
 
 

 

  
Abstract—A typical example of a batch processor is 

the diffusion furnace used in wafer fabrication facilities. 
In diffusion, silicon wafers are placed inside the furnace, 
and dopant is flown through the wafers via nitrogen gas. 
Then, a thin layer of silicon dioxide is grown, to help the 
dopant diffuse into the silicon. This operation can take 
10 hours or more to finish processing, as compared to 
one or two hours for other wafer fab operations. 
Diffusion furnaces typically can process six to eight lots 
concurrently; we call the lots processed concurrently a 
batch. The quantity of lots loaded into the furnace does 
not affect the processing time. Only lots that require the 
same chemical recipe and temperature may be batched 
together at the diffusion furnace. 

We wish to control the production of a 
manufacturing system, comprised of a serial processor 
feeding the batch processor. The system produces 
different job types, and each job can only be batched 
together with jobs of the same type. More specifically, 
we explore the idea of controlling the production of the 
serial processor, based on the wip found in front of the 
batch processor. We evaluate the performance of our 
manufacturing system under several simple control 
policies under a range of loading conditions and 
determine that the concept of using the wip levels found 
in front of the batch processor to control the serial 
processor can reduce the mean cycle time. It is hoped 
that the results obtained from this small system could 
be extended to larger systems involving a batch 
processor, with particular emphasis placed on the 
applicability of such policies in wafer fabrication. 
    Index —Batch processor, control policy, multiple job types. 
 
 

Manuscript received November 21, 2005. This work is supported by 
the Singapore-MIT Alliance, Singapore.  

J. C. Tajan is a PhD student with the Singapore-MIT Alliance under 
the Innovations in Manufacturing Systems and Technology program 
(phone: (65)-9194-9944; e-mail: taja0001@ ntu.edu.sg)  

A. I. Sivakumar is an Associate Professor with the Mechanical and 
Aerospace Engineering Department, Nanyang Technological University, 
Singapore. (e-mail: msiva@ntu.edu.sg) 

S. B. Gershwin is a Senior Research Scientist with the Mechanical 
Engineering Department, Massachusetts Institute of Technology, MA, 
USA. (e-mail: sbgershwin@mit.edu). 

I. INTRODUCTION 
onsider the following problem: milk and ice cream 
arrive into a packaging facility and wait for an 
operator for final packaging. The packaged items are 

then transferred to a loading dock to wait for refrigerated 
trucks to distribute the items to various supermarkets. Each 
truck can carry up to Q items. A truck cannot transport both 
items at the same time, since milk and ice cream require 
different temperatures. Each time a truck is available, the 
driver has to decide which product to bring, and, if the 
number of items waiting at the dock is less than Q, the 
driver also has to decide whether to wait for more items, or 
to leave immediately. We wish to reduce the amount of time 
the items spend in the packaging facility.   

The system described above consists of a serial 
processor (processor with unit capacity) feeding a batch 
processor (processor with capacity greater than one). Jobs 
of different types cannot be processed together in a batch 
processor. Batch processors are used in several industries, 
most notably in the metal works industry (Mathirajan, et al. 
[1]) and semiconductor manufacturing (Bhatnagar, et al. 
[2]) A survey on batch processor scheduling for the 
semiconductor industry by Mathirajan and Sivakumar [3] 
noted an increasing trend in research related to batch 
processor control for the semiconductor industry. This may 
be attributed to the extent batch processors are used in 
semiconductor manufacturing. 

A typical example of a batch processor is the diffusion 
furnace used in wafer fabs. This operation can take 10 hours 
or more to finish processing, as compared to one or two 
hours for other wafer fab operations, according to Uzsoy 
[4]. Diffusion furnaces typically can process six to eight lots 
concurrently as a batch; and the batch quantity does not 
affect the processing time. Only lots that require the same 
processing parameters may be batched together. 

To obtain intuition on system behavior, we characterize 
the performance of the system as system parameters are 
varied. We also explore the idea of controlling the 
production of the serial processor, based on the wip found 
in front of the batch processor. We compare the 
performance of our manufacturing system under several 
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simple control policies to determine under what conditions 
certain concepts improve system performance.  

A. Literature Review 
There are two different types of batch processors. For the 

burn-in oven in semiconductor test, there are no job type 
restrictions in creating a batch. However, the processing 
time for the burn-in oven is equal to the maximum required 
processing time of all the jobs included in the batch. This is 
not covered in this review, nor will it cover the case where 
all future arrivals are known. The purpose of this review is 
to give readers an idea as to what has been done. A more 
exhaustive review on controlling batch processors in the 
context of semiconductor manufacturing is [3].  

