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ABSTRACT

We define a dimensional phase transition as one in which
the dimensionality of space-time changes. Two possible scena-
rios for such a phase transition are presented.

One of the scenarios may be thought of as a generali-
zation of the random lattice techniques while the other may
be interpreted as a dynamical realization of the spontaneous
compactification in a Kaluza-Kleintheory

Most of the concrete results presented are about the
second scenario. Specifically, we investigate the dimen-
sional phase transitions through collison of space-time
boundaries.

The classical dynamics of space-time boundaries is
established. The dynamics is uniquely defined when gravity
is present. It is shown that for a certain choice of boun-
dary conditions on metric fluctuations and the matter fields
the coupling of space-time boundary proceeds in a universal
manner analogous to the case of gravity, i.e. the back re-
action of the matter and gravity is represented by the matter
stress-energy tensor only. The boundary condition for the
gravity is derived and discussed in connection with the
conservation of enerav.

Quantum properties of thle matter-gravity-boundary system
are discussed. It is shown that the measured Casimir effect
of attraction between two conductors can be calculated using
the framework of boundary dynamics, i.e. in terms of lo-
cal quantities as opposed to conventional calculations based
on global quantities like total renormalized energy.
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DIMENSIONAL PHASE TRANSITIONS, AN INTRODUCTION

It is widely believed that if one looks back into the his-

tory of the universe one will observe a number of phase transitions.

The chiral and confinement transitions are expected to occur

at temperatures around 0.5 GeV, the Weinberg-Salam transition

around 102 GeV, the GUT transition somewhere between 1014--1016

GeV and effects of quantum gravity will come into play when the

19energy scale of the particles reaches 10 GeV.

In this thesis we speculate about and obtain some concrete

results concerning another phase transition. We explore the

idea that at certain energy, temperature or density scale our

present-day vacuum becomes unstable with respect to change of

space-time dimensionality.

First of all, why one should expect such a change in dimen-

sionality, or dimensional phase transition It is a simple fact

that in a flat m-dimensional Euclidean space R one can draw a

unique line through any two points, a unique plane through

any three points and so on. That is, generically, n m points

in Rm belong to a n-l dimensional hyperplane Rn Rm: If

we were to take this argument seriously and apply it to the phy-

sical world, then one cannot but wonder why about 1080 protons

or electrons or any other kind of stable particles that are esti-

mated to inhabit the observable universe fit so nicely into the

three-dimensional space at each point in time, instead of some

space of dimensionality of 10 80-1, where they truly belong.

Indeed, putting aside cosmologically short-scale inhomogeneities

one could easily imagine our universe populated by rather weakly



interacting stable elementary particles. Why then the observed

matter moves along trajectories that lie in a three-dimensional

subspace of 10 -1 dimensional space? Or, in other words, why is

the dimensionality of space-time so low?

The answer to these questions obviously lies in properties of the

vacuum. Even if one observes a one-particle state, without refe-

rence to any other particle, one still assumes that the momentum

is four-dimensional. This assumption states implicitly that it is

the vacuum, that serves as a reference frame for measuring of

dimensionality. It is apparent, looking from this angle, that

it is through interaction with the vacuum that particles "know"

which dimension they are in, even if they do not interact or

interact very weakly.

One is led, consequently, to the notion that the dimensio-

nality is a property of the vacuum. Furthermore, we know that the

vacuum is not an empty abstraction but is a rather complex

physical system, whose properties can and do change, the simp-

lest example being a spontaneous decay of "false" vacuum into

the"true" vacuum when a symmetry is spontaneously broken.

It is natural to assume, therefore, and it constitutes the ba-

sis for this research, that dimensionality is one of the phy-

sical properties of the vacuum. Thus it is natural to ask the

following questions: can the dimensionality change? has it

ever changed in the history of the universe? There certainly

is no experimental evidence to support ( or disprove, for that

matter ) that the second question has a positive answer. If

however we can convince ourselves that it can change, by buil-

ding , for example, an aesthetically pleasing formalism which will

be natural in some way, then one will have some ground to pre-
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dict that it did change at a certain point during the universe's

evolution, since if anything can happen in this world, ap-

parently it does. It is the first question we are concerned

with.

An idea that there may exist some extra dimensions to he

world we live in is far from new. Kaluza and Klein were the

first to apply the idea of higher dimensions to physics [1].

And although they did not succeed in presenting a realistic mo-

del when treating four-dimensional gravity plus electromagne-

tism as a manifestation of pure five-dimensional gravity, the

idea has been oursued with varying degrees of interest ever since.

More recently, in conjunction with the higher-dimensional

supergravity theories, the interest has been revived again [2].

It is nesessary to point out, however, that the question of

dimensionality in the Kaluza-Klein approach is largely ignored.

Apart from some recent attempts to make the central concept

of a Kaluza-Klein theory, spontaneous compactification, dyna-

mical [3], the question of why eleven or ten is as unaddressed

as why four.

