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ABSTRACT: This paper presents an outline of a methodology for the design of nonlinear
dynamic compensator for nonlinear multivariable systems which provides guar-
antees of closed-loop stability, robustness and performance. The method is an extension
of the Linear-Quadratic-Gaussian with Loop-Transfer-Recovery (LQG/LTR) methodology for
linear systems, thus hinging upon the idea of constructing an approximate inverse oper-
ator for the plant. A major feature of the method is an attempted unification of both
the state-space and Input-Output formulations. We show that recovery at the plant in-
put can be done as in the linear case, while recovery at the output is very restrictive.

Keywords: State estimation, Nonlinear control systems, Control system synthesis,
state-space methods, Observability.

INTRODUCTION y (t) = Cx(t) (1)

This paper presents a methodology for designing ncn- n m
linear dynamic compensators for nonlinear multi- with x(t)cR , u(t), y(t)CER, B an nxm matrix, and
variable systems. Our basic philosophy is to ex- C mxn matrix. The non-linearity f:Rn XRn is as-
tend a linear design metlhodology, the Linear- sumed at least twice differentiable. Some of the
Quadratic-Gaussian with Loop-Transfer-Recovery results presented here can be generalized to non-

(LQG/LTR) methodology, that has been recently dev- linear 9 and C mappings, see (Grunberg 1986).
developed (Doyle and Stein, 1981; Stein and Athans,
19384), in which one develops a "target" loop that Since models are never exact, we will need to in-
is desirable, and then attempts to achieve, or clude this fact in our control system design. We

"recover" this loop shape in the actual closed-loop account for the discrepancy by unstructured un-
system. We show how loop shaping at both the plant modeled dynamics, for which we will assume that we
input and plant output can be extended to nonlinear have an I/O bound of some type. This will be dis-
systems, although the plant output cane can only be cussed more fully in section 4.
performed under restrictive conditions.

We now consider the Input-Output (I/O) viewpoint
One contribution of this proposed methodology is an for systems. Let L be the space of all vector-
attempted unification of state-space formulations valued functions u:[0,-)- Rn which are square-in-
with Input-Output (I/O) operator descriptions. tegrable over finite time intervals (i.e. the
Such a unification (as in LQG/LTR) allows both com- space L ). We will abuse notation slightly by
putations of gains (in the state-space) and the 2e
handling of plant uncertainty and unmodeled dyna- stating XeL, uCL, even though u ana x are of dif-

ferent dimensions.
mics (with the I/O description). We utilize a
result from (Desoer and Wang, 1980) that says,
"high loop gains produce small errors," in a pre-
cise manner. We also present some new I/O robust- T T 1/2 (2)
ness tests, similar in spirit to the singular xT = x txt)dt) (2)
value robustness tests in the frequency domain as
described in (Lehtomaki, 1980). where T denotes transpose. The operator descrip-

tion of a nonlinear system is simply a mapping
Thus I/O operators are extremely useful for calcul- P: L-fL. For example, we write y=Pu to mean the
ating performance and robustness to unmodeled dy- input u produces the output y.
namics, but unfortunately they are extremely dif-
ficult to calculate explicitly. We get around Definitions: (Gain and Stability).
this by performing all required synthesis opera-
tions (i.e. finding gains, etc.) using a state- (i) The gain of an operator is
space formulation and tying the results back to the
I/O domain. a IPuI IT

Our main results are the Loop-Operator-Recovery u
theorem of section 5 and the Extended lalman Filter T
(EKF) nondivergence theorem of section 6. (ii) The incremental gain of an operator is

BASIC DEFINITIONS Ah IPu-Pv lT

This paper will freely mix state-space notation I iP i sup (4)A u,vuL u-vIT
with operator notation, so we must first set out
our definitions. Our plant model will be

(iii) An operator P is stable if lIPI < '+.
x(t) = f(x(t)) + Bu(t)
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(iv) An operator P is incrementally stable if still guarantee that the perturbed plant is closed-
|I Pl |I| <+ +. loop stable. We give one such test here, more

exist, see (Grunberg and Athans, 1985; Grunberg,
For linear systems, the usual notion of stability 1986).
coincides with both stability and incremental stab-

ility as defined here. Theorem (Division error)

In order to simplify equations, we will now define Let G = G[I+E be the actual plant, and let G be

a nonlinear operator, 0, by closed-loop stable. Then G will be closed-loop

1_-1-5 stable if there exists 6<1 such that

where S is the integral operator and F is the non- IE- IT 611 (I+G)xI T for all xIL, T (12)
dynamical operator defined by (Fx) (t)=f(x(t)). The and

nonlinear operator 0 is shown in block-diagram form
in Fig. 1. We can now see the usefulness of 4; our I| E| < X

plant (1) can now be written in compact form This test shows us that the important quantity in

