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Abstract

A new methodology utilizing the spectral analysis of local differential opera-
tors is proposed to design and analyze mode-dependent finite-difference schemes for
linear homogeneous ordinary and partial differential equations. We interpret the
finite-difference method as a procedure for approximating exactly a local
differential operator over a finite-dimensional space of test functions called the
coincident space and show that the coincident space is basically determined by the
nullspace of the local differential operator. Since local operators are linear and
approximately with constant coefficients, we introduce a transform domain
approach to perform the spectral analysis. For the case of boundary-value ODEs, a
mode-dependent finite-difference scheme can be systematically obtained. For
boundary-value PDEs, mode-dependent 5-point, rotated 5-point and 9-point stencil
discretizations for the Laplace, Helmholtz and convection-diffusion equations are
developed. The effectiveness of the resulting schemes is shown analytically, as well
as by considering several numerical examples.
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1. Introduction

In order to derive a finite-difference approximation for the derivative of a smooth

function, a common procedure is to use a Taylor series to expand the function locally

and to select the coefficients such that the order of the discretization error is as high as

possible. This procedure is based on the assumption that smooth functions can be well

approximated by polynomials locally, and in fact it can be shown that the resulting

finite-difference approximation is exact for low order polynomials. However, when the

function is exponentially increasing (decreasing) or highly oscillatory, the polynomial

representation becomes poor and better finite-difference schemes can be derived if we

require that the derivative of exponential or trigonometric functions should be approx-

imated exactly. In this paper, polynomials, exponential and trigonometric functions

are all viewed as modes, and finite-difference schemes obtained by an exact approxima-

tion of the derivative of a certain number of modes are called mode-dependent finite-

difference schemes. These modes are the coincident modes and the space spanned by

them is the coincident space.

Historically, the idea of selecting exponential functions as coincident modes was

first suggested by Allen and Southwell [1] for discretizing the convection-diffusion

equation. An important feature of this problem is that there are large first-order

terms in the governing second-order PDE. Due to these large first-order terms, there

exists a boundary layer which cannot be well approximated by polynomials. The use

of trigonometric functions as coincident modes was first discussed by Gautschi [19] for

the numerical integration of ODEs which have periodic or oscillatory solutions whose

periods can be estimated in advance. In addition, high order finite-difference schemes
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for the Laplace equation were derived by choosing some particular polynomials as

coincident modes [32].

Although the concept of a mode-dependent finite-difference discretization pro-

cedure has been known for years and mentioned repeatedly in literatures (see for

examples the references appearing in Section 6), few theoretical results about this

method have been obtained until now. Important problems, such as whether the

mode-dependent finite-difference discretization procedure can always be efficiently

applied and how to design such a scheme, remain open. This paper provides a metho-

dology utilizing the spectral analysis of local differential operators to answer these

questions. To avoid unnecessary distractions, we will concentrate on ID and 2D homo-

geneous boundary-value problems. However, the general methodology described here

also applies to initial value problems as well as nonhomogeneous equations. We will

demonstrate this point by referring to some related work.

Since a differential operator is well approximated locally by a linear constant-

coefficient operator, the spectral analysis of this local operator becomes relatively easy

and a transform domain analysis can be conveniently applied. In the transform

domain, the differential and difference operators are algebraic expressions in terms of

the complex frequencies s and z. We interpret the mode-dependent finite-difference

discretization procedure as a way to specify how these two expressions match each

other at a certain number of frequencies in the transform domain. This transform

domain viewpoint helps us to gain a better understanding of existing mode-dependent

finite-difference schemes and serves as a basis for designing new schemes.
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We apply the same methodology to both ODEs and PDEs, and develop several

mode-dependent finite-difference schemes. The main results include a (R +l)-point

mode-dependent central difference scheme for a R th-order boundary-value ODE, and

5-point, rotated 5-point, 9-point stencil discretizations for the 2D Laplace, Helmholtz

and convection-diffusion equations. The mode-dependent finite-difference schemes for

the Laplace equation are the same as the conventional ones. However, we present a

new derivation. The mode-dependent 5-point and 9-point stencil discretizations of the

Helmholtz and convection-diffusion equations are new and have an accuracy propor-

tional to O (h 2) and O (h 6) respectively.

This paper is organized as follows. In Section 2, we describe the mode-dependent

finite-difference approximation concept in both the space and transform domains. In

Section 3, we study the discretization of boundary-value ODEs. The problem of deter-

mining the coincident space for homogeneous ODEs is discussed and a mode-dependent

finite-difference scheme is presented. This scheme is shown to be exact for constant-

coefficient ODEs and has a high degree of accuracy for ODEs with smoothly varying

coefficients. The extension to the problem of discretizing nonhomogeneous ODEs is

briefly addressed. In Section 4, we generalize the methodology from one to two

dimensions. In particular, we use the Laplace, Helmholtz and convection-diffusion

equations as examples to demonstrate the mode-dependent finite-difference discretiza-

tion procedure for PDEs. Numerical examples are presented in Section 5. Section 6

discusses several previous related contributions. The main purpose of this section is to

organize the literature concerning the mode-dependent finite-difference approximation

so that more examples will be accessible to interested readers. Some generalizations
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and concluding remarks are given in Section 7.
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2. Mode-dependent finite-difference discretization

Consider the class of functions of the form

2 2 X kU(X) = [CkO+CkX +Ck2-. + " ' +Ckt ]e
k=l

where each term xPsSkX, O < p < nk, is called a mode of order p at the frequency

Sk. We are interested in approximating a linear R th-order constant-coefficient

differential operator operating on u (x ),

L(D)= f arDr,
r=O

where D =-, by a (r 2 -r l+l)-point finite-difference operator

Ld(E)= i brE r ,
r=rl

where E is the shift operator defined on a uniform grid Gh with spacing h, i.e. for nh,

(n +r )h E Gh, Er u (nh ) = u ((n +r )h ). Ld corresponds to a forward, backward or

central difference operator depending on whether r 1 = 0, r 2 = 0 or -r 1 = r 2, respec-

tively. We use

Pn(s)=_u(x): u(x)=esx , Ck Xk } (2.1)
k=O

to represent the space spanned by polynomials of degree at most n multiplied by the

factor eSX. A mode-dependent finite-difference discretization scheme is obtained by

selecting the coefficients br of Ld such that

[Ld(E)--L(D)]u(x)=O for u(x) E C and x E Gh , (2.2)

where C, called the coincident space of the operator Ld, is the direct sum of subspaces

of the form (2.1), i.e.



