Room 14-0551
77 Massachusetts Avenue

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available. If you are dissatisfied with this product and find it unusable, please contact Document Services as soon as possible.

Thank you.

Pages are missing from the original document.

A REEVALUATION OF THE VALUE LINE INVESTMENT
STRATEGY; CAN ACTIVE COMMON STOCK PORTFOLIO
MANAGEMENT PRODUCE SUPERIOR RETURNS?
by
JOHN HARRY FEINGOLDB.S., Massachusetts Institute of Technology(1978)
SUBMITTED IN PARTIAL FULFILLMENTOF THE REQUIREMENTS FOR THEDEGREE OF
MASTER OF SCIENCE
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY(JANUARY 19, 1979)Copyright John H. Feijngold

Depertment of Management, January 19, 1979
Certified by Thesis Supervisor $\rightarrow \cdots \rightarrow \infty$.Accepted by

A REEVALUATION OF THE VALUE LINE INVESTMENT
STRATEGY; CAN ACTIVE COMMON STOCK PORTFOLIO
MANAGEMENT PRODUCE SUPERIOR RETURNS?

by

JOHN HARRY FEINGOLD

Submitted to the Sloan School of Management on January 19, 1979 in partial fulfillment of the requirements for the degree of Master of Science

ABSTRACT

Value Line Investment Survey asserts that their Group 1 ranked securities have outperformed lower ranked stocks with remarkable consistency for over twelve years. However, many have criticized their tests as inconclusive.

This thesis is a Value Line performance analysis covering the period of November 1971 through December 1977. The sample includes the 100 stocks ranked 1 for year ahead appreciation, assembled in an equally weighted portfolio. The test utilizes regression analysis to compare the excess returns on the Value Line portfolio (Value Line portfolio returns -Treasury Bill returns), the dependent variable, and the excess market return, (three different indices, equally and value weighted, Standard and Poor's "500") the independent variable.

The Value Line ex-post alpha, for trading on the publication date ($-5,0,5,10,20$ days delay analyzed), regressed on the equally weighted portfolio (the best performing of the market indices), indicates a positive 12% yearly extra return, with a t-statistic of 3.6 , significant at over the 99\% confidence level.

This result, significant and large, suggests that Value Line recommended investment strategies which consistently outperform the market, contradicting extensive literature documenting the efficiency of capital markets.

Thesis Supervisor: Fischer Black
Title: Professor of Finance

TABLE OF CONTENTS

Abstract 2
Table of Contents 4
Table of Tables 6
Acknowledgement 7
Preface. 9
Introduction. 10
Chapter 1
Value Line: What Does It All Mean? 11
Chapter 2
Previous Research on Value Line Investment Survey 25
Chapter 3
Financial Theory - Efficient Markets - Random Walk. 31
Chapter 4
Methodology 36
Computer Program 1 Analysis 41
Computer Program 2 Analysis 41
Computer Program 3 Analysis 42
Computer Program 4 Analysis 47
Computer Program 5 Analysis 48
Chapter 5
Results 51
Chapter 6
Taxation and Trading Strategy 78
Chapter 7
Conclusion, Summary and Topics for Future Research. 93
A.ppendix 1
Cumulative Company List 97
Sample Portfolio 115
Appendix 2
Computer Programs 116
FORTRAN Program 1 118
FORTRAN Program 2 121
FORTRAN Program 3 126
FORTRAN Program 4 130
TSP Program 5 131
Appendix 3
Regression Output 132
-5 Days Delay 133
0 Days Delay 136
5 Days Delay 139
10 Days Delay 142
20 Days Delay 145
Glossary of Terms and Equations 148
Footnotes 150
Bibliography 155

TABLE OF TABLES

Table 1 Record of Value Line Rankings for Timeliness Allowing for Changes in Rank. 18
Table 2 Record of Value Line Rankings for Timeliness. 19
Table 3 Percent Change in Price - Value Line Equally Weighted Portfolio. 21
Table 4 Total Return - Equally Weighted Value Line Portfolio. 22
Table 5 Total Portfolio Growth - 1971-1977. 52
Graph 1 Total Portfolio Growth 53
Table 6 Summary of 1971-1977 Data-Value Line vs. Market Indices. 60
Graph 2 Extra Return 1971-1977 Data vs. Delay in Days 61
Table 7 Stock Purchase -5 Days Trading Delay. 65
Table 8 Stock Purchase on Day of Value Line Receipt. 66
Table 9 Stock Purchase 5 Days Trading Delay 67
Table 10 Stock Purchase 10 Davs Trading Delay 68
Table 11 Stock Purchase 20 Days Trading Delay 69
Table 12 Treasury Bill Returns 1971-1977 71
Table 13 Cumulative Market Returns - Zero Days Delay 73
Graph 3 Cumulative Portfolio Growth. 74
Table 14 Yearly Growth Portfolio 75
Table 15 Approximate Composition of Value Line Portfolio. 85

ACKNOWLEDGEMENT

The author wishes to express his deep gratitude to Fischer Black, Professor of Finance at the Sloan School of Management, for suggesting this project and for guiding it through to its conclusion. Whe author is also indebted to Professor Irwin Tepper of the Harvard Business School for his patient and clear explanations, unfailing support and friendship over the past year. The author further wishes to express his appreciation to Heather and Jean Titilah for their invaluable manuscript suggestions, and painstaking editing and typing.

The author gratefully acknowledges John Maglio and Charlene Mahoney of the East Campus Computer Facility staff for their advice and programming assistance.

I also appreciate the guidance and interest of the entire Sloan School Finance Department, particularly Professors Robert Merton, Carliss Baldwin, Donald Lessard, John Cox and Dan Holland, and also the Professor Himself, Arnold Barnett.

This work was made palatable by the frequent support and assistance of my friends through each stage of the project. Special thanks to, Ann Short, Jennifer Katz, Larry Gordon, Steve Miller, Rob Goldenhill, Stan Brenner, Brian Ison, Harriet Schwartz and Miriam Sherburne.
Finally, the author wishes to express his wholehearted love and appreciation to his parents for their continuous guidance, encouragement and support throughout not only this project, but this author's entire life.

PREFACE

The author encourages comments, suggestions and questions regarding this thesis. Please direct correspondence to:

John H. Feingold
535 East 86th Street
New York, New York 10028
(212) 879-7982
(212) 249-5117
or my current address will be on file at the Sloan School
of Management's Alumni Office:
Sloan School Alumni Office
E52-460
Sloan School of Management
Massachusetts Institute of Technology
50 Memorial Drive
Cambridge, Massachusetts 02139
(617) 253-7168

INTRODUCTION

Samuelson, in a short article, ${ }^{l}$ touches upon many of the points which the careful reader should keep in mind while reading this performance evaluation of the Value Line investment service.

He speaks of the advantage of portfolio diversification, and warns that holding a large number of securities does not in itself ensure efficient diversification since they may be strongly positively correlated.

He also speaks of portfolio performance evaluation, and the appearance of superior performance by increasing risk through leverage in upmarket periods. Use of regression analysis and the capital asset pricing model will aid in a clearer understanding of the results of this study.

Samuelson also warns that even if an investment advisory service such as Value Line should beat the market, it may be due only to chance. Within this thesis the statistical tests will be performed to provide proof or rejection of the null hypothesis at a statistically significant level.

After reading this paper, one question is still sure to remain. If Value Line has produced better results than a passive strategy, does this imply anything for their expected future performance?

Chapter 1

VALUE LINE: WHAT DOES IT ALL MEAN?

Arnold Bernhard, Research Director of the Value Line Investment Survey, in a 1970 presentation at the University of Chicago, presented exhibits which indicated Value Line Investment Survey had a consistently good predictive ability. He said that unless his results of statistical analysis are pure luck, they contradict the random walk hypothesis. ${ }^{l}$

Fischer Black, my thesis advisor, entered this debate at the conference by presenting the evidence for passive portfolio management. He felt that the Value Line performance results were impressive, but that the statistical tests were inadequate. His objection is based on the fact that Value Line order ranked utilizing cross-sectional tests which indicated little about statistical significance. Black prefers the use of regression testing for consistency of performance. It is this method which I will employ in the original research contained in this thesis.

The objective of an actively managed portfolio of
common stocks is to choose securities so that there is a greater return than when an index fund is purchased. ${ }^{2}$ The choice of misvalued securities must overcome the consequential costs of churning the portfolio. In addition, a
market timing approach can be taken to take advantage of financial market movements, and hopefully help avoid having funds invested during declining periods in the equities markets. The active/passive investment decision will be examined in detail, including an overview of current research in financial theory of efficient markets.

Value Line ranks 100 stocks in Group 1, the highest category for year ahead performance. Implied is an advantage to holding more than one security, otherwise investing a large portion of your assets in what they consider the number one best stock would be recommended. ${ }^{3}$

Harry Markowitz analyzed investor behavior and discovered that investors generally try to maximize returns while avoiding risk. ${ }^{4}$ He believes that the important characteristics of a portfolio of stocks are the expected return and the riskiness. Intelligent rational investors should naturally hold that combination of risky assets which maximize expected returns for a given degree of risk. Markowitz identified that with the knowledge of a securities expected return, variance, and covariance with the market, that efficient portfolios could be created. This is the theory which Value Line simplifies into the recommendation that each investor should hold at least 16 to 25 of their Group 1 securities, and also the reason I chose to analyze the portfolio of all Group 1 securities. The general formula for

-13-

computing the variance of a portfolio is:

$$
\begin{aligned}
\sigma p^{2} & =\sum_{i=1}^{N} \quad \sum_{i=1}^{N} \quad x_{i} x_{y} \text { coviy } \\
x i= & \text { proportion invested in security } i \\
x y= & \text { proportion invested in security } y \\
\text { coviy }= & \text { covariance between the rates of return } \\
& \text { on } i \text { and } y
\end{aligned}
$$

also

$$
r_{a b}=\frac{c_{A B}}{s_{A} S_{B}}
$$

where

$$
\begin{aligned}
\mathrm{C}_{\mathrm{AB}}= & \text { covariance between return on } A \text { and } \\
& \text { return on } B \\
\mathrm{r}_{\mathrm{ab}}= & \text { coefficient of correlation between } \\
& \text { return on } A \text { and return on } B \\
\mathrm{~S}_{\mathrm{A}}= & \text { standard deviation of } A \\
\mathrm{~S}_{\mathrm{B}}= & \text { standard deviation of } B
\end{aligned}
$$

These equations show that diversification does not help when security returns are perfectly positively correlated. However diversification can eliminate risk with perfectly negatively correlated securities. In the case of partial correlation as found in Value Line portfolios Group 1 , diversification lends an advantage, since in theory an investor is only rewarded for bearing market risk represented
by beta rather than total risk ${ }^{6}$ represented by sigma - or what Value Line has computed by the name "Rank for Safety."

Value Line recommends that if one holds fewer than 15 of their Group 1 securities, the "safety rank" or total risk view, is a valid measure. But if one holds more than 15 securities, in different industries, one should be only concerned with betas, since the portfolio would then be fairly well diversified.

In order to better understand how Value Line makes stock recommendations, let us examine the criteria used in their performance studies and analyses.

Value Line computes the rank of approximately 1700 stocks each week. The financial analysis is condensed into two numbers, one conveying information about how the stock rates in the sample of about 1700, relative to expected price performance in the next 12 months. The second measure is an indication of investment safety, or total risk of the individual security.

Value Line publishers explain their rankings as follows: Value Line rank definitions, 100 stocks Rank l: Expect the best price performance relative to the other stocks covered in the survey.

300 stocks Rank 2: Expect above average price performance.
900 stocks Rank 3: Expect price performance in line
with the market.
300 stocks Rank 4: Expect below average price performance.
100 stocks Rank 5: Expect poorest price performance in
relation to the other covered stocks.
Other studies of Value Line have examined the stocks
in each of these rank portfolios to determine if the expected
results hold true. Value Line claims "not every stock will
perform in accordance with its rank in every year. But such
a high percentage have in the past for logical reasons based
on earnings, growth rates, and risk, that the probabilities
definately stand in your favor when you line up your stocks
with the Value Line Ranks. 7
If Value Line does have the ability to discriminate
between securities in the ranking method, an obvious strategy
would involve the purchase of Rank l securities and the short
sale of Rank securities. Although according to Value Line
literature this would be a strategy, it is not examined in
the paper.

I studied only those securities ranked 1 , to determine whether their Rank 1 performance was superior to that of various market indices. Value Line is mailed on a schedule that is aimed to assure delivery to the subscriber on Friday. In my analysis I refer to "x" days delay in acting upon Value Line advice. A zero delay means you would
act on the Friday you receive the survey. A five day delay is five Stock Exchange days, or most likely seven days. Likewise, a delay of 20 Stock Exchange days would be about four weeks. I also analyze a negative delay, a hypothetical strategy of acting on the advice five days early. I consider this important both academically and because it is a strategy which could be followed by a person who understands how the Value Line ranks are computed.

In a letter of June 2, 1978 written by Samuel
Eisenstadt, Chief Statistician of Value Line to Fischer Black;

> "Most subscribers receive the survey on Friday, some even on Thursday. The rankings are determined $7-12$ days prior to the subscriber's receipt of the survey... subscribers that are acquainted with the mechanics of the ranking system can successfully anticipate rank changes by following earnings reports in the Wall Street Journal. For example if a Group l stock comes out with a poor quarterly earnings report he need not wait 7-l2 days to be told that the ranking has been lowered."
> Therefore I thought it would be interesting to look at the five day negative time delay. However although rankings appear to be about a week 'stale' by the time the subscriber receives the survey, I am sure that in the case of a major development, the ranking could be altered until the survey is printed on Wednesday evening. I do not believe in the likelihood that a subscriber could duplicate the results obtained by following Value Line a week early.

However the zero day delay is the strategy that subscribers could duplicate.

Value Line's performance record is regularly reported in their publication as demonstrated in Tables 1 and 2. These two tables, assembled by Value Line, show the results that an investor would have received following Value Line recommendations from April 1965 through July 5, 1978. The Value Line analysis assumes, in the case of no allowance for rank changes, that an investor buys an equal dollar amount of each stock of each rank at the start of each year and holds an unchanged portfolio for the entire year. At the start of the next year the portfolio is rebalanced. Allowance for rank changes in the portfolio is updated weekly. There are no allowances for transaction costs.

The compilation of Value Line table statistics utilizes geometric averages of price changes in each period. When dealing with portfolio performance, ${ }^{9}$ a compounding of arithmetic averages of price changes would have simulated an actual portfolio strategy.

Tables 3 and 4 present data compiled by Value Line applied to an institutional universe of common stocks -Standard and Poor's "500" stock Composite Index. This analysis was executed to disprove the belief by some that Value Line is capable of discriminating only in that segment of the market made up of small, inactively traded "secondary
Table 1

RECORD OF VALUE LINE RANKINGS FOR TIMELINESS

			－18－			
	$\xrightarrow[0]{10}$	$\underset{\sim}{*}$	N	m	の	
$\stackrel{n}{\sim}$	$\dot{\square}$	$\stackrel{-}{ }$	0	$\dot{\circ}$	$\dot{0}$	$\stackrel{+}{\square}$
$\stackrel{\square}{\square}$	＋	$\stackrel{+}{+}$	$\stackrel{+}{+}$	$\stackrel{m}{+}$	$\stackrel{+}{+}$	$\underset{\square}{+}$
	010					
マ゙	\cdots	$\stackrel{\square}{\square}$	\rightarrow	$\stackrel{\square}{\square}$	\bigcirc	\bigcirc
a -1	$\stackrel{-1}{7}$	－	m	$\stackrel{+}{+}$	$\stackrel{1}{n}$	$\stackrel{+}{\square}$
	1	1	1	1	1	

Table 2

stocks" that may be inefficiently priced. Therefore Value Line assembled this data to demonstrate performance on that segment of the market considered by most to be the most well analyzed and efficiently priced.

The rankings assume that a position was taken at the beginning of each year and held for 12 months without ranks changes. ${ }^{10}$ Table 3 summarizes recent changes in price for an equally weighted portfolio. Table 4 contains total returns figures, change in price plus dividends, and is also equally weighted. These tables show that results for the Standard and Poor's "500" stocks show discrimination, and question the validity of efficient market theory.

Value Line describes their statistical analytical technique as "Investing in Common Stocks." I will summarize Value Line's criteria for computing a rank for price performance of the next 12 months. Their four main criteria are:

1. Non-parametric value position
2. Magnitude of over or underevaluation
3. Earnings momentum
4. Earnings surprise factor

The non-parametric value position of each stock concerns a price-earnings measure. Relative earning and prices of all Value Line stocks for the same period."ll A price momentum factor is also included in order to help

$$
\text { Table } 3
$$

PERCENT CHANGE IN PRICE - EQUALLY WEIGHTED

STANDARD AND POOR'S "500", VALUE LINE UNIVERSE											
		1965*	1966	1968	1969	1970	1971	$\underline{1972}$	1973	1974	1975
Group	1	28.15	-5.69	24.28	-14.43	-1.86	33.47	14.30	-14.66	-20.98	45.42
Group	2	-10.46	27.60	19.82	-9.24	2.33	20.87	17.61	-21.15	-26.51	59.44
Group	3	8.17	-8.95	33.24	21.54	-11.21	-. 07	15.39	11.84	-19.05	-27.67
Group	4	-. 60	-11.71	29.26	22.48	-15.82	2.37	12.45	5.12	-28.99	-30.64
Group	5	1.66	-16.09	33.40	23.19	-23.12	-4.52	13.28	13.45	-22.38	-25.19
		1976	1977	1978**		April 1965 to June 1978					
Group		28.03	4.38	13.56		+273\%					
Group		26.88	1.83	9.53		+173					
Group		24.16	-6.12	5.62		+103					
Group		27.59	-9.58	1.75		+ 28					
Group 5		33.80	-16.09	2.22		$+38$					
		* April ** Decem	to Dece ber to	mber une		Table Page 9	$\begin{aligned} & \text { From Va: } \\ & 16 \end{aligned}$	ue Line	e, Nove	mber 17	1978,

$$
\begin{gathered}
\text { Table } 4 \\
\text { TOTAL RETURN - EQUALLY WEIGHTED } \\
\hline
\end{gathered}
$$

	STANDARD AND POOR'S "500", VALUE LINE UNIVERSE										
	1965*	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975
Group 1	30.49	-2.65	33.99	27.81	-11.44	1.25	36.07	17.27	-11.53	-17.06	52.00
Group 2	17.75	-7.41	31.36	22.98	-6.29	5.06	23.07	20.30	-18.14	-22.08	65.48
Group 3	10.34	-5.97	37.01	24.74	-8.45	3.37	18.76	14.70	-16.15	-23.48	60.54
Group 4	1.58	-8.73	33.32	25.75	-13.06	6.35	15.84	8.09	-26.19	-26.01	$62.39 \stackrel{\sim}{N}$
Group 5	3.96	-13.30	36.83	25.77	-21.03	-1.34	16.34	16.27	-19.75	-19.75	$62.21{ }^{1}$
	1976	1977	1978**				April	1965 to	June	978	
Group 1	30.79	7.81	15.07					+463\%			
Group 2	30.75	5.07	11.50					+318			
Group 3	28.88	-1. 79	8.11								
Group 4	33.06	-4.94	4.48								
Group 5	38.76	-12.05	4.76								
	*April **Decem	to Dece r to J	$\begin{aligned} & \text { ber } \\ & \text { ne } \end{aligned}$		Table Page	$\begin{aligned} & \text { rom } \mathrm{Va} \text {. } \\ & 6 \end{aligned}$	ue Lin	, Novem	mber 17	1978,	

predict future action. This measure is used to combine earnings, rank, price rank, and price momentum into one figure.

