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Abstract

We examine the equilibrium and transient morphology of alluvial and bedrock river networks. We

apply analytical methods and an iterative model to solve for equilibrium slope-area and texture-

area (in alluvial networks) relationships under different tectonic and climatic forcings. Transient

morphology resulting from a change in uplift or precipitation rate is simulated using the CHILD

landscape evolution model.
In alluvial networks, it is well recognized that both channel slope and mean grain size usually

decrease downstream. These variables play an important role in determining sediment transport

rates, and their mutual adjustment to a change in the forces that drive erosion can yield surprising

results. Adjustments in grain size can lead to spatially variable channel concavity and larger trans-

port rates on shallower slopes. As a consequence, equilibrium channel slopes may decrease under

higher uplift conditions (or, similarly, faster base-level lowering). Selective erosion and deposition

can cause transient channel slopes to both increase and decrease and surface texture to both coarsen

and fine, all in response to a single change in forcing.
In bedrock rivers, increasing attention has been given to the role of sediment flux on incision

processes. We find that all applied erosion rules (stream-power and three sediment-flux models)

produce similar equilibrium morphologies, although some details lead to differences in sensitivity.

On the other hand, the transient response can be much more complicated than a simple knickpoint
migration when the integrated response of the sediment flux is considered. Both increasing and

decreasing channel slopes can result from a single change in forcing.

Although some of the processes described by the different erosion models in this study represent

conditions in very different types of rivers, two important common principles hold. First, concave

graded river profiles appear to be a robust element of the landscape and fairly insensitive to the details

of the erosion process. However, downstream variations in channel erodibility can alter equilibrium

sensitivity to boundary conditions in ways that had not previously been considered. And second,

transient conditions in the main channel are highly dependent on the entire network response. The

results can be complex and counter-intuitive, highlighting that rivers are not independent of the

tributaries that feed them.

Thesis Supervisor: Rafael L. Bras
Title: Bacardi and Stockholm Water Foundations Professor
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Chapter 1

Introduction

This work investigates how the mechanics of river erosion influence the form and dy-

namics of a drainage basin. We consider two very different settings: rivers that are

incising into bedrock and rivers with a bed and banks composed of sediment. In both

settings, there are numerous theories that can be used to predict fluvial erosion rates.

This study looks for the differences and similarities among landscapes produced using

different erosion models. We examine the morphology of river networks which have

both spatially uniform erosion rates (equilibrium conditions) and spatially variable

erosion rates (transient conditions). Both analytical methods and a numerical land-

scape evolution model are used to investigate landscape morphology. Although all of

the results presented here are theoretical and do not represent a specific location, the

hope is that we can find some differences and identifying features of landscapes that

are sculpted by different fluvial processes. The insights gained from this study can

be applied when looking at real landscapes and interpreting past conditions or when

making predictions about future conditions.

Geomorphologists have often idealized rivers into two categories: alluvial and

bedrock. Alluvial rivers are formed in sediment or easily-weathered rock, and erosion

rates are generally thought to be limited by the amount of material the river can

transport (e.g. Gilbert (1877); Howard (1997)). For this reason, alluvial rivers are of-

ten termed transport-limited. On the other hand, bedrock rivers are actively incising

into rock. Although there may be sediment in the channel, erosion rates are generally
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thought to be limited by the rate at which a river can erode through bedrock. These

rivers are often termed detachment-limited (e.g. Howard (1994)).

Alluvial rivers have been studied more extensively than bedrock rivers. Two

important general characteristics of alluvial rivers were observed by Sternberg (1875):

(1) rivers are generally concave up, that is channel slope decreases downstream, and

(2) the median grain size on the channel bed generally decreases downstream. Along

with Sternberg and many others, Yatsu (1955) and Hack (1957) conducted important

early studies linking channel slope with grain size in alluvial rivers.

The properties of hydraulic geometry are a general unifying principle in alluvial

rivers as well. Hydraulic geometry refers to the relationship between fluvial discharge

and channel width, depth, slope, roughness, suspended load and velocity. All of these

channel properties have been found to vary with fluvial discharge both downstream

and "at-a-station"- with discharge variations at a given location. Among the pioneer-

ing studies are those published by Leopold and Maddock (1953), Wolman (1955), and

Leopold et al. (1964). The theory behind hydraulic geometry is that alluvial rivers

are able to shape their own channel and floodplain. These concepts are often applied

but we still grapple with exactly why they hold. Specifically, the relationship between

channel width and discharge was referred to by Parker (1997) as "the holy grail of

river mechanics".

The rate of sediment entrainment and transport in alluvial rivers has been studied

by many (e.g. Meyer-Peter and Muller (1948); Einstein (1950); Engelund and Fredsoe

(1976); Milhous (1973); Bagnold (1980); Bridge and Dominic (1984) Church (1985);

Lisle (1989); Parker (1990); Buffington and Montgomery (1999); Wilcock (2001)) and

all data seem to support that sediment transport rates are highly dependent on the

grain-size distribution of the channel bed. Sediment grains are immobile below a

threshold value of applied fluvial shear stress. Above the threshold, or critical shear

stress, grains are set in motion. On a bed with uniform grain sizes, the critical shear

stress is well described by the Shields' curve (Shields 1936) and increases with the

grain diameter. However, in a heterogeneous mixture of grain sizes, the threshold for

entrainment is much more difficult to describe. One model is that of equal mobility,
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which has been observed in gravel bed streams with a coarse pavement. Under flow

conditions that permit entrainment of the pavement, all of the exposed grain sizes

are entrained at the same critical shear stress (Parker and Klingeman (1982) and

Parker et al. (1982)). Under different conditions, the interactions between different

grain sizes can add a great deal of complexity to the individual threshold values. It

is often observed that relatively smaller grains in a mixture become harder to entrain

(in comparison with a homogeneous bed), and relatively larger grains become easier

to entrain (e.g. Komar (1987); Wilcock (1998)). These details are very important in

some of the results that we will present.

The processes that control fluvial incision into bedrock have not been studied in

the same depth as sediment transport in alluvial rivers. Gilbert (1877) was probably

the first to describe some of the important variables that control bedrock erosion

and recent attention has focused on some of Gilbert's ideas. The most commonly

mentioned controls on bedrock incision are: (1) quarrying or plucking, which refers to

removal of large blocks from the channel bed; (2) abrasion resulting from the impact

of bedload and suspended load hitting the channel bed and walls; (3) solution, or

chemical weathering of bedrock; and (4) cavitation, which is the implosion of vapor

bubbles due to pressure changes in the flow in regions such as waterfalls and rapids.

(Some descriptions of these processes can be found in Morisawa (1968); Baker (1973);

Foley (1980); Wohl (1993); Hancock et al. (1998); Sklar and Dietrich (1998); Wohl

(1998); Whipple, Hancock and Anderson (2000); Hartshorn et al. (2002)). Obviously

some of these processes work together. For example, plucking occurs along fractures

in the bedrock. These fractures could be natural regions of weakness in the rock

that are further weakened through chemical weathering and hydraulic wedging - the

enhancement of joints as bedload clasts get wedged into cracks (Hancock et al. (1998)).

The rate of incision into bedrock is thus a function of many variables, such as lithology,

degree of jointing, sediment supply and local weathering processes.

An outstanding geomorphic question is whether or not the hydraulic geometry

relationship between channel width and fluvial discharge holds in bedrock rivers.

Hydraulic geometry is implicit in erosion models such as the stream-power rule, which
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is often applied to estimate rates of incision into bedrock (e.g. Seidl and Dietrich

(1992); Howard (1994); Rosenbloom and Anderson (1994); Tucker and Slingerland

(1996); Stock and Montgomery (1999); Roe et al. (2002); Snyder et al. (2002)).

The stream-power rule models incision into bedrock as a power law function of both

channel drainage area and slope. The relationship between the incision rate and

drainage area is derived assuming that the channel width varies directly with fluvial

discharge. However, channel width often decreases locally in regions of more resistant

bedrock. Overall, studies suggest that the power-law relationship between channel

width and drainage does apply in bedrock channels; although width may not increase

as quickly downstream as it does in alluvial rivers (Montgomery and Gran (2001);

Snyder et al. (2003a); Tomkin et al. (2003); Whipple (n.d.)).

More and more, geomorphologists are finding that the division between transport-

limited and detachment-limited rivers may not be so clear. In fact, some bedrock

rivers may be highly influenced by the amount of sediment moving through them

(e.g. Sklar and Dietrich (1998)). Thresholds for motion appear to be important in

all types of fluvial channels and recent studies suggest that their role in landscape

evolution can not be ignored (e.g Baldwin et al. (2003); Snyder et al. (2003b); Tucker

(2003)). Further, many equilibrium models of detachment-limited and transport-

limited fluvial processes predict steep bedrock channels with a higher concavity in

the upper reaches of a drainage network, in comparison with the lower portions of a

network that contain less concave alluvial rivers (e.g. Whipple and Tucker (2002)).

However, disequilibrium conditions can result in sediment clogged channels upstream

from bedrock channels (observed in the San Gabriel Mountains, California). These

complications - the mechanics of erosion in transport-limited and detachment-limited

channels and differences between equilibrium and disequilibrium morphologies pro-

duced using different erosion models - are explored in this thesis.

A large part of this work focuses on steady-state or equilibrium landscapes. The

idea stems from a graded channel, or one that has adjusted its profile in order to

transport all of its load (e.g. Mackin (1948)). When applied to the landscape, it

refers to a regional balance between inputs and outputs, between erosion rates and
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uplift rates, between erosion rates and base-level lowering rates, or between erosion

and deposition. Equilibrium serves as a useful test for models since we have some

idea about what steady-state topographies should look like.

For example, the power-law relationship between channel slope and drainage area,

resulting in concave channel networks, holds in many natural drainage networks (e.g.

Flint (1974); Tarboton et al. (1989); Tucker and Whipple (2002)). This relationship

can be derived analytically assuming a spatially uniform erosion rate (e.g. Whipple

and Tucker (1999)). Under a wide range of applied erosion processes, numerical

models are able to produce realistic concavities at steady-state.

Steady-state is also a useful state to consider because it is easily defined (flux in

equals flux out) and comparisons between different landscapes that are in the same

state can be fairly made. However, one may question whether or not any landscapes

ever reach steady state. Given the length of time that it takes for a landscape to

evolve, is it reasonable to think that boundary conditions, such as climatic and tec-

tonic forcings, can remain steady over such time-scales?

Some regions are thought to be in steady-state. For example, studies have sug-

gested that the Central Range of Taiwan has reached a balance between long-term

uplift rates and erosion rates measured through sediment records (e.g. Li (1976);

Liew et al. (1990); Hovius et al. (2000)). Whipple (2001) calculated the time-scale of

response to tectonic perturbation in the Central Range of Taiwan and found that is

reasonable for channel profiles to have reached a "quasi-steady-state" form. Erosion

rates estimated through sediment load on the whole appear to balance uplift rates in

the Southern Alps of New Zealand (e.g. Adams (1985)). It is also proposed that the

European Alps have reached a steady rate of exhumation, measured through fission-

track dating (Bernet et al. (2001)). So there is evidence that steady-state can be

reached, making it a useful case to consider but not the only case.

We will explore how the details of different fluvial processes influence landscape

morphology, both at steady-state and during transitions between steady-states. Specif-

ically, we include a two-grain size sediment transport model to describe alluvial river

networks, and we include three different sediment-flux models to calculate incision
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into bedrock. We solve for the equilibrium network form (slope-area relationship)

resulting from different erosion models. In some cases, equilibrium sensitivity to the

uplift and precipitation rates varies between erosion models (Chapters 3 and 5). Even

though some of the models predict spatial variability in concavity, it is still difficult

to discern between fluvial processes based on network concavity alone.

We focus a fair amount of attention on disequilibrium channels. Because equilib-

rium channel form is not necessarily a good indicator of process, transient landscapes

might be able to tell us more about the mechanics of river erosion. Further, many

landscapes are not thought to be in equilibrium. We hope to gain some insight into

how networks might respond to a change in forcing so that we can better interpret

the clues about the past that still remain in the landscape we see today.

Numerical experiments with the heterogeneous sediment transport model illus-

trate that variations in surface texture and slope can be quite complex in response

to a single change in forcing (chapter 4). Similarly, when sediment flux is considered

in the bedrock incision model, erosion rates vary both spatially and temporally in

response to an increase in uplift rate (chapter 5). In essence, all of the transient

numerical experiments allow for a spatially and temporally variable erodibility. This

seemingly small consideration has important implications for landscape evolution.

Before we present the results, a brief description of CHILD, the numerical land-

scape evolution model used in this study (Tucker, Lancaster, Gasparini and Bras

(2001); Tucker, Lancaster, Gasparini, Bras and Rybarczyk (2001)), is given in Chap-

ter 2. Chapter 3 details the equilibrium sensitivity of transport-limited alluvial net-

works with multiple grain sizes using two different erosion models. We discuss the

transient response in a sand and gravel alluvial network using the CHILD model in

Chapter 4. In Chapter 5, we discuss both the equilibrium sensitivity and transient

conditions using three different sediment-flux erosion rules to determine incision rates.

All of the results are summarized in Chapter 6, and avenues for further research are

presented.
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Chapter 2

CHILD Model Description

Part of this thesis explores the predicted transient network response to a change

in forcing; all of these results are obtained using the CHILD numerical landscape

evolution model. Chapter 4 looks at changes in a heterogeneous alluvial network;

the details of the sediment transport equations are given in chapter 3. Chapter 5

describes three different sediment-flux erosion rules contained in CHILD and looks

at their influence on transient erosion rates and network form. In this chapter, we

briefly discuss the algorithms used to model fluvial erosion.

Details of the landscape representation and some of the flow and erosion algorithms

are described by Tucker, Lancaster, Gasparini, Bras and Rybarczyk (2001). Many of

the processes contained in CHILD and how they shape the landscape are illustrated

in Tucker, Lancaster, Gasparini and Bras (2001). The model has grown since these

publications and includes a great deal of complexity that is not described in this

study. For example, CHILD contains a model for lateral channel migration; its role

in landscape evolution is described by (Lancaster 1998). An algorithm to model

the growth of vegetation and its destruction through erosion was applied by (Collins

2002). Diffusive hillslope processes and landsliding (calculated based on the factor

of safety equation (Teles et al. 2002)) are both contained in CHILD. Precipitation

can be modeled simply as a constant rainfall rate, or the Poisson rectangular pulse

rainfall model of Eagleson (1978) can be used (Tucker 2003). CHILD has also been

expanded to explore the lateral advection of rock in fault-bend folds (Miller et al.
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2002). We encourage the reader to explore these other references to fully appreciate

this model.

2.1 General Description of Landscape

In CHILD, the landscape is represented by set of nodes which can be in any config-

uration, as opposed to a grid of regularly spaced nodes. This provides freedom to

resolve the landscape at multiple resolutions, but adds some complication in deter-

mining connections between the nodes. The mesh, which refers to all of the edges that

connect the nodes, is a Triangular Irregular Network (TIN) (Braun and Sambridge

(1997); Tucker, Lancaster, Gasparini, Bras and Rybarczyk (2001)). Figure 2-1 illus-

trates a small part of a TIN. The lines between the nodes are the edges. Connectivity

is determined by the Delaunay triangulation, and a mesh is constructed in which a

circle connecting three points of any of the triangles in the mesh does not contain any

other nodes (e.g. Du (1996)).

Every node has an elevation (z) and a surface area (a). The elevation (z) is a

simple attribute assigned to every node. The area associated with a node is not

as straightforward, especially in comparison with a regular grid. A node's area is

determined by its voronoi cell or polygon. This is the area around a node formed by

the perpendicular bisectors of all the edges connected to a node. The relationship

between nodes, edges, and voronoi cells is illustrated in figure 2-1. Just as elevation

can change through time, a nodes area can change in time if nodes are moving in the

landscape. We do not apply this capability in any of the simulations presented here.

A landscape can be illustrated by its mesh (figure 2-2A) or by its set of voronoi

cells (figure 2-2B). Many figures in this work use the mesh representation because it

is able to simultaneously illustrate the topography (through the mesh) and one other

landscape variable (through shading). However one should keep in mind that the

variables illustrated in our figures apply to the voronoi cells and not the triangles.

Flow of water and sediment is along the steepest edge from a node (figure 2-1).

The slope (S) between a node and one of its neighbors is simply the difference in
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- flow lines

Voronoi cell

Figure 2-1: Example of TIN connectivity. The nodes are the black dots; the edges
are the black lines (some with arrows) and the voronoi cell is the gray shaded area
formed by the perpendicular bisectors of the edges (gray lines).

elevation between the nodes divided by the length of the connective edge. Water and

sediment only flow from higher elevations to lower elevations in all of the examples

we will illustrate. (CHILD has an algorithm to route flow from pits in the landscape,

but this is not used in our numerical experiments.)

The drainage area (A) of a node follows from the flow directions and is computed

as the sum of the voronoi cell areas of the upstream nodes, including a nodes own

voronoi area. The precipitation rate (P) is constant in space and time in all of our

examples. Fluvial discharge (Q) is calculated from the drainage area as:

Q = PA (2.1)

Every node contains a number of other attributes which apply to this study. The

parameters related to the sediment transport rate (Kt) and bedrock incision rate (K)

are associated with each node. These parameters could vary in space, although they

do not in this study. Information on the grain-size distribution of the surface and

layers of sediment below is also specific to each node. The last section of this chapter

details the algorithm which is used to track the composition of sediment layers.

2.2 Fluvial Erosion

As water flows across the landscape, it imparts a shear stress on the channel bed

which can detach and transport sediment. Following other studies (e.g. Howard
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Figure 2-2: The same landscape illustrated by its mesh (A) and its voronoi cells (B).
In both cases shading is by elevation.
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(1994); Whipple and Tucker (1999)) we assume the following relationships hold in

order to calculate the bed shear stress:

Velocity is calculated from the Manning Equation (e.g. Chow (1959)) (N is the

roughness coefficient and D is channel depth):

V = N-'DiS2 (2.2)

Channel width (W) is described by hydraulic geometry (e.g. (Leopold and Mad-

dock 1953)):

W = kwQ (2.3)

Flow is steady and uniform (p is water density and g is gravitational acceleration):

r = pgDS. (2.4)

Conservation of mass applies:

Q = VWD. (2.5)

Equations 2.1- 2.5 can be rearranged to solve for the bed shear stress as a function

of drainage area and slope.

T = pg
(kw

(2.6)

In some cases, we will calculate bed shear stress exactly as written in equation 2.6

to determine sediment transport rates. In other cases (chapter 5) we just assume that

the bed shear stress follows a power law of drainage area and slope,

T = KAmS" (2.7)

and appropriate values of K, or erodibility, m, and n are explored.

Sediment transport rates are calculated for each grain size class and are a function
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of the bed shear stress and surface texture properties which set the critical shear stress

(-r). We assume that the sediment transport rate is zero when the bed shear stress

is less than the critical shear stress (T < Tc). The details of the critical shear stress

calculations and sediment transport formulas are given for each application in the

following chapters. For now, the following expression for sediment transport rate is

sufficient:

Q = f(A, S, dj, d5 0 ), (2.8)

where Qsj is the volumetric sediment load of the i-th grain-size class; di is the represen-

tative grain size of the i-th class; and d50 is the median grain size or an appropriate

representation of the grain-size distribution on the channel bed. We assume that

once the bed shear stress surpasses the critical shear stress, sediment is easily re-

moved from the bed and erosion rates are limited by the amount of sediment that

can be transported. Erosion rates of each grain-size class are calculated individually

assuming continuity of mass; this results in the following equation for the total change

in elevation from transport-limited erosion:

Oz E~ (Qsi _-'s
= U - =1(2.9)

attrans a

where U is the uplift rate (uniform in space for all simulations); Qin is the volumetric

sediment load of the i-th grain-size class coming into a node; and nd is the number

of grain size classes. Erosion rates are calculated from the uppermost parts of the

network downstream. In the nodes which only drain themselves, Qin = 0. Any

sediment eroded is sent downstream and both the total volume and the composition

of the sediment load are tracked. Note that it is possible for erosion of one grain-size

class and deposition of another to occur.

The details of the incision equations are given in chapter 5. Although the total

erodibility in some of the incision equations varies as a function of the total incoming

sediment load (Qi"), K is constant in space. Again, we only give a flavor for the
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erosion equation here:
= f(A,S, Q7). (2.10)

Ot detach

Here 1 represents the erosion rate when incision into bedrock is the limiting

process.

Even when erosion is considered to be detachment-limited, the sediment load

is still tracked throughout the network. In all cases, both the detachment-limited

erosion rate (equation 2.10) and the transport-limited erosion rate (equation 2.9) at

a node are calculated and the modeled erosion rate is the minimum of the two. It's

possible for a channel to be detachment-limited in some regions and transport-limited

in others.

In all of the examples with multiple grain-size alluvial channels (chapter 4) the

parameters used to calculate the detachment rate are set, and therefore the incision

rates are very high, so that the channel is always limited by what it can transport.

2.2.1 Layering Algorithm

The texture of alluvial layers must be tracked in order to correctly model erosion and

deposition of multiple grain sizes. Each node in the numerical model is composed

of a number of sediment layers; sediment of each grain size can be eroded from or

deposited into these layers. The top layer is the active mixing layer within which

particles are entrained or deposited. Models of particle sorting on very short time

scales typically define the active layer depth as a few grain diameters (e.g., Parker

(1991); van Niekerk et al. (1992); Cui et al. (1996); and Hoey and Ferguson (1997)).

However, this definition is inappropriate for our study because we consider average

transport rates over days or years. Over longer time spans, a typical river presumably

has access to significantly more near-surface sediment stored on the bed and in bars,

an observation which led Paola and Seal (1995) to suggest that active layer depth

scales with channel depth. Here, the depth of the active layer is simply held constant

in space and time at a value much larger than the median grain diameter. We will

refer to the active layer in this model as the surface layer, since its depth is held fixed
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(although its texture varies in space and time). More discussion on the importance of

the active layer depth and how it affects the numerical results is given in chapter 4.

Whenever sediment is eroded from the surface layer depleting it by a depth dz, the

layer below is also depleted by a depth dz and this material replenishes the surface

layer to its original thickness (Figure 2-3). The sediment that replenishes the surface

layer has the texture of the sediment layer below. (All layers are assumed to be

well mixed.) Similarly, when a depth of sediment dz is deposited into the surface

layer, sediment of depth dz is first moved out of the surface layer into the layer below

(Figure 2-4). The sediment moved out of the surface layer has the texture of the

surface layer before deposition. (The layers below the surface layer have a maximum

depth, and once this depth is reached deposition creates a new layer below the surface

layer). Through selective erosion and deposition, the texture of the surface layer

changes in time and space. The bottom-most layer of sediment, referred to here as

the substrate, is essentially infinitely deep. The texture of the substrate does not vary

spatially in any of the numerical experiments, but it does vary between experiments.
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Figure 2-4: Cartoon example of deposition. Part A shows the initial condition before
any changes to the layers have been made. The depth of deposited material has
been calculated. The material to be deposited, shown with thin dashed lines, is not
yet part of a layer. In B material has been moved out of the surface layer to make
room for the new material to be deposited. The surface layer is replenished with the
deposited material in C.
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Chapter 3

Equilibrium Conditions in

Transport-Limited Alluvial Rivers

3.1 Motivation

How does the uplift rate affect the equilibrium concavity and downstream texture

patterns in a drainage network? What role does the precipitation rate play in setting

equilibrium slopes and surface texture? How does grain size affect downstream fining

and network concavity? How does subsurface texture affect downstream fining and

network concavity? In this chapter we explore these questions using an iterative

solution of the sediment transport equations to solve for the equilibrium slope-area

and texture-area relationships. We investigate whether trends previously found by

Gasparini et al. (1999) and Gasparini et al. (2003) hold over a wide range of parameter

values. The sensitivity of these trends to the sediment-transport rule and critical shear

stress rule is also explored.