-6-

c =k P (Sk) (2.3)

A mode in the coincident space C is called a coincident mode, and its frequency is

called a coincident frequency.

The mode-dependent finite-difference scheme can be conveniently formulated in

the transform domain. L (s ) is obtained by replacing D with s through the use of the

Laplace transform in the s -domain,

L(s)= f ars r

r=O

while Ld (z) is obtained by replacing E with z through the use of the Z-transform in

the z -domain,

Ld(z)= i brz r = bre r s h .
r=rl r=rl

where the last equality is due to the fact that since E is related to D via E = ehD

[11], we have z = esh. Then, we can express the difference A between L and Ld in

terms of a single variable s in the transform domain

A(s ) = Ld (eSh ) - L (s ),

and the characterization (2.2)-(2.3) of the mode-dependent finite-difference scheme

can be equivalently stated in the transform domain as

A( p) (sk)= O, O ,<p <nk , 1 , k < K, (2.4)

where (n)(sk)= d A(s) To check that the characterization (2.4) is

equivalent to (2.2)-(2.3), we can proceed as follows. First, using the Taylor series

expansion for A(s ) around a coincident frequency Sk, we have
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A(2)( (S -Sk )2 +
A( ) A(s k ) + A(1)(Sk )(S -S k ) + ( ) 2

In addition, the Laplace transform of A(D )x P e Sk X is

!A(s ) p !A(sk ) p !A(l)(sk) p !A(2)(sk )+ + +···, (2.5)
(s--sk)P+ - (S--Sk)P+ (S--Sk )+ 2(S--Sk )P -1 + " (

As a consequence of (2.4), the leading (nk +1) terms of (2.5) vanish, i.e.

p!A(s ) = A(nk +)(S A(k +2) (s )k+ +(nk ) ) (s-JSk )(k-p S +kl ( 
(S-k )P n +)! (S-Sk )nk --p + nk +2)! ( -

The above function is analytic if and only if nk - p > O. So, using the complex

inversion formula for the Laplace transform, we find that

A(D)xPeSkx = 0 for O < p < nk

Since x P e Sk X with 0 < p < nk and 1 < k < K is a basis of C, the finite-difference

approximation is exact for any vector in the space C.

Example 1: To illustrate the mode-dependent discretization procedure described above,

the coincident modes and coefficients of several 3-point central difference schemes for

the first-order derivative D are listed in Table 1.



modes 1, e`rx sin(ox ), e' x cos(ox ) 1, e rx , xe¢ x ( a O )

eah [asin(oh )--ocos(oh. )]+o (1-ah )e h -1 
b____ o2sin(oh )[cos(oh )-cosh(oh )] I 2h Lcosh(oh )-1]

b ocos(oh )sinh(oh )-osin(coh )cosh(oh ) oh cosh(oh )-sinh(uh )
_____bo I sin(oh )Lcos(oh )-cosh(oh )] h Lcosh(ath )-1]

e - rh [osin(oh )+ocos(oh )]-o -( l+ah )e - r h +1
b _ _ 2sin(coh )Lcos(obh )-cosh(oh )] 2h Lcosh(oh )-1]

modes 1, e 1x, ecr2x ( al a 2 ) 1,, x 2

i1 a 2(1--e lh )-_ol(1-e 2h ) --1
_b_____l sinhl( 2 -a 1)h J+sinh(olh )-sinh(a2h ) 

0 2 sinh(a lh )-olsinh(a 2 h )
sinh[( a 2 -- 1)h J+sinh( 1

h )--sinh[ a 2h )

I 1 l(1- - e - 2h )-a 2 (1--e -ah ) 1
b l 2 sinhL( 2 -a l)h J+sinh( a lh )-sinh a2h )2h

Table 1: The approximation of the first-order derivative D ( L (s) = s ) by a central

mode-dependent finite-difference scheme.
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3. Discretization of boundary-value ODEs

3.1 Homogeneous ODEs

Consider a R th-order homogeneous two-point boundary value problem on [0,1]

with Dirichlet boundary conditions. For convenience, we consider the case R =2m. The

case R =2m +1 gives rise to a similar analysis. The equation is written as

L u =0, where L = ar (x)Dr and a 2 m(x)= 1, (3.1)
r=O

with given u (0) and u (1). We discretize (3.1) on a uniform grid with spacing h by a

(2m + 1)-point central difference scheme,

Ld U =0, where Ld = br (nh )Er, (3.2)
f=-m

and U is the estimate of u on grid points. Suppose that b is an arbitrary function in

the nullspace NL of operator L, and that NL is contained in the coincident space C of

Ld. Then, since

L b=0 and [Ld -L 1]=0,

we obtain

Ld b = 0. (3.3)

Since the discretization for an arbitrary function in the nullspace NL is exact, we con-

clude that equation (3.1) is exactly discretized by (3.2).

The nullspace NL is easy to find if the coefficients ar (x) of L are constant. Even

if these coefficients are not constant but smoothly-varying, L still can be well approx-

imated by a constant-coefficient operator in a local region. This simplification is

always assumed for finite-difference schemes since the finite-difference method is a

local approximation method. For convenience, we drop the spatial dependency of
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coefficients ar (x ) and br (x ), and use the notation ar - a, (x o) and b, b, (x o) inside

operators L and Ld for the rest of this paper. If ar (x) and br (x) are spatially vary-

ing, the discussion is understood to be a local analysis in the neighborhood of x o.