The magnitude of over or underevaluation is a measure used by Value Line's analysts to "measure the disparity between current price-earnings ratio of a stock and its historical norm."12

Earnings momentum is a function of the year-to-year change in quarterly earnings per share of each stock.

The earning surprise factor seems to be a convenient way to integrate new or unexpected information into the ratings.

This explanation is what Value Line claims they do to estimate stock values. Of course we don't know their method for sure -- however this is what they claim to do.

Utilizing these many measures of performance and analytical predictive ability, Value Line attempts to refute the efficient market hypothesis by demonstrating accurate active portfolio management.

Burton G. Malkiel defines the random walk as "The history of stock-price movements contains no useful information that will enable an investor consistently to outperform or buy and hold strategy in managing a portfolio."13

Scholars have defined three forms of the efficient market hypothesis. The weak form asserts that current stock
prices reflect all information from historical prices, i.e., one cannot apply a mechanical formula to past stock prices to beat the market. The semistrong form of the hypothesis is that in analyzing public knowledge or charting the underlying companies does not produce superior investment results. The strong form does not produce superior investment results. The strong form goes so far as to say that even those individuals with insider information cannot make use of this information to produce superior stock market returns. ${ }^{14}$ If these strong forms of the efficient market hypothesis are true, it appears Value Line could not achieve superior stock market returns.

Chapter 2
PREVIOUS RESEARCH ON VALUE LINE INVESTMENT SURVEY

A survey of recent financial literature on previous empirical research on Value Line, produced five outstanding performance analysis articles. This section summarizes the findings and relates the highlights of earlier works.

John P. Shelton in "The Value Line Contest - A Test of the Predictability of Stock Price Changes," studies the results of a large number of individual investment decisions on the 1965-1966 Value Line contest. The contest was a promotional device. Appropriately named, a contest of stock market judgment, which attracted 18,565 entrants.

Each contestant chose 25 stocks from a list supplied by Value Line made up of securities they ranked four or five on November 26, 1965. The rules assumed that each contestant would form an equally weighted portfolio with a value computed at the close of the market on December 31, 1965. Value Line analysts selected their own portfolio of stocks from those that were ranked Group 1. Prizes were awarded to those individuals who chose portfolios which outperformed Value Line by the greatest margins.

The question Shelton asks is "Did the 18,565 contestants select portfolios, on average, that differed from the performance of the 350 stocks to which the selection was
confined by enough to conclude that the result was not likely to have happened by chance?" ${ }^{2}$ Shelton found that the 350 stocks ranked four and five experienced a 5.9 loss in value over the 26 week contest period. The range of stock price changes for individual securities ranged from a doubling in value to 202.5% to a two-thirds decline in value to 64.7%. Shelton discovered that the average score achieved by the contestants was approximately 49 standard deviations greater than the expected mean. He states, "It is extremely unlikely that a difference as large as this would have occurred if the price changes during those six months were so truly random." ${ }^{3}$ Shelton seriously questions the existence of efficient markets, based on the superior performance of a large sample of individual investors. This doubt is limited, of course, to the six month period of the Value Line contest. Warren H. Hausman in "A Note on the Value Line Contest: A Test of the Predictability of Stock-Price Changes" calls attention to what he considers an inappropriate statistical test used in Shelton's paper. He concludes "The fact that investors (or contest entrants) tend to agree with each other (as Shelton found) need not mean that they know anything of value. Neither does the fact that; on a single occasion, they outperformed a random selection of stocks." ${ }^{4}$ Hausman suggests additional observations during different time periods.

John Michael Murphy studied and performed analysis on the 1969 Value Line contest. ${ }^{5}$ Murphy's results are in agreement with Shelton's and cast doubt on the usefulness of the random walk hypothesis when describing the stock market. The 1969 contest rules differed from those in l965. Contestants were allowed to choose their portfolios from any of the 1,258 stocks Value Line analyzed at the time. One of Murphy's conclusions is: "The results reported are significant and inconsistent with the spirit of the random walk hypothesis, but statistical, logical, and methodological considerations preclude a claim that the hypothesis has been rejected." ${ }^{6}$

The next Value Line inquiry was conducted by Robert S. Kaplan and Roman L. Weil in an article, "Risk and the Value Line Contest. ${ }^{7}$ This contest covered the period from August 18, 1972 to February 16, 1973. The authors hypothesized that given efficient markets, stock prices would simultaneously adjust at the publication or release of all new information, including analysis performed by Value Line. They believed that a high beta, high risk, portfolio should do well when the market rises, and perform poorly when there is a general drop in price levels. A low risk portfolio should perform better than the high risk portfolio when there is a market decline.

Kaplan and Weil did not believe they could pick 25 stocks that could outperform the market. They thought that it made sense to enter two portfolios, a very high beta portfolio, and a very low beta portfolio. If the market moved in either direction, they could take advantage of the situation. The high beta portfolio had a beta of 2.13 and the low risk portfolio by their estimates a beta of 0.21 . The average Value Line rank of the two portfolios was about equal, which would naturally lead to an expectation from Value Line of about equal performance.

Their results were computed during a period when prices for all stocks in the Value Line survey declined 6.7\%. The author's low beta portfolio actually increased in value 3.8%, placing it in the top 2,043 of the 85,744 portfolios entered. The high beta portfolio declined 22.9% and scored in the bottom 519 of the 89,744 portfolios entered.

The results support the authors' hypothesis. They showed the expected results according to the beta theory of portfolio performance. In their conclusion, Kaplan and Weil say "The rankings are flawed, since much of the variation in performance is caused by differences in the risk of stocks in each group." 8 The Kaplan and Weil study chose portfolios with equal Value Line rank but with different levels of risk. The return on these portfolios differs by more than 26 percentage points. During the same time period, Value

Line Group 1 and Group 5 portfolios had approximately equal risk in a beta context, but return differed by only 3 percentage points in performance, despite differential Value Line ratings. They concluded that detailed investigation of individual securities is not worthwhile and that stock market movements are dominated by systematic risk.

The next study of Value Line was performed by
Professor Fischer Black, "Yes Virginia, There Is Hope; Tests of the Value Line Ranking System." ${ }^{9}$ This thesis is closely modeled after Black's paper, with three important differences. 1) Black's observations of Value Line rankings and stock prices were monthly, while mine are weekly; 2) Black looked at all the Value Line ranks in his study period. This study looks into Group 1 rank and compares Group 1 stock performance to various market indices; 3) Black did his study in cooperation with Value Line, who performed the actual computations. This thesis is independently written and researched. Black states "According to the analysis that Value Line performed with my help, its ranking system appears to be one of the few exceptions to the rule that attempts to separate good stocks from bad stocks is futile." 10 Professor Black observed of Value Line, "The system tends to assign high marks to stocks with low price earning ratios, relative to historical norms, and relative to the price earnings ratio of the market."ll

Discussing shortcomings of previous Value Line analysis, Black says "Cross-sectional tests generally tell you nothing about statistical significance, or whether performance in one period is likely to be repeated in future periods." ${ }^{12}$ Black favors regression testing which is the method he suggested for this thesis. He also examines the implications of transaction costs and he discusses ways of utilizing the ranks to minimize transaction costs. In concluding, he states "The net result of the portfolio simulation, assuming transaction costs of two percent or less in and out, was that the strategy continued to give significant results over the five year period, although the level of significance was reduced somewhat." 13

This has been a survey of the research leading up to my analysis of Value Line. Each study concentrated on a slightly different aspect of active portfolio management. Nevertheless each concluded that there is at least some question as to the validity of the efficient market hypothesis. Hopefully this performance study will provide another piece of evidence.

The efficient market hypothesis is at the heart of this research. If Value Line can discriminate undervalued securities, then surely a re-evaluation is due to the presupposed degree of efficiency in markets. This section will provide an overview of the most well known previous investigations into efficient markets and stock market performance studies.

In a test of efficient markets, Fama ${ }^{1}$ studied the proportionate price changes of the 30 Dow Jones industrial stock for the period 1957-1967. He found serial correlations very low, the average being $03 .{ }^{2}$ To adjust for the domination in his correlation coefficients of just a few extreme observations, Fama also examined only signs, (+ or -), rather than size of successive days, statistics to determine if runs persisted. He found a negligible departure from randomness. His study provides strong support for the random walk hypothesis. ${ }^{3}$

Another test of efficient markets was performed by William F. Sharpe. ${ }^{4}$ He studied 34 mutual funds from 1954 to 1963. Sharpe takes account of rates of return as measured by total risk, variability, ${ }^{5}$ utilizing the capital asset pricing model. The capital asset pricing model expresses a linear relationship between risk and return on a portfolio.

This presupposes the condition that the portfolio is efficient, meaning that the portfolio provides maximum returns for a given level of risk. Sharpe found that if expenses of the funds are ignored, 15 of the 34 funds outperform the Dow Jones industrial average after risk adjusting. If expenses are considered only 11 funds beat the Dow Jones average while 23 did worse. Sharpe's conclusion is that mutual funds failed to consistently outperform the market, implying an efficient market. ${ }^{6}$ He states "... support(ing) to the view that capital market is largely efficient and that good managers concentrate on evaluating risk and providing diversification, spending little effort (and money) on the search for incorrectly priced securities." ${ }^{7}$

Another study of mutual fund performance was undertaken by Michael Jensen ${ }^{8}$ covering the performance of 115 mutual funds from 1945-1964. Jensen understood that variations in fund performance was expected because of difference in the fund's risk. His method involved comparison of an individual fund's performance with the performance of a randomly selected portfolio of equal risk. ${ }^{9}$ When ignoring mutual fund expenses, about half of the funds did better, and half worse than expected. "This is the result that would be expected if the market were highly efficient with market prices fully reflecting all that was knowable through public announcement or
ascertainable through the efforts of individual security analysts."10

When accounting for expenses only 43 out of 115 mutual funds showed superior performance. Jensen's work in the evaluation of mutual fund performance provided additional support for the random walk hypothesis. "The evidence on mutual fund performance discussed above indicates not only that these 115 mutual funds were on average not able to predict security prices well enough to outperform or buy and hold policy, but also that there is very little evidence that any individual fund was able to do significantly better than that which we expected from mere random chance."ll

William Sharpe in "Adjusting for Risk in Portfolio Performance Measurement" ${ }^{12}$ shows that adjusting for risk properly is the way to accurate performance evaluations. Sharpe describes methodology used in this Value Line study involving the computation of the excess return for each period, being the difference behind a portfolio return and Treasury Bill returns. ${ }^{13}$ He states that in times of greatly varying short term interest rates, it is essential to utilize the excess return methodology to obtain meaningful study results. He also speaks of a reward to variability, measure and a model of naive investor behavior as necessary parts of a performance study. Exactly what he is advising is to be aware of risk, as it is important measure on performance
evaluation.
William Sharpe wrote another article "Likely Gains from Market Timing" 14 which I include in this overview because of the suspicion that Value Line may attempt market timing decisions in the adjustment of the average beta of their portfolios. This article tries to address the question, how superior must one's predictions be to implement a market timing style effectively? "Attempts to time the market are not likely to produce incremental returns of more than four per cent per year over the long run. Moreover, unless a manager can predict whether the market will be good or bad each year with considerable accuracy (e.g., be right at least seven times out of ten) he should probably avoid attempts to time the market altogether." 15

Jeffrey Jaffee in "Special Information and Insider Trading" ${ }^{16}$ provides insights regarding the strong form of the efficient market hypothesis. He summized that only "intensive trading samples yield profits greater than commissions" regarding usefulness of insider information. 17 Jaffee's study also suggested a profit opportunity: but one smaller than is found in this Value Line study. Roger Ibbotson also supports the efficient market hypothesis as it applies to new issues of common stock. "We cannot reject the hypothesis that an investor in a single random issue has an equal chance for a gain or loss ... The results generally confirm
that there are no departures from market efficiency in the after market." 18

Fischer Black and Myron Scholes lend insight into the determinant of active portfolio management. They state that as an individual trading on superior information, such as Value Line recommendations, you are competing with other individuals who are following the same strategy:
"As a group those who trade on information cannot make money. If some individuals make money by deviating from the market portfolio, then other individuals must lose money by deviation from the market portfolio. All individuals together hold the market portfolio... An investor who trades on information incurs substantial costs from his activity. He may spend money gathering and analyzing the information he uses. He incurs transaction costs when he buys and sells. He may realize gains that he does not have to realize, and then pay taxes sooner than he has to. He holds a portfolio that is not as well diversified as the market." 19

Black and Scholes state that although information traders do not generally earn superior returns, they help keep the market efficient by integrating all information into current stock prices. Black contends that the cost of in and out brokerage changes on a $\$ 40.00$ stock is about 3% for a round lot, but this was before negotiated commissions. This research all seems to say that Value Line must show impressive performance to overcome all of the disadvantages of active portfolio management and provide its subscribers. with risk adjusted superior returns.

Chapter 4
METHODOLOGY

This section of the thesis describes topics ranging from data collection to regression testing. The intent is to provide a precise explanation of the research in enough detail to support further research and expansion by a future historian. It is important for the reader to understand that this performance study was done independently of Value Line, or of any other commericial enterprise. No direct contact was made with the Value Line organization, nor was any data supplied directly by them.

All Value Line information was hand collected from publicly available sources. The data from November 5, 1971 to December 30 , 1977 was collected and put into machine readable form. The Value Line Group 1 portfolio, each containing 100 stocks, were recorded on a weekly basis. The Dewey Library at M.I.T., Harvard's Baker Library, Boston Public Library as well as the libraries at Northeastern, Boston University and Wellesley College, were cooperative in locating back dated Value Line reports. Mr. Evan Shulman of Batterymarch helped fill in the final gaps.

Study was concentrated on those 100 stocks Value Line ranked highest for year ahead performance. Initially we thought this would encompass hand coding the 100 stocks
each week for the entire 321 week period.
It is more efficient to code only the initial portfolio on November 5, 1971, and record only the weekly additions and deletions. With this information a computer program can generate weekly stock portfolios, resulting in a 90\% savings in information quantity which it was necessary for computer readable form.

This method provided ease in obtaining many spot accuracy checks. Each week's portfolio updates were recorded on $3 x 5$ index cards which were headed with the date. The analysis is limited to those Value Line securities listed on the New York and American Stock Exchanges. This is because the CRSP data base included only those securities. However, the index card weekly update file contains listings of over-the-counter securities for possible future research efforts. Upon completion of the index card weekly update file, each company name was manually coded with its unique identifier, an eight digit ICUSIP number. It is this identifier, supplied by the Stock Exchange, which is punched onto weekly update computer cards to act as input to the portfolio generation program. The ICUSIP numbers were coded from a list containing all stocks on the above mentioned exchanges. Whenever a stock name from the index card file was not located on the computer generated tape identifier number list, it was assumed to be a security listed on the over-the-
counter market and therefore outside the realm of this study. Roughly three per cent of the Value Line Group 1 recommendations are over-the-counter securities. I believe ignoring these stocks will have little effect on this analysis since I see no obvious reason that Value Line should be better able to discriminate over-the-counter securities. One may consider the over-the-counter portion of the market less efficient, and more open to fundamental and technical analysis. If that were truly the case, Value Line would include more over-the-counter securities in their universe.

Compilation of the portfolio update list is straightforward for the two most recent years. For this period, Value Line presents newly added securities to Group l rank with a box next to the name. From 1975 chronologically reversed, the task is more difficult in that weekly updates are not easily identified. The method is standardized by reliance on the "Summary of Advice Section," a list of 100 Group 1 rank for year ahead performance. Adjacent week lists are compared, and additions and differences were discerned by discrepancies in the adjacent lists. The Value Line publication is only satisfactory in transmitting their analyst's recommendations to the subscriber. The publisher lets pass many spelling and alphabetization errors serious enough to cause doubt in the subscriber's mind as to exactly what action was recommended.

Value Line utilizes an up arrow symbol (Δ) to indicate an upward valuation in rank, similarly a down arrow indicates a drop in rank (∇) . Mysteriously, in copies of the reports I found triangle arrows pointing in most conceivable rotations.

