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ABSTRACT The preceding argument can be used to justify an infrequent
The paper presents a frequency-domain estimator which can control-law redesign strategy. It is envisioned that a

identify both a nominal model of a plant as well as a discrete-time estimator will be used to continually update the
frequency-domain bounding function on the modeling error frequency-domain estimate of the plant as long as there is useful
associated with this nominal model. This estimator, which we information in the input/output data of the plant. The plant is in
call a robust estimator, can be used in conjunction with a robust a closed-loop that is controlled by a discrete-time compensator
control-law redesign algorithm to form a robust adaptive that is only infrequently updated (redesigned). It can be shown
controller. that if the compensator is redesigned sufficiently infrequently,

then the LTI stability of the 'frozen' system at every point in
time guarantees the exponential stability of the time-varying

1. INTRODUCTION AND MOTIVATION system. In this way, the control system looks nearly LTI and
The use of feedback control in systems having large consequently is more robust to disturbances, than a highly

amounts of uncertainty requires the use of algorithms that learn nonlinear adaptive controller. It is emphasized here that a robust
or adapt in an on-line situation. A control system that is adaptive controller that slowly learns and produces successively
designed using only a priori knowledge results in a relatively better LTI compensators is the end product envisioned in this
low bandwidth closed-loop system so as to guarantee stable paper. The paper aims to develop only the estimation part of
operation in the face of large uncertainty. An adaptive control this robust adaptive controller. On the other end of the adaptive
algorithm, which can identify the plant on-line, thereby control spectrum are algorithms that quickly adapt to a changing
decreasing the amount of uncertainty, can yield a closed-loop system. However, these systems have poor robustness
system that has a higher bandwidth and thus better performance properties in that they are highly sensitive to unmodeled
than a non-adaptive algorithm. There are many problems with dynamics and unmeasurable disturbances, particularly in the
the adaptive control algorithms which have been developed, to absence of persistent excitation.
date. In particular, most adaptive control algorithms are not
robust to unmodeled dynamics and an unmeasurable A Perspective on the Robust Adaptive Control Problem
disturbance, particularly in the absence of a persistently-exciting With the solution of the adaptive control problem for the
input signal. ideal case, that is, when there are no unmodeled dynamics nor

In this section, we will motivate the robust estimation unmeasurable disturbances, the problem of robustness has
problem by first discussing the adaptive control problem, in become a focus of current research. Recently, a new
general, and then presenting a perspective on the robust adaptive perspective on the robust adaptive control problem has appeared
control problem. Further, we justify the choice of an infrequent in the literature [1]. Briefly, a 'robust' adaptive controller is
adaptation strategy before discussing the main focus of the viewed as a combination of a 'robust' estimator and a 'robust'
paper, the development of a robust estimator. control law. This is an appealing point of view. For example,

if the robust estimator is not getting any useful information and
Stability of Adaptive Control Algorithms consequently, is not able to improve on the current knowledge

The use of adaptive control yields systems that are nonlinear of the plant, then the adaptation aspect of the algorithm can be
and time-varying. Thus, the stability of these systems depends disabled and the adaptive controller reduces to a robust control
on the inputs and disturbances, as well as the plant (including law. That is, in a situation where the adaptive algorithm is not
any unmodeled dynamics) and the compensator. However, the learning, the adaptive controller becomes simply the best robust
stability properties of a linear time-invariant (LTI) feedback LTI control law that one could design based only on a priori
system depend only on the plant and compensator, not the information and any additional information learned since the
inputs and disturbances. Because of this fact, we take the point algorithm began.
of view that it is desirable to make the system 'as LTI as
possible'. Of course, our motivation for using adaptive control Brief Statement of the Robust Estimation Problem
is to achieve a performance improvement (increased bandwidth) The main focus of this paper is the development of a robust
over the best non-adaptive LTI compensator. So, there is the estimator for use in an adaptive controller. In non-adaptive
ever present tradeoff between performance and robustness. robust control, the designer must first obtain a nominal model
This research was supported by the NASA Ames and Langley along with some measure of its goodness. A practical measure
Research Centers under grant NASA/NAG-2-297, by the Office of goodness is a bounding function on the magnitude of the
of Naval Research under contract ONR/N00014-82-K-0582 modeling errors in the frequency-domain. Since non-adaptive
(NR 606-003) and by the National Science Foundation under robust control requires these steps, the same steps must
grant NSF/ECS-8210960. implicitly, or explicitly, be present in a robust adaptive control
Proc. American Control Conference,
Minneapolis, MN, June 1987.



scheme, the difference being that the steps are carried out on-line We define the N-point discrete Fourier transform (DFT) of x[n]
rather than off-line. Thus, we assume that our robust estimator at the N frequency points, ok=(k/N)os , for k=O,..,N-1, where
must supply:

1) a nominal plant model, to =2rc/T is the sampling frequency,
2) a frequency-domain bounding function on the magnitude
of the modeling uncertainty between the true plant and this N-1
nominal model.