Both scenarios for the dimensional phase transitions which

we present here are devoid of the idea of spontaneous compacti-

fication and the initial dimensionality of space-time is not

determined and is not importnat. Furthermore, the author be-

lieves that the initial singularity which the classical Gene-

ral Relativity predicts may be avoided as a concept if, instead

of a picture of the Big Bang , one can develop a consistent

picture of an infinite series of dimensional phase transitions

that take place as the typical energy scale of the universe decrea-

ses.

A
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Of course the final justification for such a scheme could

only be an experiment confirming the existence of the dimensio-

nal phase transitions. We cannot claim that we can devise

a determinate experiment nor can we present the reader with a con-

sistent formalism as yet. However even if the ultimate goal

of this research is far away, the by-products of it seem to be

interesting in themselves. Although at the present moment the

idea of the dimensional phase transition in the universe seems t

be no more than a guiding light, the results we obtained in

general relativity and theory of the Casimir effect provide

an interesting outlook on these subjects.

Finally, even if as mentioned earlier, the evidence for

a dimensional phase transition is absent, phase transitions of

a similar kind do occur in solid state physics. The most ob-

vious example is the foam formation in soapy water, where the

ratio of area to volume goes to infinity under certain condi-

tions. A less trivial example would be stratification in li-

quid crystals, where a three-dimensional volume of a specific

crystal becomes, under certain conditions, stratified into an

array of parallel, thin, two-dimensional layers. Another area

of contact with the solid state physics would be the roughening

phase transitions, also yet to be found experimentally [4].

We now present the two scenarios mentioned above and list

the mathematical problems whose solution is necessary in order

to develop the scenarios into full-fledged consistent formalisms.

The rest of this chapter is on the question of the boundary con-

ditions for the gravitational radiation and sections II and III

of the thesis constitute partial solutions of some problems for
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the second scenario.

DIMENSIONAL PHASE TRANSITIONS THROUGH

ROUGHENING OF SPACE-TIME

In this scenario we consider a lattice approximation to the

continuum field theory as a basic concept. However instead of

taking the lattice to be a triangulation of some smooth manifold

we start with the premise that the sites of the lattice do not

"know" beforehand any global information about the structure

obtained by linking some of the sites. Thus we start with some

fixed number of sites N ( although it must ultimately vary).

These sites are linked in a random manner by M N(N-1) links,

or one-dimensional simplices. We call any three sites to be

in common position if their links form a boundary of a triangle,

or 2-simplex. We call a n-simplex elementary if it contains nD

sub-simplices. Elementary 2-simplices are attached in a random

manner to the set of triads in common position without intersec-

tions. We proceed with this prosess until all elementary

n-simpleces are joined in some random manner up to the largest

dimension posssible. The result of this construction is what

mathematicians call asimplicial complex. We bring physics into

the picture by associating a statistical weight to each complex

in such a manner that complexes that are "close" to those which

are triangulations of some smooth ,"simple" manifold -- the

base manifold X -- have the highest weight W , while comple-

xes that do not approximate any smooth, "simple" manifold have

the least weight. We then redefine the partition function fr,
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say, the Euclidean formulation of a lattice field theory by in-

troduction of additional averaging over all complexes with sme

suitable boundary conditions.

Thus instead of

rcJ) E M)(t ) A3 (1)

where OA are some fields, M) is the measure weight

and JA is the current, one writes

(or 4 q _
t',w Add C (2)

e,4- S(A) ±W(C) ACL KL]
where C K are parameters of the complex and corresponding

currents, j(C) is the statistical weight of the complex

C and 4(0A, C) is the summation weight.

The summation in (2) includes summation over all different

triangulations of the same smooth base manifold X . In this

sense our approach resembles the random lattice approach [5].

However we cannot attach physical difference to two different

triangulations of X and , consequently, require

@ (C) = /( C I
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when C and C' triangulate the same manifold X . In this respect

our approach is different from that of [5].

We now ist the main problems one has to resolve in or-

der to reach the calculational stage for a realistic theory.

1. Extension of a lattice field configuration from a lat-

tice to an arbitrary complex.

This problem is difficult for any field with spin higher

than zero and is especially difficult for fermions. The ex-

tension problem stems from the fact that spinors and boson

fields with non-zero spin have the notion of dimensionality built

into their definition. The problem may be avoided for

boson fields by using singular exterior and symmetric form

formalism, while use of"doubling"of fermion species may help

solving the problem for fermions.

2. Determination of W(C) and M( AC).

The expression (1) can be regarded as a dicrete approxi-

mation for the functional integral and the measure weight M( A)

ensures that Z(J) has a sensible limit when the lattice size

goes to zero. In the same sense Z(J,K) in (2) can be thought

of as a finite-dimensional approximation for a functional inte-

gral over fields and complexes. Part of the problem is to find

M( AC) such that Z(J,X) has a sensible limit when the sizes

of elementary simplices go to zero.