Before exploring the equilibrium results produced by different multiple grain-size

models, we present a general overview on equilibrium conditions in transport-limited

alluvial rivers. A quick overview of the sensitivity of the slope-area relationship in

alluvial networks with a single grain size (homogeneous networks) is given. The bulk

of this chapter focuses on the equilibrium predictions of different multiple grain-size

sediment transport models, focusing on their sensitivity to boundary conditions.
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3.2 Homogeneous Sediment Transport

Entrainment and transport of sediment in rivers is a classic problem which has been

studied for many years by numerous researchers (e.g. Shields (1936); Meyer-Peter

and Mller (1948); Einstein (1950); Yalin (1963); Parker (1979); Bagnold (1980);

Bridge and Dominic (1984); Wilcock and McArdell (1993)). Sediment transport has

important consequences for many engineering applications, such as the construction

of dams, dikes, and bridges. Thus the literature in this area is rich and numerous

theories and equations have been put forth. Even so, the field is still full of unanswered

questions and there is much to be learned.

A full background into sediment transport cannot be given in this thesis. This

section is meant to familiarize the reader with some of the basic concepts in sediment

transport. All equations given here refer to bedload transport; suspended load trans-

port will not be discussed. This chapter concentrates on the relationship between

sediment texture and channel slope. The texture of the channel bed is an impor-

tant variable in determining bedload transport rates. However, suspended sediment

flushes through the system and has less contact with the bed and therefore not much

influence on the texture of the channel bed.

A general form for dimensionless bedload transport used by many researchers

(e.g. Meyer-Peter and Miller (1948); Wilson (1966); Fernandez Luque and van Beek

(1976)) is:

q* = ab (T* - T*)Pb. (3.1)

In this equation, the * superscript refers to dimensionless values; q, is the volumetric

sediment transport rate per unit channel width; T is bed shear stress; Tc is the critical

shear stress value which must be surpassed for sediment transport to occur; ab is a

dimensionless, positive coefficient; and PA is a dimensionless, positive exponent. The

values of ab and Pb vary between studies. In equation 3.1, the sediment transport

rate is non-dimensionalized as:

q* = qs (3.2)
s /Rgd5 od 50
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where R is the submerged specific gravity, equal to (P - 1), where p, and p are the

densities of sediment and water, respectively; g is the acceleration of gravity; and do

is the median grain size. T is non-dimensionalized as:

T
* = . (3.3)

pRgd50

Note that the sediment transport equation has been described in other forms. For

example (e.g. Ashida and Michiue (1972); Engelund and Fredsoe (1976); Bridge and

Dominic (1984)):

where Ab is a positive dimensionless coefficient. Although equations 3.1 and 3.4 are

slightly different, there are two important similar points about these equations. (1)

Sediment transport is proportional to an increasing function of bed shear stress. (2)

There exists a threshold shear stress, below which no sediment transport takes place.

These characterize the general behavior of sediment transport equations.

In this chapter, we focus on the case of dynamic equilibrium. The idea is analogous

to a graded stream, implying a channel that has adjusted its profile so that, on

average, all sediment transported into the channel is transported out (e.g. Mackin

(1948)). If we extend this idea to a transport-limited alluvial drainage network,

dynamic equilibrium requires that the sediment transport rate at any location must

equal the sediment supply. Dynamic equilibrium defines a useful end-member case

from which to compare model results and is often used in numerical modeling studies

(e.g., Willgoose et al. (1991); Howard (1994); Tucker and Bras (1998); Ellis et al.

(1999); Snyder et al. (2000)).

In this chapter we will always refer to equilibrium channels as channels in which

the erosion rate is balanced by the uplift rate. An analogous way of thinking of

the problem is to consider a constant-base level fall. This setting might be more

appropriate when thinking about graded alluvial river networks. In this case, the

erosion rate throughout the network keeps pace with the erosion rate of the channel

into which the network drains. For the problem we present, uplift could be replaced
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with base-level fall without changing the results we see.

Given the equilibrium condition that the transport rate at every location in the

network must be just large enough to transport all of the material eroded upstream,

the following equation must hold:

QS = fUA , (3.5)

where U represents the vertical uplift rate (for all examples in this chapter uplift

is constant in space) and Q, is the volumetric sediment transport rate (QS = Wq,,

where W is channel width). 3 represents the proportion of material entrained from

the bed that is carried as bedload (versus suspended load) and equals one for all cases

discussed here. Our goal is to describe the network concavity, or in other words, find

the relationship between channel slope and drainage area,

S cx A- 0, (3.6)

where 6 is the concavity value. The value of 6 is easily found by plotting channel

slope as a function of drainage area in log-log space and measuring the gradient of this

relationship. Concavity has been measured in different drainage networks controlled

by different fluvial processes, and its value is fairly robust, in most cases ranging

between 0.4-0.7 (see Tucker and Whipple (2002) for an overview).

We rearrange equation 3.1 in the following manner to examine its expected equi-

librium behavior:

1 )P b 37q b = ab Rgd5 Ad5 O pg5 (T - TC)Pb. (3.7)

The threshold term (T) is now in its dimensional form and increases with grain size,

as expected from Shields (1936). From herein, a value of 1.5 is used for PA (e.g. Meyer-

Peter and Miller (1948); Wilson (1966); Fernandez Luque and van Beek (1976)).

Tucker and Bras (1998) and Tucker (2003) showed that basin concavity (0) varies

directly with the threshold for entrainment. Therefore, given Shield's (1936) relation-
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ship, we expect that a larger effective grain size produces a more concave basin. We

illustrate this concept by investigating the end-member cases of a very small and a

very large threshold for entrainment using equation 3.7, and include in the discussion

sensitivity of the slope-area relationship to uplift and precipitation rates.

Equation 3.7 is expressed below in terms of volumetric sediment transport rate

(Wq,), including only the terms which contain channel slope (S), drainage area (A),

and precipitation rate (P, a single mean annual precipitation rate is applied):

Q, Oc W (T - T)" . (3.8)

If we assume that channel width follows the hydraulic geometry equation (equa-

tion 2.3), then

W oc (PA)0 5 . (3.9)

The bed shear stress relationship (equation 2.6) can be expressed as:

r c (PA) 03SO. 7 . (3.10)

Substituting equations 3.9, and 3.10 into the sediment transport relationship ex-

pressed in 3.8 gives the following expression for sediment transport rate as a function

of slope, drainage area, and precipitation rate:

Q, oc (PA) 0 .5 ((PA)o.3SO.7 _ r)P . (3.11)

This relationship can now be substituted into the equilibrium condition expressed in

equation 3.5 (letting 3 = 1):

S Oc U0 95P-0.9A. 048 + 7. 4 3 P-0 .4 3A 0 43 . (3.12)

Although the exact values of the exponents can change in this equation depending

on assumptions made about hydraulic geometry, channel velocity, and the sediment

transport equation used, the trends are all similar when reasonable assumptions are
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Figure 3-1: Sensitivity of the slope-area relationship for homogeneous sediment (given

in equation 3.12) to variable critical shear stress values. Uplift rate and precipitation

rate does not vary between the lines.

made. We express this relationship with actual values only so that magnitudes and

signs of the exponents can be compared and the general trends examined. The rela-

tionship in equation 3.12 is plotted in figure 3-1. The precipitation and uplift values

are the same for each line in this plot, and only the value of -c varies between the

lines. These lines do not represent actual slope values, as many constants have been

left out of equation 3.12, but the concavity trends represent those expected using a

sediment transport equation of the form given in equation 3.1.

To understand figure 3-1, consider first the case when the bed shear stress is very

large, and/or the critical shear stress term is very small. In this case, the first set of

terms in equation 3.12 dominates:

S xc UO-95 -0-9AO-048 (3.13)

This expression describes channel profiles that are slightly convex-up (nearly straight,
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Figure 3-2: Topography evolved using the Meyer-Peter and Miller (1948) equation
with no critical shear stress. The shading is by elevation. Note that this topography
has no network structure, because it is actually slightly convex (0 = -0.038). The
concavity value is not exactly as predicted, most likely because of the scatter in
the data. Because the topography is convex, no channel network exists, and flow
directions are changing often.

see the bottom line in figure 3-1) and does not seem sensible when referring to erod-

ing equilibrium channels. It does not create topographies with a network structure

(Figure 3-2). Remember that this equilibrium expression represents the case when

the critical shear stress is essentially zero. We expect this to be the least concave case

(Tucker and Bras 1998).

All else being equal, the relationship in equation 3.13 predicts that equilibrium

slopes will be steeper in drainage basins with greater uplift rates (figure 3-3A) and/or

smaller precipitation rates (figure 3-3B). In the case of greater uplift rates, the equilib-

rium condition (equation 3.5) states that sediment transport rates need to be greater

(for a given drainage area). It is intuitive then that slopes should steepen with uplift

rate because more sediment needs to be transported through the network. On the

other hand, if the precipitation rate increases but the uplift rate remains the same, the
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same amount of sediment still needs to be transported through the network. However,

the effective discharge increases (equation 2.1), therefore slopes can actually decrease

in this case. The sensitivity of equilibrium slopes to variability in uplift rates and

precipitation predicted by equation 3.13 seems sensible. The magnitude of change in

uplift rate and precipitation rate is the same in figures 3-3A & B, and the variability

in absolute slope value is also nearly the same. This is because the exponents on U

and P in equation 3.13 are nearly the same (although the signs differ).

Now, consider the case when the critical shear stress dominates the equilibrium

relationship in equation 3.12. This results in:

S O - 43P- 43 A -0 43 . (3.14)

Here channels are concave-up (top line in figure 3-1). This case produces a value of

6 well in the range of concavities of real channels. When the critical shear stress is

non-negligible in comparison with the bed shear stress value, we expect more concave

channels than in the case when the critical shear stress is negligible, as shown by

Tucker and Bras (1998).

Equation 3.14 also predicts that equilibrium channel slopes should increase with

the critical shear stress value, or equivalently, grain size, as shown in figure 3-1. In

other words, steeper slopes are required to transport larger grain sizes. And similarly

to equation 3.13, equilibrium slopes are predicted to decline as effective precipitation

increases (figure 3-4), however, slopes are less sensitive to precipitation rates when the

critical shear stress term dominates (compare the exponents on P in equations 3.13

and 3.14 and figures 3-3B and 3-4). Most surprising is that the uplift rate is not

contained in the equilibrium slope-area relationship expressed in equation 3.14, im-

plying that slopes are insensitive to uplift rate. As discussed previously, one would

expect slopes to increase with uplift rate. Remember that equation 3.14 represents an

end-member case, however the result is still curious and deserves further attention.

Between the end-member cases, that is when critical shear stress is non-negligible

(in comparison with shear stress) but not dominating, the network exhibits behavior
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Figure 3-3: Sensitivity to uplift rate (A) and precipitation rate (B) of the equilibrium
slope-area relationship when shear stress is much greater than critical shear stress
(equation 3.13)
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Figure 3-4: Sensitivity to precipitation rate of the slope-area relationship for ho-
mogeneous sediment (given in equation 3.12) when the critical shear stress value is
large.

of both end-members and channel concavity is not constant throughout the network.

For example, the middle lines in figure 3-1 exhibit decreasing slopes with drainage

area at smaller values of drainage area, but tend to zero concavity at high drainage

areas. This makes sense given equation 3.12. At small drainage areas, the factor

containing r, (equation 3.14) dominates and the channels are concave, whereas at

large drainage areas, the term without T, (equation 3.13) dominates, and channels

are nearly straight. The importance of each term in equation 3.12 depends on the

magnitude of the critical shear stress value, as well as the uplift and precipitation

values.

3.3 Equilibrium in a Heterogeneous Sediment Mix-

ture

In the previous sections we described sediment transport of a single grain size and

the conditions which hold under uniform erosion rates in a homogeneous transport-
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limited drainage network. In the next sections we expand this theory to transport of

multiple grain sizes. In all cases we consider only two grain sizes. We are not able to

solve for the slope-area relationship analytically; a description of our method used to

arrive at the equilibrium relationship between slope and drainage area (as well as the

downstream changes in grain size) is given.

Interactions between grain sizes makes transport of sediment mixtures much more

complex than that of homogeneous sediment. Studies have shown that larger grains

often become easier to entrain (the critical shear stress value decreases in comparison

with the homogeneous value) in the presence of smaller grains because they stand-out

above the bed. Similarly, smaller grains become harder to entrain (the critical shear

stress value increases in comparison with the homogeneous value) in the presence of

larger grains because they can get hidden amongst the larger sediment (e.g. Komar

(1987), Wilcock (1998)). How exactly the critical shear stress varies in a mixture

depends on the distribution of grain sizes on the bed. Just as there is no single

sediment transport equation, there is no universal method for determining the critical

shear stress for entrainment of sediment mixtures.

In the results presented here, we consider the case of a two grain-size mixture.

The basic idea of equilibrium remains the same, that is, in a transport-limited river

network equilibrium conditions require the sediment transport rate at every location

to be just large enough to carry both the sediment being fed in upstream of a location

and the sediment being eroded at that location. The rate of sediment eroded at every

location must be exactly equal to the uplift rate in order for equilibrium to hold. This

condition is expressed in equation 3.5 for the homogeneous case and is generalized to

a sediment mixture in the following expression:

Q total = 3UA, (3.15)

where Qlotal is the total volumetric sediment transport rate, or

n

Q totaI = Qsi (3.16)
i=1
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where the index i describes the i-th grain-size class. We assume from this point forth

that 3 = 1. We have no method for portioning this term for each grain size. One

might assume that the proportion of material carried as bedload would be higher for

larger grain sizes, in comparison with smaller grain sizes that are more likely to get

suspended. However, we do not tackle this problem in our study.

In order to proceed, we need an equilibrium condition for each value of Qj. We

consider only the case where the texture of the substrate material does not vary

spatially. This implies that the composition of the material feeding the channel, and

therefore the composition of the material which must be eroded and transported at

every location in the network, must be that of the substrate. Given this condition,

the equilibrium sediment transport relationship for each grain-size class is expressed

as

Qsj= fsubiUA, (3.17)

where fsubi refers to the proportion of the i-th grain-size class in the substrate material.

In the case of two grain sizes, there are two equilibrium equations which must hold:

Q = fsublUA and (3.18)

Qs2 = (1 - fsubl)UA . (3.19)

Qsj is a function of bed shear stress (which is itself a function of drainage area and

local slope) and surface texture (exact equations for Q.j are given in the following

sections). Ideally, these two equations could be rearranged to solve for slope and

surface texture as a function of drainage area. However, the presence of a variable

threshold makes it impossible to solve these relationships analytically. Instead, we

rearrange equations 3.18 and 3.19 to get the following equation:

Qs2 _ Qsi (3.20)
1 - fsubl fsubi

Using equations 3.18, 3.19, and 3.20, along with the bed shear stress equation (equa-

tion 2.6) and the particular sediment transport and critical shear stress rules being
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used, we have developed a method to iteratively solve for the equilibrium downstream

slope and texture relationships. The steps of our method are described below.

1. An appropriate range of surface texture values are defined. Surface texture is

expressed as fi, which represents the proportion of the first grain-size class in

the surface layer. Equilibrium conditions do not exist for the entire range of

surface textures, that is 0.0 < fi < 1.0. The range over which fi is defined

varies depending on the parameters used. (In all of the cases, we find this range

through trial and error.)

2. Given the surface texture, the critical shear stress to entrain each sediment grain

size (Trj) is found.

3. The chosen erosion equation, as a function of shear stress, can be substituted

into equation 3.20. The equilibrium condition can be rearranged to find an

expression for the bed shear stress as a function of surface texture (chosen in

step 1) and critical shear stress for each grain size class (calculated in step 2).

We can now calculate the bed shear stress value, given the surface-texture, that

satisfies the equilibrium conditions in equation 3.20. (For an example of an

equilibrium shear-stress relationship, see equation 3.25.)

4. Bed shear stress (step 3) and surface texture (step 1) provide the sediment

transport rate. Once the sediment transport rate is known equation 3.18 or

3.19 can be used to calculate the drainage. We now have the relationship

between surface texture and drainage area.

5. The drainage area and equilibrium bed shear stress at that drainage area are

now known. Finally, we rearrange the shear stress equation 2.6 to solve for local

slope, given the drainage area and bed shear stress:

S = . (3.21)
pg(n).6( )o.3(A)o.3 '

The relationship between local slope and drainage area is now defined.
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In the sections below, we plug actual sediment transport equations into this

method to test their equilibrium sensitivity to uplift rate, precipitation rate, and

grain size.

3.4 Meyer-Peter MUler with Komar Hiding Func-

tion

We have already introduced the non-dimensional form of the Meyer-Peter M6ler

transport equation (equation 3.1). As stated, this equation is based on homogeneous

sediment transport. For homogeneous sediment transport, ab = 8, rc* = 0.047, and

Pb = 1.5. The difficulty in applying this equation to a mixture of grain sizes is in

defining Tc. To describe the critical shear stress in the Meyer-Peter Muller equation,

we use results from a study by Komar (1987). In his study, Komar looks at sediment

entrainment data from a number of studies of gravel-bed rivers and sand-bed rivers

containing some fine gravel (data from Milhous (1973); Carling (1983); Hammond

et al. (1984); Egiazaroff (1965); and Day (1980)). Komar found that the threshold

for motion of the median-grain size (d50) was approximately the same as if the median-

grain size were on a homogeneous bed and followed the Shields curve (Shields 1936).

Grains larger than the median-grain size were entrained at smaller shear stress values

than if they were on a homogeneous bed, and grains smaller than the median-grain

size were entrained at larger shear stress values than if they were on a homogeneous

bed. He developed an expression for the non-dimensional shear stress for entrainment

of each grain size (here referred to as Tc*i, referred to as 0 ti by Komar (1987)). The

relationship for T* found by Komar is

TC* = a (d b (3.22)

where a and b are parameters dependent on the mixture properties. The critical shear

stress is non-dimensionalized as in equation 3.3, except that d50 is replaced with di,

the grain size for which entrainment is calculated. Komar (1987) found that in the
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studies of gravel bed rivers (Milhous (1973); Carling (1983); Hammond et al. (1984)),

b varied between -0.71 and -0.68 and a = 0.045. In the sand-bed studies (flume data

from Day (1980)), b varied between -0.66 and -0.53, and a varied between 0.026 and

0.047. In all the results presented in this section, we consider only gravel-grain sizes

and use values of b = -0.7 and a = 0.045. We found that the trends in the results

were not sensitive to these values, as long as b / -1, which gives the result that -re

is no longer a function of di.

Plugging the expression for critical shear stress into the Meyer-Peter Muller equa-

tion ( 3.7) (with the parameter values stated above) and converting it into a volumetric

sediment transport rate we get the following expression:

Si= 8Wf( - TeO 1.5 (3.23)
p 1-5 Rg

where

Tci = (pRgd5o)a (d b (3.24)
(d5)b

With these expressions, we proceed to the equilibrium solution. (Note that d50 is

calculated in a standard way by interpolation using the log of the grain sizes (phi

scale).)

In all examples we use two grain-size fractions. In order to obtain an equilibrium

solution, we need to define the texture of the substrate; that is we need values for

di, d2, and fsbl. (d, is the coarser grain size and each grain size is calculated as

the geometric mean of a grain size range.) Following the procedures outlined in

section 3.3, over the range of possible surface textures (based on the contents of the

substrate material), we calculate the critical shear stress for entrainment of each grain

size using equation 3.24 (step 2). With this information, (substrate texture, surface

texture, and critical shear stress values) we can calculate surface shear stress, given

a precipitation rate (step 3). The relationship for equilibrium shear stress using the
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Meyer-Peter Miler equation is:

2/3 2- 2/3Tc2
T fb/ fsub2 . (3.25)
2/3 f 2/3

fsub ( fsub2

This equation is obtained by substituting the Meyer-Peter M6ler sediment transport

equation (3.23) and the critical shear stress relationship (3.24) into the equilibrium

relationship expressed in equation 3.20; this relationship is rearranged to solve for

bed shear stress as it is expressed in equation 3.25. Solving for the equilibrium bed

shear stress using equation 3.25, we combine this value with the surface texture to

calculate a sediment transport rate, and therefore, the drainage area (step 4). Once

the drainage area is known, we have the relationship between median grain size and

drainage area. Finally, we calculate the slope from the drainage area and shear stress

values, to describe the network morphology.

Sensitivity of the equilibrium slope-area and texture-area relationships is explored

below. All of the results shown are found using the iterative solution. We do not show

results from numerical simulations using the CHILD model, but all of the simulations

that we have performed with CHILD agree with the predictions from the iterative

model.

3.4.1 Equilibrium Network Sensitivity to Uplift Rate/Erosion

Rate

In this section we use the equilibrium relationships described above for the Meyer-

Peter M6ller equation with two grain sizes to explore the effect of uplift rate on the

equilibrium morphology and surface texture of drainage networks. (At equilibrium,

higher uplift rates, or faster base-level fall rates, imply higher erosion rates. This is

worth bearing in mind as the results are presented.) All of the results shown in this

section solve for the slope-area and d50-area relationships using the iterative method.

In all of the results, a precipitation rate of 1.0m/yr falling over 100 days was used.

The texture of the subsurface varies between the examples.
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In all cases, the equilibrium solution for only a finite range of sediment transport

rates. Because the sediment transport rates correspond to different drainage areas

for different uplift rates (or base-level lowering rates), the equilibrium solution exists

over larger drainages areas for lower uplift values. This is a result of equation 3.15,

which states that for a given drainage area, as uplift rates increase, sediment transport

rates increase. Therefore, the same sediment transport rate can be the equilibrium

solution for a large drainage area with low uplift rates, or for a smaller drainage area

with larger uplift rates. Therefore, equilibrium solutions for different uplift rates do

not entirely overlap in drainage area space. Comparisons between networks are only

made where the solutions exist at the same drainage area.

The first example shows the sensitivity to uplift rate of the slope-area and d5 0 -

area relationships for a network with a substrate composed of a mixture of 20%

grains in the 150-100mm range (d1=123mm) and 80% grains in the 100mm-50mm

range (d2=71mm) (figure 3-5). With this grain size composition, at smaller drainage

areas, the slope is essentially unaffected by changes in uplift rate (figure 3-5A). At

larger drainage areas, channel slope increases with uplift rate (figure 3-5A). However,

for all drainage areas, a larger uplift rate always implies a smaller median grain size

(figure 3-5B). In all of the networks, median grain size decreases downstream, even

though the composition of the transported load is the same everywhere in the network

and equal to the composition of the substrate material.

