks on a match that is already

selected, that match is deselected and vice versa. If the user clicks on the top level of

the cluster, all matches in the cluster are highlighted in the document and the entire

cluster is highlighted in the find and replace interface.

Originally, match selection followed standard Java conventions, where toggle on

click was only active if the control key was held down. By holding down the shift key,

users could select a contiguous collection of rows. Early user studies showed that not

everyone was familiar with Java conventions for multiple selection. Some users were

observed noticing that making a selection would clear the previous selection and then

selecting and replacing each match one at a time. This set of actions frustrated some

users as they found the process tedious.

Early user studies showed that users also had trouble realizing that nodes were se-

lectable in the interface. This problem didn't appear in the paper prototype, perhaps

because paper prototype users were not able to interact very much with the screen

and were therefore forced to interact with the interface. In order to help users figure

out that the nodes in the tree are selectable, feedback was added. When the user

puts the mouse cursor over or near one of the nodes, the node is highlighted so as to
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appear three dimensional.

In the tree representation, users can collapse clusters by clicking on the - and later

expand them by clicking on the +. When the cluster is closed, the users are shown

how many matches are in the cluster and an example of one of the matches. As

mentioned before, paper prototyping showed that users were confused by the feature

descriptions of the clusters. It was finally decided that the best description of a cluster

was the cluster itself. Users are better able to form their own idea of the cluster than

a program is able to create human readable or natural language descriptions of a

cluster.

In the list representation, users can only look at one cluster at a time and select

matches within that cluster. When users switch clusters, their previous selection is

lost. When users look at a new cluster, all the matches are originally selected.

Users are kept aware of the total number of matches that are shown in the interface

and the number of matches that have been selected for replacement through the labels

above and below the match display section of the interface.

Early implementations of the interface also highlighted all the matches to the

search query in the document in yellow as shown in Figure 3-9. This was later removed

as some users were confused by the yellow highlighting and felt that a Replace would

change all text highlighted in yellow. Other users were observed to go through the

document scanning the yellow text and manually selecting the yellow text they wanted

to replace. their selection to what they wanted.

The entire implementation of the cluster-based find and replace interface is ap-

proximately a 6,000 line addition to LAPIS and is written in JAVA.
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Chapter 4

Testing

The goal of this study was to test whether or not a cluster-based find and replace

interface made a difference in user accuracy or speed when performing a find and

replace task. The cluster-based interface was compared to a standard find and re-

place interface and a list based interface. Comparing the cluster-based and standard

find and replace interfaces showed if there was any value in clustering the results.

Comparing the cluster-based and list find and replace interfaces showed whether the

value in the cluster-based interface was the clustering that assisted the user or the

fact the could see all the matches at once and in context.

4.1 Method

Participants were 7 males and 6 females ranging from 18 to mid-30's. Subjects were

recruited through fliers posted around campus and the Brain and Cognitive Science

experimental subjects list advertising a user interface study. Subjects were told that

they would be paid $5 for each half hour they participated. Subjects were asked to

have some experience with word processing.

Each subject completed three find and replace tasks, one on each of three different

interfaces. The first two tasks were the same tasks as the first iteration of the paper

prototype as described in section 3.2.1. For the third task subjects were shown a

copy of a paper and told that they were planning on submitting it to a British
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Figure 4-1: Standard Find and Replace interface

journal. However, since the paper was written in American English, they needed

to make a few spelling changes. They were asked to change all forms of the word

"labor" to "labour" but to not change "elaborate" to "elabourated" or "laboratory"

to "labouratory". They were also asked to ignore any other words that may need

changing, for example color or tire.

The following three interfaces were used:

1. A conventional interface similar to Microsoft Notepad, but implemented in

LAPIS (Figure 4-1). This interface was a standard one-at-a-time with a prompt

for user response at each match. Matches were presented in document order.

2. A unclustered interface (Figure 4-2) that showed all matches to the user's search

query at once. Users then could select which matches to replace. Although

multiple selection of matches was supported, the matches were not clustered.

Instead matches were simply presented in document order.

3. The tree representation cluster-based find and replace interface described in

section 3.3 and shown in Figure 3-8.

The order of interfaces and tasks varied from user to user and was predetermined

so that approximately equal numbers of users were presented with a specific ordering

of interfaces and tasks.
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Before the experiment, subjects were given a brief pretest to assess their abilities

with text-editing programs, features within some text-editing programs such as find

and replace and regular expressions, and computer programing. Subjects were also

asked about their find and replace history, how they had performed such tasks in the

past, and how often they had performed the task in that manner.

Subjects were then presented with a paper describing the three tasks they were to

complete. The description of each task contained examples showing how the document

should look before and after making the appropriate changes. Subjects were told to

carefully read and complete the tasks in the order indicated. At the completion of

each task subjects were told to notify the experimenter so that the find and replace

interface could be changed.

Subjects could ask for and receive clarification on tasks, but questions regarding

the functionality of the interface components or of the "How do I ... " variety were

answered with encouragement to try out what ever they thought made sense or to

experiment.

After the subjects completed all three tasks to their own satisfaction, they were

given a post test to judge their impressions of the three interfaces they had used.

Subjects were asked how well they trusted the system to display useful sets of related

matches, and whether they felt they would use a cluster-based find and replace in

their own tasks if it was built into their favorite word processor.

All tasks on the computer were monitored through the use of screen capture

software which captured all changes on the screen, including cursor movement and

keystrokes.

