
Advanced Prognosis and Health Management of

Aircraft and Spacecraft Subsystems

by

Heemin Yi Yang

S.B.E.E.C.S., Massachusetts Institute of Technology (1998)

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer
Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2000

© Heemin Yi Yang, MM. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis

document in whole or in part. MASSACHUSETTSINSTITUTE
OF TECHNOLOGY

A JUL 3 0 2003

LIBRARIES
A uthor

DeDartment of E ineering and Computer Science
Fpbruary 3, 2000 BARKER

Certified-
David H. Staelin

Professor of Electrical Engineering
Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Students

Advanced Prognosis and Health Management of Aircraft and

Spacecraft Subsystems

by

Heemin Yi Yang

Submitted to the Department of Electrical Engineering and Computer Science
on February 3, 2000, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Beacon Exception Analysis for Maintenance (BEAM) has the potential to be an
efficient and effective model in detection and diagnosis of nominal and anomalous
activity in both spacecraft and aircraft systems. The main goals of BEAM are to
classify events from abstract metrics, reduce the telemetry requirements during nor-
mal and abnormal flight operations, and to detect and diagnose major system-wide
changes. This thesis explores the mathematical foundations behind the BEAM pro-
cess and analyzes its performance on an experimental dataset. Furthermore, BEAM's
performance is compared to analysis done with principal component transforms. Met-
rics are established where accurate reduction of observable telemetry and detection
of system-wide activities are stressed. Experiments show that BEAM is able to de-
tect critical and yet subtle changes in system performance while principal component
analysis proves to lack the sensitivity and at the same time requires more computa-
tion and subjective user inputs. More importantly, BEAM can be implemented as a
real-time process in a more efficient manner.

Thesis Supervisor: David H. Staelin
Title: Professor of Electrical Engineering

Contents

1 Introduction 11

1.1 A Brief History of the Beacon Exception Analysis Method 11

1.2 Structure of Thesis . 13

1.3 Definition of Terms . 13

2 Principal Component Analysis 15

2.1 Introduction . 15

2.2 Discrete Time Karhunen-Loeve Expansion 16

2.2.1 D efinition . 16

2.2.2 D erivation . 16

2.2.3 KL Expansion and PCA . 19

2.3 Mathematical Properties of Principal Components 20

2.4 Applying Principal Component Analysis 21

2.4.1 Application to an N-channel System 21

2.4.2 Application on a Finite Dataset 22

2.4.3 Normalizing the Data . 22

3 Beacon Exception Analysis Method 27

3.1 General Outline of BEAM Algorithm 27

3.2 Mathematical Foundations . 28

3.2.1 Real-time Correlation Matrix 28

3.2.2 Difference Matrix and Scalar Measurement 29

3.2.3 Dynamic Threshold . 30

5

3.2.4 Effects of System-wide Changes on BEAM 31

3.2.5 Channel Contribution and Coherence Visualization 31

3.2.6 Real-Time Implementation and its Consequences 35

4 Analysis of the BEAM System 39

4.1 Sam ple D ataset . 39

4.2 Rules of Measurement . 40

4.2.1 System-wide Events . 40

4.2.2 Channel Localization and Contribution 44

4.3 Test Request Benchmark . 49

5 Conclusion 53

A Channel Contributions: Experimental Results 55

B Matlab Source Code 65

6

List of Figures

1-1 Block diagram of Cassini's Attitude and Articulation Control Subsystem 12

2-1 Eigenvalues of an 8-channel dataset 21

2-2 Subset of eigenvalues of covariance matrix for engine data (log scale) 23

2-3 Subset of eigenvalues of correlation matrix for engine data (log scale) 23

3-1 Surface plot of a difference matrix just after an event in the AACS. 33

3-2 3-Dimensional surface plot of figure 3-1 33

3-3 Surface plot of a difference matrix with multi-channel contribution. 34

3-4 3-Dimensional surface plot of figure 3-3 34

3-5 A flow chart of the BEAM algorithm 37

3-6 BEAM algorithm . 38

4-1 Plot of the first 2 PC's, their differences, and thresholds 41

4-2 Eigenvalues of A1XO03 in Log-scale 42

4-3 Real-time plots of -y for the A1X003 dataset 43

4-4 Final plot of -y for the A1X003 dataset 43

4-5 BEAM vs. PCA in detecting events for the A1X003 dataset 44

4-6 Channel contributions under PCA . 48

4-7 Channel contributions under BEAM 49

4-8 Comparison of the 10 most significant channels under BEAM and PCA. 50

4-9 Plots of three channels surrounding the event at 6330 msecs. 50

4-10 Channel outputs around event at 1250 msecs 51

4-11 Channel outputs around event at 2050 msecs 52

7

4-12 Channel outputs around event at 2730 msecs5

A-1 Channel coefficient and ranking comparisons around event at 1250 msecs. 56

A-2 Channel coefficient and ranking comparisons around event at 2050 msecs. 57

A-3 Channel coefficient and ranking comparisons around event at 2730 msecs. 58

A-4 Channel coefficient and ranking comparisons around event at 6330 msecs. 59

A-5 Channel coefficient and ranking comparisons around event at 34,980

m secs. 60

A-6 Channel coefficient and ranking comparisons around event at 36,010

m secs. 61

A-7 Channel coefficient and ranking comparisons around event at 38,010

m secs. 62

A-8 Channel coefficient and ranking comparisons around event at 46,010

m secs. 63

8

52

List of Tables

2.1 Covariance and standard deviations for subset of Rocketdyne engine

data 25

2.2 Eigenvectors based on covariance matrix for engine data 25

2.3 Eigenvectors based on correlation matrix for engine data 25

9

10

Chapter 1

Introduction

When ground station personnel of either aircraft or spacecraft are presented with

hundreds or even thousands of channels of information ranging from oil pressure to

vibration measurements, they are often overwhelmed with too much information.

Therefore, it is impossible to track every channel of information. Instead, they fre-

quently follow channels that are considered critical. In effect, the majority of the

channels are neglected and underutilized until a critical failure occurs, upon which

the ground crew will exhaustively search all channels of information for signs of failure.

The UltraComputing Technologies research group (UCT) at NASA's Jet Propulsion

Laboratory (JPL) in Pasadena, California believed that a process could be developed

which could bypass these problems.

1.1 A Brief History of the Beacon Exception Anal-

ysis Method

The Beacon Exception Analysis Method (BEAM) is currently being developed under

the supervision of Ryan Mackey in the UCT. They have been developing cutting-edge

diagnostics and prognostics utilities for both aircraft and spacecraft systems since

1995 during the final phase of Project Cassini, JPL's mission to Saturn. The Attitude

and Articulation Control Subsystem (AACS) of the Cassini spacecraft contains over

11

2000 channels of information, ranging from temperature sensors to Boolean variables.

The UCT saw an opportunity to develop a diagnostics tool that could simplify a

complex system for analysis and at the same time improve both the detection time

and false alarm rate. The UCT research group used the AACS as a performance

benchmark for the development and validation of several diagnostic and prognostic

utilities, one of which later developed into BEAM during the summer of 1998. BEAM

1LA Ac-a 0 o

AGO al *1 tnx-U R X-2 MIX,-4 (9CA HE

[SiIiORIZ-A Ijit

AAO5 BUS IRU-A

V E Av g u C O t O U -A F t C U !

taOo-A It l C *

Figure 1-1: Block diagram of Cassini's Attitude and Articulation Control Subsystem

has successfully been demonstrated as a valid diagnostics tool on projects ranging

from Cassini to NASA's X33 Reusable Launch Vehicle program. The UCT plans

to implement BEAM as a critical element of prognostics and health maintenance

(PHM) packages for future generation spacecraft and aircraft. Consequently, BEAM

was developed to achieve the following goals:

1. Create an abstract measurement tool to track the entire system.

2. Reduce the telemetry set to simplify tracking of the system.

3. Maximize error detection while minimizing the false alarm rate.

4. Simplify diagnostics of system-wide faults.

BEAM attempts to achieve these goals in part by incorporating all channels of infor-

mation. It takes advantage of the fact that many channels develop correlations over

12

time and that system-wide changes can be captured by detecting changes in these

relationships.

1.2 Structure of Thesis

While principal component transforms is not an element of BEAM, it was, however,

used as an alternative tool in analyzing the experimental dataset. In order to mea-

sure both the effectiveness and efficiency of BEAM as a real-time process, we required

another process that could deliver analogous results on the dataset. When we explore

the idea of reducing the number of significant variables in a system, principal compo-

nent analysis becomes an obvious candidate in performing such a task. However, PCA

has no method to automatically track system-wide events. Chapter 2 will present the

mathematical foundations behind principal component analysis so that the reader

will better understand the motivations behind the performance metrics of chapter 4.

We will stress the aspects of PCA that are critical when applied to a real-life dataset.

Chapter 3 will present both the derivation and mathematical properties of the

Beacon Exception Analysis Method. Furthermore, it will discuss the importance of

coherence visualization and its implications.

Chapter 4 will analyze and discuss experimental results from both the BEAM and

PCA processes. Their results will also be compared to test request documentation

that describes in detail the different stages of the experimental dataset. In addition,

the derivations of the performance metrics will be presented.

Finally, chapter 5 will summarize the work and discuss other components of BEAM

that could prove to be a practical and efficient diagnostics vehicle.

1.3 Definition of Terms

Before we proceed, let us define what we mean by system-wide events. Obviously,

the definition will differ among various types of datasets. However, we must note

that in many of our experiments, we were blind to the functionality of the sensors

13

involved. In other words, we treated all channels of information as abstract variables

whose values had no positive or negative implications on the system. Therefore, a

system-wide event could be defined as either an expected change in the system or as

a major or minor failure.

14

Chapter 2

Principal Component Analysis

2.1 Introduction

Principal Component Analysis (PCA) is a conventional and popular method for re-

ducing the dimensionality of a large dataset while retaining as much information

about the data as possible'. In the case of PCA, the variance and relationship among

the different channels of data can be seen as the "information" within a dataset. PCA

attempts to reduce the dimension of the dataset by projecting the data onto a new

set of orthogonal variables, the principal components (PC)2 . These new variables are

ordered in decreasing variance. The idea is to capture most of the variance of the

dataset within the first few PC's, thereby significantly reducing the dimension of the

dataset that we need to observe. Section 2.2 will discuss the definition and derivation

of the discrete-time Karhunen-Loeve (KL) expansion that lies as the fundamental

theory behind PCA. Then section 2.3 will explore a few but important mathematical

properties of PCA. Finally, section 2.4 will investigate the implications of using a

dataset with a finite collection of data points.

