

Abstract—A typical example of a batch processor is

the diffusion furnace used in wafer fabrication facilities.
In diffusion, silicon wafers are placed inside the furnace,
and dopant is flown through the wafers via nitrogen gas.
Then, a thin layer of silicon dioxide is grown, to help the
dopant diffuse into the silicon. This operation can take
10 hours or more to finish processing, as compared to
one or two hours for other wafer fab operations.
Diffusion furnaces typically can process six to eight lots
concurrently; we call the lots processed concurrently a
batch. The quantity of lots loaded into the furnace does
not affect the processing time. Only lots that require the
same chemical recipe and temperature may be batched
together at the diffusion furnace.

We wish to control the production of a
manufacturing system, comprised of a serial processor
feeding the batch processor. The system produces
different job types, and each job can only be batched
together with jobs of the same type. More specifically,
we explore the idea of controlling the production of the
serial processor, based on the wip found in front of the
batch processor. We evaluate the performance of our
manufacturing system under several simple control
policies under a range of loading conditions and
determine that the concept of using the wip levels found
in front of the batch processor to control the serial
processor can reduce the mean cycle time. It is hoped
that the results obtained from this small system could
be extended to larger systems involving a batch
processor, with particular emphasis placed on the
applicability of such policies in wafer fabrication.
 Index —Batch processor, control policy, multiple job types.

Manuscript received November 21, 2005. This work is supported by
the Singapore-MIT Alliance, Singapore.

J. C. Tajan is a PhD student with the Singapore-MIT Alliance under
the Innovations in Manufacturing Systems and Technology program
(phone: (65)-9194-9944; e-mail: taja0001@ ntu.edu.sg)

A. I. Sivakumar is an Associate Professor with the Mechanical and
Aerospace Engineering Department, Nanyang Technological University,
Singapore. (e-mail: msiva@ntu.edu.sg)

S. B. Gershwin is a Senior Research Scientist with the Mechanical
Engineering Department, Massachusetts Institute of Technology, MA,
USA. (e-mail: sbgershwin@mit.edu).

I. INTRODUCTION
onsider the following problem: milk and ice cream
arrive into a packaging facility and wait for an
operator for final packaging. The packaged items are

then transferred to a loading dock to wait for refrigerated
trucks to distribute the items to various supermarkets. Each
truck can carry up to Q items. A truck cannot transport both
items at the same time, since milk and ice cream require
different temperatures. Each time a truck is available, the
driver has to decide which product to bring, and, if the
number of items waiting at the dock is less than Q, the
driver also has to decide whether to wait for more items, or
to leave immediately. We wish to reduce the amount of time
the items spend in the packaging facility.

The system described above consists of a serial
processor (processor with unit capacity) feeding a batch
processor (processor with capacity greater than one). Jobs
of different types cannot be processed together in a batch
processor. Batch processors are used in several industries,
most notably in the metal works industry (Mathirajan, et al.
[1]) and semiconductor manufacturing (Bhatnagar, et al.
[2]) A survey on batch processor scheduling for the
semiconductor industry by Mathirajan and Sivakumar [3]
noted an increasing trend in research related to batch
processor control for the semiconductor industry. This may
be attributed to the extent batch processors are used in
semiconductor manufacturing.

A typical example of a batch processor is the diffusion
furnace used in wafer fabs. This operation can take 10 hours
or more to finish processing, as compared to one or two
hours for other wafer fab operations, according to Uzsoy
[4]. Diffusion furnaces typically can process six to eight lots
concurrently as a batch; and the batch quantity does not
affect the processing time. Only lots that require the same
processing parameters may be batched together.

To obtain intuition on system behavior, we characterize
the performance of the system as system parameters are
varied. We also explore the idea of controlling the
production of the serial processor, based on the wip found
in front of the batch processor. We compare the
performance of our manufacturing system under several

Performance of a serial-batch processor system with
incompatible job families under simple control policies

John Benedict C. TAJAN1, Appa Iyer SIVAKUMAR2, and Stanley B. GERSHWIN3

1 Singapore-MIT Alliance, Innovations in Manufacturing Systems and Technology,
(phone: (65)-9194-9944; e-mail: taja0001@ ntu.edu.sg)

2 Mechanical and Aerospace Engineering Department, Nanyang Technological University, Singapore,
(e-mail: msiva@ntu.edu.sg)

3 Mechanical Engineering Department, Massachusetts Institute of Technology, MA, USA, (e-mail: sbgershwin@mit.edu)

C

simple control policies to determine under what conditions
certain concepts improve system performance.

A. Literature Review
There are two different types of batch processors. For the

burn-in oven in semiconductor test, there are no job type
restrictions in creating a batch. However, the processing
time for the burn-in oven is equal to the maximum required
processing time of all the jobs included in the batch. This is
not covered in this review, nor will it cover the case where
all future arrivals are known. The purpose of this review is
to give readers an idea as to what has been done. A more
exhaustive review on controlling batch processors in the
context of semiconductor manufacturing is [3].

We divide the research involving batch processors with
incompatible jobs into three classes. The first class
considers the batch processor as a single entity. The second
class refers to look-ahead methods, which assume a limited
knowledge of future job arrivals. The third class considers
multi-stage models involving a batch processor.

1. Control of batch processor as a single entity

Uzsoy [4] developed efficient algorithms for minimizing
the makespan (CMAX), maximum lateness, and the
weighted sum of completion times (SUMCI) of a single
processor, when all jobs are already in front of the batch
processor. It has been difficult to obtain efficient exact
algorithms to extensions to this basic model; non-
polynomial algorithms or heuristics have been proposed to
optimize total tardiness (Mehta and Uszoy[5]), total
weighted tardiness (Carlyle, et al.[6]), weighted SUMCI
(Azizoglu and Webster[7]), and the number of tardy jobs
(Jolai[8]), among others. Heuristics have also been
proposed by Uszoy [4] and Balasubramaniam [9] to extend
the results when there are m processors in parallel.