The second part, more physical one, is the determination

of the statistical weight W(C), the weight which suppresses

"bizarre" complexes and does not suppress "nice" complexes. If

we were to consider at most two-dimensional space-times there

would be a natural candidate for W(C). It is a well-known fact
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that all compact two-dimensional manifolds are uniquely chara-

chterized by their Euler number X [6]. It was also shown by

Rota [6] that the Euler characteristic can be written for an

arbitrary abstract simplicial complex. The Euler number takes

high bounded values for "nice" manifolds, while it monotonically de-

creases to minus infinity as the complexity of the manifold

increases.Thus weighting complexes with the factor

-sxp A 
would pick out only "nice" ones. Another non-trivial candidate is

where m. is the number of nearest neighbours to the site j

W(C) as above ensures existence of phase transition atT T-- [4].

Having resolved the two main problems mentioned above it

would be easy to pose a correct mathematical problem about exis-

tence of a dimensional phase transition in a particular system.

One will have to prove existenceof a complex which in the distant

past is a triangulation of a space-time of some dimension N and in the

distant future is a triangulation of a sace-time of dimension

M / . Such a complex by definition cannot be a triangu-

lation of any smooth manifold and may be called a rough instanton

(borrowing terminology from the solid state physics). Actually

one can imagine a rough instanton to connect space-times of

the same dimensionality but different topological structure.

It is rather hard to imagine making more dimensions from less, globally,

and it is rather easy to imagine the reversed process. Thus
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it will be natural for a system to undergo a sequence of phase

transitions with dimensionality decreasing. A possible answer

to why four may be then suggested. Namely, our universe is four

dimensional because it is near the end of its evolution Whether

or not a phase transition to three space-time dimensions is pos-

sible in our universe is another interesting question to consi-

der.

DIMENSIONAL TRANSITIONS THROUGH SPACE-TIME

BOUNDARY COLLISION

In this scenario , which in its present form would work

only when quantum gravity is not dominant, one considers spon-

taneous formation of a space-time boundary.A in some D-dimen-

sional space-time X ' If, during their evolution, two or

more disjoint components of dt collide and "stick" together

i.e. if an infinite area of contact is energetically favorable

and if the thickness of the layer between two boundaries with,

possibly, some matter trapped inside, is small enough then the

"squashed" observer will not notice the extra dimension in the

direction of the normal to the layer, just as the extra dimen-

sions are unobservable in a Kaluza-Klein theory.

Since this scenario is discussed in greater detail in part

II and III of the thesis, we now list the problems one has to

solve in order to make the scenario work.

1. Developement of formalism of classical dynamics of

space-time boundary.

2. Semiclassical quantization for the boundary dynamics

and renormalization.

3. Developement of a formalism t describe spontaneous

boundary formation as a tunneling process.
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4. Late evolution of the layer of the collision.

The first and the second problems are largely solved and

some of the results are presented below. Additional results

will appear in forthcoming publications ( see ref [13] in chap-

ter III ). At the same time there are some indications that the

third problem is tractable and that in the late stage of its evo-

lution the layer of the collision decouples from the matter and

gravity inside the layer. This is largely due to the buundary

conditions on the fields on the boundary. They are such that

certain types of boundaries decouple from interactions inside.

It is a plausible hypothesis that such configurations of the

boundaries are in fact in some sense stable and consequentlyare

the end points of boundary evolution.
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We now would like to elaborate on the boundary condition for

gravity proposed in chapter II.

The boundary condition in question is ( all notations are

on page 23 of chapter II)

0
(3)

for any boundary TX , where

ation. There is no boundary condition on

itself.

On X one can decompose 6.
normal directions

A h 

is the metric vari-

the background metric

V} in tangential and

(4)

(5)

(6)

We now would like to enforce the transverse-traceless gauge

for 1 v since we are most interested in gravitational

radiation which can carry energy and momentum. This means that

6f 'AA = O
(7)

(8)

Applying constraint (7) to (4) we get

AA ',� V)

/Y_ 6- V
71-4 �x

'Oe. r O

pi 6- = 

D Omil = 
;1141.
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~-~ A- r (9)
Differentiatiog (6) we obtain

A'gri / V= (10)
Applying (8) and (10) to (4) and projecting along and perpen-

dicular to the normal we get on %Z

I.KJ + t - o

1r F J + X n, & 2 142 D = 0c) 2= -, (12)

These are Neumann-type boundary conditions on r
and A/ provided they do not vanish. They vanish

only when a gravitational wave falls on %X along the nor-

mal . In this case

where < is the direction of the wave propagation.

This leads us to considering the boundary condition on the trace-

less part of 

Eliminating the remaining freedom by requiring
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5 =O0
we find that the boundary condition (3) applied to an arbitrary

boundary is equivalent to the Dirichlet boundary condition

r -o (14)

which mean that for a plane gravitational wave with

[=
F1"_. 

