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Abstract

An electrodynamic (ED) Tether is a long thin conductive string deployed from a
spacecraft. A part of the ED tether near one end is rendered positive with respect
to the ambient plasma. This positive potential is maintained by the motion-induced
Electromotive Force (EMF) or by the power supply, depending on the application of
the ED tether. Some part of the positively biased tether is uninsulated and exposed
to the ambient plasma, collecting ionospheric electrons. Collected electrons are driven
as a current inside the tether and emitted from the other end. The current interacts
with the geomagnetic field and produces Lorentz force (forward or backward). Drag
force is obtained by deploying the tether upwards and collecting electrons through the
part near the top end. Thrust is instead obtained by deploying downwards, applying
a power supply to reverse the current and collecting electrons at the bottom end.

An ED tether travels in LEO under mesothermal conditions, meaning that the
electron thermal velocity is much faster than the tether's orbital speed whereas the
ion thermal velocity is much slower. In the frame of reference moving with the tether,
ions approach the tether at hypersonic speed, get deflected by the very large positive
potential on the tether and create a wake behind it. Due to the asymmetry of the
plasma distribution, the conventional probe theory becomes almost inapplicable. The
asymmetric and non-stable plasma conditions entail the necessity of computational
work for the prediction of current collection.

A numerical code using a Particle-In-Cell (PIC) method is developed to calculate
the electron current collection to a positively charged electrodynamic bare tether.
In order to improve the quantitative accuracy, a new treatment of boundary condi-
tion, which utilizes the quasi-neutrality condition of plasma, has been introduced.
This condition has been tested and shown elsewhere to give a good quantitative ap-
proximation to a current collection calculation to a cylindrical probe in a quiescent
unmagnetized plasma. In this thesis, the flowing and magnetic effects as seen in the
actual plasma environment are incorporated.

Calculations for a list of cases with different plasma parameters are performed and
compiled so as to provide the pre-flight prediction of the NASA space experiment
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called ProSEDS, which is planned to be launched Fall 2002. There is an existing
theory called the Orbital-Motion-Limit (OML) theory, which gives the upper limit of
the current collection in steady state. The results show that the current collection is
higher in some cases than the 2D OML current by a factor of 2 - 3. We discuss the
applicability of the 3D OML theory, which gives a higher limit, to the geometrically
2D problem. The justification is given by the detailed examination of individual
particle trajectories.

Thesis Supervisor: Manuel Martinez-Sinchez
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Background

1.1 Electrodynamic Tether

1.1.1 Tether

teth.er \'teth-*r\ n 1: something (as a rope or chain) by which an animal

is fastened so that it can range only within a set radius 2: the limit of

one's strength or resources

A tether may look like a rope attached to a spacecraft. There may be a small satellite

at the other end of the tether just like a leashed dog. There are many new ideas and

applications of conducting- and non-conducting tethers proposed [1] in the research

categories such as aerodynamics, transport system, controlled gravity, electrodynam-

ics etc. In this thesis, we focus on electrodynamic tethers (EDTs) in an attempt to

understand the interactions between EDTs and space plasmas.

1.1.2 Electrodynamic Tether (EDT)

When the tether is made of conducting material, it is called Electrodynamic Tether

(EDT). Driving a current inside itself and traveling across the Geomagnetic field,

EDT may be used to reboost/deboost a spacecraft to which the EDT is attached.

This is made possible by the Lorentz force acting on the EDT. The mode of reboosting
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a spacecraft is called "Thruster Mode" and the mode of deboosting is called "Power

Generator Mode". In the latter mode, EDT is converting the spacecraft's orbiting

kinetic energy into electric energy, that is, driving a current through the EDT. By

placing a rechargeable battery at the end of the EDT, one can store electric energy

in the battery while the spacecraft is being deboosted. More detailed accounts of the

mechanism of an EDT is given in Section 1.2. In "Thruster Mode", a power supply

is included in the system in order to reverse the current direction, thus redirecting

the Lorentz force in the forward direction.

1.2 How The Electrodynamic Tether Works

The mechanism of the ED Tether is quite simple, but usu- GR

ally hard to understand at first sight. Let us see how an ED

Tether works. An ED Tether has two modes of operation: v 4

power generation mode and thruster mode.

Figure 1-1: Space-

craft with an EDT

We discuss the power generation mode first, followed by

the thruster mode. In Fig 1-1, a cartoon of a spacecraft and

an ED tether deployed upwards is depicted. The tether is

traveling to the left across the geomagnetic field whose vector

points out of the page. Due to the relative motion to the

magnetic field, an electromotive force (EMF) appears along

the tether (Fig 1-2).

V .- VxB

Figure 1-2: EMF on

EDT
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This EMF elevates the potential towards the upper end

of the tether. In open circuit, the potential difference between

the upper and lower ends is the EMF times the length of the

tether, l -IV x BI.

In order to have a current flow inside the tether, an elec-

tron collector and an electron emitter are attached to the up-

per end and the lower end respectively (Fig 1-4). The electron

emitter attached to the lower end through the spacecraft is

used to control the on-board potential.

High potentil

V - I VxB

Low potential

Figure 1-3: Potential

different

collector - e

v4 I VxB

Electron
emitter

Figure 1-4:

on EDT

This positive potential attracts and collects electrons from

the ambient plasma through the collector. Collected electrons

are driven as a current by the EMF inside the tether. By

placing a rechargeable battery connected to the tether, we

can recharge the battery, thus generating power (Fig. 1-5).

In order to see the difference between a local potential on the

tether and the local space potential, let us look at the tether

and the space in the frame moving with the tether [6]. In the

tether frame, the plasma at infinity has an electric field V x

and B to the North, V x B is upwards. Thus, the potential

from the tether, is falling at the rate |V x B I with distance z.

Figure 1-5:

Generation

Power

B. If V is to the East

of the plasma, as seen

Now, suppose the tether is deployed upwards from a satellite, and the satellite is in

good electrical contact with the local plasma. Suppose also that the top of the tether

is somewhat positive with respect to its own local plasma (say - 100V << L-IVxBI),
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V-e- EB

IVxBI
t dR*

IRL

LoadR
- -

Cathode AV
e- e- cathode

Figure 1-6: Potential diagram in the generator mode

where L is the tether length. This top portion collects ionospheric electrons, which

flow down the tether. Their associated current, I, is then upwards, and since the

tether has some finite resistance, the potential of the tether must be falling upwards

at a rate I . This fall rate should be less than the rate |V x Bl at which the plasma

potential is falling. At the satellite, there must be some sort of load, say a resistance

RL, in which the potential falls by IRL.

If we represent positive potential to the right, this descrip-

tion is summarized in the potential diagram as in Fig. 1-6.
EOB

We cannot generate power out of nothing (Fig. 1.2). The

current inside the tether and the geomagnetic field interact

with each other and exert a Lorentz force in the opposite di-

rection of motion, slowing down the tether and the spacecraft.

In fact, the ED tether in power generation mode is converting Figure 1-7: Lorentz

spacecraft's kinetic energy into electric energy. The Lorentz drag force
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force may be utilized to deorbit an expired spacecraft to the

atmosphere where it burns out. In that case, power would

probably be dissipated in a resister rather than stored.

Next, we look at the thruster mode of an ED tether. In

thruster mode, the ED tether is deployed downwards (Fig.

1-8). As in the power generation mode, there is EMF along

the tether. Instead of having current flow upwards, we place

a power supply at the upper end and reverse the current flow.

In order to maintain the current flow, an electron collector

and an electron emitter via the power supply are attached at

the lower end and the upper end, respectively.

Again, the electron emitter can be manipulated to keep the

lower end of the tether at positive potential, thus collecting

electrons. Current created in such a way flows downwards

in the tether and exerts Lorentz force, in interaction with the

geomagnetic field, in the same direction as the tether's motion

(Fig. 1-9). In practice, a battery recharged by solar panels,

gives the power supply and an ED tether reboosts a spacecraft

without expenditure of propellant. This fact is often referred

to as propellantless propulsion by an ED tether.

Higher
potential

Vx B

Lower but positive
potential U

Figure 1-8: EDT in

thruster mode

eB OB

Jx B4

Figure 1-9: Reverse

Current and Thrust

Let us see again the potential difference between the tether and the local plasma

in the tether frame. The tether is now downwards and electrons are collected near

the bottom. Thus the current is downwards, and so the tether potential increases

with altitude z. Since the plasma potential still decreases with z as before, the

tether-plasma bias is continuously higher as one climbs along the tether (unlike the

generator case, where a cross-over point existed). Thus, all of the tether is positive

with respect to the local plasma, and could be made to collect electrons. But those

electrons collected near the satellite would do little work and dissipate a lot of power
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Cathode e- V battery ®B

Power cathode
supply '0 dR

dZ42

IVxBI

e------------ - --

e ae ----------------
tet er

Figure 1-10: Potential diagram in the thruster mode

as they slam on the tether with high energy, so it may be best to insulate most of the

tether and expose only some fraction near the bottom end. The potential diagram is

now given in Fig 1-10.

1.3 Real EDT in Space: TSS-1/R & ProSEDS

In this section, we introduce two actual implementations of the EDT concept. The

first one is the Tethered Satellited System 1 (TSS-1) and its reflight (TSS-1R) which

actually flew in space and collected electrons from space. The second one is the

Propulsive Small Expendable Deployer System (ProSEDS) which is planned to be

launched in Fall 2002.

The difference in these ED tethers is the shapes of their electron collectors. TSS-

1/R used a spherical body attached to the upper end of the tether to collect electrons.

The tether was insulated and did not collect electrons (Fig. 1-11). The ED tether of
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ee

(a) TSS-1/R with a balloon collector (b) ProSEDS with a cylindrical bare
tether

Figure 1-11: TSS-1/R vs. ProSEDS

ProSEDS, on the other hand, does not have a large collector like TSS-1/R. It collects

electrons by itself through the bare uninsulated part (Fig. 1-11).

The difference entails different applications of probe theory in the prediction of

current-voltage characteristics. TSS-1/R used a big metallic sphere as a collector,

whose diameter is much larger than the local Larmor radius of electrons. Therefore,

magnetic effects have to be considered. Parker and Murphy applied canonical angular

momentum and total energy conservations and derived the upper limit of current

collection as a function of the tether potential in steady state. The derivation of

Parker-Murphy theory is shown sec 2.2.4.

The results of the TSS-1/R space experiment revealed much higher current col-

lection than that of Parker-Murphy theory, by a factor of 2 ~ 3. Several researchers

have attempted to understand the physics underlying the enhanced current collection.

Some of their works are introduced in Chap. 2.

The physics involved in the current collection to a bare tether is somewhat different

due to its size compared to the Larmor radius. The tether radius is typically of the

same order of the Debye length which is about 7mm for the undisturbed density

nm = 1011[1/m 3 ] (2mm for 1012 [1/m 3 ]), whereas the Larmor radius of an electron

with the electron thermal velocity (for Te = 0.1(eV)) is 2 ~ 3 cm. The large ratio of

Larmor radius to the tether radius renders magnetic field effects very weak. Without
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magnetic effects, as the limiting case, the current collection depends on the ratio of

the Debye length to the tether radius, Debye ratio. In addition, the fast motion of

the tether across the ionospheric plasma introduces additional complexities, not easily

understood using simple theory.

When the Debye ratio is small, that is, when the tether has a very thin sheath,

some electrons just fly by near the tether without being captured, because the tether's

potential is screened out and fails to deflect the electron. When the Debye length

is large on the other hand,there is a thick sheath around the tether. Electrons do

see the tether potential and are attracted by it, but if their angular momentum is

too high, they may just fly by the tether and go away without being captured. The

capture rate is then only limited by the dynamics of the orbital motion (the Orbital

Motion Limit, or OML [18]). Clearly, this regime, where screening does not hinder

collection, must yield the highest current possible for given density and tether size.

In the next section 1.4, the OML theory is explained in more detail.

The Debye ratio seen in the case of the bare tether current collection is normally

well inside the OML regime. OML can be thought of as the upper limit of current

collection under steady state condition. Therefore we can expect the 2D OML current

collection as the prediction of current collection to the ProSEDS ED tether. The

advantage of the ProSEDS bare tether over the TSS-1/R is its efficiency. Since

the ambient plasma density is so low, enlarging the contact area becomes necessary

in order to collect enough current. In the case of a large metallic sphere as an

electron collector as used in the TSS-1/R, Debye shielding makes the current collection

ineffective,i.e. out of the OML regime. Moreover, the magnetic effects restrict the

electron collection to essentially one dimensional. However, using the tether itself

as an electron collector, one can exploit the effectiveness of the current collection in

the OML regime and can enlarge the contact area by having a longer tether without

leaving the regime [8].

In Table 1.1, the comparison between TSS-1/R and ProSEDS is recapitulated.
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ProSEDS TSS-1/R

Collector Cylindrical Spherical

Pre-Flight 2D OML Parker-Murphy
Expectation Thin cylinder Large Sphere

Magnetic Effects

Experimental 2 ~ 3 times higher than
Results Parker-Murphy

Table 1.1: Comparison between ProSEDS and TSS-1/R

1.4 Current Collection in OML Regime

In this section, I explain the OML theory in two different ways. One is as done by

Langmuir and Mott-Smith in their pioneering work [10] in the 1920's. Their approach

is to look at the particle distributions at infinity, follow the particles' trajectories

calculated from the energy conservation and the momentum conservation and then

count particles which reach the surface of the tether. Although it is not necessary

to use the angular momentum conservation in the derivation of OML current, the

explanation of the OML current with these two conservations gives a good insight of

the physics involved in the OML theory. On the negative side, this approach does

not apply to non-symmetrical configurations, such as the tether plus a wake.

The other approach is the one done by Laframboise and Parker in 1973 [19]. Their

approach is to start from the surface of the tether. They look at an electrons on the

surface and reverse the trajectory in time. Then, the current is calculated by counting

the electrons whose trajectories are traced back to the infinity.
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4-

(a) Orbital-Motion-Limit : All electrons (b) Langmuir Limit : Due to the shield-
see the presence of the tether. Electrons ing of the tether, electrons do not see
with large angular momentum miss the the presence of the tether and electron
tether and go away. trajectories are straight.

Figure 1-12: Electron trajectories in Orbit-Motion-Limit (large sheath and/or small
tether radius) and Langmuir Limit (small tether and/or large tether)

1.4.1 Langmuir and Mott-Smith

Current collection by spherical and cylindrical probes (tethers) was first analyzed by

Langmuir and Mott-Smith [10] , who named the thin cylinder limit, 'Orbital Mo-

tion Limit (OML)'. When OML theory applies, namely, when the ratio of the probe

(tether) radius to the Debye length of the plasma is so small that the shielding be-

comes unimportant, the number of electrons absorbed by the probe is determined

from orbital consideration alone. In Figure 1-12, electron trajectories in two limits,

OML and Langmuir Limit, are shown. Figure 1-12(a) shows the electron trajectories

in OML. An electron sees the presence of the tether through potential field and its

trajectory is deflected toward the tether as the electron approaches. Whether the

electron is captured or not depends on its angular momentum. Figure 1-12(b) shows

the electron trajectories in Langmuir Limit. Since the sheath is small and the tether

is shielded, electrons do not see the presence of the tether. Therefore electrons tra-

jectories are straight. Only electrons with the impact parameter, b, smaller than the

tether radius are captured by the tether.

The OML limit can be described in terms of the effective potential [11]. Let J
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and E be the angular momentum and the energy of an electron, respectively. From

the energy conservation and the angular momentum conservation of an electron in

two dimensions, although the velocity w1l along the cylinder axis can be nonzero, we

have

1
E = -me (w + w2)-e (1-1)

2 r 0

J = merwo (1.2)

where r is the distance from the probe center, me the electron mass, -e the electric

charge of an electron, 4 the local potential, w, the radial velocity component, and wo

the azimuthal velocity component. Substituting equation (1.2) into equation (1.1),

we have

2 = E+e4- j 2  . (1.3)
r Me (2MeT 2

In order for an electron to reach the surface of the probe, the right-hand side of

equation (1.3) must be positive not only at the surface of the probe, but also all

along the path from infinity to the surface. To consider the particle motion from the

one dimensional viewpoint, the effective potential defined by

J2

U = -e + j2(1.4)
2mer2

should be considered. Substituting the effective potential (1.4) into (1.3), we have

W2 = - (E - U) (1.5)
me

By taking the effective potential as a normal 1-D potential, we can treat the 2-

dimensional electron motion as a 1-dimensional case. Figure 1-13 illustrates two

limits regarding the effective potential. Assume that the probe is on the left of the

figure. When the sheath is thin (Langmuir Limit), the second term of equation (1.4)

becomes dominant near the probe and U has an intermediate maximum value. For

some electrons, this bump in the effective potential works as a potential wall and
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prevents them from reaching the surface unless they have enough energy to climb

over the wall. When the sheath is thick (OML limit), the first term in equation

U lU

Tether Surface Tether Surface

r r

In OML regime Out of OML regime

(a) Effective potential for small J and (b) Effective potential for large J and
trajectory of a captured electron trajectory of a "fly-by" electron

Figure 1-13: Effective potential and electron trajectories in and out of OML regime

(1.4) becomes dominant throughout the region, and the electric potential is large

enough to shield out the angular momentum term in the effective potential In (a) of

Figure 1-13, the angular momentum is so small or the potential is so large that all

electrons fall into the potential well and are captured by the surface of the tether,

where the effective potential is still negative. For a large angular momentum or a

small potential, the angular momentum term in the effective potential becomes large.

And the effective potential on the surface of the tether becomes positive. Therefore

only electrons which have a kinetic energy in r-direction, 1mew , more than the

effective potential energy, eU(surface), are captured by the tether.

The derivation of the current collection in and near the OML regime by Langmuir

and Mott-Smith is followed in Appendix A in a mathematically more detailed way.

1.4.2 Laframboise and Parker

Laframboise and Parker rephrased the definition of the OML current as follows; if the

trajectories of all the electrons on the surface which have a total energy more than

the potential energy difference between the surface and the infinity, can be traced
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back to the infinity without being intercepted by the probe, the current collection to

the surface is in the OML regime, giving rise to the highest current in steady state.

Let #p be the surface potential and the potential at infinity be zero, #" = 0. The

electrons which are energetically capable of traveling from the surface of the tether

to infinity are characterized at the surface by

2 rE i= me~Wr +Iw9J) - , J (1.6)

where ' = (Wr, wO) is the electron velocity. Note that equation (1.6) excludes some

hypothetical electrons which have enough total energy jMe(W +W2+W2)-e#> 0 but

not enough total energy in the plane perpendicular to the tether, Ime(w +w) -e#p.

In a two-dimensional problem, there is no mechanism that converts the kinetic energy

in the direction parallel to the tether, jmew2 to the perpendicular energy. Therefore,

an electron which does not have a enough perpendicular total energy is not counted

in the OML current calculation, whatever the value of wz may be.

In the absence of collisions, the solution to Vlasov's equation must have the

Maxwell-Boltzmann form for any velocity that does occur:

m 3/2 -e#, + (2+
fe (W) = nco Me exp - 1 1 (1.7)

2irkT) kT o

where nc, is the density at infinity, k the Boltzmann constant, TO the temperature

at infinity and wjf a velocity component parallel to the cylindrical probe.

At the surface of the probe, only electrons which satisfy the equation (1.6) can

exist and be counted for the current collection. The current density into the probe is

given as, when e- >> 1
kToo>1

j=eno /2-e#o(18
7r V me

which is independent of electron temperature, Te. Note that equation (2.8) are in-

dependent of the shape of the cylinder's cross section (as long as OML conditions

prevails). Also, for a given shape, the current density j is independent of location
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within the surface.

When a three-dimensional problem is considered, the electrons counted in the

calculation of the OML current collection are characterized by

1 2 2
me(wX + w )- + w ) > 0. (1.9)

The 3D OML current is also calculated in the same manner as in the 2D case, and

given as

jout(3D) = ewfedw
w2+w2+w2>2eOp/m,wI>0

I'Te ( e#~
= eme1 + Ie) (1.10)27rm'e xTe

OML limit is the upper limit under the consideration of energy conservation. All

the energetically possible electrons at the probe surface are taken into account in the

calculation. Therefore as long as an electron's total energy is conserved, the current

density to the probe should be equal or less than the OML current density. The plot

of current density vs. the radius-to-Debye ratio is shown in Fig 1-14.

Both calculations by Laframboise and Parker and Langmuir and Mott-Smith as-

sumes operation in the OML regime. More detailed work which calculates the current

collection in and out of the OML regime is done by Sanmartin and Estes [13] and

presented in Chap.2.

1.5 Engineering Problems and Scientific Signifi-

cance

In order to design an ED Tether as a thruster or a power generator, we need to know

how much current we can get from the EDT system, because the force (Thrust/Drag)

is proportional to the current. As a prediction of the current-voltage characteristics

of ProSEDS bare ED tether, we mentioned the 2D OML current. However, as the
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Figure 1-14: Current density to the cylindrical probe as a function of Debye ratio.
Solid line is the "exact solution" by Laframboise and dotted line is the OML current
density. The bars represent PIC computational results [33].

Parker-Murphy upper bound was exceeded in the TSS-1/R space experiment, it is

quite possible that the 2D OML theory may be violated and the tether may collect

more current. This thesis is aimed at providing the preflight predictions of ProSEDS

space experiment by performing computer simulations using a Particle-In-Cell (PIC)

method.

This work is also aimed at a new and tough problem in Langmuir-probe theory.

Cylindrical probes have been used in space for many years for plasma measurements.

Probe bias, however, is usually kept negative, or at most weakly positive, as the

plasma properties such as density and temperature can be measured in the low voltage

range with a small collected ion current. In this work, a cylindrical probe (ED tether)

is place in a space plasma with a highly positive bias. The consequence of such a

highly positive bias is the following; hypersonic ion flow breaks the symmetry of the

ion distribution and creates an ion "caustic" line and a wake, which also changes

the electron distribution. As for electrons, in the case of a negatively biased probe,

the magnetic field does not modify the equilibrium of a gas because almost the full
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Maxwellian distribution is populated. This is not the case for the highly positive

bias. This work is believed to be the first numerical and theoretical work on a highly

positive cylindrical probe in space.