When future job arrivals are unknown, Deb and Serfozo
[10] used a dynamic programming (DP) formulation to
obtain the optimal minimum batch size (MBS) policy when
all jobs are compatible at the batch processor; at any
instance the batch processor is available, only load a batch
if there are at least x jobs in the queue. Later extensions to
this model include compound Poisson job arrivals (Deb
[11]), limited buffer sizes (Aalto[12]), and limited buffer
sizes combined with compound Poisson arrivals
(Aalto[13]).

Duenyas and Neale [14] extended [10] to the case where
jobs are incompatible, and suggested a heuristic that
considered system stability and the estimated time for the
next compatible job type arrival. Reference [15] proposed
threshold policies for reducing the cycle time when the
arrivals follow a Poisson process and the processing time is
independent and identically distributed.

2. Batch processor look-ahead methods
Look-ahead methods are based on the premise that

knowledge of future arrivals will result in a better batching
decision at the batch processor. The advent of automated
manufacturing execution systems have encouraged

increasingly sophisticated look-ahead methods. Reviews of
some look-ahead strategies can be found in [16] and [17].

Glassey and Weng [18] proposed a predicting the next n
arrivals, and calculating the best time to load the batch to
minimize the average waiting time. Although it assumed
that all jobs are compatible at the batch processor, this has
served as the prototype for all look-ahead methods. Fowler,
et al. [19] proposed using only the next arrival information,
and extended the results to handle incompatible jobs.
Variations of this include using different objective
functions (Weng and Leachman[20]) and taking the set-up
requirements of a downstream machine into consideration,
(Robinson, et al.[21], Van Der Zee [22], Solomon, et
al.[23]). Van Der Zee [24] considered the case where there
are m batch processors in parallel, each with different
capacities and processing times.

3. Multi-stage models involving a batch processor

To facilitate discussion, β refers to a batch processor
with capacity Q, δ refers to a discrete processor with unit
capacity, and → refers to a precedence relation. Unless
mentioned, it is assumed all jobs are waiting in front of the
first processor, and all jobs are compatible.

Ahmadi, et al. [25] looked into reducing CMAX and
SUMCI for the following systems: β→ δ, β1→ β2, δ → β.
Kim and Kim [26] used genetic algorithms to improve on
the heuristics suggested by [25] for a β→ δ system. Sung
and Min [27] looked into earliness/tardiness measures for
the same systems as [25]. Sung and Kim [28] developed
polynomial algorithms for minimizing tardiness measures
for the β1→β2 system configuration. This was later
expanded into a flow line of m batch processors by Sung,
et al. [29].

When future job arrivals are unknown, Gurnani, et al.
[30] suggested threshold policies for a δ→β system where
there are m unreliable serial processors feeding the batch
processor. Neale and Duenyas [31] developed DP
formulations for minimizing SUMCI for the δ→β, β→δ
and δ→δ→β systems. They determine that information
from upstream processors is more valuable compared to
information from downstream processors, although there is
a large decay in the incremental improvements for each
additional stage considered.

Due to the complexity of evaluating the control of
multiple stage systems involving multiple job types,
simulation has become the dominant method in handling
incompatible job types at the batch processor. Rulkens, et
al. [32] used simulation to determine the respective optimal
minimum batch sizes for each lot priority dispatching rule,
while Akcali, et al. [33] used simulation to evaluate which
set of dispatch rules improve fab cycle time.

B. Research Significance
The semiconductor manufacturing industry has quickly

become one of the main drivers of the global economy;
worldwide semiconductor revenues reached $100.8 billion
in the first half of 2004 [34]. However, capacity expansion
in the semiconductor industry is both expensive and time-

consuming. This is particularly true for wafer fabs. High
utilization rates leave little room for error in terms of
production control; it is estimated that capacity utilization
for wafer fabs in the second quarter of 2005 is 88.8% [34].
This magnifies the importance of production control in
keeping a company competitive.

A typical lot passes through several batch processors
before exiting the wafer fab. The control of these batch
processors has significant implications to the performance
of wafer fabs, for several reasons. These include:
• Batch processors typically have long processing times,
compared to other operations. Yield is inversely
proportional to the cycle time of the lot; this delay not only
increases the probability of not meeting the customer due
date, but can also result in yield loss.
• The throughput of batch processors is dependent on the
control policies used. A control policy that loads only two
lots when the maximum capacity is four lots effectively
halves the maximum throughput of the batch processor.
Although photolithography is generally acknowledged to
be the bottleneck in wafer fabrication, a poor control policy
at the batch processors can cause the furnace to act as a
situational bottleneck and limit the throughput of the entire
system, with a corresponding increase in wip.
• Batch processors are bulk servers; they induce large wip
decrease and increase. This introduces more variability into
the system and can cause system-wide performance
degradation if not properly controlled.

Few researchers have designed wafer fab production
control policies that place an emphasis on batch processor;
the control of the batch processor has often been
considered an isolated sub-problem to the problem of
controlling wafer fabs. This is despite what Fowler and
Mason [35] observed: good wafer fab schedules tend to
have good batch processor schedules. We believe there is a
significant opportunity for improvement by setting the
control of the serial processors as a function of the batch
processor’s status.

Look-ahead control policies for the batch processor that
use information from a limited number of upstream and
downstream processors to control the batch processor have
become increasingly popular. These methods have a
potentially significant drawback: the batch processor
cannot influence the arrival patterns of its wip; it can only
predict its arrival pattern. A hypothetical control policy that
can influence the job type being processed by upstream
processors should, in theory, be at least as good as a look-
ahead policy, with the potential for significant
improvement.