The spectral analysis of a linear constant-coefficient operator L = a arDr can
r=O

be easily performed in the transform domain. The coincident frequencies are roots of

the characteristic equation,

L (S)= s 2 m + a2m _lS2 m - 1 + + a + a O =

In general, L (s) can be factored as

L(s)= fj (--s k )nk, where nk = 2m,
k=l k=l

and Sk is known as a natural frequency of L of order nk . As a consequence, the opera-

tor L has the 2m -dimensional nullspace

NL = i~ Pnk -(Sk ) 

A (2m +l)-point finite difference scheme can be uniquely determined by a

(2m +l)-dimensional coincident space C. However, since a homogeneous finite-

difference equation such as (3.2) can be scaled arbitrarily, a 2m -dimensional coin-

cident space C is sufficient to specify Ld in (3.2). So, letting

C =NL ,

we have an exact discretization scheme for (3.1). For this choice, Ld can be determined

easily as

Ld (z ) = A z -m f (z -Zk ) , where Zk = ekh , (3.4)
k=l

where A is a scaling factor and the multiplication factor z-m is due to the fact that



we want Ld (z) to be a central difference scheme. This can be verified by substituting

L (s ) and Ld (eSh ) back into (2.4).

Hence, after inverse transformation, we obtain the following mode-dependent

finite-difference scheme for (3.1) in the space domain

LdU =0, where Ld(E)=A E - m fi (E -eSkh )n , (3.5)
k=1

and Sk is a natural frequency of L of order nk . The scaling factor A does not affect

the solution of the system of equations (3.5). However, in order to analyze the discret-

ization error A(s ) appropriately, it is important to choose A such that Ld (esh ) and

L (s) are consistent over fine grids. This consideration requires that the scaling factor

A of (3.5) should be proportional to I, as h goes to zero.

Example 2: (1D Laplace equation) For L (D)= D 2 , we know that NL = { 1 , x }. The

coincident modes have the same frequency sk = 0O. According to (3.5), we have

Ld(E)=A E - 1 (E- 1 )2 = A (E-2+E-1). (3.6)

If we choose C = NL + { x 2 }, the constant A can be uniquely determined. Solving

Lx 2 = Ld x 2, where x E Gh, we find that A = 1. Then, (3.6) reduces to the stan-

dard 3-point central difference scheme.

Example 3: (1D convection-diffusion equation) The differential operator is

L (D)= D 2 -a 1 D, where a 1 • O. In this case, NL = { 1 ,ealx } and Sk = 0, a1

Therefore, by (3.5), we have

Ld (E)= A E-' (E-1 )(E - ea1h )=A [E -(l+ealh) +ealhE -1. (3.7)

In particular, if C = NL + x }, we find that A - . Then, (3.7) is identi-
h (e aah -- 1)
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cal to the scheme considered by Allen and Southwell [1].

For comparison, consider the conventional finite-difference scheme for (3.1),

Ld,CU =0, where Ld, (E) = a, h -r Dd +1 (E), (3.8)
r=O

where h -r D;,2m +1 (E ) denotes the (2m +l)-point central difference operator for the

r th-order derivative D r which is obtained by selecting C = P2 m (0) as coincident

space, and by requiring consistency over fine grids. Then, by comparing (3.5) and

(3.8), we see that the mode-dependent scheme (3.5) is obtained by discretizing term by

term the product form of the differential operator L (D), whereas the conventional

scheme (3.8) is found by discretizing term by term the summation form of L (D ).

According to the above discussion, the approximation of the differential operator

L (D ) in (3.1) by Ld (E ) given by (3.5) does not give rise to any discretization error

when the coefficients ar are constant. This fact is also supported by numerical results.

Of course, the mode-dependent scheme (3.5) gives rise to a discretization error

when the coefficients ar are spatially varying. This discretization error depends on the

smoothness of the ODE coefficients and the grid size h. However, the exact form of

this dependency is still unknown, and we have yet to develop a general procedure for

estimating the size of the error in this case. In Section 5, we use a 1D convection-

diffusion equation as a test problem and find that the error of the mode-dependent

scheme is proportional to 0 (E h 2) while that of the conventional scheme is propor-

tional to O (h 2), where E is the first order derivative of the coefficient function. The

mode-dependent scheme is always better than the conventional central-difference

scheme in this test problem and the improvement in accuracy offorded by the mode-
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dependent scheme becomes larger as the coefficient of the convection-diffusion equation

becomes smoother.

3.2 Extensions to nonhomogeneous ODEs

Suppose that (3.1) includes a driving function f (x ), so that

L u-f =0. (3.9)

By performing a Taylor series expansion of f (x) in the vicinity of a discretization

point x 0 , we can assume that f is approximated locally by a polynomial of low

degree, i.e.

f (x)' co+cl x +c 2 x 2 + --...

A general discretization scheme for (3.9), which has been proposed in the context of

the OCI and HODIE methods [4][7][31], is

Ld U -Id f = Ld U -Id Lu = 0, (3.10)

where Id is an averaging operator.

The set of functions whose images through L are polynomials of degree less or

equal to l defines the space

PL, = { U (X): Lu = i PXPr }.
r=O

Note that since the coefficients Pr above can all be selected equal to zero, NL is also

included in PL ,z. The space PL , will be used here to approximate the solution space of

equation (3.9). Suppose that i* is an arbitrary function of the space PL ,. Ideally, we

want

Ld *-Id L *= 0, (3.11)

in order to guarantee that the discretization (3.10) of the nonhomogeneous equation
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(3.9) is exact in the approximated solution space PL , .

In particular, if Id is chosen to be the identity operator I, (3.11) becomes

(Ld -L )*=0. (3.12)

Therefore, the coincident space C of the finite-difference operator Ld for the nonho-

mogeneous equation (3.9) has to be

C = PL,I -

The major disadvantage of this choice is that the dimension of C is larger than that of

NL. Hence, a finite-difference method with more than (2m +1)-points will be neces-

sary and more computations will be required.