The sensitivity of the slope-area relationship in figure 3-5A is predicted from the

sensitivity of the Meyer-Peter Muller equations with a single grain size (described in

section 3.2). The homogeneous analysis predicted that when the critical shear stress

plays an important role in determining the sediment transport rate, the equilibrium

slope-area relationship is not dependent on uplift rates, because the entrainment

criterion dominates the transport criterion. Figure 3-6 illustrates the equilibrium bed

shear stress and critical shear stress values for the solution with U=0.5mm/yr. (This

relationship follows the same pattern for each uplift value.) In the smaller drainage

areas, the value of T and Tei are very similar (figure 3-6). In this region equilibrium

slopes do not vary with uplift rates. However, in larger drainage areas, the required

59



(A) 100

10
drainage area (m )

10
drainage area (m )

Figure 3-5: Sensitivity of equilibrium slope-area relationship (A) and d50-area re-
lationship (B) to different uplift values (see legend) for networks with 20% of the
coarsest fraction in their substrate. Meyer-Peter Muller sediment transport equation
with Komar critical shear stress rule is used. (Precipitation rate = lm/yr falling over
100 days; coarse fraction= 150-100mm; fine fraction= 100-50mm)
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Figure 3-6: Equilibrium bed shear stress and critical shear stress values for the ex-
ample shown in the figure 3-5 with uplift=0.5mm/yr. Concavity values are scaled to
show on figure and range between 0.2 to 0.5 - see solid line in figure 3-7 for exact
concavity values.

increase in sediment transport rate is accomplished by drastically increasing bed shear

stress and the value of the critical shear stress is no longer important (figure 3-6). In

this region equilibrium channel slope does increase with uplift rate (figure 3-5A).

Figure 3-7 illustrates changes in network concavity for the same data shown in

figure 3-5A. As explained, the iterative method first chooses a surface texture, and

then calculates equilibrium bed shear stress, drainage area, and slope based on that

surface texture (and other set parameters). Because all calculations are based on sur-

face texture, calculation of concavity is also made over surface texture regions. This

allows for an equivalent comparison between changes in network concavity as uplift

rate varies. Figure 3-7 illustrates downstream changes in concavity. We calculate 0

over regions in the network which have the same range in median grain size. The

trend in concavity is exactly the same for each value of uplift, and is only shifted in

drainage area space.

Channel concavity is closely linked to the difference between bed shear stress and
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Figure 3-7: Variation in concavity of the slope-area relationships shown in figure 3-5A.

critical shear stress, as expected from the homogeneous theory given in section 3.2.

The dotted line in figure 3-6 shows the pattern of change in 0 for this example.

(This dotted line is the same as the solid line in figure 3-7 except that in figure 3-6

the concavity is scaled so that the trend can be seen on the shear stress plot.) In

smaller drainage areas, both bed shear stress and critical shear stress are decreasing

downstream, and their values are similar. In this region, channel concavity is slightly

increasing, and remains relatively high (see figure 3-7 for actual concavity values). The

region in which critical shear stress declines most rapidly in figure 3-6 corresponds

to the region of rapid change in d50 (figure 3-5). Because critical shear stress is

decreasing, slopes can decrease more rapidly, causing channel concavity to increase

(peak in concavity values, or dotted-line, in figure 3-6). However, at larger drainage

areas, bed shear stress starts increasing while critical shear stress is still decreasing.

As previously discussed, in this region the critical shear stress does not have as much

influence on the sediment transport rate, so channel concavity decreases and channels

slopes are influenced by the uplift rate (figure 3-5A).

The sensitivity of the network properties are not dependent on the value of the
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uplift rate. We have explored different magnitudes of change in uplift rate, and the

same trends in slope changes, concavity, and grain size result.

The concavity of the network is somewhat affected by the grain size ranges, and

this affects changes in slope with uplift rate. Figure 3-8 is similar to figure 3-5,

except that the range of coarser grain sizes is expanded, therefore making d, larger

(158mm). This causes concavity to increase to a larger value (figure 3-10) than in the

first example (figure 3-7). Where the concavity is high, channel slopes are decreasing

rapidly (figure 3-8A) and there is a small region in which channel slope actually

increases with decreasing uplift values. This is a very surprising result and only

possible because of the decrease in critical shear stress downstream (figure 3-9). We

realize this is a very local result and that the increase in channel slope with decrease

in uplift rate is not very extreme. However, given that the result is so unexpected,

we feel it is worth pointing out.

When the substrate is composed of more coarse material (fi is larger), and there-

fore more coarse material needs to be transported at equilibrium, the results are

similar to the cases already discussed. Figure 3-11 illustrates the network morphol-

ogy and texture changes in a network exactly the same as that in the first example,

except that in this case the substrate contains 50% (versus 20% in figure 3-5) of the

coarser material. The equilibrium solution is defined for a smaller range in grain

sizes as the amount of coarse material in the substrate increases (figure 3-5B versus

figure 3-11B).

In the drainage network transporting coarser material, changes in channel slope

with uplift rate are as expected given the previous examples. There is a region in

which channel slope does not vary with uplift rate (smaller drainage areas in figure 3-

11A), and this is the region in which bed shear stress and critical shear stress have

similar values (figure 3-12). In this case there is no region in which bed shear stress

declines downstream, and there is also no region in which channel concavity increases

downstream (figure 3-13).

As the last example in this section, we illustrate changes in a network which needs

to transport 80% of the coarse fraction. Figure 3-14A illustrates that for this very
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Figure 3-8: This figure is almost identical to figure 3-5 except that here the coarsest
fraction varies between 250mm and 100mm.
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coarse example, in all cases channel slope increases with uplift rate. The bed shear

stress is diverging from the critical shear stress for all drainage area values in this

solution (figure 3-15), and therefore the variation in channel slope with uplift rate

agrees with the trends already illustrated. In this case, the equilibrium solution is

defined for an even smaller range of grain sizes (figure 3-14B) than in the case with

50% coarse material in the substrate (figure 3-11B).

3.4.2 Sensitivity to Precipitation Rate

Variation in precipitation does not have any surprising results on equilibrium mor-

phology or channel bed texture. Figure 3-16 illustrates sensitivity to precipitation

rate in a basin with 20% coarse material in the substrate (d1=123mm; d2=71mm).

For a given drainage area, channel slope decreases with increasing precipitation rate

(figure 3-16A). Fluvial discharge increases with the precipitation rate, and if the slope

remained the same (ignoring grain-size changes for a moment), this would cause bed

shear stress to increase and more material to be transported. However, equilibrium

transport rates do not change with changes in precipitation rate, therefore to com-

pensate for the increase in fluvial discharge, channel slopes decrease. The amount

of change in slope for different precipitation values is somewhat dampened by the

change in surface texture (figure 3-16B). The channel bed coarsens (d50 increases)

as precipitation increases. Coarsening of the channel bed increases the critical shear

stress and therefore limits transport rates. However, the change in critical shear stress

(see figure 3-6, which has the same trend in T and -c as this example) is not great

enough to significantly dampen changes in slope with precipitation rate in comparison

with the homogeneous case, in which critical shear stress doesn't change.

Slopes vary slightly more with precipitation rate at larger drainage areas (figure 3-

16), as is predicted by the homogeneous theory. When the critical shear stress is small

(higher drainage areas), the first term in the homogeneous slope-area equation (3.12)

is more important in determining channel slopes and this term is more sensitive to

precipitation rate.
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Figure 3-15: Equilibrium bed shear stress and critical shear stress values for the
example shown in the figure 3-14 with uplift=0.5mm/yr. Dotted line illustrates the
trend in concavity values (concavity values are scaled to show on figure).

3.4.3 Sensitivity to Grain Size

Finally, using the Meyer-Peter M6ller sediment transport equation with the Komar

critical shear stress rule, we explore the effects that grain size has on network mor-

phology. In section 3.4.1 we showed that an increase in d, increased local concavity.

Here we explore changes in d, and d2 further.

Figure 3-17A illustrates the effects of variation of the coarser gravel fraction on the

equilibrium slope-area relationship. (The finer gravel-grain size is 71mm, the uplift

rate is 0.1mm/yr, and the precipitation rate is 1m/yr falling over 100 days in all cases

in figure 3-17.) In the smaller drainage areas, the network with the coarsest gravel-

grain size has the steepest slopes. When the coarser fraction is made up of larger

grain sizes (figure 3-17B), the critical shear stress to entrain these grains is larger

(equation 3.22), resulting in larger equilibrium slopes. In larger drainage areas, the

median grain size is relatively smaller and is effectively not changing (figure 3-17B).

In this region, the critical shear stress has decreased and no longer plays an important

role in determining the transport rates. In this region the channel slopes are similar
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71

(A)

10-2

103

10~4

20% Coarse Fraction in Substrate

-- P=2m/yr
-m/yr

- 0.5m/yr

'R*

-ftf~t f

0

C

-C

(B)

E
0

10

1251

120-

115-

110-

105-

10 12

1012

100

95

90

85

80

75-

-- P=2m/yr
- - - 1m/yr
- - 0.5myr

10



and concavity is at its lowest value (figure 3-18). The rapid change in grain size in

the network with the largest variation in the coarse fraction creates a region with

very large concavity (figure 3-18). The decline in median-grain size allows for a large

decrease in critical shear stress, and therefore a rapid decrease in slopes.

Variation in the range of finer-grain sizes causes channel slopes in the larger

drainage areas to decrease (figure 3-19A), while channel slopes in the smaller drainage

areas are essentially unaffected. The median-grain size in the smaller drainage ar-

eas (figure 3-19B) is not affected by changing the range of finer sizes and therefore

the coarser critical shear stress is nearly the same in all three networks shown (see

equation 3.22). However, in the larger drainage areas, where d5o does vary between

the networks, channel slopes are smaller in the network with the finest material. In

other words, the coarse fraction controls the entrainment-limited upper reach while

the finer fraction controls the transport-limited lower reach, so changes in the fine

fraction only influence the latter. Again, the network which has more of a range in

grain sizes has the highest local concavity value (figure 3-20).

Variation in both d, and d2 affects channel slopes and concavity in all parts of the

network as a combination of the simpler examples shown here. (These results are not

shown.)

3.5 Wilcock Sand-Gravel Model

In this section we explore the equilibrium form of channel networks composed of a

sand and gravel mixture. Based on field data (Oak Creek, Oregon (Milhous 1973);

East Fork River, Wyoming (Emmett (1980), Emmett et al. (1980), Emmett et al.

(1985)); Jacoby Creek, California (Lisle 1989); and Goodwin Creek, Mississippi

(Kuhnle 1992)) and flume data (Wilcock and McArdell 1993), Wilcock (2001) showed

that the sediment transport rates in sand and gravel mixtures could be calculated us-

ing only the median sand and gravel grain sizes. Here, we use the equations which he

developed:
_11.2W fg [i ei

Qsg = 1 g ) 1.5 -- (3.26)
(s - 1)g p r
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Figure 3-17: Change in equilibrium channel slope (A) and median grain size (B) with
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17.

and
S11.2Wf ( 15

(S - 1)g p) I !

where Qsg and Q, are the volumetric load of gravel and sand, respectively, per unit

time ; f9 and f, are the proportion of gravel and sand, respectively, on the channel

bed (for modeling purposes, fg and f, refer to the proportion of gravel and sand,

respectively, in the active layer); s is the ratio of sediment density (ps) to water

density (p); g is gravitational acceleration; Tcg and -rs are the critical shear stress

values for entrainment of gravel and sand, respectively; and 11.2 is a dimensionless

parameter.

The critical shear stresses for entrainment of gravel and sand are calculated from

the data of Wilcock (1998). Figures 3-21 (a) and (b) illustrate the relationships used

in this study between the dimensionless reference shear stress of gravel (<,*g) and sand

(Tr*s) and the proportion of sand on the bed (here calculated as proportion of sand in

the surface layer), along with Wilcock's data. Reference shear stress is defined as the

shear stress necessary to produce a small reference transport rate; critical shear stress
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is assumed to be a constant fraction of reference shear stress. On a sand-poor bed

(< 10% sand), the interlocked gravel framework dominates and inhibits entrainment

of both sand and gravel (referred to herein as the gravel-dominated region). The

value of r*9 remains at a constant value of 0.04, which is the value for a homogeneous

bed. The value of Tr*, also remains constant, but its value depends on the grain sizes

present on the bed. The relation Tr*, = (0.8) T*, is used to determine the critical

shear stress for entrainment of sand when there is less than 10% sand on the bed (dg

and d, are the median gravel- and sand-grain size, respectively). As the bed becomes

sandier, the gravel framework is broken. Gravel particles are spread apart and be-

come easier to entrain because they protrude above the bed, while the sand particles

become easier to entrain since they are less prone to hiding within the interstices of

the larger particles. In the transitional regime between framework-dominated and

matrix-dominated (modeled here as between 10% and 40% sand in the active layer,

figure 3-21, and referred to as the transitional region), both Tr*9 and r*, decrease as the

proportion of sand on the bed increases. This decrease in the entrainment threshold

for both sand and gravel is modeled according to the linear fit shown in Figure 3-21. In
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Figure 3-21: Dimensionless reference shear stress for transport of gravel and sand as

a function of the volumetric proportion of sand (vs. gravel) on the bed. The data
(circles) are from a flume and field studies and were compiled by Wilcock (1998). The
lines drawn are the fit which was used for this study.

mixtures containing more than about 40% sand the bed becomes matrix-dominated,

and critical shear stress becomes largely insensitive to variations in the relative pro-

portions of sand and gravel; in this regime, the dimensionless reference shear stress

for gravel and sand remain constant at 0.01 and 0.04, respectively (referred to as the

sand-dominated region). Other heterogeneous sediment entrainment studies support

a similar relationship, that is the presence of finer particles enables entrainment of

the coarser particles and the presence of coarser particles hinders entrainment of the

finer particles (e.g., Andrews (1983); Church (1985); Komar (1987); Kuhnle (1993)).

One could easily argue that there are a number of fits which could be used for

the data shown in figure 3-21. However, the data strongly support a region in which

critical shear stress decreases with increasing sand content in the surface layer. We

have chosen to use a linear fit between 10% and 40% sand content in the surface. We

have explored linear fits over different regions on surface sand content, and although
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some details may change, the trends in the data do not change. The important aspect

of these data is that critical shear stress decreases with increasing sand content, and

this is what drives the trends we see. We argue that the general trends in the results

we present do not depend on the details of how this declining trend in critical shear

stress is described but only that a declining trend exists.

We can now proceed with the equilibrium solution. For each equilibrium example,

a substrate texture (sand- and gravel-grain size, and proportion sand in substrate),

uplift rate, and precipitation rate are chosen. Following the procedures outlined

in section 3.3, over the range of possible surface textures (based on the contents

of the substrate material), we calculate the critical shear stress for entrainment of

both gravel and sand using the relationship shown in figure 3-21 (step 2). With this

information (substrate texture, surface texture, and critical shear stress values), we

can calculate surface shear stress (step 3). The relationship for equilibrium surface

shear stress (obtained from substituting equations 3.26 and 3.27 into equation 3.20

and rearranging) is

1 -1

fsub i - fS 15 fsub 1-f 5  i

1 s sub fs -s+ TC8 \N/ fsub fs Tcg - (3.28)

This is the equilibrium expression for shear stress as a function of surface texture

(remember that the sand and gravel critical shear stress values are a function of f,
and the gravel- and sand-grain sizes) (Gasparini et al. 2003). Figure 3-22 illustrates

the equilibrium shear stress relationship for a drainage basin with 50% sand in its

substrate. Three important points arise from the equilibrium shear stress relationship:

(1) there are two solutions to this equation (only one is shown in Figure 3-22) (2) there

is a region of surface texture for which no equilibrium solution exists, and this region

is a function of the proportion of sand in the substrate and the median gravel- and

sand-grain sizes and (3) shear stress can both increase and decrease with increasing

proportion of sand on the bed, and, therefore, because this is a continuous function

(in the region over which it is defined), shear stress alone does not uniquely determine

the equilibrium surface texture.
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We now have the equilibrium shear stress given the surface and substrate com-

position, and we can plug this information back into equation 3.26 (or, equivalently,

equation 3.27) to obtain a sediment transport rate, which uniquely defines a drainage

area (given the uplift rate, see step 4 from section 3.3 and equations 3.18 and 3.19).

This defines the relationship between surface texture and drainage area. Finally, from

equation 3.21 (step 5 from section 3.3) we can solve for channel slope and describe

the equilibrium morphology of the network.

We present below the equilibrium sensitivity of network morphology and down-

stream surface texture changes to different uplift rates, and precipitation rates, and

substrate textures (sand and gravel grain size, and composition). Surface texture

changes are shown in this section as changes in the proportion of sand (versus gravel)

in the surface layer. The results we present are obtained using the iterative solution

described above. The Wilcock (2001) equations are part of the CHILD model and

can be used to evolve transport-limited networks to equilibrium. In all cases, the

CHILD model predictions agree exactly with the iterative solution (see later section).

(The same result was found by Gasparini et al. (2003) using the GOLEM model (e.g.

Tucker and Slingerland (1996)).) Using CHILD to model multiple-grain size sediment

transport over geologic time scales is computationally intensive, which is why we de-

veloped the iterative method to describe equilibrium landscapes. While the iterative

method has the speed advantage, it can obviously only be used for looking at equilib-

rium relations. The CHILD model can describe both equilibrium conditions as well

as the transient conditions between equilibrium states, as illustrated in Chapter 4.

3.5.1 Equilibrium Network Sensitivity to Uplift Rate/Erosion

Rate

All of the results in this section look only at the effects of uplift rates; all other

parameters (precipitation rate, grain-size variables) are constant in each example.

Sensitivity to uplift is somewhat dependent on the proportion of sand in the substrate,

and these differences are illustrated between plots. The effective precipitation rate
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does not change equilibrium sensitivity to uplift rates, and therefore the precipitation

rate in all figures is the same (1m/yr of rain falling over 100 days). Also, the trends

do not vary for different values of gravel- and sand-grain size, and these values are

held constant at 40mm and 1.5mm, respectively. As discussed in section 3.4.1, the

equilibrium solution is defined for larger drainage areas with lower uplift rate values,

and comparisons are only made where solutions are defined for the same drainage

area. (Remember that higher uplift rates imply higher erosion rates.)

For all of the parameters we investigated, the equilibrium solutions are defined over

the widest range of drainage areas and surface textures when the substrate contains

90% sand. We begin our discussion with this case. Figure 3-23 shows the change

in the slope-area relationship (A) and texture-area relationship (B) as a function of

uplift rate (varying by a factor of 5). (Note that texture is now expressed as f, and

larger values imply more sand (vs. gravel) and therefore finer mixtures.) Figure 3-24

is almost identical to figure 3-23 except that in figure 3-24 uplift rates vary by two

orders of magnitude. We show these two figures only to illustrate that differences with

uplift rate in the equilibrium slope-area and texture-area relationships are general and

do not depend on the magnitude of change in uplift rate.

Looking at a single line in figure 3-23A, one immediately notices that the nature of

the slope-area relationship changes with drainage area, and this change corresponds

with the surface texture (figure 3-23B). The slope-area and sand-area relationships

are highly affected by the nature of changes in critical shear stress. That is, the slope-

area and sand-area relationships are distinct in the regions where there is less than

10% sand in the surface layer (region in which the critical shear stress for entrainment

of sand and gravel remains constant with proportion sand in the surface, figure 3-21),

where there is greater than 10% sand but less than 40% sand in the surface layer

(region in which the critical stress for entrainment of both sand and gravel decreases

with increasing surface sand content, figure 3-21), and where there is greater than

40% sand in the surface layer (the critical shear stress for entrainment of both sand

and gravel again remains constant with increasing surface sand content, figure 3-21).

In the region of decreasing shear stress, or the transitional area (0.1 < f, < 0.4), the
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in their substrate. Wilcock (2001) equations are used. (Precipitation rate = lm/yr
falling over 100 days; dg = 40mm; d, = 1.5mm)
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concavity is nearly constant, and 9 = 0.53 for all uplift values. With these grain size

parameters, the assumption of nearly constant theta is reasonable given the concavity

variation in the transitional region: 0 = 0.52 when 0.1 < f, < 0.2; 6 = 0.54 when

0.2 < f, < 0.3; 0 = 0.51 when 0.3 < f, < 0.4 (see table 3.1). In this transitional

region, channel slope is able to decrease rapidly because critical shear stress is also

decreasing, enabling higher transport rates. In the regions in which critical shear

stress is constant (fs < 0.1 and fs > 0.4), the concavity is lower, that is slope is

not decreasing as rapidly with drainage area (9 = 0.42 when fs < 0.1; 9 = 0.23

when f, > 0.4). When the critical shear stress is constant, downstream increases in

transport rate are all compensated by increases in bed shear stress, and channel slope

is not able to decrease as rapidly, leading to smaller concavity values. This result is

similar to the results found using the Meyer-Peter Miller sediment transport equation

with the Komar critical shear stress rule, that is when the critical shear stress plays

less of a role in determining the transport rate, the concavity decreases.

11 fsub = 90% fsub = 50% fsub = 10%

f, < 0.1 0.42 0.42 0.40
0.1 < f, < 0.4 0.53 0.47 0.41
f, > 0.4 0.23 0.11 -

0.1 < f, < 0.2 0.52 0.50 0.42
0.2 < f, < 0.3 0.54 0.50 0.37
0.3 < f_ < 0.4 0.51 0.40 -

Table 3.1: Concavity values (6 in different parts of three networks with different
substrate composition (dg = 40mm, ds = 1.5mm, results not sensitive to uplift rate
or precipitation rate).

Now that we understand the nature of the slope-area relationship we examine

how uplift rates affect channel slopes. For a given drainage area, one notices that

there are regions in which channel slope decreases with increasing uplift rates; in

figure 3-23A, this region is roughly for drainage areas between 1m 2 and 10 5m2 . This

is quite surprising, given that transport rates need to increase with increasing uplift

rates. How is it possible that higher transport rates can occur on shallower slopes?

As was the case with the examples using the Meyer-Peter Mhller sediment transport
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equation, the answer lies in changes in surface texture. The surface content always

becomes finer (contains more sand) with increasing uplift rates (figure 3-23B). In the

transitional region, a finer surface implies a smaller critical shear stress, and therefore

larger transport rates. Even though the transport rate must increase with uplift rate,

the adjustment of surface texture actually allows for shallower slopes at higher uplift

rates. In the regions in which critical shear stress remains constant and the concavity

of the channels is greatly reduced, channel slope increases with uplift rate as expected.

The surprising result that channel slope can increase with decreasing uplift rates

also holds in networks with 50% sand in their substrate (figure 3-25). In this ex-

ample, we again see that the most concave part of the network are the areas with a

transitional surface texture (0 = 0.42 when f, < 0.1; 0 = 0.47 when 0.1 < f, < 0.4;

0 = 0.11 when f, > 0.4, table 3.1). The patterns in surface texture changes (figure 3-

25B) are also the same as in the case with 90% sand in the substrate (figure 3-23B),

and again it is the fining of the surface that allows for the surprising slope results.

In the larger drainage areas, concavity greatly decreases and channel slopes increase

with increasing uplift rate. In the smaller drainage areas, channel slopes are very

similar (when they overlap) for all cases. This result is more obvious in the case of

a network with 10% sand in its substrate (figure 3-26). This case is not defined over

a wide range of surface textures, and therefore drainage areas; we show it only to

highlight that there is a region in which channel slope is nearly constant with uplift

rate.

3.5.2 Sensitivity to Precipitation Rate

The sensitivity of equilibrium channel slope and surface texture to changes in precip-

itation are as one would predict. Higher precipitation rates produce shallower slopes

(figure 3-27A) and have no effect on network concavity (concavity values are exactly

the same as those given in the variable uplift examples, table 3.1). This seems logical

because as precipitation rates increase the fluvial discharge increases, but there is no

required change in transport rates (at a given drainage area). Shallower slopes can

produce the same bed shear stress with a higher fluvial discharge. Higher precip-
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itation rates also produce coarser surfaces (figure 3-27B), which seems logical. As

fluvial discharge increases, the surface coarsens to inhibit transport rates. We only

show one illustration of the sensitivity to precipitation rate, because all of the figures

look exactly the same.