In Chapter 2, relevant previous work is introduced. In Chapter 3, the numerical

method (PIC) and the techniques used in simulations are explained. In Chapters 4

and 5, results from simulations are presented. In the simulations, a set of plasma pa-

rameters is chosen as a nominal case and several other cases with different parameters

are computed in order to see the effect of the changed parameter. In Chapter 6, we

discuss the results. The prediction of current collection in the ProSEDS experiment

is given. In the final Chapter, conclusion and suggestions for future work are listed.

1.6 Conclusions of Background Section

Electrodynamic Tethers are considered to be a high-efficient, budget-saving alterna-

tive propulsion system for station-keeping, orbit-raising or de-orbiting purposes. In

theory, we don't need any fuel which would be necessary for a conventional chemical

or electric propulsion device. And we can consequently save several shuttle flights to

refill the fuel (at least in comparison to chemical propulsion), which would save a lot

of money.

The concept of the EDT is based on the utilization of the orbital velocity of

a spacecraft and the Geomagnetic field. The cross product of the velocity of the

spacecraft, v and the magnetic field, B, generates an electromotive force, Eemf, along

the EDT, giving rise to a potential difference between the two ends. One end of the

tether is somehow kept at a positive potential, either by the motion-induced EMF or

by the power supply. By placing an electron collector at the end of positive potential,

the EDT can collect electrons and the EMF drives them down to the spacecraft as a

current. We can recharge a battery using this current. However, the current interacts

with the Geomagnetic field and generates the Lorentz Force. This Lorentz Force acts

as a drag to slow down the spacecraft. In short, the EDT is converting the spacecraft

orbital energy into electrical energy. This is the Power Generation Mode of EDTs.
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In order to put into practice the EDT technology, we still need to solve several

problems. One of them is the Current-Voltage characteristic of an electron collector.

There exist some theories. When the radius of the electron collector is comparable to

or smaller than the local Debye length, current collection is limited by the Orbital-

Motion-Limit (OML). OML is the upper limit of the current collection in the steady

collisionless uniform plasma. When the radius of the electron collector is much larger

than the electron gyroradius, current collection is under the effects of the magnetic

field. Parker-Murphy theory provides the canonical upper limit in such a situation.

TSS-1/R operated in this regime.

Sanmartin, Martinez-Sinchez and Ahedo [8] proposed a bare EDT, which collects

electrons on a part of the EDT itself without a big spherical collector as used in

TSS-1/R. The idea is based on the fact that among two upper limits associated with

a large radius and a small radius of collectors, OML is more efficient than the P-M

limit. The radius of a typical EDT is of the order of a few mm, which is about the

same as the Debye length in the ionosphere where EDTs are applied. It is therefore

in the OML regime.

The calculation of Current-Voltage characteristics of a Bare EDT does not seem

straightforward, as the results of TSS-1R imply. The steady-state analysis with no

magnetic field would lead to the upper limit of the OML. However, as observed in

the TSS-1R experiment (a spherical collector), enhanced current collection may be

possible even in the case of a cylindrical collector (a bare EDT). The OML theory is

for a non-flowing, non-magnetized plasma, whereas in the ionosphere, the bare EDT

will experience both flowing and magnetic effects. These effects make the analytical

prediction very difficult, and the OML theory is good only for an order-of-magnitude

estimate. The purpose of my work is to find out the C-V characteristics of a Bare

EDT under flowing and magnetic effects, and understand the underlying physics with

the help of computer simulations.
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Chapter 2

Previous Research

2.1 Introduction

This chapter deals with the history of Electrodynamic Tethers (EDTs) in a more

physically and mathematically correct manner than Chapter 1. First we introduce

theoretical works which are related to the current collection by probes in a collisionless

plasma. Some of them were done as early as the 1920's. The next section deals with

experimental works both in space and in laboratory. The final section in this chapter

deals with previous computational works on the electron current collection by EDTs,

or more generally on Langmuir Probe current collection.

2.2 Theoretical Works

In this section, I pick up some of the important works in the history and discuss their

relevance to EDT technology.

Theories for current collection by a cylindrical or a spherical probe are still incom-

plete. Especially when magnetic effects, with or without plasma flow, are present,

the problem becomes very involved and formidable. Sanmartn[14] and Laframboise

and Sonmor [21] did a very good job in reviewing older theories. In what follows,

I will write a brief summary of Langmuir probe theory with some derivations of

fundamental formulae such as the OML and Parker-Murphy.
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2.2.1 Mott-Smith & Langmuir (1926)

Orbital Motion Limited (OML) current Unmagne-

tized plasma

We can call the work by Langmuir et al [10] the pioneer of Langmuir Probe Theory as

the choice of name indicates. Considering its historical importance, I follow what they

did in their paper in Appendix A. In the paper "The theory of collectors in gaseous

discharge" (1926, Physical Review) [10], Langmuir and Mott-Smith derived general

formulae for the current collection by spherical and cylindrical probes. They applied

two equations of conservation, namely energy conservation and angular momentum

conservation. It is assumed that the potential field is symmetric, i.e. # = #(r). Those

equations are applied at points at r = r (on the surface of a probe) and r = a, which

is the "edge" of the sheath, outside of which the plasma is totally undisturbed. Since

the presheath where the quasi-neutrality prevails but the plasma potential is different

from that at infinity extends practically to infinity, the limit of a -- oc was taken to

get general formulae.

2.2.2 Laframboise & Parker (1973)

OML current without the conservation of angular mo-

mentum

In 1973, Laframboise & Parker [19] derive the OML, equations (2.3) and (2.4) or

identically equations (A.28) and (A.30), without using the conservation of angular

momentum. Their argument is the following. In a steady uniform plasma, collisionless

orbits, if traced back to oc, connect to a uniform isotropic velocity distribution there

(mostly Maxwellian) and hence their direction is unimportant. Since they retain

their local energy, we therefore know the velocity distribution at points on these

orbits. This argument yields the result that in the OML regime, i.e. when all orbits

from a probe can be traced back to oc, we know the distribution function on the

probe. The only requirement is that all positive energy orbits actually connect to oc,
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which they fail to do if the sheath is thin.

When the distribution at oo is Maxwellian, the distribution on the probe which has

positive charge #p, is also Maxwellian except that particles corresponding to negative

total energy jmew 2 + q#p < 0 are excluded. The current density into the probe is

given as,

j = e w cos Ofedw (2.1)
Jf~ Me W mew-Ie~p>0/oo oo0 p r/2

= e '0dw1  ] W ifeW1 cos 2 6dOdw1  (2.2)
J-oo J 2e/me -, /2

oo oo+ ekoerfc(23
enoo Loo kTe# 2 (2.3)

2 V i k -ooenooE0 0  epk
T (2.4)

2 2xfr kT00

since, in the limiting form, X -+ oo, we have

erfc(x) = 1 - erf(x) = > j e_ 2 dt (2.5)

1 eX (2.6)

where eoo is the random thermal velocity given as

zoo= 8kToo (2.7)

Therefore, when eO >> 1, the current density (2.4) becomes

eno 2eOp (2.8)
7r Me

which is independent of electron temperature, Te. Note that equation (2.3), and

hence equation (2.8) are independent of the shape of the cylinder's cross section (as

long as OML conditions prevails). Also, for a given shape, the current density j is

independent of location within the surface.
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When a three-dimensional problem is considered, the electrons counted in the

calculation of the OML current collection are characterized by

me(w + W + W) - e4, > 0. (2.9)

The 3D OML current is also calculated in the same manner as in the 2D case,

Very important results of their work are ; conservation of angular momentum is

not used, and therefore the shape of the probe is irrelevant.

2.2.3 Sanmartin and Estes (1999)

Both Langmuir and Mott-Smith and Laframboise and Parker calculations are based

on the assumption that the probe is already in the OML regime. Sanmartftn and

Estes calculated the limit of the probe radius for the current collection to be in the

OML regime, by solving Poisson's equation with the right-hand-side term calculated

by taking the integral of the distribution function in (J, E) space, where J is angu-

lar momentum and E total energy. The Maxwellian distribution was taken for the

distribution function.

Poisson's equation in the cylindrical coordinates for the potential #(r) is

idr6 ) ~e z (2.10)
r dr drKT nx~ nw~

where ADi is the ion Debye length and ADi= ADe Ti/Te. with boundary conditions

# = #p at r = R (the probe surface) and # -+ 0 as r -+ oc. For the e#p >> KTi, KTe

the repelled-particle (ion) density, ni, is given by the simple Boltzmann law,

ni r no exp e) (2.11)

The electron density, ne, is then expressed as an integral of the undisturbed Maxwellian
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Figure 2-1: Region of integration for the calculation of current collection in (J, E)
space.

distribution function over appropriate velocity ranges.

ne f f
noo JJ

exp(-E/ITe)dE dJ

2IrKTe J,2(E) - J2'
(2.12)

where J = mer wo and Jr(E) = 2mer 2 [E + e#(r)].

The domain of integration in equation (2.12) depends on r due to the electron

capture at the probe and the electric field. For an incoming electron with positive

total energy, E > 0, to actually reach a point, r, w must be positive throughout the

entire range, r < r' < oc. This condition is given from (1.3) as

m22 = 2J (E)- 
2 (2.13)

Since for an incoming electron, J is a constant, the range of integration for the given

energy is

0 < J < J,*(E) = minimum(J,,(E); r < r' < oc). (2.14)
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Figure 2-2: Graphical criterion of potential profile for the OML current collection

If J,*(E) is different from J,(E), those electron in J,*(E) < J < J,(E) never reach r,

and must be excluded from the integral in (2.12). For an outgoing electron with the

positive total energy, E, the range of integration of J becomes

(2.15)

Electrons in the range 0 < J < Jk(E) have been captured by the probe.

The current to the probe is obtained easily as

2e#$ -pF00  dE -E )I 2RLenoo V exp (
me O KTe KTe

J (E)

JR(0)
(2.16)

The domain of integration in (J, E) space is shown in Fig. 2-1. Current is maximum

under the condition Jk(E) = JR(E), for 0 < E < oo [no potential barrier for just
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radius R], giving rise to the OML current. With E ~ rTe << e#, we have JR(E) ~

JR(0), equation (2.16) giving,

IOML ~ 2RLen, 2e#p/me (2.17)

The condition for the OML regime to hold, J (E) = JR(E) for 0 < E < oo,

requires the potential to satisfy

R 2#, < r 2#(r)(R < r < oo) (2.18)

Condition (2.18) can be illustrated in a (#, #,R 2/r 2 ) diagram (Fig. 2-2). The profile

for R = Rmax would just touch the diagonal, as in the case of c. Profiles a and b

would lie in the OML regime, but not d.

Finally the potential distribution in the OML regime was calculated by substi-

tuting the current obtained above in the Poisson equation in the sheath layer and

matching the boundary condition with the outer layer in an asymptotic form. In do-

ing so, it was also shown that the asymptotic solution of the potential is in the form of

# ~~ a#,(b - In r) (a and b are constants determined by the boundary condition with

the outer layer), indicating that the high bias makes space-charge effects negligible

within some neighborhood of the probe.

2.2.4 Parker-Murphy theory (1967): Magnetized Plasma

In space, there is Geomagnetic field. It is small (B - 0.3G), but its effect is significant.

One of the first major works dealing with magnetic effects on probe current collection

is by Parker & Murphy [24]. They derive an upper bound of current collection by a

spherical probe using canonical angular momentum. They assume negligible thermal

effects and very high probe potential. The calculation of upper bound of a spherical

current collection with thermal effects is treated by Rubinstein & Laframboise (1982)

[39]. An infinite cylindrical case was done by Laframboise & Rubinstein (1976,1978)

[30, 38]. The brief derivation of Parker-Murphy theory is as follows
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Canonical angular momentum is derived from the Lagrangian. The Lagrangian is

given as

L =-Amv2 ±eA*-6- e# (2.19)
2

where A and # are the vector and scalar potentials of the electromagnetic field. In

cylindrical coordinates, this becomes

Lagrangian :L = 1mr2 _ eo + eA -.2

Velocity := (i, re, z)
Vector potential :B = V x A

When A and # are independent of 0, we have for B= Bi constant,

1id
B= 1 (rA) (2.20)

r dr
1

Ao(r) = -rB (2.21)
2

Thus the Lagrangian becomes

=mW+r 2 ) 1 2
L = -(r2+r 202 + i2) + -er BO - e# (2.22)

2 2

Since the Lagrangian is independent of 6, one constant of the motion, the canonical

angular momentum is obtained by

L 12
q = - = mr20 + _er2B (2.23)

00 2

= mr2( + 'C) (2.24)
2

which corresponds to equation (10) in the paper of Parker and Murphy. we is the

electron cyclotron frequency.

Another constant of the motion is the energy, given as

= ( 2 + 2r
2 02 ) -e#(r, z) (2.25)

2

which is equation (11) in their paper.
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Eliminating # from these equations, we have

r2 2q - mwer 2( 2 E E - (.2 + i2)
2r 2m m

2
< -- (E + e#) (2.26)

m

For 9 = #2 and r = ro, we have

q = r2(# + ')= r2 (#x + 5). (2.27)
2 2

Substituting this into (2.26) and taking a square root, we have

(r2 - r 2 )W + 2rj#2 2(E + e#) 1/2

2r 2  mr2

On the probe, i.e. r = a, # = #o, this becomes

(r2 - a2)wc + 2r 2 (2(E + e~o) 1/2

2a2  ma2  (2.29)

Thus the PM limit is given as

r 0e .C 1+ (8(E+eoo)) 1/2 (2.30)

a 2 <wc + 26 ma22 j

Since #. << we and E << eo, this becomes a familiar form of Parker-Murphy law.

e0 < 1 + (2.31)
a 2  ma 2W2

The current collection is calculated by multiplying the thermal current density at

infinity by 7rro. Along the B-field, a tube of radius ro is extending to infinity. All

electrons inside this tube are considered to contribute to the current collection. Note

that this analysis does not require the specification of the potential form. The only

assumption used is that # is independent of 9.
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2.2.5 Laframboise & Rubinstein (1976,1978,1983)

Infinite cylindrical and spherical probes in magneto-

plasma

In general, it is very difficult to find the equivalence of Parker-Murphy theory for a

cylindrical probe, because, despite the two dimensional geometry of the probe, the

particle motion is highly three dimensional. In terms of OML, when B = 0, all

particles with E1 = jmevi > 0 are considered in the calculation of density, current

density ,etc. in the OML regime. However in the presence of magnetic field, there will

be E > 0 orbits which intersect the probe repeatedly due to the gyration. In reality,

a particle on this orbit is collected by the probe only once. All the other sections of

the orbit correspond, in terms of Laframboise & Parker (1973), to those which are

traced back to the probe again, not to oo.

In order to calculate the current collection to an infinite cylindrical probe, Lafram-

boise & Rubinstein [30, 38, 39] assume that electric potential changes within a mean

gyroradius a are small enough (the sheath is thick enough and B is large enough)

so that all orbits can be approximated by helices between any two intersections with

the probe. As in the OML theory, any orbit connecting to the probe from oc will

carry a population given by the distribution function at oc (Maxwellian). Therefore

the problem of calculating current becomes a detailed study of the intersections of

helices with the probe. Laframboise & Rubinstein solved the equation of motion of

an electron, mv = -ev x B for each orbit, checked if it intersected the probe and

calculated the current to the probe numerically.

They also calculated the adiabatic effects on current collection. The abovemen-

tioned approximation is valid in the limit d < Le, where L. 1 = |#- 1 V#|. However,

if this limit is approached, the limit , < LE will in general be approached, where LE

is the characteristic scale of changes in the probe sheath electric field. In the latter

case, the guiding-center approximation for particle motion is valid, and the quantity

m ' + q# becomes an adiabatic invariant, i.e. the kinetic energy gain of incoming

particles goes entirely into increased speed along B. As a result, a more attracting
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probe potential can alter current collection only by increasing the pitch of orbits near

the probe. This leads to more particles bypassing the probe, thus missing it. Current

will be decreased, yielding a negative-resistance characteristic.

3

2

0 P0

1

0. 5

P

Figure 2-3: Current i = I/[rpnoo y/27rTe/m] vs probe potential #, = e#,/ITe for

various values of # = / = ryeB(2/7rmkT) 1/ 2 (a =mean gyroradius, r, =probe

radius)

In Figure 2-3, the increasing and decreasing lines represent upper bound and

adiabatic limit currents from the calculation of Laframboise & Rubinstein [30], with

the cylindrical OML current. Although this current is no longer an upper bound if

# # 0, it still represents an upper bound for the limit when electric forces on particles

are much larger than thermal forces, i.e. Xp > 1. What we can notice here is

that, as the probe potential becomes larger, the discrepancy between upper (OML if

p > 1) and lower limit gets larger. Then a question arises of how the actual current

collection behaves between these limit as we increase the probe potential. Laframboise

and Sonmor (1993) [21] explain that when #, is small, the actual current is expected
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to approach the lower adiabatic-limit current, since the adiabatic-limit condition is

that changes in the probe sheath electric field are small over an average particle

gyroradius. Then as 4, becomes more positive, adiabatic-limit conditions will break

down, and collected currents will rise toward the upper-bound values. Laframboise

also mentioned that this "N-shaped" current-voltage characteristic was seen in the

data from spherical (not cylindrical) electrostatic probes on the University of Iowa

Plasma Diagnostics Package flown on several space shuttle flights. (Laframboise and

Sonmor in private communications with G.B. Murphy, 1983).

Laframboise and Rubinstein also calculate the current collection to a spherical

probe in magnetoplasmas (PM theory) with thermal effects. They used the same

technique used in the case of cylindrical probes. The result was that for small probe

potentials, they obtained the canonical upper bound as in the spherical case, and the

adiabatic-limit "negative-resistance". The difference from the spherical case is that

for large probe potentials thermal effects remains evident for small O's.

2.2.6 Laframboise (1997)

After TSS-1/R : Magnetic presheath

Since results from the TSS-1/R fights revealed the current collections to the spherical

probe to be 2 - 3 times higher than the upper-bound Parker-Murphy model, there

have been many theories trying to explain the enhancement of the current collection.

The strong new effect here is meso-sonic flow around the tether. It is not surprising

that new phenomena would arise.

Laframboise (1997) [22] introduced the concept of "magnetic presheath", which

extends very far from the spacecraft in both directions along the geomagnetic field, an

ion-enhancement region, also quasineutral, which is located forward of the magnetic

presheath and concentrates the electron flux passing into it, and an elongation, along

the drift direction, of the electron collection area perpendicular to the geomagnetic

field.

The steady-state version of his theory leads to an upper-bound current collection
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Figure 2-4: Comparison of the Rubinstein and Laframboise [1982] (solid line) and
Parker and Murphy [1967] canonical upper-bound values for dimensionless attracted-
particle current I as a function of dimensionless probe potential #,, for various values
of the dimensionless magnetic field strength #. The curve for # = 0 is the Mott-Smith
and Langmuir [1926] orbit-limited current result [21].

prediction of 6.4 times the Parker and Murphy (1976) current, independently of sub-

satellite voltage. The relative ion drift speed U, even though small compared to 've,

nonetheless turns out to be crucial in obtaining this increased current. This is be-

cause U >> VTi, so the ion flow is actually hypersonic, and shows strong new features.

They also modified this theory to account partly for effects of plasma instabilities.

The ion-enhancement region violates the Bohm criterion for stability locally unless

electron density is enhanced as well. The two-stream instability in the magnetic wing

was considered in order to account for the electron density enhancement.

Laframboise's account of the enhanced current collection was as follows; if both

the Debye length and the average ambient-electron gyroradius of the surrounding

plasma are much smaller than the spacecraft or probe, the sheath surrounding it will
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be of limited extent, but a magnetic presheath will also form, defined as a quasineutral

electric-potential disturbance which extends very far in both directions (See Figure

2-5).

B
Region containing .............
electrons to be
collected

Relative plasma drift

Region containingS
electrons to be e-
collected

Electron
depletion

region

Electron

depletion
.w NNWregion

-% ..

Figure 2-5: Magnetic presheath proposed by Laframboise [1997]

Within the magnetic presheath, there will be a depletion of electrons whose veloc-

ity components along the geomagnetic field B are directed away from the spacecraft.

The magnetic presheath therefore will be a region of positive potentials.

If this depletion is almost complete, the electron density in this region will be

decreased by about half, and in order that quasineutrality be attained, potentials

within this region must be large enough to repel about half the ions from it. The

drift energy of 0+ ions moving at U = 8km/sec is 5.35 eV, so we therefore expect

that potentials within the magnetic presheath will be of the order of 5V.

The mechanism of steady-state enhanced current collection is that electrons in the

magnetic presheath accelerate due to the elevated potential (- 5eV). This accelera-

tion of electrons elongates the electron-collection region (See Fig 2-5). This increase

of the collecting area from the Parker-Murphy model turned out to be by a factor
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which approaches 2 in the limit.

2.2.7 Cooke & Katz (1994,1998):

Plasma heating in the presheath

Plasma heating is taken into account in the work by Cooke & Katz (1994,1998) [4, 2]

for the enhanced current collection. This model postulates the heating that occurs as

electrons fall through the potential necessary to reflect the ram ion while satisfying

the Bohm sheath stability criterion. The Bohm sheath stability criterion claims that

throughout the shielding region surrounding a probe the sign of the charge density be

opposite that of the probe. Otherwise the Bohm unstable sheath suffers fluctuations.

Katz et al (1994) demonstrated that magnetically constrained electrons can not match

even a constant ambient ion density in the presheath and it was postulated that this

Bohm unstable sheath suffers fluctuations sufficient to establish an unmagnetized

electron fluid. It was also assumed that electrons in the presheath are trapped by

e-

e~
B

+V Wake

Heated presheath

Figure 2-6: Plasma heating in the presheath due to the Bohm instability [2]

the fluctuations long enough to participate in the collective oscillation so that the
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fluid description may be reasonable. They derived from fluid equations the relation

between 6Te (electron temperature increment) and 6V (local potential increment in

the presheath) as 6Te = joV. In the ionosphere, the ion ram energy is of 5eV, leading
5

to 6Te ~ 2eV. The corresponding current enhancement is shown to be 2.5 times P-M

current (See Fig. 2-7)
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Figure 2-7: Parker-Murphy current collection with heated presheath

Yet unknown in this theory is the mechanism generating the scattering and the

scattering frequency. And also the mechanism of trapping electrons in the presheath

is left to be studied.