The recorded errors in Value Line are diverse. In some cases, the same stock was dropped from Group 1 in two consecutive weeks, or just claim to drop it, only to confuse the subscriber by it's appearance as a Group 1 on the following week. Although the restraint of the portfolio remaining stable at the 100 stock level implies an equal number of additions and deletions per week, this is not always the case. Prior to 1975, the Value Line information supplied was more difficult to utilize. For example, on April ll, 1975 the recommendation was made to drop Norton-Simon from Rank 1. This was confusing considering that the previous week's Group 1 did not contain Norton-Simon. Value Line also recommended dropping Outlet Company, which was not in Rank 1. On July 2l, 1974 Value Line identified Tyler Corporation as in Group 2 with an up arrow (Δ), signifying that it had just been promoted from Group 3. However, in the Summary of Advice section, Value Line recommended that this stock be dropped from the Group 1 portfolio. The arrow had been reversed. Furthermore, the July 2l, 1974 survey may have been incorrectly dated July 19, 1974. Value Line recommended
adding Entex to Group 1 on April 29, 1977, even though it was already in the Group 1 portfolio. On December 28, 1973 Barber Oil was listed with an (Δ) as an addition to Group 1 , however it was not added to the Summary of Advice Group 1 list. To compound the error, and maintain 100 stocks in the portfolio, Value Line continued to maintain Greater Washington Investments as Group l, while listing it as a drop candidate with a down arrow (∇). Again on December 28, 1973, Koehring was dropped from the Summary of Advice's Group 1 -- however, it was not labeled with a 2 down arrow (∇), but was maintained a Group I. It was lowered in rank a week later, without mention of the apparent discrepancy. A more serious error occurred on December 21, 1973 when 101 stocks were listed as belonging to Group 1. In trying to cope with these errors one must rely on the Summary of Advice section as being correct and one must behave as a typical, rational investor. Note that one cannot go back to the original reports for verification since those full page reports are published only four times a year, and therefore are likely to be outdated.

When the data was coded it consisted of 917 different companies with roughly five additions and five deletions each week. Some weeks there were no changes to the portfolio, and other weeks, those which coincided with many quarterly company earnings reports publication contained
roughly 30 portfolio updates. The data span a 321 week period.

Computer Program 1: Weekly Portfolio Generation
The function of computer Program l, which was written
in FORTRAN, was to translate the initial stock portfolio and weekly updates into a sequence of data identified weekly portfolios. For input, the Program required the initial portfolio and data cards in the following format: Date $\quad+$ or $-\quad$ ICUSIP Number (8 digit) YYMMDD $+\quad$ Stock 1, Stock 2, Stock 3 The Program generated output to a disk storage file. This output consisted of: weekly portfolios, cumulative stock list and number, date list and week number. As a verification of sample data check, the program detected and printed error messages if the add or drop symbol was incorrect, if an attempt was made to drop a company not in the current portfolio, or if one tried to add a stock that already existed in the Group 1 domain. The program maintained updated portfolios in numerical (alphabetical) order. The programs are reproduced in the Appendices. Computer Program 2: Stock Name Portfolio Verification

Program 2 was designed solely for data verification purposes. It consists of two parts. The first reads the CRSP (Chicago Research in Security Prices) computer tapes and stores the names of the companies previously identified
by ICUSIP numbers. The second half of the Program prints weekly portfolios, identifying companies by name. Inputs included two volume CRSP data tapes, disk file of weekly portfolios from Program l, and a disk file of the cumulative company list from Program 1. The output is a cumulative list of companies names, a printout of weekly stock portfolios by name, and a list of bad ICUSIP numbers, that is, numbers not found on the CRSP tapes. This may be due to read errors, or more likely because there is no company issued to that ICUSIP number, in which case a keypunch error is uncovered. This output was compared to the original Value Line survey to provide data verification.

Computer Program 3: Variable Vector Displacement

Returns Generation.

Program 3 performed all of the computation for the thesis. It required two megabytes of core storage and ten cylinders of temporary disk storage. (Including tape mounting charges it cost roughly $\$ 50.00$ per run.) Inputs to Program 3 included complete CRSP daily stock returns, 2 volume tapes, a cumulative list of 917 companies, a weekly data list, weekly portfolio composition, and calendar of vector addresses of returns on tape. Output of Program 3 contains a disk file of weekly market returns, a disk file of weekly Group 1 portfolio returns, and cumulative returns.

This program computed weekly market returns from the daily returns on the tape. It also calculated Group 1 portfolio weekly returns from the individual stock daily returns and then formed the 100 stock portfolio.

Two decisions were made when writing Program 3. The first was to equally weight the Value Line portfolio of Group 1 securities. The second involved the choice of the market indices to read from the CRSP tape. This program also provided the researcher with the option to simulate different purchasing acquisitions delays around the Value Line publication date. It was run for each of these variations:

Days (-) Acceleration/Delay Before Trading on Value Line Recommendation

Run 1	-5 Business days, prior Friday
Run 2	0 Delay, publication date
Run 3	5 Business days, delay, subsequent Friday
Run 4	10 Business days, delay, two weeks
Run 5	20 Business days, delay, four weeks

Most investors receive their copy of the Value Line survey in the Friday mail. (This was discovered by examination of the library reception stamps on survey copies.) Due to the Friday market closing, those prices were used as the base, zero delay case for my analysis.

When deciding the choice of a market index, some believe the best choice was one that most closely represented the whole market. Such a decision is independent of this, or any other survey. Another view involves comparing Value Line's performance with a passive strategy demonstrating a high correlation, mixed with lending or borrowing. This could be a technical buy and hold strategy. The comparison with a highly correlated index would provide a good measure of whether Value Line does really do better.

Definition of a surrogate for the market is difficult. Therefore, one must compare the Value Line portfolio to the three indices; the equally weighted market, the value weighted market, and the Standard and Poor's "500" composite. The Value Line portfolio is assembled weekly, buying an equal dollar amount of each stock ranked 1 , selling at the end of the week, producing a return figure and repeating weekly.

The weighting of an index reflects the representative importance of each stock. Value weighted indexes are dominated by the larger high capitalization companies. Equally weighted indexes give greater weight to smaller companies. A value weighted index oriented or ranked strategy can be followed by all investors when the individual stocks are weighted in relation to the company's value. In order for all investors to hold an equally weighted portfolio, major capital redistribution must occur.

$$
-45-, 14 \%-16
$$

The Standard and Poor's "500" composite index includes 425 industries, 25 railroads and 50 utilities. The market value of the stocks in this value weighted index comprise about 80% of the value of the New York Stock Exchange.

Professor Fischer Black made the suggestion that an equally weighted index of the stocks listed on the New York and American Stock Exchanges, may behave similarly to a value weighted proxy of all capital assets, which is really the ideal index representation from some points of view.

Another important issue regards market indices and portfolio evaluation as methods of averaging. These two most commonly used methods are an arithmetic mean, or a geometric mean. Value Line uses geometric averages for their in-house research. Most others use arithmetic measures. Indices based on geometric means will increase more slowly and decrease more rapidly than an index based on an arithmetic mean. Utilization of an arithmetic mean makes more sense for comparative performance research. It corresponds to the performance that could be duplicated by an investor who rebalances his portfolio each period, to include equal dollar weights of each included stock. The geometric mean is the $N^{\text {th }}$ root of the product of N observations. The arithmetic mean is the simple average.

PAGES (S) MISSING FROM ORIGINAL

PAGE 46 IS MISSING

Computer Program 4: Ibbotson - Sinqufield

Treasury Bill Program

The only program run in the batch mode was the one to read the Ibbotson - Sinqufield tapes. These tapes provide the monthly U.S. Treasury Bill returns. This index of short term rates, of Treasury Bills of the shortest maturity greater than one month, was utilized as the risk free rate in the capital asset pricing mode equation. The tapes M.I.T.'s Sloan School of Management own (supplied by the Center for Research in Security Prices) end in 1976. I coded by hand the 1977 returns according to the Ibbotson - Sinqufield procedure:

$$
R_{F T}=P_{F, T} / P_{r,}(T-1)-1
$$

Where $T=$ month, $R_{F}=$ Treasury Bill Returns, $P_{r}=$ Price. I collected the data from the Wall Street Journal. All monthly returns were compounded to a weekly series for the regression.

The program environment consisted of FORTRAN, executed on the conversational monitor system operated under the IBM Virtual Machine Facility 370. The interactive mode of operation made data correction, location and verification easier than under a batch system. The CRSP computer tapes provided daily stock returns for the American and New York Stock Exchange universe. Stock return is defined as a change in total value of an investment for a common stock
-48-
for a period. The returns are completely adjusted for divedends and other distributions.

The last program was written in TSP, Time Series Processor. It calculates ordinary least square linear regression on the return data generated by the previous programs. The output of TSP included estimates of regressional coefficients, estimates of standard errors, and t-statistics for the null hypothesis that individual regression coefficients are not zero, and R^{2}.

TSP produces a least square linear regression equasion such that:

$$
\begin{aligned}
& \hat{y}=a+b x \text { such that } \\
& \Sigma(y,-\hat{y})^{2} \text { is minimized } \\
& \beta=\frac{\sum\left(x_{1}-\bar{x}\right) \quad(y,-\bar{y})}{\sum\left(x_{1}-\bar{x}\right)^{2}} \\
& \alpha=\bar{y}-b \bar{x} \\
& \text { coefficient of determination } \\
& r^{2}=\Sigma \frac{(\hat{y},-\bar{y})^{2}}{(\hat{y},-\bar{y})^{2}} \\
& t-s t a t i s t i c \quad \text { (} \alpha \text { or }(\beta)
\end{aligned}
$$

$$
\sqrt{\Sigma \frac{(y,-\bar{y})^{2}}{N-2}}
$$

The TSP program takes as inputs; weekly portfolio returns, weekly equally weighted market returns, weekly Standard and Poor's "500" returns, and weekly Treasury Bill returns. The program generates excess returns variables and performs the following regressions: Dependent Variable Independent Variable
(Value Line Portfolio / (Equally weighted port--Treasury Bill Returns)
(Value Line Portfolio
-Treasury Bill)
(Value Line Portfolio
-Treasury Bill)
folio -Treasury Bill)
(Value weighted portfolio

- Treasury Bill)
(Standard and Poor's portfolio -Treasury Bill)

Regressions are performed for the total period as well as yearly sub-periods. Professor Black recommended the regression method of testing which he utilized in his value Line survey because of its ability to demonstrate consistency of performance. In order to compare different portfolios a method must be used to relate the beta, or relative risk, and interpret the rate of return. Adjustment for the effect of beta were conducted by examination of the extra return of the Value Line portfolio after regressing the excess returns of Value Line on the excess returns of the market (by subtracting out the Treasury Bill Rate). The extra return is represented by the alpha (α) in the regression equasion. The Value Line portfolio excess return is the dependent variable.

$$
\begin{aligned}
& \quad R_{V L}-R_{F}=\alpha_{p}+\beta_{p}\left(R_{m}-R_{F}\right)+\varepsilon_{p} \\
& R_{V L}- \text { weekly return on Value Line portfolio } \\
& R_{F}= \text { one week Treasury Bill rate, updated monthly } \\
& R_{m}= \text { return on marked index } \\
& \beta_{V L}= \text { beta of Value Line } \\
& \alpha_{V L}= \text { extra return of Value Line portfolio } \\
& \varepsilon_{V L}= \text { error term, assuming normal distribution } \\
& \text { should be zero }
\end{aligned}
$$

If the market is truly efficient, and Value Line does not have the ability to discriminate over/under valued securities, alpha (a) should be zero. The t-statistic of the alpha is the important statistic, dividing alpha by the standard error, a t-statistic greater than 2 is considered to allow rejection of the hypothesis that alpha is zero at the 95% confidence level.

In estimating alpha, considered the measure of Value Line's performance, the effect of varying risk is adjusted regardless of general economic conditions. Market movements should have no effect on this measure of performance.

This thesis tests the hypothesis; the Value Line investment strategy produces no extra return on a market portfolio over an eight year test period. Regression testing adjusts for different sensitivity and risk of various portfolios. In addition, simple growth figures are presented. These are not risk normalized, but are still a good performance measure because the test period is an almost flat period for the value weighted portfolios in the growth of equities. This is verified by the performance of market indices. Observations were weekly unless identified otherwise.

Table 5 summarizes the results of unadjusted market growth over the 1971-1977 period. During this eight year period an initial investment in the Standard and Poor's "500" index would have just maintained its dollar value, (non-inflation adjusted), growing to only 1.01 times its initial investment. (This is an arithmetic average of the returns presented on the Table.) A value weighted index did slightly better growing to 1.28 the initial investment. The equally weighted portfolio showed better performance growing to 2.35 times the initial investment.

It is difficult to say which index best describes the true market movements for the period. I favor the
Table 5
Value Line
portfolio

TOTAL PORTFOLIO GROWTH 1971-1977 (1971 = 1.00)
Treasury Bill growth 1.4

Graph 1

TOTAL PORTFOLIO GROWTH

Value Line = V.I.
Equally weighted = E.W.
Value weighted $=$ V.W.
Standard and Poor's "500" = S\&P

equally weighted index. It represents a broad selection of construction of the Value Line portfolio presented in this paper. This point may be inconsequential however, since, as mentioned earlier, the choice of a market index may be independent of my Value Line portfolio construction.

It appears that smaller companies performed better than the large capitalization companies for the survey period. This fact helps explain the superiority of performance of the equally weighted index.

In evaluating the growth of the Value Line portfolio, one may notice that if one pursued the hypothetical but impossible strategy of purchasing the recommended stocks five days before receipt of the recommendations in the mail, one would have realized growth of 5.8 times the initial investment. This would be impossible for the casual investor. However, it is possible to keep track of current earning reports, and be especially observant of falling earnings -- leading to an early prediction of an upcoming Value Line drop recommendation. It is more difficult to predict a Value Line upcoming add recommendation. The investor must scan the set of 300 stocks ranked 2 to search for sharply increasing earnings which may signal an upgrading in rank. Whereas the investor must only scan the 100 Group 1 securities in search of a drop recommendation.

Furthermore, academicians may find this result fascinating, since it is very likely after the date on which the Value Line computer oriented mechanized stock valuation formula is applied a trading date on which Value Line utilizes the information to manage their supervisory funds.

To purchase stocks on the same day as receipt of the publication is the first strategy that can easily be adhered to. Following this strategy, the initial investment would grow 4.8 times. These figures make no provision for transaction costs, brokerage commission, or taxes which would become due when following a trading strategy. Those taxes would be deferred when following a buy and hold strategy such as buying one of the indices. Even with these negative factors, 4.8 times growth compared with 2.3 times growth for the equally weighted portfolio has value as a strategy and could absorb considerable expenses and continue to maintain its superiority.

Investment strategies simulating delays of 5,10 , and 20 days before purchase or sale of the Value Line Rank 1 securities were tested. Growth was 3.2 , 2.9 times and 2.5 times respectively. Notice growth was perfectly inversely ranked with trading delay. If one followed the alternative of delaying a month before acting upon the Value Line recommendation, the total portfolio growth of 2.5 times would be very close to the growth of the equally
weighted portfolio of 2.4 times. Of course the active trading strategy is subject to many expenses the buy and hold strategy avoids.

Even waiting four weeks after the report publication, the Value Line return does not drop below that of the best of the market indices. In addition, it was observed, non risk adjusted, that for all trading delays, in terms of total growth, Value Line did better than the value weighted portfolio and the Standard and Poor's "500" index.

During this same period, an investment in Treasury Bills grew to 1.4 times the initial investment. Treasury Bills are considered the risk free investment. The reader should notice that the risk free investment outperformed two of the market indices, doing better than the value weighted combined New York and American Stock Exchange index, and the Standard and Poor's "500" index.

It is not wise to rely heavily on the unadjusted growth figures without considering the regression results. The Value Line portfolios are not as well diversified as the market indices and not all of the portfolio movements are described by the market. When stocks were purchased on the Friday of publication, R^{2} terms were: $\mathrm{R}^{2}=.85$ for regression on the equally weighted portfolios; $R^{2}=.79$ for regression on the value weighted portfolios; $R^{2}=.73$ for regression on the Standard and Poor's "500". Correlation
coefficients are:

Equally weighted portfolio	.92
Value weighted portfolio	.89
Standard and Poor's "500"	.86

This demonstrates that most of the Value Line portfolio movement is explained by market movement. It is this divergence from returns predicted by market movements that allows the portfolio to achieve superior performance.

If the Value Line portfolio is a riskier portfolio, modern portfolio theory would lead us to expect extra return to compensate for this risk. Modern portfolio theory states that an investor should be rewarded only for the non-diversifiable risk associated with the market. There should be no benefit for holding company specific risk. One would expect an extra reward to induce holding an undiversified stock portfolio. In addition, if the Value Line portfolio is riskier, (more volatile), than the market indexes, in an up market, it would be expected to produce more growth. This growth however would not be a measure of special predictive ability, but the result of holding a risky portfolio. Of course, it is possible that there exists a market timing element in the Value Line analysis which indicates the proper periods in which to shift into high or low beta portfolios. Naturally, Value Line should choose
high beta portfolios when an up market is anticipated, and low beta portfolios if a downturn is evident. If a downturn is evident, however, another strategy is to get out of stocks completely, or invest in negative beta securities. This question in regard to Value Line must be studied elsewhere.

Table 5 also provides the answer of a valid question. Suppose Value Line really does not have any ability to discriminate. Suppose that the subscribers have been led to believe that the Value Line analysts have predictive ability. This may just be a rationalization for spending the approximately $\$ 300.00$ for the yearly Value Line subscription, or it may be they like executing trades with their brokers, enjoy receiving mail, reading the Value Line research, or are non-value maximizers. If investors automatically followed Value Line advice, the recommended stocks would rise in price in the short run. However, if there was really no information content in the Value Line report, one might suspect that by the time one month elapsed, the fairly efficient market would once again correctly price each security. The growth figure for Value Line with the 20 day delay would be below that of the equally weighted portfolio. Therefore, Value Line recommendations probably contain some information not yet disseminated to the efficient market before publication.

Table 6 will allow us to quantify the Value Line advantage. It summarizes the results of the 1971-1977 regressions, together with the important statistics, the alpha, t-statistic for the alpha, the beta coefficients calculated for each trading delay purchase of sale. All of the R^{2} were high and the t-statistics of the betas were very high (10 and above)).

The striking observation derived from Table 2 is the perfect rank correlation of alphas for each of the market indices. Notice all of the alphas are positive. In all cases, they decrease with increased trading delay. The alphas are adjusted to be meaningful yearly percentage indicators.