3.5.3 Sensitivity to Texture and Grain Size

In this section we make comparisons between basins with different substrate sand

contents and gravel-grain sizes. Changes in sand grain size do not have a noticeable

affect on the equilibrium results.

For the most part basins with a greater gravel content have the steeper slopes

(figure 3-28A). Remember that in equilibrium the texture of the material in transport

is that of the substrate. At a given drainage area in figure 3-28 all of the networks are

transporting the same total load, but the composition of the load changes between the

networks. So the drainage network with 10% sand in its substrate needs to transport

a mixture containing more gravel than either the network with 50% sand or 90% sand

in its substrate. In order to transport the greater gravel load, the slopes are steeper.

Figure 3-28B shows the sensitivity of surface sand content to subsurface sand

content. For a given drainage area, the surface sand content is higher for basins which

contain more sand in their substrate. Our method does not produce an equilibrium

solution for large surface sand contents in a network with 10% sand in its substrate.

One might point to availability of gravel for transport as the reason for this. On the

other hand, the critical shear stress to entrain gravel also decreases with surface sand

content, so one might expect the basin with a high gravel content in its substrate to at

least be defined over the entire range of surface sand contents for which gravel critical

shear stress is decreasing. However, the gravel transport rate is also proportional

to the amount of gravel available on the bed, so as surface sand content increases,

there are opposing factors controlling the gravel transport rate. It is probably these

competing factors which set the range over which the equilibrium solution is defined.

The sensitivity of the equilibrium networks to changes in gravel-grain size is il-

lustrated in figure 3-29. In this figure all parameters remain the same except for
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the gravel-grain size. Where the solutions overlap in drainage area, the basin with

the largest gravel-grain size has the steepest slopes. This is as expected, since larger

grain sizes have larger critical shear stresses, and therefore steeper slopes are needed

to transport the material. In this figure, for a given drainage area, not only are the

total transport rates the same but so are the sand- and gravel-transport rates.

fsub = 90% d=10mm d9=20mm dg=40mm dg=160mm

f, < 0.1 0.42 0.42 0.42 0.42
0.1 < f, < 0.4 0.73 0.56 0.53 0.51
f, > 0.4 0.35(0.33) 0.25(0.24) 0.18(0.17) 0.10
0.1 <.f8 < 0.2 0.63 0.54 0.52 0.51
0.2 < f < 0.3 0.75 0.57 0.54 0.53
0.3 < f < 0.4 0.74 0.55 0.51 0.48

Table 3.2: Sensitivity of concavity values (6) to gravel-grain size in different parts of
the network (fsub = 0.90, d,=1.5mm, uplift rate is 0.1mm/yr, and precipitation rate
is lm/yr falling over 100 days). All concavity values are calculated over the same
surface texture range (minimum f, = 0.02, maximum f, = 0.90), except for those in
parentheses, which are calculated to the largest surface sand content possible given
the parameters.

The drainage network with the smallest gravel-grain size is defined over the small-

est range of drainage areas (figure 3-29) but the largest range of surface sand contents

(figure 3-29 illustrates solutions over the definable range for d,=160mm). The reason

for the smaller range in drainage areas in the network with the smallest gravel-grain

size is that the surface sand content increases much faster in the transitional region in

this network (figure 3-29B). This rapid increase in surface sand content corresponds

to a greater concavity in the transitional region (table 3.2). Concavity greatly varies

between the basins with different gravel-grain sizes in the transitional region and

also in the sand-dominated region with (f, > 0.4). In the gravel-dominated region

(f, < 0.1) concavity does not vary. The inter-comparison of concavity values is a

bit surprising. Given the results presented using a single grain size (section 3.2) one

would expect the concavity of a networks with a larger gravel-grain size (and there-

fore the larger critical shear stress) to be larger. However, the result is exactly the

opposite in both the transitional region and in the sand-dominated region, that is the
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concavity increases with decreasing gravel-grain size (and therefore decreasing critical

shear stress). Note that for the parameter space explored here, the change in concav-

ity in these regions is quite significant (for example in the transitional region 6 = 0.73

in the network with dg=10mm, and 0 = 0.51 in the network with dg=160mm, see

table 3.2).

In table 3.2, there are two values for concavity in the sand-dominated region; the

values not in parentheses are calculated over the maximum range for the network with

dg=160mm. The equilibrium solutions is defined for larger surface sand contents as

the gravel-grain size decreases. When the concavity is calculated over the maximum

range of surface sand contents (values in parentheses in table 3.2), the concavity value

is slightly reduced, but the same trend still results. Concavity varies depending on

the range of surface contents over which it is calculated because concavity is changing

in this region (curved slope-area lines).

Figure 3-30 shows the sensitivity of network morphology and surface texture to

gravel-grain size in a basin containing 50% sand in its substrate. The results are

similar to the basin with 90% sand in its substrate. For a given drainage area, slopes

are steeper in the network which has a larger gravel-grain size. Concavity in the

transitional and sand-dominated regions also increases with decreasing gravel-grain

size (table 3.3), and the increase in concavity is linked to faster changes in surface

texture with drainage area as gravel-grain size decreases (figure 3-30B). As with the

case of fsub = 0.90, concavity values in the sand-dominated region were calculated in

two ways: up to the same maximum fs, which is also the maximum definable surface

sand content for the basin with dg=160mm, and up to the maximum surface sand

content for each gravel-grain size. Regardless of the method, we see that concavity

in the sand-dominated region increases with decreasing gravel-grain size. Note that

the channels are essentially straight in the sand-dominated region when dg=160mm

(figure 3-30A and table 3.3).

It is surprising that concavity does not vary with gravel-grain size in the gravel-

dominated region but does in the sand dominated region given the way that critical

shear stress is calculated. In the gravel-dominated region, the critical shear stress to
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fsub = 50% dg=10mm dg= 2 0mm dg=40mm dg=160mm

f, < 0.1 0.42 0.42 0.42 0.42
0.1 < f, < 0.4 0.64 0.50 0.47 0.45
f, > 0.4 0.33(0.29) 0.21(0.16) 0.12(0.10) 0.02
0.1 < f, < 0.2 0.58 0.51 0.50 0.48
0.2 < f, < 0.3 0.66 0.53 0.50 0.48
0.3 < f, < 0.4 0.64 0.46 0.40 0.35

Table 3.3: Sensitivity of concavity values (0) to gravel-grain size in different parts of
the network (fsub = 0.50, d,=1.5mm, uplift rate is 0.1mm/yr, and precipitation rate
is lm/yr falling over 100 days). All concavity values are calculated over the same
surface texture range (minimum f, = 0.02, maximum f, = 0.51), except for those in
parentheses, which are calculated to the largest surface sand content possible given
the parameters.

entrain sand increases with the gravel-grain size, but in the sand-dominated region Tc

does not depend on the gravel-grain size. As discussed in the beginning of this chapter

(section 3.2), we expect concavity to be linked to critical shear stress. However, here

the same concavity results with different critical shear stress values (gravel-dominated

region), but different concavities result in region where the critical shear stress values

are the same (sand-dominated region).

3.6 Discussion and Conclusions

The equilibrium predictions of the slope-area relationship in homogeneous networks

(spatially uniform critical shear stress) are unexpected in many ways. In the case when

the critical shear stress in negligible, the equilibrium theory that we present predicts

a convex channel network. This contradicts natural observations. However, when the

critical shear stress is non-negligible and plays an important role in determining the

sediment transport rate, concave channels result, as one would expect. In retrospect,

it's not surprising that the equations do not predict realistic morphologies without

a critical shear stress. All sediment transport equations are empirical fits to highly

non-linear data that suggest the presence of a threshold. Applying them otherwise

may be inappropriate.
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Absolute channel slope and overall network concavity increase with critical shear

stress in homogeneous landscapes. Except for the case without a threshold, channel

concavity decreases with drainage area. Spatial changes in concavity are due to the

competing terms in the slope-area relationship (equation 3.12).

The most unexpected result from the homogeneous theory is the insensitivity to

uplift rate of the critical shear term in the slope-area relationship (equation 3.12).

Without a critical shear stress term, equilibrium slopes behave as expected - they

increase with increasing uplift rate and decrease with increasing precipitation rate. In

actuality, it would be impossible for slopes to stay static with changes in uplift rate;

higher uplift rates require higher transport rates, and in the homogeneous model,

slope is the only variable, and therefore must increase with uplift rate. However,

this extreme prediction by the end-member case helps us to understand some of the

sensitivity we see in the heterogeneous examples.

Both of the heterogeneous models that we explored predict that changes in grain

size, and therefore changes in critical shear stress, play an important role in deter-

mining the equilibrium morphology of the landscape. Predicted equilibrium networks

are always concave-upward with decreasing median grain size or sand content down-

stream. Channel slope and concavity are linked to the surface texture as predicted

by the homogeneous model. When comparing between networks, the channel slope

is steeper (for a given drainage area) when the median grain size of the substrate is

larger (e.g. figure 3-17). This makes sense because the threshold is larger and there-

fore steeper slopes are required to move the sediment. The regions of the network

with the smallest median grain size (or largest sand content) have the least concave

channels.

A larger precipitation rate results in less steep channels with a coarser texture

using the heterogeneous models. This result is intuitive. A higher precipitation rate

results in a larger discharge throughout the network. At equilibrium, the network

still has to transport the same load, and therefore the slopes decrease to compensate

for the increase in discharge. A coarser grain size could be described as armoring,

which reduces transport rates under higher flow conditions.
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The most surprising prediction by the heterogeneous models is the relationship

between equilibrium slopes and uplift rate. Using the Meyer-Peter Miller model,

equilibrium slopes generally stay the same or increase with uplift rate, but in some

cases there are small parts of the network in channel slopes actually decrease with

increasing uplift rate. Using the Wilcock model, slopes can increase, remain the same,

or decrease with uplift rate. Counter-intuitive changes in slope are a result of changes

in surface texture. In the surprising case in which equilibrium channel slopes decrease

with increasing uplift rates, surface texture changes more than compensate for the re-

quired increase in transport rates, causing channel slopes to decrease. Buffington and

Montgomery (1999) discussed the link between sediment supply and surface texture,

however its impact on surface slopes in this study is quite surprising.

There are some limitations to these predictions. We do not consider sediment

delivery from the hillslopes and its influence on the grain-size distribution. In a gently

rolling topography, one might imagine that only fine material is being washed off the

hillslopes. While in an landscape with steep hillslopes, bigger boulders and gravel

could be fed into the channel from the surrounding hillslopes. This will obviously

affect the grain-size distribution of sediment on the bed and could have important

implications for equilibrium slopes.

For example, rapidly uplifting topographies are often associated with steep hill-

slopes where landslides and debris flows occur. Most likely these would fill a channel

up with coarse material. On the other hand, our model predicts that the surface

material becomes finer with increasing uplift rates in order to transport more mate-

rial. This could be considered a counter-intuitive result if more landslides occur in

rapidly uplifting areas and feed the channel with course material. Our model may

not be appropriate in these regions which are probably more controlled by incision

into bedrock, rather than transport of sediment. However, the link between hillslopes

and channels should not be ignored. Numerical models are a good tool for exploring

these questions.

The results presented in this chapter highlight the important role of sediment

grain size in determining transport rates. When the threshold for entrainment is
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ignored, unrealistic concavities result. Downstream changes in grain size, which lead

to downstream changes in critical shear stress, are intimately linked with changes in

channel slope. Further, the mutual adjustment of both channel slope and surface

texture to a change in forcing can lead to unexpected results. At the very least, our

study suggests that one should not ignore the important role of surface texture in

alluvial networks.

98



Chapter 4

Transients in Transport-Limited

Alluvial River Networks

4.1 Motivation and Background

Past climatic and tectonic conditions could highly affect the morphology of the land-

scape we see today. If boundary conditions have been changing fast enough so that

erosion rates cannot keep pace, then the landscape is not in equilibrium and inferring

future or past changes can be difficult. In this work, we use a numerical model to

investigate the effects of a change in uplift rate (or similarly a change in base-level

fall) and a change in climate on the erosion patterns in an alluvial network. We focus

on the link between channel bed texture and slope during the transient response. We

address the following questions: How do changes in climate affect erosion and depo-

sition in a river network? Can past climates be inferred from the texture of alluvial

deposits? and How do channels respond to a change in base-level due to sea-level rise

and fall or changes in tectonics?

A number of numerical modeling studies have investigated the transient form of

alluvial channels. Snow and Slingerland (1987) looked at adjustments in the channel

profile using a 1-D model. In the three cases examined - evolution from a straight,

convex, and concave initial profile - the initial conditions are quickly erased, and

the transient channel reaches a shape that is similar to the final profile. Willgoose
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(1994) investigated the decline in catchment relief of a homogeneous transport-limited

drainage network in response to a cessation in uplift rate. He found that the initial

response is dominated by a reduction in catchment relief, but that the network quickly

transitions to a declining state in which the channel form does not change. In fact,

when scaled appropriately, the transitional form of the slope-area relationship is in-

distinguishable from the equilibrium form. Whipple and Tucker (2002) showed that

channel concavity also remains constant during a transition from low- to high-uplift

rate (in a homogeneous transport limited network). The initial response to an in-

crease in uplift rate is at the outlet, but the upper parts of the network begin to

respond before the lower parts have reached their new equilibrium slopes; resulting

in the characteristic slope-area relationship.

Tucker (2003) added some complexity to the erosion processes by including both

a threshold for sediment transport (critical shear stress) and a model for floods of

variable magnitude. The presence of variable storms and a transport threshold implies

that not all storms result in erosion. Under these conditions, he explored the transient

form of an eroding escarpment. Without a threshold, channels are smooth and convex

as the plateau erodes away. However, the topography is rougher and channels are

concave when there is a threshold for sediment entrainment.

Baldwin et al. (2003) explored the factors which control the time of response in

post-orogenic decay. They began using a detachment-limited stream power model

model and found that this model produces response time-scales that are relatively

short compared to the believed life-time of mountain belts. However, they found

that the presence of a detachment threshold increases response times 20-fold. Other

complications in response, such as the transition to a transport-limited regime as

channels became inundated with sediment also increased response time.

A number of numerical modeling studies have explored the impacts of climate

change on erosion and deposition (e.g. Rinaldo et al. (1995); Tucker and Slingerland

(1997); Howard (1999); Coulthard et al. (2000)). Although these studies have different

focuses, generally they show that a wetter climate (wetter refers to different things in

different studies) leads to increased erosion in the headwaters and expansion of the
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drainage network, resulting in an increase in sediment discharge and aggradation at

larger drainage areas .

For example Rinaldo et al. (1995) used a self-organization model which lowers

slopes to their threshold value (no deposition occurs), to investigate whether climate

oscillations leave a distinct signature on the landscape. Climate change is modeled

through changes in critical shear stress; humid periods correspond to low critical

shear stress values and arid periods correspond to high critical shear stress values.

When the climate is wet, predicted drainage density is high, and when the climate

is dry, drainage density is low. Network response to climate change is asymmetrical,

suggesting a complex response in the landscape as climate varies.

Response to climate change using a landscape evolution model was also studied by

Tucker and Slingerland (1997). Their model includes both a threshold for detachment

and transport of sediment. Changes in storm frequency, storm intensity and critical

shear stress were considered. The responses from an increase in runoff intensity or

a decrease in critical shear stress were similar; both resulted in a rapid increase in

drainage density and deposition in the main channel. On the other hand, when runoff

intensity decreased or critical shear stress increased, the response was much slower,

as drainage density decreased. Sinusoidal variation in runoff intensity produced a

punctuated response in denudation rates (short periods of rapid erosion) and an

asymmetrical response in drainage density. Further, landscape response depended on

the period of variation. Again, these results highlight the complex response within a

drainage network due to changes in climate.

Regardless of the exact perturbation in forcing, thresholds for entrainment appear

to be a key factor in landscape response. We explore the impact of thresholds in

disequilibrium networks by allowing the surface texture, and therefore the critical

shear stress, to vary in space and time. Changes between one equilibrium network to

another are modeled.
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4.2 Transient Response Using a Multiple Grain-

Size Model

We use the CHILD model and the sediment transport relationships (equations 3.26

and 3.27) and critical shear stress data (figure 3-21) presented by Wilcock (1998,

2001) to model sediment transport rates in a sand and gravel mixture. Erosion and

deposition in all numerical simulations is limited by the amount of sediment that the

channel can transport.

In the previous chapter of this thesis, we presented a model to predict the equilib-

rium slope-area relationship and surface texture-area relationship. The equilibrium

numerical results using the CHILD model agree with the equilibrium predictions (sim-

ilar to the results of Gasparini et al. (2003) using the GOLEM model (e.g. Tucker and

Slingerland (1996)). However, transitions from one equilibrium state to another are

not necessarily intuitive from the equilibrium conditions. Changes in surface texture

add an extra degree of freedom to network response, as opposed to adjustments in

channel slope only.

The network response to an increase in uplift rate and precipitation rate (separate

experiments) is examined here. The flux boundary conditions are the same in all of the

experiments. We use a synthetic square drainage network that has no-flux boundaries

on all four sides, with a single corner outlet through which water and sediment can

pass out of the network. The point downstream from the outlet has a constant

elevation of zero and the entire network is uplifted at the same rate. Precipitation

is uniform spatially and throughout the duration of a numerical experiment. The

network referred to as the 50% sand network has a substrate composition of 50%

16mm gravel and 50% 0.5mm sand. The network referred to as the 10% sand network

has a substrate composed of 90% 40mm gravel and 10% 1.5mm sand. The substrate

composition is uniform in space in both networks. The texture of the surface layer can

adjust to changes in slope and fluvial discharge, and if deposition occurs, sediment

layers will form above the substrate. In these experiments, an active layer depth of

3m is used. The average cell size for the numerical experiments is 2, 500m 2, and the
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total domain size is 1.4x10 6m 2.

All experiments start and end with concave channels in which the surface sand

content increases downstream (Chapter 3 of this thesis; Gasparini et al. (1999); Gas-

parini et al. (2003)). In the 50% sand network, the initial equilibrium network contains

less sand in the surface layer than in the substrate. On the contrary, the lower parts

of the 10% sand network initially contain more sand in the surface layer than in the

substrate. The relationship between the surface texture and substrate texture is im-

portant to keep in mind while examining the transient response because as erosion

rates increase, more of the substrate material is incorporated into the surface layer.

4.2.1 Response to an Increase in Uplift Rate

In this section we illustrate the response of channel slopes and surface texture to a step

increase in uplift rate. When the drainage network reaches its new equilibrium state,

erosion rates have increased throughout the network. However, during the transient

evolution, erosion rates both increase and decrease. We illustrate the response of

the 50% sand network and the 10% sand network to a five-fold increase in uplift

rate (from 0.1mm/yr to 0.5mm/yr). The patterns illustrated by both numerical

experiments follow the same trends.

4.2.1.1 50% Sand Network

Figure 4-1A illustrates the equilibrium slope-area relationship for the low (dashed

line) and high (solid line) uplift rates. Similarly, the equilibrium surface texture-area

relationships are shown in figure 4-1B. The equilibrium lines are obtained using the

iterative method described in chapter 3 of this thesis. The data from the numerical

equilibrium networks are also shown in figure 4-1 as circles which overlap the equi-

librium lines. All cases explored using the equilibrium iterative model (chapter 3)

predict that the surface sand content increases with uplift rate. The change in equi-

librium channel slope in this example is somewhat surprising. The higher uplift case

has a smaller equilibrium concavity; slopes are steeper in the larger drainage areas
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near the outlet and shallower in the smaller drainage areas. Just from these equilib-

rium results, we already know that the transition between uplift rates will not be a

simple rise in slopes throughout the network.

The initial equilibrium topography of the 50% sand network, shaded by the texture

of the surface layer, is illustrated in figure 4-2. In this figure, darker colors contain

more sand (versus gravel) and therefore are finer. Initially, the surface layer does not

contain any of the finest material in the range of the color bar (black). The surface

contains less sand than the subsurface throughout the numerical experiment.

The increase in uplift rate is felt first at the outlet and propagates up through the

network (figure 4-3), as expected (e.g. Whipple and Tucker (2002); Tucker (2003)).

The surface texture becomes much finer near the outlet, both in the main channel and

in points surrounding the main channel (darker shading near outlet in figure 4-3A).

4,000 years after the uplift increase (figure 4-3A), the upper reaches of the network

have yet to respond to the increase in uplift rate and there is no change in their surface

texture. The elevations of the upper parts of the network have increased because the

slopes in the lower parts of the network have increased.

By the time shown in figure 4-3B, the surface of the entire network contains more

sand than it did initially. In this example, we expect the surface texture to be finer in

equilibrium, so this change in not entirely unexpected. As a general pattern, surface

sand content increases downstream in the network, even during the transient.

The exact change in surface texture in response to the increase in uplift rate

is partly a result of the texture of the material replenishing the surface layer (the

substrate material). Everywhere in the network, the initial equilibrium surface texture

contains less sand than the substrate (figure 4-1B). So one might expect that an

increase in erosion rate alone would cause the sand content of the surface layer to

increase. However, if the erosion rates of both sand and gravel were to increase at

the same rate, the surface texture would not change during the transient response.

Because the sand and gravel erosion rates respond differently during the transient,

the surface texture changes. We define the sand erosion ratio as the ratio of the local

sand erosion rate to the local total erosion rate, . (The total erosion rate is the
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Figure 4-1: Expected equilibrium slope-area relationship (A) and surface texture-area
relationship (B) for the initial condition (U=0.1mm/yr) and increased uplift rate
(U=0.5mm/yr) for the 50% sand network. Solutions from iterative model described
in chapter 3. Data from equilibrium networks are also shown as circles.
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Figure 4-2: Initial equilibrium topography, shaded by surface texture. Darker shades
contain more sand (vs. gravel) and are therefore finer. (Substrate contains 50% sand,
D=16mm, D,=0.5mm, U=0.lmm/yr) Note that the texture and elevation scale are
the same in the next two figures.

sum of the sand and gravel erosion rates, equation 2.9.) In this example, because the

substrate material is composed of 50% sand, at equilibrium, the sand erosion ratio is

0.5. Figures 4-4A, B, and C illustrate the sand erosion ratio across the topography at

three different times after the uplift rate increase. In these figures, yellow represents

the equilibrium sand erosion ratio. When this value drops, it means that the ratio

of sand erosion to gravel erosion drops from its equilibrium value. As a result, more

gravel than sand is removed from the surface. This alone would result in a finer

surface, however, in this case the change in surface sand content is exacerbated by

the relatively sandier material supplying the surface from below.

Changes in the sand erosion ratio start near the outlet and move up the network

(figures 4-4A, B, and C). The initial decrease in the sand erosion ratio (figure 4-

4) results in a sandier surface near the outlet 4,000 years after the uplift increase

(figure 4-3A). By 6K, the sand erosion ratio has increased in the lower parts of the

network, in some places to higher than its equilibrium value, while the upper parts
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Figure 4-3: Response of topography and surface texture (initial condition from pre-
vious plot) to a five-fold increase in uplift rate at 4,000 (A) and 8,000 (B) years after
the increase in uplift rate.
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of the network still have a relatively low sand erosion ratio. The increase in the

sand erosion ratio in the lower parts of the network, causing more sand to be eroded

relatively to gravel, results in a decrease in the surface sand content in some areas

around the outlet by 8K (figure 4-3B).
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Figure 4-4: Topography of the 50% sand network shaded by the ratio of the local sand
erosion rate to the local total erosion rate (sand erosion ratio) at 2,000 (A), 4,000
(B), and 6,000 (C) years after the increase in uplift rate. In these figures, yellow is
the equilibrium sand erosion ratio.
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We focus now on the response in the main channel to highlight some of these

results. Figure 4-5 illustrates the initial changes in main channel elevation (A) and

slope (B) in the 50% sand network. Initially, slopes increase throughout the main

channel in response to the increase in uplift rate (figure 4-5B). Slopes near the outlet

rise more than those in the upper parts of the main channel. This is not so surprising

given that channel slopes will actually decrease at lower drainage areas when they

reach their new equilibrium values. In the last two time slices shown in this figure,

slopes everywhere in the main channel have increased above their new equilibrium

value. The local over-steepening in the channel between 4x104 and 5x10 4m2 that

occurs 8,000 years after the increase in uplift rate (see dotted line in figure 4-5)

is due to a network capture above this location. (This is not a result of unstable

numerics; we have run the model multiple times with different time-steps and the

same rearrangement always occurs.)