We divide the research involving batch processors with 
incompatible jobs into three classes. The first class 
considers the batch processor as a single entity. The second 
class refers to look-ahead methods, which assume a limited 
knowledge of future job arrivals. The third class considers 
multi-stage models involving a batch processor.  

 
1. Control of batch processor as a single entity 

Uzsoy [4] developed efficient algorithms for minimizing 
the makespan (CMAX), maximum lateness, and the 
weighted sum of completion times (SUMCI) of a single 
processor, when all jobs are already in front of the batch 
processor. It has been difficult to obtain efficient exact 
algorithms to extensions to this basic model; non-
polynomial algorithms or heuristics have been proposed to 
optimize total tardiness (Mehta and Uszoy[5]), total 
weighted tardiness (Carlyle, et al.[6]), weighted SUMCI 
(Azizoglu and Webster[7]), and the number of tardy jobs 
(Jolai[8]), among others. Heuristics have also been 
proposed by Uszoy [4] and Balasubramaniam [9] to extend 
the results when there are m processors in parallel.    

When future job arrivals are unknown, Deb and Serfozo 
[10] used a dynamic programming (DP) formulation to 
obtain the optimal minimum batch size (MBS) policy when 
all jobs are compatible at the batch processor; at any 
instance the batch processor is available, only load a batch 
if there are at least x jobs in the queue. Later extensions to 
this model include compound Poisson job arrivals (Deb 
[11]), limited buffer sizes (Aalto[12]), and limited buffer 
sizes combined with compound Poisson arrivals 
(Aalto[13]). 

Duenyas and Neale [14] extended [10] to the case where 
jobs are incompatible, and suggested a heuristic that 
considered system stability and the estimated time for the 
next compatible job type arrival. Reference [15] proposed 
threshold policies for reducing the cycle time when the 
arrivals follow a Poisson process and the processing time is 
independent and identically distributed.  

 
2. Batch processor look-ahead methods 
Look-ahead methods are based on the premise that 

knowledge of future arrivals will result in a better batching 
decision at the batch processor. The advent of automated 
manufacturing execution systems have encouraged 

increasingly sophisticated look-ahead methods. Reviews of 
some look-ahead strategies can be found in [16] and [17].  

Glassey and Weng [18] proposed a predicting the next n 
arrivals, and calculating the best time to load the batch to 
minimize the average waiting time. Although it assumed 
that all jobs are compatible at the batch processor, this has 
served as the prototype for all look-ahead methods. Fowler, 
et al. [19] proposed using only the next arrival information, 
and extended the results to handle incompatible jobs. 
Variations of this include using different objective 
functions (Weng and Leachman[20]) and taking the set-up 
requirements of a downstream machine into consideration, 
(Robinson, et al.[21],  Van Der Zee [22], Solomon, et 
al.[23]). Van Der Zee [24] considered the case where there 
are m batch processors in parallel, each with different 
capacities and processing times.   

 
3. Multi-stage models involving a batch processor  

To facilitate discussion, β refers to a batch processor 
with capacity Q, δ refers to a discrete processor with unit 
capacity, and → refers to a precedence relation. Unless 
mentioned, it is assumed all jobs are waiting in front of the 
first processor, and all jobs are compatible.  

Ahmadi, et al. [25] looked into reducing CMAX and 
SUMCI for the following systems: β→ δ, β1→ β2, δ → β. 
Kim and Kim [26] used genetic algorithms to improve on 
the heuristics suggested by [25] for a β→ δ system. Sung 
and Min [27] looked into earliness/tardiness measures for 
the same systems as [25]. Sung and Kim [28] developed 
polynomial algorithms for minimizing tardiness measures 
for the β1→β2 system configuration. This was later 
expanded into a flow line of m batch processors by Sung, 
et al. [29].  

When future job arrivals are unknown, Gurnani, et al. 
[30] suggested threshold policies for a δ→β system where 
there are m unreliable serial processors feeding the batch 
processor. Neale and Duenyas [31] developed DP 
formulations for minimizing SUMCI for the δ→β, β→δ 
and δ→δ→β systems. They determine that information 
from upstream processors is more valuable compared to 
information from downstream processors, although there is 
a large decay in the incremental improvements for each 
additional stage considered.  

Due to the complexity of evaluating the control of 
multiple stage systems involving multiple job types, 
simulation has become the dominant method in handling 
incompatible job types at the batch processor. Rulkens, et 
al. [32] used simulation to determine the respective optimal 
minimum batch sizes for each lot priority dispatching rule, 
while Akcali, et al. [33] used simulation to evaluate which 
set of dispatch rules improve fab cycle time. 
 