I believe the most profound single figure of this thesis is presented in Table 6. Taking market action on the Friday of publication, the Value Line portfolio, when regressed against an equally weighted market index, (the best representative proxy for the market), resulted in a positive alpha of 12. significant with a t-statistic of 3.6 and a beta of 1.04. This strongly suggests that Value Line recommendations do produce investment strategies which consistently outperform the market by over 10%. This figure is large enough to absorb considerable transaction expense.
Table 6

Value Weighted $=$ V.W.
Equally Weighted = E.W.
Standard and Poor's "500" $=$ S\&P

Concentrating on the equally weighted portfolio, the alphas were positive and statistically significant for -5 days and 0 days delay, 15. (t-statistic 4.5) and 12. (t-statistic 3.5) respectively. The time delay between acting on the Value Line recommendation immediately and waiting a week are the most noticeable in terms of extra returns. After a week's delay the alpha is reduced to 4.5 (t-statistic l.4) with a low t-statistic which does not disprove the null hypothesis at the 95% confidence level.

For delays of 10 and 20 days the alphas were lower:
3.2 and 1.6 , with low t-statistics of 1.0 and .49. The beta of the regressions varied from 1.04 to .99 , all approximately equal to the market beta of 1.0. Of course all of the market indices do not have the same level of risk. This would suggest that an equally weighted index, accentuating the effect of smaller companies compared to a value weighted index, stressing larger companies, would be more volatile, since the smaller companies in general may be riskier than the larger ones.

Both the value weighted and the Standard and Poor's "500" index show the same rank ordering of alpha over the entire study period. However, from Table 6, recorded alphas are higher for 0 days delay; 22.2\% (5.66) for value weight and 26.2% (5.95) for the Standard and Poor's "500". The Value Line portfolio regressed against these
two market indices produced significant t-statistics, (over 2), for all trading day displacements.

In the same way as demonstrated earlier the $t-$ statistic declines as the trading delay increases.

Alpha decline Trading - 5 to 20 days
Equally weighted 15. to 1.5
Value weight 26. to 12.
Standard \& Poor's "500" 30. to 16.

This table confirms that regardless of which market index one prefers, there is a Value Line strategy that produces large significantly positive alphas, ignoring transaction costs and taxes.

Tables 7 through 11 provide yearly extra return figures, t-statistic and betas.

Market Rundown

	Equally weighted	Value weighted	
1972	Up year	$5 . \%$	$17 . \%$
1973	Down year	$-26 . \%$	$-17 . \%$
1974	Down year	$-20 . \%$	$-22 . \%$
1975	Up year	$58 . \%$	$31 . \%$
1976	Up year	$49 . \%$	$18 . \%$
1977	mixed	$17 . \%$	$-2 . \%$

Table 7 summarizes results for -5 trading days for the three market indices. All of the alphas are positive ranging from 38.\% to 1.7%. However, for many of the yearly periods, the t-statistic does not demonstrate an alpha appreciably different from zero at the 95% confidence level. However the majority of our conclusion can be drawn from the total period results. I would not look for significance within the yearly figures.

Table 8 presents yearly data for 0 days market action delay. This table shows two negative alphas. Both are less than 1% yearly and they have very low t-statistics. The equally weighted portfolio regression demonstrates alphas of $23 . \%$ and $24 . \%$ for 1973 and 1974 with significant t-statistics. The value weighted indices show significance for 1974 through 1977 with yearly alphas in the 30% range.

Table 9 represents yearly data, observing a five day delay before acting on Value Line recommendations. The general level of t-statistics decreased with four negative alpha observations. Otherwise, in general, alphas are positive and large.

Table 10 summarizes results for a two week, (10 day), trading delay period. Once again there are four negative observations of alphas. Although a t-statistic of -1.6 on a two tailed test is not significant at the 95%

SUMMARY OF DATA FOR STOCK PURCHASE 5 DAYS

BEFORE VALUE LINE PUBLICATION

Equally Weighted Portfolio

Year	Alpha\%	t-statistic	
			Beta
$1971-1977$	15.	4.5	
1972	10.	1.7	
1973	24.	3.2	.86
1974	28.	.3	1.0
1975	12.	.90	1.1
1976	4.	.90	1.0
1977	7.	.52	1.0
			1.1

Value Weighted Portfolio

Year	Alpha\%	t-statistic	
	Beta		
$1971-1977$	26.	6.5	
1972	1.6	.36	1.1
1973	11.	1.1	1.1
1974	33.	2.3	1.2
1975	31.	3.1	.89
1976	22.		1.9
1977	39.	6.1	1.5
			1.3

Standard and Poor's "500"

Year	Alpha\%	t-statistic	Beta
$1971-1977$	30.	6.4	
1972	4.0	.77	1.1
1973	9.7	2.22	1.1
1974	34.	3.3	1.2
1975	37.	3.7	.85
1976	32.	6.4	1.3
1977	47.		1.2

Table 8

SUMMARY OF DATA FOR STOCK PURCHASE ON DAY OF

 VALUE LINE RECEIPTEqually Weighted Portfolio

Year	Alpha\%	t-statistic	Beta
1971-1977	12.	3.6	1.0
1972	10.	1.7	.89
1973	23.	3.4	.99
1974	24.	2.8	1.1
1975	6.	.48	1.1
1976	-0.92	-.10	1.1
1977	4.1	.92	1.5

Value Weighted Portfolio

Year	Alpha\%	t-statistic	Beta
1971-1977	22.	5.7	1.1
1972	-0.34	-. 74	1.1
1973	15.	1.3	1.2
1974	27.	2.1	. 88
1975	28.	2.7	1.3
1976	21.	2.6	1.5
1977	31.	5.4	1.3
Standard and Poor's "500"			
Year	Alpha\%	t-statistic	Beta
1971-1977	26.	5.9	1.1
1972	1.4	. 28	1.0
1973	14.	1.1	1.2
1974	28.	1.9	. 84
1975	35.	3.0	1.3
1976	31.	3.5	1.4
1977	40.	5.9	1.2

Year	Equally Weighted Portfolio		
	Alpha\%	t-statistic	Beta
1971-1977	4.6	1.4	1.0
1972	7.5	1.6	. 99
1973	16.	2.3	. 97
1974	12.	1.3	. 96
1975	-6.7	-. 56	1.1
1976	-10.	-1.3	1.1
1977	2.7	. 61	1.5
Value Weighted Portfolio			
Year	Alpha\%	t-statistic	Beta
1971-1977	15.	3.8	1.1
1972	-4.9	-1.1	1.1
1973	15.	1.1	1.1
1974	19.	1.5	. 89
1975	14.	1.4	1.3
1976	12.	1.6	1.5
1977	24.	4.3	1.4
Standard and Poor's "500"			
Year	Alpha\%	$\underline{\text { t-statistic }}$	Beta
1971-1977	19.	4.3	1.0
1972	-3.	-. 68	1.0
1973	14.	. 92	1.1
1974	21.	1.5	. 86
1975	20.	1.8	1.2
1976	22.	2.5	1.4
1977	33.	4.9	1.3

Table 10
SUMMARY OF DATA FOR PURCHASE OF STOCK TEN DAYS AFTER
RECEIPT OF VALUE LINE RECOMMENDATION

Equally Weighted Portfolio

Year	Alpha\%	t-statistic	Beta
$1971-1977$	3.3	1.0	1.0
1972	7.8	1.7	1.0
1973	16.	2.5	.97
1974	6.9	.75	.94
1975	7.1	.63	1.1
1976	-12.	1.6	1.1
1977	-3.4	.71	1.5

Value weighted Portfolio

Year	Alpha\%	t-statistic	Beta
1971-1977	13.	3.3	1.1
1972	-6.1	-1.3	1.1
1973	15.	1.0	1.1
1974	19.	1.5	. 89
1975	12.	1.2	1.3
1976	11.	1.4	1.4
1977	21.	3.6	1.4

Standard and Poor's "500"

Year	Alpha\%	t-statistic	Beta
1971-1977	18.	3.9	1.0
1972	-5.0	-. 97	1.0
1973	14.	. 84	1.0
1974	20.	1.5	. 86
1975	18.	1.5	1.2
1976	20.	2.3	1.3
1977	30.	4.4	1.3

Table
 11

SUMMARY OF DATA FOR PURCHASE OF STOCK TWENTY DAYS AFTER RECEIPT OF VALUE LINE RECOMMENDATION

Equally Weighted Portfolio

Year	Alpha\%	t-statistic	Beta
$1971-1977$	1.6	.49	.99
1972	5.8	1.3	1.0
1973	17.	2.6	.96
1974	2.3	-1.1	.92
1975	-11.	-1.4	1.2
1976	-11.	1.1	1.1
1977	5.2		1.5

Value Weighted Portfolio			
Year	Alpha\%	t-statistic	Beta
	12.	3.1	1.1
1971977	-12.	-2.8	1.1
1973	20.	1.4	1.1
1974	16.	1.3	.92
1975	10.	1.1	1.3
1976	10.	3.4	1.4
1977	18.		1.4

Standard and Poor's "500"

Year	Alpha\%	t-statistic	Beta
$1971-1977$	16.	3.6	1.0
1972	-12.	-2.5	1.1
1973	21.	1.3	1.1
1974	18.	1.4	.89
1975	16.	1.8	1.2
1976	19.	2.2	1.3
1977	27.	4.2	1.3

confidence level, the probability of achieving it by chance alone is still quite small. This is the t-statistic for a -12.\% alpha in 1976 regressed against the equally weighted portfolio. Otherwise the results seen are similar to the 5 day delay.

Table 11 simulates a strategy of delays four weeks before action on Value Line advice. There are four negative alpha figures and two significant with t-statistics less than -2. The positive alphas are generally lower than the other delays, nevertheless they are primarily in the 10 and 20 percent range. It is shown that over the entire test period, results were significantly lower when there is delay in following the Value Line recommendations. However, even after four weeks delay, this table demonstrates that Value Line would prove useful in certain periods, although there were also significant negative alphas for the one month delay.

The issue of the extent to which Value Line projects, and practices market timing remains unresolved. The methodology did not provide discriminate information for beta movement analysis. Although the tables demonstrate that betas vary yearly, there is no strong support for the intent of this variance.

Table 12 supplies total period and yearly subdivided one month Treasury Bill returns. Notice interest
-71-

Table 12

TREASURY BILL RETURNS 1971-1977

Total Period Return 40.
Yearly Returns
1972 3.73%
1973 6.43\%
1974 7.69\%
1975 5.78\%
1976 5.10\%
1977 4.89\%
rates were highest in 1974 ranking at 7.7% and lowest in 1977 at 3.7\%.

Table 13 presents yearly cumulative growth of market returns, Treasury Bills and the Value Line portfolio. The choice of investment which would have produced the best results, at year end, independent of risk, may be determined in this table.

From November 1971 to the end of 1972, an investor would have done best if he had invested in a value weighted market portfolio, although the difference between any of the market alternatives were within a few percentage points. To the end of 1973, the Value Line strategy would have been the best decision with growth of 1.18 times the initial investment. By the end of 1974 , because of a dramatic market decline, one would have done best by having initially invested in the risk free asset, Treasury Bills. Of course Treasury Bill returns may have been higher if longer maturities were purchased. For 1975, 1976, and 1977, it appears that the initial investment in Value Line would have been the best investment, demonstrating growth to 2.2 times, 3.6 times, and 4.7 times.

Table 14 presents market yearly growth. Volitality, can be observed, as well as the mixed returns of 1977, "zero" days, trading delay with the equally weighted index down 1.7%, Value Line up 29%, but the value weighted index

Table 13
CUMULATIVE MARKET RETURN
:---:
CUMULATIVE MARKET RETURN

ZERO DAYS DELAY IN FOLLOWING VALUE LINE
 11
Value Line
Zero Days Delay
 2,2 3.65 4.7

CUMULATIVE PORTFOLIO GROWTH

```
Treasury Bill = T.B.
Value Line = V.L.
```

Equally weighted $=$ E.W.
Value Weighted = V.W.

Table 14
YEARLY GROWTH PORTFOLIO

$\begin{gathered} (-5 \text { Days) } \\ \text { Year } \end{gathered}$	Equally Weighted	Value Weighted	Standard \& Poor's "500"	Value Line
1972	3.0\%	14.\%	12.\%	17.\%
1973	-34.\%	-20.\%	-20.\%	-16.\%
1974	-27.\%	-31.\%	-33.\%	-5.1\%
1975	66.\%	31.\%	27.\%	90.\%
1976	56.\%	$26 . \%$	18.\%	71.\%
1977	16.\%	-3.6\%	-11.\%	$34 . \%$
(0 Days)	Equally	Value	Standard \&	Value
Year	Weighted	Weighted	Poor's "500"	Line
1972	5.3\%	17.\%	16.\%	17.\%
1973	-25.\%	-17.\%	-17.\%	-8.1\%
1974	-20.\%	-22.\%	. 24 \%	1.0\%
1975	58.\%	$31 . \%$	27. \%	79.\%
1976	49.\%	18.\%	11.\%	54.\%
1977	17.\%	-1.7\%	-8.5\%	29.\%
(5 Days)	Equally	Value	Standard \&	Value
Year	Weighted	Weighted	Poor's "500"	Line
1972	3.3\%	16.\%	15.\%	11. \%
1973	-26.\%	-21.\%	-22.\%	-12.\%
1974	-16.\%	-24.\%	-27.\%	-5.\%
1975	62.\%	35.\%	31.\%	63.\%
1976	43.\%	15.\%	7.8\%	34.\%
1977	17.\%	-0.78\%	-7.5\%	20.\%
(10 Days)	Equally	Value	Standard \&	Value
Year	Weighted	Weighted	Poor's "500"	Line
1972	0.24\%	15.\%	15.\%	8.0\%
1973	-20.\%	-15.\%	-16.\%	4.0\%
1974	-12.\%	-23.\%	-26.\%	-5.6\%
1975	$66 . \%$	38.\%	34.\%	63.\%
1976	39.\%	12.\%	5.0\%	25.\%
1977	17.\%	0.19\%	-6.3\%	19.\%

Table 14 (cont'd.)
YEARLY GROWTH PORTFOLIO

$\begin{gathered} (20 \text { Days) } \\ \text { Year } \end{gathered}$	Equally Weighted	Value Weighted	Standard \& Poor's "500"	Value Line
1972	-9.1\%	7.7\%	8.3\%	-3. \%
1973	-15.\%	-14.\%	-16.\%	1.6\%
1974	-3.\%	-16.\%	-18.\%	-0.08\%
1975	59.\%	32.\%	27.\%	55.\%
1976	29.\%	8.0\%	1.4\%	20.\%
1977	18.\%	1.1\%	-5.1\%	19.\%

down 1.7\% and the Standard and Poor's "500" down 8.5\%.
The empirical data presented in these tables
provide strong support for the verification of Value Line Investment Survey as a useful investment advisory service.

Chapter 6 TAXATION AND TRADING STRATEGY

Taxation is an important determinant in the investor's behavior. This section is intended to be thought-provoking, however it is not a comprehensive dissertation on tax management in investment strategy.

People often talk about taxes, they usually complain about paying taxes which are too high. Frequently, they look for a way to minimize their tax liability; however, they continue to make investment decisions with little regard to the future tax consequences.

In my classes at Sloan there are many instances where I have been part of purely theoretical decisions where taxes and transaction costs are ignored. I have also witnessed taxation discussions which ignore the advanced management techniques necessary to do sophisticated financial planning. As C. P. Snow would say, I hope to bridge the gap between these two extremes and provide an investment framework which considers with a careful methodology the consequences due to taxation.

Textbooks seem to skim over the issue of personal taxation, yet they describe elaborate methods to maximize financial decisions. There are also books describing almost every one of the myriad of taxation issues -- yet no one
speaks of maximizing decisions after taxes. I admit my methods may show rough edges, but my goal is to examine tax strategies to maximize return after taxes.

I assume that an individual's primary goal is to maximize his economic welfare when involved in an investment strategy. This maximization to be realized must be net of taxes. My purpose is to develop a simple model example of taxation which takes explicit account of the individual's liabilities both for ordinary income and capital gains taxes. I hope to identify a set of guides and logical investment decisions.

This section will compare two stock trading strategies with the goal of maximizing profit while minimizing taxes. This is a study of a complex issue with a myriad of possible solutions. If I omit analysis of a situation it is usually because the analysis would be self cancelling -- I plan to attack those areas which will express differential results. My method will employ a scenario of "what ifs" and apply this guideline to the strategies I study.

I plan to discuss the following propositions:
-- What is the Value Line trading strategy, and what are the tax consequences of the strategy to the individual investor?
-- How does a similar analysis of the Standard and Poor's "500" stock index hold up?
-- How are the returns distributed between dividends and capital gains?
-- How do taxes impact upon market gain which is real gain, and extra gain due to the ability to pick stock by active trading?
Does the government, by taxing gains and subsidizing losses, reduce risk to the individual investor?
-- How to manage taxes to minimize them.
-- Look at preliminary data.
-- Ignore the approximately <l\% stock transfer taxes.
When Value Line publishes a return for securities in a portfolio, they ignore brokerage costs, dividends, stock transfer taxes and all consequences of income taxes. The Group 1 portfolio I will be discussing for the remainder of this chapter will be an equally value weighted portfolio of only New York Stock Exchange Rank l securities. Weekly the portfolio will be updated and theoretically rebalanced to maintain equal weighting.
What tax issues relate to these tax trading strategies? The major point of interest is the differential treatment of long-term capital gains and ordinary income. Congress has extended special advantageous tax treatment to capital gains. The House Ways and Means Committee has
recently passed an amendment to reduce the capital gain tax to provide greater incentives to invest in growing companies. The May 8, 1978, Wall Street Journal included "the reduction in the maximum rate on capital gains taxes from the current level of 49.125% to 25% in 1980 would have a positive effect on economic growth while reducing the federal budget deficit." ${ }^{1}$

What was the law in 1977 regarding the taxation of capital gains? It was that one half of a long-term capital gain is included in an individual's income tax base, providing for an effective tax rate from 7% to 35%, according to a government publication, the President's 1978 Tax Program. There is a special rule which provides that 50,000 of these gains each year are not to be taxed at over the 25% rate. ${ }^{2}$ How do the capital gains rules affect our portfolio decisions? Our first realization is that we receive income from both capital gains and dividends. Dividends are received while the stock is held in the portfolio and are taxed at ordinary income. Capital gains are taxed at a lower rate if the stock was held long enough to qualify as a long-term gain.