The long-term goal of this research is a manner of
controlling the wafer fab that bridges the divide between
the control of batch processors as a single entity and the
control of the entire wafer fab. The idea of driving the
correct type wip into batch processors to improve system-
wide performance is a fundamental shift from what has
been previously proposed. As a first step to accomplishing
this goal, we characterize the performance of a small two-
stage system and evaluate the performance of this system

under some simple control policies. Since we are
concerned mainly about building intuition about the system
in this early stage of the research, we neither emphasize
numbers nor prove statements; but instead concentrate on
interpreting the overall trends observed.

C. Paper Outline
Section two describes the problem in greater detail and

presents the manner in which the problem was modeled.
Section three describes the control policies for which the
manufacturing system is ran. Section four characterizes the
gross system performance and compares the system
performance under several control policies. Section five
summarizes the results, and briefly discusses future
research directions.

II. PROBLEM STATEMENT AND METHODOLOGY

A. Problem Statement
A manufacturing system is comprised of two perfectly

reliable processors that process n different job types. All
job types visit the processors in the same order. The first
processor M1 is a serial processor, and the second processor
M2 is a batch processor. The batch processor M2 can
process up to Q jobs of the same type at an instance, and
processing time is independent of the number of jobs
loaded into the processor. Job preemption is not allowed.
No set up times are required on either processor.

In front of each processor Mi are n different buffers Bij
of finite size Cij; each buffer Bij serves as a temporary
holding cell for jobs of type j waiting to be processed by
processor Mi. When the current buffer level bij of buffer Bij
is 0, processor Mi is starved of job type j, and Mi cannot
process job type j; When bij = Cij, incoming arrivals into
buffer Bij are blocked, and these arrivals are lost.

A typical sequence of events for a job J of type j would
be: job J attempts to enter the system and checks if b1j >
C1j. If b1j < C1j, then job J enters B1j and waits for M1 to
process it. If B1j > C1j, then job J is rejected and lost
forever. It is assumed that any control policy at M1 ensures
that job J can be accommodated by B2j before processing J.
This ensures that the rate jobs enter the system is equal to
the rate jobs exit the system. After being processed by M1,
job J enters B2j and waits for M2 to process it. Job J exits
the manufacturing system after being processed by M2.
Figure 1 illustrates the manufacturing system when the
number of job types n = 2.

Fig. 1: A two-stage manufacturing system with a serial-batch
configuration. In this example, the system is processing two job types, and
would have two buffers, one for each job type, in front of every processor.

B. Methodology
Our preliminary research has two main goals: to

characterize the performance of the system under a set of
parameters and to determine which conditions a particular
control policy would perform better than others.

We assume two different control policies for the batch
processor. The full batch policy will not load any partial
batches into the batch processor; the batch processor will
wait for additional arrivals, if a full batch is unavailable.
The no idling policy will load batches into the batch
processor as long as wip is present in the buffers B21 and
B22. Both policies will load the job type with more wip in
front of the batch processor; in case of a tie, job type one is
selected. These two control policies can be considered the
extremes of every control policy at the batch processor;
one policy never waits for additional arrivals, while
another policy always waits until the batch processor is
full.

We test three different serial processor control
policies, as combined with the two batch processor
policies, to determine relative performance of the
manufacturing system under each serial-batch control
policy combination. All three control policies will not
process a job if there is no space to store this job in front of
the batch processor. Furthermore, all three policies are
non-idling: as long as a job of any type can be processed,
the processor is kept busy. The three policies are:
• Myopic control policy - The operator prefers to process
job type one if b11>b12, and prefers to process job type two
if b12>b11. The intuition behind this policy is simple: by
processing the product type with more wip, we reduce the
probability of any external arrivals getting rejected by the
system.
• Greedy look-ahead control policy - The operator prefers
to process job type one if b21>b22, and prefers to process
job type two if b22>b21. Since the batch processor will
process the job type j with the most wip in front of the
batch processor, we want to either hasten the formation of
a full batch of type j, or include more jobs of type j into the
batch.
• Balanced look-ahead control policy - The operator
prefers to process job type one if b21<b22, and prefers to
process job type two if b22<b21. This policy is essentially
the reverse of the greedy look-ahead policy. By aiming for
a balanced wip level between two job types in front of the
batch processor, we guard against prematurely blocking the
production of a job type. This happens when the serial
processor keeps on processing a single job type.

The two batch processor and three control processors
combine to form six possible two-stage control policies.
We model the two-stage manufacturing system running
under one of these six policies as a continuous time-
discrete state Markov chain, with time-invariant transition
probability rates. Due to the exponential growth of the state

space with respect to the number of job types n, we limit n
to two.

We make the following assumptions:
• The time between external arrivals of for any job type j
is exponentially distributed with mean 1/λj. If the buffer B1j
is full, arrivals are rejected.
• The time required to process a job of type j at the serial
processor is exponentially distributed with mean 1/µsj. The
serial processor will not process job type j if buffer B2j is
full.
• The time required to process a batch at the batch
processor is exponentially distributed with mean 1/µB,
regardless of the type currently being processed. The
common mean processing time allows us to obtain the
mean cycle time from the steady-state probabilities without
keeping track of the amount being processed at the batch
processor.

For brevity the details of the Markov model is omitted.
The reader is invited to contact the authors for the
implementation details. We use the steady state
probabilities to obtain the throughput and the mean cycle
time of the system subjected to a specific control policy.

III. DISCUSSION OF NUMERICAL RESULTS

A. Experimental Setup
A total of six two-stage control policies are evaluated:

We have two broad experimental set ups. In the first setup,
the buffer size is kept constant, and the batch processor
capacity is varied. For each two-stage control policy, batch
capacity and buffer capacity setting, 25 data points are
collected. Each data point corresponds to a particular
combination of traffic intensities on the two processors.
The second setup has a fixed batch capacity and the buffer
capacity is incremented. Table 1 summarizes the settings
for which the experiments performed. We use traffic
intensity to refer to the ratio between the arrival rate and
the maximum processing rate. When the processor has unit
capacity, the traffic intensity is equivalent to the utilization.