B. Research Significance 
The semiconductor manufacturing industry has quickly 

become one of the main drivers of the global economy; 
worldwide semiconductor revenues reached $100.8 billion 
in the first half of 2004 [34]. However, capacity expansion 
in the semiconductor industry is both expensive and time-



 
 

 

consuming. This is particularly true for wafer fabs. High 
utilization rates leave little room for error in terms of 
production control; it is estimated that capacity utilization 
for wafer fabs in the second quarter of 2005 is 88.8% [34]. 
This magnifies the importance of production control in 
keeping a company competitive. 

A typical lot passes through several batch processors 
before exiting the wafer fab. The control of these batch 
processors has significant implications to the performance 
of wafer fabs, for several reasons. These include: 
• Batch processors typically have long processing times, 
compared to other operations. Yield is inversely 
proportional to the cycle time of the lot; this delay not only 
increases the probability of not meeting the customer due 
date, but can also result in yield loss. 
• The throughput of batch processors is dependent on the 
control policies used. A control policy that loads only two 
lots when the maximum capacity is four lots effectively 
halves the maximum throughput of the batch processor. 
Although photolithography is generally acknowledged to 
be the bottleneck in wafer fabrication, a poor control policy 
at the batch processors can cause the furnace to act as a 
situational bottleneck and limit the throughput of the entire 
system, with a corresponding increase in wip.  
• Batch processors are bulk servers; they induce large wip 
decrease and increase. This introduces more variability into 
the system and can cause system-wide performance 
degradation if not properly controlled. 

Few researchers have designed wafer fab production 
control policies that place an emphasis on batch processor; 
the control of the batch processor has often been 
considered an isolated sub-problem to the problem of 
controlling wafer fabs. This is despite what Fowler and 
Mason [35] observed: good wafer fab schedules tend to 
have good batch processor schedules. We believe there is a 
significant opportunity for improvement by setting the 
control of the serial processors as a function of the batch 
processor’s status.  

Look-ahead control policies for the batch processor that 
use information from a limited number of upstream and 
downstream processors to control the batch processor have 
become increasingly popular. These methods have a 
potentially significant drawback: the batch processor 
cannot influence the arrival patterns of its wip; it can only 
predict its arrival pattern. A hypothetical control policy that 
can influence the job type being processed by upstream 
processors should, in theory, be at least as good as a look-
ahead policy, with the potential for significant 
improvement.  

The long-term goal of this research is a manner of 
controlling the wafer fab that bridges the divide between 
the control of batch processors as a single entity and the 
control of the entire wafer fab. The idea of driving the 
correct type wip into batch processors to improve system-
wide performance is a fundamental shift from what has 
been previously proposed. As a first step to accomplishing 
this goal, we characterize the performance of a small two-
stage system and evaluate the performance of this system 

under some simple control policies. Since we are 
concerned mainly about building intuition about the system 
in this early stage of the research, we neither emphasize 
numbers nor prove statements; but instead concentrate on 
interpreting the overall trends observed. 
 

C. Paper Outline 
Section two describes the problem in greater detail and 

presents the manner in which the problem was modeled. 
Section three describes the control policies for which the 
manufacturing system is ran. Section four characterizes the 
gross system performance and compares the system 
performance under several control policies. Section five 
summarizes the results, and briefly discusses future 
research directions.   
 

II. PROBLEM STATEMENT AND METHODOLOGY 

A. Problem Statement 
A manufacturing system is comprised of two perfectly 

reliable processors that process n different job types. All 
job types visit the processors in the same order. The first 
processor M1 is a serial processor, and the second processor 
M2 is a batch processor. The batch processor M2 can 
process up to Q jobs of the same type at an instance, and 
processing time is independent of the number of jobs 
loaded into the processor. Job preemption is not allowed. 
No set up times are required on either processor. 

In front of each processor Mi are n different buffers Bij 
of finite size Cij; each buffer Bij serves as a temporary 
holding cell for jobs of type j waiting to be processed by 
processor Mi. When the current buffer level bij of buffer Bij 
is 0, processor Mi is starved of job type j, and Mi cannot 
process job type j; When bij = Cij, incoming arrivals into 
buffer Bij are blocked, and these arrivals are lost.  

A typical sequence of events for a job J of type j would 
be:  job J attempts to enter the system and checks if b1j > 
C1j. If b1j < C1j, then job J enters B1j and waits for M1 to 
process it. If B1j > C1j, then job J is rejected and lost 
forever. It is assumed that any control policy at M1 ensures 
that job J can be accommodated by B2j before processing J. 
This ensures that the rate jobs enter the system is equal to 
the rate jobs exit the system. After being processed by M1, 
job J enters B2j and waits for M2 to process it. Job J exits 
the manufacturing system after being processed by M2. 
Figure 1 illustrates the manufacturing system when the 
number of job types n = 2.  
 