The individual's portfolio should be managed to take advantage of long-term capital gains. This is a divergence from just following Value Line recommendations. In 1977, the gain or loss from the sale of stock held for more than nine months was long-term. In earlier years the cutoff was
six months, and this year and in the future it is 12 months. Net short-term gains, or the excess of net shortterm gains over net long-term loss is taxable as ordinary income, according to a November 4, 1977, note in Value Line. Taxation of long-term gains is explained above, however, the untaxed half of the gain is treated as preference income and may be subject to minimum tax. If tax preference for the year exceeds one half of the individual's regular income or $\$ 10,000$, whichever is greater, the excess is taxed at 15%. Net short-term capital loss, or the excess of loss over net long-term capital gain are deductible from ordinary income starting in 1978 of $\$ 3,000$ per year with the excess carried forward as a short-term loss carrover to future years. Further, one half any net long-term capital loss is deductible from ordinary income.

The portfolio may not commit a wash sale, that is, a loss not allowed for tax purposes, if the same security is sold and bought back within 30 days. This dictates that if you want to take a loss you must double up on the security you want to remain in the portfolio.

A possible strategy for an investor to gain tax advantages while trading under the Value Line strategy would be for the individual to realize losses to offset gains before the end of the tax year. Then these stocks could be brought back into the portfolio if they were still
rated Group 1.
This sounds simple, yet taxes are being deferred. When the government taxes gains and allows loss deduction it is essentially reducing the risk of any investment you make. Because of this risk reduction, individuals may be willing to hold more volatile portfolios than would otherwise be the case.

In "The Implications of the Capital Gains Tax for Investment Decisions," 3 by Holt and Shelton, the being locked into an investment by the capital gains tax is discussed. The article was written in 1961, and recently the law has been changed; the capital gains tax can no longer be escaped by dying before selling. The new law values trading gains against the stock price as of December 1, 1976.

They ask how much extra yield is necessary in an alternative investment to overcome the disadvantage of incurring the capital gains tax. In this study capital gains tax cannot be avoided, only deferred. As long as it can be deferred it representes a free loan from the government. When following Value Line's recommendation to sell a stock and replace it with a new one the following question should be asked. Are the future dividends and capital gains on this new choice sufficient to overcome the amount lost in capital gains taxes? The article concludes that this yield differential is smaller than most investors realize -- often
on the order of 1%. So capital gains taxation may not be a major implication while following the Value Line system, although as we will shortly see, much of the Value Line portfolio does not qualify for long-term capital gains treatment, due to the high portfolio turnover ratio.

My next step is to examine the actual Value Line portfolios. The specifics are chosen from available data, which is really not in the proper form for this analysis, so many assumptions will have to be tolerated. I studied the most recent 21 weeks of data -- conclusions were drawn from the period of August 5, 1977 to December 30, 1977. At times comparisons may seem out of time frame -- and still, within a broad tolerable range this analysis is still useful in an educational and thought-provoking process.

Black's study "Yes Virginia, There is Hope; Tests the Value Line Ranking System," ${ }^{4}$ ignored tax consequences. Black revised portfolios on a monthly basis, while I am employing weekly updating, which might account for the higher turnover observed, or we may now be in a more volatile market (Figure 15). In Black's study extra return was measured at 10% per year with a "T" value of 4.0 a significant result. Diversification with the market showed a correlation coefficient of about . 95.

Excluding transaction costs and taxes, Black's
results may seem unrealistic for the investor, especially

Table 15

APPROXIMATE COMPOSITION OF VALUE LINE PORTFOLIO

Rank 1
22% of stocks qualify for long-term capital gains
78\% short-term capital gains
Average price of stock 25.54
Average dividend 1.11 or 4.35\%
Turnover Rate According to Black study $130 \%-88 \%$
According to new data $225 \%-140 \%$
Black found about 10% excess returns on Rank 1
7\% excess returns on Rank 1-3 Hold
Our data is from December 31, 1976; August 5, 1977; andDecember 30, 1977 Value Line
because of the 130% turnover ratio in the Rank 1 Group. This high turnover leads one to believe that the majority of the individual securities are held for less than one year, the length of time necessary to qualify for long-term capital gains. In my new study, it was found that turnover was closer to 225% creating large transaction costs. This is without the extra trading which would be necessary to maintain an exactly equally weighted portfolio which is an assumption which I will now relax. Turnover also increases because of the large number of rank changes when quarterly reports are issued. Methods may be employed to reduce transaction frequency. These include selling a stock only after it falls to a Rank III, as suggested by Black. This would also tend to increase the probability that a stock will qualify for longterm capital gain treatment. Using this strategy, Black's volatility of turnover was reduced to 88%. According to my translation analysis I would predict a 140% turnover. Under this newly defined strategy extra return was also reduced to 7\% with less trading, as reported by Black.

Now let us take a broad look at the application of the rules of taxation to the Value Line strategy between December 31, 1976 and December 30, 1977. 22\% of the stocks ranked 1 remained in the portfolio, and therefore qualified for long-term capital gains treatment. Therefore, approximately 175 stocks were traded in and out of the portfolio
during the year -- all representing short-term gains.
As a statistic portfolio for snalysis I chose August 5
1977. 78 of the 100 stocks in this portfolio are traded on the New York Stock Exchange. The average price of a stock in this portfolio was $\$ 25.54$. The average dividend was $\$ 1.11$ or about 4.35% of the price of the stock represented yield on an annual basis.

According to Value Line the average percentage change in price between December 29, 1976 and June 29, 1977, for Group l stocks with weekly updates was a positive l5.4\%. Approximately 13% of this gain is from stock appreciation and about 2.4\% from dividend income. I also attribute about 22\% of the capital gain to long-term capital gains under the one year holding period rule by extrapolating the assumptions made above. On an annual basis the gain distributes as follows:

Assumption \#l	Long-Term Capital Gain	$6 . \%$
Value Line Rank l	Short-Term Capital Gain	20.4%
Weekly Trading	Dividend-Ordinary Income	$\frac{4.4 \%}{}$
	Total Annual Return	30.8%

This result is due largely to a very good time period for the market. Most of the gain is taxed as ordinary income. Would it be advantageous to try to hold stocks longer to take advantage of the favorable long-term capital
gains rate? This would reduce transaction costs conceivably. What would the situation look like if we viewed the same portfolio and time frame as under Assumption I, with one change, the restriction that only one portfolio change is allowed halfway through the time period at the six-month point. In this case the six-month gain was reduced from 15.4% to 10.1% according to Value Line. My estimate of the turnover ratio under this assumption is about 50%. This is only a ball park figure and verification requires data collection of stock tracking them from Rank 1 all the way until they enter Rank III. This is beyond the scope of this thesis, so my 50% figure must suffice as an estimate. Under these conditions Assumption II is created:

Assumption II	Long-Term Capital Gain	7.9%
One Trade Only	Short-Term Capital Gain	7.9%
Rank 1-3 Value	Dividend Income	$\underline{4.4 \%}$
Line	Total Annual Return	20.2%

Further insights may be provided by actually taking a dollar position in each of these portfolios. A hundred share of this portfolio as is on August 5, 1978, would cost $\$ 2,554$ in December 1977. (There are brokerage costs of about 3% and stock transfer taxes which I have not included. Also, the portfolios may not be valued exactly -- but the approximation is sufficient.) How do tax consequences vary under Assumptions I and II?

Before attempting an illustration I must restate the simplicity of this analysis and point out it is only for illustrative purposes of possible tax consequences. It is unusual to examine a period of such high return, which do provide us with capital gains and not losses, after all I have not studied securities individually. Another simplification of this analysis which may seriously bias results is the lack of a measure of capital losses. This is an important fault because the losses could be directly subtracted from gains for tax purposes.

Assumptions must be made about our hypothetical portfolio holder. They are as follows: 50\% income tax bracket, with less than $\$ 50,000$ in capital gains so that capital gains are taxed at 25%. Another assumption of the portfolio size of $\$ 11,500$ provides for dividend payments of approximately $\$ 500$. which, taxed at 50% as ordinary income before the $\$ 100$. dividend exclusion, creates an effective tax rate of 40% on dividends.

The net gain after taxes on Assumption I was S1,989.50 or a rate of return of 17% compared to a Sl,435.00 gain under Assumption II representing a 12% after tax return. So, at first glance it appears that it was not worthwhile to reduce portfolio turnover to seek capital gains preference tax rates. However, this is not necessarily the case. The increased trading costs associated with Assumption I could
easily consume the 5% differential and make the two assumptions finish in a dead heat.

There is still another comparison I would like to make before concluding this glimpse into taxation study. That is a comparison of Rank 1 Value Line stocks from 19701976 to the Standard and Poor's "500" composite index for the same time period.

The Standard and Poor's "500" stock index contains no trades, and therefore no trading costs for the entire period. Essentially, I am comparing a buy and hold strategy to active portfolio management. Again, unfortunately there is a major drawback to this analysis, and that is that I do not use a valid risk adjustment factor for value Line, which may tend to overstate its returns.

Results for Standard and Poor's "500" show only a 27\% after tax return from 1970-1977 (July). Using the same hypothetical $\$ 11,500$. investment and applying a 40% tax on dividends and a 25\% capital gains tax, (actually I have omitted to account for the time value of dividend payments made seven years ago), however, since I am ignoring this dividend reinvestment for both Standard and Poor's "500" and Value Line, I believe the bias will remain small.

The total return for the entire period is 27\% after tax for the Standard and Poor's "500" and 114% for Value Line's data. However, this comparison does not take account of the
transaction costs of the $13-225 \%$ turnover of the Value Line portfolio. To simulate this, I will recompute the Value Line returns reducing each yearly yield by 5% to account for the transfer tax and brokerage costs of such heavy trading.

After the recalculation of Value Line results, reducing the yearly returns by 5% yearly, the pretax profit is reduced to $\$ 7,380$. which, after taxes, reduces to the following:

Long-Term Capital Gains (22\%) $1733.60 \times 25 \%=433.40$
Short-Term Gain $6146.40 \times 50 \%=3073.20$
Dividends
$5136.11 \times 40 \%=2054.44$
Total Tax 5561.04
Total Gain \$7455.07
After Tax Gain 65\%

I believe this to be a more realistic figure for the real Value Line return, which is still about two and a half times greater than the Standard and Poor's "500".

In conclusion, I have presented two views of after tax returns following the Value Line system. In each case the gain in return due to capital gains treatment was balanced against a lower excess return, or index, involved with the one year holding period. In all cases, the probability of error in analysis in this taxation section is high, due to high portfolio turnover, transaction costs,
offsetting gains and losses, and the capital gains holding period. When a more suitable data base is complete for taxation analysis, a complete story can be devised with more precision, less restrictions, and fewer assumptions. This is an area which is ripe for further study.

In the last few weeks the 1978 tax law revisions have already altered the analysis applied to the 1977 strategy presented here. Essentially stock investors have gained. The new law liberalizes the rules regarding capital gain. "The maximum rate falls from 49% to 28% once you pay taxes on 40% instead of 50% of long-term gains.15\% minimum tax no longer applies to the untaxed part of capital gain." 5 This is a major challenge to investors since the rules have been so dramatically changed. In a nutshell -there is less of a deterrent to selling stocks which show capital gains. However, the holding period for capital gains is now 12 months. 6

Chapter 7

CONCLUSION, SUMMARY AND TOPICS FOR FUTURE RESEARCH

Evaluation of investment performance is often considered an after-the-fact measure. However, it should be part of an on-going improvement process in state of the art finance theory. Investors who pay the costs associated with active portfolio management deserve to have a true performance measure.

At times it may be difficult to separate performance due to skill from that due to luck. The importance of these findings rest on Value Line's expost alpha values, i.e., the vertical intercept obtained when an expost characteristic line is fitted using excess returns in an ordinary least square regression. Value Line's expost alpha should be interpreted as the average difference between its return and that of a passive buy and hold market strategy of equal risk.

This thesis has examined Value Line's historic alpha values. What does this imply about the future? The significantly high t-statistics demonstrated by Value Line data over many consecutive years demonstrates consistently superior performance which can be projected into the future.

The objective of an actively managed portfolio of common stocks is to choose securities so that a greater return results than that produced by an index fund or a naive investment strategy. The actively managed portfolio must
overcome additional costs not incurred in a passive portfolio strategy. These include the cost of gathering and analyzing information, transaction costs of executing trades, nonoptimal taxation decisions, and non-efficient portfolio diversification.

This study analyzes the 100 stocks Value Line ranks "l" for year ahead appreciation. Transaction delays are computed for $-5,0,5,10$ and 20 days. Value Line's four main criteria of security evaluation are: non-parametric value position, magnitude of over or underevaluation, earnings momentum and an earnings surprise factor.

In previous Value Line research, Shelton ${ }^{l}$ found investors displayed superior performance than efficient market theory would suggest. Hausman ${ }^{2}$ points out flaws in Shelton's statistical tests and recommends additional study. Murphy ${ }^{3}$ essentially agrees with Shelton, discovering significant results consistant with the random walk. Conversely Kaplan and Weil's ${ }^{4}$ results support the efficient market hypothesis. They believe that the Value Line rankings are flawed and that most performance variation is due to stock risk differentials. Black's ${ }^{5}$ study concluded that even with the imposition of transaction costs, Value Line continues to give significant positive results over a five year period. Fama ${ }^{6}$ provides strong support for efficient markets in his study of the 30 Dow Jones industrial stocks from

1957 to 1967. Sharpe, ${ }^{7}$ studying 34 mutual funds and Jensen, ${ }^{8}$ studying the performance of 115 mutual funds each lend support to the view that capital markets are efficient.

This Value Line data was hand collected covering the period from November 5, 1971 to December 30, 1977. Computer programs were written to: l) generate weekly portfolios; 2) name and verify portfolios; 3) compute individual portfolic and market returns for certain trading day delays; 4) calculate Treasury Bill returns; and, 5) calculate ordinary least square regressions.

Market indices studied included an equally weighted and value weighted New York and American Stock Exchange Index, as well as the Standard and Poor's "500" composite.

In the regression analysis the Value Line excess return was the dependent variable and the market index excess return was the independent variable.

Ignoring transaction costs, the Value Line portfolio would have grown to $5.8,4.8$ and 3.1 times the initial investment for trading delays of $-5,0$, and 5 days respectively. Each of these is superior to the best of the market indices, the equally weighted index which grew 2.3 times. A similar investment in Treasury Bills would have grown l. 4 times. R^{2} terms were all high.

Executing market action on the Friday of publication the Value Line portfolio when regressed on the equally
weighted portfolio resulted in a positive alpha of about 12\% with a t-statistic of 3.6. This result strongly refutes efficient market arguments and suggests that Value Line recommendations do produce investment strategies which consistently outperform the market. This figure is large enough to absorb considerable transaction expense.

Assuming an individual's investment goal is to maximize final economic wealth, consideration must be made for taxes and transaction costs. This requires balancing extra return against capital gains holding periods, and reduction of the agressive Value Line trading turnover rate. The reck t major tax revisions provide new opportunities for further investigation.

Many unanswered questions remain. Is Value Line analysis biased towards low price/earning multiple stocks, or do they favor smaller, inefficiently priced companies? To what extent do they rely on security analysis, or on adjusted beta and market timing? Further work would also be valuable in studying the optimal investment tradeoff between superior returns and transaction frequency.

Appendix I

1		$147510=4 \mathrm{~J}$ INDS INC
2	$=$	$202410=2 \mathrm{~L}$ L CDPP
3	$=$	$235010=4$ S ALTC
4	=	$208110=1$ T 0 INE
5	$=$	621210 = ADANS EXPQESS CO
6	$=$	$715010=$ ADM IRAL CCRP
7	$=$	$745510=$ ADV SNCE I NVS CORP
3	$=$	
7	$=$	814010 = AETINA LIFE E CAS CO
10	$=$	$867710=1$ HMANSON H F E CO
11		926GIC = AIREORNE FGHT CORP
12		$329210=$ AIRCO INC
13	$=$	$1028410=$ ALABAMA GAS CORP
14	$=$	
15	$=$	
16		$1310410=$ ALPFPTSONS ITC
17	$=$	$1378810=$ ALCE STO CORP
18	$=$	$1389610=$ LLCCN LAPS INC
19		$1475210=$ ALFXANDE?S INC
20		$1717610=$ ALLEOHANY SCRP
21	$=$	
2	$=$	$1763410=A L L E V$ GRCUD INC
23		$1908710=$ ALLIED CHEN COPP
24		1023512 = ALLIED MLS INC
25	$=$	
26	$=$	$1953710=$ ALLIES SUPERMARKETS
27		
28		$207711 \mathrm{C}=$ ALPHA PORTLAND INDS
29	$=$	2277110 = AMALGAMATEC SUGAR CC
30		$2314110=$ AMBAC INCS INC
31		$2351910=$ AMEDACE CCRP
32	$=$	$235511 \mathrm{C}=$ AMERADA HESS CORP
33	$=$	$237531 C=A M E P I C A N ~ A I P ~ F I L T E R ~$
34		$2377110=$ AMERICAN AIRLS INC
35		$239041 \mathrm{C}=\mathrm{AMCCRD} \mathrm{INC}$
36	$=$	$240671 \mathrm{C}=$ AMERICA ${ }^{2}$ BAKERIES CC
37	$=$	$247351 \mathrm{C}=$ AMERICAN BROADCASTIN
39		$2475310=\triangle M E P I C A N ~ B L C G ~ M A I N T E ~$
39	$=$	$2510510=$ AMESICAN CHAIN \& CAE
40	$=$	$2523110=$ AMERICAN CONSUMER IN
41	$=$	$2532110=$ AMERICAN CYANAMID CO
42	$=$	$2553710=$ AMERICAN ELEC PWR IN
43	$=$	$2581610=$ AMETICAN EXPRESS CO
44	$=$	$2587010=$ AMERICAN FAMILY CORP.
45	$=$	$2635710=$ AMERICAN GEN INS CO
46	$=$	$2657310=$ AME?ICAN HCIST \& DER
47		$266811 \mathrm{C}=$ AMERICAN HCSP SUPPLY
49	$=$	268791C = AMERICAN INVT CO
49	$=$	$2733920=$ ANERICAIA MAILE PRODS
50	$=$	
51		2744710 = AMERICAV MECICORP IN
52	$=$	$276271 \mathrm{C}=$ AMEPICAN MTRS CORP
53		2926710 = AMERICAN RESH S CEV
54	$=$	2740510 = AMERICAV SEATING CO
55		2900710 = AMESICAN SHIP BLDO

Cumulative company list.