4.2 Results

Number of errors were calculated by doing a strict comparison using the UNIX diff

command between the subject completed document and a document where all the

find and replace tasks were completed perfectly. Errors included, but were not limited

to, capitalization errors, missing text, and added text.
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Interface Task
Conventional List Clustered M -+ cluster - labor -+

Monday group labour
Time (sec) 251 (a = 158) 262 (a = 101) 134 (a = 83) 262 (o = 157) 236 (a 127) 161 (a = 84)
Error 60 (a = 118) 9.8 (a 10) 44 (a = 104) 351 (a = 260) 15 (a = 10) 12 (a = 7.9)

Table 4.1: Mean and Standard Deviation (u) of speed and accuracy of completed
tasks by interface and task.

Time to complete tasks was calculated from the time the user made its first move

toward starting the task (time of first movement of cursor), to time of last movement

of the cursor.

Table 4.1 shows the basic performance statistics of subjects on the three interfaces

and tasks tested. Four data points were left out of the speed calculations by interface

(one each from conventional and list interfaces, and two from clustered interface) as

they were enormous outliers (more than two standard deviations from mean). The

corresponding outliers were also removed from the speed calculations by tasks.

For time taken to complete each task by interface, using a one-way ANOVA, the

differences between interfaces were not significant with p > 0.80. However if you

remove the enormous outliers (the four occurrences where the subject's completion

time was more than two standard deviations from mean), using a one-way ANOVA,

the results do become significant with p < .05. Users completed their tasks faster on

the cluster-based interface than on the other two interfaces.

For number of errors in completed documents by interface, using a one-way

ANOVA, the results were not significant with p > 0.60. None of the interfaces were

significantly more accurate than the others.

A glance at the data appears to indicate that accuracy might be more related to

the task. The M -+ Monday task contained all the enormous outliers and all but one

of the perfect scores. A summary of the number of errors by task is shown in Table

4.1. However, these results using a one-way ANOVA were also not significant with p

> 0.06.

Using a correlation test, there was strong correlation between the average amount

of time to complete each task and the number of errors the subject made (r = 0.73).
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The longer the subject took to complete the task, the more errors they made. Further

investigation showed that these results may be the result of the user's performance

on the standard find and replace interface as the correlation between performance

time and accuracy for the list (r = 0.18) and clustered (r = 0.16) interfaces were not

significant.

The cluster-based interface showed the fastest completion times and 2 of the slow-

est completion times. It also showed some of the worst error rates. The list interface

showed the lowest average number of errors and also the highest number of error free

completions (5).

4.2.1 Discussion

The results of the initial user study were not very promising in terms of accuracy. In

terms of speed, however, the user study showed that users can complete tasks faster

using a cluster-based interface over a conventional interface. Also, during the user

study we discovered a number of issues with the interface that may have confused

users. As a result, numerous changes were made to increase feedback to the user

during a find and replace task. These changes include providing more feedback as

to what was selectable in the interface such as nodes in the tree by highlighting the

node when the user placed the mouse over it. Preserving the case of replaced text in

the replacement text was added. For example if the user's find query returned "The"

and was replaced by "some", the result in the document would be "Some".
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Chapter 5

Conclusion

It is very difficult to describe clusters. Throughout the user studies, I discovered that

users seldom found a description of a cluster useful. Often it made their progress

slower as they had to read every description, process it, and check whether or not

their translation of the description matched their own idea for the pattern they were

trying to match. Some users would look through the descriptions for certain key

terms they had in mind and be lost if they couldn't find them. Ultimately, it is

difficult to predict how humans will classify things. Every person will have their own

internal description of a pattern. Writing an algorithm that can predict exactly how

that person would describe a group is almost impossible. The next best solution for

creating a written description of a group is to show examples of the group. If people

have different descriptions for the same patterns, the best thing would be to let them

make up their own descriptions based on what they can perceive.

Representation of clusters can also be difficult. Without clear separations between

clusters, users run the risk of unintentionally selecting more than one cluster to in-

teract with. Other cluster-based interfaces will need to take this into account and

make the divisions between clusters very clear so that users will notice when they

have switched clusters.

As the results of the user study were not as promising as I had hoped, I have made

some changes to the interface. I am in the process of starting a new user study, the

results of which will not be available for this paper, but should be available in the
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future

5.1 Future Work

Another repetitive text-editing task that could benefit from a cluster-based interface

might be spell-checking. Conventional spell-checkers require that each match be dealt

with individually. A cluster-based approach might group the misspelled words by text

stylization so that code fragments, equations, and quotes embedded in the document

can quickly be identified and ignored, while words that are actually misspelled can

be corrected appropriately.

Clusters might not be intuitive to users. In the user studies, if the user had access

to the individual matches of the cluster, they seldom selected the entire cluster at

once. Instead they would quickly select all the matches in the cluster one-at-a-time.

Clustering's biggest advantage appears to be that users are less likely to accidentally

replace a match they didn't intend to if it's located among a number of other matches

they did mean to replace. Clustering the matches means that matches are presented

so that the user can replace or select a lot of matches in a row, then not replace a lot

of matches in a row. It would be interesting to test if users use clusters as separate

groups or as a sorted list.

5.2 Contributions

My contributions to User Interface research are as follows:

" Exploration of design alternatives for a cluster-based find and replace.

" Evaluation and documentation of the results of these design alternatives on

users.

" Implementation of a design for cluster-based find and replace in a tree repre-

sentation.
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* Comparison of a cluster-based find and replace interface with conventional find

and replace interface which found that clustering may not help in task accuracy

and speed, but more research is required.
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