2.3 Experimental Works

Actual experimental tests of Langmuir Probe theory often encounter difficulties in the

comparison with theoretical values. There are many effects which inevitably modify
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the plasma settings and make it difficult to single out the probe phenomena. For

example, end effects of cylindrical probes, asymmetric geometries of spherical probes

due to the supporting prop and the difficulties in the measurement of ambient plasma

parameters are major causes. And also laboratory simulations of space plasmas in-

evitably bring about the wall effects of the vacuum chamber. The scientific community

of experimental plasma physics is active in controlled electron beam experiments in

space and laboratory [23]. Their studies are often focused on the parametric study

of the interaction between beams and the plasma, i.e. the boundaries in parametric

space between single-particle characteristics and collective beam-plasma effects. So

far, I have not found many works on Langmuir Probe experiments set in space plasma

or in laboratory simulations without beam injections for positive large bias. In this

section, I briefly touch on a few of those works on the ground and space experiments

of passive Langmuir probes (without beams).

2.3.1 Gilchrist and Bildn:

Electron current collection by Bare EDT (Ground Ex-

periment)

Electron current collection by a cylindrical probe was measured in laboratory exper-

iments by Gilchrist & Bilin [29]. They use a Hall thruster (P5 thruster) as a flowing

plasma source. The thruster was run on xenon propellant (mi = 2.18 x 10- 2 5 kg). An

estimate average bulk directed energy was 21(eV). Other plasma parameters are ;

electron temperature Te = 0.8eV, probe radius r, = 0.14mm and the Debye length

ranges 1 ~ 3 times probe radius.

The data showed that at voltages (> 60V) somewhat above the estimated energy

of the incoming beam of ions (21(eV)) collected currents were seen to be enhanced

over the OML [31], but only slightly (Figure 2-8).
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Figure 2-8: Experimental Data and OML of Bare EDT's

2.3.2 Tether Space Experiments

Since the 1960's, there have been several space experiments using tethers. Some were

to investigate the dynamics of the tether, others to investigate the electrodynamics

of the ED tether. Table 2.1 shows the list of known space tether missions. The first

demonstration of a nonconducting tether took place in 1967 with Gemini II in low

Earth orbit illustrating gravity gradient stabilization.

The first mother-daughter tethered rocket experiment was conducted in 1980 by

the Institute of Space and Astronautical Science (ISAS) and Utah State University

using a Japanese sounding rocket. The experiment was repeated in 1981 and 1983.

The latter experiment was designated as CHARGE-1 (Cooperative High Altitude

Rocket Gun Experiment). A reflight of the CHARGE payload (CHARGE-2) was

successfully carried out in December 1995. In CHARGE-2, electron beams from 0.5

to 48mA at 1keV were injected from the mother payload and voltage up to 500V was
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Name Date Orbit Length Comments
Gemini 11 1966 LEO 30 m Spin stable 0.15 rpm
Gemini 12 1966 LEO 30 m Local vertical,

stable swing
H-9M-69 1980 Suborbital 500 m Partial deployment
S-520-2 1981 Suborbital 500 m Partial deployment
Charge-1 1983 Suborbital 500 m Full deployment
Charge-2 1985 Suborbital 500 m Full deployment
ECHO-7 1988 Suborbital
Oedipus-A 1989 Suborbital 958 m Spin Stable 0.7 rpm
Charge-2B 1992 Suborbital 500 m Full deployment
TSS-1 1992 LEO <1 km Electrodynamic,

partial deploy, retrieved
SEDS-1 1993 LEO 20 km Downward deploy,

swing and cut
PMG 1993 LEO 500 m Electrodynamic,

upward deploy
SEDS-2 1994 LEO 20 km Local vertical stable,

downward deploy
Oedipus-C 1995 Suborbital 1 km Spin stable 0.7 rpm
TSS-1R 1996 LEO 19.6 km Electrodynamic power

generation and science
TiPS 1996 LEO 4 km Long-life tether
ATEx 1999 LEO <30 km Incomplete deployment

Table 2.1: Summary of known space tether missions [32]

applied between the two payloads with and without the beam injection [35].

In the 1990's, several important in-situ tether experiments took place. Those

included the retrieval of a tether in space [Tethered Satellite System-1 (TSS-1)],

successful deployment of a 20km tether in space [Small Expendable Deployer System-

1 (SEDS-1)], closed loop control of tether deployment (SEDS-2), and operation of an

electrodynamic tether (EDT) with tether current driven in both directions:power and

thrust modes [Plasma Motor Generator (PMG)].

Although the TSS-1R mission was not completed as planned, the Italian satellite

was deployed to a distance of 19.7 km-making the TSS-1R the largest man-made

electrodynamic structure ever placed in orbit. This deployment was sufficient to
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generate high voltages across the tether and extract large currents from the ambient

plasma. These voltages and currents, in turn, excited several space plasma phenomena

and processes of interest.

One of the significant findings in TSS-1R is the enhancement of the current col-

lection. Currents collected by the satellite at different voltages exceeded the levels

predicted by Parker-Murphy theory, which predicts the upper limit of current col-

lection in the steady condition, by factors of up to three. Parker-Murphy theory is

explained in section 2.2.4.

2.4 Computational Works

Numerical works for collisionless plasma have been performed since 1960's. When rea-

sonably fast CPU's and Memory space were not available like these days, simulations

traced many particle orbits from infinity, where the distribution is Maxwellian, to a

probe according to the potential field, calculated plasma density, and thus derived

a new potential distribution. This procedure was iterated many times till the field

quantities converged. However this method tends to miss the plasma fluctuations,

since each particle trajectory from infinity to a probe was calculated based on the

fixed potential field for each iteration.

Recent computer technology allows us to use many particles at the same time

and calculate the potential field simultaneously, those allowing self-consistency in

the presence of unsteady effects, such as plasma fluctuations. There are still many

practical problems in this method yet to be solved. In the followings, I introduce

some works using the abovementioned methods.

2.4.1 Laframboise (1966)

In 1966, in his Ph.D. thesis, Laframboise [18] calculated "exact" solutions of current

collection by spheres and cylinders in an unmagnetized quiescent plasma. He assumed

Maxwellian distribution at infinity and traced many particles to fill the computational

domain. In tracing particles, he assumed symmetry of the field quantities and applied
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energy conservation and angular momentum conservation. As discussed in Section

2.2.1, when the radius of the probe is comparable to or smaller than the Debye

length, his calculation gives rise to the OML current. In addition, he also calculated

the current collection outside the OML regime.

In this calculation, mass ratio was unimportant, since the repelled particles (ions)

have a Maxwellian-Boltzmann distribution everywhere except for a cut-off tail due

to the presence of the probe. However as the probe potential was kept at 25 times

higher than the plasma energy, the effect was totally negligible. Since the density of

ions, derived from the Maxwellian distribution function, is independent of mass, an

arbitrary mass ratio was justified.

Results are shown in Figure 2-9
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Figure 2-9: Electron current collection to a cylindrical probe inside and outside of
OML regime. Solid lines are Laframboise results for Te/Ti = 0, 0.5 & 1.0.
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2.4.2 Godard & Laframboise (1975,1983)

In 1975, in his Ph.D. thesis Godard [27] calculated the velocity-dependent current

collection of the spherical and cylindrical probes. His calculation [28] covers wide

ranges of parameters such as the probe radius to Debye length ratio, Rp/AD, nondi-

mensional probe potential, = e#p/KTe, and ion-to-electron temperature ratio Ti/Te,

where e and K denote the electronic charge and the Boltzmann constant. The sheath

distortion has not been taken into account.

2.4.3 Usui (1993)

Usui used Particle-In-Cell (PIC) Method to calculate the current collection by a

spherical probe, modeling the cases of TSS-1/R. PIC method has been established as

a tool to investigate particle-field interactions in a collisionless plasma [36]. A brief

introduction to PIC method is given at Section 3.1.

Usui [37] used a two-dimensional electromagnetic code and a three-dimensional

electrostatic code. He successfully simulated the Buneman instability near the probe.

However the relation between the instability and the current enhancement was left

unclear.

2.4.4 Onishi (1998)

In my Master thesis, I introduced a quasi-neutrality condition to improve the quanti-

tative results of PIC method [33]. The importance of this boundary condition stems

from the fact that some electrons are absorbed by a tether. I assume here that no

ion is absorbed by the tether, because of its very high positive potential. Figure 2-10

illustrates the overall flow of electrons and ions. Due to this partial absorption of elec-

trons by the tether, the electric potential at the computational outside boundary can

not be zero with respect to the ambient plasma. If it were zero, the electron density

would be less than the ion density, and thus it would violate the quasi-neutrality out-

side the sheath. The electric potential at the outside boundary should be non-zero so

that the quasi-neutrality is maintained except for a wake region even with the partial
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absorption of electrons. In order to calculate a local potential on the computational

boundary, an equation of the quasi-neutrality is solved and non-zero potential at each

boundary point is derived. Details are given in the next chapter.

Figure 2-10: Electron and Ion Flows
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2.5 Conclusions on Previous Works

There have been many works on the Langmuir probe theory for various plasma condi-

tions. The pioneer work is that of Lan gmuir et al in 1920's. He and his colleagues de-

rived the Current-Voltage (C-V) characteristics in a quiescent unmagnetized plasma,

by using energy conservation and angular momentum conservation. They also derived

and named the Orbital-Motion-Limited (OML) current, which is the upper limit of

current collection in a steady collisionless isotropic plasma.

In 1973, Laframboise and Parker re-derived the OML current collection without

using the angular momentum conservation. Only a particle's total energy is taken into

account in the their derivation. Their work eliminated a strong restriction imposed

by the angular momentum conservation, that is the symmetry of potential field. This

argument makes the OML theory applicable to any kind of the probe shape.

A formula for current collection to a spherical probe which includes the magnetic

effects was first derived by Parker and Murphy in 1967. They derived an upper bound

to current collection by a spherical probe using canonical angular momentum. They

assumed that thermal effects are negligible and the probe potential is very high.

Laframboise and Rubinstein tried to derive the cylindrical version of PM theory.

However, the fact that the particle motion is highly three dimensional despite the

probe's two dimensional geometry forced them to introduce a strong assumption that

electric potential changes within a mean gyroradius are so small that all orbits can

be approximated by helices. This assumption led them to lower and upper limits of

current collection. As far as the upper limit is concerned, it was shown that the OML

is still the upper limit for a high probe potential.

Laframboise and Rubinstein also added the thermal effects to the PM theory (a

spherical probe) and derived current collection slightly higher than the PM model for

small O's (# =Probe Radius/Gyro Radius).

After TSS-1/R results revealed the enhanced current collections to a spherical

probe, Laframboise introduced the concept of magnetic presheath to account for an

enlarged "tube" in PM theory. Cooke and Katz pointed out the possibility of plasma
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heating in the presheath due to the Bohm instability.

Among many ground and space experiments, one of the most important works

is TSS-1R space experiment. TSS-1R revealed that the current collection by a large

spherical probe in the ionosphere is 2 ~ 3 times higher than the previously expected

upper limit. This results indicated the possibilities of particle-field interactions and

plasma heating (instabilities).

The Particle-In-Cell (PIC) method has been established as a tool to analyze

particle-field interactions in a collisionless plasma. Sigh et al, Usui and Onishi have

applied this method to calculate the current collection to a spherical or cylindrical

probe under flowing magnetized plasma conditions. They have obtained satisfactory

qualitative results such as E x B drift, wake region, magnetic presheath etc. However

further work is still required to obtain a good quantitative approximation and thus

explain the physics of the enhanced current collection.
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Chapter 3

Computations

To study in detail flowing effects as well as magnetic effects on the electron current

collection by a bare tether, a two-dimensional Particle-In-Cell (PIC) code has been

developed, which treats electrons and ions totally kinetically. Although the PIC

method has been established to study plasma physics and has been applied to many

researches, it still has many technical issues which have to be resolved. In this chapter,

a brief introduction of PIC is made, followed by specification of our model and the

explanation of technical issues and their resolution in order for a PIC method to

obtain qualitatively and quantitatively good results.

3.1 Particle-In-Cell (PIC) method

The Particle-In-Cell (PIC) method has been very successful in the simulation of col-

lisionless plasmas. In PIC, many particles are distributed in phase space. That is, a

particle's motion is described by its position and velocity. In kinetic theory, this par-

ticle distribution is defined as a distribution function and governed by the Boltzmann

equation. The Boltzmann equation with no collisional term on its right-hand side is

given as follows. (Vlasov's equation)

Of+ + F f 0 (3.1)
at Ox me Bv
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In an actual computation, the number of particles available is much less than

that in reality. This fact requires us to introduce the concept of a "superparticle",

corresponding to a group of real particles. One superparticle contains many real

particles, and as many particles as another.

To describe the motion of the superparticle, we need to know the velocity and

the force acting on it. The force acting on a superparticle could be calculated by

considering all Coulomb forces caused by the other superparticles. However, this

calculation is computationally too expensive. Instead of doing so, PIC uses a grid

on which Maxwell's equations are solved to give the electric field, which is then

interpolated to the position of each superparticle. As the name "Particle-In-Cell"

implies, in a computational domain, a superparticle moves through a grid or a cell,

regardless of the position of grid nodes. A PIC code method consists of four processes

as described below.

At each time step, the electric charge density on each node is estimated from

the positions of all superparticles. This first process is called "charge assignment".

Then on a grid, the electric potential and electric field are computed. We use a

finite difference method in this second process; especially to solve Poisson's equation,

we use Successive Line OverRelaxation (SLOR). Poisson's equation to relate electric

potential to charge density is

V2= 6P (3.2)

where p = e(ni - ne) is the electric charge density , and the electric field is

E = -V#. (3.3)

if 1B can be neglected.

After computing E on a grid, the electric field is interpolated onto each super-

particle's position, and the corresponding force and acceleration of a superparticle is

calculated. This third process is called "interpolation". The first and third processes

involve different weighting functions in a energy conserving algorithm. When the par-

ticle energy is much higher than the field energy, we can neglect the violation of energy
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conservation and use instead a momentum conserving mover. In our model particle

energy (~ 0.1eV) is comparable to or even smaller than the field energy (25eV at

the tether surface), and therefore it may seem to be better to choose an energy con-

serving mover. In Figure 3-1, time histories of typical electron's total energy, kinetic

energy and potential energy from both algorithms used in our simulation are plotted.

The comparison between these two algorithms shows that the momentum conserving

algorithm is the better choice. Total energy conserving algorithm using the nearest

four points conserves total energy as long as an electron stays within a cell during one

timestep. The "self-force" due to the different weighting functions used in the total

energy conserving algorithm induces some error. Momentum conserving algorithm

conserves the momentum even if an electron travels though a cell boundary. The er-

ror expected in the momentum conserving algorithm for the low electron temperature

originates from the particle-field interaction at long wavelengths [36]. The particle-

field interaction which is expected to happen in our model, e.g. two-stream instability,

is likely to be at wave lengths larger than the computational domain. Therefore, even

with the momentum conserving algorithm, we may expect a sufficiently good total

energy conservation. Our choice for this work is the momentum conserving algorithm.

Paradoxically, the "energy conserving" algorithm does not conserve energy.

20 25 20- 25

Potential EaeW i Potential EneU
Total EneW Total Enew

15 Kinetic Enegy 20 R, 15 - Kineic Energy 20

1015 e10- 15

5 
10 e 50 

10
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Time [Nonalized by Plasma Time rn/o )] Time [Nonralized by Pas Time (2r/w,)

(a) Total Energy Conserving Algorithm (b) Momentum Conserving Algorithm

Figure 3-1: Momentum and total energy conserving algorithms
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Once we know the acceleration, a leapfrog method, the final process, updates the

velocity and position of each superparticle as follows;

v "n),

x(n+1/
2 )new

(n1) qE(n-1/ 2 )old + zM t

- (n-1/2) + (n) t.
old new

(3.4)

(3.5)

This completes one iteration in a PIC calculation.

skematically in fig 3-2.

One cycle of a PIC is shown

Figure 3-2: A typical cycle of PIC

3.2 Specifications of our models

I have developed two PIC codes with different grid systems in order to calculate

current collection to a cylindrical tether, depending on the plasma model that we

elaborate on. The model of a quiescent unmagnetized plasma has been developed in

order to test the feasibility of the PIC method to calculate electron current collection

to a cylindrical probe. There exists an exact solution of this problem [18] with which
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I verify the accuracy of the results obtained with a new boundary treatment that

utilizes the quasi-neutrality condition (Section 3.2.4).

3.2.1 Structured cylindrical grid

Figure 3-3: Cylindrical structured computational grid for a quiescent unmagnetized
plasma

Since the phenomena of a quiescent unmagnetized plasma are axisymmetric, we

chose the cylindrical coordinate grid system. The benefit of using cylindrical coor-

dinates is the ease of coding and applying boundary conditions. The drawback is

that as it is a structured grid, the size of the computational domain is limited by two

numerical conditions; 1) a cell size has to be smaller than the local Debye length, and

2) one cell should contain a certain number of particles in order to maintain a cer-

tain accuracy. The first condition is imposed from the outside boundary. The larger

the domain, the more cells are required in the azimuthal direction. However on the
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surface of the tether, the same number of cells in the azimuthal direction are found.

Accordingly the size of cells adjacent to the tether is so small that each cell can not

contain enough number of particles. Therefore, the use of a cylindrical structured

grid is limited to moderate sizes for the computational domain.

3.2.2 Large Square grid

When the flowing effect is present, the axisymmetric condition on the outside bound-

ary that we used in a quiescent case is no longer valid. There is a wake region behind

a tether and magnetic presheath extending to both sides as we shall see later. These

asymmetric features of plasma flow require the capability of extending the compu-

tational domain in a specific direction. Since slow massive ions are subject to the

fast-moving high potential field due to the tether, the ion distribution is then no

longer Maxwellian. In these circumstances, the hypothetical mass ratio (mi/me = 1)

as in a quiescent unmagnetized plasma should be changed to the real mass ratio

(mi/me = 1860 x 16, corresponding to atomic oxygen ions).

In Figure 3-4, the computational grid used for the computation of a flowing plasma

is indicated. This grid consists mostly of square cells, which enables the fast search of

particle positions and the easy extension of the computational domain, and of a small

number of non-rectangular grid cells around the tether in order to fit the geometry

of the tether surface. All the square grid cells have dimensions as (0.5AD x 0.5AD)

where AD is a Debye length (See Table 3.1). There are 210 cells in the y-direction

and 160 cells in the x-direction in a nominal case. The radius of the tether shown

in Figure 3-4 is one Debye length, that is, the Debye ratio is unity.

3.2.3 Plasma parameters

Typical plasma parameters are shown in Table 3.1. The parameters are taken based

on the actual space environment in which an EDT will be put in practice. Teth-

ered satellites will be orbiting in LEO (100 - 1, 000km) at orbital speed (Utether =

8 x 103(m/sec)), which is faster than the ion thermal speed (ot,i = 7.74 x 102) but
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Figure 3-4: Computational Grid. In the small window, an enlarged view of the grid
near the tether is shown

slower than the electron thermal speed (vt,e = 1.32 x 10'). This condition is called

"Mesothermal condition" (Section 3.2.6). In computation, ions are flowing into the

domain from the left side with orbital speed, plus a small thermal motion. Elec-

trons are assumed to have a Maxwellian type of distribution at the computational

boundary. More details are given in following sections.

In Table 3.2, numerical parameters are indicated. With the concept of a super-

particle, we can reduce the number of particles necessary in a computation without

changing the plasma properties. In Table 3.2, "physical" parameters of the superpar-

ticle plasma are also indicated. Note that plasma parameters such as Debye length,

plasma frequency, etc do not change. For example, plasma frequencies of a real plasma

and a superparticle plasma are the same,

n2 q2g
-q (3.6)

COm co^n
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Electric charge (C) q = 1.6 x 10-19
Electron mass (kg) M = 9.1 x 10-31
Ion mass (kg) M = 2.67 x 10-26

Electron Temperature (eV) Te = 0.1
Ion Temperature (eV) T = 0.1
Electron density (m- 3 ) ne = 1011
Ion density (m- 3) ni = 1011
Debye Length (m) AD = 7.44 x 10-3

Geomagnetic field (H) B = 0.3 x 10-4

Larmor radius (w = vt,j) (m) rc = 2.51 x 10-8
Plasma frequency (sec- 1) w, = 1.78 x 107

Electron cyclotron frequency (sec- 1) we = 5.27 x 106
Electron thermal speed (m/sec) vt,e = 1.32 x 105
Ion thermal speed (m/sec) vt,i = 7.74 x 102
Plasma flow speed (Tether orbital speed) (m/sec) Utether = 8.00 x 103
Tether potential (eV) #p = 25
Radius of tether cross-section (M) rtether = AD = 7.44 X 10-3

Table 3.1: Parameters

where a hat (^) here as well as in Table 3.2 refers to a numerical superparticle pa-

rameter. Computation was performed on a PC with a 1.2GHz Athlon processor and

1.0Gbyte memory. It would take about a week in order to obtain a converged solu-

tion due to the slow ions (See Appendix B). Once the ions establish a density profile

according to the tether potential, it takes on average a couple of days for the electron

density to converge.

In order to obtain a converged ion density profile, a numerical times method is

used [403. For the first few hundreds iterations, a large time step is used for the

ion leapfrog method. Once the ion density is converged for this large timestep, the

timestep is reset to the same value of the timestep used for electrons.