FILE：こULMUL LISTPP A

111	プッロー	JUE JELL INC
112	$7677910=$	OODEIE BRCOKS INC
113	$2702310=$	GgEING 5
114	$973831 \mathrm{C}=$	$3015 E$ SASCAEE こCIP
115	$9854510=$	BOOK MUNTH CLUB INC
116	$10209710=$	SOURNS INC
117	$10542510=$	PRAIVFF INTL CORP
118	$13904310=$	ZPIGCS \＆STRATTON CD
119	$11059710=$	QRISTOL MYERS CD
120	$11533110=$	BROWN CD
121	$11563720=$	BROWN FORMAN DISTILL
122	$1170431 \mathrm{C}=$	DRUNSWICK CCRP
123	$11742110=$	BRUSH WELLMAN INC
124	$11883510=$	BUDC CO
125	11900712	TUDGET INDS INC
126	$11352710=$	3UFFALO FCRGE CO
127	12065536	BUNKER RAMC CORP
128	$12237510=$	BURAS INTL SEC SVCS
129	$12316910=$	3USH UNVL INC
130	$12498412=$	\checkmark－ 1 CORP
131	$1256151 \mathrm{C}=$	\checkmark L A AER INC
132	12550110 $=$	C T S CORP
133	$12705510=$	CABCT CORP
134	$1276951 \%=$	SAESARS HCRLD INC
135	$12879310=$	caloor Inc
136	$13021710=$	CALIFCRNIA FINL CORP
137	13106710	CALLAHAN MNG こORP
139	13441112	CAMPRELL RED LAKE MI
139	13442710	CAMPPELL SOUP CO
140	$13644330=$	CANADIAN PAC LTD
141	$13986110=$	SAPITAL CITIES COMMU
142	$14233910=$	CARLISLE CORP
143	$14414110=$	CARCLINA PWR E LT CO
144	$14429510=$	CARPENTER TECHIOLOGY
145	$14446510=$	CARPIER CCRP
146	$14450110=$	CAPRIERS \＆GEN CORP
147	14628510	CAPTER WALLACE INC
148	$14842910=$	こASTLE \＆COCKE INC
143	$14712310=$	CATERPILLAR TRACTOR
153	$=15003310=$	こECO CORP
151	$=1508431 \mathrm{C}=$	CELANESE CORO
152	$=15130315=$	CENCO INE
153	$15231210=$	CENTEX CCRP
154	$15360710=$	CENTRAL HUDSON GAS E
155	$=15389710=$	CENTPAL LA ELEC INC
156	$15517710=$	EENTRAL sCYa inc
157	$15544710=$	CENTPAL TEL E UTILS
158	$=15640210=$	CENTRONICS CATA COMP
159	$=15682510=$	CERTO CORP
160	$15687910=$	CERTAIN TEEC CORP
161	$=15850110=$	GHANOIDN HONE BLDRS
162	$15852510=$	EHANPIOY INTL CORP
163	$16278910=$	SHECKER MTRS CORP
164	$16320710=$	THELSEA INES INIC
165	$16360015=$	SHENETRON こCRP

	$166=16515910=$	SHESAPEAKE SOPP VA
（	$167=17926310=$	CHOCK FULL C NUTS CO
	$168=17110010=$	CHRCPALLOY AMERN COR
	$167=17119610=$	こHPYSLER CORP
C	$170=17158310=$	CHUTCHS FRIED CHICKE
	$171=17217210=$	CIUCINNATI NILACROH
	17？$=17784610=$	CITY INVESTIMG CO
C	$173=13148610=$	CLARK OIL E REFNG SC
	$174=18948615=$	ELUETT PEABCDY 5 CO
	$175=18937310=$	SOACHMEN INCS INC
	$176=13055610=$	COASTAL STS GAS CORP
	$177=19325210=$	こOL DWELL BANKER E CO
	$178=19337810=$	COLESO INDS INC
C	$179=19355910=$	SOLEMAN INC
	$180=13484010=$	COLLINS FCOCS INTL I
	$181=19501810=$	COLLINS RADID CO
C	$182=19584610=$	SOLONIAL PENN GROUP
	$103=13686415=$	SOL T INDS INC DEL
	$184=19827910=$	COLUNBIA PICTURES IN
C	$185=20010110=$	こOMPINEO CONMUNISATI
	$186=20029110=$	COMEUSTICN EQUIP ASS
	$187=20238110=$	SOMMERCIAL SOLVENTS
	$188=20265110=$	COMMODORE CCRP
	$189=20320110=$	SOMMONWEALTH OIL REF
	$170=20341710=$	SOMNUNICATICNS SATEL
	$191=20490310=$	COMPUGRAPHIC CORP
	$192=20536310=$	COMPUTER SCIENCES CO
	$193=20681310=$	CONE MLS CORP
C	$134=20719210=$	LONGOLEUN SCRP
	$195=20929110=$	CONRAC CCRP
	$196=20923710=$	CONSOLIDATEC FREIGHT
	$107=21079510=$	CONTINENTAL AIR LINE
	$178=21129110=$	CONTINENTAL COPPEP 5
	$199=21132710=$	CONTINENTAL CORP
	$200=21148510=$	CONTINENTAL ILL CORP
	$201=21168710=$	EONTINEVTAL MTG INVS
	$202=21207510=$	EONTINENTAL STL CORP
C	$203=21209310=$	SOUTINENTAL TEL CORP
	$204=21236310=$	CONTRCL DATA CORP［E
	$205=21666310=$	COOPER INDS INE
	$206=21668710=$	COOPER JARRETT IVC
	$207=21670510=$	COOPER LABS INC
	$208=21683110=$	COOPER TIRE \＆RUBR C
C	$209=21721010=$	COPELAND CORP
	$210=21752510=$	SOPPER PANGE CO
	$211=21768710=$	COPPERWELD CORP
	$212=21806110=$	COREURA CCRP
	$213=21032710=$	GORNING GLASS WKS
	$214=22023110=$	CORROON \＆BLACK EORP
	$215=22374110=$	COWLES COMYLNISATION
	$216=22400310=$	COX BROACCASTING COR
	$217=22439710=$	CRANE CO
	$218=22781310=$	こROLSE HINOS 50
	$219=22866910=$	SRONN ZELLERBACH COR
	$220=23002310=$	SULLIGAN INTL SO

31	36762216	jateway inds inc del
332	36990210	SEMERAL AVEPUV INVS I
333	3591410	GEA!ERAL BATTERY CORP
334	36929310	GENEOAL CABLE SOPD
335	$=36735210$	3ENEPAL CINEMA CORP
336	36955212	GESERAL EYNAMICS COR
337	3700641 に	GENEDAL HOST CORP
338	37011210	GEVERAL INSTR COPP
337	37027910	GENEPAL NEO CORP
340	37033410	SENERAL MLS INC
41	37051410	GENERAL PORTLAND INC
342	37062210	GEVERAL REFRACTORIES
343	3708561 C	OENEPAL STL INDS INC
344	37135210	GENERAL TIRE \& RUBR
345	37245110	GENSTAR LTD
346	37329910	GEJPGIA PAC CORP
347	37371215	GE?SER PROES CO
348	37453210	GIANT PORTLAINC \& MAS
349	$37465810=$	GIEDALTAR EINL CCRP
350	$37504610=$	GIDDINGS \& LEWIS INC
351	$=3757661 \mathrm{C}=$	SILLETTE CC
352	$=37610910$	GIVCS INC
353	37735210	SLEASON WKS
354	37737510	GLEN ALDEN CORP
355	37935210	SLDEAL MARINE INC
356	37956810	GLORE UN INC
357	38131710	SOLCEN WEST FINL COR
358	38233510	GODDRICH B F CO
359	3827481 C	GORCON JEWEL?Y CCRP
360	$=38349210$	GOULD INC
361	38515410	GRANBY MNG LTD
362	38741210	GRANITE MGMT SVCS IN
363	38747810	GRANITEVILLE CO
364	38928 J	GRAY LRUS STORES INC
365	$3905041 \mathrm{C}=$	GREAT LAKES DREDGE ε
366	$39109010=$	GREAT NORTHN NEKCOSA
367	3914421 C	GREAT WESTN FINL EOR
368	39151410	GREAT WESTN UTD CORP
369	37238810	GREATER HASH INVS IN
370	$=39304010$	GREEN GIANT CO
371	$=4013701 \mathrm{C}$	SUARDIAN INDS CORP
372	40206410	JULF E WESTN INDS IN
372	40249610	GULF RES \& CHEM CORP
374	$4027841 \mathrm{C}=$	GULTON INDS INC
375	$=40424510=$	H M W INDS INC
376	40589110	HALL FRANK B E CO IN
377	$40609010=$	HALL W F PRTG CO
378	$4062161 \mathrm{C}=$	HALLIBURTON 50
379	$40830615=$	HAMMERMILL PAPER CO
390	$41025210=$	HANCLEMAN CC DEL
381	$=41030610=$	HANDY \& HARNAN
382	$4103421 \mathrm{C}=$	HANES CORP
383	41163110	HAREOURT RRACE JOVAN
384	$41334210=$	HARUISCHFESER CORP
	$41361510=$	HAR?AHS

```
386=41337510= HARPIS CCRP SEL
387=4161F41C= HANTE HANKS EONNUNIC
38%=4174041E = HARTZ NTA SCPP
389=41986510= HANAIIAN ELEC INC
390=42153012 = HAZELTINE SCRP
391 = 42268620 = HESYS INC
372=4228341% = HEILENAN G BREWINS I
393=4230741C=HEINZ HI J CC
304=42323610= HELENE CURTIS INDS I
375=42343410 = HELNE PRCDS INC
396=42345210= HELMERICH & PAYNE IN
397=42786610 = HERSHEY FCOCS CORP
398=42习1821C= HEUBLEIN INC
399=4298121C = HIGH VOLTAGE ENGR CO
400=43234310= HILTON HDTELS EORP
401=43443410= HOFFNAN: ELECTRS CORP
402=43508110= HOLIDAY INNS INC
403 = 4360,21O = HOLLY SUSA? COTP
404=4376141O= HDMESTAKE MNO CO
405=4381233C = HONCA MOTOR LTD
4C6 = 44350610= HORN & HARDART CO
407=4410611C= HOSPITAL AFFILIATES
408=44106510= HOSPITAL CORP AMER
40?=44107410= HOST INTL INS
410=4415601C= HOUSHTON MIFFLIN CO
411=44175810= HOUSE FAPRICS INC
412=44227210= HOUSTON NAT GAS CORP
413=44228110= HOUSTON CIL & MINEPA
414=4426721C= HDWARD JCHNSON CO
415=44485910= HUMANA INC
416=4455823C = HUNT PHILIP A CHEM C
417=4480961O = HUSKY OILL LTD
418=4494791O= HUTTON E F GROUP INC
419=44900610= HYDPOMETALS INC
420=44974410=I N A CORP
421=45138312 = IDAFC PWR CC
422=45154210= IDEAL EASIS INDS INC
423=4516501C = IDEAL TOY CCRP
424=45272210 = IMPERIAL CORP AMER
425=45303820 = IMPERIAL OIL LTD
426=4547581C = INDIANA GAS INC
427=4562991C = INDUSTRIAL NATL CORP
428=4566231C= INEXCO OIL CO
429=45732630 = INL AND CCNTAINER COR
430=4576411C = INMONT CCPP
431=45765910= INSILCO CORP
432=45768610= INSPIRATION CONS COP
433=45810110= INTEGON CORP
434=4587021C= INTERLAKE INO
435=45020010= INTERNATIONAL DUSINE
436=45750610= INTERNATICNAL FLAVOR
437=45957910= IHTERNATICNAL HARVES
438=4596501C = INTERNATICNAL HLDGS
439=4590841C= INTERNATICVAL NINERA
440=4600201C= INTERNATIOVAL *NNG CO
```


	$496=53037: 10=$ LIRERTY CORP S
	477 = $53625710=$ LIC:UEL CCRP
	$498=53802113=$ LITTCN INDS [16
	$459=53782110=$ LDCKHEED CCPD
C	$500=54.342410=$ LOEWS COPP
	$501=54217510=$ LONDONTOWN CORP
	$502=54229010=$ LCNE STAR INDS INC
C	$503=5438591 \mathrm{C}=$ LORAL CORP
	$504=54777710=$ LOWENSTEIN N E SCNS
	$505=54927110=$ LUBPILOL CCRP
C	$506=54996610=$ LUKENS STL C0
	$507=55089010=$ LYKES CORP
	$508=55265310=M$ C A INC
	$509=5527101 C=M E I C O R P$
	$510=55371310=M$ S L INOS INC
	$511=5542051 \mathrm{C}=$ NAC ANDPEWS \& FORBES
	$512=55430710=M A C$ CONALC E F CO
	$513=55452930=$ MACKE CO
	$514=55479010=$ MAC MILLAN INC
	$515=55613910=$ MACY RHE COINC
	$516=55748010=M A D I S O N F D$ INC
	$517=55910810=$ MAGIC CHEF INC
	$518=56237610=$ MANHATTAN INDS INC
	$519=56418110=$ MANPOWER INC
	$520=56532110=$ MARATHON MFG CO
	$521=5663171 \mathrm{C}=$ MAPCOR INC
	$522=56647210=$ MARENONT CORP
	$523=5677131 \mathrm{C}=$ MARION LABS INC
6	$524=5711541 \mathrm{C}=\mathrm{MARLEY} \mathrm{CC}$
	$525=57144310=$ MARCUETTE CC
	$526=57335010=$ MARTIN PRCCESSING IN
C	$527=5740551 \mathrm{C}=$ MARYLAND CUP CORP
	$528=57521610=$ MASSEY FERGUSON LTO
	$529=57974610=$ MC CORD CCRP
C	$53 \mathrm{C}=58003310=$ MC OERMOTT J RAY \& C
	$531=5806451 \mathrm{C}=$ MC GRAW HILL INC
	$532=5812381 C=M C$ INTYRE MINES LTO
C	$533=58132510=M C$ KEE CCRP
	$534=58210310=$ MC LEAN TRUCKING CJ
	$535=5822731 \mathrm{C}=$ MC LOLTH STL CJRP
C	$536=5828341 \mathrm{C}=\mathrm{MEAD}$ CORP
	$537=58507210=$ MEDUSA CCRP
	$538=58574510=$ MELVILLE COPP
C	$539=58600510=$ MEMOREX CORP
	$540=58644710=M E N A S C O ~ N F O C O ~$
	$541=58943310=$ MEREDITH CCRP
0	$542=59018810=$ MERPILL LYNCH \& 60
	$543=5906551 C=$ MESA PETE CC
	$544=59082510=$ MESTA MACH CD
C	$545=59160510=$ METRO GOLDWYN MAYER
	$546=59169010=$ METSOMEDIA INC
	$547=59450310=$ MICHIGAN OAS UTILS C
C.	$548=57472910=M$ ICRIGAN SUGAR CO
	$550=59515210=$ MICPOwAVE ASSOC INE

		$606=$	$65011110=$	'WEW YORK TIVES CO
	\bigcirc	$607=$	$65142710=$	VEWトALL LC S FARMING
		$608=$	$65163710=$	JEWNONT MNG COPP
		$669=$	$65352210=$	VIAJARA NOHAWK PWR C
	C	$610=$	$6535561 \%=$	VIAEARA SH EJRP
		$611=$	$65638910=$	YORRIS INDS INC
		$612=$	$65678010=$	NOPTH AMERN COAL COR
	6	$613=$	$6570451 \mathrm{C}=$	VORTH AMERN PHILIPS
		$614=$	$6584081 \mathrm{C}=$	NORTH EENT AIRLS INC
		$615=$	$66550010=$	- IORTHERN NAT GAS CO
	C	$616=$	$66752810=$?	NOR THWEST INDS INC
ma		$617=$	$6686051 \mathrm{C}=\mathrm{N}$	NDRTON CO
\because		$618=$	$66870710=$	NORTON SIMCN INC
-	C	$619=$	$67034610=$	NUCOR CORP
		$620=$	$67140010=$	OAK INDS INC
		$621=$	$67459910=$	OCCIDENTAL PETE CORP
	C	$622=$	$6763461=$	OGEEN CORP
		$623=$	$67904310=$	CKL AHOMA NAT GAS CO
\because		$624=$	$67066520=$	OLIA CORP
	C	$625=$	$6820631 \mathrm{C}=$	OMARK INDS INC
		$626=$	$6825051 \mathrm{C}=$	one ida lto
4		$627=$	$68900210=$	OTIS ELEVATCR CO
	0	$628=$	$69002010=$	OUTBCARD MARINE CORP
$\cdots:$		$629=$	$69010510=$	OUTLET CO
		$630=$	$67036310=$	OVE?SEAS SHIPHOLDING
		$631=$	$67073410=$	OWENS CORNING FIBERG
		$632=$	$69076810=$	OWENS ILL INC
		$633=$	$6914973 \mathrm{C}=$	OXFCRD INDS INC
	C	$634=$	$6935061 \mathrm{C}=$	$P P$ INDS INC
- \therefore		$635=$	$69475010=$	PACIFIC PETES LTD
		$636=$	$69562910=$	PAINS WEBBER INC
	6	$637=$	$69648015=$	PALN BEACH CO
		$6.38=$	$69764310=$	PAMIDA INC
		$539=$	$69805710=$	PAN AMERN WORLD AWYS
	C	$640=$	$69946510=$	DANHANDLE EASTN PIPE
\because		$641=$	$69882210=$	PAPERCRAFT SORP
-20:		$642=$	$70111110=$	PARKER PEN CO
	\bigcirc	$643=$	$70254410=$	PASCO INC
\cdots.		$644=$	$70905110=$	PEVNSYLVANIA PWR E L
		$645=$	$70970310=$	PENNZOIL CC
	C	$646=$	$71102110=$	DEOPLES DRUG STORES
\%-		$647=$	$71110610=$	PEDPLES GAS CO
\%		$645=$	$71344810=$	PEPSICO INC
	C	$649=$	$7140411 \mathrm{C}=$	PEQKIN ELMER CORP
		$650=$	$71602610=$	PETER PAUL INC
		$651=$	$71645110=$	PETPO LEWIS CORP
	θ	$652=$	$71654410=$	PETROLANE INC
+ ${ }^{4}$		$653=$	$71654710=$	PETROLEUN \& RES CORP
		$654=$	$71316710=$	PHILIP MCRRIS INC
	3	$655=$	$71832010=$	DHILIPS INDS INC
ma:		$656=$	$71915110=$	PHOENIX STL COPP
		$657=$	$7199651 \mathrm{C}=$	PICKWICK INTL INC
	6	$659=$	$72010610=$	PIEONONT NAT GAS INC
		$659=$	$72447310=$	PITNEY BChES INC
		$660=$	$72510610=$	OITTSRURGH FORGINGS