So, the robust estimator must provide an estimate of the XN(Ok) = x[n]WNkn , fork=O , N-1. (2.2)
parameters for the structure of the nominal model, as well as a n=O
frequency-domain uncertainty bounding function corresponding d where e( 2 N)
to this nominal model. Given this information, several robust and where WN=e-J(2.3)
control-law design methodologies could be used, including the Further, we define the inverse N-point discrete Fourier
LQG/LTR design methodology [2]. The envisioned adaptive transform of XN(cok) as follows,
control system is illustrated in Figure 1. In this paper, we will
use a discrete-time model of a sampled-data control system. N- 1

Plant Disturbance x[n] = 1 X XN(cok) WNkn, for n=O, ... ,N-1 (2.4)
(including unmodeled dinj N k=O

Reference Compensator dynamics) Output Since we will not always be working with N-point sequences
rini unl + u[nl that begin at 0, we define the following versions of the DFT and

K z)
+ Kz _ t Z) - ' inverse DFT for a sequence of N points ending with time index

Plant n. n

NKw Input XNn(o'k)= I x[m] WNkm (2.5)

m=n-N+1 for k=O, . ., N-1

N-1
Infrequent N

Control-law updates Nominal x[m] =1 XN( W (2.6)

On-line odel N k=O for m=n-N+, .. , n.
Control-law sti e 

Redesign Estimator A useful recursive equation for computing XNn((ok) from

Freq. Domain XNn-l(co k) can be derived from the above definitions and is
Bounding Function

given as follows
Figure 1. A Robust Adaptive Control System XNn(cok) = XN'l(ok) + ( x[n] - x[n-N] ) WNkn,

The robust estimator presented in this paper is the first of its for k=O, . , N-. (2.7)
kind in that it provides guarantees concerning the current If x[n] is of finite duration, for example if x[n]•0 only for
estimate of the nominal model of the plant. This requirement is n=O,.,N-1 , then the N-point DFT of x[n] and the DTFT of x[n]
essential if the estimator is to be used in a robust adaptive are equal at
control situation. If the estimator cannot provide guarantees OT
about the model it provides to the control-law redesign XN(k) = X(ei) , fork=, .. ,N-1. (2.8)
algorithm, then the redesign algorithm cannot guarantee stability (Do k
of the closed-loop system. We will use a deterministic
framework throughout the paper, since guarantees of stability Signal Processing Theorems
are sought. In this subsection, we will develop results that can be used

to bound the effects of using finite-length data to compute
Related Literature frequency-domain quantities. In the later parts of this paper, the

In Ljung [3,4] the 'empirical transfer function estimate' frequency-domain estimate of a stable, causal, transfer function
(ETFE) is introduced. This ETFE is computed using the H( T
Fourier transforms of finite-length input/output data of the plant. ) will be computed based on the N-point DFTs of the
In [4], Ljung finds bounds on the effects of using finite-length transfer function's input and output signals. We will now state
data to compute the ETFE, for strictly stable plants. This work a theorem that bounds the error in the frequency domain
provides the background for the development of the between this DFT derived frequency-domain estimate and the
frequency-domain estimation techniques of this paper.