Figure 4-6 illustrates the initial response of surface texture and total erosion rates

(plotted as the ratio of total erosion rate to new uplift rate) in the main channel. As

already illustrated by the sand-topographies (figures 4-2 and 4-3), the surface texture

becomes finer everywhere in response to the uplift increase (figure 4-6A). Even though

channel slopes have over-steepened above their new equilibrium value by 8,000 years,
the channel surface still contains more gravel (less sand) than it will when it reaches its

new equilibrium condition. Total erosion rates increase throughout the main channel

but most rapidly near the outlet. The local increase in channel slope downstream

(between 4x104 and 5x104m 2 ) at 8K years (figure 4-5B) corresponds to the local

downstream decrease in erosion rate (between 4x10 4 and 5x10 4m 2 ) in figure 4-6B.

Erosion rates temporarily decrease locally in response to the increase in sediment

load from the network rearrangement.

Given that slopes over-steepen throughout the main channel, they must come

back down. The fall in slopes is accompanied by a decrease in channel elevations

(figure 4-7A). In order for slopes to decrease, the total erosion rate needs to surpass

the uplift rate (figure 4-8B). In the upper reaches of the channel, the erosion rate

reaches a value of almost double its new equilibrium rate. When erosion rates reach
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Figure 4-5: Initial changes in main channel elevation (A) and channel slope (B) in

response to a five-fold increase in uplift rate using the Wilcock sediment transport

model. The thin lines that run through the plot are the equilibrium solutions for the

low uplift rate (shallower at the outlet) and high uplift rate (steeper at the outlet,
shallower at low drainage areas).
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Figure 4-6: Changes in surface texture (A) and total erosion ratio (B) in response
to a five-fold uplift increase using the Wilcock sediment transport rate. The total
erosion ratio is one when the new equilibrium is reached. It begins at 0.2 because the
the uplift rate has increase by five times. (The equilibrium texture solutions for the
low and high uplift rate are shown as the thin lower and upper lines running through
the texture plot, respectively.)
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their highest values throughout the main channel (at 12K, the dashed line in figure 4-

8B), the channel surface also contains the greatest amount of sand (figure 4-8A).

Given that the surface sand content is between 10% and 40%, the critical shear stress

to entrain both sand and gravel is decreasing with increasing sand content (chapter 3,

figure 3-21). This change in surface texture allows for the high erosion rates, even

though channel slopes have decreased. During the period between 8K and 12K,

channel slopes have switched from rising to falling in the main channel (solid line

with bars to dashed line in figure 4-7B), but surface sand content is still increasing

(same style lines in figure 4-8A). Just as channel slopes over-steepened, the surface

sand content surpasses its new value. However, channel slopes begin to fall before

the surface sand content begins to decrease.

The network is very nearly in equilibrium by the last time (16K) shown in figures 4-

7 and 4-8. Changes in channel slope and profile are imperceptible after this time. The

surface sand content drops slightly below its new equilibrium value and then settles.

This adjustment of surface texture causes total erosion rates in the main channel to

drop slightly below their equilibrium value and then to settle.

4.2.1.2 10% Sand Network

Equilibrium slope-area and surface texture-area relationships for the 10% sand net-

work are shown in figure 4-9. There is almost no change in equilibrium channel slopes

with uplift rate using these parameters (figure 4-9A). Channel slopes only change in

higher drainage areas, where they increase. Surface sand content increases everywhere

with uplift rate (figure 4-9B). An important difference between this example and the

previous example (50% sand network) is that in most of the main channel the surface

layer contains more sand than the substrate layer.

The initial topography shaded by surface sand content is illustrated in figure 4-10.

It is only a coincidence that the equilibrium 10% sand and 50% sand networks look

the same. Both evolve independently and network patterns can be highly variable

(Ijjasz-Vasquez et al. 1992).

The response in the 10% sand network is similar to that in the 50% sand network.
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Figure 4-7: Later changes in main channel elevation (A) and channel slope (B) in
response to a five-fold increase in uplift rate using the Wilcock sediment transport
model. The thin lines that run through the plot are the equilibrium solutions for the
low uplift rate (shallower at the outlet) and high uplift rate (steeper at the outlet,
shallower at low drainage areas).
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Figure 4-8: Later changes in surface texture (A) and erosion ratio (B) in response to a
five-fold uplift increase using the Wilcock sediment transport rate. (The equilibrium
texture solutions for the low and high uplift rate are shown as the thin lower and
upper lines running through the texture plot, respectively.)
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Figure 4-9: Predicted equilibrium slope-area relationship (A) and surface texture-
area relationship (B) for the initial condition (U=0.lmm/yr) and increased uplift
rate (U=0.5mm/yr) in 10% sand network. Solutions from iterative model described
in chapter 3. Note that data from equilibrium numerical networks are also shown as
circles.
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10% Sand in Sub, Increase Uplift 5x, Initial Topography 0.22
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Figure 4-10: Initial equilibrium topography, shaded by surface texture. (Substrate
contains 10% sand, D9=40mm, D,=1.5mm, U=0.lmm/yr) Darker shades contain

more sand (vs. gravel) in the surface layer, and are therefore finer. Note that elevation

and texture scale remain the same in the next two figures.

Surface sand content increases, first near the outlet and later moving up through the

network (figures 4-11A and B). 30,000 years after the increase in uplift rate, the surface

texture is finer almost everywhere in the network (figure 4-11A). 60,000 years after

the uplift increase, the surface sand content has increased almost everywhere from

the 30K time slice, however points surrounding the lower parts of the main channel

contain less sand than they did at 30K. This time-varying response in different parts

of the drainage network results in a complex change in the texture of the incoming

sediment load at different parts of the network.

The pattern of slope and elevation change in the main channel of the 10% sand

network is also similar to the previous example (figure 4-12). Slopes are an order of

magnitude larger in the 10% sand network, due to the larger grain size and smaller

sand content of the substrate (chapter 3). Initially slopes increase everywhere, al-

though the steeper slopes of the 10% and network take more time to rise than those

in the 50% sand network. 10,000 years after the increase in uplift rate, the slopes in
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10% Sand in Sub, Increase Uplift 5x, 30K later
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Figure 4-11: Response of the topography and
uplift rate 30,000 (A) and 60,000 (B) years I

surface texture to a five-fold increase in
ter (initial condition shown in figure 4-

10). Note that the response is from the outlet up the network.
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the main channel have increased to reach a state that is almost identical to the new

equilibrium condition; in fact this time slice is not even detectable in figure 4-12B be-

cause it overlaps the high uplift equilibrium solution line (running through the plot).

However, the surface texture at 10K has barely changed from its initial state (solid

line in figure 4-13B). By 40K, slopes in the main channel have over-steepened and

stabilized (30K and 40K profiles are nearly identical, figure 4-12), and surface texture

is very close to its new equilibrium value in the main channel. Total erosion rates are

very close to equilibrium throughout the main channel as well (figure 4-13B).

One might expect that initially the surface texture would become coarser as total

erosion rates rise, because the material supplying the surface layer (substrate material)

is coarser than the surface layer in most parts of the main channel. Even though the

total erosion rate is rising, the sand erosion ratio is dropping. Because the sand

erosion ratio drops during the transient response, more gravel is eroded away than

sand, leaving behind a sandier surface. We saw a similar pattern in the 50% sand

network.

Figure 4-14 illustrates the sand erosion ratio across the topography at two different

times. Given the color scale used in these figures, the initial topography would be

completely yellow (not shown), because the sand erosion ratio would be 10% of the

total erosion rate everywhere. At 10K (figure 4-14A), most parts of the topography

have a sand erosion ratio of less than 10% (shaded blue or green) resulting in a finer

surface. At 30K (figure 4-14B), far from the outlet, the sand erosion ratio is still

less than 10% (green and blue shades), but in some points surrounding the lower

parts of the main channel the sand erosion ratio has increased (yellow and orange).

The surface sand content of points surrounding the lower part of the main channel

stabilizes and will begin to fall again.
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Figure 4-12: Initial changes in main channel elevation (A) and channel slope (B) in
response to a five-fold increase in uplift rate using the Wilcock sediment transport
model. (The line that runs through the plot is the equilibrium solution for the higher
uplift rate. The equilibrium line for the low uplift rate overlaps the initial condition.)
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Figure 4-13: Initial changes in surface texture (A) and total erosion ratio (with respect
to the new uplift rate) (B) in response to a five-fold uplift increase using the Wilcock
sediment transport rate. (The equilibrium texture solutions for the low and high
uplift rate are shown as the lower and upper lines running through the texture plot,
respectively.)
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Figure 4-14: Topography of the 10% sand network shaded by the ratio of the local
sand erosion rate to the local total erosion rate (sand erosion ratio).
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After 40K, slopes decline to their new equilibrium values (figure 4-15) while both

surface sand content and total erosion rates in the main channel rise until 60K and

then start to fall (figure 4-16). This pattern of falling slopes in the main channel

while surface sand content and total erosion rates are still rising is similar to that in

the 50% sand network.

After 80K, the erosion rates in the 10% sand network actually drop below equilib-

rium values, but only slightly, and then rise back up. On the scales used in figures 4-12

- 4-16, the change in surface texture and channel slope after 80K is not noticeable.

4.2.2 Transient Response to an Increase in Precipitation Rate

We now examine the response in the 50% sand network to an increase in precipitation

rate from 1m/yr to 1.5m/yr. The same initial condition is used here as was for the

uplift experiment with the 50% sand network. Uplift rate remains constant in the

following simulation. The precipitation rate increases instantaneously and remains at

the same higher rate for the entire duration of the experiment.

The entire network feels the change in precipitation as soon as it occurs, resulting

in immediate changes across the network as opposed to the response in the uplift

experiments which was from the outlet up. The numerics of this experiment are

much more sensitive and require much smaller time-steps for stability than required

in the uplift perturbation experiments. We initially use a time-step of 0.0005 years

(~ 0.2 days), and increase this time-step by ten-fold after the first 1,000 years of

the model run. We ran the same simulation multiple times with different time-

steps. After 100 years a 0.0005yr time-step and a 0.005yr time-step converge to the

same result and remain the same. The same stability testing was used in the uplift

experiments, and an initial time-step of 0.02 years was sufficient for the 50% sand

uplift experiment. The 10% sand network required a smaller time-step for the uplift

experiment (0.005yrs). Because of computational limitations, we could not generate

stable results from the 10% network when increasing precipitation.

In general, a higher precipitation rate will result in an equilibrium surface texture

which contains less sand (chapter 3). However, the transition from one equilibrium to
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Figure 4-15: Later change in main channel elevation (A) and channel slope (B) in
response to a five-fold increase in uplift rate using the Wilcock sediment transport
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Figure 4-16: Later changes in surface texture (A) and total erosion ratio (with respect
to the new uplift rate) (B) in response to a five-fold uplift increase using the Wilcock
sediment transport rate. (The equilibrium texture solutions are shown for the low
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another is not so straightforward. In our numerical experiment, the initial response

to an increase in precipitation rate is for the surface sand content to increase in the

headwaters and decrease at larger drainage areas (figure 4-17A). The changes are

subtle, but the pattern is worth noting. There is deposition in the lower part of the

main channel immediately following the precipitation increase (figure 4-17B). A value

of -6 on figure 4-17B implies 0.6mm/yr of deposition, in this case over 100 years. Note

the upper part of the main channel is eroding at a relatively high rate with respect

to equilibrium erosion values. This is the region in which the surface sand content is

increasing.

Figures 4-18A, B, and C illustrate the erosion response throughout the network.

In the areas shaded white in this figure, both sand and gravel are being eroded;

in the gray areas, gravel is deposited while sand is still eroded from the bed, and

in the black areas both sand and gravel are deposited. (There is no case in which

gravel is eroded and sand is deposited.) In the uppermost parts of the network,

there is no incoming sediment load. Erosion rates are calculated as the difference

between the incoming sediment load and the local transport rate. As a result of the

precipitation increase, fluvial discharge increases and the channel can transport more

gravel and sand (white regions). The sediment load increases downstream faster than

the transport rate. The channel begins to deposit gravel first (gray regions). Moving

further downstream, even the sand content of the load is too high, and both sand

and gravel are deposited (black regions). After 100 years, (figure 4-18A) a large

part of the network is depositing both sand and gravel. In the lowest parts of the

network, only gravel is deposited. In this region, there has been a slight increase in

slope (not illustrated), which increases the sand-transport rate enough so that sand

is not deposited. However, because gravel is still being deposited lower down in the

channel, the surface sand content decreases (figure 4-17A). By 200 years, deposition

in the lower parts of the channel (figure 4-17B) has caused further steepening of slopes

and the region in which both sand and gravel are deposited has decreased from the

100 year time slice. 400 years after the increase in precipitation, there is still some

deposition of gravel (figure 4-18C), but with the exception of one point, there is no
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deposition of sand.

1,000 years after the increase in precipitation, there is erosion of both sand and

gravel throughout the network. This remains the case hereafter, with one local ex-

ception due to network rearrangement (not illustrated). We can now look at the sand

erosion ratio, as we did in the uplift experiments. (The sand erosion ratio has no

meaning when deposition is occurring.) Figure 4-19 illustrates the sand erosion ratio

1,000 years after the increase in precipitation rate. The yellow regions correspond to

an equilibrium value of 0.5. Gravel erosion rates are still high in the upper parts of

the network, leading to a low sand erosion ratio (blue or green in figure 4-19). The

sand erosion ratio is at or near the equilibrium value in most of the main channel,

and there is very little change in surface texture at this time (compare dash-dot and

dotted lines in figure 4-17A).
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Figure 4-17: Initial changes in surface texture (A) and total erosion ratio (with respect
to the uplift rate) (B) in response to a 1.5-fold increase in the precipitation rate using
the Wilcock sediment transport rate. The equilibrium texture solutions are shown
for the low and high precipitation rate as the upper and lower lines running through
the texture plot, respectively. The upper horizontal line in the erosion plot represents
the equilibrium erosion rate. The lower horizontal line marks the difference between
erosion (above) and deposition (below). Note that the change in times between the
lines is not equal.
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Figure 4-18: Locations of erosion and deposition across the network 100 years (A), 200
years (B), and 400 years (C) after the increase in precipitation rate. White represents
total erosion; gray represents erosion or transport of sand, but deposition of gravel;
and black represents deposition of both sand and gravel. (Note the color bar scale is
arbitrary.)
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Figure 4-19: Sand erosion ratio 1,000 years after the increase in precipitation. Note
that erosion of both grain sizes is occurring across this topography; only the relative
rate of erosion varies.
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Figure 4-20: Changes in channel slope beginning 1,000 years after the increase in pre-
cipitation rate. The equilibrium channel slope (from the iterative model) for the low
and high precipitation rate are the upper and lower thin lines, respectively, running
through the plot.

There is a noticeable difference in channel slopes after 1,000 years (figure 4-20).

Slopes in the upper parts of the network have decreased and continue to decrease

due to the increase in erosion rates. Slopes in the lower parts of the main channel

have increased from deposition, but they begin to fall at this point. Erosion rates

continue to rise after 1,000 years (figure 4-21B) even though slopes are decreasing. In

the lower parts of the channel, slopes must decline because they have over-steepened.

In the upper parts of main channel slopes are also too steep at 1K, but the increased

erosion rate drops them below their new equilibrium value by 3K, and they continue

to fall after this time (figure 4-20). By 3K, the surface sand content throughout the

main channel is higher than the equilibrium value (figure 4-21A), enabling erosion

rates that are higher than their equilibrium value on slopes that are shallower than

their equilibrium steepness.

The main channel experiences a number of transitions between 5,000 and 9,000
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Figure 4-21: Later changes in surface texture (A) and total erosion ratio (with respect

to the uplift rate) (B) in response to a 1.5-fold increase in the precipitation rate using

the Wilcock sediment transport rate. The equilibrium texture solutions are shown

for the low and high precipitation rate as the upper and lower lines running through

the texture plot, respectively.
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50% Sand Network, Increase Precipitation 1.5 times
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Figure 4-22: Changes in channel slope beginning 5,000-9,000 years after the increase
in precipitation rate. The equilibrium channel slope (from the iterative model) for
the low and high precipitation rate are the upper and lower thin lines, respectively,
running through the plot.

years after the increase in precipitation. The surface sand content increases, stabilizes,

and later decreases (figure 4-23A). The trend in texture changes reverses first in the

upper parts of the main channel and slowly the lower parts catch-up. A decline

in channel slope (figure 4-22) and total erosion rate (figure 4-23B) accompany the

decline in surface sand content. As channel slopes decline, the erosion rate of gravel

declines as well. The sand erosion ratio increases, causing the surface sand content to

decline. The sand erosion ratio by 9K is above 0.5 almost everywhere in the network

(figure 4-24)
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Figure 4-23: Later changes in surface texture (A) and total erosion ratio (with respect
to the uplift rate) (B) in response to a 1.5-fold increase in the precipitation rate using

the Wilcock sediment transport rate. The equilibrium texture solutions are shown
for the low and high precipitation rate as the upper and lower lines running through
the texture plot, respectively.
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Figure 4-24: Sand erosion ratio 9,000 years after the increase in precipitation. Note
that erosion of both grain sizes is occurring across this topography; only the relative
rate of erosion varies.
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Figure 4-25: Changes in channel slope beginning 9,000-17,000 years after the increase
in precipitation rate. The equilibrium channel slope (from the iterative model) for
the low and high precipitation rate are the upper and lower thin lines, respectively,
running through the plot.

Although total erosion rates are declining everywhere in the main channel by

9K, they still remain above the equilibrium rate. Many parts of the channel have

already shallowed to below their new equilibrium value, and those that haven't yet

will eventually (figure 4-25). The high surface sand content enables the high erosion

rates (figure 4-26), even though slopes are below their new equilibrium values. Erosion

rates dip slightly below their new equilibrium values and then rise again as a result

of the under-steepening of slopes (not shown.)

The variable erosion rates throughout the network result in a reduction in channel

concavity during the transient. Relatively high erosion rates in the upper parts of the

channel, in comparison with lower erosion rates or deposition in the lower parts of the

channel are responsible for the lower concavity. However, the main channel profile

remains smooth throughout the transient. We do not illustrate any of the profiles

here because the changes are small and don't stand-out very well.
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Figure 4-26: Later changes in surface texture (A) and total erosion ratio (with respect
to the uplift rate) (B) in response to a 1.5-fold increase in the precipitation rate using
the Wilcock sediment transport rate. The equilibrium texture solutions are shown
for the low and high precipitation rate as the upper and lower lines running through
the texture plot, respectively.
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4.3 Discussion

4.3.1 Change in Uplift Rate

Previous numerical studies of transport limited networks predict that channel slopes

increase in response to an increase in uplift rate, and decrease in response to a decrease

in uplift rate (Willgoose (1994); Whipple and Tucker (2002)); local areas of deposition

can cause short deviations from this pattern, but these are the overall trends. In these

studies, channel slopes are the sole variable responsible for changing the erosion rate.

The novelty of the experiments presented here is that both surface texture and channel

slope can adjust, as opposed to channel slope alone. This fairly simple expansion of

the model results in significant changes in network response. Surface texture and

channel slopes adjust at different rates throughout the network. There is a significant

period of time during which channel slopes decrease in response to an increase in uplift

rate. Although the channel profile remains relatively smooth during the transition

(barring exceptions from network rearrangement as in figure 4-5), channel concavity

does change.

Key to the results presented are the spatial changes in surface texture during

disequilibrium. The relative rate of erosion of sand versus gravel is responsible for

these variations in surface sand content. Exact changes in texture are sensitive to

the texture of material that replenishes the surface from below and the depth of the

surface layer; these are both boundary conditions in the numerical model. From

the two examples illustrated in this chapter, we have shown that similar changes in

surface texture can result from an increase in uplift rate even when the boundary

conditions (substrate texture) are very different. We acknowledge that the details of

the response may be sensitive to the texture boundary condition, but the complex

trends are probably not. Changes in the relative rates of erosion of different grain

sizes should always result in transient changes in surface texture causing a complex

response in channel slopes.

At equilibrium, the model results have been shown to be insensitive to the depth

of the surface layer, as long as it is deeper than the depth of erosion during a single
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time-step (Gasparini 1998). During the transient, we expect that a shallower active

layer could create more extreme changes in surface texture. After erosion, the surface

layer is replenished with material from below. When the texture of material eroded

is different from the texture of the material replenishing the surface layer, changes in

surface texture result. If a larger depth of material is being eroded, then the surface

texture will be highly influenced by the material replenishing it. We use a surface layer

depth of three meters, and one might expect that with this depth, surface texture

changes would be unnoticeable. However, significant changes still occur. Most likely

the results we show would be more extreme with a smaller active layer depth.

Although the changes in the relative erosion rates of sand and gravel in these

example are subtle, and the resulting surface texture changes could differ depending

on boundary conditions, the important lesson from these numerical simulations is

that when both surface texture and channel slope can respond to a change in uplift

rate, network response is more complex. Changes in surface texture, channel slope,

and erosion rates in the main channel integrate conditions throughout the network.

Erosion rates depend not only on the texture and volume of material which can be

transported, but on the texture and volume of material carried into the channel from

upstream. Channel response to a change in forcing is complicated by the different

inputs in space and time, resulting in slopes which both rise and fall, and channel

material which both coarsens and fines, all in response to a single change in forcing.

These remarkable trends, and not necessarily the absolute values of surface sand

content, are the key result of these numerical simulations.

4.3.2 Change in Precipitation Rate

The sedimentary response in channels to changes in climate remains an open re-

search question. It seems impossible to investigate fluvial deposits without trying

to infer something about the climatic conditions while they were being laid down

(e.g. Schumm (1968); Knox (1972); Costa (1978); Knox (1983); Blum and Valastro

(1989); Sugai (1993); Arbogast and Johnson (1994); Fuller et al. (1998); Reid et al.

(1999)). Vegetation responds to climate change and influences sediment load (e.g.
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Huntington (1924); Bryan (1928); Slaymaker (1990); Prosser et al. (1994); Wilcox

et al. (1996); Mulligan (1998); Howard (1999)); the sediment load is also sensitive

to changes in flood magnitude (e.g. Baker (1977); Tucker and Slingerland (1997);

Bourke and Pickup (1999); Molnar (2001)). We have ignored much of the natural

complexity, focusing solely on changes in texture and integrated network changes.

Previous studies have recognized that the response of the main channel to a change

in climate is not isolated from the tributaries and hillslopes feeding it (e.g. Schumm

(1973); Butzer (1980); Rinaldo et al. (1995); Tucker and Slingerland (1997)), leading

to a different response in space and time which can vary depending on the initial state.