1PCA does not actually reduce the dimension of the dataset unless there are perfectly linear
relationships among some variables. See section 2.3

2The PC's are orthogonal in the sense that the correlation matrix of the PC's is diagonal.

15

2.2 Discrete Time Karhunen-Loeve Expansion

2.2.1 Definition

Let us define x, to be a real-valued, zero-mean3 , discrete random process4 . In addi-

tion, let Ax be the covariance matrix of x,, such that

A[ij] = E[xixj]. (2.1)

Then the discrete-time KL expansion of x, is defined as a linear combination of

weighted basis functions in the form of

N

Xn= yin[il (2.2)

such that the weights, yi, are orthogonal random variables. The basis functions, on[i],

that produce uncorrelated weights are the eigenvectors of the covariance matrix, AX,

and the variance of y, is the eigenvalue associated with eigenvector #n[i]. If Xn is

finite in length and contains N elements, then the total number of eigenvectors and

eigenvalues will be less than or equal to N, i.e., the upper limit of the summation in

equation 2.2.

2.2.2 Derivation

Let Xn be a real-valued, zero-mean, discrete random process with a covariance func-

tion, Kxx[n, m], defined as

Kxx[n, m] = E[XnXm]. (2.3)

We would like to find a set of deterministic, real-valued, orthonormal basis functions,

Oj[n], such that xn can be represented in the form of equation 2.2 with yi being

3If xn has non-zero mean, we can define a new random process '. = X - E[xn].
4 While a random process is often denoted as x[n], we will denote xn as a random process in order

to remain consistent throughout the thesis.

16

zero-mean, uncorrelated random variables,i.e.,

E[yi] = 0 (2.4)

E[yiyj] = i (2.5)
0 ij

Multiplying both sides of equation 2.2 by q5[j] and summing over all n will produce

N N N

E #n[j]]X E #n[j] E yin[i]. (2.6)
n=1 n=1 i=1

Since yi is independent of n and n[j] is independent of i, we can rearrange the

summations in order to exploit the orthonormal characteristics of On. Equation 2.6

can be rewritten as
N N N

E #n[j]Xn = >yi 5 #n[j]#n[i], (2.7)
n=1 i=1 n=1

and since we know that the projection of qi onto 5j is non-zero and unity only when

i j, we can express the new set of random variables as

N

yi= 5 xn Oni]. (2.8)
n=1

It is also straight forward to show that

E[yi] = E[Xn] = 0 (2.9)

and that

E[yiyj] = i (2.10)

for some value Ai.

The orthonormal functions that produce uncorrelated coefficients in yi can be

obtained by taking advantage of the constraint imposed by the diagonal covariance

matrix of yi [5, p. 12]

For the remainder of the section, let us represent elements in their vector form in

17

order to simplify calculations through linear algebra. Let y be an array of the random

variable coefficients defined as

Y1

Y2

YN

(2.11)

with the covariance matrix for y being

E[yyT] =

A,

0

0

A2

... AN

(2.12)

Let 4b represent the vector form of the orthonormal functions such that the ith column

of <b represents the ith orthonormal function, #4[i]:

01[1] #1[2]

02[1] #2 [2]

ON[1 ON[

... [N]

-. -0 2[N]

''. ON[N]

Then if we let
x1

X2
x x

we can rewrite equation 2.8 in vector form as

[ZnN1 Xn[1]

(2.15)

18

(2.13)

(2.14)

(D<Tx

Y:Nxn [N]

Consequently, the covariance of y can also be written as

E[yyT] - DT A,4 (2.16)

where

K 2[1, 1] K,, [1,7 2]--

AX Kxx[2, 1] Kxx [2, 2] ...-- .. (2.17)

By utilizing the orthonormal property of &D, we can multiply both sides of equation

2.16 by D and extract the equation

Aj~n [i] = Axz [Z]. (2.18)

Equation 2.18 reveals that the real-valued, orthonormal, deterministic set of functions

that produce uncorrelated coefficients in y are the eigenvectors of the covariance

matrix, Ax. In component form, equation 2.18 becomes

EKxx[n, m]m[i] = Ajqn [i]. (2.19)

2.2.3 KL Expansion and PCA

Before we proceed any further, it is important to address a few issues regarding PCA.

While principal component analysis and discrete time KL expansion can be used

interchangeably, it is necessary to make a few notes about the subtle differences in

notations and terminologies between PCA and KL expansion. As described in the

previous section, KL expansion allows us to represent a random process as a linear

combination of weighted basis functions where the weights represent a new set of

orthogonal random variables. PCA is the analysis of these new random variables,

5A matrix of orthonormal functions, <D, has the convenient property that 4)-' = 4 T. In other

words, 4bpT = <b~b-l = II, the identity matrix [5, p. 13].

19

the principal components. Specifically, y2 in equation 2.2 can be regarded as the ith

principal component. Then to produce the ith PC, we simply project the dataset onto

the ith eigenvector as seen in equation 2.8.

2.3 Mathematical Properties of Principal Compo-

nents

Property 1. The principal component yi has variance Ai, the eigenvalue associated

with the ith eigenvector[2, p. 9].

This property was implicitly proven in section 2.2.2. The latter leads us to property

2, a key element of PCA.

Property 2. For any integer q, 1 < q < p, consider the orthonormal linear trans-

formation

y = BTx, (2.20)

where y is a q-element vector and BT is a (q x p) matrix, and let Ay = BT AxB be

the variance-covariance matrix for y. Then the trace of Ay is maximized by taking

B = 4'q, where 1 'q consists of the first q columns of 4I[2, p. 9].

In the introduction to this chapter, we described how PCA can reduce the number

of variables we need to observe. However, when we refer to equation 2.18, we can see

that the total number of principal components will equal the total number of random

variables produced by the random process, xn6 . Nevertheless, we should remember

that the goal of PCA is to observe the first few PC's that contain the highest variances

of the system. Property 2 reveals that in order to observe the first q PC's with the

highest variances, we simply project the data onto the first q eigenvectors. While

some data will be lost, we can often capture the majority of the variance in a system

by carefully choosing the value of q and then observing the q PC's.

6 The number of PC's will be smaller than the number of random variables if and only if there
exists repetitive eigenvalues due to perfect linear relationships among some variables.

20

For example, let us examine a simple dataset that consists of eight variables. The

following is a log-scale plot of the eigenvalues associated with the 8x8 covariance

matrix. If we limit ourselves to observing only the first 4 principal components, we

have captured over 79% of the variance in the system.

10

010

wM

0

00

00

00

00

00

0

0 1 2 3 4 5 6 7 8
Principal Component

Figure 2-1: Eigenvalues of an 8-channel dataset

9

2.4 Applying Principal Component Analysis

2.4.1 Application to an N-channel System

In section 2.2, we explored a KL expansion on a random process, x.. Since a random

process is not constrained to a finite length, the number of eigenvectors, eigenvalues,

and coefficients in equation 2.18 can be infinite as well. For all practical purposes,

let us re-define x, to be an Nxl array of random variables. Then the NxN covariance

matrix, AX, will produce at most N eigenvalues with N unique eigenvectors.

21

2.4.2 Application on a Finite Dataset

In the previous sections, we assumed that each random variable was ideal in the sense

that their variances and means were well established and known. However, only a

finite collection of samples for these random variables will be available. Nonetheless,

we can clearly see that using sample covariance/correlation structures does not affect

either the properties or definition of PCA. We can simply replace any occurrences of

covariance/correlation matrices with their respective sample correlation/covariance

matrices[2, p. 24].

2.4.3 Normalizing the Data

In the derivation and discussion of PCA above, we utilized the eigenvalues and eigen-

vectors based on a covariance matrix. However, we will see that using a correlation

matrix is much more practical. Using a correlation matrix is analogous to normalizing

the dataset. For instance, let us examine the following equation,

z (2.21)

where x* = xi/-i and o? is the variance of xi. Then the covariance matrix of x*

is equivalent to the correlation matrix for x. The following example will attempt to

demonstrate the importance of using a correlation matrix over a covariance matrix

in calculating the principal components.

Let us briefly examine the Rocketdyne engine dataset. The data contains 323

channels of information with each channel containing over 3200 data points. If we

examine table 2.1, we can see that the variances span a wide range. This is a clear

indication that the principal components under a covariance matrix will be signifi-

cantly different from the principal components under a correlation matrix. In fact, in

figure 2-2, we can see that the first eigenvalue is clearly orders of magnitude greater

than the next eigenvalue. Such a distorted distribution of eigenvalues will produce

principal components in which the first PC will contain the majority of the variance

of the system. In our case, the first PC contains over 99% of the variance. Obviously,

22

10-10

0 1 2 3 4 5 6
Principal Component

7 8 9 10

Figure 2-2: Subset of eigenvalues of covariance matrix for engine data (log scale)

1 2 3 4 5 6
Principal Component

7 8 9 10

Figure 2-3: Subset of eigenvalues of correlation matrix for engine data (log scale)

23

0
105

1040 k

1030

1020

10

0

-j 1 10

100

0
0 0 0 0 0 0 0

102

10,

100

0

0

0

-
0

0

O O -

0

0

10-20

such a transformation of variables is not very useful. If we limit our observations

to this single PC, we will be tracking the lone variable in table 2.1 with a standard

deviation of 5.046 * 1026. In other words, the PC's will essentially be the original

variables placed in a descending order according to their variances. On the other

hand, if we use a correlation matrix, the eigenvalues will be distributed in a more

reasonable and useful manner as illustrated in figure 2-3. If we examine table 2.3, it

is clear through the principal component coefficients and the eigenvalues that infor-

mation is distributed in a more effective and useful manner. The latter example is

an illustration of the dangers in using a covariance matrix for principal component

transforms when dealing with channels that have widely varying variances.