2. MATHEMATICAL PRELIMINARIES Theorem 2.1: Let y[m]=h[m]*u[m], where h[m] is an
In this section, we will present the notation and definitions infinite-length, causal, impulse response with all its poles in the

that will be used in the paper, as well as some results and open unit disk We denote the DTFT of h[m by H( T), and
theorems that will be useful later on. We denote a discrete-time
signal by x~n]~=x(nT) where x(t) denotes the sampled the DFTs of the N-points of u[m] and y[m] ending with time
continuous-time signal and where n is an integer and T is the index n, by UNn(o)k) and YNn(cok), respectively. Then,
sampling period. The z-transform of x[n] on the unit circle is
called the discrete-time Fourier transform (DTFT) and is defined YNn(<ck) = H(eJ°kT) UNn(wk) + ENn(ok ) ,
as follows for k=O, .., N-I, (2.9)

X(eji0T) = I x[n] e-j()T)n. (2.1) where the discrete function ENn(cok) is given by
n=-oo



ENn(k) = E h[p] WNkP (UNn-P(a k)- UNn(k) ), Igte[l < gi n(r) pin (3.
p=l for k=0, ., N-1, (2.10) i

where WN is defined in Eqn. (2.3).
weProofe See [5]defined inEqn.(2.3)where ri is a positive integer, and gi > 0, 0 < Pi < 1 (i.e.

all the poles of gtrue[n] are in the open unit disk), and ri are
It will later be useful to be able to find a magnitude known for i=l.... 0 . gtrue[n] is assumed to be causal.

bounding function on ENn(ok). The following theorem A1.7) zero initial conditions.

provides such a bounding function by using only a finite
summation and therefore can be implemented in practice. Thus, our a prior assumptions are that we know ml and nl,

the degrees of B(z) and A(z), respectively, and the bounding
Theorem 2.2: Under the assumptions of Theorem 2.1 we find functions Au(ejwT) and Vu(eJuT). Further, we assume that the

that given some finite integer M, the magnitude of ENn(aok) is
~bounded for each k as follows, parameter vector i0 is in some known bounded set, O, which isbounded for each k as follows,

only a coarse, and hence large, a priori estimate of the parameter

M* IENn(Owk) l X I~lhlp]I UNn~Po k) UNn(0)k) I + space. The parameter vector 80 is not required to be unique.
IENn*(ok)l < I Ih[p]l IUNn'P( ~k) -UNn(~)l +

p=l oo (2.11) A2) Disturbance Assumption. We assume that the N-point DFT

2umax C plh[pl1, fork=0,.. ,N-l, of the disturbance signal d[n], whose DFT is denoted by

p=M DNn(ok), satisfies

where umax=sup lu[m]. IDNn(ok)l < IN(ak), for k=0, .., N-I, V'n. (3.10)
m

Proof: See [5]. A3) Input Signal Assumption. We assume that the input signal
uEn] is bounded and that we know umax where

3. ROBUST ESTIMATOR PROBLEM STATEMENT lu[n]l < umax , ¥n. (3.11)
In this section, we list assumptions about the plant and the

disturbance in preparation for the statement of the robust
estimation problem. Consider the system of Figure 1 where the Remark: Based on iput/output measurements alone we cannot
discrete-time plant Gtrue(z) has input u[n] and an output y[n] determine a specific 00 for the nominal model because of the

that is corrupted by an additive output disturbance d[n]. unstructured uncertainty. That is, if we assume the structure of

Al.1 above and assume only that Su(z) S where
Al) Plant Assumptions. We assume a structure for the nominal above and assume only that )
model of Gtrue(z) and a magnitude bounding function on the S = { (z) I6(eJWT)I c Au(eJ(T), tc ) (3.12)
unstructured uncertainty. That is, we assume that then we can define a smallest set

Gtrue(z) = G(zO) [1 + Su(e* (3.1) = 80 Gtre(z)=G(z,0)[1 + Su(z)] and Su(Z)E S } (3.13)

where G(z,0 0) is a nominal model, Su(z) denotes the lies. Thus, 0 0C where only 8 is known a
in which 80 lies. Thus, 90a O*cO where only O is known a

unstructured uncertainty of the plant, 00 is a vector of plant
priori. Note that, in general, 19* will be a point only when

parameters and we assume, T for all 

Al.1) G(z, 0 ) = B(z)/ A(z), (3.2) A(ila)=0for all

where the polynomials B(z) and A(z) are,
B(z) = b0 z(ml-nl) + b I z(ml-nl-l) +. .. + bml z-nl, (3.3) Robust Estimation Problem StatementWe rewrite the true discrete-time plant of Eqn. (3.1) as
A(z) = 1 - al zl +... - anl z-nl, nl > mi , (3.4) Gtrue(z) = G(z, 0) [1 + Ssu(Z, 0)] (3.14)
and where the parameter vector is,

and where the parameter vector is, 5 where again G(z, 0) is the nominal model using an estimate 0 of
00 = [ al ... an1 b0 bl. bml ] T .5-

the parameter vector 00 in the structure of assumption Al.1, and
A1.2) 00 E O, where O is a known bounded set. (3.6)