The purpose of introducing Id is to reduce the dimension of the coincident space.

For a (2m +l)-point finite-difference scheme, we can decompose the discretization

scheme (3.10) into two steps. First, by choosing C = PL,O, we can uniquely determine

Ld. Then, by using an arbitrary function * of the space PL, e PL ,o as a test function

for (3.11), we can solve for the coefficients of Id. This procedure is illustrated by the

following example.

Example 4: (1D Poisson equation) In this case, we have L (D)= D 2 , NL = { 1, x },

and PL,1 = { 1 , X, 2 , X 3, . ,Xl +2
}. By choosing C = PL,O, we know from example

2 that

Ld(E)= (E- 2 + E - 1 ).

Assuming that Id (E ) = d _E- + d o + d 1 E with respect to the same grid Gh and

solving (3.11) with Ld given above and r = x 3, x 4, we obtain
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Id (E )= E-1 + 5 + E .

Then, the discretization (3.11) is exact for any function in the space PL ,2. More gen-

erally, we call PLI the generalized coincident space Cg ( Ld , Ia ) for the approxima-

tion (3.10) of (3.9). Note that the dimension of Cg for the above example is 5, and

that there are 5 independent parameters in ( Ld Id ) since (3.11) can be scaled by an

arbitrary constant.

The above approach is different from the HODIE method. For a R th-order

nonhomogeneous ODE, the HODIE method uses polynomials of degree less or equal to

n, i.e. P, (0) with n > R, as the generalized coincident space Cg for equation (3.10).

It does not exploit any special structure of the differential operator L. In contrast, our

mode-dependent method uses the approximated solution space PL , -R as the general-

ized coincident space Cg. Hence, a spectral analysis of the operator L is necessary. In

particular, when L = DR, PL,n -R is the same as P, (0). Then, there is no difference

between the HODIE and mode-dependent methods.

The determination of the averaging operator Id for the HODIE method has been

discussed in detail [7][31]. For example, the operator Id may be defined on an auxiliary

grid different from the discretization grid Gh. A similar approach can also be used to

design Id for the mode-dependent method. Note that the selection of the averaging

operator Id has no effect on functions in the nullspace NL. Therefore, the coincident

space C of Ld has to contain NL so that the discretization error for functions in NL

can be eliminated by choosing an appropriate Ld .
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In this paper, we focus primarily on the determination of the coincident space C

and of the finite-difference operator Ld. In the next section, we will therefore restrict

our attention to homogeneous boundary-value PDEs and we will attempt to extend the

methodology developed in this section to the discretization of this specific class of PDE

problems.
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4. Discretization of boundary-value PDEs

Consider a general two-dimensional boundary-value PDE on the square [0,1]2

L (DX ,D ) u = 0, where L (D ,Dy ) ar,s D x Dys , (4.1)
r ,s

Dx and Ds = 85 s, with Dirichlet boundary conditions. We discretize (4.1)
8X ~r Y byS'

with the finite-difference scheme

Ld (Ex Ey ) U = 0, where L (Ex Ey )= 'br,s ExEyS, (4.2)
r ,s

and where Ex and Ey are respectively the shift operators in the x - and y -directions

on the grid Gh ,bhy. Relying on a natural generalization of the 1D case, we have the fol-

lowing associations between the 2D space domain operators and transform domain

variables

Dx -,Sx , Dy 4- Sy , Ex .- Zx , Ey -- Zy

where sx = CX +i tx and sy = oy +i Oy. They are related via Ex = e h Dx, Ey = ehyDy

Zx = e hxsx and zy = e hyy. To simplify the following discussion, we will only con-

sider the case hx = hy = h .

Substituting e Sx X +sYY inside (4.1), we obtain the characteristic equation

Ear,s SSxS = 0 (4.3)
r ,s

There are two complex variables in (4.3), but since we have only one (complex) equa-

tion, there are infinitely many solutions to this equation and therefore infinitely many

modes in NL. It is not possible to approximate all modes in NL exactly. Thus, we

have to select a finite-dimensional subspace DL C NL, called the dominant-mode

space, as the coincident space C for Ld . The determination of DL depends on a rough
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estimation of the local behavior of the solution. This information is usually provided

by the structure of the PDE operator that we consider and the corresponding boundary

conditions. In this section, we restrict our attention to the case where the dominant

modes are either oscillating or exponentially growing (decaying). In other words, coin-

cident frequencies are selected among the sets

{ (S ,Sy ):(s,sy ) = (ax ,y) } or { (SX ,Sy): (SX ,sy)= (iO x,iOy) }. (4.4)

Unlike in the ODE case, the mode-dependent concept does not lead to a unique

discretization scheme. However, by taking into account the symmetrical property of

the spectra of the differential and difference operators and the solubility of the result-

ing finite-difference schemes, we can constrain ourselves within a much smaller design

space. In the following, the 5-point, rotated 5-point and 9-point stencil discretizations

for the Laplace, Helmholtz and convection-diffusion equations will be used as exam-

ples to demonstrate the mode-dependent discretization concept.

4.1 Laplace equation

For the Laplace equation, we have L (Dx ,Dy) = D 2 + Dy2. Since only one fre-

quency (sx ,sy) = (0,0) satisfies the characteristic equation and belongs to the sets (4.4)

of interest, (0,0) is selected as the unique coincident frequency. In this case, the

mode-dependent scheme is the same as the conventional scheme.

The following 5-point, rotated 5-point and 9-point stencil discretization schemes

have been derived by several approaches [11][25][32],

Ld,+(Ex ,E ) = (E1 + E + Ey -+ Ey - 4 ), (4.5)

'F~~~~~~~~~ y - h~~--------------
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Ld,x(EX ,Ey) 2h ( Ex-1F-l1 + Ex-1Ey + E E,-1 + Ex Ey - 4 )(4.6)

Ld 9 = 6 2 [ 4(Ex +E-i+Ey +Ey-1 ) + (Ex Ey+Ex-lE Ey+E7x-1+Eg-lE-1)-20 ]. (4.7)

It is well known that they have respectively an accuracy of O (h 2), O (h 2) and O (h 6)

when used to discretize the Laplace equation [25].