3.2.4 Quasi-neutrality Condition

The quasi-neutrality condition has been introduced by the author to improve the

quantitative results of the PIC method [33]. The importance of the boundary con-

dition stems from the fact that some electrons are absorbed by a tether. No ion is
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Number of particles in a superparticle N, = 200000
Time Step (sec) dt = 0.1 - 0.3 x 7r/w,

Electric charge (C) q = q x N,
Electron Temperature (eV) Te = Te x N,

Ion Temperature (eV) Ti = T x N,
Electron density (m- 3 ) nte = nilN,
Ion density (m- 3) hi = ni/N,
Electron mass (kg) fn = m x N,
Ion mass (kg) M = M x Np

Table 3.2: Numerical Parameters : a hat (^) indicates
a computation

a numerical parameter used in

absorbed by the tether, because of its very high positive potential. Figure 2-10 illus-

trates a conceptual cartoon of the overall flow of electrons and ions. Due to this partial

absorption of electrons by the tether, the electric potential at the computational out-

side boundary needs to be non-zero (mostly positive except for the wake) with respect

to the ambient plasma. Setting the outside boundary potential to be zero would elim-

inate the presheath effect which brings in more electrons from infinity to make up for

the absorption, and it is known to require an unrealistic flux manipulation to keep the

number of particles in the computation from being unstable [20]. In order to obtain

a local potential at computational boundary points, the quasi-neutrality condition is

applied. In the following, the quasi-neutrality condition is explained together with

the formulae necessary for the implementation in the computation

3.2.5 Application of the quasi-neutrality condition

Let 4 be the electric potential at an arbitrary point on the outside boundary. As-

suming that ions are singly charged, we have the quasi-neutrality equation as

(3.7)|ne - nil < ne.
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In the computation, we use this condition in the form of

ne = ni. (3.8)

However this does not allow us to transform Poisson's equation to Laplace's equation

by equating the source term to zero, because the small difference e(ni - ne) is divided

by the small quantity co, leaving V2 # indeterminate. As the plasma approximation

claims, plasma tends to neutralize itself by imposing ne = ni. Therefore we impose

the condition (3.8) on the outside boundary, and solve Poisson's equation inside that

boundary only with a non-zero source term on its right-hand side.

In computation, equation (3.8) consists of four parts; incoming electron density

nr", incoming ion density n", outgoing electron density nout and outgoing ion density

nu'. The incoming particle densities, ni" and ni" are assumed to be in an analytical

form and given as functions of the local potential. Outgoing particle densities are

calculated numerically (Sec. 3.2.12). Equation (3.8) is then rewritten as

ni(# +n""t = ni"(#) + no"u. (3.9)

3.2.6 Meso-thermal Condition

Before we derive the formulae for the incoming particle densities, ne"(#) and n(

we need to be aware of a condition called Meso-thermal condition. In LEO, an ED

tether will be in an realistic orbiting condition under which the electron thermal

speed, Vt,e, is much faster than the tether speed, Utether, whereas the ion thermal

speed, et,i, is much slower (Table 3.1).

Vt'i << Utether << Vt,e. (3.10)

In words, ions are traveling supersonically and electrons are traveling at a low subsonic

speed. By "flowing plasma" in the following sections, we mean that the plasma

is under the meso-thermal condition defined by (3.10). Incidentally, a "quiescent
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plasma" simply means that Utethe, = 0.

3.2.7 Incoming Electron Density, ni"(#)

At the computational outside boundary, electrons from infinity are assumed to have

a Maxwellian distribution function for a quiescent plasma U = 0, and a shifted

Maxwellian for a flowing plasma U = Utethe, # 0.

me 3/2 me((wx - U) 2 + W2 + W) _ e(
fe (w) = noo (7r, exp ( ,(3.11)

The shifted Maxwellian (U # 0) is not exactly correct because the angle-average of a

shifted Maxwellian is not a Maxwellian. However, under the meso-thermal condition

(3.10) in which the electron thermal speed is many times larger than the flow speed

(about 20 times for T = 0.1(eV)), the approximation may be good enough. As

shown later, that the calculation of incoming electron density and flux for different

U's shows a small dependence on U may support the use of the distribution function.

Incoming electron density is then obtained by integrating the distribution function

(3.11) in velocity phase space. In integrating the function at a point where a local

potential is positive, # > 0, certain electrons need to be excluded from the calculation

because they can not exist, coming from infinity. These electrons are different in a

2-dimensional case (defined in x-y plane) and in a 3-dimensional case, characterized

by

S + I2 < 2e (2-D) (3.12)

e#I : 2+ W2+W < <; (3-D) (3.13)

The 3D case simply means that at a point of positive potential, #, there exist only

electrons which have a total energy more than the difference between that point and

infinity. On the other hand, in the 2D case, even if an electron has a total energy

larger than the difference between the electron position and infinity, the electron may

not exist for the following reason.
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The conservation of the electron total energy is given as

1 2 2

2me (w2 + w ) - e# = E. (3.14)

In the 2D case, there is no mechanism to change wz. Therefore constants are the

total energy, E, and wz. Thus we can define a new constant, E' = E - jmew and

get
1
2Me(Wx + w ) - e# = E'. (3.15)

In order for the electron to come from infinity, that is, to exist at infinity (# = #0 =

0), E' needs to be positive. Therefore electrons for which E' is negative can not exist

at a point of positive potential, #, and characterized by (3.12). If we reverse the

trajectory of an electron with an enough total energy, w + W wp > 2e but notY Z me

in x-y plane, w2 + w < , from the positive potential point, the electron wouldX Y me'

wander around in x-y plane and would not go to infinity. If wz # 0, the electron

would go to z = ±oo, which is not defined as "infinity" because #(x, y, oo) # 0 in the

2D problem.

The difference between the 2D and 3D calculations is seen in Figure 3-5, where

electrons excluded in the calculation of the incoming electron density are indicated.

It is seen clearly that more electrons are excluded in the 2D calculation than in the

3D calculation. In Figures 3-6 and 3-7, calculated incoming electron densities are

shown. In each figure, four different plots for different sides of the computational

grid (Figure 3-4) are shown. At each side, the effect of the plasma flow on the density

calculation is different. At the ram side (right side, 0 = 7r in the figure) the shifted

distribution function (3.11) can be rewritten as

me 3/2 e me((wn - Ucos 0)2 + (wt + UsinG) 2 + W) _e
fed)= no 2r~ expKT2,VKTeI ITe

(3.16)

where wn and wt are the normal and tangential components of electron velocity at
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Figure 3-5: Electrons in velocity space. Electrons with velocities inside indicated

regions, cylinder (2D,left) and sphere (3D,right), are excluded in the calculation of

the OML current.

the boundary and are given as

wn = wxcosO+wY sin0

wt = -wsin6 +wy cos0

Distribution functions in terms of (wn, Wt, w,) at other sides of the domain are ob-

tained by substituting the value of 0 indicated in the figure (0 = 0 at the wake side,

for example).

From Figures 3-6 and 3-7, it may be understood that the effect of the plasma

flow on the distribution function is so small that the assumption to use the shifted

Maxwellian distribution at the computational boundary may be justified. Changes

in 0 in equation (3.16) for a given U have the same effect on the distribution function

as changes in U for a given 0. We see a little change in Figures 3-6 and 3-7 for

different O's, accordingly different U's. Another check on the effect of plasma flow is

to run a simulation with a (non-shifted) Maxwellian distribution in the density and

flux calculation only at the boundary (Inside the domain, PIC takes care of the flow
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Figure 3-6: Incoming electron density in 2D calculation

effect.) And we found negligible difference.

3.2.8 2D. vs 3D.

While it is easy to understand when we should apply the flowing effect in the density

calculation at the boundary, it is not so clear when, where and how the 3D effect

should be applied. The application of interest here is a long thin bare tether, thus

it is a geometrically 2D problem. However, in the presence of magnetic field, the

motion of electrons is highly 3D. To see whether we can apply the 3D calculation

in the geometrically 2D problem, let us consider a cylindrical probe (bare tether) in

z-axis and magnetic field along the y-axis as shown in Figure 3-8(a). When the local

potential is zero or negative, the calculation becomes trivial and both 2D and 3D

calculations give rise to the same result. Here we consider a potential hump, # > 0,

such as shown in Figure 3-8(b)

The essential way of distinguishing the 2D and 3D calculation is to check the

behavior of an electron with enough total energy, w! + W2 + W2 > 2e, but not in the
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Figure 3-7: Incoming electron density in 3D calculation

x-y plane, w! +W < 2.k The check is made following the Laframboise and Parker'sx Y me

argument [19]. We place a hypothetical electron with velocity (wx, wY, w) at a point

of positive potential in the hump, and trace back the trajectory. (Actually, since we

are considering a steady state, the direction in time is unimportant regarding the

question whether it reaches infinity or not.) If the trajectory reaches infinity where

#(x, y) = 0, we can count the electron in the density calculation.

In the presence of a magnetic field, however the criterion w! + w2 < 2ek becomesx Y Me

irrelevant because the gyration motion cyclically interchange w. and wz. Then the

question whether the 3D injection is valid or not becomes a question whether all

electrons with w 2+ w2 + w2 > 2e, can reach infinity.

The answer depends on the flowing condition. Assume we have a potential hump

which is large enough for the 3D calculation to be valid (See Section (3.2.10). The

Laframboise and Parker way of checking is applied here. We consider a hypothetical

electron in a potential hump and trace back the trajectory backwards in time. We

check all electrons with w + W+ w2 > 2e o at the point and if ALL of them can bex Y Z -me
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(a) Cylindrical tether and magnetic field (b) Potential hump

Figure 3-8: Cylindrical tether, magnetic field and potential hump

traced back to infinity, the 3D injection is considered valid.

In the absence of a plasma flow, i.e. if the potential hump is not moving, the

answer is no. Since the electron motion is restricted around magnetic field and the

electron keeps gyrating around them, in a potential hump larger than a Larmor radius,

the electron could exit from the potential hump only along the magnetic field line. In

order for this to happen, the electron needs enough kinetic energy in the y-direction.

If the kinetic energy in y-direction is lower than the potential difference

1 2
-mewy < e, (3.17)

the electron is reflected back to inside the potential hump, and it keeps bouncing

back and forth inside, never reaching infinity. Therefore the 3D calculation is not

valid (except for the subset of electrons for which (3.17) is reversed).

In the presence of a plasma flow, i.e. if the potential hump is moving with respect

to the plasma, the trapped electrons with sufficient kinetic energy, w2+w2 + w2 2e,

but insufficient kinetic energy in y-direction, w2 < 2, may escape from the potentialY memyecp rm h oeta

hump because of the flowing effects. As in the non-flowing case, such an electron would

be bouncing back and forth along the magnetic field line and could not escape from

the hump along the field line. However, due to the plasma flow, or equivalently due to
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the motion of the plasma hump, electrons are constantly shifting in the x-direction.

Therefore the electron can escape from the hump at the cost of the kinetic energy in

the plane perpendicular to magnetic field,

1 me(W2+ w) > e# (3.18)
2

B B

N ilonofpieiffhn, T

(a) Electron motion in a still potential (b) Electron motion in a moving poten-
hump tial hump

Figure 3-9: Electron motion in a potential hump with magnetic field

In Figure 3-9, trajectories of such electrons are indicated. In Figure 3-9(a), an

electron with insufficient kinetic energy in the y-direction bounces back and forth

inside the potential hump, never being able to go out. In Figure 3-9(b), the poten-

tial hump is moving from right to left and a hypothetical electron placed inside the

potential hump with sufficient kinetic energy but insufficient kinetic energy in the

y-direction bounces back and forth in the y-direction and shifts in the x-direction

due to the plasma flow. (Note that we are following the electron backwards in time.

Therefore it shifts toward left.) Due to the shifting, the electron eventually finds the

edge of the potential hump in the x-direction and escapes out to infinity. This is

true for all electrons with a kinetic energy such that w2 + W + W2 >2 Therefore

the 3D injection at a local point of positive potential is valid in a geometrically 2D

problem such as a cylindrical bare tether, if there is magnetic field in y-direction and

the potential hump created by the tether is moving in the x-direction.
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In order to illustrate this, several particle simulations are performed, in which

a potential field with a potential hump is given as a constant and electrons with a

Maxwellian distribution are injected from the boundary, where the local potential is

kept to zero. Therefore no distinction is made between 2D and 3D at the boundary.

The results are shown in Figure 3-10, where a fixed potential field with a hump and

three electron density maps are shown. Simulations are started with no electrons in

to

90I
(a) Prescribed potential field (b) With no flow and no magnetic

field

*7.5m7

1. 75

0650*720

(c) With no flow and magnetic field (d) With flow and magnetic field

Figure 3-10: Fixed potential hump and electron density

the domain and electrons are injected using a Maxwellian distribution. Each sim-

ulation was performed till the number of electrons in the domain converges. The

cases are I) without flow and without magnetic field (2D), II) without flow and with

82



magnetic field, and III) with flow and with magnetic field (3D). In case I), electron

density does not change a lot, as the 2D injection gives rise to a constant density of

injected electrons. In case II), due to the absence of electrons with insufficient kinetic

energy in the y-direction, }mew2 < e#, inside the hump, the electron density shows

the tendency of a 1D calculation and we notice decreases in the electron density. For

the complete ID calculation, the hump needs to be infinitely long in the x-direction so

that an electron with any Larmor radius completes one gyration. Case III), electron

density increases in the potential hump, in violation of the property shown in Section

4.1 for a purely 2D problem, in which case ne <; noo everywhere (equality if there is

no absorption).

3.2.9 Criterion to use 3D injection at boundary

In order for the 3D injection at computational boundaries, magnetic effects needs to

be so strong that any other effects do not hinder the interchange of w. and w, of

electron motions, while the electron is in transit from infinity to the given point.

In our computation, a potential hump is created by a high bias electrodynamic

tether. The electrostatic force by the tether may be strong enough to overwhelm

the magnetic effect and the two-dimensional electrostatic effect prevails. And the

3D calculation becomes invalid. Therefore the computational boundary needs to be

far enough so that the magnetic effect is still effective. The condition for magnetic

effect to be dominant may be stated as follows; for the 3D calculation of electron

injection at the computational boundary, w. and w, need to be interchangeable by

the magnetic effect and an electron should complete at least one gyration before it

enters the region where the 2D electrostatic effect is dominant. Typically a local

potential at the computational boundary is around # -- rTe/e. Thus the Larmor

radius of an electron that has a thermal velocity at infinity is given as

r = (3.19)

where vi = 2 + . This Larmor radius should be much smaller than the x-
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component,L2, of the distance from the tether to the computational boundary. This

is equivalent to

me -" + Vr

B >> (3.20)
eL,

In our simulation, the right-hand-side in (3.20) is calculated for # = 0.1(V) and

VT = 1.3 x 105(m/sec) as

RHS - 0.9 x 10-30 x 1(1.8 x 105)2 x (1.3 x 105)2 (3.21)
1.6 x 10-19 x 0.4

which is much lower than the nominal case (G = 0.3(G)).

3.2.10 Transition between 2D and 3D

The transition from 3D to 2D may be seen, again using the theory of Parker and

Laframboise. We consider the transition in terms of the hypothetical electron. The

potential hump given in Figure 3-8(b), is considered again. We put a hypothetical

electron inside the hump, which has a sufficient total energy, w + W2 + w > e#, and

trace back its trajectory in time.

Now let us define a test electron which has a sufficient kinetic energy but insuf-

ficient perpendicular kinetic energy and is placed inside the hump. When magnetic

effect is very strong so that the test electron can gyrate inside the hump, it finds

the way out of the hump thanks to the drifting. For a given wz, lowering magnetic

field increases the Larmor radius of the test electron. If the size of the hump is not

large enough to gyrate, the electron can not transfer kinetic energy from 1mew2 to

2mew due to the lack of space. This begins to happen to electrons with smaller

2me(wX + wY) as they need more space to gyrate and transfer kinetic energy. There-

fore, as B becomes smaller, electrons in a small cylindrical region in velocity space,

1me(w + w2) < eksmauer < e#, are excluded from the calculation. And #smauler

approaches # in the 2D limit.

In terms of plasma parameters, the "space" may be characterized by the plasma

Debye length, dD. The 3D limit is given when dD/rL >> 1, whereas the 2D limit
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when dD/rL « 1. The presence of the probe inside the hump and its high potential,

#, also modifies the "space", replacing dD by -D -

3.2.11 Incoming ion density

The calculation of the incoming ion density in a flowing plasma is a bit more compli-

cated, because we do not assume a Maxwellian distribution at a computational bound-

ary due to the mesothermal condition. We only assume that ions have a Maxwellian

distribution in the far upstream region before the presheath created by the highly

biased tether cuts through and disturbs it. The ion distribution function used at the

computational domain is derived as follows; we assume a one-dimensional motion of

ions from the far upstream region (infinity) to the computational boundary. This

neglects the kinetic energy 'me(w2 + w2) due to ion side deflection, and is a common

approximation in hypersonic flows. Applying the 1-D energy conservation we may

relate an ion velocity at infinity and at a boundary point as

1 2 1 -2

2 2 WX + ecb (3.22)

w Y Gy (3.23)

wz ~~ (3.24)

where the x-axis is taken in the tether's orbital direction, and lb's are velocity com-

ponents at a boundary point, w's velocity at infinity, kb a boundary potential. Sub-

stituting equations (3.22) (3.24) into a shifted Maxwellian distribution function of

ions at infinity

m 3 /2 (w 2 2 m
= no exp - 2 z(3.25)

21r IT VTi
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we get

3/X + -U) + 04 + 7_2

fi(wi) = nr * /exp -2 (3.26)
2,rnrTi vri

The incoming ion density is calculated numerically, using this distribution function.

In case of a quiescent plasma, the fact that no ions are absorbed by the tether

and that the phenomenon is symmetric enable us to calculate the ion density at any

point, ni = n " + nut. Integrating the Maxwellian-Boltzmann distribution function

in velocity phase space, we have the ion density as

ni = no exp e) (3.27)
(_ Ti

Equation (3.27) is substituted in the quasi-neutrality condition (3.9). Therefore there

is no need in calculating the outgoing ion density numerically.

3.2.12 Outgoing particle density

The outgoing electron density, n" is still to be determined. This is calculated com-

putationally with a lag of one time step by considering the outgoing flux, F. The flux

through the boundary is given by

F = noutvout (3.28)

where v""' is the flow velocity due to the outgoing electrons, that is, the average

velocity normal to the boundary [34], which is calculated computationally as follows,

As seen in Figure 3-11 during the period of one timestep dt, sampling all particles

which go through the boundary cell surface (which has a width dx but is later taken

to the limit dx -+ 0) leads to particles' flux distribution function wf(w). In order to

derive a distribution function, we need to sample particles at an arbitrary moment

during this time step. To do so, we consider the "probability" that a particle is on the
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Figure 3-11: Conceptual picture at a boundary cell surface and outbound particles

boundary at the arbitrary moment during the timestep dt. For brevity, all particles'

velocities, denoted by wi(i = 1 ~ k), have been projected on the normal to the surface

(wi = wi - n). In Figure 3-11, one particle which travels through the surface with a

velocity wi has the probability of being on the surface as dx/widt. It can be also

interpreted that there is a fraction "dx/widt" (< 1) of all the crossing particles on the

boundary at the moment. Therefore the average velocity is given by

dx dxd

-x wd W 2 dtW2+Wk dtk
V+ d dx + +dx

widt w 2 dt Wkdt

k (3.29)
k 1

which is independent of dx. Trivially, we can take the limit of dx -* 0. Substituting

the average velocity (3.28) and I' = kdtdS into

nout = k (3.30)e, - dt dS
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we get the density of outgoing particles.

out (3.31)e, dt dS

where dt is the timestep and dS is the area of the outside boundary. This completes

the procedure for setting up the quasi-neutrality condition. The local potential, #, is

solved for numerically, for example, using a bisection method.

Technical Note

When an electron approaches the computational boundary and goes out of the do-

main, the normal component of velocity, w, to the boundary is calculated and used

to calculate the density of outgoing electrons at the point.

In the 2-D (unmagnetized) case, an electron's trajectory is almost straight, because

of the small electric field there, and it is rare to have infinitesimally small w, at the

boundary. On the other hand, In 3-D (magnetized) case, electrons are gyrating around

the magnetic force line. Therefore, it is possible that an electron barely goes across

the boundary giving w,, 0.

When this happens, the electron density becomes very large, as - 00,

n"t - dtd"S - 00. (3.32)
e dtdS

In theory, a particle with w, = 0 has to be counted as one and another with wn # 0

as 1. In order to avoid this, we apply a small but finite size to a particle (dx $ 0),w, dt

and rewrite equation (3.29) as

-dx W,+ dx W2+ + dx W
wodt+dx w 2 dt+dx Wkdt+dx (3.33)

dx e tdx w dx
wldt+dx w2 dt+dx Wkdt+dx

With equation (3.33), we can count a particle with wn = 0 as dx _x

w~dt+dx -dx-
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And of course the contribution of this particle to the mean velocity is

dx Wn = 0 (3.34)
wndt + dx

3.2.13 Incoming Particle Fluxes

Given the potential at the outside boundary, we are now ready to calculate how

many electrons and ions are to be replenished into the domain at each timestep. The

number of those particles is calculated by multiplying the flux by the timestep and

the area of the outside boundary. The incoming electron flux F]in(#) is calculated

by integrating the electron distribution function (3.11) after multiplying a normal

component of a particle velocity wn (normal to the boundary surface).

nfl"(#$) = Jf Wnfe (#)dw (3.35)

Except for I

where I is defined by equation (3.13).

When there is no flow, the integral can be performed as

/oo r/2 oo me 3/2 Ime(w 2 + 2 _ e

1i" = n oc M exp _2 - z , w 2 cos dwddwz
e -- r/v e-7 /me 27rkTe / X kTe

_ oo 42 e eq' eq 2 336-+ exp erfc (3.36)
k4 V~ ee kTeJ

where E00 is the random thermal velocity given in equation (2.7). It should be noted

that this is the same as equation (2.3), except for # instead of ,.