°A1.2) 80 e , where 9) is a known bounded set. (3.6) s(z, 0) denotes the modeling error due to both structured and

A1.3) Ibu(eJiT)I < Au(ejaT), VO). (3.7) unstructured uncertainty. That is, since a priori we only know

A1.4) IdSu(e)JT) / do1l < Vu(e0j)T)', ow. (3.8) that 0E O, where 0 is not necessarily in O*, there is structured

A1.5) Gtrue(z) and G(z,%O) have all their poles in the open uncertainty associated with this choice of 0 as well as the ever
present unstructured uncertainty.

unit disk, for all 00l 9.
A1.6) A coarse bounding function on the magnitude of the
impulse response of the true plant, denoted by gtrue[n], is
known such that



Problem Statement: The robust estimator must provide: with
1) a parameter estimate 0, and hence a nominal model G(z, i), M-1

2) a corresponding bounding function, Asun(eJi °T, 6), such ENn(Ck) = Ig[true[i]l IUNn-i(ok) - UNn(ck)l +
that 18s(ej°T, )1 < ^n,(ejT), i VTo. i--1

Vthat 15su(&aT )j<A n(& T, o ), co). (3.15) (4.4)

2 max i gtrue[i]I, for k=0, .., N-l ,
That is, at a given sample time n we want to generate a new i=M
nominal model G(z, 9), and a corresponding bounding function where we know umax from assumption A3. Assume, for

Asun(eJoT, 0) in the frequency domain indicating how good the example, that
current nominal model is. Given 1 and 2 above and a IgtreIn]i < g2 p2", forn=0, 1,.. (45)
compensator we can use discrete-time versions of the stability In this case, we can find a closed-form expression for the
robustness tests of [6] to guarantee stability in the face of infinite summation term, so using Eqn. (4.4) we find
bounded modeling uncertainty. M-1

The goal of the robust estimator is to find a 9 in 1* and to ENn(ck) g2P 2 IUNn-i(_) - UNn(oq) +
have Asun(eJT, ) approach Au(ej°T). The viewpoint taken i=1 (4.6)

here is that the unstructured uncertainty Au(ei°)T) is the best we 2 Umax g2 p2M (M - M P2 + P2) / (1 - p2)2 , for k=0, .. , N-1.

can do given the structure of our nominal model. Thus, even
though~ LAn()T,9 ) can conceivably become smaller than our The bounding function of Eqn. (4.6) can be computed on-line

by using the current N-point DFT of u[n] along with M-1 old
a priori assumed bound Au(eJ°°T) we will not let this occur and N-point DFTs of u[n]. We note that the second line of the

previous equation can be made arbitrarily small by choosing M
will instead view the function Au(eJ)T) as the desirable lower to be sufficiently large.

nbound of the function AsUnceJoT, ~).Now, we define the frequency-domain estimate Gf,Nn(Ok)bound of the function ASu n(e jl °T 0 ).
The problem that we have described in this subsection will and the corresponding frequency-domain error Ef,Nn(ck).

be referred to as the robust estimation problem. An algorithm GfNn(ok) YNn(ok)/UNn(wk) (4.7)
which satisfies this problem will be referred to as a robust
estimator since it provides a nominal model of the plant as well EfNn(wk) = Gf*Nn(Ck) - Gt(eiejkT) (4.8)
as a guaranteed frequency-domain bounding function on the
accuracy of this nominal model for k--0, .. , N-1.

From Eqn. (4.2),
Outline of Problem Solution EfNn(rk) = (ENn(Ck) + DNn(ok) ) / UNn(ok) (4.9)

In the following three sections of this paper, we will
develop a solution to the robust estimation problem stated and using the triangle inequality we find,
above. First, in Section 4, we will develop a method for IEf,Nn(cok)l < EfNn(ok ) (4.10)
computing a frequency-domain estimate of the true plant along wh
with a bounding function on the additive error in the frequency -- -

domain. Then, in Section 5, the frequency-domain estimate of EfNn(a k) =(ENn(o)k) +5N(Ok))/ IUNn(o)k)l, (4.11)
Section 4 will be-used to find parameter estimates for the
nominal model. Lastly, in Section 6, we will compute a and where ENn(cok) is given by Eqn. (4.4). We will refer to
frequency-domain bounding function on the magnitude of the
frequency-domain bounding function on the magnitude of the Gf,Nn(ok) as our frequency-domain estimate of the true plant at
uncertainty su(eijT , H).su s time index n. Note that Gf,Nn(cok) is the set of N complex