Traffic intensity TI = (mean arrival rate) / (processor
capacity * mean processing rate).

For each experiment, the mean processing rate of the
serial processor M1 is held constant at one unit per unit
time, and the nominal traffic intensities are used to
determine the mean arrival rate of both job types, as well as
the mean processing time at the batch processor M2. For all
experiments, both job types are assumed to have equal
arrival rates. Let 1/λ1 be the mean arrival rate for job type
1, 1/λ2 be the mean arrival rate for job type 2, and µB be the
mean time to finish processing a batch in the batch
processor. Then,

1/λ1 = 1/λ2 = traffic intensity TI of M1/ 2 and
µB = (TI of M2 * capacity Q) / TI of M1.

This equates utilization of the serial processor with
average throughput rate. For fixed serial processor TI and
fixed batch processor capacity, TI at the batch processor is
proportional to batch processor processing times. For fixed

batch processor TI and capacity, when the serial processor
TI is low, the arrival rate is low and the mean time to
process a batch is long. When the serial processor TI is
high, the arrival rate is high and the mean processing time
is short.

Due to space constraints, it would not be possible to
show all the results obtained. We will be concentrating on
the case where the serial processor TI is high. When the
serial processor TI is low, the job arrival rate is low. When
this happens, the processing at the serial processor is
dictated by the availability of wip, and the differences
between the control policies are muted.

Table 1: Experimental setup summary
 No. of

control
policies

Buffe
r Size

Q M1 TI M2 TI

Evaluate
effect of
batch
capacity

6 6 2, 3,
4, 5

0.2,
0.4,
0.6,
0.8,
1.0

0.2,
0.4,
0.6,
0.8,
1.0

Evaluate
effect of
buffer
size

6 2, 3,
4, 5,
6, 7

2 0.2,
0.4,
0.6,
0.8,
1.0

0.2,
0.4,
0.6,
0.8,
1.0

B. Performance characterization of system model
We have observed that the performance of the system is

generally invariant of the problem parameters. Only one
representative graph is provided.

1. Effect of increasing buffer size

Figure two illustrates the evolution of the system’s
throughput as a function of the batch processor traffic
intensity for several buffer sizes, when the serial processor
traffic intensity is 0.8. This is a strong bound on the
throughput of the system. By increasing the batch
processor TI while keeping the serial processor TI, the
average processing time of the batch processor lengthens.
 We expect that the throughput of the system will
decrease as the batch processor TI increases; as the mean
processing time of the batch processor increases, the
probability of wip accumulating in front of the batch
processor increases, and this can block the production of
the serial processor. This intuition is corroborated by
Figure 2. Furthermore, the larger the buffer sizes, the less
likely this chain of events will occur. Judging from the
concavity and the negative slopes of the curves, the
throughput loss increases as the batch processor TI
increases. Furthermore, the incremental throughput
increase diminishes as the buffer sizes increase.

Throughput @ 0.8 traffic intensity in serial processor and
batch processor capacity of 2 for full batch policy

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

Batch processor traffic intensity

Th
ro

ug
hp

ut

buffer 5 buffer 4
buffer 3 buffer 2
buffer 6 buffer 7

Fig. 2: Throughput as a function of the batch processor TI. As the average
processing time of the batch processor increases, the throughput of the
system goes down. Increasing the size of the buffers can help mitigate this
effect.

Figure 3 illustrates the mean cycle time of products of
the system as a function of the batch processor TI. The
mean cycle time increases as the mean processing time of
the batch processor increases. Increased buffer sizes lead to
higher cycle times. This is because more jobs enter the
system, which increases the probability of congesting the
processors. This is a trade-off between throughput and
cycle time in deciding buffer sizes.

Mean cycle time @ 0.8 traffic intensity in serial processor
and batch processor capacity of 2 for full batch policy

0

5

10

15

20

0.2 0.4 0.6 0.8 1

Batch processor traffic intensity

no
. o

f t
im

e
un

its

buffer 5 buffer 4

buffer 3 buffer 2

buffer 6 buffer 7

Fig. 3: Cycle time as a function of the batch processor TI. The cycle time
increases as the processing time of the batch processor increases. Larger
buffers allow more jobs to enter the system, causing the mean cycle time
to also increase.

While majority of the results we present agree with what
we would expect if we had a transfer line composed of
serial processors, when the batch processor is under full
batch policy, the mean cycle time can be reduced when the
mean arrival rate is increased. When the mean arrival rate
is very low, jobs in front of the batch processor need to
wait for a long time before a full batch can be formed,
which causes the mean cycle time to go up. When the mean
arrival rate is increased, the waiting time of a job in front
of the serial processor increases, but this is offset by the
reduction in the time needed to form a full batch, to a
certain extent. Increasing buffer sizes cause both cycle time
and throughput to increase.

Mean cycle time vs. Throughput @ buffer size of 7 and batch
processor capacity of 2

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

Throughput

no
. o

f t
im

e
un

its No Idling Full Batch

Fig. 4: Evolution of cycle time as the arrival rate is increased. Notice that
when the batch processor is under full batch policy, it is possible to
increase throughput and decrease mean cycle time.

2. Effect of increasing batch processor capacity

In general, increasing batch processor capacity has the
same effect on throughput as reducing buffer sizes. When
we increase the batch processor capacities, the average wip
in front of the batch processor also increases. This reduces
the buffering ability of the system, and increases the
probability of external job arrivals being rejected. Thus,
increasing batch processor capacities reduce throughput.
Figure 5 supports our analysis: increasing batch processor
capacities result in reduced throughput.