The main argument for using a correlation matrix for PCA is based on the prepo-

sition that most datasets contain variables that are measured in different units. Such

was the case with the Rocketdyne engine dataset. When we are exploring the re-

lationship between the channels, we must normalize the dataset in order to extract

principal components that capture these relationships accurately.

24

Timetag 72B
and standard deviations for subset of Rocketdyne engine data

24BA399BTimeChannel Name
Time (secs) 2.546 * 1053

Timetag (msecs) 1.677 * 1029 1.737 * 107

72B (Rankine) 6.922 * 1026 9.305 * 104 5.136 * 102
399B (Rankine) 3.855 * 1027 3.320 * 105 1.718 * 103 1.107 * 104

24BA (PSIA) 1.692 * 1027 4.572 * 105 2.750 * 103 5.887 * 103 4.250 * 104

Standard deviation 5.046 * 1026 4.168 * 103 22.662 105.213 206.15

Table 2.2: Eigenvectors based on covariance matrix for engine data
Principal Component Number

Channel Name 1 2 3 4
Time (secs) 1.00 0.00 0.00 0.00

Timetag (msecs) 0.00 0.00 0.302 0.93
72B (Rankine) 0.00 0.00 0.00 0.00

399B (Rankine) 0.00 0.71 0.00 0.00
24BA (PSIA) 0.00 0.00 0.01 0.01

Percentage of total variance 99 0 0 0

Table 2.3: Eigenvectors based on correlation matrix for engine data
Principal Component Number

Channel Name 1 2 3 4
Time (secs) 0.01 0.02 0.02 0.03

Timetag (msecs) 0.10 0.09 0.08 0.08
72B (Rankine) 0.10 0.07 0.08 0.12

399B (Rankine) 0.05 0.12 0.15 0.12
24BA (PSIA) 0.12 0.07 0.04 0.03

Percentage of total variance 42.1 20.2 8.6 4.6

25

Table 2. 1: Covariance

26

Chapter 3

Beacon Exception Analysis

Method

3.1 General Outline of BEAM Algorithm

The following will provide an abstract outline of the BEAM algorithm. The outline

describes the basic structure of the process while section 3.2 will provide the reader

with a detailed derivation of BEAM.

1. Obtain new observation.

2. Update covariance matrix.

3. Subtract the previous covariance matrix from the current covariance matrix to

obtain the difference covariance matrix.

4. Compute scalar value from delta covariance matrix.

5. If scalar value is greater than threshold, go to step 6, else go to step 1.

6. Signal system-wide change, dump prior data and go to step 1.

With the general structure of the algorithm in place, let us now explore the in detail

the mathematical foundations that underlie the process.

27

3.2 Mathematical Foundations

3.2.1 Real-time Correlation Matrix

Consider the observation matrix, X, that is defined as

x1[11 x2 [1]

x1[2] x2 [2]

x1[t] x 2[t]

... XN[1]

... XN[2]

... t]

(3.1)

where there are t observations of N variables. Let mx be an array of averages of the

channels defined as

(3.2)

[mXNI

If we let R be the NxN covariance matrix, the covariance between variables xi and

xi after t observations can be defined as

S_ Et._1Et_1 (xi[k] - mx,) * (x[1] - mj) 1
t - 1

The [i, j] element of Ct, the correlation matrix after t samples, can then be defined

as

Ci _ = ._ _ 2 (3.4)
V/Rij * Rj

The correlation matrix is updated after each new observation. However, to avoid

any unnecessary computations, we can utilize previous values of the cross products.

Specifically, if we define Kt, the cross product matrix after t observations, to be as

'The t-1 divisor is used for an unbiased covariance structure
2The absolute value is used since we only care about the absolute relationship between two

variables.

28

(30.3))

follows

Kt = XTX, (3.5)

then the covariance matrix can be defined as

R = _ - mKmt * . (3.6)
t -1IX*(_t-1)

After the t + 1 sample is observed for all N variables, the cross product matrix can

be updated via the equation

Kt+1 = Kt + X[[lXt+l (3.7)

where Xt+1 is the t + 1 row of observation matrix X, or specifically

Xt+1 [Xi[t + 1] x 2 [t + 11 - XN[t + 11 - (3.8)

Notice that using equation 3.7 eliminates the need to recalculate the cross product

of the entire observation matrix, X, after every new observation. Instead, we can

obtain the current cross product matrix, Kt+1 , by updating the earlier cross product

matrix, Kt, with a cross product of a 1xN vector, Xt+1 . Then by using equations

3.6 and 3.4, we can obtain a real-time correlation matrix that is updated after every

observation with minimal computation.

3.2.2 Difference Matrix and Scalar Measurement

We are presented with a new correlation matrix after each new observation. BEAM

tracks the changes in the correlation matrix after each sample through a difference

matrix and signals a system-wide change if there is an instantaneous change of suffi-

cient magnitude in the difference matrix. We can capture a change in the correlation

matrix through the difference matrix, D, that is defined as

D = Ct+j - Ct (3.9)

29

where Ct is the correlation matrix as described in equation 3.4 after t observations

and Ct+1 is the correlation matrix after t + 1 observations. Attempting to observe

the difference matrix for system-wide changes presents us with the original problem

of tracking too much information. However, BEAM quantifies the difference matrix

to a single scalar, -y, through

Y:N=I EN=1 IDij|
IT = 2 (3.10)

NT2

where Dij is the [i, j] element of the difference matrix. One should note that BEAM

tracks the absolute value of Dij since we care only about the absolute change in the

system. Also notice that the scalar value is normalized by N 2 so as to measure the

change per channel. This single scalar value, as opposed to an N-dimensional system,

can now be used as a tool to track system-wide changes.

3.2.3 Dynamic Threshold

While the formulation of the scalar measurement is critical to the BEAM process,

the derivation of the threshold to which -y is measured against is just as important.

BEAM uses a dynamic threshold that adapts to the trends of 'y. A system-wide

change is defined to occur at time t when -y is greater than the "30-" value. After t

observations, let -y be stored in a time-indexed vector as

- 2
(3.11)

7t- 1

The characteristics of this time-indexed array can now be used to create o-, a threshold

computed via
2 t-

= * y 7 (3.12)
iM

30

where M is the number of samples observed since the last system-wide change. Equa-

tion 3.12 shows that o- is a running average of the -y's taken over an expanding time

window. As more samples are introduced (as both t and M increase), the window

expands linearly at the rate of M/2. If y exceeds 3-, BEAM signals a system-wide

change and reinitializes to its original state as described in section 3.2.4.

3.2.4 Effects of System-wide Changes on BEAM

When an aircraft or spacecraft enters different stages of its flight, the inherent re-

lationship among channels of information often enter new modes themselves. For

instance, the characteristics of an aircraft change significantly under take-off, cruise,

and landing modes. Therefore, it is practical to treat system-wide changes as points

of initialization so as to capture the new relationships among the channels.

While certain channels of information might be uncorrelated prior to a system-

wide change, these very same channels might be highly correlated after entering a new

mode. Thus, previous data might in fact corrupt current calculations. For example,

let us assume that channels A and B have little or no correlation before the 1000th

sample and are highly correlated after the 1001st sample. A problem arises when

a system-wide change occurs at the 1001st sample. Then due to both the initial

lack of data after the change and the dominance of the 1000 previous samples in

the calculations, channels A and B will remain uncorrelated for a significant number

of samples. BEAM, however, bypasses this problem by returning to its initial state

after a system-wide change is detected. Specifically, given that a change occurs at

observation t, all the previous data before observation t is ignored, in effect dumping

prior values of the correlation matrix and difference matrix. As a result, a new

correlation matrix, difference matrix, and -y are rebuilt starting at observation t + 1.

3.2.5 Channel Contribution and Coherence Visualization

Channel Contribution: After BEAM signals that a system-wide change occurred, it

is often useful to understand which channels contributed most to this event. The

31

BEAM algorithm maintains an N-dimensional array, p, that contains, in percentage

terms, the contributions of the N channels. If an event occurs at time t, we can

compute the contribution of the ith channel via

p(i) = iN = (3.13)
Ej=1 Ek=1|JDjk

where D is the difference matrix at time t. Since the difference matrix is diagonally

symmetric, p(i) will never be greater than 50%. For example, if channel i changes

such that the difference matrix only has non-zero entries at row i and column i, then

p(i) will be exactly 50%. However, we care only about the relative contribution of

the channel, i.e., p(i) vs. p(j), rather than it's absolute value. Therefore, normalizing

the contributions to 100% by doubling p(i) does not change our analysis.

Coherence Visualization: While the latter formulation is quite useful when utiliz-

ing numerical analysis, it is also useful to provide a graphical representation of both

system-wide changes and channel contribution. A natural way to offer such a visual-

ization is to provide a three-dimensional plot of the difference matrix. The plot's third

dimension, magnitude, could consist of either varying colors or heights. Figures 3-1

and 3-2 illustrate a sample difference matrix taken from a subset of Cassini's AACS

dataset. Figure 3-1 utilizes a varying color scheme as the third dimension, where

lighter colors reflect larger values, and figure 3-2 is a 3-dimensional representation of

the same data. We can see that the latter figures represent a change due to a single

channel. Figures 3-3 and 3-4 represent an event where changes in correlations among

multiple channels contributed to the event.

32

0

10.. .

20-.. .

30 -. ..

40

50 -

60.

70'
0 10 20 30 40 50 60 70

Figure 3-1: Surface plot of a difference matrix just after an event in the AACS.

0.8 -

0.6-

0.4,

0.2F

60 70

40 50

20 20 30

0 0 1

Figure 3-2: 3-Dimensional surface plot of figure 3-1

33

0 . -

20

30

40

50

60

0 10 20 30 40 50 60 70

Figure 3-3: Surface plot of a difference matrix with multi-channel contribution.

70
60 *

40

20

Figure 3-4: 3-Dimensional surface plot of figure 3-3

34

0.5,

0.4

0.3,

0.2

0.11

60

60

10
0 0

3.2.6 Real-Time Implementation and its Consequences

BEAM was designed to be implemented as a real-time measurement vehicle. Issues

such as causality and minimum observation requirements play a key role in determin-

ing the effectiveness of BEAM as a real-time process. The following will describe in

detail how the process is effected by these issues.