Likewise, the incoming ion flux ]i "(#) is obtained by

S"(#) M nf()d (3.37)

where fi(t') is given by equation (3.26). At the ram side of the computational bound-

ary, the assumption of one-dimensional motion of incoming ions simplifies equation
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Figure 3-12: Incoming electron flux in a nonmagnetized plasma (2-D)

(3.37) to

"= Utethernoo. (3.38)

In the absence of a plasma flow, ions also have a Maxwellian distribution at the

computational boundary. The flux is then given as

in / ( /2f ( m. 3/2 mi(W2 + W2 ) + e
n, * ex 2 _ 2 ,2 cos Odwd~dwz

- i/2 0 27rkTi k Ti

(kT 1/2 (eq5
= no i 1/2 exp .) (3.39)

S27rmi ) -kTi)

Injection Method

ke = Een At S electrons are injected at a local boundary point (or a cell in computa-

tion) where the local potential is 4. Here S is the area of a boundary cell where an

electron is injected, and At is the time step. Electron velocity is chosen as explained

by Birdsall [36], using a random number generator. The distribution created at the

local point by the injected electrons is not a velocity distribution, fe(w), but a flux
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Figure 3-13: Incoming electron flux in a magnetized plasma (3-D)

distribution Wnfe (zV), where w,, is the normal component of an injected particle's

velocity, since we are injecting particles during a finite timestep At.

In the case of a flowing plasma, the distribution function is not a Maxwellian any

more. To create the shifted Maxwellian distribution (3.11) at the injection point, the

rejection method is used [17]

3.2.14 Trapped Electrons outside the Computational Domain

The novelty of the PIC method is its capability of capturing time-dependent particle-

field interactions in a plasma. Particle-field interactions entail the gain/loss of particle

total energy. Accordingly, there exist many particles, mostly electrons, that have lost

some total energy to the field and wander around with negative total energy. A

particle with negative total energy is called a "trapped particle". A trapped electron

can travel in a region where the local potential is positive so that the velocity has

some value, i.e. 'w 2 = E + e# > 0 even if the total energy E < 0. The region

where the local potential is positive is not only the sheath near the tether, but also

91



the presheath outside the sheath is defined as having a positive local potential.

Trapped electrons, defined as having a negative total energy, are still able to

go out of the computational domain, since at the computational outside boundary

the local potential is mostly positive (except in the wake). However these trapped

electrons can not reach infinity where the electric potential is defined to be zero.

Therefore all the trapped electrons wander around inside the presheath region and

eventually come back to the computational domain. As an assumption, trapped

electrons do not lose or gain total energy outside the computational domain. In order

to incorporate the return of trapped electrons with the same total energy, in our

model, we simply reinject a trapped electron at the same place where it leaves the

domain and immediately after it leaves, with a randomized velocity but the same

total energy.

3.2.15 Analytical Move

In the immediate vicinity of a tether, the electric

potential is very high due to the high bias on the tether.

Accordingly the velocity of electrons traveling in this

region becomes very fast, leading to a numerical er-

ror within one timestep. In Fig. 3-14, two electron

trajectories are indicated with a cross-section of tether Figure 3-14: Numerical er-

(in the center) and several equipotential lines. The ror near an ED tether

straight trajectory represents an electron trajectory in

one timestep. The other curved trajectory is the real trajectory that the electron

should take in the axisymmetric large electric field. In order to avoid the numerical

error, we introduce the analytical motion of electrons in a circular region within which

a local potential is more than 5eV (ion ram energy), actually using 10eV in compu-

tation. Within this region, the particle's total energy and angular momentum are

assumed to be conserved. This assumption is readily justified by the circular equipo-

tentials in the region. The potential profile is assumed as an analytical, axisymmetric

form, which is a function of the distance from the center of the tether, (r, < r < ri),
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where r, is the radius of the tether, r, the outer boundary of the analytical region.

As an approximation, we solve Laplace's equation in order to obtain the analytical

function in the domain. Obviously this contradicts reality, in which electron density

in the domain can not be negligible. However, as explained in Section 2.2.3, the high

bias on the tether makes the space charge effect negligible. The term ~ 1/r 2 obtained

by solving Poisson's equation with the source term contributes little to the solution.

Thus the solution obtained from Laplace's equation can simplify the problem without

changing the plasma behavior significantly. Given the boundary conditions, we can

solve Laplace's equation and obtain the potential in the analytical region as

$,log - + 41 log r(r) = (3.40)
log r

From two conservation laws, we have the conservation of angular momentum

mr24 = J (3.41)

and the conservation of total energy

m 2 + (r#)2} - eg(r) = E (3.42)

Substituting (3.41) into (3.42), we have

2 J2_
=+t - (E + e#) - mr 2  (3.43)

mmr

The sign should be chosen depending on the sense of the particle's radial motion.

Separating terms of only r and t, we obtain an ODE

dr = dt (3.44)
2e$(r) __J

2

m m
2

r
2

By integrating, we obtain the radial distance that a particle travels as a function of

time, or vice versa.
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Before performing the integral, we need to find out the periapsis point, rm, where

the radicand of the LHS in (3.44) becomes zero. rm is obtained by solving

2e#b(rm) _ ___2=

mr)= 0. (3.45)7m m2r,

From (3.45), the periapsis point rm is obtained as a function of angular momentum,

J, and the local potential at the outer boundary of the analytical domain, r = rl. In

our code, this is done numerically at the beginning of the computation for a certain

range of J and #1 and stored in memory. For a known rm, if rm < rp, the particle is

absorbed by the tether. If rm > rp, it flies by the tether.

After a given period of time, At, we can find the new particle position by inte-

grating equation (3.44),

t 'new dr At (3.46)
ro 2e#(r) _ J

2

m m
2 r

2

where ro is an old position of a particle and rne, is the new position that we seek

to solve. A note of caution should be made here. During the period of time, if the

particle flies through the periapsis point, the denominator of the integrand in equation

(3.46) becomes zero. In the very vicinity of the periapsis point, we can expand the

denominator in a Taylor series and obtain

2e#(r) J ~ B_ (3.47)
V m m 2 r 2

where
2q 2 j2

B -(O - #1) + 2 2 (3.48)
mlog EE r2m

r = rm(1 + -) (- < 1) (3.49)

Therefore the integrand behaves as 1/\Fi at the periapsis and the integral converges.

In computation, this part should be done analytically.

Once we know rnew, we can calculate the angle, A0, that the particle subtends

94



over the time period, At.

mew* J dt
A = -dr (3.50)

fro r 2 mdr
rnew J d r (3.51)

ro m M m2 r2

which gives a new angle for the particle, 6new.

From equations (3.41) and (3.42) with rew and Onew, we get r and # from which

we know the new velocity of the particle.

Finally, in a PIC simulation, a Leapfrog method is used to advance a particle's

position and velocity in phase space. In this method, position and velocity are defined

at time steps which are shifted by !At from each other. In the analytical region,

position and velocity are defined at the same time. Therefore appropriate shifting of

variables is required when a particle enters/leaves the region.

3.2.16 Sub-Cycling

There is another numerical error inevitable in a PIC method. The PIC method

uses a standard leapfrog method for updating particle position in phase space. The

standard leapfrog method is not limited by the CFL condition for numerical stability.

but numerical errors arise due to the propagation of small errors, such as truncation,

in each time step. The upper limit of the time step is then defined so that the

truncation error does not increase rapidly. The threshold is given as At = V x 2WP

for the leapfrog method.

In our computation, At = V x - is quite large because of errors described as
Wp

follows. As shown in Fig. 3-15, when an electron is seeing a positive second derivative

of potential, V 2 g in its direction of motion, it loses total energy and accumulates an

error, whereas it gains total energy when it sees a negative V 2 g. In order to reduce

the error associated with potential humps and ditches, sub-cycling is introduced in

the leapfrog method. In sub-cycling, one timestep is divided into several sub-time

steps within which an electron travels less than one cell size.
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Chapter 4

Results and Pre-Flight Predictions

In this chapter, we start with a brief review of my Master thesis [33] which deals

with current collection to a cylindrical probe in a quiescent nonmagnetized plasma.

A previous solution exists for this case, and the comparison is made in order to verify

the PIC method applied to the calculation of current collection to the probe. Next,

a quiescent magnetized case and a flowing unmagnetized case are considered. There

are no complete computational results available for these cases. A discussion is given

of the dependence of the current collection on the magnetic field in the absence of

plasma flow. And some speculation on the flowing effect on the current collection

without the magnetic field is presented based on some preliminary results from our

simulations. Finally current collection in a flowing magnetized plasma is present for

the arbitrarily chosen nominal case.

4.1 Quiescent Unmagnetized Plasma : Code Ver-

ification

As the first prototype code of a PIC method to calculate current collection to a

positively biased cylindrical probe, a case in a quiescent unmagnetized plasma is

considered. The work is reported in detailed elsewhere [33]. Here we look at the

result and its comparison with the previous solution available in literature [18]. Since
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it is symmetric and the very high bias of the probe means that it absorbs no ions,

we can apply a Maxwellian distribution for ions at any point in the computational

domain. Therefore the quasi-neutrality condition (3.9) becomes

n"() + nout = ng) (4.1)

and ni is given by (3.27).

Another thing to note is that the ion density is independent of the ion mass, mi.

Therefore, the mass ratio, mi/mi, is unimportant. In fact, the work by Laframboise

[18], which gives the previous solution, did not specify the mass ratio.

In our PIC model, four different Debye ratios, defined by rp/dD, are considered.

Those ratios are chosen as 0.5, 1, 2 and 5, which correspond to current collections in

and near the OML regime.

Current Collection

3M.0 000W00

I IN J
00 10 000 00 000 00

'.n s 'h

Figure 4-1: Current Collections in a quiescent unmagnetized plasma, Laframboise
solutions (solid) and OML (dash) [33]

In Figure 4-1, current collections observed in simulation are shown. All results

show current just below the Laframboise solutions. The plasma parameters are set

constant for all cases and only the tether radius was varied. The comparison with

the Laframboise solution is shown in Figure 4-2. An extra case well inside the OML

regime, dD/r, = 0.5, is added in the figure. It may be seen that all cases give a good

quantitative approximation to current collection within 5 ~ 8%.
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Figure 4-2: Current Collections in a quiescent unmagnetized plasma, Laframboise
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Potential Maps

Let us look at some potential maps observed in the simulations. Sanmartztn and

Estes [13] (See also Section 2.2.3) gave a graphical criterion for a potential profile to

provide a current collection in the OML regime. In Figure 4-3, potential maps for

different Debye ratios are shown to the same scale. Non-physical numbers are used.

The legend indicates that the electron temperature Te = 100 and the probe potential

#, = 25 x Te, where Boltzmann constant,r, and electric charge, e, are set to unity [36].

The potential profile averaged over all angles is plotted versus the abscissa, (r,/r)2 b,

in Figure 4-4. When the current collection is in the OML regime the potential profile

should be above the diagonal line for all r. For the potential profile in the OML

regime in Figure 4-4(a), it is seen that the potential profile is above the diagonal line
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Figure 4-3: Potential maps in and out of the OML regime in a quiescent unmagnetized
plasma. r, is the tether radius and dD is the Debye length. All figures are shown to
the same scale. Te = 100 and 4p = 2 5Te.

for all r. Figure 4-4(b) corresponds to a transition point where the current collection

shifts from the inside of the OML regime to the outside. The collected current in

the simulation is a few percent below the Laframboise solution. The error may be

considered due to the potential below the diagonal line. As it goes out of the OML

regime, the potential profiles clearly go below the diagonal line (Figures (c) and (d)).

The more it is below the diagonal line, the farther out of the OML regime it is. This

confirms that the quantitative results such as current collection are consistent with

the potential profile and the accuracy of the current collection may be trusted.
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OML regime

Figure 4-4: Potential Profiles with the abscissa as (r,/r)2 #,, where #, is a probe
potential. Potential #(r) should be over the diagonal line over all r. In a smaller
window, an enlarged plot near the origin is shown.

4.2 Quiescent Magnetized Plasma

Magnetic effects break the symmetry and electron motions are restricted along mag-

netic field. In order to derive the current collection, canonical momentum conserva-

tion is used [9]. When the ratio of probe radius, r,, to electron gyro-radius, rL, is

small, electrons reaching a highly positive probe have changes in v, (velocity along

the probe) much smaller than changes in the x-y plane. This makes 3D effects on

collection negligible.
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Total energy of an electron is given as

1 2 1 2
me 2W + mewz = ed + E (4.2)

where w1 is the velocity in the plane perpendicular to the probe. Canonical momen-

tum along z is given as

mewz - eAZ = constant (4.3)

We can differentiate (4.3) and obtain the relation between the velocity change in vz

and the distance that an electron can reach across the magnetic field as it approaches

from infinity.

Awz = -Ve-x (4.4)
rL

where rL = Substituting into (4.2), we get

memi +2 ewo + A Wz)2 =e 45
1 21 1 ±eWZ2 = e + E( .
2 wI 2 mewo

1 mew + me(wzoo - vTe--x2 = ed +-E (4.6)
2 2 rL

where Wzoo VTe. Since e#p >> rTe,

1 1 Te AZx 2
me 2 + -Me -- -- ~ p. (4.7)

2 2 me T L

Orbits reaching the probe are characterized by Ax < r Tb. Therefore, we get

2e

me 2 +1 (rp) e4~ ed,. (4.8)
2 1 2 rL

When the probe radius is much smaller than the gyroradius, (rp/rL)2 << 1, (4.8)

becomes jmewi ~- e#,, indicating that the 2D effect is dominant in the electron

acceleration and the current collection is given by the 2D OML. When the probe is

much larger than the Larmor radius, (rp/rL)2 >> 1, we have mew2 ~ e#,. From
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(4.4), we have

1 2 1 2(x~ 2 1 2 Ax 2
e#,~ -- me(wzoo + Awz) 2 _mev -mev e. (4.9)

2 2 r 2 r/

This leads to Ax << r e4p/rTe, meaning that fewer electrons can reach the probe.

Therefore, the current collection becomes lower than the 2D OML. The transition

between these two is unclear. To summarize, the important conclusion are; (a) In

the absence of flow, B reduces the current collection. This is consistent with our

discussion of 1-D trapping in Section 3.2.7. (b) The effect is relatively weak, and only

shows up when B is so strong that rL rp.

4.3 Flowing Unmagnetized Plasma

When there is a plasma flow but no magnetic field, the plasma behavior changes

drastically and we can not obtain a steady state solution any more. Under the

mesothermal condition of interest, scattering of ions by the potential due to the high

positive bias on the probe results in ion density greater than that of infinity in some

large upstream region (Figure 4-5). On the other hand, due to the 2D motion in

the absence of magnetic field, electrons do not increase in density in order that the

plasma maintain the quasi-neutrality at the ion peak density. Because of the electron

absorption by the probe, the nearly isotropic electrons should even decrease in density.

Attempting to increase the electron density, plasma traps electrons in the presheath

region by particle-field fluctuations. Trapped electrons provide the source of extra

electrons in the presheath and contribute to the higher current collection. There are

no definite computed results on this.

In our computations we observed a continuous potential increase, by doing which

a plasma is apparently trying to trap more electrons. Associated particle-field fluc-

tuations were also observed at a fraction of plasma frequency at infinity. It may

be speculated that in reality the particle-field interaction takes place at a longer

wave-length because of the very low electron temperature. The size of computational
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Figure 4-5: Instantaneous field quantities in a flowing unmagnetized plasma: (Top
Left) Trapped electron density, (Top Right) Free electron density, (Middle Left) Elec-
tron density, (Middle Right) Ion Density, (Bottom Left) Net Charge Density and
(Bottom Right) Potential.

domain is not large enough to accommodate such an interaction. Due to the lack of

space and due to the necessity of trapping electrons, plasmas in the simulation force

probably unrealistic oscillations and create illegimate electron trapping.

In Figure 4-5, instantaneous plots of field quantities are shown. At the top left,

the density of trapped electrons defined as having a negative total energy is plotted.

It is seen that there are many trapped electrons where ion density is increased due

to the scattering by the large probe potential. The population of trapped electrons

is also seen everywhere in the computational domain except for the wake.
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Figure 4-6: Current collection observed in computation. Trapped electrons contribute

the excess current over the 2D OML.

In Figure 4-6, current collection observed in the computation is plotted. The

collected current turned out to be more than the 2D OML. The current contribution

by trapped electrons is also indicated. It is seen that the excess current over the

2D OML is due to the trapped electrons. In order to quiet the plasma, electrons

are trapped in a still unknown way and increases in density. The trapped electrons

also contribute to current collection. This contribution seems to enhance the current

collection over the 2D OML current.

4.4 Flowing Magnetized Plasma

The main purpose of our work is the pre-flight prediction of current collection to

the NASA Proseds electrodynamic tether experiment, which would be launched Fall

2002. In the rest of this chapter, I show the results from a nominal case and in

the next chapter results from several simulations with different plasma parameters to
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Magnetic field (G) B = 0.3
Tether potential (V) #, = 25
Plasma density (m-3) ne = 10-
Tether radius (mm) d = 7.44

d -
(Tether radius)/(Debye length) d =
Electron Temperature (eV) Te = 0.1
Ion Temperature (eV) T = 0.1
Angle of the tether to its motion (deg) 6 = 90

Table 4.1: Plasma parameters for the nominal case

Case 1 Magnetic field (G) B = 0.1
Case 2 Magnetic field (G) B = 0.6
Case 3 Tether potential (eV) #P = 10
Case 4 Tether potential (eV) #P = 100
Case 5 (Tether radius)/(Debye length) - 0.3
Case 6 (Tether radius)/(Debye length) = 3

Case 7 (Tether radius)/(Debye length) d =

Case 8 Electron Temperature (eV) Te = 0.05
Case 9 Electron Temperature (eV) Te = 0.2

Case 10 Ion Temperature (eV) T = 0.05
Case 11 Ion Temperature (eV) T = 0.2
Case 12 Angle of the tether to its motion (deg) 0 = 60

Table 4.2: Other cases: plasma parameters to change from the nominal case

make comparisons among them. We have decided on a nominal case, and changed

one parameter for each case. The nominal case is defined in Table 4.1. All the other

cases are set by changing one parameter from the nominal case (Table 4.2). And

also as a special case, two parameters are changed at the same time in order to see

the combined effects of the parameters (Table 4.3). Table 4.4 shows the various cases

in terms of the relevant non-dimensional parameters.
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Case 13 Case 3 & Case 8 #p = 10(eV) & Te = 0.05(eV)
Case 14 Case 3 & Case 9 , = 10(eV) & T = 0.2(eV)
Case 15 O, = 100(eV) & = 0.1

Table 4.3: Combined cases

d e p I kT
do do {mI Utete m2tte

Nominal 1 3.5 5 0.02

Case 1 1 10.5 5 0.02
Case 2 1 1.75 5 0.02
Case 3 1 3.5 2 0.02
Case 4 1 3.5 20 0.02
Case 5 0.3 3.5 5 0.02
Case 6 3 3.5 5 0.02
Case 7 10 3.5 5 0.02
Case 8 1.4142 3.5 5 0.01
Case 9 0.7071 3.5 5 0.04

Case 10 1 3.5 5 0.02
Case 11 1 3.5 5 0.02
Case 12 1 3.5 6.25 0.025
Case 13 1.4142 3.5 2 0.01
Case 14 0.7071 3.5 2 0.04
Case 15 0.1 3.5 20 0.02

Table 4.4: Parametric comparison : d is tether radius, dD Debye length, rL Larmor
radius, Op tether potential, Utethe, ion ram speed.
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4.5 Results from Computations

In this section, we look at the results of the nominal case from our computations.

First, several field quantities such as electron density, ion density, net charge and

potential are examined. Characteristics of those quantities are discussed in relation

with plasma parameters. Next, current collection is shown, followed by the detailed

examination of individual particle behaviors.

The nominal case is defined in Table 4.1. We use this case as a starting point

and change one parameter for another case for the purpose of comparison in the

next chapter. The choice of parameters in the nominal case is arbitrary, although

each parameter represents a typical value that an ED tether operated in LEO will

encounter, except for the tether potential which at its peak will be much higher than

25(eV).

4.5.1 Ion density

In Figure 4-7, the instantaneous ion density in the nominal case is shown. It is

normalized by the density at infinity, no,. Even though it is instantaneous, throughout

a computation after the convergence, the changes in ion density are so small that

Figure 4-7 is good enough to discuss average ion density profile in general. Real units

[meter,(m)] are used for both axes. An ED tether is located at (x, y) = (0, 0).

The ion density distribution shows strong effects of the mesothermal condition.

First, a wake region behind the tether is noticed. The wake is created by the quasi

one-dimensional hypersonic motion of massive ions, Utether >> vti. Ions are flowing

toward the tether from the left (ram region) almost one-dimensionally. Due to the

tether's large potential, ions are slowed down in front of the tether and deflected

from the 1-D trajectory. This creates an accumulation of ion density in front and

on both sides of the tether. The envelope of ion trajectories creates something like

a caustic line in optics. The potential at the peak of the ion accumulation is 5(V),

which corresponds to the ion ram energy imiUether. The wake behind the tether

starts closing itself. This is due to the small but finite ion thermal motion in the
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Figure 4-7: Nominal Case : Ion density

y-direction. The angle may be estimated roughly as the ratio of ion ram speed,

Utether, to the thermal speed, vt,i, which is given as

vti 773[m/sec]
Utethe, 8000[m/sec]

and the angle is approximated as tan- 0.1 ~ 5*. The distance required from the

tether to include the whole wake is then calculated to be about 1[m]. Throughout

the region except for the wake, ion density is always more than that at infinity, due

to the presheath region which has a small but positive potential.
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Figure 4-8: Nominal Case : Electron density

4.5.2 Electron density

In Figure 4-8, an instantaneous electron density normalized by that at infinity, no,, is

plotted. Electrons are much lighter than ions and thus more mobile. Therefore faster

perturbation of electron density is expected. The fluctuation of electron density is

at most 20% over one plasma time. Since we limit ourselves to the discussion of

macroscopic characteristics of electron density in this section, only the instantaneous

map is shown.

Under the mesothermal condition, electrons are moving much faster than the

tether, therefore the direct effect of plasma flow is almost negligible. A decisive factor

to determine the electron density distribution is the ion density distribution, since

a plasma has a strong tendency to maintain the quasi-neutrality on a larger scale

than the local Debye length. This explains the low but non-zero density in the wake
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region. Electron density in the wake region is decreased so that the local Debye length

is comparable with the characteristic length of the wake. In this case, the length in

the y-direction should be taken as a characteristic length. When electrons come close

to the tether, the tether's large potential creates a sheath region where a plasma does

not maintain the quasi-neutrality any more. Naturally the size of the sheath is of the

order of a few Debye lengths.