4. FREQUENCY-DOMAIN ESTIMATION AND numbers computed using the N-point DFTs of u[n] and y[n],
ERROR BOUNDING which are computed on-line. Further, we will refer to
In this section, we will develop the basic methodology for EfNn(ck) as the frequency-domain error bounding function at

finding a frequency-domain estimate of the true plant and a
corresponding error bounding function on the frequency-domain time index n. In Eqn. (4.11), the bounding function ENn(cok)
modeling error.

and IUNn(0ok)i are computed on-line at each time index n, whileDevelopment of the Basic Methodology
Consider the true discrete-time plant gtrue[n] whose input is the function DN((Ok) is known from assumption A2.

u[n], and whose disturbance-corrupted output is y[n].
Assuming zero initial conditions, we know that The Cumulative Frequency-domain Estimate and Error

y[n] = gtrue[n]*u[n] + d[n]. (4.1) Bounding Function
Then, using the notation of Section 2 and Theorem 2.1, we find In this subsection, we will discuss a straight-forward
that for some time index n, technique for combining the frequency-domain estimates and the
y n( .k) = Gt (ejikT) U-Nn(o) + ENn(ok) + D n(co) corresponding error bounding functions from different time

YN nt°k)= Gtrue~ °')kT ) UNn(o)k) +i E ~n(° ) + DNn(°)k) intervals. That is, we show how to combine all of the past
for k=0, .., N- 1, (4.2) frequency-domain information into a cumulative estimate and

where from Theorem 2.2 we know that for some M, cumulative error bounding function. The basic idea is that at a
IENn(a)k)l i ENn(o)k), for k=0, .. , N-1 (4.3) given frequency point cok we use the value of Gf,Nn(o k) that



has the smallest corresponding error bounding function or z G(z,00 = [G(z,0) 1 ] 00. (5.4)

EfNn(ak), at that frequency. To formalize this we define the Since the parameters are assumed to be real-valued, we find

cumulative error bounding function at Rok, Rez G(z,) = [ Re(G(z,%)) 1 l , (5.5)

EcumfR(k~) = min m { EfNP(Yok) } (~4.12) Im(z G(z,00) = [Im{G(z,00)} 0] 00. (5.6)

p5n Thus, if we know the complex value of G(z,0 0) for some

known z, we can find two linear equations in the parameters.
: and the cumulative frequency-domain estiate at ok, Our frequency-domain estimation method yields an estimate of

Gcumf,Nn(ok) = (Gf,Nm()k) I EfNm(W0k)'E cumfNn((o)k) ) the plant at frequencies tok for k=0,..,N/2. So, letting z=eJ)kT

(4.13) for k=0,...N/2 we define the (N+2)x2 matrix,
The subscript 'cumf' in Eqns. (4.12-13) denotes the fact that
they are the 'cumulative frequency-domain' estimate and error 
bounding function. We define, for time index n, Re{G(eJt)0T,0 0)} 1

Ecumf,Nn( k) = GcumfNn(ok)- Gtrue(tWokT), Re(G(ejio(N/2)T,0 0)) 1

for k=0, . . , N-. (4.14) A( G(eJkT, 0 ) )= Im{G(eJT,5.7)
Then, Eqn. (4.10) ensures that at time index n, Im{G(ejo0T,o)) O

IEcumf'Nn(ok) l < Ecumf'Nn(tok ), for k=0,., N-1. (4.15) Im{G(eJo(N/2)T,00)} O
In practice, the following simple recursive algorithm will be and the (N+2) vector,

used to compute Gcumf,Nn(Ok) and EcumfNn(ok) at a givenRefeiOOTG(eicOOT, 0))

frequency ok. kReei)(N/2)TG(ei N/2 

AlgQithm: B( G(eBJtkT,00) ) = (5.8)

If EfNn(ok) < EcumfNn-1 (cok) then set Im(eiN)0TG(ei,00T,00) -

Ecumf,Nn(k) = Ef,Nn(k ), and LIm(eJo(N/2)TG(ejo (N/2)TT00)}
Using Eqns. (5.2) and (5.7-8) we can write,