Throughput @ 0.8 traffic intensity in serial processor and
buffer size of 6 for myopic full batch policy

0.55

0.6

0.65

0.7

0.75

0.8

0.2 0.4 0.6 0.8 1

Batch processor traffic intensity

Th
ro

ug
hp

ut

Capacity of 2
Capacity of 3

Capacity of 4
Capacity of 5

Fig. 5: Throughput as a function of the batch processor TI. Increasing the
batch processor capacity (while maintaining constant batch processor TI)
reduces the throughput.

As batch processor capacities increase, it takes a longer
time to form full batches, if we use a full batch policy.
Furthermore, as the mean processing time increases, the
number of jobs that arrive in front of the batch processor to
find the batch processor busy also increases. These jobs
will also have to wait for a longer period of time before the
batch processor will become available again. This causes
cycle time to increase even if we are using no idling policy
at the batch processor. Figure 6 illustrates the evolution of
the mean cycle time of jobs in the system as the batch
processor TI is varied. As the batch processor capacity
increases, the cycle time increases.

Mean cycle time @ 0.8 traffic intensity in serial processor
and buffer size of 6 for myopic full batch policy

0

5

10

15

20

25

0.2 0.4 0.6 0.8 1

Batch processor traffic intensity

Ti
m

e
un

its

Capacity of 2
Capacity of 3
Capacity of 4
Capacity of 5

Fig. 6: Mean cycle time of the system as a function of the batch processor
TI. As the batch processor capacity increases, cycle time increases.
Furthermore, the incremental increase in cycle time is non-decreasing with
respect to the TI.

C. Performance comparison between batch processor
control policies

When arrivals into the batch processor’s buffers are
frequent compared to the mean processing time, building a
full batch takes a shorter time. Thus we expect that no
idling policies would outperform full batch policies when
the batch processors have low traffic intensities, while full
batch policies would outperform no idling policies. The
figures in this section illustrate the difference between the
two policies; positive values mean that the no idling policy
generated larger values. We observe that the shape of the
curves generated is generally invariant of the serial
processor control policy selected.

1. Effect of increasing buffer size

Figure 7 illustrates the difference in throughput as the
buffer sizes are changed, when the serial processor has
high TI. When the serial processor TI is high and batch
processor TI is very low, the no idling policy may have
greater throughput than the full batch policy, when it is
combined with balanced look-ahead control policy at the
serial processor. When the serial processor is always busy,
it is important to keep the buffers feeding the batch
processor as empty as possible. This prevents the buildup
of wip in front of the batch processor that could lead to job
arrivals being rejected. When the batch processor TI is low,
the potential throughput loss due to partial batches is
unimportant, since the batch processor is rarely busy. As
the batch processor’s TI increases, the full batch policy
eventually outperforms the no idling policy in terms of
production. This is because the potential throughput loss
due to partial batches produced by the no idling policy
increases as the batch processor TI increases. When the
buffer sizes are small; the probability of job arrivals getting
rejected due to a full batch at the batch processor is higher
when the buffer sizes are small. The no idling policy
increases the probability of a job going in front of the batch
processor and finding the processor busy, which increases
the probability of buffers being full.

Figure 8 charts the mean cycle time as the batch
processor TI is increased. When the batch processor TI is
low, the time required to wait for full batches to form is
saved by the no idling policy. However, as the batch
processor TI increases, wip builds up in front of the batch
processor, as the no idling policy finds difficulty
processing all the jobs. This causes the mean cycle time to
increase relative to the full batch policy.

Difference in throughput between balanced look-ahead no
idling and full batch policies @ 0.8 traffic intensity in serial

processor and batch processor capacity of 2

-0.02

-0.015

-0.01

-0.005

0

0.005

0.2 0.4 0.6 0.8 1

Batch processor traffic intensity

Th
ro

ug
hp

ut

buffer 5 buffer 4
buffer 3 buffer 2
buffer 6 buffer 7

Figure 7: Throughput difference between no-idling and full batch policy
when the serial processor TI is high. Positive values mean the no-idling
policy had larger throughput. As the batch processor TI increases, the full
batch policy outperforms the no idling policy.

Difference in mean cycle time between balanced look-
ahead no idling and full batch policy @ 0.8 traffic intensity

in serial processor and batch processor capacity of 2

-1.5

-1

-0.5

0

0.5

1

0.2 0.4 0.6 0.8 1

Batch processor traffic intensity

no
. o

f t
im

e
un

its

buffer 5 buffer 4
buffer 3 buffer 2
buffer 6 buffer 7

Fig. 8: Difference in mean cycle time between no-idling and full batch
policy. When the batch processor TI is low, the no idling policy has lower
cycle time than the full batch policy.

2. Effect of increasing batch processor capacity

The use of the no idling policy at the batch processor
carries with it an implicit assumption that future batches
will be able to compensate for the potential throughput loss
incurred in the partial batch currently loaded. When the
batch processor capacities are increased and the batch
processor TI is low, the no idling policy is able to achieve
lower cycle times than the full batch policy. Larger batch
processor capacities force batch processors under full batch
policy to stay idle for long periods waiting for a full batch
to be formed. However, when the batch processor TI is
high, it becomes difficult for future batches to compensate
for any potential throughput loss incurred by the no idling
policy, as shown in Figure 9. Wip accumulates in front of
the batch processor and causes the no idling policy to
generate larger mean cycle time compared to the full batch
policy, as shown in Figure 10.

Difference in throughput between balanced look-ahead no
idling and full batch policy @ 0.8 traffic intensity in serial

processor and buffer size of 6

-0.015

-0.01

-0.005

0

0.005

0.2 0.4 0.6 0.8 1

Batch processor traffic intensity

Th
ro

ug
hp

ut

Capacity of 2
Capacity of 3
Capacity of 4
Capacity of 5

Fig. 9: Difference in throughput between no-idling and full batch policy.
When the batch processor capacity is increased, the throughput difference
observed increases.