 



 
 

 

Fig. 1: A two-stage manufacturing system with a serial-batch 
configuration. In this example, the system is processing two job types, and 
would have two buffers, one for each job type, in front of every processor.   
 

B. Methodology 
Our preliminary research has two main goals: to 

characterize the performance of the system under a set of 
parameters and to determine which conditions a particular 
control policy would perform better than others.  

We assume two different control policies for the batch 
processor. The full batch policy will not load any partial 
batches into the batch processor; the batch processor will 
wait for additional arrivals, if a full batch is unavailable. 
The no idling policy will load batches into the batch 
processor as long as wip is present in the buffers B21 and 
B22. Both policies will load the job type with more wip in 
front of the batch processor; in case of a tie, job type one is 
selected. These two control policies can be considered the 
extremes of every control policy at the batch processor; 
one policy never waits for additional arrivals, while 
another policy always waits until the batch processor is 
full.  

We test three different serial processor control 
policies, as combined with the two batch processor 
policies, to determine relative performance of the 
manufacturing system under each serial-batch control 
policy combination. All three control policies will not 
process a job if there is no space to store this job in front of 
the batch processor. Furthermore, all three policies are 
non-idling: as long as a job of any type can be processed, 
the processor is kept busy. The three policies are: 
• Myopic control policy - The operator prefers to process 
job type one if b11>b12, and prefers to process job type two 
if b12>b11. The intuition behind this policy is simple: by 
processing the product type with more wip, we reduce the 
probability of any external arrivals getting rejected by the 
system.  
• Greedy look-ahead control policy - The operator prefers 
to process job type one if b21>b22, and prefers to process 
job type two if b22>b21. Since the batch processor will 
process the job type j with the most wip in front of the 
batch processor, we want to either hasten the formation of 
a full batch of type j, or include more jobs of type j into the 
batch.  
• Balanced look-ahead control policy - The operator 
prefers to process job type one if b21<b22, and prefers to 
process job type two if b22<b21. This policy is essentially 
the reverse of the greedy look-ahead policy. By aiming for 
a balanced wip level between two job types in front of the 
batch processor, we guard against prematurely blocking the 
production of a job type. This happens when the serial 
processor keeps on processing a single job type.    

The two batch processor and three control processors 
combine to form six possible two-stage control policies. 
We model the two-stage manufacturing system running 
under one of these six policies as a continuous time- 
discrete state Markov chain, with time-invariant transition 
probability rates. Due to the exponential growth of the state 

space with respect to the number of job types n, we limit n 
to two. 

We make the following assumptions: 
• The time between external arrivals of for any job type j 
is exponentially distributed with mean 1/λj. If the buffer B1j 
is full, arrivals are rejected.  
• The time required to process a job of type j at the serial 
processor is exponentially distributed with mean 1/µsj. The 
serial processor will not process job type j if buffer B2j is 
full. 
• The time required to process a batch at the batch 
processor is exponentially distributed with mean 1/µB, 
regardless of the type currently being processed. The 
common mean processing time allows us to obtain the 
mean cycle time from the steady-state probabilities without 
keeping track of the amount being processed at the batch 
processor.  

For brevity the details of the Markov model is omitted. 
The reader is invited to contact the authors for the 
implementation details. We use the steady state 
probabilities to obtain the throughput and the mean cycle 
time of the system subjected to a specific control policy.  

 

III. DISCUSSION OF NUMERICAL RESULTS 

A. Experimental Setup 
A total of six two-stage control policies are evaluated: 

We have two broad experimental set ups. In the first setup, 
the buffer size is kept constant, and the batch processor 
capacity is varied. For each two-stage control policy, batch 
capacity and buffer capacity setting, 25 data points are 
collected. Each data point corresponds to a particular 
combination of traffic intensities on the two processors. 
The second setup has a fixed batch capacity and the buffer 
capacity is incremented. Table 1 summarizes the settings 
for which the experiments performed. We use traffic 
intensity to refer to the ratio between the arrival rate and 
the maximum processing rate. When the processor has unit 
capacity, the traffic intensity is equivalent to the utilization.  

Traffic intensity TI = (mean arrival rate) / (processor 
capacity * mean processing rate).  

For each experiment, the mean processing rate of the 
serial processor M1 is held constant at one unit per unit 
time, and the nominal traffic intensities are used to 
determine the mean arrival rate of both job types, as well as 
the mean processing time at the batch processor M2. For all 
experiments, both job types are assumed to have equal 
arrival rates. Let 1/λ1 be the mean arrival rate for job type 
1, 1/λ2 be the mean arrival rate for job type 2, and µB be the 
mean time to finish processing a batch in the batch 
processor. Then,   

1/λ1 = 1/λ2 = traffic intensity TI of M1/ 2 and 
µB = (TI of M2 * capacity Q) / TI of M1. 