P = COB (6) evaluating the robustness of a control system is
the loop operator, here G=PK. Section 3 shows us

in complete analogy with the linear transfer func- that PK is also the important quantity for deter-
tion ¢(s)= (sI-A) used in linear control theory. mining performance, in both a command following
The operator representation (6) will be very useful, and output disturbance rejection context. These
in the sequel. results can also be modified so that it can be seen

that the quantity (-K)(-P) can also express the
We will be concerned with the tracking regulator robustness and performance in an input disturbance
configuration of Fig. 2, where K is the operator context.
describing the nonlinear compensator. We have a

reference command, r, input disturbance, w, and an Note that these robustness tests give conditions
output disturbance, d. which must be checked for all signals in some sig-

The loop equations are nal space. Needless to say, this could be quite
tiresome. Current research is aimed at easing the

y - d + P (w+u) computational burden associated with checking these

u - r-y (7) conditions.
u m K (r-y)

The rest of the paper will be concerned with DESIGN PHILOSOPHY

(i) Given a P,K, how "good" a closed-loop system This section will give an overview of the Nonlinear-

do we have? Model-Based-Compensator with Loop-Operator-Recovery

(ii) Given a P, how do we design a "good" K? (NMBC/LOR) procedure. We propose to use an ob-
server based controller in order to guarantee the

Sections 3 and 4 deal with (i), while the later closed-loop stability of our system. We do that
sections deal with (ii). Due to page limitations, by virtue of the following theorem (Safonov, 1980).

proofs of results have been omitted and will be A

published in a future paper. For full details, see Definition: x = F(y,u) is a nondivergent estimate
Grunberg (1986). of the state x of

PERFORMANCE x f(x) + Bu + Bw (14)
y =Cx + d

This section will analyze the command-following
performance of the complete closed-loop system, as if the map (w,d) . e=x-x is stable uniformly in u.

shown in Fig. 2. Let H be the map from r to y in Here F is a dynamic operator (the estimator) with

the closed-loop system, with d=0, w=0. Then, inputs y and u.

H = P[I+PK]1 . (8) Theorem (Separation)

When we have a nonzero disturbance d, we have (with If g(.) is a state-feedback function such that
w=O)

y = H(r-d) + d (9) x = f(x) - Bg(x) + Bw (15)

Theorem: (Desoer and Wang, 1980) is stable from (w,d) to x,

and
If, for all r in some set of commands iCL and for
all d in some set of disturbances DCL sup Vg(x) I< (16)

x

I I+PK]-(r-d) IT <<[lIr-dIlT for all T (10) and if x = F(y,u) is any nondivergent estimate of
x, then

then H=I on R and D in the sense that
x = f(x) - Bg(x) + Bw (17)

1Ie1IT=J1r- y I I T<< I Ir IT + I
J

dl IT
for all reR,dcD,T. is stable from (w,d) to x.

(11)

This theorem shows the linearizing effect of high Thus we can substitute x for x in a state-feedback

gain feedback; a high loop gain makes the input- system without loss of stability, just as in the

output map close to unity. Even though PK may be linear case. While we do not have any guarantee

nonlinear, we still achieve a desirable closed-locp of optimality as in the linear case, we can guar-
I/O map. antee closed-loop stability with a nondivergent

estimator and stabilizing state feedback.

ROBUSTNESS TESTS
Definition: A model based estimator has the form

Suppose we are given a nominal system, G, that is
closed-loop stable, i.e. [I+G] is stable. Then x = f(x) + Bu + H(t) [y-C] (18)
robustness tests give us bounds on the amount of H(t) = H(t,y(T),u(T), 0<T<t)
deviatidn from the nominal plant we can allow and



where H () can depend on the past of y and u in estimation error is no more than proportional to

anyway. We can use this in a compensator the size of the noises (w,d). We now state our

EKF theorem.
K = -G [ +BG+HC] H(-I) (19)

Theorem (EKF)
in Fig. 2. Note that this is a model-based compen-

sator,where we have used a model-based estimator Let VPf(x)i< M and IV f()< N for some ,N <- and
with gain H, and selected u=-Gx = -g(x). If the consider the EKF
estimator is nondivergent, then the above compen-

sator will stabilize on plant P=COB, by the separ- = f(x) + Bu + H(t)[v-Cx] (25)

ation theorem. We now present our LOR theorems.

For proofs, see (Grunberg, 1926). For the next two = (26)
theorems, let z be the compensator state in (18-19).