Increased electron density (> n,) is also noticed along the "caustic line" of in-

creased ion density. Increased electron density in a geometrically 2D problem without

magnetic field under steady conditions would be unlikely to happen [19]. However

the presence of magnetic field renders the electron motion 3-dimensional and brings

about the required increase in electron density. The question is then posed of where

the magnetic effect is overwhelmed by the 2D electrostatic force by the high tether

potential. This point will be elaborated on in sec 4.5.8.

The slightly increased electron density at the right top and right bottom corners

of the computational domain is thought to be due to the boundary condition used

for the ion distribution function on the side boundaries (top and bottom), where the

deflection of the ion bulk flow is not taken into account. This brings in more ions at

those boundary points and consequently attracts more electrons (or injects them from

outside). These electrons only drift away towards the wake side due to the magnetic

field and the tether's relative motion and do not contribute to electron collection to

the tether.

At boundary points, electrons are injected according to the 3D magnetized plasma.

Therefore the density there is always more than that at infinity, n,. In later sections,

we discuss the validity of such an injection method by looking at individual electron

trajectories, and discuss the limit of the 3D electron injection.

4.5.3 Electric Charge Density

In Figure 4-9, the instantaneous net charge density is shown. Since the size of the

computational domain was chosen in such a way that it contains the sheath region,

the quasi-neutrality can be seen in most of the presheath region. There are, however,
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Figure 4-9: Nominal Case : Net charge density

three zones where the quasi-neutrality does not prevail. The first one is the wake. As

the electron density is very low due to the ion depletion, the local Debye length is so

large that the quasi-neutrality does not hold. Second is the sheath in the vicinity of

the tether where a large potential due to the tether bias prohibits the ion population

and attracts electrons form the non-neutral sheath. The last, subtle but interesting,

is the ion accumulation at the sides of the tether where a "caustic" line was seen in

ion density in Figure 4-7. It is interesting to see that the caustic line in front of the

tether is well neutralized by electrons, but not on the sides. This hints that there are

enough electrons coming from the front to enforce the quasi-neutrality, but not from

the sides. Electron trajectories coming from the ram side will be examined in a later

section and the mechanism for getting a higher electron density in front of the tether
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will be discussed.

4.5.4 Electric Potential

Potential Field (eV)

-0.3 0.2 -0.1 0 0.1
x [rn]

Figure 4-10: Nominal Case : Potential Field (V)

In Figure 4-10, the electric potential field in actual units (Volts) is plotted. Start-

ing from the immediate vicinity of the tether (within a few Debye lengths), an axisym-

metric potential is found due to the very high potential on the tether. The equipo-

tential line of 5(V) can be located where the peak of ion density is found in Fig. 4-7.

It is also noteworthy that at 5(V), it is still reasonable to approximate the potential

field as axisymmetric. Farther out from the tether, the potential field changes its

shape to contain the caustic line of ion density. By adopting such a potential profile,

the plasma is trying to attract more electrons and maintain the quasi-neutrality. The
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tendency to increase the potential is extended farther out. But it is only extended

along the magnetic field (y-axis). Since an electron's motion is restricted by the

magnetic field, it cannot move across the magnetic field freely. Instead, the positive

potential field extends itself along the magnetic field lines, attracting more electrons

from that direction. This potential wing is sometimes called "magnetic presheath"

[22], distinguishing itself from the ordinary presheath which has a lower positive po-

tential. Values of potential field in front of the magnetic presheath are almost equal

to zero (potential at infinity) indicating that the magnetic effect is stronger in this

region than the electrostatic effect of the tether, and that the effect of the tether

potential on electrons motion is relatively small in this frontal region.

4.5.5 Trapped Electrons and Non-trapped Electrons

Trapped Elec.tron Density Free Electron Density

0.315a
2. 2
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(a) Trapped Electron Density (b) Non-trapped Electron Density

Figure 4-11: Trapped and Non-trapped Electron Density (Normalized by density at

infinity noo)

In Figure 4-11, instantaneous trapped and non-trapped electron densities normal-

ized by no, are plotted. A trapped electron here is defined as having a negative total

energy. Note that due to the U x B polarization field (Ez = -UtetherBy) total energy

is given as E = Eo + eByUtether(z - zoo). A trapped electron is defined by Eco < 0.

As the PIC method is capable of simulating the unsteady particle-field interaction,

114



an electron can lose or it gain total energy. Once an electron loses total energy to the

point where it becomes negative, the electron cannot go back to infinity where the

local potential is set to zero so that only electrons with a positive total energy can

exist. Therefore, the electrons with a negative total energy have to wander around

inside the presheath and eventually get collected by the tether, or else gain energy

from the potential field and escape to infinity. The trapped electrons seen in Fig.

4-11 are not guaranteed to be trapped all the time. They may gain energy at the

next time step and get "non-trapped", or stay trapped for a considerable amount of

time until the tether collects them. However, as in the case of electron density, we

can think of the density maps as time-averaged ones, since the macroscopic view of

the density does not change much.

The population of trapped electrons in general is not considerable. There are none

on the ram side of the tether, which was discussed above to see little influence from

the tether. The distribution of trapped electrons seems to be proportional to the

local potential. In the magnetic presheath, in the immediate vicinity of the tether

(# > 5eV) and on the caustic line of high ion density, local potentials are more than

the equivalence of electron thermal energy (kTe/e = 0.1(eV)). The zero trapped

electron density in the small region around the tether is an artifact. In this region,

electrons are moved analytically (sec. 3.2.15) and all the electrons are counted as free

electrons, giving a large value in free electron density and zero density in trapped

electron density. In our computations, we see large trapped electron density in the

immediate vicinity of the tether.

The physical reasons for the trapped electron population are still unclear. Nu-

merically, we can ascribe it to the accumulation of small negative errors due to the

leapfrog method that we use as a particle advancing method. When an electron is

traveling through a point where the second derivative of the potential field is positive,

the finite timestep scheme always induces a small error.

In Figure 4-12, a cartoon of an electron traveling in a concave potential field is

depicted. When the electron is climbing up the potential hill, due to the constant

velocity for the time step, it loses total energy by missing kinetic energy which it
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Figure 4-12: Error in total energy

should gain by increasing velocity. Of course, the reverse is also true. When an

electron is going down a concave potential hill, it gains total energy. In our simulation,

due to the high potential on the tether and the sheath region around it, the potential

field around the tether is always concave (positive second derivative).

The leapfrog method in PIC is based on the Eulerian description whose stability

condition is not limited by the Courant-Friedrich-Levy (CFL) condition. As a particle

accumulates errors as it travels, even a small error ends up being non-negligible. In

our computation, we use sub-cycling to minimize the error accumulation.

4.5.6 Current Collection

In Figure 4-13, the electron current collection calculated in our code is plotted with

the 2D OML current. Together with these currents, the contribution of trapped

electrons to the current collection is also plotted.

The trapped electrons current seem to be negligible here for the following reason.

Not only is it already small, but also, according to the discussion we had in the

previous section, electrons tend to lose total energy as they travel in the concave

potential uphill. Therefore, the contribution seen in Figure 4-13 may be considered

due to those electrons which approached the sheath region as a non-trapped electrons
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Figure 4-13: Nominal Case : Current Collection and 2D OML

and lost their total energy numerically while traveling in the sheath until they reach

the surface of the tether.

Even without the contribution of trapped electrons, the collected current is obvi-

ously more than the 2D OML current by a factor of 2.5. This is mainly because of the

three-dimensional motion of electrons due to the presence of the magnetic field. Note

that the collected current is larger than the 2D OML current but still much lower

than the 3D OML current. In order to see the difference of those current collections,

let us briefly go through the derivation and discuss the applicability of the 3D OML

current collection to a geometrically 2D problem, such as an ED tether.
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2D OML vs. 3D OML

In the Parker-Laframboise theory, when computing the current by counting the elec-

tron flux on the collecting surface, electrons which have an energy less than the

potential difference between this surface and infinity are excluded. In a geometrically

2D surface and with no magnetic field, some hypothetical electrons may be addi-

tionally excluded, because, even though their energy is sufficient, it resides mainly in

the component parallel to the object's axis, and there is no mechanism to transfer it

to the perpendicular plane; if the perpendicular part of the energy is less than the

potential difference, these electrons can not exist near the surface. For the same 2D

W Cylinder of Wz Sphere of radius
z radius v(2e)(tm)

B B

WX 2D W 3

Figure 4-14: Electrons in velocity space. Electrons with velocities inside indicated

regions, cylinder (2D,left) and sphere (3D,right), are excluded in the calculation of

the OML current.

object, but with some magnetic field perpendicular to it, gyrations cyclically convert

motion along the object's axis to motion perpendicular to it. Whether or not an elec-

tron with sufficient total energy but insufficient perpendicular energy can be found
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near the surface is a complicated question. Considering a reversed trajectory, starting

from the surface, the answer depends on whether or not the magnetic rotation is rapid

enough to direct the electron away from the object before the electrostatic attraction

forces it back to it.

Let us see how much close to or far away from the 3D OML we are in our com-

putation. The 2D and 3D OML currents are given by considering at the collector

surface all electrons except for those indicated in Figure 4-14. The 2D OML is already

discussed in Section 1.4 and is given for '0 >> 1 as

JOML(2D) - ern 2e (4.11)
7r me

And likewise the 3D OML current is given as

OML(3D) J ewifedw
w2+w2+w2>2epp/m,wi>0

enc, 1T I + Te) (4.12)
2re t lTe

In the limit of ( >> 1, the ratio of the 3D OML current to the 2D OML is

JOML(3D)/JOML(2D) = (1+ , P/ . For = 25 (V)and

Te = 0.1(eV), this ratio would be 14.01. This is much larger than what we see

in our results, J(computation)/JOML(2D) -2.5. From this, we can postulate that

two-dimensional electrostatic effects near the tether reduce the current collection

from the 3D OML but the effect does not reach to infinity. From infinity to the

point where the electrostatic effect overwhelms magnetic effects, electron gyration

allows more electrons to be attracted. Then electrons enter the region where 2D

electrostatic force by the tether starts dominating. Let #2 , 3 be the potential at the

transition point. From that point electrons are dominated by the 2D electrostatic force

and accelerated only in the perpendicular plane. By this mechanism, hypothetical

electrons in w2 + w2 < 2e(#p - #2 ~3 )/m in velocity space are excluded from the flux

calculation through the surface of the tether.
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Figure 4-15: Electrons in velocity space. Electrons with velocities inside indicated

regions, cylinder (2D,left) and sphere (3D,right), are excluded in the calculation of

the OML current.

Let us calculate the current density to the surface when the electrons with velocity

indicated in Fig. 4-15 are excluded. After normalizing the velocity with the thermal

velocity VTe = V'2tTe/me and the potential by nTe/e as 4 = e-, we obtain the

current density to the surface as

J 2 ~3

2enxvTe exp(41)
73/2 P)

+ fv; V W

0 2W2 exp(-w 2 - w2)dw dwz

exp (-w 2 - w )dw dwz

Perfcx (

+ vferfcx -+ erfcx - erfcx (vi)] (4.13)
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where P = "0 3 and the scaled complementary error function is defined as
r. Te

erfcx(x) = exp(x 2 )erfc(x) (4.14)

Equation (4.13) for the nominal case with 4, = 250 is plotted in Figure 4-16. The

current is normalized by the 2D OML current, indicating that for D = 0 the current

is the 2D OML and for 4 = (D the 3D OML (= 14 x JoML(2D)). From Fig. 4-16, it
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Figure 4-16: OML current density with a transient potential 4 = "0g3 for the nominal

case, ,= = 250 (Te = 0.1(eV))

is seen that, if the electrostatic force becomes dominant over the 3D magnetic effect

at '0 ~ 5 (# ~ 0.5(V)), the OML current to the surface becomes about 2.6 ~" 2.7

times larger than the 2D OML current.

In conclusion, even if the geometry of the problem is two-dimensional, we can
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expect the 3D OML current as the upper limit in a steady state. However, the elec-

trostatic effect near and around the tether renders electron motions two-dimensional,

reducing the OML below the 3D limit. In terms of reverse trajectory, this can be

rephrased to say that the trajectory of an electron on the collecting surface may be

intercepted by the tether multiple times, even if it has a sufficient energy to reach

infinity. But we can still expect higher current collection than the 2D OML current

to a bare cylindrical tether in LEO in steady state.

4.5.7 Particle Motions

In this section, we look at an individual electron's motion and discuss the mechanism

in relation with macroscopic views of plasma behavior discussed in previous sections.

In Figure 4-17, a typical electron trajectory and the history of its variables are shown

with potential field. The potential field is included in order to examine the interaction

between the electron's motion and the overall plasma behavior.

The most significant thing to note in this particular case is the electron "trap-

ping" even if the electron's total energy is positive. In the previous section where

we discussed trapped electrons, which were then defined as having a negative total

energy. Therefore we have to distinguish those trapped electrons with a negative

total energy from those that we will discuss here, which do not necessarily have a

negative total energy. For the case in Fig. 4-17, the total energy is not only positive,

but in addition, it is seen to increase in time. However, the electron trajectory in

space, (d) in Fig. 4-17, clearly shows its "trapping". We denote this phenomenon as

"containing".

Here we need some comments on the total energy, E. In the presence of magnetic

field, a quantity defined by "me(w! + W + w2) - e# is not supposed to be conserved.

The polarization field, E, = -UB., does work on the particles (as seen in the tether

frame), so that the energy equation reads,

E = me2+ W2 + W 2) -+e = Ime(W2+ W 2+ W2 )+eBy Uether(z -- zo) (4.15)
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Figure 4-17: Typical "contained" electron trajectory and its variables history

and therefore E increases linearly with z. From the equation of motion in the z-
direction, we have dwz= -o(w - Utether), which integrates to z = wzoo - w -

dt

Utethert) and for wzoo ~ 0, since x - Utethert is positive most of the time for an

electron approaching the tether (electrons accelerate forward as they approach), we

have z - zoo > 0 because B. < 0, and E should be decreasing. In Figure 4-17(b), the

plot under the name of "Total Energy" is actually given by

E = me(w2 + w2 + w2) - e# - eByUtether(z - zoo).
2

(4.16)

A particle with Eco < 0 is trapped and cannot reach infinity, even if E > 0 because

By(z - zoo) > 0. The mechanism of the electron containment is as follows. The

potential hump created by the tether potential is traveling in LEO at the tether's
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Figure 4-18: Gyrating electron approaches a potential hump

orbital speed. In the frame of reference of the tether, plasma is flowing at the same

speed into the plasma hump. For brevity, let us model the potential hump as a

rectangular region with a positive potential as shown in Fig. 4-18 .The magnetic

field is aligned along the y-direction, and electrons are gyrating about the magnetic

field, drifting in the x-direction to represent the tether relative motion with respect

to the plasma. The drift of electrons in the x-direction is also recognized in (c) of

Fig. 4-17, and it is due to the presence of an Ez field component (= Utetiier x B) in

the tether's frame.

In Fig. 4-18, when the electron encounters the potential hump, it sees the electric

field only in the x-direction. Due to this electric field, the electron is accelerated but

only in the x-direction. In terms of total energy, the electron gains kinetic energy in

its component perpendicular to B,

1
E = -me( wj +w ) - eq! (4-17)

2

Only this term increases

Where the perpendicular kinetic energy (perpendicular to magnetic field) increases
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by the potential difference,e#. The longitudinal component of kinetic energy is the

same as before entering the potential hump.

Ay I"y-

E E

(a) Gyrating electron inside a potential (b) Tether and electron inside a potential
hump hump

Figure 4-19: Electron "trapping" in a potential hump

Once the electron enters inside the potential hump, it continues gyrating with a

larger Larmor radius ((a) in Fig. 4-19). But the longitudinal velocity does not change.

After a while, the electron is confronted with the electric field at the side of the hump.

In order for the electron to continue traveling in the same y-direction, it must have

enough kinetic energy in the same direction to climb over the potential difference. In

this simple case, if the longitudinal kinetic energy jmew' is smaller than the potential

difference, e#, the electron gets reflected back inside the potential hump. Since there

is no mechanism for the electron to gain longitudinal kinetic energy in this model, the

electron continues bouncing back and forth inside the potential hump, while being

contained (except for the drift) in the x-direction.

When there is no object such as an ED tether, the electron would go out of the

potential hump from the back of the hump where it has enough perpendicular kinetic

energy to climb over the potential difference. But when there is an object with a high

positive potential, the electron goes under the influence of electrostatic force created

by the object and may get collected ((b) in Fig. 4-19).

The electrons that we consider here seem to be responsible for neutralizing the

ion accumulation in front of the tether. Since those electrons are under the strong
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effect of the electrostatic force by the tether, they do not go beyond the tether and

neutralize the ion caustic line at the back sides of the tether.

70

10

-10

(a) Potential Field

220 . . 0 . .. . .
Tb [Normafted by P is T ory (2xhz))

(b) Energy History

0.2

11
- -0

-. 4

IN

so
40

W

20

101

0
.10

Tn# [Normaflod by PlameTkm (21e,))

(c) (x, y) History

I
-0.-4 01 0 . 2 2 G

0(m

(d) Particle Trajectory

,~2

His-

-. A/

10( ( 0 ,40
Time (NOeMahOed by Phemnhe (211/1,))

(f) (vx, vy,v_.) History(e) (w /V, W /v2)
tory

Figure 4-20: Typical "non-trapped" electron trajectory and its variable history

Next, let us look at the case where an electron does not get contained. In Fig.

4-20, a "non-contained" electron trajectory and its variable history are shown. The

electron is traveling quite close to the tether from bottom to top ((d) in Fig. 4-20). In

most cases, an electron in such a situation is captured by the tether. Therefore, this

is a very rare case that an electron is not captured. The figure is shown here in order

to demonstrate the difference between "contained" and "non-contained" particles. As

seen in (e) in Fig. 4-20, the electron gains kinetic energy in the longitudinal direction

(along B) as it enters the higher potential region. In terms of a square potential

hump, the electron enters from the "side", gaining kinetic energy in the 1meW part
ad h 11 part

and has enough momentum to get out of the potential hump from the other "side".
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In (b) of Fig. 4-20, we can notice a small decrease in the electron's total energy,

which is defined as Eco. This may be considered due to numerical error, which was

discussed in Sec. 4.5.5. In general, in our computation, a magnetized plasma does

not experience violent fluctuations. However, there still exist certain particle-field

interactions in our simulation. In the next section, plasma oscillations are discussed.

4.5.8 Plasma Oscillations

Wr Analysis of Potential at A

(b) Potential Oscillation at A

FFT Analysis of Potential at C

Frequency [Nonnuaized by WaJ

(d) Potential Oscillation at C

Figure 4-21: Fast Fourier Analysis (FFT) of potential oscillations near the tether

In Figure 4-21, Fast Fourier Transform (FFT) analyses of potential field at points

indicated in (a) are shown. Point A is about 35 Debye lengths away from the tether,
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Point B 15 Debye lengths away (still in the pre-sheath) and Point C 5 Debye lengths

away and inside the sheath. At Point C, there is no significant peak recognized.

As we check further away from the tether in front, we start seeing a peak around

= 0.05 ~ 0.25.
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25 2005 .
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Figure 4-22: Typical "contained" electron trajectory and its variables history

This band of frequency is mainly due to the sloshing of contained electrons. In

(d) of Figure 4-22, the trajectory of a typical contained electron is depicted. The

frequency of the sloshing motion of the electron can be seen in Fig. (c), where the

history of (x, y, z) coordinates of the electron is shown. x- and z-coordinates oscillate

at the cyclotron frequency, g, whereas the y-coordinate increases its frequency as

the electron gets contained in a narrower region. The band of frequency ranges up

to a frequency corresponding to the electron cyclotron frequency. As the electron

approaches the tether, it is now under the effect of the electrostatic force created by
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the high potential on the tether. The sloshing motion of the electron becomes an

orbiting motion around the tether by the central force. The frequency of the orbiting

depends on the distance from the tether.

mrw = eE

V eEmr
(4.18)

In Figure 4-23, the magnitude of electric field is indicated, from which we can extract

Magtude of Elctno Meld [V/m

2600
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0
-0.2 0 0.2

Figure 4-23: Magnitude of Electric Field

some numbers for the estimate. In the vicinity of the tether (within about 10 Debye

lengths from the tether), the frequency of an electron orbiting about the tether is
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given by equation (4.18) as

1.6 x 10-19 x 1007
X ~_ __ 9 ~ 1 1.58 x 10 (4.19)

.91 X 10-30 X 1x 0.7 x 10-2

= 0.89w, (4.20)

This frequency increases as the electron gets closer to the tether. The band of higher

frequency than those for the electron sloshing (w - 0.2w,) in (d) of Fig. 4-21 may be

ascribed to the high speed orbiting motion of electrons around the tether.

The point where the electrostatic effect starts balancing with the magnetic effect

can also be seen from Figure 4-22. At time ~ 4400 in (c), the electron gyro-motion

is clearly affected by the electrostatic force at (x, y) = (-0.2, 0.2). At this point, we

can approximate the electric field from Fig. 4-23 as E ~ 5[V/m] and the electron

velocity perpendicular to magnetic field as w1 ~ vt, indicating the force balance

wiB ~ E ~ 5[V/m].

In conclusion, the electrostatic effect by the tether starts affecting an electron's

trajectory where the magnetic force on the electron becomes comparable with the

electrostatic force, w1 B ~ E. This shows that for larger magnetic field and/or

larger electron temperature, or larger velocity, the magnetic effect prevails closer

to the tether. However, this does not mean that a low temperature plasma gives

smaller current collection. When the electron temperature is low, it is more likely to

be contained in a potential hump (See the later chapters). In general, the electron

current collection to a positively charged tether in the presence of magnetic field tends

to be larger than the 2D OML current collection without the magnetic field.

4.5.9 Frozen Case

In order to see the effect of plasma oscillation on the current collection, we perform a

simulation of the nominal case with a frozen potential field. In Figure 4-24, current

collection is shown to be about 2.3 times larger than the 2D OML. It is a little lower

than the nominal case. In order to establish a similar potential profile to that of the

nominal case, the first few hundreds iterations are run normally and the potential
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field is then frozen. The potential is shown in Figure 4-25(a).
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Figure 4-24: Current Collection with a frozen potential field

Total energy, Eo, plotted in Figure 4-25(b) of course is constant. Electron "con-

tainment" is clear in Figure(d). We can also check several numerical effects of a

PIC method on the computation. In Figure 4-24, it is also seen that there is some

contribution by trapped electrons to the current collection. Since there is no poten-

tial fluctuation, there should be no new trapped electrons in the numerical domain.