Determining the value of buffer. The minimum number of samples required to pro-

duce a valid correlation matrix is determined by the number of channels, i.e., an N

channel system would require approximately N or more samples. Any correlation

matrix produced with a smaller sample size is often considered to be inaccurate. On

the other hand, if we limit our initial sample space to be at least the dimension of

our channels, then we will lose the ability to track any system-wide changes during

this period. Therefore, we are presented with the problem of balancing precision and

sensitivity. While this problem might at first appear to only affect the process in the

beginning when observations are first being incorporated, section 3.2.4 clearly indi-

cates that this is an issue after every system-wide change. BEAM attempts to resolve

this issue by setting the buffer 3 as a relatively small constant and compensating for

inaccurate correlation values with a higher threshold in o-.

In figure 3-5 and in its accompanying algorithm in figure 3-6, buffer is set at a

fixed value of 3. The function reset(x) simply clears the memory buffer associated

with variable x, and the function signalevent() records that an event, or system-

wide change, has occurred. At first, such a small value for buffer could be viewed

as producing unreliable correlation matrices, and rightfully so. However, analyses in

chapter 4 will reveal that for the Rocketdyne engine data, such a small buffer does not

produce any false alarms. Particularly, the scalar measurement tool, -y, is a function

of the "derivative" of the correlation matrix. In turn, large fluctuations in y will

produce a higher threshold, o-. Therefore, the system is able to compensate for the

large variance in y during the early stages of data acquisition. Later, as more samples

3 The buffer is defined as the minimum number of samples BEAM must observe before any decision

is made.

35

are introduced, the correlation matrix becomes more stable, i.e., the changes in C

from sample to sample become smaller. The difference matrix, and thus -y, approach

smaller values. Consequently, the system compensates for the smaller variance in 7

with a smaller threshold in o-.

36

CLOCK

Channel 1
Channel 2

Channel 3

x

Channel N-2

Channel N-I

Channel N

if
RESET

K
T-1

T

K +XX
T-I

Tm~ m1

KT
T- I

T-

R I RijI
Rjj*R

LRESET<

CTD

CT D

0

b0

ENABLE

___3

?- CO CUNTER
_

T =- 0;
buffer = 3;
for i = 1 : m

T = T + 1;
for j = 1 : n

mx(j) = ((T-1) * mx(j)
end
for j 1 :n

for k = 1:
K (j ,k)

end
end
for j 1 n

for k = 1:
R(j ,k)

end

n

n

+ X(ij))/T;

K(jk) + X(ij) * X(ik);

K(j,k)/(T-1) - mx(j) * m(k) * T/(T-1)

end
for j 1 n

for k =1 : n
C(j,k) = abs(R(j,k))/(R(j,j)*R(k,k));

end
end
D = abs(CT - CT_1);
for j = 1 : n

temp = 0;
for k =1 n

temp temp + D(j,k);
end
17(i) = F(i)+abs(temp);

end
if T > buffer

for j = [i - T/2 + 1]: i-1
- = u- + F(j)/T;

end
if F(i) > 3 * o-

T = 0;
signalevent();
reset(mx);
reset (K);

end
end
CT-1 = CT

end

Figure 3-6: BEAM algorithm
38

Chapter 4

Analysis of the BEAM System

The following chapter will discuss the effectiveness of the BEAM algorithm. We

utilized an experimental dataset to illustrate the capabilities of BEAM as compared

to those of Principal Component Analysis. Furthermore, given that test request

documentation was provided with the experimental dataset, an explicit benchmark

existed for comparing the accuracy of both the BEAM and PCA algorithms.

4.1 Sample Dataset

The sample dataset was provided by Rocketdyne as part of an agreement with JPL in

the development of the Linear Aerospike Engine for NASA's X-33 Reusable Launch

Vehicle (RLV) program. The dataset consists of 323 channels of information from

the Power Pack Assembly (PPA) of the Linear Aerospike Engine. The goal of test

number A1X003 was to demonstrate the PPA performance and operation stability at

80 percent equivalent engine power level. While the engine firing lasted for 36 seconds,

the dataset at hand contains over 5634 seconds of information with each channel

sampling at 100 Hz. That equates to approximately 563,400 data points per channel.

However, since the majority of that information contains little or no information due

to engine inactivity, the data that was actually used for the performance benchmark

experiment contained 47.01 seconds of information, or 4701 data points per channel.

The data begins at "startup", or the beginning of the engine firing, and ends at

39

"postshutdown", approximately 11 seconds past engine shutdown[4].

The A1X003 dataset provides a large and diverse set of sensor data. For example,

the type of channels of information range from an oxygen pump shaft speed sensor

to a hydrogen inlet turbine temperature meter. Such a diverse and large dataset is

an excellent test bench for evaluating the effectiveness of BEAM. As mentioned in

chapter 3, some of the main goals of BEAM are to simplify diagnostics of system-

wide faults and to create an abstract measurement tool to track a complex system.

For all practical purposes, all references to data and experimental results refer to the

A1XO03 dataset for the remainder of the chapter.

4.2 Rules of Measurement

Before we proceed, we must clearly define the criteria for measuring BEAM's perfor-

mance. While we can investigate many areas of performance, the following section

will investigate the two most critical rules of measurement: capturing system-wide

events and ranking the channel contribution surrounding those events.

4.2.1 System-wide Events

Computing system-wide events under PCA: The most obvious and practical method

for detecting system-wide events under PCA is to track the n most significant princi-

pal components and their derivatives. If one of the derivatives exceeds some threshold

at time t, then we can signal that an event has occurred at time t. This threshold

is preset by the user and customized for each principal component so as to mini-

mize false alarm rate while maintaining a minimum level of sensitivity. Figure 4-1

illustrates the first two principal components, their absolute differences, and their

respective thresholds that were used to detect events.

40

1

1

500 1000 1500 2000 2500
Time (100*sec)

3000 3500 4000 4500

Figure 4-1: Plot of the first 2 PC's, their differences, and thresholds

The n significant number of principal components can be computed by observing

the log-scale eigenvalue plot as described in section 2.3. If we examine figure 4-2, we

can see that analyzing the first seven principal components will suffice since there is a

sharp drop off in the eighth eigenvalue. In order to utilize all seven principal compo-

nents in detecting events, a simple process called pcaevents() is used [see Appendix B,

Section II]. The function computes system-wide events for each principal component

and then compares the timing of these events across all seven principal components.

For example, if the first principal component detects an event at t milliseconds and

the second principal component detects an event at t+5 milliseconds, then the pro-

cess recognizes that only a single event occurred at time t. The incremental time that

must be exceeded to record a new event is an arbitrary value preset by the user. In

the A1X003 dataset, it is fixed at 50 samples, or 500 milliseconds.

Computing system-wide events under BEAM: Section 3.2 outlined the process by

41

Principal Component 1

5

0

5-

500 1000 1500 2000 2500 3000 3500 4000 4500
Time (1 00*sec)

Principal Component 2

5

0

5

5-

0 - -
I I I I I I I I

1

1

-1

102

10 -

100

0 2 4 6 8 1 1 14 1 18 2

Principal Component

Figure 4-2: Bigenvalues of A1XOO3 in Log-scale

which BEAM detects a system-wide event. Figure 4-3 illustrates the progressive vi-

sual output of BEAM when analyzing the A1XOO3 dataset. Note that the middle

figure lacks a threshold "bar" since the process is within the buffer. Furthermore,

note that the abnormally large "spike" in the third plot of figure 4-3 reflects a re-

initialization where the correlation matrix is computed anew. After a system-wide

event occurs and BEAM re-initializes it's variables, the first difference matrix is equiv-

alent to the first correlation matrix since a previous correlation nmatrix does not exist.

Figure 4-4 is the final visual output of 7y.

Comparing the two results: A clear way to compare the two processes' abilities to

track system-wide events is to examine which events are common to both BEAM and

PCA and which events are unique to BEAM and PCA. A visual representation, such

as the one in figure 4-5, provides an excellent means by which we can compare the

outcomes of the two processes. Markers along the 45 degree line denote an event

common to both BEAM and PCA. Markers on the x-axis denote events unique to

BEAM, and markers on the y-axis denote events unique to PCA. As we can see, events

under PCA is a subset of the events under BEAM. The events at 2050 and 38,010

milliseconds were detected by BEAM but not by the PCA method. If we attempt

42

9

B * -

x 0-3 Real-time plots of y around t = 6330 msecs
2 F

1.5-

0.5

0-

0.06

0.04 -

0.02 -

0.06 -

0.04-

0.02- 500 520 540 560 580 600 620 640 660 680 700 720

500 520 540 560 580 600 620 640 660 680 700 720
Time (100*sec)

Figure 4-3: Real-time plots of -y for the A1X003 dataset

Final plot of y

0.0

0.0

0.0

0.0

0.0

5 - -.-.-- --.- -.-.-

4 - - - ---. ..-. .- --.-

3 - - - - - -.-.-. .-- -.-

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (100*sec)

Figure 4-4: Final plot of -y for the A1XO03 dataset

43

500 520 540 560 580 600 620 640 660 680 700 720
Time (100*sec)

0
500 520 540 560 580 600 620 640 660 680 700 720

Time (100*sec)

Event comparison plot
5000 - - - --

4500

4000 -

3500 -

3000-

-2 5 0 0 -- -.-.-..--.-- -.-- -- -- -- --

2 0 0 0 - - - -- - - -- - - - - - - - - - - - - - --- ..- ..--1-500

10 0 0 - --- - -- - - -- - - -- - -

Events under BEAM (100*sec)

Figure 4-5: BEAM vs. PCA in detecting events for the A1X003 dataset

to capture these events under PCA by lowering the thresholds, we begin to detect

events that cannot be verified through the test request documentation. For example,

if we lower the threshold for the first principal component, the first new event that is

captured occurs at 25,440 milliseconds. In addition, if we lower the threshold in the

second principal component, the first new event occurs at 43,280 milliseconds. The

test request documentation cannot account for either of these events. Therefore, we

can state that there is no benefit to using PCA over BEAM in detecting system-wide

events that are accountable through the test request documentation. After observing

figure 4-5, we can see that the superset of system-wide events occurred at 1250, 2050,

2730, 6330, 34,980, 36,010, 38,010, and 46,010 milliseconds. Section 4.3 will explore

the accuracy of these detections when compared with the test request documentation.