This equates utilization of the serial processor with 
average throughput rate. For fixed serial processor TI and 
fixed batch processor capacity, TI at the batch processor is 
proportional to batch processor processing times. For fixed 



 
 

 

batch processor TI and capacity, when the serial processor 
TI is low, the arrival rate is low and the mean time to 
process a batch is long. When the serial processor TI is 
high, the arrival rate is high and the mean processing time 
is short.  

Due to space constraints, it would not be possible to 
show all the results obtained. We will be concentrating on 
the case where the serial processor TI is high. When the 
serial processor TI is low, the job arrival rate is low. When 
this happens, the processing at the serial processor is 
dictated by the availability of wip, and the differences 
between the control policies are muted.  

 
Table 1: Experimental setup summary 
 No. of 

control 
policies 

Buffe
r Size 

Q M1 TI M2 TI 

Evaluate 
effect of 
batch 
capacity 

6 6 2, 3, 
4, 5 

0.2, 
0.4, 
0.6, 
0.8, 
1.0 

0.2, 
0.4, 
0.6, 
0.8, 
1.0 

Evaluate 
effect of 
buffer 
size 

6 2, 3, 
4, 5, 
6, 7 

2 0.2, 
0.4, 
0.6, 
0.8, 
1.0 

0.2, 
0.4, 
0.6, 
0.8, 
1.0 

B. Performance characterization of system model 
We have observed that the performance of the system is 

generally invariant of the problem parameters. Only one 
representative graph is provided.  

 
1. Effect of increasing buffer size 

Figure two illustrates the evolution of the system’s 
throughput as a function of the batch processor traffic 
intensity for several buffer sizes, when the serial processor 
traffic intensity is 0.8. This is a strong bound on the 
throughput of the system. By increasing the batch 
processor TI while keeping the serial processor TI, the 
average processing time of the batch processor lengthens. 
 We expect that the throughput of the system will 
decrease as the batch processor TI increases; as the mean 
processing time of the batch processor increases, the 
probability of wip accumulating in front of the batch 
processor increases, and this can block the production of 
the serial processor. This intuition is corroborated by 
Figure 2. Furthermore, the larger the buffer sizes, the less 
likely this chain of events will occur. Judging from the 
concavity and the negative slopes of the curves, the 
throughput loss increases as the batch processor TI 
increases. Furthermore, the incremental throughput 
increase diminishes as the buffer sizes increase.  

Throughput @ 0.8 traffic intensity in serial processor and 
batch processor capacity of 2 for full batch policy
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Fig. 2: Throughput as a function of the batch processor TI. As the average 
processing time of the batch processor increases, the throughput of the 
system goes down. Increasing the size of the buffers can help mitigate this 
effect. 
 

Figure 3 illustrates the mean cycle time of products of 
the system as a function of the batch processor TI. The 
mean cycle time increases as the mean processing time of 
the batch processor increases. Increased buffer sizes lead to 
higher cycle times. This is because more jobs enter the 
system, which increases the probability of congesting the 
processors. This is a trade-off between throughput and 
cycle time in deciding buffer sizes.   

Mean cycle time @ 0.8 traffic intensity in serial processor 
and batch processor capacity of 2 for full batch policy
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Fig. 3: Cycle time as a function of the batch processor TI. The cycle time 
increases as the processing time of the batch processor increases. Larger 
buffers allow more jobs to enter the system, causing the mean cycle time 
to also increase.   
 

While majority of the results we present agree with what 
we would expect if we had a transfer line composed of 
serial processors, when the batch processor is under full 
batch policy, the mean cycle time can be reduced when the 
mean arrival rate is increased. When the mean arrival rate 
is very low, jobs in front of the batch processor need to 
wait for a long time before a full batch can be formed, 
which causes the mean cycle time to go up. When the mean 
arrival rate is increased, the waiting time of a job in front 
of the serial processor increases, but this is offset by the 
reduction in the time needed to form a full batch, to a 
certain extent. Increasing buffer sizes cause both cycle time 
and throughput to increase.  



 
 

 

Mean cycle time vs. Throughput @ buffer size of 7 and batch 
processor capacity of 2
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Fig. 4: Evolution of cycle time as the arrival rate is increased. Notice that 
when the batch processor is under full batch policy, it is possible to 
increase throughput and decrease mean cycle time.   
 