The idealization of our numerical simulations illustrate this concept as well. Erosion

rates in response to a change in precipitation vary both spatially and temporally. The

upper parts of the network erode more rapidly than the lower parts of the network, and

are more likely to erase past information stored in the sedimentary record. However,

because the sediment load downstream increases, resulting in periods of deposition,

some parts of the network may be more likely to contain information about the past

than others. These numerical results confirm and strengthen the hypothesis that

scientists can not ignore the complex erosional response throughout a network in

response to climate change (Summerfield 1991).

Changes in surface texture resulting from a change in climate further the notion of

complexity in channel response. Blum and Valastro (1989) found that the Pedernales

River, Texas, was carrying a coarser sediment load during more humid conditions

1,000 years ago, while the current climate is more arid and the sediment load is

finer. They also point out that other studies have observed the opposite trend, that

coarser-grained sediment loads occur during arid periods. We believe the numerical

results presented here are a great illustration of how tricky relations between climate

and channel texture can be. In response to a single change in precipitation rate, the

surface coarsens and fines. One might interpret the result of climate change differently

depending on which deposits were preserved or the period of time since climate change

occurred. Given these results, we question whether a one-to-one relationship exists

between climate and texture of the channel bed and sediment load. Even with uniform
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boundary conditions and a well-organized initial network, the response of surface

texture to a single change in precipitation is highly complex.

In all of the sensitivity experiments here, one can imagine further complexity if the

network was not initially in equilibrium and if the substrate and erosion processes

varied throughout the network. It's also possible that further complexity in the

processes could dampen the changes in surface texture and erosion rates (Bras et al.

2003). We also make the assumption that the hydraulic geometry relationships do no

vary in disequilibrium. This assumption is supported by Wolman (1955), who found

that these relationships did not vary between streams at grade and aggrading and

degrading channels. However, transient adjustments in channel width, roughness and

cross-sectional area could affect the transient results we have shown for both changes

in uplift and climate (Stark and Stark (2001); Chitale (2003)).

4.4 Conclusions

Allowing for changes in surface texture has some surprising effects on transient net-

work response. The exact values of surface sand content or channel slope are not the

critical result of this study, but rather the trends in how they vary. The numerical

experiments presented here remind the reader to use caution when interpreting net-

work response to a change in forcing. Channel slopes might rise and fall in response

to an increase in uplift rate or precipitation rate. Our study emphasizes the variables

other than channel slope can dampen or enhance channel response. Further, channel

response might look very different at different locations in the network and at differ-

ent times. Finally, the results highlight the influence of the network structure during

transient conditions; changes in the main channel can not be isolated from variations

in the tributaries feeding it.
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Chapter 5

Sensitivity of Bedrock Rivers to

Sediment-Flux-Dependent Erosion

Equations

5.1 Introduction

In many regions, bedrock channels form an important link in the landscape by trans-

porting sediment eroded off the hillslopes to the lower alluvial reaches of a drainage

network. As sediment moves through these channels, it may play a critical role in

determining the rate of fluvial incision into bedrock. Gilbert (1877) discussed the

processes responsible for bedrock incision, but only recently has much attention been

focused on this problem. Field and flume studies have investigated the different con-

trols on bedrock incision (e.g. Foley (1980); Gardner (1983); Wohl (1993); Wohl and

Ikeda (1997); Hancock et al. (1998); Whipple, Hancock and Anderson (2000); Whip-

ple, Snyder and Dollenmayer (2000); Sklar and Dietrich (2001); Hartshorn et al.

(2002)). Numerical models have also considered bedrock erosion, using mostly the

stream-power equation to calculate incision rates (e.g. Howard (1994); Rosenbloom

and Anderson (1994); Stock and Montgomery (1999); Snyder et al. (2002)). How-

ever, some studies suggest that stream power alone may not adequately describe the
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processes controlling the morphology of bedrock channels (e.g. Howard et al. (1994);

Sklar and Dietrich (1998); Snyder et al. (2003b); Tomkin et al. (2003)); considerations

such as thresholds, local grain size and downstream sorting, sediment delivery and

transport rates are among those variables which may play important roles in channel

evolution. With these ideas in mind, we investigate fluvial incision into bedrock using

the CHILD numerical landscape evolution model.

We explore the control of different erosion processes on the equilibrium and tran-

sient morphology of bedrock rivers. All of the examples here consider channels in

which erosion is limited by the amount of material that can be detached from the

bed, although the detachment capacity may be governed by transport capacity. A

number of different erosion equations are explored that represent different erosion

processes including (1) the force that running water imparts as shear stress on the

bed of a channel, (2) the role of sediment entrained in the flow to wear down bedrock,

and (3) the role of sediment in covering the bedrock to protect it from bedrock ero-

sion. No hillslope processes are considered in the numerical experiments, implying

a system in which sediment supply from the hillslopes keeps pace with the fluvial

system.

All of the different formulations produce very similar equilibrium channel mor-

phologies, indicating that equilibrium form may not be the best indicator of the

dominant erosion process. However, equilibrium form may vary in unexpected ways

to climate change depending on the dominant erosion process.

Transient conditions can result which resemble equilibrium conditions, do not

contain knickpoints, and/or appear to be the result of an opposite shift in forcing.

These surprising transient states result from using very simplified sediment transport

laws (erosion thresholds are ignored) and climate states (a single storm rate, storm

duration, and inter-storm duration are used in all cases).
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5.2 Equilibrium Conditions

Following Whipple and Tucker (2002), we start by expressing the rate of erosion into

bedrock (Ed) as

Ed = Kf (Qs)A'S, (5.1)

where K is an erodibility parameter which depends on factors such as lithology,

climate, and channel properties (e.g. Stock and Montgomery (1999)); f(Q,) embodies

the importance of sediment load in eroding the channel bed (Q, is the volumetric rate

of incoming sediment - referred to as Q in earlier parts of this thesis). We will often

refer to the product of K and f(Q,), or to f(Q,) alone as the erodibility. A is the

upstream drainage area; S is channel slope; and m and n are conventionally considered

to be positive constants which can be derived from physical channel properties (e.g.

Howard et al. (1994); Whipple and Tucker (1999); others too), although recent studies

suggest that in some cases m and n may not be positive (Tomkin et al. (2003); Sklar

(2003)). In this study we will always use positive values for m and n. The rate of

change in elevation (!) is given by:

=-U- E. (5.2)
at

In all cases considered here the uplift rate, U, is considered to be spatially uniform.

When the landscape reaches dynamic equilibrium, or steady-state, elevations are no

longer changing in time, leading to the following equilibrium condition:

U = Ed. (5.3)

Following from equations 5.1 and 5.3, the common expression for equilibrium channel

slope (e.g. Howard (1980); Howard et al. (1994); Moglen and Bras (1995); Whipple

and Tucker (1999)); Snyder et al. (2000)) can be written somewhat incompletely as,

14
S = U A-0, (5.4)

Kf (Qs))
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where
m

S=n (5.5)

Equation 5.4 is a bit non-conventional because it includes the f(Q,) term. The

different forms of f(Q,) are given in later sections. Because f(Q,) includes channel

slope, equation 5.4 is somewhat more complicated than it first appears. However, in

some cases it is useful to think of channel slope as inversely proportional to both K

and the value of f(Q,) (assuming, as we do, that n is positive).

In all examples we use values of m and n so that 6 = 0.5. The value of 0, or

the concavity index, has been studied by numerous researchers (e.g. Hack (1957);

Flint (1974); Tarboton et al. (1991); Tucker and Whipple (2002)), and 6 = 0.5 is an

average representative value for many landscapes.

In the following sections we describe different forms of the erosion equation (5.1)

and the equilibrium form predicted by each equation.

5.2.1 Stream-Power Model

Significant attention has been given to the stream-power model (see Whipple and

Tucker (1999) for an overview). The stream-power rule can be derived from physical

relations and assumes that the bedrock erosion rate is proportional to either bed shear

stress or unit stream power. There is no dependence on sediment flux in detachment-

limited channels, implying that f (Q,) = 1. In this case, the equilibrium relationship

(equation 5.4) reduces to:

S = -_ A-0. (5.6)K

This work does not concentrate on the stream-power model and it will not be

discussed at length. However, because it is so widely applied (e.g. Seidl and Diet-

rich (1992); Rosenbloom and Anderson (1994); Tucker and Slingerland (1996); Stock

and Montgomery (1999); Roe et al. (2002); Snyder et al. (2002)), we only wish to

remind the reader of its equilibrium sensitivity with respect to uplift rate and climate

(contained in K) as point of reference for the other results presented in this chapter.

From equation 5.6 it is easily seen that equilibrium channel slopes increase with
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Figure 5-1: Sensitivity to precipitation rate of the equilibrium stream-power slope-
area relationship.

uplift rate, or more specifically, S oc U11 . The sensitivity of channel slopes to uplift

rate decreases with increasing values of n (Snyder et al. 2000).

Precipitation is considered to be contained in the value of K in equations 5.1

(and 5.6). If one assumes that fluvial discharge increases linearly with drainage area

(Q oc A), it follows that K oc P', where P is the precipitation rate (Whipple and

Tucker 1999). Therefore, the stream power rule predicts that equilibrium channel

slopes are shallower in drainage basins with higher rainfall rates (Figure 5-1).

5.2.2 Almost-Parabolic Model

In this section we consider the role of sediment flux (f(Q,)) in eroding bedrock,

using a model very similar to the relationship described by Whipple and Tucker

(2002). Gilbert (1877) was the first to observe that sediment flux plays an important

role in channel incision. Recently, researchers have returned back to Gilbert's ideas

(e.g. Slingerland et al. (1997); Sklar and Dietrich (1998); Sklar and Dietrich (2001)).
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The basic premise is sediment carried in the load can enhance erosion as it impacts

the channel bed, causing wear. Gilbert (1877) stated that sediment can effectively

erode the bed when the sediment load is well below the sediment transport capacity.

However, as the sediment load increases (in relation to the carrying capacity) the

sediment begins to cover the bed and protect it from erosion. We describe this dual

role of sediment in enhancing and inhibiting erosion through the f(Q,) factor in

equation 5.1.

Following the model presented by Sklar and Dietrich (1998), Whipple and Tucker

(2002) described a parabolic form of f(Q,) as a function of the ratio of g, where Q,
is the sediment transport capacity. In the relationship used by Whipple and Tucker

(2002) f(Q,) increases from 0 to 1.0 as 9 increases from 0 to 0.5 (sediment enhances

erosion) and f(Q,) decreases from 1.0 to 0 as - increases from 0.5 to 1.0 (sediment

covers the bed). The function used in this study for f(Q,) is the same as that used

by Whipple and Tucker (2002) except we slightly adapt the function so that erosion

can still take place when there is there is no sediment load, theoretically through

processes other than wear by sediment, such as plucking or solution (e.g. see Wohl

(1993); Hancock et al. (1998); Wohl (1998); Whipple, Hancock and Anderson (2000),

for a discussion of bedrock erosion processes). This assumption is also made partly

as a boundary condition to avoid infinite slopes (Whipple and Tucker 2002).

The above description of the f(Q,) function translates into the following equa-

tions: when - > 0.1 (from Whipple and Tucker (2002),

f (Qs) = 1- 4 Qs- 0.5 , (5.7)

and when 2 < 0.1,

f (Qs) = 2.6 ( )+ 0.1. (5.8)

Figure 5-2 illustrates this relationship. In this chapter, we describe the sediment

transport capacity using a very simple function (in comparison with those used in
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Figure 5-2: Dependency of three different erosion equations on the ratio of sediment
load to sediment carrying capacity.

Chapter 3 and 4).

QC = KtAmtSnt. (5.9)

In this simplified form of the sediment transport equation, there is some range in the

value used for mt. (nt is always assumed to be 1.) Generally, one expects there to

be a threshold for sediment entrainment which is sensitive to grain size variations,

and equation 5.9 does not contain a threshold. From the discussion in chapter 3,

we expect that if the values of mt and nt are chosen based on a shear stress model,

unrealistic equilibrium concavities will result without a threshold. However, in order

to generate realistic concavity values without including the complicating effects of

grain-size variation (e.g. Snow and Slingerland (1987); Pizzuto (1995); Sinha and

Parker (1996); Gasparini et al. (2003)), the value of mt can be increased (Howard

1980). In all examples we use either mt = 1.3 or mt = 1.5 to create channels with

realistic concavities.

Using equations 5.7, 5.8 and 5.9 in the equilibrium slope-area relationship (equa-
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tion 5.4) and making the equilibrium assumption that Q, = OUA (0 represents the

fraction of the sediment load that is bedload, and here is always considered to be

1.0), we can solve for the almost-parabolic slope-area relationship. These results

were shown by Whipple and Tucker (2002) and we have added to their solution the

slope-area relationship in the linear region of the almost-parabolic model (-s < 0.1).

For the case when n = 1 and nt = 1 the equilibrium relations are as follows:

When 9 > 0.1,

S_= Kt (5.10)
1 - Kt gAm-t--"

4K

and when -2 < 0.1,

lOU 26#
S = A-" - 6 3 UAl-mt. (5.11)

K Kt

For the case when n = 2 and nt = 1 the equilibrium relations are as follows: When

Q-, > 0.1,

S Kt Amt-m-1 + fU Almt (5.12)
4KO Kt

and when -2 <0.1,

-13U -2.63U 2 0.4U
S= A- + 5 Al-mt + A-n. (5.13)

Kt\ \K t K

Similarly to the stream-power model (e.g. Whipple and Tucker (1999)), equilib-

rium channel slopes increase with uplift rate using the almost-parabolic model (equa-

tions 5.10-5.13). When n = 1, slopes vary directly with uplift rate. The equilibrium

relationship for 2 is given by

=8 .UA (5.14)
Qc Kt AmtSnt

In the special case when n = 1 and S oc U, the equilibrium value of - does not very

with uplift rate and therefore f(Q,) also does not vary with uplift rate.

Generally, one might expect the role of sediment flux on channel incision rates

(f(Q,)) to vary throughout the drainage network. In fact, this is the key point of
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using an incision rule such as the almost-parabolic model, otherwise an equation

with a constant erodibility, such as the stream-power model, applies. However, in

the special case where mt = 1.5 (and 1 = 0.5), f(Q,) does not vary downstream.

In this case, the equilibrium slope-area relationships for the almost-parabolic model

(equations 5.10- 5.13) all predict that S oc A- 0 . It follows under these conditions

from the equilibrium expression for - (equation 5.14) that - is constant in space

and therefore f(Q,) is constant in space.

Figure 5-3A illustrates the sensitivity of equilibrium slopes to uplift rate when

n = 1 and mt = 1.3. There is a slight curvature in these slope-area plots. This is

easily seen when comparing the solid line in figure 5-3A with the thin dotted line,

which is the stream-power equilibrium slope-area relationship for the same K, m, and

n values. The variable concavity produced using the almost-parabolic model is due to

downstream changes in - and therefore f(Q,) (figure 5-3B). Because n = 1, f(Q,)

does not vary with uplift rate, and all of the f(Q,) lines in figure 5-3B plot on top of

each other.

When n = 2, equilibrium slopes increase with uplift rate, but not linearly (equa-

tions 5.12- 5.13). Sensitivity of equilibrium channel slope to uplift rate is illustrated

in figure 5-4. In this example, equilibrium slopes predicted by the almost-parabolic

model are less sensitive to uplift rate than those predicted by the stream-power model.

With the parameters and uplift rates used in figure 5-4, -L increases with increasing

uplift rate (figure 5-5). Because - < 0.5, the increase in -Q < 0.5 causes f(Q,) to

increase as well (figure 5-5). Because erodibility is increasing with uplift rate through

the f(Q,) term, slopes do not vary as much as they do using the stream-power model.

Further increases in uplift rate push -s to values greater than 0.5 and cause f(Q,)

(figure 5-5) to decrease with increasing uplift rate, magnifying the effect of an increase

in uplift rate on equilibrium slopes (figure 5-6).

We expect that equilibrium channel slopes should decrease with increasing pre-

cipitation rate, given equation 5.4 and the discussion based on the stream-power

model. In order to describe equilibrium sensitivity to climate, we need to include

the precipitation rate in the expression for f(Q,) and, more specifically, in the value
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Figure 5-3: Sensitivity of equilibrium slope-area relationship (A) and f(Q,) value
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model (APM) and stream power model (SPM) with same K, m and n values. Note
that in the case of U = lmm/yr, f(Q,) ~ 1 (given these parameters), and there-
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using the almost-parabolic model. Note that because mt = 1.5, f(Q,) does not
change with drainage area.

of Kt in the transport equation. Using the almost-parabolic model, the equilibrium

relationship between channel slope and Kt (equations 5.10- 5.13) is more complex

than the relationship between channel slope and K. It is therefore critical to define

a reasonable way in which Kt varies with precipitation rate. This is not as straight-

forward as assuming K oc Pm as we did for the stream-power model. (We continue

to make this assumption about K in this section.) The relationship between Kt and

P is not as obvious because we are using a highly simplified version of the sediment

transport equation (equation 5.9). The analysis in chapter 3 shows that there are two

important terms in the sediment transport equation, the bed shear stress term which

varies with P0 -9 and the critical shear stress term, which varies with P 0 _3 (expanding

equation 3.11). The simplified version of the sediment transport equation used in

this chapter ignores the threshold term, but in some ways we include the effects of a

threshold by increasing the value of mt (Howard 1980). The net result is that we are

left without an easily translatable relationship between Kt and P. From the analysis

158



K=5e-5, m=1, n=2, Kt=5e-4, mt=1.5, nt=1
10

10

CL

10 -- U=10.mm/yrAPM

*-- 5.0 SPM
- -2 2.5 APM

+0 2.5 SPM
10 10

10 10 10 2 10 10
drainage area (m

Figure 5-6: Sensitivity of the equilibrium slope-area relationship using both the
almost-parabolic model (APM) and the stream-power model (SPM) to different uplift
rates. The only difference between this figure and figure 5-4 is that the magnitude of
uplift rate is larger here. Note that when U = 2.5mm/yr, f(Q,) is close to unity, and
therefore the SPM and APM predict nearly the same equilibrium solution.
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in chapter 3 we will assume that Kt cx P"P where mp varies between 0.5 and 1.

Not surprisingly, this relationship is critical in determining the sensitivity of equi-

librium slopes to precipitation rate using the almost-parabolic model. When the

precipitation rate varies, the equilibrium sediment load does not (3UA remains con-

stant). Given that Q, remains constant with precipitation rate, f(Q,) adjusts to

changes in precipitation rate by adjusting the value of Q. Variations in f(Q,) can

enhance the decrease in slopes resulting from an increase in precipitation rates, or

alternatively, they may counter-act the change in slopes.

In the first case considered we assume that Kt oc P10 (similar to the bed shear

stress term from equation 3.11), and an increase in precipitation significantly changes

the value of -. From past studies, we expect channel slopes to decrease with precip-

itation rate (e.g. Tucker and Bras (1998); Whipple et al. (1999); Bonnet and Crave

(2003)). Figure 5-7 illustrates a counter-intuitive example of slope changes with pre-

cipitation rate. In this example, the steepest equilibrium slopes are produced with

the largest precipitation rate, while the two smaller precipitation rates produce al-

most identical slopes. This is all due to changes in Q, with precipitation rate. In this

example, the increase in precipitation causes an decrease in Q (figure 5-8). Because

< 0.5 for all three cases illustrated in figure 5-7, the decrease in ! with increasing

precipitation rate (figure 5-8) causes a decrease in f(Q,) (figure 5-8). This decrease in

f (Q,) counteracts the increase in K with precipitation. As one might expect, in cases

where the conditions are such that Q > 0.5, an increase in precipitation rate actually

causes f(Q,) to increase (figure 5-9B) and slopes decrease even more with increasing

precipitation rate than expected from the stream-power model (figure 5-9A).

Alternatively, if we assume that Kt Oc P0 5 (similar to the critical shear stress term

from equation 3.11), we find that Qc, and therefore f(Q,), are not nearly as sensitive

to changes in precipitation rate. Because f(Q,) does not vary with precipitation rate

and therefore cannot compensate for changes in precipitation rate, equilibrium slopes

adjust as expected and increase with decreasing precipitation rate (figure 5-10A).

Given the analysis in chapter 3, we expect that the actual relationship between Kt

and precipitation will depend on the sediment composition of the channel bed. If the
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Figure 5-7: Slope-area sensitivity to precipitation rate using the almost-parabolic
model and assuming that Kt o P' 0.

grain-sizes are larger, the critical shear stress term should dominate and f(Q,) will

probably be less sensitive to changes in precipitation rate. However, a less simplified

sediment-transport model would give better insights into the relationship between

f (Q,) and precipitation, or fluvial discharge. We do not carry out such an analysis

here.

5.2.3 Linear-Decline Model

As an alternative method to the almost-parabolic model, we explore a generalized

version of the under-capacity model described by Beaumont et al. (1992) and Kooi

and Beaumont (1994). The linear-decline rule assumes that as the sediment load

increases (with respect to the sediment transport capacity), more energy is required

to transport sediment, so less energy is available to expend on erosion of the bed.
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Figure 5-8: Sensitivity of equilibrium f(Q,) and - values to different precipitation
rates, assuming that Kt cx P-0 (almost-parabolic model).

Here we use the model described by Whipple and Tucker (2002) (figure 5-2):

f (Q) = 8-
QC

(5.15)

Using the same equilibrium assumption for sediment load as in the previous sec-

tion (Q8 = /UA) and the same sediment transport equation (QC = KtAmtSnt) the

equilibrium slope-area relationships described by Whipple and Tucker (2002) can be

derived: when n = 2 and nt = 1,

S =2
2Kt

+ J \ A1mt 2
U

+ -A-",
K

(5.16)

and when n = 1 and nt = 1,

U _U

S = -- A-m + /UAl-"
K Kt

(5.17)

It is clear from equations 5.16 and 5.17 that sensitivity of equilibrium slopes to
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Figure 5-9: Sensitivity of equilibrium slope (A) and f(Q,) and i values (B) to
different precipitation rates, assuming that Kt oc P1 4 (almost-parabolic model - note
change in Kt from previous example). Here the equilibrium slope values predicted
from the stream-power model are shown for comparison. Note that the slope solution
for P=1.4 APM overlaps the slope solution for P=1.0 SPM.
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Figure 5-10: Sensitivity of equilibrium slope-area relationship to different precipita-
tion rates, assuming that Kt Oc P0 5 (almost-parabolic model).

both uplift rate and precipitation rate (contained in K and Kt) is as expected from

the stream-power model. That is, equilibrium slopes increase with increases in uplift

rate and equilibrium slopes decrease with increases in precipitation rate (assuming

only that Kt increases with precipitation rate).

Similar to the almost-parabolic model, when mt = 1.5 the value of f(Q,) remains

constant throughout the network and channel concavity is constant. This is not the

case when mt , 1.5. Further, when n = 1 and mt = 1.5, f(Q,) does not change with

uplift rate.

5.2.4 Wear Model

The last sediment flux erosion model that we explore is the wear model described

by Parker (2002). Both Slingerland et al. (1997) and Sklar and Dietrich (1998) have

discussed similar models which consider the wear of saltating particles on the channel

bed. These models consider factors such as the saltation length of particles, sediment
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grain size on the bed, the number of times a particle hits the channel bed (of given

area over a period of time) and sediment cover (protection) of the bed. All of these

factors can lead to a somewhat complicated erosion rule, especially when a threshold

for sediment transport is considered.