4.2.2 Channel Localization and Contribution

Upon detecting a system-wide event, we must localize the sources of these changes.

In a 323 channel system, as in the case of the A1XO03 dataset, localizing the possible

sources to 10 channels is a fairly efficient reduction in the observable telemetry. The

latter equates to a 96.9% reduction in the number of channels one needs to observe

44

surrounding a specific system-wide event. The following will discuss the methods that

were used to localize the sources of events for both PCA and BEAM. Furthermore,

in section 4.3, we will compare how effective these localizations were when compared

to the information in the test request documentation. But before we proceed, it is

important to note that we used the BEAM events as the global list of events for

computing channel contribution under both BEAM and PCA. A concern arises when

we compute channel contribution around an event unique to BEAM; the calculations

under PCA might be unreliable due to the fact that PCA had not signaled an event

at that time. We will illustrate this further through an example in section 4.3. Note,

however, that the opposite scenario does not exist due to the fact that BEAM events

are a superset of PCA events. Unless otherwise noted, we will examine in detail the

channel contributions around the system-wide event at 6330 milliseconds for the re-

mainder of this section'.

Computing channel contribution under PCA: We developed three methods for cal-

culating channel contribution under PCA. The first method is to simply use the

coefficients in the eigenvector of the correlation matrix. For instance, if an event is

captured by the nth principal component, then we simply sort the elements of 10,,j

where 0?, is the nth eigenvector. A serious problem arises when we utilize this method.

Since we are often limited to observing the first few significant principal components,

we limit our number of possible unique channel contributions. For example, if the first

principal component captures three different system-wide events, then all three events

will list the same channel contributions because we would use the first eigenvector's

coefficients as the channel contributions for all three events.

The second method, which we will refer to as the 1" order method, simply uses

the derivative of the first order principal component. If we let x, be the nth channel,

i.e., the n'h column in matrix X of equation 3.1, we can define the difference of xn as

x'n[t] = xn[t + 11 - xn[t]. (4.1)

'This event is common to both PCA and BEAM, i.e. it lies along the 45 degree line in figure 4-5

45

Then due to linearity, we can compute the difference of the nth principal component

via

y'n = On * x'n (4.2)

where On is the nth eigenvector of the correlation matrix for x. If, for example, the

first principal component captured an event at time t, i.e., a sharp impulse above

threshold in the derivative of the first principal component, we can calculate how

much each channel contributed to that impulse. Let us define c as

C [X'I[t] * #1[1] x' 2 [t] * 01[2] X'N[t] * [N] (4.3)

where c[n] is channel n's contribution to the impulse at time t. 2 In other words,

N

y' [t] E c[n]. (4.4)
n=1

The latter equation simply states that if we sum vector c, we obtain the value of the

difference of the first principal component at time t. We can rank the elements of c

after taking the sign of the impulse into account. If the impulse is negative, we would

place the greatest significance on the most negative element of c.

The third and final method, which we will refer to as the 2 nd order window method,

uses windowed principal components to perform the 1 s' order method. Given that we

have already computed the principal components on the entire dataset, we would use a

subset of these principal components to compute a new set of principal components.

Let 2A be the length of the window and y, be the nth principal component. In

addition, let us say that we want to calculate the channel contribution for an event

21n equation 4.3, we need to use the principal component that is responsible for capturing the
event. For example, if the event under investigation was captured by the third principal component,
we would replace 01[i] with #3[i].

46

at time t. Then if we define W as

wi[1] W2[11 -.- W N[1

w i[2] W2[2] - WN[2 (4.5)

wl[2A + 1] w2 [2.A + 1] ... WN[2A + 1]j

Y1[It -A] Y2 It - A] Y3 It - 'A] .. YN[t - A]

Y1 yIt] Y2[It] Y3 It] yNlil (4.6)

Y1I~t +,A] Y2[t + A] Y3 [t + 'A] .. yN[t + 'A]

then we would simply replace x, with we, in equations 4.1 through 4.3 and compute

channel contributions as outlined in the 1t order method. There are two opposing

factors involved when setting the value of 2A. First, we must maintain a reason-

able window size in order to provide enough sample points for computing correlation

matrices. Second, we want to avoid or minimize the number of peripheral events

occurring within the window so as to maximize the influence of the centered event

when computing the 2 nd order principal components. For the A1X003 dataset, the

minimum separation between PCA events was 100 samples. However, convention

states that we must choose at least 323 samples to compute a correlation matrix for

323 channels. On the other hand, only about 100 channels are active at a given time

when we limit our observations to a window of that magnitude. Therefore, we set

2A = 100 samples. Figure 4-6 is the histogram of the ten most significant channels

surrounding the event at 6330 milliseconds when using the 2 "d order window method.

Computing channel contribution under BEAM: Upon detecting a system-wide event,

BEAM computes in percentage terms how much each channel contributed to that

event. Section 3.2.5 outlined in detail the precise method for computing channel con-

tribution. Figure 4-7 illustrates the channel contributions around the event at 6330

milliseconds under BEAM.

47

Histogram of channel contribution at t - 6330 msecs under PCA
2.5 I I I I

2-

w 1.5-

0.5-

0
11 15 138 146 12 16 153 200 70 62

Channel number

Figure 4-6: Channel contributions under PCA

Comparing the two results: In order to compare the channel contribution calculations

from BEAM and PCA, we must look at their relative contributions rather than their

absolute contributions. The outputs of BEAM's channel contribution method and

PCA's 2 nd order method are separated by an order of magnitude, i.e., we cannot

compare the absolute values in figures 4-6 and 4-7. Therefore, we must compare the

relative channel contributions. If we are observing the channel contributions around

the event at 6330 milliseconds, how do the ten most important channels under the

PCA's 2 n order method compare to the ten most important channels under BEAM?

Figure 4-8 provides a visual method to compare the relative rankings. The top plot in

figure 4-8 is just a normalized superposition of the plots in figures 4-6 and 4-7. In the

bottom plot, we are comparing the relative rankings from BEAM and PCA. For in-

stance, the channel that contributed the most to the event at 6330 milliseconds under

BEAM is the seventh most important contributor under PCA. If all of the rankings

from the two processes are identical, all points would lie along the 45 degree line.

While the example in figure 4-8 did not produce a perfect match, the importance lies

in the fact that the eight most significant channels are common among BEAM and

PCA. Further examination will show that all eights channels have identical charac-

48

Histogram of channel contribution at t - 6330 msecs under BEAM
I1 I

12-

10-

8

6-

4

2-

0 153 200 12 16 138 146 11 15 258 283
Channel number

Figure 4-7: Channel contributions under BEAM

teristics around the event at 6330 milliseconds. Figure 4-9 contains the plots of three

of the eight channels involved. We can clearly see that all three channels behave

identically at 6330 milliseconds. Therefore, while an identical match along the 45 de-

gree line would be ideal, a closer examination of the actual channel data reveals that

localizing our attention to a small group of channels will suffice. We only care that

both BEAM and PCA were able localize our attention to the same eight channels.

An exhaustive search among the remaining 315 channels revealed that other channels

were barely, if at all, involved in this event. We obtained similar results when we

calculated, ranked, and compared channel contributions around the remaining seven

events [see Appendix A].

4.3 Test Request Benchmark

Let us now turn to the test request documentation to verify the results from analyses

performed on the A1XO03 dataset. We pointed out earlier that system-wide events

under BEAM were a superset of events under PCA. Therefore, we can come to one

of three possible conclusions. First, both BEAM and PCA lacked the sensitivity to

49

Channel contributions to event at t = 6330 msecs

6 6 A A
A BEAM
0 PCA

o o
- - - - -- -- - - - - - - - A - A

- - -- - - - - -e - - - A

1 2 3 4 5 6
Significant channels

0 1 2 3 4 5 6
Ranking from BEAM

7 8 9 10

7 8 9 10

Figure 4-8: Comparison of the 10 most significant channels under BEAM and PCA.

Channel 11
4

2-

0- -

-2

Channel 153
0

-0.5 -

-1 -

0-

-0.5 -

-1-
600 610 620 630

Time (100*secs)

I
640 650 660

Figure 4-9: Plots of three channels surrounding the event at 6330 msecs.

50

C I
-0.5 -

3 -1 -

-1.5 -

10

a

0

E
6

4

2-

.-

- --- - - -- ----- - -- - --0-

----- - ----- -- --- - - ------ - ------0

- - - - -- -- - - - - - - - - -- - -o --0

/
Channel 200

4

Figure 4-10: Channel outputs around event at 1250 msecs

detect all significant system-wide events. Second, BEAM detected the majority of

events with a zero false alarm rate while PCA failed to detect a few critical events.

Third, the BEAM process was over-sensitive and declared events during quiet modes,

i.e., the events unique to BEAM in figure 4-5 were in fact false alarms. Figures 4-

10, 4-11, and 4-12 illustrate some of the significant channels participating in three

additional events detected by BEAM. The three channels in figure 4-10 were all among

the ten most significant contributors identified by BEAM; the same event was also

detected by PCA. Figures 4-11 and 4-12 present dominant channels for events at

1250 and 2050 msecs, both of which were detected by BEAM, but only the second

was detected by PCA, perhaps because the ramp illustrated in figure 4-11 was less

prominent.

51

Channel 114
6

4 --

2-

0 -

Channel 115
2

Channel 315

6

2-

0-

C

00 50 100 150 200 250
Time (100*secs)

4
0

Channel 95

6

4

2

Channel 169
5

1 --

5 --

01
160 170 180 190 200 210

Time (100*secs)
220 230 240 250

Figure 4-11: Channel outputs around event at 2050 msecs

4

3

2

1

<
F05

-1

C,,

Channel 233

Channel 261

0 200 250 300 350 400

Figure 4-12: Channel outputs around event at 2730 msecs

52

C.
0.

I1.

150

3

2 -

1 -

0 -

15

Chapter 5

Conclusion

The Beacon Exception Analysis Method has proven to be an efficient and effective

vehicle for detecting and isolating system-wide changes. However, much of the the-

oretical work is still under development, and we need to address some of the weaker

aspects of the BEAM process. For example, a proper method has yet to be estab-

lished for calculating a dynamic threshold for -y. Furthermore, a more robust method

must be developed for setting buffer. One possible method is to implement a dynamic

buffer that varies according to the activity of 7.