2. Effect of increasing batch processor capacity 

In general, increasing batch processor capacity has the 
same effect on throughput as reducing buffer sizes. When 
we increase the batch processor capacities, the average wip 
in front of the batch processor also increases. This reduces 
the buffering ability of the system, and increases the 
probability of external job arrivals being rejected. Thus, 
increasing batch processor capacities reduce throughput. 
Figure 5 supports our analysis: increasing batch processor 
capacities result in reduced throughput.  

Throughput @ 0.8 traffic intensity in serial processor and 
buffer size of 6 for myopic full batch policy
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Fig. 5: Throughput as a function of the batch processor TI. Increasing the 
batch processor capacity (while maintaining constant batch processor TI) 
reduces the throughput.  
 

As batch processor capacities increase, it takes a longer 
time to form full batches, if we use a full batch policy. 
Furthermore, as the mean processing time increases, the 
number of jobs that arrive in front of the batch processor to 
find the batch processor busy also increases. These jobs 
will also have to wait for a longer period of time before the 
batch processor will become available again. This causes 
cycle time to increase even if we are using no idling policy 
at the batch processor. Figure 6 illustrates the evolution of 
the mean cycle time of jobs in the system as the batch 
processor TI is varied. As the batch processor capacity 
increases, the cycle time increases.  

Mean cycle time @ 0.8 traffic intensity in serial processor 
and buffer size of 6 for myopic full batch policy
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Fig. 6: Mean cycle time of the system as a function of the batch processor 
TI. As the batch processor capacity increases, cycle time increases. 
Furthermore, the incremental increase in cycle time is non-decreasing with 
respect to the TI. 
 

C. Performance comparison between batch processor 
control policies 

When arrivals into the batch processor’s buffers are 
frequent compared to the mean processing time, building a 
full batch takes a shorter time. Thus we expect that no 
idling policies would outperform full batch policies when 
the batch processors have low traffic intensities, while full 
batch policies would outperform no idling policies. The 
figures in this section illustrate the difference between the 
two policies; positive values mean that the no idling policy 
generated larger values. We observe that the shape of the 
curves generated is generally invariant of the serial 
processor control policy selected.  

 
1. Effect of increasing buffer size 

Figure 7 illustrates the difference in throughput as the 
buffer sizes are changed, when the serial processor has 
high TI. When the serial processor TI is high and batch 
processor TI is very low, the no idling policy may have 
greater throughput than the full batch policy, when it is 
combined with balanced look-ahead control policy at the 
serial processor. When the serial processor is always busy, 
it is important to keep the buffers feeding the batch 
processor as empty as possible. This prevents the buildup 
of wip in front of the batch processor that could lead to job 
arrivals being rejected. When the batch processor TI is low, 
the potential throughput loss due to partial batches is 
unimportant, since the batch processor is rarely busy. As 
the batch processor’s TI increases, the full batch policy 
eventually outperforms the no idling policy in terms of 
production. This is because the potential throughput loss 
due to partial batches produced by the no idling policy 
increases as the batch processor TI increases. When the 
buffer sizes are small; the probability of job arrivals getting 
rejected due to a full batch at the batch processor is higher 
when the buffer sizes are small. The no idling policy 
increases the probability of a job going in front of the batch 
processor and finding the processor busy, which increases 
the probability of buffers being full.  



 
 

 

Figure 8 charts the mean cycle time as the batch 
processor TI is increased. When the batch processor TI is 
low, the time required to wait for full batches to form is 
saved by the no idling policy. However, as the batch 
processor TI increases, wip builds up in front of the batch 
processor, as the no idling policy finds difficulty 
processing all the jobs. This causes the mean cycle time to 
increase relative to the full batch policy.  
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Figure 7: Throughput difference between no-idling and full batch policy 
when the serial processor TI is high. Positive values mean the no-idling 
policy had larger throughput. As the batch processor TI increases, the full 
batch policy outperforms the no idling policy. 
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Fig. 8: Difference in mean cycle time between no-idling and full batch 
policy. When the batch processor TI is low, the no idling policy has lower 
cycle time than the full batch policy.  
 
2. Effect of increasing batch processor capacity 

The use of the no idling policy at the batch processor 
carries with it an implicit assumption that future batches 
will be able to compensate for the potential throughput loss 
incurred in the partial batch currently loaded. When the 
batch processor capacities are increased and the batch 
processor TI is low, the no idling policy is able to achieve 
lower cycle times than the full batch policy. Larger batch 
processor capacities force batch processors under full batch 
policy to stay idle for long periods waiting for a full batch 
to be formed. However, when the batch processor TI is 
high, it becomes difficult for future batches to compensate 
for any potential throughput loss incurred by the no idling 
policy, as shown in Figure 9. Wip accumulates in front of 
the batch processor and causes the no idling policy to 
generate larger mean cycle time compared to the full batch 
policy, as shown in Figure 10.   
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Fig. 9: Difference in throughput between no-idling and full batch policy. 
When the batch processor capacity is increased, the throughput difference 
observed increases. 
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Fig. 10: Difference in mean cycle time between no-idling and full batch 
policy. When the batch processor TI is low, it takes a long time to form a 
full batch. This is why no idling policy has lower mean cycle time than 
full batch policy.  
 