0 0 0 0

_ O O O_o o 0 0~_

)a -

iL o

The boundary condition (14) is fulfilled by sending in

the opposite direction a wave with the same amplitude and thus

is of purely reflecting type. The boundary conditions (11)

and (12) are not, in general of reflecting type unless > 0

i.e. the boundary %X_ is a so-called totally geodesic

submanifold of X . This mean that if i, + 0 then even

a static boundary can absorb energy from gravitational radaition.

The absorbed energy becomes then the energy of the boundary exi-

tations, which propogate along the classical background boundary

Boundaries with /0 have non-compact spacial sections
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and thus cannot be created spontaneously. However boundaries at

infinity or conformal boundaries can be made to obey - = O .

An example of such boundary can be found in the work by Hawking

[7] done in connection with earlier work by Breitenlohner and

Freedman [8]. Hawking showed that that there is only one choice

of supersymmetric reflecting boundary conditions for gravityin

the case of A= CAJS -- the covering of anti-de-Sitter

space-time -- and not two as found in [8].

It was essential for Hawking's argument to have / v-C°

Our boundary conditions (11), (12) and (14) appear to be unique,

apply for any boundary and do become reflecting when -IO .

This suggests that our boundary conditiond are in fact genera-

lization of Hawking's. This question will be addressed in detail

elsewhere.

Finally, having derived the boundary conditions for the gra-

vitational radiation it is interesting to speculate whether one

can build a resonant cavity to amplify the gravitational waves

for the purpose of their detection and, possibly, generation.

Presumably this would involve calculation of propagation of the

gravitational radiation in real media and it appears unlikely

that such a resonant device could be constructed. However if

a resonant cavity with sufficient degree of amplification can

be built on Earth or in its vicinity on may try to detect the

radiation from exploding nuclear devices or earthquackes.
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Introduction

Relativistic extended objects -- membranes and strings --

with the "surface" action proportional to the "area" the object

"sweeps" during its motion, have been studied extensively from

classical and quantum oints of view [1].

In this letter we treat the boundary of D-dimensional space-

time as a D-l-dimensional membrane and show that there exists a

natural coupling of the boundary to the gravity-matter system.

The boundaries of vacuum phases were treated dynamically in

the Bag models of hadrons [2], the boundary of space-time as a

dynamical object was considered by Witten [3], who discussed a

vacuum decay mechanism which involves a spontaneous creation and

expansion of the boundary. Finally, since the discovery of the

casimir effect, much work has been done on the boundary effects

in quantum field theory [4].

However, in the work cited above the motion of the boundary-

like objects is either predetermined or the coupling between the

matter and the boundary is non-dynamical. Furthermore, the Cazi-

mir forces which one obtains by varying the total renormalized vacuum

energy can only serve as a non-relativistic approximation of the

back reaction of the matter fields on the boundary. The boundary

of space-time with gravity, to my knowledge, has not been dis-

cussed as a dynamical object in the literature.

It is interesting, therefore, to derive covariant equations

of motion for the boundary from the action principle and to see

whether the Casimir forces appear in the non-relativistic limit.
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Equations of Motion

Our conventions are: X denotes a D-dimensional manifold

with Lorentzian metric g, which has positive signature;

ax is the boundary of X; Z (ya) are the local coordinates of DX in

X; n is the outward pointing space-like normal n =s pEa...b

DaZV abZ P where A is chosen such that n nl; h- 3z gv

''' p - J$yi yj
is the induced metric on ax; h = 6 -n n is the projection opera-

tor from the tensor bundle of X on that of aX; X D n h is the

second fundamental form. Greek indices run 1 to D=dimX, while

Latin ones 1 to D-1. The coordinates x always refer to X and ya

to ax. With our conventions dxg/2 = fdyhl/ A All quanti 

ties are made dimensionless by a choice of units. All fundamental

constants are put to one.

First consider an arbitrary matter system on a manifold with

a boundary and a fixed background metric. The action for the sys-

tem is:

S f-lSS (1)

=fJ22(49d~~~~Pi~~~~) ;dV~ dSS~ 1(2)

(3)

Before deriving the equations of motion let us consider coor-

dinate invariance of the action (1). The requirement that (1) is

invariant w.r.t. the transformations that map ax into ax identi-

cally: y aa = ya gives us the usual covariant conservation law
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for the stress-energy tensor

) t ,,AA (4)

where by definition T = g-1/2 6SM
1-v

If, however, under the coordinate transformation ax maps into

ax not identically: y aya ya, the situation is slightly differ-

ent since, in general, additional boundary terms will appear in

6S due to the non-vanishing of the boundary variations of fields

and metric

(5a)

iA =/LJjx (5b)

Here the index A combines external and internal indices and L is

the Lie derivative w.r.t. the vector field El which is generated

by an infinitesimal coordinate transformation.

Indeed a vector field if which is non-zero at the boundary

and is tangential to it -- n lax = 0 -- still induces a coordi-

nate transformation according to (5a-b).