Nevertheless, it was shown that BEAM was superior to Principal Component

Analysis in detecting system-wide events and isolating the channels associated with

these events. But a more important aspect of BEAM is the ease of real-time imple-

mentation. Methods exist for real-time principal component transforms [1]. However,

BEAM was designed as a real-time process that requires little incremental computa-

tion. The analysis performed with principal component transforms required hours of

computation. While we did not explicitly explore an analogous real-time implemen-

tation of principal component transforms, it is clear that BEAM has many benefits

as a real-time process. On the other hand, recently developed techniques based on

principal component transforms, such as the Iterative Order and Noise (ION) esti-

mation algorithm, could prove to be an alternative tool for detecting system-wide

changes. The ION algorithm was proven to perform exceptionally well under similar

conditions as the BEAM process [3].

53

In order to develop BEAM into a comprehensive prognostics and diagnostics pro-

cess, members of the UltraComputing Technologies group at JPL are currently at-

tempting to incorporate wavelet transforms in the prognostics aspect of the PHM.

The wavelet transform possesses the quality of presenting the data in a time-frequency

domain. If a proper wavelet is chosen, the wavelet transform can capture sharp tran-

sitions through lower level details while gradual transitions are best captured within

the higher level approximations. Therefore, the wavelet transform has the potential

to detect low-level transients that the current BEAM process lacks. But more im-

portantly, information from a wavelet transform analysis, carefully combined with

the current implementation of BEAM, can prove to be a powerful tool in predict-

ing system-wide failures. Information from a complete BEAM package that include

wavelet transform analysis will be multidimensional, i.e., each event possesses unique

characteristics such as decomposition level, approximation or detail, time of event,

amplitude of -y, wavelet width, and channel rankings1 . Therefore, we can utilize mul-

tidimensional aspects of each event to predict future events. For example, we could

run hours of experiments on simulation data so as to create a comprehensive database

of event classifications. We can create a look-up table that points to a library of such

events, each categorized according to their multidimensional characteristics. Thus,

if certain aspects of the system at some given time produces a "hit" in the look-up

table, we signal that a specific event is to occur within some level of probability. If

the UCT succeeds in developing such a process, it will prove to be a superior PHM

package for any system composed of an intricate array of sensors and channels of

information.

'Approximation and detail refer to the two types of decomposition outputs from a wavelet
transform.

54

Appendix A

Channel Contributions:

Experimental Results

The channel coefficients and ranking comparisons are shown for the eight events

in the Rocketdyne engine dataset, A1X003. The upper figures are normalized and

superimposed graphs of the ten most significant channels' coefficients under BEAM

and PCA. The lower figures are one to one comparisons of the channel rankings under

BEAM and PCA.

55

I I I

A A A A

Channel contributions to event at t = 1250 msecs
a ABA

SBEAM
o PCA

A -

0 0

0 . . o 0 0

C I

1 2 3 4 5 6 7 8 9 10
Significant channels

E
0

C

CC;

8

6

4

2

0

-
- -

0 1 2- 789 1

0 1 2 3 4 5 6 7 8 9 10
Ranking from BEAM

Figure A-1: Channel coefficient and ranking comparisons around event at 1250 msecs.

56

C
.2 -0.5

C

-1.5

10

-b

Channel contributions to event at t = 2050 msecs

A BEAM
A A A o PCA

0 0

.).

0
0 0 0

- -

10

8

6

4

2

2 3 4 5 6
Significant channels

7 8 9 10

00

0 1 2 3 4 5. 7 1 0

0T

0 1 2 3 4 5 6 7 8 9 10
Ranking from BEAM

Figure A-2: Channel coefficient and ranking comparisons around event at 2050 msecs.

57

C
0

-3

c

E
0

C:
CU

-0.5

1

-1.E

1

Channel contributions to event at t = 2730 msecs
(.2)

A

-0.5 . S . A

A BEAM

A

1 2 3 4 5 6 7 8 9 10
Significant channels

0 1 2 3 4 5 6 7 8 9 10
Ranking from BEAM

Figure A-3: Channel coefficient and ranking comparisons around event at 2730 msecs.

58

C
0

.0

C
0
0

C
C

-c
C-)

-1

-1.5

10

C-)
IL
E
0

0C
C

8

6

4

2

0

0

- -

.I

)

Channel contributions to event at t = 6330 msecs

BEAM
A OPCA

2 0.5 -

0 0e
C

1 2 3 4 5 6 7 8 9 10
Significant channels

o -

E 6 -.-. .. -..

2 -

0

00

0 1 2 3 4 5 6 7 8 9 10
Ranking from BEAM

Figure A-4: Channel coefficient and ranking comparisons around event at 6330 msecs.

59

Channel contributions to event at t = 34980 msecs

o o o o A BEAM
0 PCA

2-

4-
2 3 4 5 6

Significant channels
7 8 9 10

10

8

6

4

2

0
0 1 2 3 4 5 6

Ranking from BEAM

Figure A-5:
msecs.

7 8 9 10

Channel coefficient and ranking comparisons around event at 34,980

60

C

c

-C

.0

- -

- -0

E
0

cc)

-

-

-

-
1

Channel contributions to event at t=3601 0 msecs
M~~1 2 1KA AA

A BEAM
0 PCA

.00
.2 -0.5 -- - - - -

00

-1

-2 I I I

1 2 3 4 5 6 7 8 9 10
Significant channels

10

E 6
00

4 --
cc

0
0 1 2 3 4 5 6 7 8 9 10

Ranking from BEAM

Figure A-6: Channel coefficient and ranking comparisons around event at 36,010
msecs.

61

Channel contributions to event at t=3801 0 msecs

A BEAM
0 PCA

.2 -2 --
C

-4
1 2 3 4 5 6 7 8 9 10

Significant channels

10

8 --

E 6 - --

0 0

4 - - III

oC

0
0 1 2 3 4 5 6 7 8 9 10

Ranking from BEAM

Figure A-7: Channel coefficient and ranking comparisons around event at 38,010
msecs.

62

Channel contributions to event at t = 46,010 msecs

A BEAM
0 PCA

-0.5 -

0
0 0o

1 2 3 4 5 6 7 8 9 10
Significant channels

E 6-

0

0-

0 1 2 3 4 5 6 7 8 9 10
Ranking from BEAM

Figure A-8: Channel coefficient and ranking comparisons around event at 46,010

msecs.

63

64

Appendix B

Matlab Source Code

The following Matlab source codes were developed to evaluate both the performance

of BEAM and to perform principal component analysis. In order to better understand

the arguments and outputs of the scripts, we will define the structures of the most

common variables that are used throughout the appendix.

data:

data -=

score:

score

channeli [1]

channel1 [2]

channel1 [m]

score,[1]

score1 [2]

score1 [M]

channel2 [1]

channel2 [2]

channel2[in]

score2[1]

score2[2]

score2 [m]

... channeln [1]

... channeln[2]

... channeln [in]

... scoren[1]

... scoren[2]

... scoren[m]

(B.1)

(B.2)

where scorej refers to the ith principal component.

65

chanBEAM and chanPCA:

chanX =-

chanrX 1 [1]

chanX 2[1]

chanX [1]

chanX1 [2]

chanX2 [2]

chanX, [2]

... chanX1 [t]

... chanX 2 [t]

... chanX, [t]

(B.3)

where chanXi[j] refers to ith channels contribution to event number j under method

X and there are a total of t events.

posBEAM and posPCA:

posXI[1]

posX 2 [1]

posXI [2]

posX 2 [2]

posX, [1] posX,[2]

... posX 1 [t]
... posX

2[t]

... posXn [t]

where posXi[j] refers to the ith channels ranking (significance) for event number j
under method X and there are a total of t events.

rankBEAM and rankPCA:

rankX -=

rankX1 [1]

rankX 2[1]

rankXn [1]

rankX1 [2]

rankX2[2]

rankXn [2]

... rankX1 [t]

... rankX2[t]

... rankX,[t]

(B.5)

where rankXi[j] refers to the ith most significant channel number for event number

j under method X and there are a total of t events.

66

posX -- (B.4)

Section I: The following functions were used to compute principal component

transforms, eigenvectors, and eigenvalues.

function [pc, score, latent, pn] = mypca(data,type,debug);

% This function takes an m x n matrix, where n is the number of channels and m

% is the number of data points, and normalizes the data through normalize.m

% It produces the eigenvalues of its covariance matrix in 'latent', the eigenvectors

% in 'pc', and the principal components in 'score'.

% The outputs are rearranged to place the most significant principal component in the first

% column of 'score' and the largest eigenvalue in the first row of 'latent'.

% ARGUMENTS 10

% data - raw dataset matrix

% type - (0) normalizes the data with standard deviation

%/ (1) uses peak to peak value for normalization

%/ (-1) forces no normalization

% debug - nonzero value displays debugging messages

% OUTPUTS

% pc - eigenvectos

% score - principal components

% latent - eigenvalues 20

% pn - normalized dataset

[m n] = size(data);

if type ~= -1

disp (I Normalizing data');

pn = normalize(data', type)';

end

if(debug)

disp('Creating covariance matrix');

end 30

covmat = cov(pn);

if(debug)

disp('Done finding eigenvalues and eigenvectors');

67

end

[pc, latent] = eig(covmat);

latent = diag(latent);

[latent, poslatent] = sort(-latent);

latent = -latent;

pc = pc(:,poslatent);

if(debug)

disp('Computing principal components');

end

score = pn*pc;

return

function [pn,meanp,divisor] = normalize(data, type)

% The function preprocesses the dataset by normalizing the inputs according to the

% 'type' argument.