D. Performance comparison between serial processor 
control policies 
1. Effect of increasing buffer sizes 

Figure 11 shows the mean cycle time vs. throughput plot 
for the three serial processor control policies when the 
batch processor is under full batch policy and both 
processors have equal traffic intensities, while Figure 12 
shows the same plot when the batch processor is under no 
idling policy. Both figures show that, given the same 
throughput, using the greedy look-ahead policy results in 
reduced cycle time, compared to the other policies. The 
cycle time reduction is magnified when the buffer sizes are 
increased.   

Are there conditions in which the myopic policy would 
be preferred? For a given set of processor traffic 
intensities, the system throughput is generally maximized 
when the myopic policy is used. Since the serial processor 
is upstream of the downstream processor, it is easier for 
congestion at the serial processor to cause external arrivals 
to be rejected, compared to congestion at the batch 
processor. The difference in throughput is magnified when 
the serial processor has high traffic intensity, compared to 
the batch processor. These observations are not 



 
 

 

unexpected; a transfer line composed of two serial 
processors will behave similarly.  

 Similarly, when the batch processor uses full batch 
policy, the balanced look-ahead policy has slightly higher 
throughput than the greedy look-ahead full batch policy 
when the buffer sizes are large and the batch processor TI 
is low. This is most noticeable when the serial processor TI 
is high. When the serial processor TI is high, the job arrival 
rate to the front of the batch processor is high, and 
sufficient space must be provided, or the serial processor 
will get blocked. Since the balanced look-ahead policy 
attempts to balance the wip levels in front of the batch 
processor, it maximizes the storage space found in front of 
the batch processor, and reduces throughput loss.   

On the other hand, when the batch processor uses no 
idling policy, the balanced look-ahead policy has slightly 
higher throughput than the greedy look-ahead policy under 
the opposite conditions: when the buffer sizes are small 
and the batch processor TI is high, and is most noticeable 
when the serial processor TI is low. When the serial 
processor TI is very low and the batch processor TI is very 
high, there would be very low wip level in front of the 
serial processor and there would be very high wip level in 
front of the batch processor. Consequently, if buffer sizes 
were small, jobs would be blocked due to jobs 
accumulating in front of the batch processor. The greedy 
look-ahead policy accelerates the blocking of a certain job 
type, whereas the balanced look-ahead policy would 
maximize the buffers in front of the batch processor, 
delaying the rejection of the job types.  
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Fig. 11: Comparing the performance of three different serial processor 
control policies when the batch processor uses full batch policy. The 
number in parenthesis is the buffer size. When the job arrival rate is low, 
there is little difference between the performances of the serial processor 
control policies. The greedy look-ahead policy generally has lower cycle 
time for the same throughput. However, the myopic policy tends to have 
greater throughput for a given traffic intensity.   
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Fig. 12: Comparing the performance of three different serial processor 
control policies when the batch processor uses no idling policy. In this 
case, the myopic policy always has greater throughput.  
 
2. Effect of increasing batch processor capacity 

Figure 13 shows the mean cycle time vs. throughput plot 
for the three serial processor control policies when the 
batch processor is under full batch policy and both 
processors have equal traffic intensities, while Figure 14 
shows the same plot when the batch processor is under no 
idling policy. For both Figures 13 and 14, the batch 
processor capacities are changed. Both figures show that, 
given the same throughput, using the greedy look-ahead 
policy results in reduced cycle time, compared to both the 
myopic policy and the balanced look-ahead policy. This is 
encouraging: despite changing the buffer size and the batch 
processor capacities, the greedy look-ahead policy still 
performs consistently better than the other two candidate 
policies. Furthermore, as the batch processor capacities are 
increased, the reduction in cycle time is also increased.  