The sediment flux term given by Parker (2002) which describes wear of the bed

can be written as:

f(Qs) = Q - Q), (5.18)
W( QC)

where W is channel width. In Parker's model m = n = 0 and therefore the erosion

rate is written as:

Ed=3KQs I - Q(. (5.19)
W( QC)

Making the same assumptions as we did in previous sections (QS = 3 UA,

QC = KtAmSnt) and further, W oc A0", we can derive the equilibrium slope-area

relationship for the wear model in equation 5.19:

#U a1-,2t A-0.5a
S t An ( - O (5.20)

In keeping with the previous sections, we only consider the case in which nt = 1. For

small values of drainage area, equation 5.20 grows infinitely large. Similarly, the value

of K can not be too small, otherwise slopes quickly explode (figure 5-11). However,

if K is large, this leads to transport-limited conditions. At large drainage areas, the

wear model always predicts the same slope-area relationship as the transport-limited

slope. The equilibrium channel slope reaches the transport slope at smaller drainage

areas for larger K values (figure 5-11).

There is no parameter set which predicts a constant concavity with this model.

At large drainage areas, the average channel concavity increases with the value of mt

(figure 5-12). The wear model predicts that in equilibrium slopes increase with uplift

rate (figure 5-13) at the same rate as predicted by a simple transport-limited model

(Whipple and Tucker 2002).
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Figure 5-11: Sensitivity of the wear model equilibrium slope-area relationship to the
value of K (see equation 5.20). (U =0.lmm/yr) The equilibrium transport slope does
not depend on K and is therefore the same for all examples (dotted line).
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Figure 5-12: Sensitivity of the equilibrium wear model slope-area relationship to the
value of mt (see equation 5.20). (U =0.lmm/yr)
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Wear Model, Kt=4e-4, mt=1.5, nt=1, K=4e-2
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Figure 5-13: Sensitivity of the equilibrium wear model slope-area relationship to uplift

rate (see equation 5.20).

5.3 Transient Behavior using the Stream-Power Model

Detachment limited channels controlled by the stream-power model have been shown

to respond to a change in uplift rate by locally increasing or decreasing channel slopes

to the new equilibrium value, and this response propagates upstream as knickpoint

(Howard et al. (1994); Whipple and Tucker (1999); Niemann et al. (2001); Whipple

and Tucker (2002)). Because this result has already been shown, we illustrate this

concept with only one figure so that the reader can compare with later results (figure 5-

14).

5.4 Transient Behavior using the Almost-Parabolic

Model

In this section we discuss changes in the channel network in response to a single step

increase in uplift rate when the almost-parabolic model controls erosion rate. The

initial condition for each experiment is an equilibrium drainage network. In the first
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Figure 5-14: Change in main channel elevation (A) and channel slope (B) in response
to a five-fold increase in uplift rate using the stream-power model. (The thin lines
running through the slope-area plot are the equilibrium relationships.)
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three experiments the same initial drainage network is used, but the change in the

uplift rate varies between the experiments. The results show that the same network

can react very differently depending on the magnitude of the perturbation. In the last

experiment discussed, we illustrate the transient response using a different parameter

set (namely, n = 2 versus n = 1 in the first three experiments). The response of

channel slopes in the last example is surprisingly complex. While reading this section

it is important to keep in mind that a network controlled by the stream-power model

responds directly to an increase in uplift rate, sending a knickpoint through the

network that raises channel slopes/elevations to their new equilibrium values.

We expect equilibrium channel slopes to increase with uplift rate (equations 5.10

and 5.12), regardless of the parameter values in the almost-parabolic erosion equation.

In the first three examples, n = 1 and mt = 1.5 and, therefore, in equilibrium f(Q')
is uniform throughout the network and insensitive to changes in uplift rate. (In the

n = 1 example, the equilibrium value of - is 0.75.) This "simplest" case seems

like a simple choice for investigating the transient response. However, so far the

theory presented only predicts the equilibrium outcome and says nothing about how

a drainage network transitions from one equilibrium state to another. Even though

f (Q,) values may not vary between equilibrium states, they are not constant as the

network responds to a change in forcing, leading to some very curious results.

Figure 5-15 shows the response of main channel elevations (A) and slopes (B) to a

two-fold increase in uplift rate. The initial response looks very much like a knickpoint

traveling up the network as one would expect from the stream-power model (Whipple

and Tucker (2002)). However the knickpoint does not increase channel elevations all

the way up to their new equilibrium values. After the knickpoint has swept up

the main channel, elevations and slopes continue to gradually increase everywhere

(figure 5-16A and B), similar to transitions in a transport-limited channel (Whipple

and Tucker (2002)).

Note that the initial equilibrium slope-area relationship in figure 5-15 deviates in

the smaller drainage areas from the predicted slope-area relationship. The deviation

in the smaller drainage areas is a boundary condition of the model. The predicted
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slope-area relationship (plotted in figure 5-15) assumes that Q, = OUA, but this is

not the case at points which only drain themselves and have no incoming sediment

load (Q, = 0). These points are still eroding at the uplift rate when equilibrium is

reached, but their value of f(Q,) differs from that predicted using Q, = QUA, and

therefore their slope values also differ from those predicted assuming Q, = QUA.

This boundary condition affects the predicted slopes in the upper-most reaches of the

network in all of the examples using the almost-parabolic model.

The combination response illustrated by figures 5-15 and 5-16, where initially

a knickpoint propagates up the network and later slopes increase throughout the

network to their final values, is similar to the mixed-channel response illustrated by

Whipple and Tucker (2002). In their example, they choose the erosion parameters

so that the equilibrium profile of the transport-limited and stream-power detachment

limited channels are exactly the same. Their results show that the transient response

to an increase in uplift rate has tendencies of both types of channels, depending on

when changes in sediment load become important and the response switches from

stream-power style to transport-style. The almost-parabolic model is not the same

as the mixed-channel model used by Whipple and Tucker (2002), but variations in

sediment load are also responsible for the results produced in both studies. We

elaborate on this later.

An important change in the nature of network response occurs when the increase

in uplift rate is amplified to three-fold (versus two-fold in the last example). A three-

fold increase in uplift rate also causes channel slopes to step-up knickpoint style to

a value less than their new equilibrium value (figure 5-17B). Surprisingly though,

slopes actually decrease after the initial increase and channel elevations come down

(figure 5-17A). After the initial increase and decrease in slopes (at a point), channel

slopes rise uniformly up to their new equilibrium values in a transport-limited manner

as they did in later times in the two-fold uplift case (figure 5-18).

A four-fold increase in uplift rate is even more dramatic. Following the increase

in uplift rate, the knickpoint (figures 5-19A and 5-20A) actually increases slopes

above their new equilibrium values (figures 5-19B and 5-20B). In response to this
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Figure 5-15: Initial change in main channel profile (A) and channel slope (B) in
response to a two-fold increase in uplift rate using the almost parabolic sediment flux
rule. (The lines running through the slope-area plot are the equilibrium relationships
for old (lower) and new (upper) uplift rates.)
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Figure 5-16: Later change (following figure 5-15) in main channel profile (A) and
channel slope (B) in response to a two-fold increase in uplift rate. (The lines running
through the slope-area plot are the equilibrium relationships for old (lower) and new
(upper) uplift rates.)
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Increase Uplift 3x, m=0.5, n=1, mt=1.5, nt=1, K=Kt=5e-5
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Figure 5-17: Initial change in main channel profile (A) and channel slope (B) in
response to a three-fold increase in uplift rate. (The lines running through the slope-
area plot are the equilibrium relationships for old (lower) and new (upper) uplift
rates.)
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Increase Uplift 3x, m=0.5, n=1, mt=1 .5, nt=1, K=Kt=5e-5
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Figure 5-18: Later change (following figure 5-17) in main channel profile (A) and
channel slope (B) in response to a three-fold increase in uplift rate. (The lines running
through the slope-area plot are the equilibrium relationships for old (lower) and new
(upper) uplift rates.)
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overshooting of slopes above their new equilibrium value, channel elevations must

subsequently be reduced. The result is much more dramatic than in the previous

example because slopes first overshoot their new equilibrium values, later drop down

below their new equilibrium value, and finally must rise again (not shown). This

overshooting and undershooting creates a dramatic whiplash-like response in channel

profiles (figure 5-20A). In all cases tested, the same over-steepening of slopes occurs

with higher values of Une, leading to more exaggerated whiplash-like response in

channel profile (figures 5-19A and 5-20A).

The complex response in channel slopes produced from a single increase in uplift

rate is all the result of changes in sediment load and its effects on erodibility (f(Q8 )).
Initially, the response to an increase in uplift rate is felt only at the outlet. The

rest of the points in the network continue to erode at the old equilibrium uplift rate

(Whipple and Tucker 1999). (Uold is used to refer to the original smaller uplift rate

in this discussion.) Figure 5-21 illustrates the pattern in erosion rates across the

topography; shaded is according the ratio of the erosion rate to the new uplift rate

(Unew). This example is from the four-fold uplift increase experiment, therefore points

which are eroding at the old uplift rate have an erosion ratio of 0.25 (shaded white

in this figure). Points eroding at the new equilibrium value have an erosion ratio of

1.0 (shaded dark gray in this figure). Light gray points have just started to respond

to the change in uplift rate, while black points are eroding faster than the new uplift

rate. (There are no black points in figure 5-21.) Figure 5-21 shows that points near

the outlet respond first, while the rest of the network continues to erode at the same

old value. (This pattern is the same regardless of the magnitude of change in uplift

rate.) As time moves on, erosion rates increase as a wave moving up the network

(figures 5-21B and C). In figures 5-21B and C, the black points are eroding faster

than the new uplift rate (causing channel elevations to be reduced in figure 5-20A),

and their erosion ratio will eventually reduce back to unity.

Because the points in the upper reaches of the network are eroding at the same

original value (UoId), there is no change in the amount of sediment that they send

downstream. Therefore, initially there is no change in the sediment load received by
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Figure 5-19: Initial change in main channel profile (A) and channel slope (B) in
response to a four-fold increase in uplift rate. (The lines running through the slope-
area plot are the equilibrium relationships for old (lower) and new (upper) uplift
rates.)
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Figure 5-20: Later change (following figure 5-19) in main channel profile (A) and
channel slope (B) in response to a four-fold increase in uplift rate. (The lines running
through the slope-area plot are the equilibrium relationships for old (lower) and new
(upper) uplift rates.)
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the outlet point. However the outlet point feels the increase in uplift rate and adjusts

its slope to erode at the higher rate of Unew. The outlet point adjusts its slopes based

on the old sediment load. This can lead to overshooting of slopes, as the profiles in

figures 5-19 and 5-20 illustrate.

As stated above, the outlet point needs to erode at the new uplift rate. Initially,

the incoming sediment load at the outlet (or any point) does not change, but the

slope can adjust, changing the value Qc, and furthermore, the value of f(Q,). This

results in the following equation for the interim erosion rates at the outlet:

Unew = Kf (Qs)tAm Stn, (5.21)

where f(Q,)t and St are the transient values of f(Qs) and S in response to the uplift

increase. Rearranging equation 5.21, we obtain an expression for St as a function of

f(Qs)t:
n

St = UfQS A'. (5.22)

In order to describe the transient channel slope, we need to describe f(Qs)t. We

have already predicted that the value of Qs at the outlet remains at its old equilibrium

value of /3U0 dA (initially). On the other hand, we expect slopes to rise in response to

an increase in uplift rate, resulting in larger values of Q, (equation 5.9). As a result,

will decrease. But what affect does this have on f(Q,)t?

The response of f(Q,)t will depend on the initial value of Q. Figure 5-22 is a

schematic of the expected response of f(Qs)t based on the examples from this section.

The equilibrium value of 1 in these examples is 0.75 (for both Uew and U 1d). More

important than the actual value of is that - > 0.5. Therefore a decrease in Q (as

expected) will initially cause f(Qs)t to rise (first part of solid arrow-line in figure 5-

22). If -9 is reduced to a value smaller than 0.5, the value of f(Qs)t will decline

(second part of solid arrow-line in figure 5-22). If i is reduced far enough, the value

of f(Qs)t can decrease below the equilibrium value of f(Q,), leading to a transient

slope value which is greater than the new equilibrium slope value (equation 5.22). In

the case when - < 0.5 initially, any reduction in -L will cause f(Q,)t to decrease
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Figure 5-21: Response of erosion rates across the landscape 10K (A), 30K (B), and
60K (C) years after increasing the uplift rate by four-fold using the almost-parabolic
model. Shading is by the ratio of erosion rate to new uplift value, so a value of 0.25
corresponds to the old erosion rate. The black values are areas eroding faster than
the new equilibrium erosion rate.

179



0.8-

0.6-

0.4

0.2--

0 0.2 0.4 0.6 0.8 1
Q/Q

Figure 5-22: Cartoon example of how an increase in uplift rate changes f(Q,) using
the almost-parabolic model. The solid arrow-line indicates the initial response of

f (Q,), and the dotted arrow-line indicates the later response.

(starting at the top or left side of the hump in figure 5-22).

The decrease in Q results in the following expression for the transient value of
QC

f(Q,) when i > 0.1:

f (Qs)t = 1 - 4 KOAmtS t 0.5 , (5.23)

and when - < 0.1:

f (Qs)t = 2.6 * + 0.1. (5.24)
(Kt Amt St)

Combining equation 5.22 with either equation 5.23 or 5.24, we obtain an equation

for the predicted value of St. When n = 1 and nt = 1: ! > 0.1,

OU 0Id Almt
S 1= Kt (5.25)

Unew Kt Amt-m-
40U.IdK
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and -1 < 0.1,

St= 10UnewA-m - 2 6 0Uold A1-". (5.26)
K Kt

When n = 2 and nt =1: -s > 0.1,

St = KtUnew Amt-"-1 + Uon- Ai-"t (5.27)
4K3Uold Kt (

and 2 < 0.1,

St= A3 3 UoldA +mt +5 2.63Uod Al-- + U A-. (5.28)
K+\ Kt K

Equations 5.25 - 5.28 predict the initial change in slope before the sediment load

starts to increase. The transient slope value predicted from these equations can

be compared with the new equilibrium slope value (predicted using Unew and equa-

tions 5.10 - 5.13) in order to predict cases where the transient slope will over-shoot

its new equilibrium value. In the case when initially Q < 0.1, the transient slope

will always be greater than the new equilibrium slope (compare equation 5.11 using

Unew as the uplift value with equation 5.26, or similarly compare equations 5.13 and

5.28). This is because f(Q,) will always initially decrease with an increase in uplift

rate. When Qs > 0.1 initially, whether or not St is greater than the new equilibrium

slope depends on the the initial value of Q and the magnitude of change in Q. If

Q< 0.5 to start, transient slopes will always over-steepen because f(Q,) will always

initially decrease with an increase in uplift rate. However, when i > 0.5 initially,

the magnitude of change in uplift rate determines whether or not transient slopes

over-steepen. This last scenario (-1 > 0.5 initially) is the case with the two examples

we have presented.

The transient slope equations give an accurate prediction of the results we see.

In the case of a two-fold increase in uplift rate (figures 5-15 and 5-16), f(Q,)t =

1. Because f(Q,) = 0.75 initially, St is less than the new equilibrium slope value

(equation 5.22), and as a result, transient slopes only increase. In the example with a

two-fold uplift increase, s decreases initially to 0.5, but it never falls below 0.5 or, in
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other words, goes over the hump in figure 5-22. This causes slopes to rise initially, but

to a value less than their new equilibrium value (figure 5-15B). Slopes then remain

static for a period before rising again to their equilibrium value (figure 5-23B). The

lag in the time of response from the upper parts of the network results in interim

stabilization of slopes (roughly between 103 and 104 years). Later, when sediment

load increases, and therefore Q increases and f(Q,) decreases, slopes rise even further

(figure 5-16B). In this example, erosion rates never overshoot their new equilibrium

values (figure 5-23C).

In the case of a three-fold increase in uplift rate, the predicted transient slope is

exactly equal to the new equilibrium slope. This is because the equilibrium value of

f(Q,) is exactly the same as f(Q,)t, although the value of !- decreases (schematic in

figure 5-22). Figure 5-24 illustrates the response over time of f(Q,) (A) and channel

slope (B) at the outlet and two other points upstream. Initially slopes at the outlet

increase while the transient value of f(Q,) remains larger than the initial value (even

though it both increases and decreases). -2 is decreasing almost until 104 years, even

though f(Q,) is rising and falling in this period. The fall in f(Qs) before 104 years

is because f(Qs) is pushed onto the left side of the hump in figure 5-22. When Q
Q c

starts to increase again, f(Qs) starts to rise again (at ~ 104 years), and the slope

at the outlet begins to decrease. The transient slope at the outlet does not reach its

new equilibrium value before it starts to decrease again as predicted by the value of

St from equation 5.25. The prediction of St is based on no change in the incoming

sediment flux. In actuality, the slopes never have time to rise to the predicted value

before the value of Qs at the outlet starts to increase. This is apparent from the rise

in f(Qs) at points upstream of the outlet that begins before the outlet reaches its

minimum f(Q,) value (figure 5-24A). Here erosion rates essentially increase to their

new equilibrium value, although there is a slight overshooting in the upper parts of

the network (figure 5-24C).

For the four-fold uplift increase case, Q is pushed to below its initial value of

0.75 even further than it was in the three-fold case. Equation 5.25 predicts slopes to

rise above their new equilibrium value, as was illustrated in figures 5-19B and 5-20B.

182
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Figure 5-23: Response over time of f(Q,)t (A) channel slope (B) and erosion ratio
(C) at three different points in response to a two-fold increase in uplift rate using the
almost-parabolic model.
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3x Uplift Increase; m=0.5, n=1.0, mt=1.5, nt=1, K=Kt=5e-5
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Figure 5-24: Response over time of f(Q,)t (A) channel slope (B) and erosion ratio
(C) at three different points in response to a three-fold increase in uplift rate using
the almost-parabolic model.
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Changes in f(Q,) through time at the outlet and two points upstream are illustrated

in figure 5-25A. As slope increases at the outlet through time (figure 5-25B) f(Q,) rises

and then falls (figure 5-25A) as the value of 9 is steadily decreasing (not illustrated).

This initial rise and fall in f(Q,) is the pushing over the hump in figure 5-22. Once the

upper parts of the network start to respond and the sediment-flux starts to increase,

erosion rates rise above their new equilibrium value (figure 5-25C) and slopes begin

to decrease.

The pattern is similar in upstream points. Changes in f(Q,) are dampened at the

upstream points. Because f(Q,) does not drop as low in the upstream points, but the

slopes still increase, this allows for the erosion ratio to vary more than it does at the

outlet. There is some loss of information upstream. The outlet point and points near

to the outlet feel the boundary condition more closely and are more tied to it, while

points higher upstream feel the change later. Upstream points are not bounded to

immediately adjust their slopes to erode at UTeL, and therefore a lag in information

sent upstream or misinformation through the over-shooting of slopes, leads to more

freedom in the transient erosion rates upstream.

As stated earlier, when the equilibrium value of 9 < 0.5, an increase in uplift

rate will always result in an initial decrease in f(Q,) (starting at the top of the hump,

or to the left of it, in figure 5-22). We performed a number of numerical experiments

where the initial and final values of - are less than 0.5 (not illustrated), and the

slopes always over-steepened, regardless of the magnitude of increase in uplift rate.

We illustrate one more transient example. In this last case, we increase the uplift

rate five times, using parameter values of mt = 1.5 and n = 2 (versus n = 1 in

the previous examples). With these parameters, in equilibrium f(Q,) does not vary

in space, but its equilibrium value increases with uplift rate. The initial knickpoint

response is more pronounced in this example (figure 5-26) than it was for the previous

example with an uplift increase of 4x and n = 1. In this example, slopes over-steepen

and remain over-steepened (instead of quickly dropping) as the knickpoint passes

up the network; this response looks deceptively similar to a stream-power response.

The main difference here is that the slopes have over-steepened above their new
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Figure 5-25: Response over time of f(Q,)t (A) channel slope (B) and erosion ratio
(C) at three different points in response to a four-fold increase in uplift rate using the
almost-parabolic model.
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equilibrium values. Eventually, slopes need to be reduced, and this begins to happen

while slopes are still steepening in the upper reaches of the network (figure 5-27).

There is a transient period during which there is no longer evidence of a knickpoint

in the profiles or in the slope-area data, and on first glance, it might be difficult to

detect that these are temporary conditions (dash-dot and dotted lines in figure 5-27A

and B). The dash-dot line in figure 5-27B has a concavity of 0.64. This isn't much

greater than the equilibrium value of 0.5 but worth noting.

This example turns out to be very dramatic. First slopes over-steepen above their

new equilibrium value (figure 5-26B) then they under-steepen (figure 5-27B) and

then they over-shoot again (figure 5-28B). This oscillatory behavior is the result of a

single increase in uplift rate. As erosion rates respond at different times throughout

the network (figure 5-30B), the sediment flux sent downstream both increases and

decreases in time (figure 5-30A). At a point, changes in slope are always in phase

with changes in f(Q,) (figure 5-29), however f(Q,) is not uniformly increasing and

decreasing throughout the network, leading to the very complex response in erosion

rates and sediment loads.

Erosion rates at the outlet rise to the new equilibrium value and remain stable

(figure 5-30B). The outlet is always able to adjust its slope to accommodate the

incoming sediment flux and maintain the new higher erosion rate. However, points

upstream from the outlet do not instantly adjust and their erosion rate varies more

(figure 5-30B). Note that peaks in sediment flux at different points are just barely

off in time in this example (figure 5-30A), but this lag in response is able to produce

very complex results.

Tucker and Whipple (2002) also point out that the transient response is highly

dependent on the value of n using the stream-power model, which controls the depen-

dence on slope of the speed of an erosion wave through the network. This certainly

contributes to some of the differences in response between the two examples with

the almost-parabolic model using n = 1 and n = 2. However, the dependence on

sediment flux adds further complication.

Many more numerical experiments were performed than could be presented here.
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Figure 5-26: Using almost-parabolic model, change in main channel profile (A) and
channel slope (B) in response to a 5x increase in uplift rate (n = 2). (The lines
running through the slope-area plot are the equilibrium relationships for old (lower)
and new (upper) uplift rates.)
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Figure 5-27: Using almost- parabolic model, later response in main channel profile (A)
and channel slope (B) in response to a 5x increase in uplift rate (n = 2). (The lines
running through the slope-area plot are the equilibrium relationships for old (lower)
and new (upper) uplift rates.)
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Figure 5-28: Using almost-parabolic model, even later response in main channel profile
(A) and channel slope (B) in response to a 5x increase in uplift rate (n = 2). (The
lines running through the slope-area plot are the equilibrium relationships for old
(lower) and new (upper) uplift rates.)

190



(A)
5x Uplift Increase, K=le-6, m=1.0, n=2.0, Kt=2e-4, mt=1.5, nt=1
0.5

Outlet
0.4- A=1e6m 2

'A -,A=3e5m 2
0.3 ---

0.2--

0. 0
10 10 10 10 10

time (thousands of years)

(B)
5x Uplift Increase, K=1e-6, m=1.0, n=2.0, Kt=2e-4, mt=1.5, nt=1

O: utlet
101.. A=1e6 m-

C. '- A=3e5m24f
0 4

10 2
10 0 1 02 103

1Rme (thousands of years)

Figure 5-29: Response over time of f(Q,)t (A) and channel slope (B) at three different
points in response to a five-fold increase in uplift rate using the almost-parabolic model
and n = 2.
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We have explored network response to both increases and decreases in uplift rate

over a wide range of parameter space. The details of the response obviously differ,

but the examples in this section capture all of the most interesting patterns that we

observe in transient networks using the almost-parabolic model. We do not show any

illustrations of network response to a decrease in uplift rate. The results are similar

but opposite in direction.