Difference in mean cycle time between balanced look-
ahead no idling and full batch policy @ 0.8 traffic intensity

in serial processor and buffer size of 6

-5
-4
-3
-2
-1
0
1
2

0.2 0.4 0.6 0.8 1

Batch processor traffic intensity

Th
ro

ug
hp

ut

Capacity of 2
Capacity of 3
Capacity of 4
Capacity of 5

Fig. 10: Difference in mean cycle time between no-idling and full batch
policy. When the batch processor TI is low, it takes a long time to form a
full batch. This is why no idling policy has lower mean cycle time than
full batch policy.

D. Performance comparison between serial processor
control policies
1. Effect of increasing buffer sizes

Figure 11 shows the mean cycle time vs. throughput plot
for the three serial processor control policies when the
batch processor is under full batch policy and both
processors have equal traffic intensities, while Figure 12
shows the same plot when the batch processor is under no
idling policy. Both figures show that, given the same
throughput, using the greedy look-ahead policy results in
reduced cycle time, compared to the other policies. The
cycle time reduction is magnified when the buffer sizes are
increased.

Are there conditions in which the myopic policy would
be preferred? For a given set of processor traffic
intensities, the system throughput is generally maximized
when the myopic policy is used. Since the serial processor
is upstream of the downstream processor, it is easier for
congestion at the serial processor to cause external arrivals
to be rejected, compared to congestion at the batch
processor. The difference in throughput is magnified when
the serial processor has high traffic intensity, compared to
the batch processor. These observations are not

unexpected; a transfer line composed of two serial
processors will behave similarly.

 Similarly, when the batch processor uses full batch
policy, the balanced look-ahead policy has slightly higher
throughput than the greedy look-ahead full batch policy
when the buffer sizes are large and the batch processor TI
is low. This is most noticeable when the serial processor TI
is high. When the serial processor TI is high, the job arrival
rate to the front of the batch processor is high, and
sufficient space must be provided, or the serial processor
will get blocked. Since the balanced look-ahead policy
attempts to balance the wip levels in front of the batch
processor, it maximizes the storage space found in front of
the batch processor, and reduces throughput loss.

On the other hand, when the batch processor uses no
idling policy, the balanced look-ahead policy has slightly
higher throughput than the greedy look-ahead policy under
the opposite conditions: when the buffer sizes are small
and the batch processor TI is high, and is most noticeable
when the serial processor TI is low. When the serial
processor TI is very low and the batch processor TI is very
high, there would be very low wip level in front of the
serial processor and there would be very high wip level in
front of the batch processor. Consequently, if buffer sizes
were small, jobs would be blocked due to jobs
accumulating in front of the batch processor. The greedy
look-ahead policy accelerates the blocking of a certain job
type, whereas the balanced look-ahead policy would
maximize the buffers in front of the batch processor,
delaying the rejection of the job types.

Mean cycle time vs. throughput for different serial
processor policies when batch processor has full batch

policy @ batch processor capacity of 2

4

6

8

10

12

14

16

0 0.2 0.4 0.6 0.8 1

Throughput

N
o.

 o
f t

im
e

un
its myopic (7) balanced LA (7)

greedy LA (7) myopic (2)
balanced LA (2) greedy LA (2)

Fig. 11: Comparing the performance of three different serial processor
control policies when the batch processor uses full batch policy. The
number in parenthesis is the buffer size. When the job arrival rate is low,
there is little difference between the performances of the serial processor
control policies. The greedy look-ahead policy generally has lower cycle
time for the same throughput. However, the myopic policy tends to have
greater throughput for a given traffic intensity.

Mean cycle time vs. throughput for different serial
processor policies when batch processor has no idling

policy @ batch processor capacity of 2

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

Throughput

N
o.

 o
f t

im
e

un
its

myopic (7) balanced LA (7)
greedy LA (7) myopic (2)
balanced LA (2) greedy LA (2)

Fig. 12: Comparing the performance of three different serial processor
control policies when the batch processor uses no idling policy. In this
case, the myopic policy always has greater throughput.

2. Effect of increasing batch processor capacity

Figure 13 shows the mean cycle time vs. throughput plot
for the three serial processor control policies when the
batch processor is under full batch policy and both
processors have equal traffic intensities, while Figure 14
shows the same plot when the batch processor is under no
idling policy. For both Figures 13 and 14, the batch
processor capacities are changed. Both figures show that,
given the same throughput, using the greedy look-ahead
policy results in reduced cycle time, compared to both the
myopic policy and the balanced look-ahead policy. This is
encouraging: despite changing the buffer size and the batch
processor capacities, the greedy look-ahead policy still
performs consistently better than the other two candidate
policies. Furthermore, as the batch processor capacities are
increased, the reduction in cycle time is also increased.

From Figures 13 and 14, the balanced look-ahead policy
has lower mean cycle time compared to the myopic policy,
when the batch processor capacity is low. However, when
the batch processor capacity is high, the balanced look-
ahead policy has higher mean cycle time compared to the
myopic policy. The balanced look-ahead policy is designed
specifically to redistribute wip in front of the batch
processor; not only does this maximize the storage area
available for the output of the serial processor, but it also
prevents the batch processor from having too much wip of
one type and none of the other. Since the first Q-1 slots of
the buffers are used to store the jobs to be processed, we
would expect that the balanced look-ahead policy performs
better when the difference between the batch processor
capacity Q and the buffer sizes are larger. As the batch
processor capacity increases, the effectiveness of the
balanced look-ahead policy diminishes.