GcumfN(ok ) = GfN(ok) (4.16)
else set A( G(eJokT,o)) ) 0 = B( G(eJtokT,0 ) ). (5.9)

EcumfN n()k) = EcumfNn(l(wk), and In summary, we have shown how knowledge of the complex

GcumfNn(.k) = GcumfNn1 l((k)- values of G(eJtokT,00) at the (N/2)+l frequencies co0,..w(N/2)
our u . can be used to write N+2 linear equations in the parameters. In

Thus, our algorithm only updates the cumulative
frequency-domain estimate and the corresponding cumulative the ideal situation where one could exactly find G(ejtkT,0 0) for
error bounding function when useful information is learned, at a k=0,..,(N/2), the matrix equation (5.9) will have a solution.
given frequency. That is, given the matrices A and B, we could solve for the true

As a final note, we observe that since we are working with parameter vector using any 2 linear equations. However, in
real-valued time-domain signals, the properties of the DFTs of practice we will only have our cumulative frequency-domain

real-valued signals can be used to show that, estimate GcumfNn(k ) with which to estimate the parameters.

Gcuf,Nn(tok ) = G*cumfNn(oN-k) (4.17) If we use GcumfNn(ok ) instead of G(ej(okT,00) in Eqns.

Ecumf,Nn((ok) = Ecumf,Nn(CN-k), (4.18) (5.7-8), then the equation,

for k=l, . Gcum., (N/2 An(k )) = B( Gcumf k) (5.10)

where '*' denotes complex conjugate and where we have
assumed that N is even. This means that the information for the will not, in general, have a solution. Eqn. (5.10) is in the form

frequency points k=0,..,N-1 is contained in the information for of the standard least-squares problem, which is discussed in
the frequency points k=0,..,N/2. Strang [7].

We will choose the parameter estimate 9 as the vector that

5. COMPUTING PARAMETER ESTIMATES minimizes the frequency weighted norm of the error vector,
In this section, we will show how the cumulative A (5.11)

frequency-domain estimate of the previous section can be used (5.1)

to find parameter estimates for the nominal model. We use the We define, with reference to Eqns. (5.7-8), the diagonal

structure of the nominal model, which was assumed in A1.1, frequency weighting matrix,
and a type of weighted least-squares fit to the frequency-domain W = diag[ f(o0) * f((N2)) f(o)) (5.12)

estimate GcumfNn(cok). The procedure is best illustrated by an where f(o) is the frequency weighting function. The parameter

example. Consider the nominal model, estimate that minimizes the norm of the error vector

G(z,00) = bo/ (z - al), where (5.1) W ( A( GcumfNn(o)k)) ) - B( GcumfNn(k )) ) (5.13)

o0 = I al bo ]T (5.2) is given by the well-known result,

Using this nominal model structure we can writee 0= (A WTWA)-1 ATWTWB (5.14)
(z - al~) G(z,%) = bo (5.~3) where the A and B matrices in this equation depend on the

(z - a, ) G(z,00) = bo, (5.3)

i ----------- ---- ~ ~ ~ __X(5.3)l__



values of the estimate GcumfNn(Wk ) time index n, since GcumfNn((k ), Ecumf,Nn((k ) and also 0
To gain insight as to what weighting function to choose, we depend on n.

examine Eqns. (5.3-4). Consider the use of the above In summary, we have shown how to compute a discrete
methodology using the estimate G(z). Then, we find that the function AUn(ejo)kT, ) that bounds the net effect of structured

and unstructured uncertainty of the current nominal model
z G(z) - [ G(z) 1 ] 00 = (z - a,) G(z) - b0 .(5.15)
z 0(z) - [Gj(z) 1 % 0o =(z-all)G (z)- bo (5.15) -G(eJokT,0) relative to the true plant, at the frequencies,

= (z - al) ( G(z) - G(z, 0) ) (5.16) o0 . .CoN-1' We used the nominal model structure of A1.1, the

So, IG(z)- G(z,)l = zG(z)- [ G(z) 1]0/lz-all. (5.17) current parameter estimate }; and the cumulative
From Eqn. (5.17) we see that if we want our parameter
estimation method to be a least-squares fit in the frequency-domain estimate GcumfNn(ok) and corresponding
frequency-domain, then we want to choose a weighting function cumulative error bounding function Ecumf Nn()k), which were
that is one over the magnitude of the denominator of the nominal
model. Of course, we do not know what the parameter a1 really developed in Section 4.
is, so one can only approximately choose this frequency A Smoothed Uncertainty Bounding Function
weighting function. In this subsection, we discuss the computation of a