Some "inherited" trapped electrons obtained when we freeze the potential should be

collected by the tether after certain long time. And others may still remain in the

domain. However as seen in Figure 4-26(a), there is certain population of trapped

electrons in the vicinity of the tether, where the local potential is high and increases

toward the tether. This is considered to be due to the numerical error explained in

Section (4.5.5).
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Figure 4-25: Typical "contained" electron trajectory and its variables history in a
frozen case

From Figures 4-26(c)-(e), some considerable non-neutrality betweeni electron den-

sity and ion density is recognized. It may be due to the lack of the ability of the

potential to re-adjust itself to maintain quasi-neutrality. It indicates the power of

PIC to produce really self-consistent solutions.

From this check, we can assure that the enhancement of current collection over

the 2D OML is possible without plasma fluctuations. The collected current is a

little lower than the nominal case. It may be because in the nominal case there are

numerical and/or physical electron trappings which contribute extra current to the

tether.
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Figure 4-26: Field quantities in the frozen case
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Chapter 5

Results and Pre-Flight Predictions

II

The main purpose of the work presented in this thesis is the preflight prediction of

the ProSEDS experiment, which is planned to be launched November 2002. Since

the tether shall find itself in many different plasma situations, it is necessary to take

into account the variety of plasma parameters. In the previous chapter, in order to

discuss the physics involved in the current collection, we considered a case of the

plasma parameters (Figure 4.1) which show typical numbers that an electrodynamic

tether will encounter in LEO. As the electrodynamic tether orbits around the Earth

through day and night, the ambient density ranges from 1.0 x 1011 101 2 (1/m 3 ). The

tether potential will be more than 100(V). Electron temperature tends to be 0.2 ~

0.3(eV) above the altitude of 500(km). Ion temperature is typically a little lower than

the electron temperature [5]. In order to predict the current collection in a plasma

situation different from the nominal case, several simulations with different plasma

parameters are presented in this chapter so that the prediction of the current collection

for different plasma parameters may be performed by interpolating or extrapolating

the results. We change one parameter for each case from the nominal case and check

the effect of the parameter on the current collection. We also check a few cases where

two parameters, the electron temperature and the tether potential, are changed and

examine the combined effects of the two parameters. The comparison cases are listed
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in Table 4.2.

5.1 Current Collections

Comparison Case Ratio to OML Current Collection
Nominal Case 2.6 0.04 [A/m 2]
Case 1 (B = 0.1(G)) 2.6 0.04 [A/m 2]
Case 2 (B = 0.6(G)) 2.6 0.04 [A/m 2]
Case 3 (#p = 10(V)) 2.4 0.024 [A/m 2]
Case 4 (, = 100(V)) 0.95 0.0285 [A/m 2]
Case 5 (-- = 0.3) 2.6 0.4 [A/m 2]
Case 6 ( = 3) 1.83 0.0275 [A/m 2]
Case 7 (- = 10) (can not run) (can not run) [A/n 2]dD
Case 8 (Te = 0.05(eV)) 3.0 0.045 [A/m 2]
Case 9 (Te 0.2(eV)) 2.16 0.0325 [A/m 2]
Case 10 (T = 0.05(eV)) 2.6 0.04 [A/m 2]
Case 11 (T = 0.2(eV)) 2.6 0.04 [A/m 2]
Case 12 (9 = 604) 1.16 0.0175 [A/m 2]
Case 13 (Te = 0.05(eV)&#, = 10(V)) 2.5 0.025 [A/m 2]
Case 14 (Te = 0.2(eV)&#, = 10(V)) 2.25 0.0225 [A/m 2]
Case 15 (A = O.1&#, = 100(V)) 1.333 0.04 [A/m 2]

Table 5.1: Current Collection in the comparison cases

In Table 5.1 results from comparison cases are shown. From Cases 1 and 2, we

see that the magnetic effect does not change the current collection. As we will see

later, Case 1 is performed to check the validity of the 3D calculation of density and

flux at the computational domain. Cases 3 and 4 show the dependence of the current

collection on the tether potential. Case 4 does not seem to be fully converged, and

may not represent reality. However, the relation of electron motions and the current

collection can be understood better from the acquired potential profile. Cases 5, 6

and 7 deal with different tether radius. In Case 7, the tether radius is too large for the

computation and could not get any resolution. In Cases 8 and 9, electron temperature

is changed. Together with the nominal case, it is seen that higher electron temperature

results in lower current collection. In Cases 10 and 11, ion temperature is changed.
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Unlike electron temperature, ion temperature does not seem to have any effects on

the current collection. In Case 12, the ED tether is inclined at an angle of 30 degree

to the vertical. This is equivalent to a lower ion ram energy. In Cases 13 and 14,

we look at some combined effects of electron temperature and the tether potential.

From comparison of these cases with Case 3, it is also seen that the higher electron

temperature lowers the current collection. Finally Case 15 is chosen to check the

case of high tether potential, since in Case 4 the computation does not seem to

provide a correct value. With a small radius of the tether we reduce the size of the

computational domain in order to contain the physics correctly inside the domain. In

the following sections, we go through each case and the relation between the plasma

properties and the current collection is discussed.

5.2 Case 1 : Magnetic Field (B = 0.1(G))

Case 1 deals with a lower magnetic field, B = 0.1(G). This case is checked to see the

limit of the three dimensional injection method discussed in Chapter 3. We discussed

that, in order to use the 3D injection method, the size of the computational domain

has to be large enough so that the magnetic effect on the electrons' motion overwhelms

the electrostatic effect by the high tether potential. More specifically,

2eO

me me

eB <L2. (5.1)eB

In Figure 5-1, instantaneous field quantities of Case 1, with the lower magnetic

field (B = 0.1(G)) than the nominal case, are shown. The first thing to note is the

potential profile (Figure 5-1(f)). The "potential wing" does not spread as wide as that

in the nominal case. The magnetic effect is so small that many electrons can reach

the tether surface from the ram side directly without completing one gyration. In

Figure 5-2(a), a few electron trajectories coming from the ram side are shown. Unlike

the nominal case, most electrons are attracted by the electrostatic force by the tether

as soon as they enter the computational domain. In this sense, we have to doubt the
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validity of the three-dimensional injection of electrons at the computational domain.

Current collection is 2.6 times larger than the 2D OML current collection as shown

in Figure 5-2(b), which is the same current collection as in the nominal case.
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Figure 5-1: Instantaneous maps of field quantities in Case 1 (B = 0.1(G))

5.3 Case 2 : Magnetic Field (B = 0.6(G))

Case 2 deals with a larger magnetic field, B = 0.6(G). Since the magnetic field is

stronger than in the nominal case and the 3D injection method was justified for the

nominal case in the previous chapter, we can safely state that the magnetic effect on

electrons at the computational boundary is dominant enough for the use of the 3D

injection method.

Figure 5-3(a) and (b) show typical electron trajectories from the ram side. The
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Figure 5-2: Electron trajectories and current collection in Case 1 (B = 0.1(G))

trajectory shown in (a) shows an electron that is injected in the ram side and continues

to gyrate away through the upper side of the computational boundary. This shows

the strong magnetic effect on the electrons in the region. Figure 5-3(b) shows the

trajectory of an electron which is captured by the tether located at (0, 0). The electron

seems to be controlled by the electrostatic force. However, as shown in Figure 5-3(c),

the electron gyrates until it reaches very close to the tether. Therefore the magnetic

effect dominates up to the immediate vicinity of the tether. Due to the potential

hump and the electron containment, the electron sloshes more frequently as it gets

closer to the tether (it is seen in the time history of the y-component of the electron

position in Figure 5-3(c)).

Now let us see the effect of the higher magnetic field on macroscopic plasma

quantities. Instantaneous field quantities are shown in Figure 5-4. The potential

profile in Figure 5-4(f) shows the magnetic wings spreading wider than in the nominal

case. This reflects the fact that electrons' motions are restricted along the magnetic

field. We can notice that the potential contour line of 4 = 0.1(V) is more straight

and closer to the tether than that of the nominal case. This is considered to be due

to the smaller Larmor radius, ~O (-0( ), and the larger Lorentz force, ewB, for

the larger magnetic field. In order for an electron in the frontal region of the tether

to start feeling the electrostatic effect, it needs to be closer to the tether than in the
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Figure 5-3: Electron trajectories and current collection in Case 2 (B = 0.6(G))

nominal case. That is, electron capture by the magnetic wings (the pre-sheath), whose

fundamental mechanism is to attract more electrons to obtain the quasi-neutrality,

is limited to a smaller region in front. In addition, the larger magnetic field renders

stronger the magnetic force, ew1B, against the electrostatic force, keeping electrons

gyrating around the magnetic field line. Therefore the magnetic wings, not being

able to obtain enough electrons from the ram side for quasi-neutrality, extend farther

along the magnetic field.

Another point to note is the ion density shown in Figure 5-4(d). Because of the

widely spread magnetic wings, ion's caustic line also spreads. Ions which are slowed

down in front of the tether due to the high potential are deflected to the sides, where
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Figure 5-4: Instantaneous maps of field quantities in Case 2 (B = 0.6(G))

they again experience higher potential (magnetic wings) than the nominal case. The

ions are then deflected further outside, giving rise to the ion density profile.

The current collection shows the same value as in the nominal case in Figure 5-

3(d). From the result of the nominal case and the result here, we may expect that

the different magnetic field in this range (B = 0.3 - 0.6(G)) has little direct impact

on the current collection. Of course, this comparison is at a fixed potential bias, but

the bias will change when flying through variations of the magnetic field. The effects

of potential bias are examined next.
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Figure 5-5: Instantaneous maps of field quantities in Case 3 (#, = 10(V))

5.4 Case 3: Tether Potential (5p = 10(V))

In Case 3, the tether potential is lowered to 4i, = 10(V) from the nominal case where

we had 4, = 25(V). As the tether potential is now just twice as large as the ion ram

energy, the ion peak density is closer to the tether. The wake behind the tether is

also smaller (Figure 5-5(f)). We can also notice the magnetic wings, which appear

because, even though the magnetic field is the same as in the nominal case, the

magnetic effect is relatively stronger than the electrostatic effect.

As the tether potential is lowered, but not the magnetic field, the electron's motion

is now dominated by the magnetic effect. In Figure 5-6(a) and (b), two electron

trajectories are shown. Figure(a) shows an electron with a relatively low energy,

showing the electron containment. Figure(b) shows a fast electron trajectory passing

near the tether. In both cases, electrons are not captured by the tether. As in the
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Figure 5-6: Electron trajectories and current collection in Case 3 (4p = 10(V))

case of (b), electrons are not so influenced by the electrostatic field as in the nominal

case. Electrons do feel the electrostatic force, but the magnetic effect is still strong

even in the vicinity of the tether, which helps electrons escape from the electrostatic

effect.

The current collection in Figure 5-6(c) is seen to be 2.4 times larger than the 2D

OML, a slightly lower ratio than the nominal case. This is thought to be due to the

stronger magnetic effect in the vicinity of the tether, which helps electrons escape

from the potential hump created by the tether potential. In addition, of course, the

OML current is itself lower by V/10/25.

5.5 Case 4 : Tether Potential (#p = 100(V))

In Case 4, the tether potential is raised to , = 100(V). The current collected did not

converge in this case in computation, but stayed around the 2D OML current (Figure

5-7(b)). The high potential on the tether increases the size of the sheath, pushing

the ion caustic line, ~ 5(V), farther ahead as seen in Figure 5-8(f). This enlarges

the wake region, creating a potential barrier and keeping electrons from approaching

from the wake side.

This computation may not be complete due to the lack of space to contain the

ion caustic line. At the top and bottom sides of computational boundary, incoming

ions are assumed to have a non-deflected Maxwellian distribution, which is obviously
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contradictory to the numerical result here. Computations with a larger domain are

suggested as future work.
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Figure 5-7: Electron trajectory and current collection in Case 4 (#, = 100(V))

5.6 Case 5: Tether Radius (- =0.3)Debye Length dD

Case 5 deals with a smaller tether radius or larger Debye length. In the 2D OML

theory, the nominal case y = 1 is already in the OML regime and the smaller tetherdD

radius or a larger Debye length does not change the current as the 2D OML is the

upper limit. It is obvious by now that the current collection in the magnetized flowing

plasma is more than the 2D OML. The question is then whether d = 1 provides the

upper limit of the current collection or not? The answer is seen in Figure 5-9(c). The

current collection is -' 2.6 times larger than the 2D OML, which is the same ratio

as the nominal case. The large noise is due to the small total area of the collecting

surface of the tether.

In Figure 5-9(a) and (b), a number of electron trajectories from the ram side and

from the upper side are shown. Figure 5-9(a) shows electron trajectories from the ram

side. The electron containment is also recognized. In general, it is not very different

from the nominal case, showing a dominant magnetic effect at the boundary. Figure

(b) shows several electron trajectories from the upper side. These electron trajectories
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also indicate that electrons are under the magnetic effect in most of the frontal region.

Figure 5-10(f) shows an instantaneous potential profile, which also indicates that the

electrostatic effect does not reach farther out in front, compared to the nominal case.

The effect of the small tether radius is seen in the ion density in Figure 5-10(d).

The ion peak density and the ion caustic line are in a compact region. Accordingly

the magnetic wings are smaller than the nominal case, meaning that the electrostatic

effect does not reach as far out. This allows more electrons to pass by the tether as

seen in Figure 5-9(b). This lowers the total current collection but the current density

is the same as in the nominal case.
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Figure 5-9: Electron trajectories and current collection in Case 5 ( = 0.3)

5.7 Case 6 : Tether Radius (d 3)Debye Length dD

Case 6 deals with a larger tether radius y = 3. From Figure 5-11, it is seen thatdD

the computational domain was not large enough to contain the ion caustic line. As

in Case 4, ion deflection is so considerable that the no-deflection assumption at the

top and bottom sides is contradicted. The current collection in this computation is

shown in Figure 5-12, and is reduced to 1.83 times the 2D OML value.

5.8 Case 7 Tether Radius (d 10)
Debye Length dD

This case required a large grid system. I ran out of memory and could not run it.

5.9 Case 8 : Electron Temperature (Te = 0.05(eV))

Case 8 deals with a lower electron temperature, T = 0.05(eV). Figure 5-13 shows

instantaneous maps of field quantities. The direct effect of the lower temperature on

plasma quantities appears in the Debye length, dD = EK, the electron Larmor

radius, rL = ' and the Lorentz force acting on an electron, FLorentz = qw±B. The

electron Larmor radius is smaller, as in Case 2. But the Lorentz force also becomes

weaker, unlike the case of stronger magnetic field in Case 2. Even though the Larmor

radius is small, the electrostatic force, which is now stronger against the magnetic
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Figure 5-10: Instantaneous maps of field quantities in Case 5 ( = 0.3)

force than in the nominal case, attracts electrons from the frontal region

Among the three parameters, the Lorentz force has the largest impact on electron

trajectories. Figures 5-14(a) and (b) show two typical trajectories of electrons coming

from the ram side. Figure 5-14(a) indicates that electrons start being under the

influence of the electrostatic force at a more distant point than in the nominal case,

approaching toward the tether. In other words, as the thermal speed of the electron

is small, the electron containment happens even against a small electric field. Figure

5-14(b) shows an electron trajectory dominated by the electrostatic effect. It sloshes

several times before the tether captures it. The sloshing motion in this particular case

happens to be in phase with the electron cyclotron motion when it makes "U-turns"

(Figure 5-14(d)).

The current collection shown in Figure 5-14(c), is seen to be -- 3.0 times larger
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Figure 5-11: Instantaneous maps of field quantities in Case 6 ( = 3)

than the 2D OML. The reason for this larger current collection may be the relatively

large number of contained electrons in the potential hump. As the electron temper-

ature is low, the electron's longitudinal kinetic energy, jmewg, is on average low as

well. As discussed in Chap. 4, an electron with a lower longitudinal kinetic energy

is more likely to be contained in the potential hump, and therefore more likely to be

captured by the tether.

5.10 Case 9: Electron Temperature (Te = 0.2(eV))

Case 9 deals with a higher electron temperature. As the electron temperature becomes

larger, the electron Larmor radius gets larger. This allows an electron to cover a wider

region within one gyration. Therefore, an electron at a more distant point in the ram
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region may enter the potential hump, and the potential hump stretches ahead a little

bit, trying to attract more electrons from the ram side (Figure 5-15(f)). Note that in

case 8 where the electron temperature (and hence the Larmor radius) is smaller, thus

smaller Larmor radius, the potential hump mainly stretches to the magnetic wings,

not towards the ram side.

The current collection is 2.16 times larger than the 2D OML current (Figure 5-16).

Following the same argument given in the last section on Case 8 (T = 0.05(eV)),

we can ascribe the lower current collection to the non-contained electrons, which are

attracted to the ion peak density to obtain the quasi-neutrality, but escape outside

the potential hump. A certain number of electrons are attracted due to the tether

potential, and additional electrons are added because there is the ion peak density

in front of the tether. When the electron temperature is low (Case 8), there are

relatively more contained electrons coming from the ram side, and most of them are

captured by the tether. On the other hand, when the temperature is high as in this

case, fewer electrons are contained, and due to the larger thermal motion, electrons

are coming from more random directions to the ion peak density. These electrons are
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Figure 5-13: Instantaneous maps of field quantities in Case 8 (Te = 0.05(eV))

just passing through the ion peak density and are more likely to go away than to get

captured by the tether.

5.11 Case 10 : Ion Temperature (T = 0.05(eV))

Case 10 deals with a lower ion temperature, T = 0.05(eV). The current collection,

Figure 5-17 (b), is 2.67 times larger than the 2D OML current collection, which is

the same as the nominal case. It is also seen from Figure 5-18 that the plasma profile

is not very different from the nominal case. Under the mesothermal condition, the

ion distribution is mainly determined by the plasma flow, Utethe,. The effect of the

lower ion temperature should appear in the thickness of the ion peak density and in

the size of the wake. The ion peak density is seen in front of the tether where the

ion flow "stagnates" at the potential equivalent to the ion ram energy. As the ion
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velocity distribution has a narrower spread for the lower ion temperature, the ion

peak density also has a narrower spread. However, this effect is so small that we do

not see the difference in the ion density profile (Figure 5-18(d)). The wake closes itself

by the ion thermal motion and the electric field created by the non-quasi-neutrality

in the wake, the distance from the tether required to close the wake is longer for the

lower ion temperature. As the size of the computational domain is not large enough

to contain the whole wake, this effect is not seen in our computation.

A lower ion temperature does not affect the potential profile considerably, and

does not affect electron trajectories. Therefore the current collection does not change

from the nominal case.
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5.12 Case 11 : Ion Temperature (T = 0.2(eV))

Case 11 deals with a higher ion temperature, T = 0.2(eV). As it was discussed in

the previous section for T = 0.05(eV), the ion temperature itself does not affect the

electron behavior a lot. The current collection is still the same as the nominal case

(Figure 5-19(b)), and the electron containment as seen in the nominal case is also

seen in Figure 5-19(a). The effect of the higher ion temperature may be recognized

in the thickness of the ion peak density in this case. The thickness of the higher ion

density region in front of the tether (Figure 5-20(d)) is larger than that of Case 10

(Figure 5-18(d)).
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Figure 5-17: Electron trajectories and current collection in Case 10 (T, = 0.05(eV))

5.13 Case 12 : Tilted Tether (0 = 60(deg))

When the tether is traveling at an angle to its direction of motion other than the

right angle, the projection of plasma behavior to the plane perpendicular to the tether

becomes of practical importance. When the angle is 6 = 60(deg), we can consider this

problem as 0 = 90(deg) (nominal case) with the ion ram speed of U -+ U sin 60. The

major difference in this case from others is the current collection (Figure 5-21(c)),

which shows the current collection just above the 2D OML.

From Figure 5-22, we notice that the ion peak density in front of the tether is

located farther away from the tether than the nominal case (Fig. (d)). Accordingly

the potential hump and the magnetic wings are shifted ahead. Electrons are seen

to be contained in the potential hump (Figure 5-21 (a) and (b)). The fact that the
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Figure 5-18: Instantaneous maps of field quantities in Case 10 (T = 0.05(eV))

wake increases its size, as the magnetic wings move ahead, and reaches the sides of

the tether keeps electrons from approaching from this direction. Therefore, although

the current collection is very close to the 2D OML, the mechanism is very different

from the 2D OML theory. An electron's motion is governed by the 3D magnetic effect

until it enters the sheath where the 2D electrostatic effect dominates. However, the

wake covering not only the back of the tether but also the sides creates a potential

barrier, preventing electrons from entering the sheath, and thus lowering the current

collection.
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5.14 Case 13: Electron Temperature (Te = 0.05(eV))

& Tether Potential (#p = 10(V))

Case 13 deals with a lower electron temperature, Te = 0.05(eV), and a lower tether

potential, #, = 10(V). The current collection to the tether is 2.5 times larger than the

2D OML (Figure 5-23). As the temperature decreases, the magnetic effect becomes

weaker. And as the tether potential decreases, the electrostatic effect also becomes

weaker. The reason for the current collection being lower than the nominal case may

be ascribed to the relatively weak electric field around the tether. In the nominal case,

when an electron starts being attracted by the electric field due to the tether potential,

the electron's gyration is overwhelmed by the electrostatic force in the vicinity of the

tether and the electron is captured. In Case 13, due to the low potential on the tether,

the electrostatic force does not completely overwhelm the magnetic effect. Therefore,

there are some electrons which orbit around the tether due to the electric field, but

escape from the orbiting motion by the gyration before they are captured by the

tether (Figure 5-23(b)).
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Figure 5-20: Instantaneous maps of field quantities in Case 11 (T = 0.2(eV))

5.15 Case 14: Electron Temperature (Te 0.2(eV))

& Tether Potential (#p = 10(V))

Case 14 deals with a higher electron temperature, Te = 0.2(eV), and a lower tether

potential, , = 10(V). Due to faster electron velocity associated with the larger

temperature and the low tether potential, electrons' motions are mostly dominated

by the magnetic effect. As in Nominal case, Case 9 and 10, we can see the effect of the

electron temperature on the current collection. Comparing Case 3, 13 and 14, it also

indicates that the higher electron temperature gives rise to the lower current collection

(2.3 times OML, see Figure 5-25). The mechanism of such a trend is considered to

be the same. "Hotter" electrons are less likely to be contained in a potential hump,

and less electrons are captured by the tether.
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Figure 5-21: Electron trajectories and current collection in Case 12 (0 = 60(deg))

The temperature dependence on the plasma is also seen in the potential profile in

Figure 5-26(f). As the Larmor radius is large, the 2D effect becomes stronger. And

electrons are attracted from a wider range of direction. Therefore the potential profile

does not show magnetic wings, but the potential hump spreads more widely.