In this case, performing such a transformation, we obtain

S,= Sdvf [( a +A) D I 0L, i?~A TV, 

LHA>V ( lA + Sr

0 
-
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+ Ss T TV (8a)

and separately

R S3) -4t AS A Do By(8b)

Note that additional terms will appear in (8a) if the action

(1) depends on higher than first derivatives of the metric or the

n-bein.

Using the equations of motion for A and (4) we obtain that

we must have

(9)

and

0 s l~'"o,~, O (10)

when 'n lax = o
We now require that the boundary conditions on the matter

fields cancel identically the first integral in the LHS of (9) for

all Ep = hp P . Then for the matter fields we have
P
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(11)

The condition (10) is trivially satisfied since

SdShVID E = f dXnW %, where X = h X . Thus, under the

boundary conditions we required, (11) supplements the condition

(4). For a static boundary and Minkowski metric on X, (11) takes

the form

n i LO

, Ti

: -(
/

= O

-(Pa; h < ) M1

0~2~
(12)

This just means that there is no energy flow through the

boundary and that the force exerted on the boundary always points

along the normal.

The main justification for the restriction on possible boun-

dary conditions comes from consideration of equations of motion

for the boundary. These are obtained by varying the range of inte-

gration in (2) and varying (3) w.r.t. Z(ya). However, if our

theory is generally covariant then the range variation is equiva-

lent to the variation (5a-b) such that 'Pn P aX $ 0. Indeed in this

case the variation of the volume is, for instance,

ga = SiX = X IX 'h 'ol 1 =1i('A

V
'O T, -r ~~A
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i.e. the same result as we would obtain by the range variation

with 6ZP(ya) = - aX

The transformations (5a-b) are coordinate transformations for

any internal point of X, thus only surface terms could appear in

variation of all quantities.

Taking into account the boundary conditions and (4) we obtain

for the boundarya? r ,+ T , =O
(13)

or

Txs_ kit/ (14)

We see that the restriction on the boundary condition makes

the equation of motion to have a particularly simple form. It

means that the normal-normal component of the stress-energy tensor

provides the source term for the "free" boundary,described by the

equation X = 0.

The stress-energy tensor in (14) is symmetric. This is due

to the general covariance of the action (1). Relativistic covari-

ance inplies the canonical stress-energy tensor in (14) and, in

general, different dynamics for the boundary.

For the electromagnetic field the RHS of (14) reduces to the

2
familiar Casimir pressure in the case of the static boundary R x S2

As noted in [5] for the ideal conductor boundary -- but, in fact,
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valid for any -- the pressure on the R x S2 boundary given by the

principle of virtual work coincides with that obtained from the

normal-normal component of the renormalized stress-energy tensor.

There is nothing exotic about the restriction we imposed on

the boundary conditions. Indeed in flat space-time for the canon-

ical scalar field it is equivalent to the Neumann boundary condi-

tion. In this case

,2= /4.4 ~f-V(p)

'4 0) H"30/X -X (15)

For the gauge fields it is satisfied by the Bag boundary con-

dition

$)Rr*4a~ l CA l)x X(16)

The case of spin 1/2 fields is somewhat more complicated since

the corresponding Lagrangian depends on n-bein derivatives (in the

generalization of the tetrad formalism). For spinors

~~ I~~~j41AA4 -

{A74)K=2cffAV 
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where Va is the n-bein with the upper world and lower space-time

indices. After simple calculations we find that the well-known

boundary condition

77~ gr '-P =(17)
Note that due to (17) presence of a boundary breaks chiral invariance

This is also true for supersymmetricallv invariant theories.

We now consider inclusion of gravity into the system. It is

well known [6] that in the presence of the boundary the gravity

action must be modified to cancel surface terms that contain nor-

mal derivatives of the variation of the metric g. The simplest

way to make the modification is to take for the gravity action

g- K -- sX (18)

where K is the Newton's constant and R is the curvature scalar. Varia-

tion of the action (18) vanishes when the Einstein equations of

motion are satisfied and when

[X-9 xal, ,dtbx
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We consider this as a boundary condition on the metric fluctua-

tions, but not on the metric itself. This interpretation is in

accordance with the approach taken in [7].

We thus arrive to the total action for the system

= g ++ · ax (19)

Variation of the action (19) w.r.t. the boundary gives

' IJs Exit X 11*1 <;gz - a 1S z nix

where 6g v = D Ev + Dp
V )

Using Bianci identity and (4) and when i = n F(y) we obtain

the boundary equation of motion

(20)

where we used the unique extension of n off X in its neighbor-

hood in X defined by n Dn = . (n the case when Ev=hiP the

Codacci equation ensures 6S:= 0.) When the Einstein equatins are

satisfied, it appears that in this equation the effects of matter

are cancelled by the effects of gravity. Remarkably, this is not

true. The equation
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2Xa>.O
(21)

does contain the stress-energy tensor. Indeed, using the expres-

sion for the curvature scalar R' of the induced metric

R R -2?
1;41

+ X ,A _ ((22)

and using Einstein's equations once more we obtain

+ 2 T (23) O
(23)

The equation (23) contains only one free parameter: the "sur-

face tension" constant a. It is tempting, in view of the fact that

R' contains only second derivatives of the small fluctuations of

Z1(ya), to remove the ambiguity by putting a=O. Then we would

have

I ,nY = 0
(24)

Since K is very small we see that the strong coupling of (14) gave

way for the weak gravitationally induced coupling. When TR =0

R'=O according to (24) which,for example when D=3, means that

the curvature in time direction is zero.