Theorem (LOR) at plant input). t) T
~ (t) = Vf (x (t)) ~ (t) + Z (t) Vf (x (t)) +

Let H the filter gain in the compensator, be a + (t)Ct 27
linea operator, parameterized by p such that

(to ) = Zo, t<o. (28)

lim HV' =BW (20)

where -=T>0.

Where W is any invertible operator. Then if B is Then the EKF is nondivergent for some t <0 if the
linear system is 1-detectable.

z-tx as p.0, if d,r=O (21) Remark: This theorem shows that if any observer

and (including the infinite-dimensional optimal filter)

is non-divergent, then the EKF will be nondivergent
lim (-K) (-P) (22) globally. The condition of to0< simply means that

the EKF should be initialized correctly -this how-

Theorem (LOR at plant output). Let G be para- ever does not mean that large noises or disturb-

meterized by p>O. Let assumptions (ad-f) be ances will cause non-divergence or require the

filter to be reinitialized.

(a) lim vp G=W 1C W1 invertible
Po 0COMPLETE PROCEDURE

(b) lim GP = W2 C ; invertible We now outline the complete procedure to use these

p2o previous results to design a nonlinear dynamic
compensator.

(c) B linear

(d) C linear LOR at Plant Input

(e) G [x1-2] G-G if C(x -x) STEP 1: Obtain the plant model in form (1), aug-

menting the plant with integrators if desired.

(f) [ -1+BG linear yp>O STEP 2: Design a state-feedback g(x)=Gx so that
G B is desirable as a loop operator at the plant

Then input in Fig. 2. We can judge the desirability of
this target loop by its disturbance rejection cap-

(i) (a) and (c) imply that ability and its robustness. We will need to worry
that the bandwidth is not too high in relation to

lim Cz =0 if w=O (23) the unmodeled dynamcis. This can be checked via

p
4
o the robustness tests of section 4. One way to

guarantee robustness properties of GOB is to use

(ii) (a-f) imply optimal control theory.

lim PK = COH (24) STEP 3: Now design a nondivergent estimator, with

p*o gain H , so that (20) is satisfied. One way to do
this is to use an EKF.

Remark: The LOR at the plant input shows that the STEP 4: We now invoke the LO Theorem, and select

loop broken at the plant input can be made to ap- a value of W>0 small enough so that

proach the target loop GOB. In (Grunberg and

Athans, 1985; Grunberg, 1986) it is shown that GOB (-K )(-P) GB (29)

has some very desirable properties if G is chosen P

as the solution to certain nonlinear optimal to our required degree of accuracy. The degree of
control problems. Also related are the results matching can be determined by simulation. We

about optimal regulators obtained by Glad (194, simply use K as our final compensator.

1985). 1

LOR at Plant Outout
THE EXTENDED KALMAN FILTER

STEP 1: Obtain the plant model in form (1) with
We now discuss the Extended Kalman Filter (EKF) and the sDecial restriction that the conditions for

its properties. For a basic exposition of the EKF, LO at the plant output are satisfied. This means

see Jazwinski (1970). that our plant must be in both controller and ob-

server form, see Krener (1986).
Definition: A nonlinear system (14) is M-detec-

table if there exists a model-based estimator of STEP 2: Design a filter so that COH is a desir-

the form (18) that is nondivergent. able as a loop operator in Fig. 2. Note that the
loop COH is fictitious in that we cannot imple-

Note that this is the most fundamental form of a ment it since we only have control of the plant

definition for observability that one can make in by u(through the B matrix). We judge the des-

a control context. It does not say that the state irability of this target loop by its command-fol-

can be uniquely determined from the measurements- lowing capability, its disturbance rejection cap-

only thit the state can be estimated so that the ability, and its robustness. One way to produce



nondivergent estimators with a modifiable loop may be less restrictive than the standard

operator is to use an EKF. topological definition, as the plants and compen-

sators involved have certain smoothness properties.
STEP 3: We now compute a stabilizing state-feed-
back gain so that (a-f), of the LOR at plant out- REFERENCES
put theorem are satisfied.
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CONCLUSIONS

This paper has outlined a new design methodology
for nonlinear compensator design and shown the
various guaranteed properties. While the method

is obviously still in its infancy, it appears quite j

possible that a practical methodology can be devel-

oped, guaranteeing

(i) closed-loop stability,
(ii) good robustness margins
(iii) design parameters to adjust performance.

Figure 1: The ~ Operator.

Further work is needed, both in extending the pro-

cedure to plants not in controller form and also

in making the procedure more feasible as far as

computations go. It appears likely that tests in-

volving "for all signals" can be done over some

smallei set of signals, provided that they are
."denae" in._the setof..all signals.__This_dDenenes_
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Figure 6: Sensitivity Calculations.

Figure 3: Open Loop Simulations
Recovery: COH and PK Loops
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