Here, we present another derivation of these schemes by matching L (sx ,sy ) and

Ld (Zx ,zy ) at the coincident frequency (0,0) in the transform domain. As before, we

consider the expansion of A = Ld - L around (0,0),

A(s ,s )= A(o,o)(O,0) + A(1,o)(,O)sX + A(o,1)(0,o0)s + A(2,0)(0,O)Sx2

+ A(1,1)(0,0)2sx sy + A(0, 2)(0,0)sy2 + A(P (,q )(O,p)( + ) ! (4.8)p!q! ' (4.8)P +q 5 '-, 3

where

A(pq)(0,O) = aPPqA( Sy) , )=(OO)
ap s. aq Sy

which is a function of the grid size h. Hence, (4.8) is in fact a polynomial function of

h. Our derivation attempts to make the order of the residual terms in (4.8) as high as

possible.

The discretization schemes (4.5) and (4.6) can be derived by imposing the require-

ment that L and Ld should be consistent over fine grids, and by requiring respectively

that

A(O,°)(0,) = 0 , A(1,o)(0,0) = 0 , (°,1)(0,0) = 0 , (2,0)(0,0) = A(0,2)(0,0) 
and

A(°°)(O,O) = 0 , (1,o)(0,O) = 0 , A(,I)(0,0) = 0 , A(1,)(0,) = 0

Note that if A(2,0)(0,0) = (0,2)(0,0), the fourth and sixth terms of the right-hand side
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of (4.7) can be combined as A(2 '0)(0,0)(sx2 +sy2). This term becomes equal to zero if we

restrict our attention in (4.7) to the frequencies (sx ,sy ) which satisfy the characteris-

tic equation s. 2 +sy2 =0 of the Laplacian operator. Similarly, the 9-point stencil formula

(4.7) can be derived by requiring

A(0',0)=0)= 0 , A(1 0 (0,0)= 0 , A(01)(0,0) 0 , A(20) (0 ,0) (02)(0,0 ) 

A('1)(0,0)= 0 , A( 1' 2 )(0,0)= 0 , A(2,1)(0,0)= 0 , A(4,0)(0,0)= 3 A(2,2)(0,0).

4.2 Helmholtz equation

For the Helmholtz equation, we have

L (DX,Dy ) = Dx2 + Dy2 + 2 .

If sx and sy are purely imaginary, the characteristic equation becomes

2 + t2 = X2, (4.9)

which is a circle in the o, -moy plane, centered at the origin and with radius I XI.

There are infinitely many natural frequencies and, hence, there are many different

ways to select coincident frequencies. In this section, we design mode-dependent 5-

point, rotated 5-point and 9-point stencil discretization schemes based on the following

two considerations. First, if there is no further information about the dominant

modes, a reasonable strategy is to distribute coincident frequencies uniformly along

the contour (4.9). Second, we want to preserve the symmetry properties of L so that

the resulting discretization scheme is in a simple form and can easily be implemented.

Let us select

IXlcos(n 1 1(-I +7J-)i , |Ilsin(nr+ 7)i ), 0 < n < 3,

as coincident frequencies as shown in Figure l(a). With this choice, the discretization
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along the x - and y -directions can be treated independently. The resulting scheme is

Ld (E,E ) = A [ E1i- 2cos( I-h ) + Ex + K(E- - 2cos( -h ) + E ) ] .

Two parameters A and K remain undetermined in the above expression. The parameter

K is selected such that the discretization error A(s ,sy ) at natural frequencies is pro-

portional to O (h 2), and the parameter A is used to normalize the above scheme so

that Ld is consistent with L. A simple choice of K and A for the Helmholtz equation

is K = 1 and A = -~. Hence, this gives a symmetrical 5-point stencil discretization

operator

Ld,+(Ex Ey ) = 1 [ E-1 + EX + Ey - 4cos( h ) ] (4.10)

Rotating the above four coincident frequencies in the transform domain and the above

5-point stencil in the space domain by an angle T- , we obtain another mode-

dependent 5-point stencil discretization. In this scheme, the coincident frequencies

become

( II cos( n )i , I Xlsin(n -r)i ), 0 n • 3.

as shown in Figure l(b), and the resulting 5-point stencil operator is

Ld,x(Ex Ey ) = 2 [ Ex-IE-1 + Ex-1Ey + Ex Ey-l + E Ey - 4cos( I X I h ) ]. (4.1 1)

Notice that this rotated 5-point stencil can be viewed as corresponding to a discretiza-

tion scheme on a grid with spacing /2h . By appropriately combining (4.10), (4.11)

and adding a constant term, we obtain the 9-point stencil discretization operator,

Ld,9(Ex ,Ey ) YxY Ld +(Ex E ) + YY+ Ld ,(Ex ,Ey )-Yx+Y+ (4.12)

Then, if
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h i I1h 1
x -Ldax(et- 2- ,e )= v [ cos(V t I h )+ 1 - 2cos( I )t lh)],

Y+=Ld ,+(e i l xlh, 1 )= -[2cos( I I h) + 2 - 4cos( h

we are able to match Ld (Zx ,zy ) and L (s ,sy ) at 8 frequencies

( I lcos( n )i, I I sin(- r) ), 0 < n 4 7.

as shown in Figure l(c). Thus, (4.12) is the desired mode-dependent 9-point stencil

discretization operator.

When I X I goes to zero, the Helmholtz equation reduces to the Laplace equation

and schemes (4.10)-(4.12) converge to (4.5)-(4.7). So, schemes (4.10)-(4.12) can be

viewed as a natural generalization of (4.5)-(4.7) and apply to both X=0 and X•0. The

error estimate of the above schemes for the test functions e s X +syy , where sx and sy

satisfy the characteristic equation sx2 + Sy2 + X2 = 0, can obtained straightforwardly.