The problem with (23) and (24) is to prove that the equations

are equations of the propagating type. This question will be con-

I LIX + _ j X __4V X 
;*A~r

/1 ,4 

, I+ -iQ 

+ f K
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sidered elsewhere.

Note that one cannot take the limit of the flat space-time by

by putting g=nV in (23 ). One has to consider g=np+Khpv and

retain the first order terms in K in R'. This just means that

gravitons also contribute to the force on the boundary.

Note that if T nIPnV , 0, R' is ositive. That means that

the boundary whose spatial curvature is everywhere positive, i.e.

that looks, for example, like a distorted sphere without "dents",

tends to expand with non-zero acceleration. This fact suggests that

space-times with negative "pressure" may be unstable w.r.t. the

spontaneous boundary formation.

Remarks on Quantization

The formalism presented here was developed for the descrip-

tion of the boundary dynamics under the influence of the Casimir

forces. It is hoped that two spontaneously created boundaries

would like to develop an infinite area of the surface of their con-

tact when they collide due to their expansion. This would produce

an effective Kaluza-Klein compactification for the region between

the two boundaries. It is known that a spherical ideal conductor

boundary tends to expand infinitely while two parallel conductor

planes tend to reduce distance between them to zero [5]. So the

scenario described above is not that far-fetched.

However, the naive substitution of <T > instead of T
v ren p~

in the boundary equation of motion (14) or (27) does not make much

sense,since it is well-known that generically <Tp > diverges on
Fjv ren

the boundary. Indeed, for the canonical scalar field (15), accord-

ing to Deutsch and Candelas [4], <T > has the following asymp-toi v ren

totic form in four dimensions and for Minkowski space-time
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4 v>,.,,, #-,o Av
1 6J2_r

11 ~v ~ 1 . V " ~16c 

6~3 [ 60 T X -/3 X -_1 Ad trV
r q 0A ; VV Wqgjr· 

4 j AL X h 
Lq gov X ~

-3 Oi L Dx _6 0L X , M6o07n'r7

ti
'' kA h",

-+' ,2. cXXA V + (- )

where the Neumann boundary condition is assumed and with being

the distance to the boundary.

On the second examination, however, we see that the normal-

normal component of <Tlv>ren is much less divergent.
~.v ren

. 2 / MV (2)
oiL2- - - X V (26)COH Z/ 1 7/11

We find that most of the divergent terms are insignificant

for the boundary dynamics while the remaining divergent terms have

the same functional form as the terms of boundary equation of mo-

tion (21). Thus there is hope that,when properly renormalized,

eq.(21) will somehow absorb at least some of the infinities in (26).

+ : 9,r ) X v (25)

-3

n >vA _'/ zrez And &/ a

qj 0 -2 X %/
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The naive substitution of <T > in (23) might not be justi-
Iv ren

fied. Indeed on one hand we expect the condition nT hV = 0 to

hold,together with DT = 0,even after renormalization since both
1-v

are due to the coordinate invariance of the matter-gravity-boundary

system. On the other hand, substitution of (25) into (11) yields

T l :~-,e3% P D + 0(& )
;eA _0 f -OJ* , (27)

In general this is not zero. Taken literally,(27) means a

breakdown of the coordinate invariance of the quantized system.

This is unacceptable on general grounds. One possible explanation

for (27) is that quantum fluctuations of the boundary must be taken

into account to ensure that the RHS of (27) is zero.

It is also not obvious that the naively expected expressions

and

< my n4 T ,Al T n Tri,

are consistent.

Apparently more work on quantization of the interacting boun-

dary-gravity-matter system is needed before one can have a definite

answer to whether or not one can describe the motion of the boun-

dary under the "pressure" from the Casimir "forces". If one can

find a consistent formalism, however, it may help resolving the
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mystery of spontaneous compactification in Kaluze-Klein theories

by providing another possible mechanism for its dynamical realiza-

tion, in addition to that currently discussed in the literature [8].

I am greatly indebted to Jeffrey Goldstone for numerous dis-

cussions on the subject. I wish to thank Alan Guth for valuable

suggestions.
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Existence of forces acting on conducting surfaces in

vacuum [1] is a remarkable consequence of quantum nature

of the vacuum. A generalization to the case of non-perfect

conductors has been done by Lifshitz [2]. For the real

materials the force F per square unit has two asymptotes.