	$661=72570110=$ PITTSTON 00
	$662=72578610=$ PITTHAY CCRP
	$663=7281171 C=$ OLAYSOY ENTEPP?ISES
	$664=73129515=30 L$ AROIO CORD
	$665=73243610=$ PCYIEEROSA SYS INC
	$666=73620210=$ PCPTEC INC
	$667=73762810=$ POTLATCH CORP
C	$668=74051210=$ PRENIER INDL CJRP
	$669=74310710=$ PRODUCTS RESH E CHEM
	$670=74449910=$ PURLIC SVC CO V MEX
C	$671=74463510=$ PUELICKER INDS INC
	$672=74533210=$ PUGET SOUND PWR \& LT
	$673=74579110=$ PULLMAN INC
C	$674=74740210=$ QUAKER OATS CO
	$675=74928510=$ P C A CORP
	$676=74973810=$ R T E CORP
C	$677=75215910=$ RANCO INC
	$67 \%=7545861 \mathrm{C}=$ RAYDESTOS NANHATTAN
	$677=75472210=$ RAYMOND INTL INC
	$680=75764010=$ REONAN INDS INC
	$681=7592601 C=$ REED TOOL CC
	$682=75855610=$ REEVES RROS INC
	$683=75920010=$ REICFHOLD CHEMS INC
	$684=75945710=$ PELIANCE ELEC 60
	$685=7594661 C=$ PELIANCE GRCUP INC
	$686=7603542 \mathrm{C}=$ REDLBLIC CCRP
	$687=76040710=$ PEPUBLIC FINL SVCS
	$698=75077910=$ SEPURLIC STL CORP
C	$689=76088110=$ SESEARCH COTTRELL
	$690=76133910=$ REVCO D S INC
	$691=75140610=$ REVERE CCPPER \& BRAS
	$692=76152510=$ REVLON INC
	$593=76168610=$ TEXHAM CCRP
	$694=76168810=$ REXNORD INC
C	$695=76176310=$ REYNOLDS METALS CO
	$696=76312110=$ RICHAPDSCN CO
	$697=76317210=$ PICHARDSCN NERRELL
C	678 = 76648110 = RIEGEL TEXTILE CORP
	$679=76775410=21 T E$ AID CORP
	$700=77055310=$ RORERTSON H H CCO
C	$701=77070610=302$ INS A H INC
	$702=77377410=$ ROCKOWER BRCS INC
	$703=77571110=$ ROLLINS INC
C	$704=77633810=$ RONSON CCRD
	$705=7765781 \mathrm{C}=$ ROPER CORP
	$706=77630 \times 10=$ ROSARIO RES CDPP
θ	$707=78024010=$ ROYAL CRCWV COLA CO
	$708=78029110=$ ROYAL INCS INC
	$709=78108810=$ RUBEERMAID [NO
C	$710=78120712=$ 2UCKER CC
	$711=78224220=$ QUSS TOGS INC
	$712=78354910=$ RYDEP SYS INC
C	$713=78387810=S=A$ SVCS INC
	$714=78401512=5 \mathrm{C}$ M CORP
	$715=78462310=50 \mathrm{SCONS}$ INC

771 772	$=85772110=$ $=85807610=$	$\begin{aligned} & \text { STALFFER CHEM CO } \\ & \text { STEEL ED ODA LTU } \end{aligned}$
773	$=86316310=$	STEVENS J P E CO INC
774	86130412	StCkely van camp inc
775	= 86157210	STONE \& WEESTEP INC
776	= 86158912	STONE CONTAINER CORP
777	$=86207710$	STOP E SHOP COS INE
778	$=86386310$	STUCEBAKER WORTHINGT
779	$=86664510=$	SUN SHEM CCRP
780	86671310	SUN ElEC Cord
781	$=86676210$	SUN INC
782	$=86732310$	SUNDSTRAND CORP
783	$=86803510$	SUPER VALU STOPES In
784	= 85844310	jupermarkets gen cor
785	$85901920=$	SURVEYOR fo Inc del
786	$=96971610$	SWANK INC
787	$=87161610$	SYNTEX CCRP
788	$=87264910=$	T R W INC
780	$=87468710=$	talley inds inc
790	$=87512710=$	tampa Elec co
791	$=87538210=$	TANDY CORP
792	$=87604310$	TAPPAN CO
793	$=87851210=$	TECHNICARE CORP
794	$=87852110=$	TECHNICOLCR INS
705	$=87854210=$	TECHNICOA CCRP
796	$=87913110$	TEKTRONIX INC
797	$=87919910$	TELAUTOGRAPH CORP
798	$=87333510$	TELEDYNE INC
799	$=87986210$	temple inds inc
800	$=82160910$	TESORO PETE CORP
801	$=8816941 \mathrm{C}$	TEXACO InC
802	$=88249110=$	TEXAS INDS INC
803	$=8825081 \mathrm{C}=$	TEXAS INSTSS INC
804	= 89259310 $=$	TEXAS OIL E SAS CORP
805	$=8826101 \mathrm{C}=$	TEXAS PAC LC TP.
806	$=88289510=$	TEXFI INCS INC
807	$=8341021 \mathrm{C}$	THICKOL CCRP
808	$=8847531 \mathrm{C}=$	THOMPSON J WALTER CC
809	$=88634910$	TICCR
810	$=88642310$	TIDEWATEP INC
811	$=89673510=$	tiger intl inc
812	$=88722410=$	TIME INC
813	$=8873601 \mathrm{C}$	TIMES MIPROR CO
814	$=89917510=$	TOLEDC ECISCV CO
815	$=8902781 \mathrm{C}$	TONKA CORP
816	$=8905161 \mathrm{C}$	tojtsie roll incs in
817	$=87150810=$	total pete North ame
818	$=87234810=$	TRACOR INC
819	= $8928921 \mathrm{C}=$	trane co
320	= 3933491 C	TRANS WORLC AIRLS IN
821	$=89348510=$	Transamerica corp
822	$=69355310=$	TRAVSEON LINES
823	$=87384710=$	TPANSOHIC FINL CORP
8.24	$=89401510=$	TRANSWAY INTL CORP
825	= 83543610 $=$	TRI CONTL CCRP

	$826=89586110=$ TRIANGLE INLS INE
!	827 = $9358951 \%=$ TRI $\triangle N G L E$ PAC CORP
	$928=89652210=$ TRINITY INCS INC
	829 = 8970921C = TROPICANA PPODS INC
C	$830=87831310=$ TUCSON SAS E ELEC CO
	$831=73122110=$ TWENTIETH CENTY FOX
	$832=$ - $2212010=$ TYCE LASS INC
C	$333=93219210=$ TYLER CORP
	$834=90255010=U$ A L INC
	$835=90268610=\mathrm{J}$ G I CORP
C	$836=90297910=U M C$ INDS INC
	$837=9032001 C=U 0$ P INC
	$838=90342210=U V$ INDS INC
C	$839=90344310=$ UARCO INC DEL
	$840=90427410=$ UNA PCO INDS INC DEL
	$841=90553.31 \mathrm{C}=$ UNIJN CANP こORP
C	$842=9055811 C=$ UNICN CARBICE CORP
	$843=90731910=$ UNICN PAC CCRP
	$844=90731310=$ UNITED AIPCRAFT PROL
C	$845=93766012=$ UNITED BRANCS CO
	$846=91011010=$ UNITED CORP
	$847=91031410=$ UNITED FINL CORP CAL
C	$848=91043490=$ UNITED GAS CORP
	$849=91056210=$ UNITED STY CORP
	$850=91063710=$ UNITED ILLUM CO
-	$851=91067110=$ UNITED INDL COPP
	$852=91068510=$ UNITED INNS INC
	$853=91121310=$ UNITED NUCLEAR CORP
C	$854=71135810=$ UNITED PEFNG CO
	$355=91153610=$ UNITED STS E FGN SEC
	$856=91182510=$ UNITED STS FID E GTY
	$857=91184210=$ UNITED STS FILTER CO
	$852=91202710=$ UNITED STS GYOSUM CO
	$859=9121291 C=$ UNITED STS LEASING I
C	$863=01260510=$ UNITEC STS SHOE CORP
	$861=91265610=$ UNITED STS STL CCRP
	$862=91277510=$ UNITED STS TOB CC
C	$863=91335310=$ INNIVAR CORP
	$864=91731010=$ USLIFE CCRP
	$865=91819510=V C$ A COPP
0	$866=91831410=V$ S 1 CORP
	$867=92220410=$ VARIAN ASSCC INC
	$868=92227210=$ VARO INC
	$869=9255261 C=$ VIACOM INTL INC
	$870=92916010=$ VULCAN MATLS CO
	$871=92976910=$ WACHOVIA CORP
C	$872=9297941 \mathrm{C}=$ WACKENHUT CCRP
	$873=93235510=$ WALLACE MURRAY CORP
	$874=93316910=$ WALTER JIN ECRP
0	$275=93369610=$ WANS LAPS INC
	$376=93405110=$ WARE FOOOS INC
	$877=73440810=$ WARNER \& SWASEY CO
C	$878=93443610=$ WARNER CONMUNICATION
	$879=93883710=$ WASHINGTCN GAS LT CC
	$830=93964010=$ WASHINGTEN POST CO

SAMPLE PORTFOLIO

$$
1 \text { M } \times 1 \mathrm{~F}
$$

$$
0^{\prime} 1
$$

$$
\begin{aligned}
& 75764010-\text { HEDMAN INDS IG: } \\
& 78462310-S \text { O S CONS IHC } \\
& 83211010-5 \text { SIITH INTL INC }
\end{aligned}
$$

$$
\begin{aligned}
& 87161610-\text { SYNCLX COPD } \\
& 8935531 \text { U-TRANSCON I.INES } \\
& 91067110-U N I T E D \text { INLJ. USH }
\end{aligned}
$$

$$
\begin{gathered}
97463710-\text { WINAEEAGO INQS Lid: } \\
0-
\end{gathered}
$$

 $691497310-0 \times$ FUi：D $1 N \mathrm{LG}$ IHC $80918010-S C C T$ LAL FUULS 1 IaC 86664：10－SUN CHEN CUHI B7913910－TFIAUTGURAHA COMD 94014410－HASHI HGTUN うTL（OL 6

Appendix II
COMPUTER PROGRAMS

PROGRAM 1 EXEC FILE

PROGRAM 1
路 00052000
$000 巾 2000$ 00092000
00052000 $\angle 0082000$
$000 \angle 2000$ $0000 \varepsilon 000$
00062000 00018000 000 RE000
$0002 E 000$
 0008 20000
$0009 E 000$
009 $0006 E 000$ 0001 to 000
$0000+000$ 0001 to 000 $000+7+000$
$000 \& \$ 00$ $0009+1000$
00057000 00087000
$000 \angle 7000$ vocusulc
$0006 \pi 7000$
$0008 \$ 000$号 N $000 \sin 00$
$000 \pi 5000$
00085000 cocesooc
II. F: TOIN
00050000
00057009
00058000
00059009
00060000
00061000
00062007
00063000
00064000
00065000
00066000
00067000
00068000
00069000
00770007
00071000
00072000
00073000
00074000
00075000
00076000
00077000
00078000
00079000
00080000
00081000
00082000
00083000
00084000
00085000
00086000
00087000
00089000
70089000
00090000
00091000
00092000
00093000
00094007
00095000
00096000
00097000
00098009
00099000
$0010000 n$
00101000
00102000
00103000
00104000
10105037
00106000
0

125	Whte (6, 725) ADROM(K), DATP GO TO 8)
\because	do tig delatiol of stock frgim abekiy portafeio
75	$\begin{aligned} & \text { OU } 775 \mathrm{~L}=1,119 \\ & \text { WK PORT }(\mathrm{L})=\text { WKPORT }(1,+1) \end{aligned}$
775	$\begin{aligned} & \text { CONPINEE } \\ & \text { WKEOAT }(120)=0 \end{aligned}$
300	$\begin{aligned} & \text { Continif } \\ & =0 \operatorname{Tn} 250 \end{aligned}$
3000	$\begin{aligned} & \text { TF(ITT.EQ.VOS) GO TO } 2200 \\ & \text { WRTTE (} 5,21 J 0) \end{aligned}$
3100	FORMAT('DATA CARDS 'qIGT CONTAIN A + OR - IN THE BTH COIUMN') GTOP
\%	
\because	ADD STOCY TO WEFKLY POPTFOLIO
\because	
2200	D $040 \cap 0 \mathrm{~K}=1.7$
\therefore	NO ADDS TO PORTFOIT 10 this Week
	IF (HKPCRT (M).EO.0) GO TO 22P0
\therefore	adi stock to wrikly portfoilo at first space
	IF ($\mathrm{AKPORT}(\mathrm{M}$) . ST T. ADFOF (K)) GO TO 2250
c	MAKE SPACE FOR ADDITIOA
	IF (WKPORT(M).IT, ADFOP (K)) GO TO 2300
C.	Incefment wefkiy poftablio for tnsfirtion
2215	WPTTE (6,2?25) ADPOE(K), DATE,
2225	FORMAT ('D', IA, 'IS ALR EADY PRESENT, CANNOT BE ADDED', I6) GO TO 4000
2390	continios
\cdots	
\%	MFChantes of admitton
2250	
	IIMIT ~ 12)-M
	$\mathrm{DO} 2.275 \mathrm{~L}=1$, I IMIT
	$\mathrm{N}=121$-1
	WKPORT (II) = = K PORT ($\mathrm{N}-1$)
2275	CONTINUP
2290	WKPORT (M) = ADROP(K)
-	
c	WORK On CHIMMLATIVF LI St
©	
c	
	D0 3) , $\mathrm{L}=1, \mathrm{1}^{\text {n) }}$
c	INSERT STOEK IN CHIMUII TTVE L.TST
c	Stock is airmady nn cimmulitelve litst
3010	rontinit
3110	1. $\mathrm{IMTP}=10 \sim \mathrm{l}$
	(M) $3507 \mathrm{LI}=1$, T. TMTT

PIIE: IOHN
00111000
00112000
00113000
00114000
30115000
00116000
00117000
00118000
00119000
00120000
00121000
00122000
00123009
00124000
00125000
00126000
00127000
00128000
00129000
00130000
00131000
00132000
00133000
00134000

[^0] 00003000
00004000
00005000 00005000 00006000
00007000
0708000 09208000
00009000 00010000
00011000 00011000 00013000 0013000
00014000
0015000 00016000
00017000 00017000
00019000 00019000
00019000
00020007 00202007
00021000 00021000
00022000
00023000 $000+$ \& 2000
$000 \varepsilon 2000$ 00025000
00026000
00027000 00082000
$000 \angle 2000$
00092000 $0000 \varepsilon 000$
00062000
00082000 00030000
0903100 n 00032000
00033000 $0005 E 000$
$000 \pi E 000$
$C 00 \varepsilon \varepsilon 000$ 00098000
$0005 \varepsilon 000$ 00068000
$0008 \varepsilon 000$
$000 \angle 8000$ COOU 00000
00068000
$0008 \varepsilon 000$ 00627000
00017000 $000 \hbar 7000$
$000 \varepsilon+000$
$C 0027000$
 00087000
$000<7000$
00097000 $0006+7000$
00087000 00005000
FORTPAN

DATA NBLA
NCUM $=0$?
NWEEK $S=32.1$
TK

$\stackrel{\varepsilon}{\stackrel{\varepsilon}{8}}$
ICOUNT=?
DO MNO $I=1$, NCuM
IF (IX. EO-1) GO TO 25

page 001

[^1]CONVERSATIONAT. MONITOE SYSTEM
 00025000
00026000 00026000
00027000 00028000
00029000
00030000 00031000
00032000 00032000
00033000
00031000 000 カร000 00034000
00035000
00036000 00037000
00038000 $0000+1000$
60068000
$0008 E 000$ 000277000
CCOO 17060
$0000 \$ 000$

 00045000
00046000 $000 \angle \pi 000$
000970000 000048009
00049000 000470000
00050900
00651007 couts90 80
0.8
0
0
0
0
0.
00
0 cocssoco
$000 \pi 5000$
 TF (TPORT (T)
IIOH=1
TTND=-FALSF
THIGH=NCOM

$\begin{array}{ll}\text { DO } \\ \text { IF (TPORT (T). EQ.O) (:O TO } & 150\end{array}$

$\stackrel{\underset{\sigma}{\sigma}}{\sim}$
~tif: : \quad pspyy

PROGRAM 3 EXEC FILE

PROGRAM 3

PROGRAM 5

; FMR VMARKD=VMARK-TRITI,
GFNF SMAFYD=GMARK-TRTILT
PIOTSF
PRTNT TD FMARKD VMARKD SMA
PRTNT ID FMANKD VMARKD SMARKD PORTL\$ PRINT EMAPK VMARK SMAFK