Mean cycle time vs. throughput for different serial processor
policies when batch processor has full batch policy @ buffer

size of 6

4
6
8

10
12
14
16
18
20
22
24

0 0.2 0.4 0.6 0.8 1
Throughput

N
o.

 o
f t

im
e

un
its

myopic (5) balanced LA (5)
Greedy LA (5) myopic (2)
balanced LA (2) greedy LA (2)

Fig. 13: Comparing the performance of three different serial processor
control policies as the batch processor capacity is varied, when the batch
processor is under full batch policy. The number in parenthesis is the
batch processor capacity. The greedy look-ahead policy has lower cycle
times for a particular throughput. Furthermore, when batch processor
capacities are high, the greedy look-ahead policy can also have the highest
throughput for a given traffic intensity.

Mean cycle time vs. throughput for different serial processor
policies when batch processor has no idling policy @ buffer

size of 6

0
2
4
6
8

10
12
14
16
18
20

0 0.2 0.4 0.6 0.8 1
Throughput

N
o.

 o
f t

im
e

un
its

myopic (5) balanced LA (5)
Greedy LA (5) myopic (2)
balanced LA (2) greedy LA (2)

Fig. 14: Comparing the performance of three different serial processor
control policies as the batch processor capacity is varied, when the batch
processor is under no idling policy. When the batch processor capacity is
low, the balanced look-ahead policy has lower mean cycle times than the
myopic policy. When the capacity is increased, the balanced look-ahead
policy has the highest cycle times of all three serial processor control
policies.

IV. CONCLUSION
The relationship between the performance of the system

and the parameters is generally invariant of the control
policy used on either processor. This allows us to use the
intuition obtained from these set of experiments and apply
them to more complicated control policies with high degree
of confidence. Furthermore, the behavior of the system can
often be inferred by thinking of the behavior of a two–
stage system involving serial processors. There are,
however, some important exceptions: when the batch
processor is operated under full batch policy, it takes a
long time to form full batches when job arrivals are
infrequent. Consequently, increasing the job arrival rate
increases the throughput and decreases the mean cycle
time. This example illustrates one of the possible pitfalls of

not explicitly considering the presence of the batch
processor in controlling a system.

We confirmed the intuition that the no idling policy
would be preferred if the average wip level in front of the
batch processor is low, while the full batch policy would
be preferred if the average wip level in front of the batch
processor is high. When majority of the system’s wip can
be found in front of the batch processor, it does not take
long to form a full batch. This allows the full batch policy
to have greater throughput and shorter cycle time than the
no idling policy.

When throughput loss is to be minimized, it is generally
more important to manage the wip levels in front of the
first processor. This is why the myopic policy typically has
greater throughput than either look-ahead policy,
regardless of control policy used at the batch processor.
This difference is magnified when the serial processor
traffic intensity is high and when the buffer sizes are larger.
This is intuitive; the busier the processor, the more likely it
is that wip will accumulate in front of that processor, which
can lead to rejection of external arrivals. Furthermore, the
larger the buffer sizes, the longer it takes for a downstream
accumulation of wip to propagate to the front of the
system.

The increase in throughput associated with the myopic
policy comes with a price: increased cycle time. The
myopic policy causes higher cycle times, compared to the
greedy look-ahead policy. The greedy look-ahead policy
has lower cycle time because it hastens the formation of
larger batches for the job type that will be produced next.
When the batch processor uses full batch policy, full
batches are formed faster. When no idling policy is in
effect at the batch processor, more jobs are batched
together. The higher the batch processor capacity, the more
important it is to form large batches quickly. This is where
the greedy look-ahead policy works best.

We have shown that the concept of controlling the serial
processor as a function of the wip in front of the batch
processor may be able to reduce the mean cycle time of
jobs in the system. We have also determined under which
conditions a particular concept embodied by a control
policy is more effective than the others. This allows us to
combine certain aspects of these policies to form a better
control policy. A possible control policy is a hybrid look-
ahead policy that uses the greedy look-ahead policy when
none of the buffers in front of the batch processor has Q
jobs in it, and then switches to a balanced look-ahead
strategy once one of the buffers has Q jobs in it. Low cycle
times are maintained by causing good batches to be quickly
formed, while the throughput loss is reduced because
premature blocking of a particular job type is prevented.

Although broad trends can generally be identified from
the numerical experiments conducted, additional
experiments are needed to characterize the curves with
greater confidence. It is hoped that with the use of
simulation, coupled with the intuition obtained from our
small system, will allow us to generate a control policy

with the desired performance for complex systems, such as
a wafer fab.

REFERENCES
[1] M. Mathirajan, A. I. Sivakumar, V. Chandru, “Scheduling

algorithms for heterogeneous batch processors with incompatible job
families,” Journal of Intelligent Manufacturing 15, 787-803, 2004.

[2] R. Bhatnagar, P. Chandra, R. Loulou, J. Qiu, “Order release and
product mix coordination in a complex PCB manufacturing line with
batch processors,” The International Journal of Flexible
Manufacturing Systems 11, 327-351, 1999.

[3] M. Mathirajan and A. I. Sivakumar, “A Literature review,
classification and simple meta-analysis on scheduling of batch
processors in semiconductor manufacturing,” submitted to Journal
of Operations Management.

[4] R. Uzsoy, “Scheduling batch processing machines with incompatible
job families,” International Journal of Production Research, vol. 33,
no. 10, 2685-2708, 1995.

[5] S. V. Mehta and R. Uzsoy, “Minimizing total tardiness on a batch
processing machine with incompatible job families,” IIE
Transactions, 30, 165-178, 1998.

[6] I. Perez, J. Fowler and W. Carlyle, “Minimizing total weighted
tardiness of a single batch process machine with incompatible job
families,” Computers and Operations Research, 32, 327-341, 2005.