The first is dominant when the separation a between, say,

two parallel flat conductors is much less than a characteristic

frequency of the absorption spectrum of the plate's material

Ac Then

F =re3 3 (1)

where

eQI) = G+ X I( 2o

with Ime being the imaginary part of the dielectric constant

of the plate's material. This force is due to the molecular

structure of the plates.

When a>>AX then

_ _ -- ----L _
(2)

where (£0) is some definite function [2]. The case of the

perfect conductor [1] is recovered by putting 0=c and (-)=l.
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then we have the famous

-2 2D kI (3)

This expression is independent of the material of the plates

and is solely due to the quantum fluctuations of the vacuum.

The validity of the expressions (1) and (2) has been

proven experimentally [3]. Here we rely on the paper by

Tabor and Winterton. For the case of o =1.59 and the refractive

index parallel to the cleavage plane of the two perpendicular,

covered with evaporated silver, mica cylinders about 1.56, they

measured that in the case a>l9nm, where the second asymptotic

takes over, the force F is

F (o.81 so o) ( e41 IS

This should be compared with the theoretical prediction

F= o .7 o -

The agreement is remarkable considering the uncertainties in

measuring various constants.

The explanation of the physics of the effect is based on

the fact that due to the quantum nature of the electromagnetic
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vacuum, the renormalized vacuum expectation value of the

stress-energy tensor Tv acquires a nonvanishing value. Indeed,

in the case of two infinite parallel ideal conductor planes

it is easy to show [4] that because of requirements of covariant

conservation, Lorentz and conformal invariance of the electro-

magnetic stress-energy tensor its renormalized value (neglecting

gravity effects) is

<TZ V e d; = 77 2 Ac -3 (4)

where a is the separation between the planes and the direction of

separation along z-axis corresponds to the last entry in the

matrix in (4).

Varying the total renormalized energy per unit area U=a<TO >ren

w.r.t. the separation a one obtains the force F in (3)

FThis is the conventional derivation. Unfortunately it is in-

This is the conventional derivation. Unfortunately it is in-

herently non-relativistic, not to speak of general covariance.

An attempt has been recently made [5] to consider a space-

time boundary as a dynamical object. It was shown there that,

provided certain boundary conditions hold, the space-time boundary

is a rather well-defined classical object and couples to the

matter and gravity in a universal manner, through the stress-energy

tensor.
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We now present an extention of the results for the

ideal conductor boundary and show that the Casimir force (3) arises

naturally in this formalism.

Let us first give a more direct derivation of the boundary

dynamics for any boundary condition in arbitrary space-time

dimension D. The total action for the matter-gravity-boundary

system is taken as

2 = ~SJ / J 2 4A)r &Z ) - /:G SJ O+ (5)

3 G I -/ l X 

where x are some coordinates on a manifold X, g=-det g (~A)

is the Lagrangian gensity of the matter fields =A( =- F FV

for the case of electromagnetism), G is the Newton's constant,

R and A are the curvature scalar and cosmological constant

respectively, ya are some coordinates on the boundary aX, h=-det hab

where hab=aya aab and zz (ya) defines the boundaryimedding9F~a any f I
imbedding and, finally,x=xp where Xv=D n with n being a vector

field in a neighborbood of X such that nn I =1 njD n =0 and
az Jax iax

n a = 0 D (nJDjn)I a=0.
ax ay p ax

The action S can be rewritten as a pure volume integral

S S bI~ I1-ea~-~ -· ID/A A· (6)

It is now easy to perform the boundary variation of the action using
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the fact that any vector field V on X defines an infinitesimal

boundary variation

X- f1 &1j

and using

s, J 1/1c'
5 M,

Thus, in addition to E.o.M. for

obtain on X

f5cA) j +gj A) + D

matter and gravity we

i(o X) 

After some manipulations with the last term in (7) and using

the Einstein equations

Q1 - 4J-A,d ,, ) A II/
T r7-',

-li aS, SMTAv
§_x, a 40A )

j x Ia-)

we obtain

'X(+A>- / XLYA QV -Lg ) Q +24=11 i a /'cy)~- A ~ L ;,,4A ))

(7)

: - bF C

2 

b- i t/



- 43 -

and, finally,

RI19A C 87: (z(A) h T ) =
(8)

where R' is the intrinsic curvature of the boundary. We now

can connect this derivation with the one in [5]. Indeed, when

second derivatives of metric do not enter the matter action

If we require

>) 4- lLD
h a",J c

-0

as a boundary condition n nVT = and putting A to zero we

obtain the eq. (24) of [5] provided we identify K in [5] as

- 8 G.

This equation is

I / ~ V h I O (9a)IQ-R 
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or alternatively

- 1_ /-6 Adf( 0 (9b)

Note that when Z=ADPA, where D is some differential operator

then on solutions is zero. For such matter actions, classically,

the boundary decouples. This observation also provides a con-

vinient way of determination of on X by reducing the matter

action to a form withO= ADA plus surface terms.

Let us now turn to the case of the electromagnetic field.