% ARGUMENTS

% data

% type

% OUTPUTS

% pn

% meanp

% divisor

if nargin > 2

error ('Wrong nu

end

if nargin == 1

type = 0;

end

- raw dataset to be normalized

- (0) normalize using standard deviations so that they have

means of zero and standard deviations of 1 -> pn = (data-meanp)/stdp

(1) normalizes by subtracting the mean and dividing by

the peak to peak value -> pn = (data-meanp)/pp

- normalized dataset

- mean vector for dataset

- either standard deviation or peak to peak amplitude

mber of arguments.');

68

40

10

20

[R,Q]=size(p);

oneQ = ones(1,Q);

meanp = mean(data')';

if(type == 0)

divisor = std(data')';

disp('Using standard deviation to normalize');

else 30

disp('Using peak to peak to normalize');

maxi max(data')';

mini = min(data')';

divisor = maxi-mini;

end

equal = divisor == 0;

nequal = ~equal;

if sum(equal) ~= 0

divisorO = divisor.*nequal + 1*equal;

else 40

divisorO = divisor;

end

pn = (data-meanp*oneQ). (divisorO*oneQ);

return

Section II: The following functions were used to capture system-wide events under

principal component analysis.

function [eventsPCA] = pcaevents(score, thresh, inc)

% The function takes the principal components, 'score', and a threshold vector, 'thresh',

% and finds the location of events among the significant principal components.

% Each principal component and its respective threshold is passed to findpcevents.m

% which in turn returns the location of events in that particular PC.

% The outputs of the 'length(thresh)' number of PC's is then merged by examining the

% locations of these events and combining any repetitive events to create a master list that

% contains all the events seen by all the significant PC's.

% 10

% ARGUMENTS

69

% score - all significant principal components to be used to detec events

% thresh - array of thresholds to be used for each principal component

% inc - maximum number of samples that two events can be separated by

% before a new and unique event is declared

% OUTPUTS

% eventsPCA - master array of events under PCA

if nargin < 3 20

inc = 50;

end

depth = length(thresh);

fig = 1;

start = 1;

fig-vector = [fig, start, depth, depth];

d_pc = myplot(score, -2, figvector, 1, 2);

hold on;

eventsPCA =

for i = 1:depth 30

t = thresh(i);

[tmp cur-pos] findpcaevents(dpc(:,i), t, inc);

eventsPCA = [eventsPCA curpos'];

end

eventsPCA = sort(eventsPCA);

d&pos = diff(events_PCA);

In = length(dpos);

j = 1;

pos(l) = eventsPCA(1);

for i = 1:n 40

if d-pos(i) >= inc

j = j+1;

pos(j) = eventsPCA(i+1);

end

end

in = length(pos);

eventsPCA = pos';

70

figure(start);

for i = 1:depth

subplot(depth, 1, i); 50

hold on;

threshbar = thresh(i) *ones(length(score),1);

plot (thresh-bar, '-');

xlabel('Time (100*sec)');

hold off;

end

return

function [maxi, pos] = findpcaevents(d-score, thresh, inc)

% The function takes a vector, 'dscore', a threshold, 'thresh', and combines all the elements

% of the vector that exceed the threshold and lie within 'inc' samples of each other.

% This is used to eliminate any redundant capturing of events surrounding a transition

% in the principal component, i.e., there usually exists multiple tall spikes in the

% difference around a transition.

% ARGUMENTS

% dscore - vector of difference principal component 10

% thresh - threshold that determines if an event occurs

% inc - the maximum number of samples two events can lie within

before function declares another event

% OUTPUTS

% maxi - value of difference score where it exceeded threshold

% pos - position of difference score where it exceeded threshold

if nargin == 2

inc = 50; 20

end

tmppos = find(dscore >= thresh);

d_pos = diff(tmppos);

In = length(d-pos);

71

j = 1;

pos(1) = tmp-pos(1);

for i = 1:1n

if d-pos(i) >= inc

j = j+1;

pos(j) = tmppos(i+1);

end

end

pos = pos';

maxi = d_score(pos);

return

Section III: The following functions were used to read in pre-processed channel

contribution information from BEAM as well as compute the channel contributions

under PCA.

function [outi, out2] = readchan(filename, posPCA, eventnumber)

% The function reads the channel contribution data from the inputfile.

% The inputfile is a column of percentages ordered by the channel number.

% A -1 within the inputfile means a new event has occured.

% The function reads the channel data from filename and returns the contribution

% and channel rankings in descending order.

% If 'posPCA' and 'eventnumber' are supplied, the function also takes the

% position matrix from the outcome of findchan and plots the comparison

% in a scatter plot while returning the rankings in outi and out2.

% ARGUMENTS

% filename - input file name that contains the channel contributions from BEAM

% posPCA - position vector determined by findchan.m

% eventnumber - which event to compare rankings

OUTPUTS

nargin == 1

outi

out2

- chanBEAM -> channel contributions under BEAM

- posBEAM -> channel positions under BEAM 20

72

30

10

% nargin ~= 1

% outi - rankBEAM -> channel rankings under BEAM

% out2 - rankPCA -> channel rankings under PCA

if nargin == 1

posPCA = 0;

end

fid = fopen(filename, 'r');

stop = 0;

tmp = 0; 30

i = 1;

while ~stop

j = 1;

while tmp ~=-1 & ~stop

tmp = fscanf (fid, '%lf ',1);

if isempty(tmp)

stop = 1;

else if tmp ~= -1

chanmat(j,i) = tmp;

j = j+1; 40

end

end

end

i = i+1;

tmp = 0;

end

if nargin < 3

eventnumber = i-2;

end

% negate the positive vector to sort in descending order 50

chanmat = -chanmat;

[cont,pos] = sort(chanmat);

% now return the original values

cont = -cont;

[misc, rank] = sort(pos);

if posPCA == 0

73

outi = cont;

out2 = pos;

return

end

outi = rank;

[misc, out2] = sort(posPCA);

if nargin == 3

rankplot(out2, out1, eventnumber);

else

rankplot(out2, out1);

end

return

function [outl,out2,out3] = findchan(data, pc_num, eventBEAM, sigehan, wv, oflag, opt)

% The function computes the contribution from 'sigchan' number of variables and sorts

% them in descending order.

% ARGUMENTS

% data - either normalized dataset or principal components (score)

% pcnum - vector of principal component numbers to be used for events

% i.e. [1 3 1 1] translates to using pc 1 for event 1, pc 3 for event2, etc...

% if scalar value, 'pcnum' is used for all events

% eventBEAM - array of time markers to system-wide events

% sigchan - number of significant channels to be computed

% wv - array of sizes of windows to be used around each event

% i.e. [10 20] translates to using 10 sample window for event 1

% and 20 sample window for event 2

% oflag - if nonzero, findchan returns the [pc, score, latent]

% around event# 'oflag' -> 'pcnum' nor 'sigchan' is used

% opt - (1) uses the coefficients in the eigenvector to sort

% channel contribution

20

OUTPUTS

oflag ~=0

74

60

10

% outi - pc -> eigenvectors of windowed PCA around event 'oflag'

% out2 - score -> principal components

% out3 - latent -> eigenvalues

% oflag ==O

% outi - chanPCA -> channel coefficients

% out2 - posPCA -> rankings of each channel

30

if nargin < 6

oflag = 0;

end

if nargin < 7

opt = 0;

end

if nargin < 5

error('FINDCHAN must have at least 5 arguments');

end 40

% check if 'pcnum' array is correct in length

% if scalar, just create identical array

points = max(size(eventBEAM));

pointspca = max(size(pcnum));

if pointspca == 1

pcnum = ones(1,points).*pc_num;

end

if max(size(pc-num)) ~= points

error('pc-num vector incorrect in size');

end 50

[m n] = size(data);

% start loop at oflag so as to avoid unneccesary computations

start = max([oflag 1]);

if start > points

error('oflag is too large: EXITING');

end

% make elements of 'wv' even

wv= 2*floor(wv/2);

75

% see if 'wv' was passed as vector argument

if length(wv) == 1 60

wv ones(1,points)*wv;

end

for i = start:points

index = eventBEAM(i);

pc_index = pcnum(i);

window = wv(i);

if index+window/2 > m

en = rn;

st = m - window;

ei = window - rn + index; 70

else if index-window/2 <= 0

st = 1;

en 1 + window;

ei index;

else

st index - window/2;

en index + window/2;

ei window/2+1;

end

end 80

if oflag > 0

disp(sprintf('Event Y.d occurs 0 %d', i, ei));

end

windata = data(st:en,

windatad = diff(windata);

% compute pca of windowed data

% -1 argument to mypca is no normalization

[pc2, score, latent] = mypca(windata,-1, 0);

% find the channels significant to transition at window/2

% note that the new windata has the event occur at index=window/2 90

if i == oflag

disp(sprintf('Returning windowed PCA output of event d', i));

outl = pc2;

out2 = score;

76

out3 = latent;

return;

else

disp(sprintf('Using PC %d for analysis on Event %d', pcindex, i));

if opt == 0

% take the slice of the data set at the index given in 'ei' 100

cut = windatad(ei-1, :);

% compute the coefficients in the PC summation and figure out the sign

% of the derivative of the PC at the point 'index' using principal

% component pcindex

coeff = cut.*pc2(:,pc_index)';

sgn = cut*pc2(:,pcindex);

% find level number of signficant channels

for j = 1:sigchan

% if derivative of PC at index is < 0, then find min

% where if derivative of PC is > 0, find max contributor 110

if sgn > 0

[chanPCA,posPCA] = max(coeff);

coeff(posPCA) = min(coeff)-99999;

else

[chanPCA,posPCA] = min(coeff);

coeff(posPCA) = max(coeff)+99999;

end

% save channel positions and coefficient values

out2(j,i) posPCA;

outl(j,i) = chanPCA; 120

end

else if opt == 1

[outi,out2] = sort(-abs(pc2(:,pc-index)));

end

end

end

end

return

77

function chanplot(chanPCA, chanBEAM, eventnumber, level, subp)

% The function plots the channel contribution from both the BEAM computation and

% PC analysis in log scale.

% ARGUMENTS

% chanPCA - channel contributions under PCA

% chanBEAM - channel contributions under BEAM

% eventnumber - which event to examine

% default is to examine all events 10

% level - number of significant channels to compute

default is 30 channels

% subp - (0) stand-alone computation

(1) chanplot called by larger function

if nargin <= 3

level = 30;

end

if nargin == 2

[misc, eventnumber] = size(chanPCA); 20

end

if nargin < 5

subp = 0;

end

if nargin >= 3

start = eventnumber;

else

start = 1;

end

for i = start:eventnumber 30

chanBEAM(:,i) = chanBEAM(:,i)/chanBEAM(1,i);

chanPCA(:,i) = chanPCA(:,i)/chanPCA(1,i);

if ~subp

figure(i-start+1);

end

tmpBEAM = real(log10(chanBEAM(1:level, i)));

78

tmpPCA = real(logl0(chanPCA(1:level, i)));

hold off;

plot(tmpBEAM, '^);

hold on; 40

grid on;

ylabel('Channel contribution');

xlabel('Significant channels');

plot(tmpPCA, 'o');

legend('BEAM', 'PCA');

title(sprintf('Channel contribution to event %d', i));

hold off;

end

Section IV: The following functions were used to compute the channel rankings

under BEAM and PCA.

function [rankBEAM, rankPCA] = rankchan(posBEAM, posPCA)

% The function takes the position matrix of both PCA and BEAM and computes the rankings.