6. COMPUTING A FREQUENCY-DOMAIN smoothed, magnitude bounding function on 1Isu1. This
UNCERTAINTY BOUNDING FUNCTION development is motivated by the observation that, depending
In this section, we discuss the computation of a upon the spectrum of the input signal, one may have a very

frequency-domain uncertainty bounding function for the jagged bounding function on the modeling uncertainty
nominal model G(eJCikT, 6). Specifically, we will compute a lIsu(ei(kT 0)I. That is, at the frequency point co the bound

su(ej°kT, 0), on nyJo kt
magn .itude bounding function, Asu ASu n(e on k T ) may be very tight, however, at an adjacent

asu(ejr)kT , 0) at the frequency points corresponding to (ok for frequency point ok+ the bound Asun(ejk+lT) may be very

k=,..,The nominal model at time index n is obtained by using the poor. In [5], it is shown how the assumptions of Section 3 canThe nominal model at time index n is obtained by using the
nominal model structure and the current parameter vector be used to find a derivative bounding function, Vsun(eJ0)T),

estimate 0 yielded by the parameter estimator described in satisfying
Section 5. Thus, we can compute the value of the nominal Ids (ejOkT, 0) / dol < V n(ecT), V (6.7)

Id~su su
model G(eJ°)kT ,0) for k=0,..,N-1. Now, using the triangle

Assuming the analyticity of 8 su' it is shown in [5] that
inequality, we find that at time index n, and for frequency ( k , Su

IG(,eJ.kT, 0) - Gtrue(eJkT)i < IG(eJ()kT, 0) - GcumfNn(s ()IT 0)1 I su(&ikkT, 0)1 + NInokI Vsui(o)k+l)
(6.8)

+ IGcumfNn(ok) - Gtrue(ejOkT)l. (6.1) and

and using Eqns. (4.14-15), lOsu(eJWT, 0)1 _< lsu(ej k+l+lT )l+klk+l-wl Vsuin(ok,o)k+l)

IG(eWkT, )- Gtue(OdkT)l < IG(eijkT, ) - GcumfNn(k)l (6.9)

+ EcumfNn(Ck). (6.2) for oE [,cok+l] where
Vsu,in(c)k,oCk+l) = sup { Vsun(eij T ) }. (6.10)

We now can find a bound on su (eJCOkT, ). Rewriting Eqn. . o [COk,Gok+1]
From these equations we see that it may be possible to obtain a

(3.14),
Gtre(eJikT) = G(ej~~kT, 0) [1 + Ssu(eijok T 0)], ~tighter bound on I1su(eJiOkT, 0)l than Asun(ejOk T, 0), by using

for k-0, . ., N-1. (6.3) the bound at an adjacent frequency point, Asun(e Jk-iT, 0) or
So, rearranging yields,

8suc(&OkT, @) = [ Gtrue(&IkT) - G(&j~kT, ) ] / G(eMjkT, 0)- LAsun(eJ°ik+lT, 0), along with the smoothness information of

(6.4) Vsui
Thus, using Eqn. (6.2), we find the bounding function,

lo(kejkT' 6)I < Au n(eoj'kT 6), (6.5) Bounding Inter-sample Variations
In this brief subsection, we discuss the computation of a

where safety factor that must be added to the discrete bounding

Asun(eJ(kT, 0) = function Asun(ei°kT, 0) to account for inter-sample variations.
( IG(eJkT, 0) - G ncumf,(ok)l + EcumfNn(-k) } Ultimately, the uncertainty bounding function at discrete

IG(eJ)kT, Gcumf'Nn(O-k)l + EcumfN frequency points will be used in stability-robustness tests to

/ IG(ej°kT, )l, for k=0,.., N-l. (6.6) design a new robust compensator. These stability-robustness
tests are meant to be used with continuous functions of

and where we have included a superscript 'n' after the Asu to frequency. Since the actual computations will be performed
with an uncertainty bounding function that is a discrete function

denote the fact that this bound on 1$su(e°)kT , 0)l depends on the of frequency, we must add the aforementioned safety factor to
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