From Figures 13 and 14, the balanced look-ahead policy 
has lower mean cycle time compared to the myopic policy, 
when the batch processor capacity is low. However, when 
the batch processor capacity is high, the balanced look-
ahead policy has higher mean cycle time compared to the 
myopic policy. The balanced look-ahead policy is designed 
specifically to redistribute wip in front of the batch 
processor; not only does this maximize the storage area 
available for the output of the serial processor, but it also 
prevents the batch processor from having too much wip of 
one type and none of the other. Since the first Q-1 slots of 
the buffers are used to store the jobs to be processed, we 
would expect that the balanced look-ahead policy performs 
better when the difference between the batch processor 
capacity Q and the buffer sizes are larger. As the batch 
processor capacity increases, the effectiveness of the 
balanced look-ahead policy diminishes.  



 
 

 

Mean cycle time vs. throughput for different serial processor 
policies when batch processor has full batch policy @ buffer 
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Fig. 13: Comparing the performance of three different serial processor 
control policies as the batch processor capacity is varied, when the batch 
processor is under full batch policy. The number in parenthesis is the 
batch processor capacity. The greedy look-ahead policy has lower cycle 
times for a particular throughput. Furthermore, when batch processor 
capacities are high, the greedy look-ahead policy can also have the highest 
throughput for a given traffic intensity.  

Mean cycle time vs. throughput for different serial processor 
policies when batch processor has no idling policy @ buffer 
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Fig. 14: Comparing the performance of three different serial processor 
control policies as the batch processor capacity is varied, when the batch 
processor is under no idling policy. When the batch processor capacity is 
low, the balanced look-ahead policy has lower mean cycle times than the 
myopic policy. When the capacity is increased, the balanced look-ahead 
policy has the highest cycle times of all three serial processor control 
policies.  
 

IV. CONCLUSION 
The relationship between the performance of the system 

and the parameters is generally invariant of the control 
policy used on either processor. This allows us to use the 
intuition obtained from these set of experiments and apply 
them to more complicated control policies with high degree 
of confidence. Furthermore, the behavior of the system can 
often be inferred by thinking of the behavior of a two–
stage system involving serial processors. There are, 
however, some important exceptions: when the batch 
processor is operated under full batch policy, it takes a 
long time to form full batches when job arrivals are 
infrequent. Consequently, increasing the job arrival rate 
increases the throughput and decreases the mean cycle 
time. This example illustrates one of the possible pitfalls of 

not explicitly considering the presence of the batch 
processor in controlling a system.  

We confirmed the intuition that the no idling policy 
would be preferred if the average wip level in front of the 
batch processor is low, while the full batch policy would 
be preferred if the average wip level in front of the batch 
processor is high. When majority of the system’s wip can 
be found in front of the batch processor, it does not take 
long to form a full batch. This allows the full batch policy 
to have greater throughput and shorter cycle time than the 
no idling policy.  

When throughput loss is to be minimized, it is generally 
more important to manage the wip levels in front of the 
first processor. This is why the myopic policy typically has 
greater throughput than either look-ahead policy, 
regardless of control policy used at the batch processor. 
This difference is magnified when the serial processor 
traffic intensity is high and when the buffer sizes are larger. 
This is intuitive; the busier the processor, the more likely it 
is that wip will accumulate in front of that processor, which 
can lead to rejection of external arrivals. Furthermore, the 
larger the buffer sizes, the longer it takes for a downstream 
accumulation of wip to propagate to the front of the 
system.  

The increase in throughput associated with the myopic 
policy comes with a price: increased cycle time. The 
myopic policy causes higher cycle times, compared to the 
greedy look-ahead policy. The greedy look-ahead policy 
has lower cycle time because it hastens the formation of 
larger batches for the job type that will be produced next. 
When the batch processor uses full batch policy, full 
batches are formed faster. When no idling policy is in 
effect at the batch processor, more jobs are batched 
together. The higher the batch processor capacity, the more 
important it is to form large batches quickly. This is where 
the greedy look-ahead policy works best.  

We have shown that the concept of controlling the serial 
processor as a function of the wip in front of the batch 
processor may be able to reduce the mean cycle time of 
jobs in the system. We have also determined under which 
conditions a particular concept embodied by a control 
policy is more effective than the others. This allows us to 
combine certain aspects of these policies to form a better 
control policy. A possible control policy is a hybrid look-
ahead policy that uses the greedy look-ahead policy when 
none of the buffers in front of the batch processor has Q 
jobs in it, and then switches to a balanced look-ahead 
strategy once one of the buffers has Q jobs in it. Low cycle 
times are maintained by causing good batches to be quickly 
formed, while the throughput loss is reduced because 
premature blocking of a particular job type is prevented.  

Although broad trends can generally be identified from 
the numerical experiments conducted, additional 
experiments are needed to characterize the curves with 
greater confidence. It is hoped that with the use of 
simulation, coupled with the intuition obtained from our 
small system, will allow us to generate a control policy 



 
 

 

with the desired performance for complex systems, such as 
a wafer fab.  
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