% The input arguments were computed via findchan.m

% ARGUMENTS

% posBEAM - position vector for BEAM

% posPCA - position vector for PCA

% OUTPUTS 10

% rankBEAM - ranking vector for BEAM

% rankPCA - ranking vector for PCA

[tmp, rankBEAM] = sort(posBEAM);

[tmp, rankPCA] = sort(posPCA);

return

79

function rankplot(rankPCA, rankBEAM, eventnumber, level, subp)

% The function plots the channel rankings from both the event horizon computation and

% PC analysis.

% ARGUMENTS

% eventnumber - determines the event to look at

% if not supplied by the user, the default is to plot all of scatter plots

% subp - (0) rankplot was called from terminal

% (1) rankplot was called by a larger plotting routine 10

if nargin > 2

start = eventnumber;

else

[misc, eventnumber] = size(rankPCA);

start = 1;

end

if nargin < 4

subp = 0;

end 20

for i = start:eventnumber

if ~subp

figure(i-start+ 1);

end

plot(rankBEAM(:,i), rankPCA(:,i), 'o');

hold on;

plot([0 max(rankPCA(:,1))], [0 max(rankPCA(:,1))], 'r');

xlabel('Ranking from BEAM');

ylabel('Ranking from PCA');

title(sprintf('Channel Comparison around Event %d', i)); 30

axis([0 level 0 level]);

hold off;

grid on;

end

Section V: The following functions were used to numerically and visually compare

the events and channel contributions under BEAM and PCA.

80

function [posx, posy] = cmpevents(eventBEAM, eventPCA, inc);

% The function compares the events posted by BEAM and PCA.

% It eliminates any redundant set of points that fall within the 'inc' data points

% and arranges the 'posx' and 'posy' vectors to plot along a 45 degree line.

% If an event occurs in both BEAM and PCA, then it falls on the 45 degree line.

% ARGUMENTS

% eventBEAM

% eventPCA

% inc

% OUTPUTS

posx

% posy

- events detected by BEAM

- events detected by PCA

- the maximum difference between two events before

cmpevents declares a new event

- xaxis

- yaxis

coordinates on the event comparison plot

coordinates on the event comparison plot

[m n] = size(eventPCA);

if m>n

eventPCA = eventPCA';

end

[m n] = size(eventBEAM);

if m>n

eventBEAM = eventBEAM';

end

mpos = [eventPCA eventBEAM];

mpos = sort(mpos);

if nargin == 2

inc = 50;

end

d_pos = diff(mpos);

In = length(d-pos);

j = 1;

for i = 1:In

if d_pos(i) >= inc

j = j+1;

10

20

30

81

end

end

posx = zeros(j, 1);

posy = posx; 40

if mpos(1) == eventPCA(1)

posy(1) = mpos(1);

posx(1) = 0;

else

posy(1) = 0;

posx(1) = mpos(1);

end

j = 1;

k = 1;

for i = 1:ln 50

a = find(eventPCA == mpos(i+1));

b = find(eventBEAM == mpos(i+1));

if d-pos(i) >= inc

j = j+1;

end

if ~isempty(a)

posy(j) = mpos(i+1);

end

if ~isempty(b)

posx(j) = mpos(i+1); 60

end

end

plot(posx, posy, 'b^');

hold on;

plot([0 max(mpos)], [0 max(mpos)], 'r');

grid on;

title('Event comparison plot');

ylabel('Events under PCA (100*sec)');

xlabel('Events under BEAM (100*sec)');

hold off; 70

return

82

function quickchan(chanPCA, chanBEAM, rankPCA, rankBEAM, opt, level, figvector,

data, eventBEAM, window)

% The function plots the channel contribution and its respective ranking comparisons on a

% single figure per event. The upper figure is a superposition of the channel coefficients

% from BEAM and PCA. The lower figure is a comparison of the rankings.

% ARGUMENTS

chanPCA

chanBEAM

rankPCA

rankBEAM

opt

level

figvector

fig

start

en

data

- coefficients determined by PCA

- coefficients determined by BEAM

- ranking of channel contributions by PCA

- ranking of channel contributions by BEAM

- (0) plot only channel histogram and rankings

(1) calls findchan s.t. the eigenvalues

and the pc's can be plotted

- number of channels to look at

[fig, start, en]

- first figure number

- first event to be plotted

- last event to be plotted

- only used if opt = 1

% eventBEAM -

% window -

if nargin < 4

error('QUICKCHAN requires at least four inputs');

end

if nargin <= 6

[misc, en] = size(chanPCA);

start = 1;

fig 1;

else

fig = figvector(1);

start = figvector(2);

en = figvector(3);

end

83

10

20

30

if nargin <= 5

level = 15;

end

if nargin == 4 40

opt = 0;

end

if opt == 1

if nargin ~= 10

error('QUICKCHAN requires nine arguments with option = 1');

end

end

eventcount = min(size(chanBEAM));

if en > eventcount

error('EN exceeds the number of events'); 50

end

if opt == 0

for i = start:en

figure(i-start+fig);

subplot(2,1,1);

hold off;

chanplot(chanPCA, chanBEAM, i, level, 1);

hold off;

subplot(2,1,2);

hold off; 60

rankplot(rankPCA, rankBEAM, i, level, 1);

hold off;

axis([0 level 0 level]);

end

else

for i = start:en

figure(i-start+fig);

subplot(3,2,1);

hold off;

chanplot(chanPCA, chanBEAM, i, level, 1); 70

hold off;

subplot(3,2,3);

84

hold off;

rankplot(rankPCA, rankBEAM, i, level, 1);

hold off;

[pc, score, latent] = findchan(data, 1, eventBEAM, max(size(rankPCA)), window, i);

scored = diff(score);

subplot(3,2,5);

hold off;

semilogy(latent(1:level)); 80

grid on;

title (' Eigenvalue plot');

hold off;

for j = 1:3

subplot(3,2,2*j);

hold off;

plot(score(:,j));

hold on

plot(scored(:,j), 'r');

title(sprintf('PC d', j)); 90

grid on;

hold off;

end

end

end

Section VI: The following function is a custom plotting function utilized

throughout the analysis.

function [d-score] = myplot(score, eventBEAM, figvector, range, options)

% The function plots each vector in the matrix 'score' indexed from start to 'en'

% and 'inc' many per plotting window.

% ARGUMENTS

score - matrix of data, channel by column

% eventBEAM - the event vector determined by BEAM

% figvector = [fig, start, en, inc]

85

fig

start

en

inc

range

options

OUTPUTS

d_score

- first figure number

- first channel to be plotted

- last channel to be plotted

- subplots per figure

- range of the time axis, /xmin xmax]

- (1) range is length(score)

- (1) semilogy is used

- (2) plots both 'score', it's derivative, and 'eventBEAM'

returns derivative to 'dscore'

set 'eventBEAM'=0 to plot only score

- matrix of data, channel by column

if nargin < 4

error('MYPLOT requires at least four arguments');

end

if nargin == 4

options = 0;

end

if options == 2

d_score = diff(score);

end

fig = figvector(1);

start = figvector(2);

en figvector(3);

inc figvector(4);

if length(range) == 2

xmin = range(1);

xmax = range(2);

else

xmin = 1;

xmax = length(score(:,1));

end

j = fig-,;

for i = start:en

86

10

20

30

40

if mod(i-start, inc) == 0

j = j+1;

figure(j);

subplot(inc, 1, 1);

else 50

subplot(inc, 1, (i-(j-fig)*inc));

end

if options == 1

semilogy(score(:,i));

else

plot(score(:,i), 'b');

end

hold on;

title(sprintf('Principal Component %d', i));

subscore(:,i) = score(xmin:xmax,i); 60

if options == 2

subd(:,i) = d-score(xmin:xmax-1, i);

end

ymin = min(subscore(:,i));

if ymin > 0

ymin = 0;

end

bound = [xmin xmax ymin max(abs(subscore(:,i)))];

axis(bound);

if options == 2 70

subd(:,i) = (abs(subd(:,i)));

d-score(:,i) = abs(d-score(:,i)).*(max(abs(subscore(:,i))) / max(subd(:,i)));

plot(dscore(:,i), 'r');

end

if length(eventBEAM) > 1

subevent = eventBEAM(xmin:xmax);

eventBEAM = eventBEAM.*(max(abs(subscore(:,i))) /max(subevent));

plot(eventBEAM, 'w');

end

hold off; 80

end

87

if eventBEAM < 0

return

end

88

Bibliography

[1] Lao Fa-Long and Li Yan-Da. Real-time computation of the eigenvector cor-

responding to the smallest eigenvalue of a positive definite matrix. IEEE

Transactions on Circuits and Systems-I: Fundamental Theory and Applications,

41(8):550-553, August 1994.

[2] I.T. Jolliffe. Principal Component Analysis. Springer Series in Statistics. Springer-

Verlag, New York, New York, 1986.

[3] Junehee Lee. Blind Noise Estimation and Compensation for Improved Charac-

terization of Multivariate Processes. PhD dissertation, Massachusetts Institute of

Technology, Department of Electrical Engineering and Computer Science, January

2000.

[4] J. Smith. Test request, xrs-2200 powerpack assembly, test a1x003: Revision b.

Test request documentation for the alx003 dataset, October 1998.

[5] Alan S. Willsky, Gregory W. Wornell, and Jeffrey H. Shapiro. Course Notes: 6.432

Stochastic Processes, Detection, and Estimation, chapter 5. Department of Elec-

trical Engineering and Computer Science, Massachusetts Institute of Technology,

1994.

89