[7] M. Azizoglu and S. Webster, “Scheduling a batch processing
machine with incompatible job families,” Computers and Industrial
Engineering, 39, 325-335, 2001.

[8] F. Jolai, “Minimizing number of tardy jobs on a batch processing
machine with incompatible job families,” European Journal of
Operational Research, 2003.

[9] H. Balasubramanian, L. Monch, J. Fowler and M. Pfund, “Genetic
algorithm based scheduling of parallel batch machines with
incompatible job families to minimize total weighted tardiness,”
International Journal of Production Research, Vol. 42, No. 8, 1621-
1638, April 2004.

[10] R. Deb, and R. Serfozo, “Optimal control of batch service queues,”
Advances in Applied Probability, 5, 340-361, 1973

[11] R. Deb, “Optimal control of bulk queues with compound Poisson
arrivals and batch service,” Opsearch, 21, 227-245.

[12] S. Aalto, “Optimal control of batch service queues with Poisson
arrivals and finite service capacity,” Reports of the Department of
Mathematics, University of Helsinki, 1997.

[13] S. Aalto, “Optimal control of batch service queues with compound
Poisson arrivals and finite service capacity,” Mathematical Methods
of Operations Research, 48, 317-335, 1998.

[14] I. Duenyas and J. Neale, “Stochastic scheduling of a batch
processing machine with incompatible job families,” Annals of
Operations Research, 70, 191-220, 1997.

[15] A. N. Avramidis, K. J. Healy, and R. Uzsoy, “Control of a batch
processing machine: a computational approach,” International
Journal of Production Research, Vol. 36, No. 11, 3167-3181, 1998.

[16] J. K. Robinson, J. W. Fowler, and J. F. Bard, “A review of real-time
control strategies for furnace batch sizing in semiconductor
manufacturing,”

[17] D. J. Van Der Zee, “Look-ahead strategies for controlling batch
operations in industry-an overview,” In Proceedings of the 2003
Winter Simulation Conference, 1480-1487.

[18] C. R. Glassey, and W. W. Weng, “Dynamic batching heuristic for
simultaneous processing,” IEEE Transactions on Semiconductor
Manufacturing, Vol. 4, No. 2, 77-82, May 1991.

[19] J. W. Fowler, D. T. Phillips, and G. L. Hogg, “Real-time control of
multiproduct bulk-service semiconductor manufacturing processes,”
IEEE Transactions on Semiconductor Manufacturing, Vol. 5, No. 2,
158-163, May 1992.

[20] W. W. Weng and R. C. Leachman, “An improved methodology for
real-time production decisions at batch-process work stations,” IEEE
Transactions on Semiconductor Manufacturing, Vol. 6, No. 3, 219-
225, August 1993.

[21] J. K. Robinson, J. W. Fowler, and J. F. Bard, “The use of upstream
and downstream information in scheduling semiconductor batch

operations,” International Journal of Production Research, 33, 1849-
1869, 1995.

[22] D. J. Van Der Zee, “Adaptive scheduling of batch servers in flow
shops,” International Journal of Production Research, Vol. 40, No.
12, 2811-2833, 2002.

[23] L. Solomon, J. W. Fowler, M. Pfund, P. H. Jensen, “The inclusion of
future arrivals and downstream setups into wafer fabrication batch
processing decisions,” Journal of Electronics Manufacturing, Vol.
11, No. 2, 149-159, 2002.

[24] D. J. Van Der Zee, “Real-time adaptive control of multi-product
multi-server bulk service processes,” In Proceedings of the 2001
Winter Simulation Conference.

[25] J. H. Ahmadi, R. H. Ahmadi, S. Dasu and C. S. Tang, “Batching and
scheduling jobs on batch and discrete processors,” Operations
Research, Vol. 39, No. 4, 750-763, July-August 1992.

[26] B. K. Kim and S. Y. Kim, “Application of genetic algorithms for
scheduling batch-discrete production system,” Production Planning
and Control, vol. 13, no. 2, 155-165, 2002.

[27] C. S. Sung and J. I. Min, “Scheduling in a two-machine flowshop
with batch processing machine(s) for earliness/tardiness measure
under a common due date,” European Journal of Operational
Research, 131, 95-106, 2001.

[28] C. S. Sung and Y. H. Kim, “Minimizing due date related
performance measures on two batch processing machines,”European
Journal of Operational Research, 147, 647-656, 2003.

[29] C. S. Sung, Y. H. Kim and S. H. Yoon, “A problem reduction and
decomposition approach for scheduling for a flowshop of batch
processing machines,” European Journal of Operational Research,
121, 179-192, 2000.

[30] H. Gurnani, R. Anupindi, and R. Akella, “Control of batch
processing systems,” In Proceedings of the 1991 IEEE International
Conference on Robotics and Automation, Sacramento, California,
April 1991.

[31] J. J. Neale and I. Duenyas, “Control of manufacturing networks
which contain a batch processing machine,” IIE Transactions 32,
1027-1041, 2000.

[32] H. J. A. Rulkens, E. J. J. Van Campen, J. Van Herk, and J. E. Rooda,
“Batch size optimization of a furnace and pre-clean area by using
dynamic simulations,” in 1998 IEEE/SEMI Advanced
Semiconductor Manufacturing Conference, 439-444.

[33] E. Akcali, R. Uzsoy. D. G. Hiscock, A. L. Moser, and T. J. Teyner,
“Alternative loading and dispatching policies for furnace operations
in semiconductor manufacturing: a comparison by simulation,” In
Proceedings of the 2000 Winter Simulation Conference.

[34] http://www.in-sourced.com/article/articleview/1384/1/1
[35] S. Mason and J. Fowler, “Maximizing delivery performance in

semiconductor wafer fabrication facilities,” In Proceedings of the
2000 Winter Simulation Conference. 1458-1463.