MPI in 61 क
I.SQ POFTD C FMARKD
LSQ POPTD C VMARKDF
LSQ POFTD C VMARKDF
LSO PORTD C SMARKD
SMPL 62. 112 . LSQ PORTD C VMAFKD
LSO PORTD
C SMARKD $\$ ~$ \$ वxyuha GLSO POFTD C EUARKD
OLSQ PORTD C VMARDS
SLE

SMPL 165 ISP PORTD C EMARKD 5
ILSE ORTD C
LSO PORTD C VMAPKDE
OLSO PORTD C VMAPKD
I.SQ PORFD C JMAPKD $\$$

OLSC PORTD C VMAFKDS
$\begin{array}{llll}M M L & 270 & 321 & \text { b }\end{array}$
LSQ PORTD C ZMARKD $\$$
OLSQ POETD C VMARKD
LSO PORTD C SMAKKD $\$$

SMPI. 1 321
LOAD ID POET EMAKK VHA
711175 1.716434

$$
\begin{gathered}
\mathrm{T}^{-} \\
\text {STATISTIC } \\
4.53928 \\
43.2901
\end{gathered}
$$

fitimate of vafiance-c) vapiance matrix op estimated coepficients
F. MARKD

[^2]\[

$$
\begin{array}{rrr}
-411516 \mathrm{E}-06 & -.117887 \mathrm{~F}-05 \\
-\quad & -.107987 \mathrm{E}-05 & .500403 \mathrm{E}-03
\end{array}
$$
\]

minus five days

$$
\begin{gathered}
\text { T- } \\
\text { STATISTIC } \\
0.46513 \\
35.2508
\end{gathered}
$$

$$
N
$$

minus five days灾

0

STAHDAF！
くん！おH
$.0377751-03$
－ $2+2031 i-01$

[^3]

ELIALKD

$\begin{aligned} & \text { L-SQUABEL }=0 . d 512 \\ & \text { DUGBIH-WATSON STATISTIC (ADJ. POH C. (;ARS) }=1.7395\end{aligned}$
$\begin{aligned} & \text { SUM OF SQUAFED KLSIDUALS }= \\ & \text { STANDAED LEKOR OF THF REGILSSION }= \\ & .414363 \mathrm{~L}-01 \\ & .113974 \mathrm{E}-01\end{aligned}$
SUM OF RESIDJAIS = $\quad .103191 \mathrm{E}-35$
NUMEEG OF OBSEAVATIONS = 321 .
F-STATISTIC(1..319.) =

zero day delay
V.Ma: KD

VALill．Liti：
Y．gUATIOA
$* * * * * * * * 4$
ObuINany LiASA Sulladid:

Devemuent vamakle：Prifd

zero day delay

LOG OF LIKELIHOLD FUNCTION $=\quad 808.343$
F－SQUAKED＝ 0.7388
DUKBIN－HATSUN STATISTIC（ADJ．YUH 0. （GARS）$=1.6272$ DUhBIN－WATSUR STATISTIC
SUM OF SQUAEED HESILUALS
 SUM OF FESIDUALS＝． 83810 GE－05 NUMBEK GF OFSEhVATIONS＝321． MEAN CP DEPENDENT VARIAGLE＝
F－STATISTIC（ $1 ., 31 צ.)=$

$$
\mathrm{F}-\operatorname{STATISTIC}(1 ., 314 .)=
$$

$902.423537 \mathrm{i}-02$
Y（2）．
ESTIMATE CF VAIIANCE－COVAIIANCE AAJEIX GF LSTIMATID COEFFICIIAT：

$$
S M A F K D
$$

7 C SMAFKDC

． $124499 \mathrm{E}-32$
．．
$.7 \angle 19631 \mathrm{E}-06$
$. \quad .953534 \mathrm{E}-00$

$$
\begin{aligned}
& .954534 E-30 \\
& .124499 \mathrm{E}-32
\end{aligned}
$$

 －

Tミ甘H－ホHOT

$$
\begin{aligned}
& \text { VAFIABL } \\
& \text { C }
\end{aligned}
$$

SMAKOD
保
five day delay
five days delay

-1.1ATIUN	2

> OHDINA FYY I FAGT SUIIAPES
DEPLHDEMT VAHIAEIE: POKTD
fIGIT-MAND
VARIABLE
C
VAFKD

$$
\begin{aligned}
& \text { IGO OF ILKELIHGOD FUNCTION = } \\
& \text { P-SOHAFED }=0.7 Q H 0
\end{aligned}
$$

DIPBII-VATSON STATISTIZ (ADJ. FOR 0. GAPS) $=1.6290$
SUM OF SQUARED FESIDUALS $=$ $\begin{array}{lll}\text { STANDARD PRROR OF THP HEGRESSION }= & -134218 E-01 \\ \text { SIM OF KESIDUAIS }= & -602007 E-05 & \end{array}$
HYBEY OF OBSTFVATIONS = 321.
M:AH OF DFPENDENT VARTABLE =
P-STATISTIC($1 ., 319.)=$

$.295423 \mathrm{E}-02$ 1185.81

STANDARD
ERGOR

$.749134 E-03$
$.313433 \mathrm{R}-01$
ESTIMATY JP VAEIANCE-CJVAFIANCE MATRIX of estimated coepficients VMARKD
$\begin{array}{rr}561202 \mathrm{E}-06 & -.540956 \mathrm{E}-07 \\ 540956 \mathrm{~F}-07 & .982402 \mathrm{P}-03\end{array}$

ten days delay
［：PEVIEHT VARIABLE：POHTD

$$
\because!11: T \mathrm{~T}, \mathrm{~A}
$$

hTGHT－IIANU
VAII IABI．E

BMAKKD

$$
\begin{aligned}
& \begin{array}{l}
\text { I.OF OF ITKEITHOOD FUNCTION }=\quad 993.776 \\
\text { K-SQUARED }=0.8592
\end{array} \\
& \begin{array}{l}
\text { R-SOUARED }=0.8592 \\
\text { CURBIH-WATSON STATIS }
\end{array}
\end{aligned}
$$

Mran ∂ P DPPENDENT VARIABLE $=$
$1947.270850 \mathrm{E}-02$
1947.0
$\begin{aligned} & \text { MCAN つP DFPENDENT VARIABILE＝} \\ & \text { F－STATISTIC（ } 1 . .319 .)=\end{aligned}$

FSTIMATP OF VAEIANCE－COVARIANCE MATRIX OF ESTIMATED COEFPICIENTS

$$
1
$$

1
twenty days delay
valto-

valy . Lide		
$\begin{aligned} & \text { 以ination } \\ & t * * * * * * * * \end{aligned}$		
ghdimary least squares		
frpminfmt variables: pohtd		
efght-hand	estimated	Standaid
vafiable	coepficient	ERror
c	. 299 166を-03	. $602626 \mathrm{E}-03$
E.MA HKD	. 994190	. $225125 \mathrm{E}-01$

pestmate of variance-covafiance matrix op estimated coffficients
EMARKD
$\begin{array}{rr}-3631575-06 & -.984479 \mathrm{E}-136 \\ -\quad-994473 \mathrm{E}-06 & .596814 \mathrm{E}-03\end{array}$
PリリATIOM $\quad 2$
$* * * * * * * * * * * *$

CIDUAYY REMCT SOTAPES
Jrpengent vaplapife poeto
RIGUT-HAND
VMATKD
$.749589 E-03$
$.318341 \mathrm{E}-01$

$\begin{gathered} \text { Huyys } \\ \text { atyonvis } \end{gathered}$

L . :

GLOSSARY OF TERMS AND EQUASIONS

Alpha (α). The alpha is the intercept of the regression line on the verticle axis. A positive alpha indicates Value Line has earned, on the average, a premium above that expected for the level of market variability. It's expected value is zero.

Beta (β). Beta is the regression coefficient of the rate of return on the market in the market molded equasion

$$
R_{1}=\alpha_{1}+B_{i} R_{m}+\varepsilon i
$$

Correlation coefficient (p). This is a measure of the degree to which two variables move together

$$
P_{2}=\sqrt{\frac{1-S_{1.2} \cdot 2}{S i^{2}}}
$$

Covariance (cov,y). Another measure of degree two variables move together. A positive covariance measures on merge the variables move together

$$
\frac{\Sigma(x i-\bar{x})\left(x_{2}-\bar{x}_{2}\right)}{N}
$$

Efficient market. In an efficient market, current security prices fully reflect all available information. Efficient portfolio. A fully diversified portfolio.

Geometric mean. A geometric mean is the $N^{\text {th }}$ root of N observations.

Least square regression line. A least square regression line minimizes the sum of the square of the verticle deviations from observations points.
$x i=a+b x y$
Risk free rate. The risk free rate is the rate of return on virtually riskless assets, usually Treasury Bills.
t-statistic. A measure of statistical significance. An absolute value of 2 or greater is good.

FOOTNOTES

Chapter 1

Introduction
Introduction

1. Samuelson, Paul A (35)
Chapter 1
2. Bernhard (6), pp. 13
3. Bergstrom (4)
4. Bernhard (5)
5. Markowitz (29)
6. Lorie Hamilton (29)
7. Sharpe (37)
8. Bernhard (5)
9. Letter from Value Line to Fischer Black
10. Sharpe (37)
11. Value Line "Selections \& Opinions" November 17, 1978
12. Bernhard (5)
13. Bernhard (5)
14. Malkiel (30), pp. 107
15. Malkiel (30)
-l51-
FOOTNOTES
Chapter 2
16. Shelton (42)
17. Shelton (42), pp. 285
18. Shelton (42), pp. 260
19. Hausman (20)
20. Murphy (31)
21. Murphy (31)
22. Kaplan \& Weil (26)
23. Kaplan Weil (26)
24. Black (9)
25. Black (9)
26. Black (9)
27. Black (9)
28. Black (9)

$$
-152-
$$

FOOTNOTES

Chapter 3

1. Fama (16), pp. 34
2. Lorie and Hamilton (29), pp. 75
3. Lorie and Hamilton (29), pp. 77
4. Sharpe (39), pp. 119
5. Lorie and Hamilton (29), pp. 89
6. Lorie and Hamilton (29), pp. 89
7. Sharpe (38), pp. 138
8. Jensen (25), pp. 389
9. Lorie and Hamilton (29), pp. 90
10. Lorie and Hamilton (29), pp. 91
11. Jensen (25), pp. 413
12. Sharpe (41), pp. 29
13. Sharpe (41), pp. 29
14. Sharpe (40), pp. 30
15. Sharpe (40), pp. w7
16. Jaffee (24), pp. 427
17. Jaffee (24), pp. 424
18. Ibbotson (22)
19. Black, Scholes (11)

FOOTNOTES

Chapter 6

1. Wall Street Journal, May 8, 1978
2. Your Income Tax, Government Publication
3. Implications of the Capital Gains Tax for Investment Decisions, Hold and Shelton
4.

Black (9)
5. Business Week, November 13, 1978, pp. 172
6. Boston Globe, December 8, 1978

FOOTNOTES

Chapter 7

1. Shelton (42)
2. Hausman (20)
3. Murphy (31)
4. Kaplan \& Weil (26)
5. Black (9)
6. Fama (16)
7. Sharpe (39)
8. Jensen (25)

BIBLIOGRAPHY

1. Akermann, Charles and Keller Werner, "Relative Strength Does Persist!," The Journal of Portfolio Management, pp. 38, Fall 1977.
2. Ambachtsheer, Keith P., "Where Are the Customer's Alphas?," Journal of Portfolio Management, pp. 52, Fall 1977.
3. Baker Securities, "Funds Evaluation Service," Annual Report Text, 11/74-10/75.
4. Bergstrom, Gary L., "A Performance Analysis of Pension and Profit-Sharing Portfolios: 1966-1975," presented at the May 1977 CRSP Seminar.
5. Bernhard, Arnold, "Investing in Common Stocks," Arnold Bernhard \& Co., 1975.
6. Bernhard, Arnold, "Portfolio Management: Active or Passive," Presentation for Eighteenth Annual Management Conference of the Graduate School of Business and Executive Program Club, The University of Chicago, March 1970.
7. Bernstein, Peter L., "Efficiency and Opportunity," The Journal of Portfolio Management, pp. 4, Fall 1977.
8. Bishop, E.L., III, and J.R. Rollins, "Lowry's Report: A Denial of Market Efficiency," The Journal of Portfolio Management, pp. 21, Fall 1977.
9. Black, Fischer, "Yes Virginia, There Is Hope: Tests of the Value Line Ranking System," Letters to the Editor, Financial Analysts Journal, September/October 1973.
10. Black, Fischer and Myron Scholes, "The Effects of Dividend Yield and Dividend Policy on Common Stock Prices and Returns," Journal of Financial Economics, pp. l-22, l 1974, North Holland Publishing Company.
11. Black, Fischer and Myron Scholes, "Session Topic: Individual Investors and Mutual Funds ... From Theory to a New Financial Product," Journal of Finance, Vol. XXIX, No. 2, May 1974.
12. Boston Globe, December 8, 1977.
13. Business Week, November 13, 1977, pp. 172.
14. Cannistraro, Richard S., "The Predictive Ability of Price/Earnings Ratios for Determining Risk. Adjusted Performance of Common Stocks," Master's Thesis, December l973, M.I.T. Advisor - Robert C. Merton.
15. Ehrbar, A.F., "The Trouble With Stocks," Fortune Magazine, August 1977.
l6. Fama, Eugene F., "Components of Investment Performance," Journal of Finance, Vol. XXVII, No. 3, pp. 551, June 1972.
16. Fields, Richard L., "Alternative Regulatory Approaches: The Automobile Insurance Market," Bachelor of Science Thesis, Department of Economics, M.I.T., July 1977.
17. Fullerton, David John, "A Further Investigation of the Value to the Naive Investor of the Trading Activity of Corporate Insiders," Master of Science Thesis, M.I.T., May 1978. Advisor - Fischer Black.
18. Garbisch, Michael and Alexander Gordon, "Is Standard and Poor's Master List Worthless?," Journal of Portfolio Management, pp. 34, Fall 1977.
19. Hausman, Warren, Note on Value Line Contest , Journal of Business, pp. 317-320, July 12, 1969.
20. Holmes, John Russell, "l00 Years of Investment Experience With Common Stocks," Financial Analysts Journal, pp. 38, November-December 1974.
21. Ibbotson, Roger, "Price Performance of Common Stock New Issues," Journal of Finance, May 1975.
22. Ibbotson, Roger and Rex Sinqufield, "Stocks, Bonds, Bills, and Inflation: Year by Year Historical Returns (1926-1974)," Journal of Business, pp. ll-47, January 1976.
23. Jaffee, Jeffrey F., "Special Information and Insider Trading," Journal of Business of the University of Chicago, Vol. 47, No. 3, pp. 409, July 1974.
24. Jensen, Michael, "Problems in the Selection of Security Portfolios, the Performance of Mutual Funds in the Period 1945-1964," Journal of Finance, pp. 386, 1968.
25. Kaplan, Robert and Roman Weil, "Risk and the Value Line Contest," Financial Analysts Journal, pp. 56, JulyAugust 1973.
26. Kim, Åndrew, "Is Indexing Really the Answer?," Journal of Portfolio Management, pp. 65, Fall 1977.
27. Korin, Basil P., "Introduction to Statistical Methods," Winthrop Publishers, Cambridge, Massachusetts, 1977.
28. Lorie, James and Mary Hamilton, "The Stock Market," Richard D. Irwin, Inc., Homewood, Illinois, 1973.
29. Malkeil, Burton G., "A Random Walk Down Wall Street," W. W. Norton \& Company, New York, New York, 1975.
30. Murphy, John Michael, "The Value Line Contest: 1969," Financial Analysts Journal, pp. 94, May-June 1970.
31. Murphy, John Michael, "Efficient Markets Index Funds, Illusion, and Reality," The Journal of Portfolio Management, pp. 5, Fall 1977.
32. Myers, Stewart C., "Modern Developments in Financial Management," Holt, Rinehart, Winston, Hinsdale, Illinois 1976.
33. Rivin, John, "The Impacts of Unionization on Unskilled Hospital Workers and the Hospital Industry," Thesis, Department of Economics, Harvard University, March 3l, 1977.
34. Samuelson, Paul A., forward "Investment Decision Making," James L. Bichsler, ed., M.I.T., pp. l, March 1972.
35. Schulman, Evan, "Can the Market Forecast Itself?," Journal of Portfolio Management, pp. 57, Fall 1977.
36. Sharpe, William F., "Investments;" Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632.
37. Shannon, Donald, Keith Johnson and Gregory Neal, "How to Beat Those Index Funds," Journal of Portfolio Management, pp. 28, Fall 1977.
38. Sharpe, William F., "Mutual Fund Performance," Journal of Business, \#39, pp. 119, 1966.
39. Sharpe, William F., "Likely Gains from Market Timing," Financial Analysts Journal, March-April 1975.
40. Sharpe, William F., "Adjusting for Risk in Portfolio Performance Measurement," The Journal of Portfolio Management, pp. 29, Winter 1975.
41. Shelton, John P., "The Value Line Contest: A Test of the Predictability of Stock-Price Changes," Journal of Business, 40, pp. 25l-269, July 1967.
42. Stearns, Linhart, "A Modest Proposal," Journal of Portfolio Management, pp. 70, Fall 1977.
43. Timbers, Stephen, "The Non-Efficient Market is Not For Institutions," Journal of Portfolio Management, pp. 59, 1977.
44. Treynor, Jack L., "How to Rate Management of Investment Funds," Harvard Business Review, pp. 63, JanuaryFebruary XLIII.
45. Villani, Edward, "The Theoretical Challenge to Index Funds," The Journal Portfolio Management, pp. 46, Fall 1977.

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available. If you are dissatisfied with this product and find it unusable, please contact Document Services as soon as possible.

Thank you.

[^0]:

[^1]: I DAD Crspxy (STAFT NODUP)

[^2]: $.550403 \mathrm{E}-01$
 2

[^3]: ESTAAATE GY VABIANCL－CUVAKIANLE MATEIX OF LSTIMATED CUEFPACIFATS u

 EYAFKD