Since

A(D x,Dy )esx +SyY = Ld (eDxh,eDyh )es x +syy = Ld (es h,esyh )esxx +sy 

we only have to replace Ex and E, with esx h and e sy h inside Ld (E ,Ey ) and use a

Taylor series expansion to simplify the resulting algebraic equation. By using this

approach, we find that the two 5-point stencil discretization schemes (4.10) (4.11) and

the 9-point stencil scheme (4.12) have an accuracy of O(h2), O(h2) and O(h6)

respectively.

Unlike in the ODE case, the mode-dependent schemes for PDEs cannot catch all

modes in the null space of L, so that there exist discretization errors even for

constant-coefficient PDEs. Rigorously speaking, the above error estimate applies only to

constant-coefficient PDEs. If the coefficients of the PDE of interest are spatially
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varying, the error associated to mode-dependent schemes is still unknown. But, we

suspect that when the coefficients are smoothly varying, the error is approximately the

same as for constant coefficients.

Conventional finite-difference schemes for the Helmholtz equation are derived by

discretizing the Laplacian with operators (4.5)-(4.7) and then combining them with

the remaining term X2u . The resulting schemes have all an accuracy of O (h 2). There-

fore, the conventional 9-point discretization scheme is much worse than the mode-

dependent 9-point scheme. Although the conventional and mode-dependent 5-point

schemes have the same order of accuracy, the mode-dependent schemes (4.10) and

(4.11) are more accurate than conventional schemes along the contour (4.9). To show

this, the discretization errors for mode-dependent and conventional 5-point discretiza-

tion schemes are plotted in Figure 2 for the case where X = 10 and h = 0.1.

On the other hand, we can also consider the discretization of the operator

L (DX,Dy ) = DX2 + Dy2 - k2 .

Considering only the real frequencies (sx ,sy)= (-ox ,y ), we have the characteristic

equation,

02 + y 2 = X2

Thus, for the present case, we examine the ox -- ay plane, instead of the o, -coy plane.

By using an approach similar to the one described above, we get the following 5-point

and 9-point stencil discretization schemes

Ld ,+(EX Ey)= ' [ E- + Ex + Ey-1 + Ey - 4cosh(Ih) ],

Ldx(EEy)= 1 [ E1
Ld ,x(Ex ey ) [ Ex-Y 1Ex-Ey + E x Ey- + E xE y -- 4cosh( I XIh ) ],
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(EYX ___ Yx Y±
Ld g(Ex ,Ey ) -- LYx+ +d +(Ex ,Ey) + Y+ Ld ,(E ,Ey )- Yx+Y+

where

YX = - [ cosh(/Jl X Ih) + 1-2cosh( I Xh)] , + = [2cosh( 1Xlh)+2-_4cosh( Ia2h)].h2 h2

These schemes have an accuracy of O (h 2), 0 (h 2) and O (h 6) respectively.

4.3 Convection-diffusion equation

For the convection-diffusion equation, the differential operator takes the form

L (DX ,Dy) = Dx2 + D y2 -22DX - 2Dy .

In particular, if we consider only real frequencies (Sx ,sy )= (x ,ay ), the correspond-

ing characteristic equation is

2 + a2-2aox - 2Boy = 0, (4.13)

which is a circle in the ,x -ay plane centered at ( a , B3 ) with radius d = 2+32.

The conventional approach for discretizing the above equation relies on a central

difference scheme to approximate the first and second order derivatives separately.

This gives

Ld, c (Ex )= l [ (1+ah )E-' + (1--ah )E -4 +(1+Ph )E,- + (1-h )Ey 1, (4.14)

which corresponds to selecting a single coincident frequency at the origin. Allen and

Southwell combined two 1D mode-dependent schemes along the x - and y -directions

[1] ( also see example 3 in Section 3 ). This leads to

LdAS (E 2 e 2h Ex-1-e 2h E+Ex)+ e 2h --1. (4.15)

which corresponds to selecting (0,0), (2o(,0), (0,2B), (2ac,2,B) as coincident frequencies.

Motivated by the discussion in the previous section, we select the coincident frequen-

cies
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( +d cos( n -+ I r), 3+d sin( 172 +I r) 0 <n <3,

uniformly along the contour (4.13) and obtain the following stencil

Ld,+(E Ey) = Ey L [ eah E-L + e -Ex + + ehE -4cosh( h ) ] .(4.16)

The multiplication of Ex by the factor e -ah in the x -direction of the space domain

corresponds to a shift in the s, -coordinate in the transform domain, where s, becomes

s, - a, and a similar argument applies also to the y -direction. Therefore, the above

scheme in fact shifts the center (uC,f) of the circle (4.13) back to the origin and treats

it as the Helmholtz equation with radius d. The coincident frequencies of these three

schemes are plotted in Figure 3. Although all schemes have an accuracy of O (h 2),

schemes (4.15) and (4.16) are always diagonally dominant while the conventional

scheme (4.14) loses this property for large cell Reynolds numbers ach andf3h. This is

one major disadvantage associated with the conventional central difference scheme.

Following a similar procedure, we can also design mode-dependent rotated 5-

point and 9-point stencil discretization schemes for the convection-diffusion equation.

This gives

Ld,X(E E) = 21 2[ e(Ea+) h E1l-1 + e(_a)h Ex1Ey

+ e (-a+B)h Ex Ey-+ e -(°a+$)h Ex Ey - 4cosh(dh ) , (4.17)

Ld, 9(ExE ) Yx+ Ld,+(Ex y ) + yY+ Ld,x(EX y ) yx+y + (4.18)

with

X = h-1 [ cosh(1/2dh ) + 1 - 2cosh(dh )], + = [ 2cosh(dh ) + 2 - 4cosh(- h )].
These schemes have an accuracy of 2) and (h 6) respectively.