5.5 Transient Behavior using the Linear-Decline

Model

In this section, we discuss an example of channel network response to an increase

in uplift rate using the linear-decline sediment flux erosion model. Changes in uplift

rate are felt first at the outlet and then propagate upstream (in a similar fashion to

the almost-parabolic model and stream-power model). The linear-decline model does

not predict over-steepening of channel slopes during transitions from a low to high

uplift rate.

Figure 5-31 illustrates the initial response in main channel elevations (A) and

slopes (B) in response to a five-fold increase in uplift rate. Initially a knickpoint sweeps

upstream. However, channel slopes increase to a value less than their new equilibrium

value (figure 5-31B). Once the knickpoint passes a point, channel elevations still

continue to rise. This leads to a later response in which slopes are rising everywhere

throughout the network (figure 5-32). This combination-type response is similar to

the two-fold uplift increase example using the almost-parabolic model and the mixed-

channel response of threshold channels described by Whipple and Tucker (2002). The

response illustrated in figures 5-31 and 5-32 is also due to the lag in sediment flux.

As was the case with the almost-parabolic model, the sediment flux at the outlet

can be assumed to stay constant while channel slope rises to accommodate for the

increase in uplift rate. Given that the channel slope rises but sediment flux remains

the same, the value of - declines in response to an increase in uplift rate. With
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Figure 5-31: Using linear-decline erosion rule, change in main channel profile (A)
and channel slope (B) in response to a 5x increase in uplift rate. (The lines running
through the slope-area plot are the equilibrium relationships for old (lower) and new
(upper) uplift rates.) The temporary shortening of the profile ant 50K is due to
network rearrangement.
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Figure 5-32: Using linear-decline erosion rule, change in main channel profile (A)
and channel slope (B) in response to a 5x increase in uplift rate (later time from
previous figure). (The lines running through the slope-area plot are the equilibrium
relationships for old (lower) and new (upper) uplift rates.)
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the linear-decline model, f(Q,) has nowhere to go but up as Q declines (figure 5-2

and equation 5.15), so we don't expect channel slopes to ever overshoot their new

equilibrium value.

The increase in f(Q,) at the outlet (and two other points upstream) is shown

in figure 5-33A. Channel slopes increase (figure 5-33B) while sediment load remains

the same (not shown), causing f(Q,) to rise (figure 5-33A). Once the sediment load

starts to respond, f(Q,) starts to decline and slopes continue to rise. As illustrated

by figure 5-33 the response at upstream points lags the response at the outlet. The

points upstream from the outlet adjust more freely than the outlet does, and erosion

rates vary more upstream (figure 5-33C). The dash-dot line in figure 5-33 illustrates

that for a very short period (approximately 50K-70K years) f(Q,) declines while

channel slope does not keep pace, causing erosion rates to slightly decrease.

5.6 Transient Behavior using the Wear Model

We performed a series of experiments testing the sensitivity of the wear erosion rule

(equation 5.19) to changes in uplift rate. This erosion rule predicts that when Q, = 0

the erosion rate will be zero. This causes a boundary condition problem for points

which only drain themselves. (Normally these points would be hillslopes, but we are

not modeling hillslope processes here.) To avoid boundary condition problems, at

points with no upstream neighbors the erosion rate is always calculated assuming

transport-limited conditions. (These points have a sediment influx of zero.)

The initial response to a 5-fold increase in uplift rate using the wear model is il-

lustrated in figure 5-34. There is some steepening at the outlet while the upper-most

slopes remain the same, but it is not solely a local steepening, as with a knickpoint.

During the later transient response (figure 5-35), slopes are increasing almost uni-

formly throughout the network and the profile is relatively smooth. These conditions

could easily be mistaken for equilibrium. Interestingly, the concavity of the network

is reduced during the transient in comparison with the old and new equilibrium values

(0 = 0.41 during the transient and 0 = 0.55 in equilibrium, for the region shown).
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Figure 5-33: Response over time of f(Q,)t (A) channel slope (B) and erosion ratio
(C) at three different points in response to a five-fold increase in uplift rate using the
linear-decline model.
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Note that slopes in the small drainage areas deviate from the predicted equilibrium

value initially (figure 5-34); this is due to the boundary condition that Q, = 0, causing

these points to be transport-limited, and therefore follow a different model.

Figure 5-36 illustrates the response of sediment load (A) and the ratio of sediment

load to transport rate (Qs) (B) at three different points through time. Initially, and

throughout the response, &- - remains very close to one and slopes are very close to

transport-limited slopes. As with the other transient responses explored, the sedi-

ment load does not respond immediately to the change in uplift rate, although the

outlet does immediately adjust its erosion rate to the new uplift rate (figure 5-37A)

by adjusting its slope (figure 5-37B). Slopes at the outlet, and throughout the net-

work, continue to rise as the sediment load adjusts. In this example, the value of -8

decreases and increases (figure 5-36B), but channel slopes and erosion rates (figure 5-

37A and B) only increase.

We can derive an expression for the predicted transient response in slope at the

outlet to see if any over-steepening of slopes will occur using the wear model. As-

suming that the sediment load into the outlet does not change and that initially only

slopes adjust to an increase in uplift rate (which seems reasonable given figure 5-36A),

the following transient slopes are predicted:

1Ulnt 1-mt Un nt
St (UK) A n 1 - U7w A - . (5.29)

\Kt UoldK

Comparing this equation with the equilibrium slope-area equation for the wear rule

(equation 5.20) we can calculate the ratio of the transient slope to the new equilibrium

slope (jt ). When St > 1, we predict that transient slopes will over-steepen. TheSnewSne.

factor of increase in uplift rate to produce over-steepening depends on (1) Uold (2) K

and (3) drainage area at the outlet. The over-steepening effect does not depend on

either mt or Kt. As noted in the discussion of the equilibrium behavior of the wear

model, there is a limited range of reasonable K values using this model, so there is a

limit in the range of parameters we could reasonably investigate. Given the size of the

simulated drainage networks (basin drainage area in these simulations is 2.4x106 m 2 ),
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Figure 5-34: Using the wear model, change in main channel profile (A) and channel
slope (B) in response to a 5x increase in uplift rate. The thin lines running through
the slope-area plot are the old (lower) and new (upper) equilibrium solutions.

199

-- Initial
-- 2K

--- 4K
--- 6K

8K
-- 10K

I

5|

.|

8K
-- 1014
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Figure 5-35: Using the wear model, change in main channel profile (A) and channel
slope (B) in response to a 5x increase in uplift rate. The thin lines running through
the slope-area plot are the old (lower) and new (upper) equilibrium solutions.
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Wear Model, 5x Uplift Increase; K=4e-2, mt=1.5, nt=1, Kt=4e-5
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Figure 5-36: Response over time of Q, (A) and (B) at three different points in
response to a five-fold increase in uplift rate using the wear model. (Note that there
are no points between 0.1 and 1K years). The initial values are plotted as time=10 1 .
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Figure 5-37: Response over time of erosion rate (A) and channel slope (B) at three
different points in response to a five-fold increase in uplift rate using the wear rule.
(Note that there are no points between 0.1 and 1K years).
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the smallest increase in uplift rate to produce over-steepening was a 13-fold increase

(using reasonable K values). The required increase in uplift rate to produce over-

steepening increases with the drainage area of the network and is almost insensitive

to the old uplift rate.

Given the parameters used in the example illustrated in figures 5-34 - 5-37, a

predicted over-steepening would require a 55-fold increase in uplift rate. Such an

increase is highly unlikely, but we performed the numerical experiment to test the

prediction. Using the same parameters as the first example, but this time increasing

uplift rate by 60 times (just to be safe) some reduction in slopes does occur. However,

the results are not nearly as dramatic as the whiplash-effect produced using the

almost-parabolic model.

Figure 5-38 illustrates the initial profile response to a drastic 60x increase in

uplift rate. A knickpoint sweeps up the network, increasing slopes to a value less

than their new equilibrium value. By 5,000 years, there is some reduction in slopes

(roughly between drainage areas of 4x105 - 8x10 5m 2). However, there is no dramatic

decrease in channel elevations - slopes downstream continue to rise. As the channel

continues to adjust (figure 5-39) the knickpoint continues to sweep upstream with

some lowering of slopes below the knickpoint, and slopes near the outlet continue to

rise. The region just below the knickpoint has an increased channel concavity. This

behavior continues through time (figure 5-40). After the knickpoint has completely

swept through the network, the slopes continue to rise everywhere in the network to

their new equilibrium value (transport-limited style).

The pattern of change in Q, and - through time at a point is similar in both

the 5-fold (figure 5-36) and 60-fold (not illustrated) uplift increase cases. In the 60x

case, - decreases more drastically (to values of less than 0.5); both channel slopes

and erosion rates increase and decrease, but not nearly as drastically as with the

almost-parabolic model.
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Figure 5-38: Using the wear model, change in main channel profile
slope (B) in response to a 60x increase in uplift rate. The thin lines
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Wear Model, Increase Uplift 60x, K=4e-2, Kt=5e-4, mt=1.5, nt=1
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Figure 5-39: Using the wear model, change in main channel profile (A) and channel
slope (B) in response to a 60x increase in uplift rate. The thin lines running through
the slope-area plot are the old (lower) and new (upper) equilibrium solutions. (Later
time from previous plot.)
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(A) Wear Model, Increase Uplift 60x, K=4e-2, Kt=5e-4, mt=1.5, nt=1
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Figure 5-40: Using the wear model, change in main channel profile (A) and channel
slope (B) in response to a 60x increase in uplift rate. The thin lines running through
the slope-area plot are the old (lower) and new (upper) equilibrium solutions. (Later
time from previous plot, note the change in scale on channel elevation plot.)
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5.7 Discussion

Equilibrium network morphology is fairly similar with all of the models explored

here. Including spatial variations in erodibility (through changes in f(Q,)) results in

spatially variable concavity. The variations in concavity are all within the range of

those observed in actual rivers and are not very remarkable. However, the influence

of sediment flux has some interesting and unexpected controls on equilibrium channel

slopes. Using the almost-parabolic model, changes in uplift rate can enhance or

dampen changes in equilibrium channel slopes through variations in sediment supply.

Furthermore, equilibrium channel slopes may change in unexpected ways to climate

when one considers the increased capacity to transport sediment under higher flow

conditions.

The sensitivity of equilibrium channel slopes depends significantly on the param-

eters in the erosion equation. Natural landscapes show significant scatter in these

parameters, and they are highly dependent on the model used. For example, Stock

and Montgomery (1999) estimated that the value of K in the stream-power model

by setting the value of m and n. In streams in Japan and California, K varied by up

to two orders of magnitude within a given lithology, and by as much as five orders

of magnitude between lithologies. Estimates made in the Oregon Coast Range of the

ratio of m/n ranged from 0.8 to 12.9 (Seidl and Dietrich 1992). Snyder et al. (2003b)

found that when they considered thresholds and stochastic storms in their erosion

model of channels in Northern California, their estimated value of n dropped from

3.8 to 1.

The sensitive equilibrium behavior of the almost-parabolic model indicates that

variable erodibility, here modeled through the ratio of sediment flux to sediment trans-

port rate, can have important implications on equilibrium and transient sensitivity.

Other variables, such as thresholds and stochastic storms may be as important and

add complications that should be considered.

The remarkable transient results using the almost-parabolic model could have

important implications when interpreting the landscape. If a channel is cutting ver-
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tically as well as laterally, periods of incision can leave behind a strath terrace. In

some of the examples presented here, the channel went through periods of both rising

and falling in response to a single increase in uplift rate. If the different periods of

channel incision were recorded in fluvial terraces, they could be interpreted the re-

sponse to multiple changes in forcing (Hancock and Anderson 2002). Furthermore,

if the decline in channel slopes was recorded in strath terraces, it would probably be

associated with a decline in uplift rate and not an increase (Pazzaglia et al. 1998).

Channel slopes decline over a significant period of time in some of our experiments as

a result of an increase in uplift rate. This decline in slopes could be very misleading

if such a record was left in the landscape.

With all three of the sediment flux models, there are periods during the transient

in which the channel profile is relatively smooth. One might mistakingly interpret

the channel to be at grade, given the lack of knickpoints or notable disequilibrium.

This could lead to incorrect interpretations of values such as K and 0.

The transient response to a change in uplift rate is very sensitive to the ero-

sion rule. Whipple and Tucker (2002) illustrated the differences between stream-

power detachment-limited channels, transport-limited channels, and mixed channels

(a combination of the two). We have expanded on these results using three different

sediment-flux erosion models. The key difference between the stream-power model

and the rest of the examples here is that the stream-power model is not sensitive

to changes upstream. The sediment-flux term represents a variable erodibility that

can respond to changes throughout the network. Allowing for a variable erodibility

in both space and time can alter network adjustments from the model of a single

knickpoint propagating upstream.

Knickpoints have been observed in many channels, so why not stick with the

stream-power model? Because knickpoints aren't always the whole story. For exam-

ple, Blythe et al. (2000) suggest that there has been an acceleration in uplift rate

in the San Gabriel Mountains, California, over the last 3Ma. In these drainages,

we have observed many higher-order channels that have knickpoints and exposed

bedrock. However, landslides are inundating the upstream parts of the drainages
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with sediment, and erosion rates appear to be limited by the transport and wear

of large boulders. It is likely that the stream-power model could not fully capture

transients in such a case.

There are a number of limitations in our model. We do not consider landslides,

and this could be an important omission. In essence, our models assumes that sedi-

ment delivery from the hillslopes keeps pace with fluvial erosion. If hillslopes adjust

over long time scales, this could be an important oversimplification (Fernandes and

Dietrich 1997). Episodic inputs of sediment to the channel from landslides or debris

flows should have interesting consequences on channel evolution using a sediment-flux

erosion model. Furthermore, although we have made some improvements by allowing

channel erodibility to respond to a change in uplift rate (as opposed to channel slope

only), we do not consider other variables, such as grain size, hydraulic roughness, and

channel width. Snyder et al. (2003a) found that channel width did not vary between

regions of different uplift rates, but few studies have been made on the adjustment of

channel form to uplift rates, leaving room for further investigation.

5.8 Conclusions

We have explored three different models which include sediment flux as an important

variable in setting erosion rates. In all cases, equilibrium produces concave channels.

Concavity varies in the network due to changes in erodibility, however all models

produce reasonable values. Sensitivity of the network to an increase in uplift rate can

be dampened or enhanced when the increase in sediment flux is considered. Changes

in precipitation rate can also have a complex affect on equilibrium slopes because the

sediment transport rate increases with fluvial discharge. Exact changes in channel

slope with precipitation depend on the details of the sediment transport model, and

a simple sediment transport model is applied in this study.

Transient network response is very sensitive to the applied erosion model. Knick-

point propagation is the sole method for a network to respond to an uplift rate

increase using the stream-power model. Using the linear decline model, an increase
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in uplift rate can result initially in a knickpoint propagating through the network

which does not, however, raise slopes to their new equilibrium values; at later times

channel slopes rise throughout the network. The wear model, responds in a similar

manner to a transport-limited model; slopes rise throughout the network and there is

no knickpoint. Only in the most extreme perturbations will a knickpoint result using

the wear model. The almost-parabolic model produces the most surprising transients.

Channel slopes can oversteepen initially due to the lag in response of the sediment

flux. This can cause a complex pattern of increase and decreasing elevations, both in

time and space.

In all of the models, there are periods in which the channel profile is relatively

smooth. At these times, one could easily mistake the channel to be at steady state,

however the transient concavity and channel slopes vary from their equilibrium values.

Declining slopes in response to an increase in uplift rate could leave a very deceptive

mark in the landscape. This study highlights that complexities in the total network

response may have an important influence on the transient state of the main channel

in fluvial bedrock networks.
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Chapter 6

Summary and Future Work

6.1 Summary

This study focuses on two very different types of fluvial environments, alluvial and

bedrock rivers, but in both cases two important results hold. (1) Steady-state channel

networks are concave under a wide range of fluvial erosion processes. However, when

variables other than channel slope control erosion rates, the sensitivity of equilibrium

channel slopes can change. (2) Transient conditions in response to a shift in boundary

conditions are a result of changes in the network as a whole.

We explored the equilibrium sensitivity of the slope-area and texture-area rela-

tionships using two different models for sediment transport of grain-size mixtures: the

Meyer-Peter and Miller equation (1948) using the Komar (1987) hiding function and

the Wilcock (2001) sand and gravel model. Both of these models predict downstream

fining and concave channels in equilibrium. Changes in surface texture are linked to

changes in channel slope, and in general, finer surfaces have shallower slopes and less

concave channels. Under wetter conditions (modeled as higher precipitation rate and,

therefore, higher fluvial discharge values across the network), equilibrium slopes are

shallower and the surface texture is coarser (or contains more gravel). This is not

surprising since the shallower slopes and coarser surface both counteract the increase

in fluvial discharge. However, equilibrium sensitivity to uplift rate or, equivalently,

base-level lowering rate, is not as straightforward. In some cases, adjustments in sur-
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face texture actually allow for shallower slopes in higher uplift conditions; there are

also examples in which slope change is negligible or slopes increase with uplift rate as

expected. The mutual adjustment of both surface texture and channel slope is critical

in determining sediment transport rates and the results predict that it is possible for

the surface texture to absorb changes in boundary conditions, rather than the slope.

Some unexpected results are also produced using the heterogeneous sediment-

transport model to explore network response to a change in forcing. When the uplift

rate is increased (or the base-level lowering rate is increased), the initial response in

the network starts at the outlet and moves upstream, as expected. However, slopes

over-steepen initially, because the surface texture is adjusting more slowly. Channel

slopes begin to decline throughout the main channel while the surface sand content

is still increasing and eventually increases to above its new equilibrium value. Both

channel slope and surface texture over-adjust to the change in uplift rate, causing

periods of decline which would usually be associated with a decrease in uplift rate.

In response to an increase in precipitation rate, the heterogeneous model also

predicts very complex results. The entire network responds immediately to a change

in precipitation rate. Selective erosion and deposition cause the sand content in

the upper parts of the network to increase initially, while lower down in the network,

deposition of gravel coarsens the surface. After the initial response, the network begins

to erode again everywhere, and the surface sand content increases and, eventually,

decreases again. During the transient, network concavity is reduced because of the

large rates of incision in the upper parts of the network. In general slopes are decreased

everywhere, and in some parts of the network, slopes eventually need to steepen again.

All of this complexity results from a single change in precipitation rate.

When sediment flux is considered as a variable driving and/or inhibiting erosion

rates in bedrock rivers, some differences in equilibrium morphology result from pre-

dictions made using the standard stream-power model. Inclusion of sediment flux

essentially allows for spatial variability in the erodibility. In some cases, this leads to

curvature in the slope-area plots, or spatially variable concavity. However, natural

variability in other parameters that control incision rate could hide the changes in
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network concavity, as they are not that extreme. There are some differences in the

sensitivity of equilibrium slopes to changes in boundary conditions when the sediment

flux is considered. For example, changes in uplift rate, resulting in higher equilibrium

sediment-flux values, can enhance or dampen changes in erodibility using the almost

parabolic model. This same model also predicts, in some cases, that an increase in

precipitation rate, resulting in larger sediment transport rates can result in no change

in equilibrium slopes. This result is very sensitive to the sediment transport model

used.

The transient response to an increase in uplift rate is highly sensitive to the

incision model. The linear-decline model predicts knickpoint propagation initially

and steadily increasing slopes throughout the network at later times. The wear model

predicts that elevations throughout the network will slowly increase; an increase and

decrease in slopes can occur in the most extreme conditions. The almost-parabolic

model produces the most dynamic response of all three models explored. Because

increases in sediment flux can both increase and decrease erodibility, and because

there is a lag in response of the upper parts of the networks, an increase in uplift rate

can result in both increasing and decreasing slopes in the main channel. The nature

of the response depends both on model parameters and the magnitude of change in

uplift rate. With all three models, there are periods during the transient in which

the profile is relatively smooth, but the concavity of the network is different (higher

or lower) than its equilibrium value.

The results highlight that a single model of cause and effect may not apply to

fluvial networks. Deposits of fine material do not necessarily correspond to more

arid conditions. Decreasing channel slopes could be temporary and may not imply

an overall decrease in erosion rates. Changes in variables other than channel slope

can dampen or enhances the response of channel slope. There are many factors

controlling erosion rates in rivers, and one needs to consider them all before making

an interpretation about the conditions leading to the present morphology of a river

network.
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6.2 Future Work

There are a number of ways to expand upon the work presented in this thesis. Below

are just a few avenues for future research.

1. In chapter 3 we find that changes in surface bed texture can result in shallower

channel slopes with higher transport rates at equilibrium. In all of the results

presented, the ratio between bed shear stress and critical shear stress varies

downstream. This model differs from that proposed by Parker (Parker (1978);

Parker (1979)) in which the ratio of bed shear stress to critical shear stress re-

mains constant, and channel geometry adjusts downstream. With such a model,

it remains to be seen whether or not texture changes would compensate for the

required increase in sediment-transport rate. This area should be explored.

2. We use a very simple model for rainfall, that is we only model a single storm

intensity and duration. Variable storm intensities could be important omission

from this work. If larger storms do all the work, the channel could be armored

with a coarser surface layer that inhibits erosion during smaller storms, even

on steeper slopes. Because we use only a single storm intensity, we can not

capture these dynamics. In fact, Tucker and Slingerland (1997) found that

storm intensity is the important climatic variable. This avenue could be easily

explored because CHILD already contains a stochastic rainfall model.

3. In all of this work, we ignore sediment delivery from the hillslopes to the chan-

nels. Most likely, hillslope processes add an important degree of complexity

which shouldn't be ignored. The results presented using the multiple grain-size

model in chapters 3 and 4 assume that the distribution of grain sizes coming off

the hillslopes is the same as that transported in the channel. However, it's very

possible that the hillslopes are feeding the channel with coarser material from

processes such as landslides or with finer material carried through sheet wash.

The grain-size distribution of hillslope material could also change in response

to a change in boundary conditions and could counter-act the results we pre-
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dicted. For example, one might expect a faster uplifting network to experience

more landslides, which feed the channels with coarser material. However our

results predict that the equilibrium surface texture will become finer in an en-

vironment with higher erosion rates. The link between hillslopes and the river

network might change these results.

4. The link between hillslopes and channels may also be a critical omission in

the study of bedrock rivers in chapter 5. The erosion models we used consider

sediment load to be an important variable in determining incision rates into

bedrock. Therefore incision rates could be very sensitive to the amount of

sediment fed into the channels from the hillslopes. One could imagine that

the stochastic nature of hillslopes processes such as landslides could leave an

interesting mark in the landscape, causing periods of minimal erosion when the

channel is clogged with sediment after a landslide and possibly later periods

of enhanced erosion when more sediment is sent downstream acting as tools.

These dynamics deserve further attention.

5. Stark and Stark (2001) point out that many variable can respond to a change

in boundary conditions. In both the bedrock- and alluvial-channel transient

experiments, we do not allow channel geometry to respond to the required

changes in erosion rate due to faster uplift rates. It's possible that channels

narrow and deepen in response to higher uplift rates, creating local areas of

faster incision rates with less adjustments in channel slope. This could greatly

affect our results, and a physically based model for changes in channel geometry

in response to changes in uplift rate or base-level lowering rate would be an

important addition to our model. This area requires further field and laboratory

attention.

6. Both Sklar (2003) and Parker (2002) consider much more complicated transport

models in their bedrock incision model than we used in this study. Their model

accounts for variable grain sizes. We have ignored these details in bedrock

channels, and it is well worth exploring. The link between sediment delivery
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from the hillslopes to the channels could have important implications not just

on the total sediment flux but also on the grain size of sediment being fed into

the channels.
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