To do this we have to drop the boundary terri in (5) since the

conductor plates material is certainly transparent to gravitons

and put A=O. We should also add a term to the action which

would describe the "free" phenomenological boundary. Agruably,

it could be put as (M a _ 2a2) for the non-relativistic
2 Z

experiment in question. Here M is the cylinder's moment of

inertia and w depends on the elasticity of the cylinders. The

classical E.o.M. we get is

Ha +G a a k ((2 P )-/A; A)=o (o10)
Z=D

The conformal invariance of the EM field ensures that R=O and

we arrive to
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G" Y ( k ) (11)

That is, the classical Casimir force F in this case is just

pC = -4W Z.- F /74.s .§= Sa),,
Ijn 'I

of tt 14l

were we put -=l in the weak gravity approximation. For the

classical vacuum F =O and, consequently, F=0. This is not

true when quantum fluctuations are taken into account.

Let us now present a derivation of the Casimir force (3)

from semiclassical approximation to eq. (10). In this approxi-

mation only EM field is treated as a quantum quantity while

the space-time metric and the boundary are not quantized.

Strictly speaking one also has to derive the effective action

then to renormalize it [6]; This should be distinguished from

the renormalization performed on the source of the boundary

equation of motion (9b) or (10).

The renormalization of the matter action in presence of

boundary has been extensively studied [6, 7] in conjunction

with renormalization of stress-energy tensor. And while earlier

work [7] revealed that the renormalized stress energy tensor

(and the Lagrangian) generically diverges as one approaches

the boundary, Kennedy et al. showed that the total renormalize

energy, say, in a cavity, can be made finite due to tne presence

of a priori divergent boundary counterterms. We shall observe
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the same effect when renormalizing the EM Lagrangian.

To separate the largest contibution to the quantum force F

in the setting of the experiment described, one has to note that

it will come from the Minkowsky metric since the trace anomaly

is proportional to powers of curvature tensor. In this case one

can disregard all effects of gravity. However, in general, this

is not true for a non-conformally invariant matter,where T O

in classical dynamics. This observation may be relevant, for

example, for some bag models.

It is easy to evaluate the leading contribution using the

image solution for the photon's Green function given in [8]. Using

the point splitting technique one obtains for F=-<Z(x)>ren

*=- im,r (x, x') (12)

where

C/A'Y;IAK = JI zV~tA~y D (x-A-"")

e= - en

h -(4 a v, L)
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and

jiAVJ~1:;AI( (-d, V A

PV;AK v K

The quantity d ; K is obtained from d ; K by substitution

gpV+gpv-2npnV. The function D(x-x ) in (12) is a usual

Minkowsky generalized function for a massless scalar

D(x) , 

and x is the reflected x i.e., x =(xo, x1, x2, -x3). Re-

normalization of < (x, x)>laX must be made separately for

x=x =0 and x=x =a. in the former it is equivalent to removal

of the zero mode from the sum (12),while in the latter the

first mode must be removed. Thus we have

-D o C-K I -r
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Discarding the =0 mode as x, x' +0 we get ( =

F=- < t() 7- e_ T-7-& Z r-z-.e) - .24 . o a'1
This is precisely the Casimir force (3) which has been

measured in experiments. The same result is obtained when xx

near z=z =a by discarding the first mode in the sum (12).

Note, that from a general point of view, the renormalization

carried out above amounts to renormalization of the term in

the bare surface action, which is proportional to the area of

space-time boundary [7]. The fact that mere removal of diver-

gent terms suffices to reach an agreement with the experiment sug-

gests that the corresponding renormalized constant is zero.

This is in accordance with analysis based on renormalization of

total energy [9].
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CONCLUSION

We have established here a crucial link connecting the

formal boundary dynamics introduced in [5] with experiment.

We have also pointed out that for conformally non-invariant

theories gravitational contributions may be considerable

even in the case of the weak gravitational field. This may

have implications for the Bag models.

The two most important questions about the boundary dynamics

are whether the space-time boundaries exist or can

be spontaneously created and are there any physical processes

in which the boundary dynamics can play an important role.

(To generate a dimensional reduction, for example). Witten's

reservation to inclusion of boundaries into the functional

integral in gravity [9] may be circumvented by considering the

boundary not as the boundary of classical background space-time

but as a boundary for quantum excitations above the background. The

possibility of such an approach, which induces obvious modifica-

tions of eq. (9a), was pointed out by Kennedy et al [6]. This

would also ensure validity of the Positive Energy Theory [10].

The ambiguity of the choice of the boundary conditions is

resolved by requirement of universality of coupling of the

space-time boundary, i.e., coupling through stress-energy tensor

TUV only. As for applications of the formalism, one which

immediately comes to mind is the de-Sitter phase in the
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Inflationary Universe scenario and its modifications [11]

where the very high negative pressure density that drives

the inflation at the same time creates instability w.r.t.

spontaneous boundary formation. Discussions of these

questions as well as more detailed analysis of renormaliza-

tion of the boundary matter-gravity system will be presented

in the forthcoming publications [12].
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