These schemes have an accuracy of O (h 2) and O (h 6) respectively.
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5. Numerical Examples

We use the ID and 2D convection-diffusion equations as test problems to demon-

strate the efficiency of the mode-dependent finite-difference method.

(1) 1D test problem

Consider the 1D convection-diffusion equation on [0,1]

d 2u du wr-lEd -a(x () - = , where a(x)= 10+E +l+Ex (5.1)

with given u (0) and u (1). Our goal is to study the effect of the linear perturbation

term E x on the accuracy of the mode dependent discretization scheme described in

Section 3. Note that when E = 0, the coefficient a (x) is constant, and according to our

analysis we expect that in this case the mode-dependent discretization will be exact.

The term 0+ E is added so that (5.1) has the following analytic solution

u (x )= (0))+[u(1)-u(O)] exp(10x +0.5Ex2)--1 where exp(x )e x
exp( 10+0.5 E) - 1 'xp(x)=eX

The boundary conditions u (0) = 1 and u (1) = 10 are selected. We compare the con-

ventional and mode-dependent central difference schemes, i.e.

an h an h
(1---2--- )Un + - 2Un + (+ 2 )Un_l = 0, (5.2a)

exp(- )Un + 1 - 2cosh( )Un + exp( an)Un- = 0, (5.2b)

where h = , 1 n -1, Uo = u (0) and UN = u (1).

First, we study the effect of the grid size h when the parameter E = 1. Figure 4

shows that the errors of both schemes are proportional to O (h 2). Next, we study the

impact on the error of variations of the coefficient function a (x ). The first derivative

of the coefficient function a (x) is approximately measured by the parameter E, so that
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E can be used as a measure of the local variations of a (x ). Errors versus E for a fixed

grid size h = 1 are plotted in Figure 5. From this figure, we see that the conven-

tional scheme is insensitive to changes in E while the error of the mode-dependent

scheme is proportional to O ( E).

(2) 2D test problem

The 2D test problem is the equation on [0,1]2

82u ~+ _-( 8+ Ex x + ) Cx - ( 6+ +Ey y+. ) =0, (5.3)x2 a0 y2 +EX Xy 6+Ey y Y

with Dirichlet boundary conditions associated with the following three exact solutions

(1) Ex = E = 0, u (x,y ) = exp[( 4+5cos( 7 ) x + ( 3+5sin( 7--) )y ]. (5.4a)

(2)x = Y = 0,u(x ,y)= (0.2 +6e8 x )(0.01 +2e 6Y ), (5.4b)

(3) ex = ey = 0.002, u (x ,y ) = [ 0.2 + 6 exp(8x +10-3X2) ] [ 0.01 + 2 exp(6y +10-3y 2 ) ].(5.4c)

We use the finite-difference schemes (4.14)-(4.18) discussed in Section 4.3 to discretize

(5.3) with grid size h = A5, -, 1- and 3. The resulting systems of equations are

solved by the SOR method for test cases (1) and (2) and by a local relaxation method

described in [8], [26] and [27] for test case (3). We plot the errors versus the grid size

in Figures 6-8.

For test case (1), the solution contains a single mode. All 5-point stencil discreti-

zation schemes have an accuracy of O (h 2). The 9-point stencil discretization has an

accuracy close to O (h 6) when the grid sizes are still coarse.

For test case (2), the solution contains four modes 1, e 8x, e 6Y and e 8X +6Y. In this

case, since the Allen-Southwell scheme catches all these modes, it should be an exact
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method. Thus, its error represents the numerical rounding error instead of the discreti-

zation error. The other 5-point stencil discretizations give an error proportional to

O (h 2) for fine grids. The 9-point stencil scheme is considerably more accurate than the

other 5-point stencil schemes. It comes close to the exact method when the grid size is

1
32'

Test case (3) can be viewed as obtained from test case (2) by introducing linear

perturbation terms Ex x and Eyy with Ex = Ey = 0.002 in the coefficient functions.

We consider the effect of small variations of the coefficient functions. The Allen-

Southwell scheme is not exact any longer, but still has a high accuracy. The 9-point

discretization scheme has almost the same performance as the Allen-Southwell

scheme. However, if we compare Figures 7 and 8, we see that the coefficient variations

due to Ex and Ey make the error of the 9-point scheme 10 times larger for the unper-

turbed case depicted in Figure 7. The accuracy of the other 5-point stencil schemes

remains approximately the same.
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6. Related previous work

Although its properties were not always well understood, the mode-dependent

finite-difference method has been discovered and rediscovered several times by a

number of researchers and has been applied to the discretization of several types of

ODEs and PDEs.

As was mentioned earlier, when the cell Reynolds number is large, the conven-

tional central difference discretization of the convection-diffusion equation has

difficulties to converge. Hence, the need for a mode-dependent scheme arises naturally

when discretizing this equation, and more generally, when considering singular pertur-

bation problems. Allen and Southwell [1] presented the first discretization of this

type. A more detailed investigation of this scheme was performed by Dennis [12].

Since then, there has been a number of rediscoveries and elaborations such as [3] [9]

[18] [28] [29] [35] [36] [39] [40]. Applications of Allen-Southwell's scheme to 2-D or

3-D fluid flow problems can be found in [2] [13]-[17] [37] [38] [41]. Some researchers

extended the mode-dependent idea to the design of finite-element methods, see e.g. [6]

[10] [21]-[24] [33]. The methodology described in this paper can be also applied to the

discretization of initial value ODEs. A mode-dependent finite-difference scheme for

initial-value ODEs was first studied by Gautschi [19]. Some generalizations of

Gautschi's work can be found in [5] [30] [34] [42] [43].