5.16 Case 15 : Tether Radius (d 0.1)Debye Length dD

& Tether Potential (#, = 100(V))

Cases 4, 6 and 12 showed a displacement of the ion caustic line further ahead in the

ram side and suffered from the lack of space, both in front and on the sides of the

computational domain. Since high voltage cases are more interesting regarding the

actual ProSEDS plasma environment, we take a case of high tether potential with a

smaller tether radius in order to get more reliable results than the abovementioned

cases.

The computation actually took a considerable time for convergence, and the result

shown here is believed not to be fully converged yet. Here we show a set of plasma

quantities in a early stage of iteration (Fig. 5-27) at about timestep 2500 in Figure

5-29 (before the current collection increases) , and another set from a later iteration

(Fig. 5-28) at timestep > 5000 in Figure 5-29. Ion density profiles in both figures

indicate that ions are moving very slowly but closing the wake. In Figure 5-27, the
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Figure 5-22: Instantaneous maps of field quantities in Case 12 (0 = 60(deg))

wake seen in the ion density originates from the tether and has a wide angle. In

Figure 5-28, the wide angle wake flows downstream and a narrow wake appears near

the tether. This is considered due to the very slow ions passing through the region.

Due to this process, the wake region becomes small in the end and the potential

barrier halfway around the tether on the wake side as seen in Cases 4, 6 and 12

disappears. Therefore more electrons are accessible to the tether from the back side,

giving rise to higher current collection (Figure 5-29). Additional computation would

be desirable to further define this case.
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Chapter 6

Conclusions and Recommendations

6.1 Summary and contributions

An electrodynamic (ED) tether has been considered as an alternative to conventional

chemical or electric propulsions for spacecraft to perform their station-keeping ma-

neuvers. A motion-induced electromotive force (EMF) or a power supply create a

local potential difference between the tether and its ambient plasma, enabling the

tether to collect electrons from one end. Collected electrons flow inside the tether,

producing a current, and are then emitted from the other end of the tether to space.

This uni-directional current is the key to the ED tether technology. The current

interacts with the geomagnetic field across which the spacecraft is traveling and pro-

duces a Lorentz force either in the same or opposite direction of the tether motion,

depending on the direction of the current. In order to efficiently increase the collected

current, a bare tether which collects electrons through its own thin cylindrical surface

has been preferred over an inefficient large spherical collector attached to the end of

the tether.

In designing an ED Tether, it is important to estimate the current collection by the

positively biased tether, as the amount of current directly affects the force acting on

the tether. From the dimensional analysis, the current collection by a bare tether can

be modeled as current collection by a positively biased cylindrical probe placed in a

flowing magnetized plasma. Since the radius of the tether is smaller than the Larmor
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radius and the electron thermal speed is much faster than the flow speed, magnetic

and flowing effects were first considered negligible in the original attempts to estimate

current collection, making the 2D Orbital-Motion-Limit (OML) theory a reasonable

candidate for the current collection estimate. To obtain more reliable estimates in

the current collection, a Particle-In-Cell (PIC) method has been developed and the

flowing and magnetic effects have been incorporated into the calculation.

In order to improve the quantitative results, the quasi-neutrality condition applied

at the computational boundary has been incorporated. The quasi-neutrality condi-

tion involves four particles densities; incoming electron and ion densities and outgoing

electron and ion densities. The outgoing particle density is calculated numerically,

and the incoming particle density is given as an analytical function of the local poten-

tial. The local potential is then solved for using the equation of the quasi-neutrality

and used as an outside boundary condition. Given the outside boundary potential,

electrons and ions are injected inside the computational domain. The accuracy of the

condition has been verified elsewhere (author's M.S. thesis).

The method of injection is different depending on whether the plasma of interest is

flowing and magnetized or not. Since the plasma is totally collisionless, at an injection

point where the local potential is positive, electrons may behave two-dimensionally

or three-dimensionally even though the problem of interest, a cylindrical probe, is

geometrically two-dimensional. When there is no flow and no magnetic field, only

electrons with sufficient energy perpendicular to the tether are injected. When there

is flow and magnetic field, the injection of electrons can be three-dimensional (i.e.,

excluding only those with insufficient total energy), provided that the potential hump,

i.e. the region with a positive potential, is large enough for electrons to gyrate, con-

verting kinetic energy along the probe to that in a plane perpendicular to it, and vice

versa. The presence of an absorbing probe or an externally applied potential field

also modify the size of the region. The electron density resulting from 3D injection,

which is larger than that from two dimensional injection, may be explained as fol-

lows; as electrons approach from infinity to a local point of positive potential, their

acceleration and the geometrical concentration to the point cancel out their effects,
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giving rise to the same density as at infinity. When a magnetic field is present and

electrons gyrate, the gyration cyclically inter-converts the velocity along the tether

and the perpendicular velocity. This cyclical conversion of the velocity components

lowers the effect of acceleration in the perpendicular plane, rendering the geometrical

effect stronger and giving rise to a higher density.

Several computations are performed with different plasma parameters. We chose

one nominal case with typical plasma parameters seen in an ED tether operating in

LEO. Other cases are defined by changing one or two parameters from the nominal

case so that the effect of the changed parameter on current collection may be under-

stood. The nominal case shows an enhanced current collection over the 2D OML.

This result is reproduced with a frozen potential field with a slightly lower current col-

lection (but still higher than the 2D OML). This indicates that the enhanced current

collection results mostly from the three dimensional motion of electrons.

Several comparisons cases are run. Current collection is observed to decrease from

the nominal case (but still around the 2D OML) in the following cases; (1) when the

ion ram energy is lowered, (2) when the tether potential is very high (although there

is same question about the convergence of this case) and (3) when the tether radius is

increased. Things in common in these cases are the relative position of the ion peak

density in front of the tether. Since the ion caustic line is located further ahead of

the tether, the wake region behind the tether enlarges itself and creates a potential

barrier near the rear part of the tether, keeping electrons from approaching to the

tether from that direction.

Electron temperature has also some effects on the current collection. Higher elec-

tron temperature results in lower current collection. Electrons are attracted by two

things. One is of course the tether potential, and the other is the ion higher density

in the frontal area due to the scattering by the tether potential. Since the ion peak

density is outside the sheath, the plasma attracts electrons in order to maintain the

quasi-neutrality. There are two different types of electrons which are attracted by the

potential hump created by the ion peak density. The first one is an electron coming

along the magnetic field from outside the hump. Such an electron travels along the
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magnetic field and enters the potential hump, accelerating along the magnetic field

line. The other one is an electron which enters as the potential hump moves across

the magnetic field. In this case, the electron accelerates across the magnetic field,

and continues traveling inside the hump. When such an electron reaches the edge

of the hump, if it does not have enough kinetic energy along the magnetic field, it

reflects back to the potential hump. And the electron continues to stay inside the

potential hump, sloshing up and down the magnetic field inside the hump. We call

such an electron a "contained" electron as it is not trapped (with negative total en-

ergy). As the tether is located inside the potential hump, those contained electrons

are very likely to be absorbed by it. When the electron temperature is lowered, there

are more contained electrons as they do not have enough kinetic energy along the

magnetic field in order to escape from the potential hump at the edge. Therefore

more contained electrons contribute to a higher current collection.

Finally, the contributions of this work may be summarized as follows;

1. The quasi-neutrality condition has been formulated and incorporated into the

treatment of boundary conditions in a PIC method. This condition removes

the non-physical flux control as seen in previous works, and still provides stable

calculations.

2. In space probe engineering, a negative bias or a slightly positive bias is the

common situation. This work is one of the first to attack the interesting but

complicated problem of a highly positive probe in space. Unlike a negatively

biased probe, the attracted particles are electrons and the repelled ones are

ions, which are so heavy that they break the symmetry of the distribution when

the plasma is flowing. This also modifies electron motion and complicates the

problem of current collection.

3. The 3D calculation of a local density and flux has been applied to a geometrically

2D problem. It has been considered reasonable to apply a 2D calculation to

a geometrically 2D problem such as an ED Tether and the current collection

has been considered to be limited by the 2D OML. However, in the presence
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of magnetic field and plasma flow, in the steady state, the density and flux

are limited by the 3D OML, which is much higher than the 2D OML. The

magnetic field renders the motion of electrons partially three-dimensional. And

the plasma flow helps fill with electrons the energy space which is vacant in the

2D case.

4. Some preflight predictions of current collection to the ProSEDS bare tether is

provided. There is a certain possibility of getting a current collection higher

than the 2D OML. As is mentioned later, the current collection seen in our

computation may be over-estimated. However, as the non-magnetized case

indicates (though the result is not totally valid), the current collection tend to

be determined by the ion distribution. Therefore the current collection without

the over-estimate would probably provide the same or close result with an aide

of plasma fluctuations as seen in the unmagnetized flowing case, Cases 1 and 2.

6.2 Recommendations

The 3D calculation of the incoming density and flux at some part of the top and

bottom sides is over-estimated. Electrons which have insufficient kinetic energy along

the magnetic field, !mew2 < e#, and therefore would not exist in a quiescent case,

flow into the potential hump due to its motion. Therefore in order to obtain the 3D

density and flux, all the electrons with insufficient kinetic energy along B should come

from the front side of the hump, slosh along a magnetic field line and contribute to

the 3D density calculation at a point of interest inside the potential hump. But this

does not extend to those electrons entering the region through the top or bottom,

and 3D injection in these regions should probably be restricted below 3D conditions.

If there is something like a tether inside the potential hump, which absorbs elec-

trons, at points behind the tether the electron density would be lower than that given

by the 3D calculation. In our computation, at the top and bottom sides, the magnetic

wings extends further outside the computational domain and therefore some outside

boundary points there are inside the potential hump. At boundary points ahead of
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the tether, x < 0 (tether is at (x, y) = (0, 0)), the 3D calculation seems valid. How-

ever at points behind the tether (x > 0), the partial absorption of contained electrons

by the tether renders the 3D calculation invalid.

To remove the uncertainty associated with the 3D calculation at the top and

bottom sides, it is recommended to extend the computational domain so as to include

the potential hump in all cases.

Other recommendations include

Better Poisson Solver : The Poisson solver used in this work is SLOR (Successive

Line OverRelaxation) method. It is known that SLOR is desirable for a small

system (e.g. 20 x 20). For the faster convergence for a large system such as

this work, ADI (Alternating-Direction Implicit) method or Multigrid Method

is recommended.

Use of unstructured grid & Particle Splitting/Rearranging : The practical limit

of the PIC method used in a PC computer is placed by its memory. In or-

der to allow larger computational regions, unstructured grid and particle split-

ting/rearranging should be considered. As seen in the cylindrical structured

grid in Figure 3-3, a structured grid often requires unnecessarily small cells.

Therefore the use of unstructured grid is expected to optimize the mesh size.

In a PIC simulation, particles are distributed non-uniformly throughout the re-

gion. For the reasonable computational resolution, we need a certain number

of particles in a cell. By using a particle splitting/rearranging method, we can

optimize the number of particles used in the computation. For example,in a

sheath created by a negatively biased wall the electron "superparticle" density

is low. To get a better resolution in the sheath, the electron superparticle is

splitted while it is in the sheath. The splitted superparticle will rearrange with

another splitted superparticle as they exit from the sheath.

Non-magnetic flowing case : We could not obtain a solution in the non-magnetic

flowing case. The main feature of this case is the trapped electron. Trapped

electrons are required in order to maintain the quasi-neutrality in the region.
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Apparently the plasma oscillation observed in the simulation is numerical. The

real mechanism of trapped electron is still unknown. It is recommended that

this case is studied more carefully with much larger grid system, since the

particle-field interaction which would trap electrons is considered to happen at

long wavelengths as the electron temperature is as low as the field potential.

For the investigation of the origin of trapped particles, energy conserving mover

may be a better choice.

Different geometry and plasma environment : An ED Tether will be put in

practice in space in a various situation. In order to investigate such a variation,

more comprehensive comparison cases should be worked on. One case which is

missing in this work is on the effects of a magnetic field non-perpendicular to

the tether. Different tether shapes and/or multiple tethers are also interesting

cases.

171



172



Appendix A

Mott-Smith & Langmuir (1926)

The conservation of energy and the angular momentum equation are given as

1 2 2
2 M r+ \ = m(u2 + v 2 ) + eV

2
(A.1)

(A.2)rVr = av

where the probe potential V is taken to be positive for an attractive probe with

respect to the sheath edge (r = a). Solving these equations, we obtain u, and v,,

velocity components at the surface of the probe,

U2 = 2 _ 2 1 2
r(r

a
V, = avr

r

+2-V
m

(A.3)

(A.4)

Only those ions will be able to reach the collector for which'

U > 0

U 2 > 0

(A.5)

(A.6)

'The condition u > 0 has to be satisfied not only at the sheath edge and the probe surface, but
also everywhere in the region between.
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Therefore the current collection is expressible as

i = 27ralNe J j uf (u, v) dv du (A.7)
0o or _ vi

where the range of integral is defined by equations (A.3) and (A.4) and f(u, v) is

the velocity distribution function at infinity. The point to be remarked is that the

integral (A.7) is performed at the edge of sheath (r = a). That is why the term 27ra

appears in the right-hand-side of equation. Then the assumption that the velocity

distribution function is uniform and independent of its position when the plasma is

unperturbed, i.e. in the absense of a probe, enable us to use the velocity distribution

function at infinity, which is the same as at r = a, in the integral (A.7).The limits,

v1, is found by solving the equation u2 = 0 from equation (A.3) for v, namely

a 2 - r 2 (U2+2 V) (A.8)

In order to take into account the presheath region which practically extends to

infinity, we take the limit of a -+ oo.

io= lim i
a-+oo

00 
v1

= lim 27ralNe ]_ uf(u, v) dv du (A.9)
a-+oo O or uiv

The straightforward calculation of the limit is

f0or f uf (u,v) dv du
i = lim 27rlNe 1 /

a-4oo,vilo 1/a

0 -(A.10)

0

Thus we need to use the rule of D'Hopital

lim ( W im f(X) (A.11)
g(x) g'(x)
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and the identity of derivative,

j 9(x)

dx hnx
f (x, y)dy = g'(x)f (x, g(x)) - h'(x)f (x, h(x)) +

Then equation (A.9) becomes

io= lim
a- oo

=lim
a-o 0

f00  2uf (u, v)t ddu
JOl~ or ul 4' da27rlNe -1/a 2

27rlNea 2 f -2uf(u, v)dvi du
Jeorui da

(A.13)

which is the same as equation (between (9) and (10)) in the paper of Langmuir and

Mott-Smith (but there is a typo in their paper). Taking the derivative of vi with

respect to a

dv _ d r 2 (U2 + 2 V)

da da a2 -r 2

e -a
- r 2 (u2 +2 -V) 2 2

- m (a2 -r r)3/2

and taking into account that vi -+ 0 as a -* oc, we can proceed to the limit,

lim 27rlNer a 3
a-ioo (a2 - r 2 )3 / 2 J or u

= 47rrlNe 0 U U 2 + 2 e Vf
JO or m1

2uf (u, vi(a))

(u, 0)du

U 2 + 2 Vdu
m

(A.15)

This is the general form of current collection to a cylindrical probe.

Maxwellian distribution of velocities

If T is the temperature of the distribution and r, is Boltzmann's constant, then the

distribution function for the velocity components, u, v is

m m(U2 + v 2 )
f (U, v=2rT 2T ) (A.16)
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Here we define the drift current I as

1= Neu af (u, v)dv du = Ne T

0 -e t (A )inoqt

Substituting equation (A. 16) into equation (A. 15), we have

io = 47rlNer I ol
e m

U u 2 + 2-eV Me 2,KT(U±O)du
m27rr.T

This calculation is a little cumbersome, thus Langmuir and Mott-Smith substituted

instead into equation (A.7) and take the limit of a -+ oc. In so doing, they introduced

nondimensional variables such as

= x

=y

Substituting equations (A.16) and (A.19) into equation (A.7), we obtain

i = 8ifialI

where
I m

v ~

J0

xe (2 +y2 )dy dx

= 2 _ r 2
=r
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eV
S T

V 2IT

(A.19)

(A.20)
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An integration by parts reduces to

e-_;2 :r j

00 1 r

foo -- foa-

2 00

xe2 +y 2)dydx

rVf ;-e- dy dx
0

_- 2 de dy

-17ory! y
f e r x

+ 7 eXp
oor V 2 Vfa2 -r2 - +y

re a

a2 -r2 J

x
exp -

X 2 + 7)

(Xr2( 2  + )'\
a2 -r 2

a2 } dx
a2 - r2 d (A.21)

II

When r > 0,

I = e- dy

[1- erf a 2 r2I
(A.22)

and, when q < 0, we have I = 0. As for II, we make the following substitution,

x2 + q = a2 2 (A.23)

Then we have from equation (A.21)

II= re" e- z 2 dz
2a J

(A.24)

Substituting equations (A.22) and (A.24) into equation (A.21), we finally obtain

2 re" f 0
e-dy+ 2a]2

2r
2

- erf r2)
V a2 - r2

e-z 2 dz

}+ Zeerfc
4

177

2x ;2- e 2 jo r V~a 2 2 dy l+
0Io

I + II

r

a 4r
1

a2r/

a2 - )( (A.25)

Fa _r;2 Ij

1 
2]=_ r

2 0



From equations (A.20), (A.21) and (A.25), we have

- erf ( a2 r2) }+ e erf c (

lim I
a- oo 1/a

2r
='7- V/5 (A.27)

ioo = 27rrlI{%V/i- + e&erf c(/)

When / > 1, eerfc(,/ ) -> 0. The collected current density, after dividing equation

(A.28) by unit area, 27rrl, is obtained as

= 21 E

Ne 2eV
7r Vm

(A.29)

(A.30)

which is indeed the same as equation (2.8).
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Appendix B

Time-averaged Outside Boundary

Conditions

Since our model is electrostatic and solves potential field by Poisson's equation, any

large noise at a computational boundary propagates everywhere at an infinite velocity.

This large non-physical fluctuation of potential field throughout the domain brings

about unreal total energy gains/losses of particles. This is a very critical issue in our

model since we categorize electrons as "trapped" and "non-trapped" depending on

the sign of total energy.

Now the question may be stated ;how large the noise can be? In an electrostatic

plasma, plasma can shield out the potential difference up to its thermal energy, KTe.

Therefore as long as the potential noises at outside boundary are less than hTe/q, we

may exclude the non-physical potential wave propagation throughout the domain.

In our model, an outside boundary potential is determined by solving the quasi-

neutrality condition. In the first order approximation, it is given as

in + out ___________
ne+ne = (B.1)

miU
2

~noo(1+ 2) (B.2)
mTU

This shows that a potential noise as large as i'Te/q corresponds to a density noise,
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noo ~TU 0.01 x n. In order to keep the potential noise within Te, the density
Mi U2 MiU 2

noise should be within the error of 1%. In the following, I show how many particles

are necessary in order to estimate a distribution function within a 1% error [15].

Suppose we have a collection of N sampled particles with an unknown distribution

function f(w). Our concern is with the precision of the distribution function which

we rebuild from the sampled particles. This precision may be expressed in terms of

a standard deviation of the distribution function. The probability that a subset of n

particles has velocity w and the N - n remaining does not have velocity w is

(N) n N(W) (1 (W))N-n (B.3)

where the distribution function f (w) has been normalized so that it gives a probability

of getting a velocity w, and (N) = N!/(N-n)!n!. This should be the case of whatever

f(w) is. The result is simply dependent on the value of f(w). The average of this

probability function is Nf(w) and the standard deviation is

Nf(w) (1 - f(w)) (B.4)

Out of N particles we choose, on average Nf(w) of these particles have velocity w

with a standard deviation VNf(w)(1 - f(w)). That is, the fractional number of

particles with velocity w is on average f(w) with a standard deviation

o = Ff (w) (1 -f (w)) /N (B.5)

The standard deviation o is the worst when f(w) = 0.5. So we can consider it as

a worst case. Now how many particles must we choose so that the fractional number

of particles is less than 1% of the distribution function f(w)? It is simply the solution

to

f (w) (1 - f (w)) /N = 0.01 (B.6)

with f(w) = 0.5. The answer is N = 2500 Therefore, we need to sample at least 2500
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particles in order to calculate the outgoing particle density with an error of 1%.

In computation, this number is prohibitedly large. Assuming that one timestep is

equal to 0.01/wp, the number of super-particles going through an outside boundary

cell with a dimension of 0.5dD is given as

noc 8rTe dD 0.01 1
-- x -- x x - ~ 0.1 (B.7)

4 V me 2 WP N

Electron Flux Cell Size Time Step Super-Particle

where parameters are taken from Tables 3.1 and 3.2. Therefore, to sample 2, 500

particles at each boundary cell, it is required to sample them over 25, 000 iterations

for At = 0.01/w,. This is still a very large number considering that an average

number of iteration for one day is about 2, 000. Moreover, the same calculation about

outgoing ions leads to 2, 500, 000 iterations. For now, we use an outgoing electron

density averaged over 10, 000 iterations and ion density over the unlimited number of

time steps. The yet-noisy results are smoothed by Savitzky-Golay Smoothing Filter

[16]. When we have an access to a super-computer or a parallel computation with

faster CPU's with more memory is available, we shall be readily able to eliminate this

averaging process.
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