Interestingly, the mode-dependent scheme has been introduced under a number of

different names such as the locally exact technique [3], the weighted-mean scheme

[18], the smart upwind method [20], the optimal finite analytic method [32] and the

upstream-weighted difference scheme [35].
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7. Conclusions and Extensions

In this paper, we have used the spectral structure of differential operators to

obtain more accurate finite-difference schemes. The transform domain point of view

was shown to be simple and useful. For the case of homogeneous ODEs, we proposed a

universal mode-dependent finite-difference scheme which is exact for constant-

coefficient equations, and has a very high accuracy for equations with smoothly vary-

ing coefficients. For homogeneous PDEs, we considered mode-dependent 5-point,

rotated 5-point and 9-point stencil discretizations of the Laplace, Helmholtz and

convection-diffusion equations. The mode-dependent schemes for the Helmholtz and

convection-diffusion equations turn out to be natural extensions of the schemes

derived for the Laplace equation.

There exist similarities and differences between the mode-dependent finite-

difference method and spectral methods. Both discretization techniques are based on a

spectral analysis of the differential and difference operators and try to match their

spectral properties. However, the spectral method analyzes spectra by using Fourier

basis functions, i.e. functions with frequencies along the imaginary axis. In this

approach, a large number of basis functions is usually required to synthesize a given

function. Hence, in order to get a high degree of accuracy, more grid points are neces-

sary and the resulting scheme is a global one. The mode-dependent finite-difference

method enlarges the set of basis functions so that the spectral analysis can be per-

formed in the entire transform domain. Since fewer basis functions are required to

synthesize a function due to this enlargement, the resulting scheme is local. This local

nature of the mode-dependent finite-difference method makes it easy to analyze and
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insensitive to boundary conditions. In contrast, spectral methods are relatively more

complicated and sensitive to different types of boundary conditions.

We basically focused on the discretization of a differential operator in the interior

region and used the simplest Dirichlet boundary conditions throughout this paper.

Since the finite-difference method is local, the discretization scheme for grid points in

the interior region will not be affected by the specific nature of the boundary condi-

tions. However, grid points along the boundary need some special treatment. Although

the general mode-dependent concept should still apply in this case, some details need

to be examined in later work. In addition, as mentioned above, it would be of interest

to find a general procedure for estimating the error of mode-dependent finite-difference

schemes when they are applied to varying-coefficient differential equations.
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Figure Captions

Figure 1: Coincident frequencies of the mode-dependent (a) 5-point (b)
rotated 5-point and (c) 9-point stencils discretizations of the Helmholtz
equation.

Figure 2: Plot of I A(tox ,oy)l as a function of c along the contour
(tx oy ) = ( I A I cos(c 7r), I A I sin(c wr)), for (a) conventional and (b) mode-
dependent 5-point stencil discretizations of the Helmholtz equation.

Figure 3: Coincident frequencies of the (a) central difference, (b) Allen-
Southwell, and (c) uniformly-distributed mode-dependent 5-point stencil
discretizations of the convection-diffusion equation.

Figure 4: Io,-norm of the error versus the grid size h for (5.1) with E= 1:
(a) the central difference scheme and (b) the mode-dependent scheme.

Figure 5: 1 ,o-norm of the error versus the parameter E for (5.1) with

h = a-: (a) the central difference scheme and (b) the mode-dependent

scheme.

Figure 6: 1o,-norm of the error versus the grid size h for (5.4a): (a) Ld ,,
(b) Ld,AS, (c) Ld,+, (d) Ld,x and (e) Ld,9 given by (4.14)-(4.18).

Figure 7: 1O,-norm of the error versus the grid size h for (5.4b): (a) Ld,c,

(b) Ld,AS, (c) Ld,+, (d) Ld,x and (e) Ld,9 given by (4.14)-(4.18).

Figure 8: 1to-norm of the error versus the grid size h for (5.4c): (a) Ld,c,

(b) Ld,AS, (c) Ld,+, (d) Ld,x and (e) Ld,9 given by (4.14)-(4.18).
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Figure 1: Coincident frequencies of the mode-dependent (a) 5-point (b)
rotated 5-point and (c) 9-point stencils discretizations of the Helmholtz
equation.
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Figure 2: Plot of I A(o ,,)l I as a function of c along the contour
(o, ,_oy ) = ( IX I cos(c 7r), I X I sin(c 7r)), for (a) conventional and (b) mode-
dependent 5-point stencil discretizations of the Helmholtz equation.



- 39 -

4'f

(a)

ay

d

(b)

a~y

(c)

Figure 3: Coincident frequencies of the (a) central difference, (b) Allen-
Southwell, and (c) uniformly-distributed mode-dependent 5-point stencil
discretizations of the convection-diffusion equation.
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Figure 4: 1 -norm of the error versus the grid size h for (5.1) with E= 1
(a) the central difference scheme and (b) the mode-dependent scheme.
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Figure 5: o-norm of the error versus the parameter E for (5.1) with

h = -- : (a) the central difference scheme and (b) the mode-dependent
scheme.
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Figure 6: 1 ,-norm of the error versus the grid size h for (5.4a) : (a) Ld ,c ,

(b) Ld ,AS, (C) Ld ,+, (d) Ld ,X and (e) Ld ,9 given by (4.14)-(4.18).---------- ---------- ------- ----------------------------------------------------- --------------------- - --------------------

-- i--------------------- ----- --------------------------

(b) Ld,As, (c) Ld,+, (d) Ld,x, and (e) Ld,9 given by (4.14)-(4.18).
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Figure 7: 1 o-norm of the error versus the grid size h for (5.4b) : (a) Ld ,,

(b) Ld ,AS, (c) Ld,+, (d) Ld ,x and (e) Ld ,9 given by (4.14)-(4.18).(b) Ld ,AS, (C) Ld,+, (d) Ld ,X and (e) Ld ,g given by (4.14)-(4.18).
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Figure 8: 1 o,-norm of the error versus the grid size h for (5.4c): (a) Ld ,,,
(b) Ld ,AS, (C) Ld,+, (d) Ld ,x and (e) Ld ,9 given by (4.14)-(4.18).


