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ABSTRACT

High resolution X-ray scattering experiments, which measure the
critical smectic A fluctuations in the nematic phase, have been
performed in several thermotropic liquid crystal systems. The
correlated region of the these fluctuations diverges at the nematic to
smectic A transition, as is characteristic of second order transitions.
However, reducing the nematic range by increasing the molecular chain
length has several interesting consequences:

1) The correlation lengths ( and ) decrease.
2) The correlation length exponents v , v and susceptibility
exponent Y decrease.
3) Eventually the latent heat becomes finite. The point at which
this first occurs is referred to as the tricritical point.

For all second order transitions, the following relations are
satisfied
4) The correlation length exponents are anisotropic (v v ).
5) Hyperscaling is valid (a + 2vI + v = 2).

Experiments have been carried out on the single layer smectic
materials nS5,nO.m and 609 and the bilayer smectic materials nCB where n
and m are the aliphatic tail lengths in carbon atoms. Neighboring
homologues were mixed to vary continuously the nematic range. Materials
with long nematic ranges such as 609 and 40.7 yield correlation length
exponents - 0.78 ± 0.03 and s - 0.66 ± 0.04 with a susceptibility
exponent Y - 1.48 ± 0.03. Materials with short nematic ranges such as
9CB and 10S5 yieldsmaller exponents with v - 0.59 ± 0.03,
v - 0.51 ± 0.03(10S5), 0.37 ± 0.06(9CB) and Y - 1.10 ± 0.05. In
adition 9CB and 10S5 are shown to be near the NS A tricritical point.

Thesis Supervisor: Robert J. Birgeneau

Title: Cecil and Ida Green Professor of Physics
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1.0 INTRODUCTION

Liquid Crystals exhibit a rich variety of phases intermediate

between normal liquids and solids. X-ray scattering experiments

directly probe the molecular order by measuring the Fourier transform of

the instantaneous positional correlation function. Computer controlled,

high resolution, triple axis spectrometers have revolutionized X-ray

scattering especially in liquid crystal materials during the past

decade. These advances rest on both the high resolution provided by

perfect crystals and the implementation of quantitative instrumental

deconvolution techniques in determining the intrinsic scattering

profile. These improved techniques are extremely useful in probing

subtle structural changes, especially in the neighborhood of phase

transitions.

This thesis is divided into six chapters. The primary purpose

of this chapter is to develop the background necessary to interpret the

experiments reported here. In the first section the essential features

of liquid crystals are presented. In the next section quasi-elastic x-

ray scattering theory is presented. The final section of chapter one

section introduces the reader to the important concepts of phase

transitions, including Landau Theory, critical exponents, scaling

relationships and tricritical phenomena.

The following five chapters are divided as follows. Chapter 2

builds on the phase transition section(1.3) and applies these concepts

to the NSA phase transition. Current theoretical ideas including

dislocation mediated melting and gauge transformation techniques are

developed. In chapter 3 the N+SA literature is summarized.
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The experimental procedures necessary to perform and interpret

x-ray scattering experiments are developed in chapter 4. Other details,

such as the sample preparation, ovens and temperature control, and the

magnetic alignment apparatus are also discussed. The beginning of

chapter 5 provides a brief synopsis of the x-ray line-shape fitting. In

section 5.1 measurements in 40.7 and 60.9, which have long nematic,

ranges are presented. The remainder of this chapter pertains to

experiments on families of liquid crystals (homologous series) which

exhibit a cross-over from critical behavior to tricritical behavior.

Section 5.2 presents the data from the S5 series which exhibits a

single layer smectic whereas section 5.3 is on the nCB series which

exhibits a bilayer smectic.

In the final chapter of this thesis the results of this study

are summarized and new experiments are proposed to answer the remaining

issues.
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1.1

LIQUID CRYSTALS

The term liquid crystals signifies many different states of

matter intermediate between a isotropic liquid and an crystalline

solid.1 2' 3 Molecules exhibiting such states are often referred to as

mesogens whereas the states themselves are referred to as mesomorphic

phases. There are a plethora of possible mesomorphic phases

corresponding to different degrees of order, however, only a few phases

occur in most materials. There are tens of thousands of known molecules

which exhibit liquid crystal behavior but all have several features in

common. Firstly, the molecular geometry of mesogens is highly

anisotropic, enhancing the likelihood of an aligned fluid phase rather

than an isotropic fluid phase. Secondly, these materials have a rigid

central core with extended aliphatic (hydrocarbon) tails. The core

region is usually composed of several benzene rings bonded to each other

either directly or by an intermediate linkage.

Phase transitions can be induced by several methods. The most

direct method of changing the phase is by varying the temperature.

Other means include modifying the pressure or mixing in another

molecular component. This component may be another liquid crystal

molecule as well as non-liquid crystal components such as a solvent, as

in the case of lyotropic liquid crystals. The materials studied in this

thesis are thermotropic liquid crystals, meaning that the phase

transitions can be induced by purely thermal processes.

Perhaps the earliest observations of liquid crystal behavior

were reported nearly a century ago by Reinitzer and Lehmann .4 Fifty

years later G. Friedel5 observed mesmorphic phases that had the
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characteristic x-ray diffraction pattern of a layered structure. Since

these phases had properties similar to soaps he coined the word smectic

from Greek. More recent experiments have established a multitude of

smectic phases corresponding to different degrees of inter-layer and

intra-layer ordering.

Thermotropic liquid crystals fall into two distinct subsets;

nematics/cholesterics and smectics are formed by rod like molecules and

discotic phases are formed by flat disk-like molecules. In this thesis

the discussion will be limited to nematic and smectic mesomorphic

phases. The materials studied in this thesis belong to one of three

homologous liquid crystal series and are shown in figure 1.1.1. They

are 4-n-pentylphenyl 4-n-alkoxybenzoate(ES5), 4-n-alkyl-4-

cyanobiphenyl(nCB) and N-4n-(p-alkoxybenzylidene) -4-n-

alkylaniline(nO.m). We have also studied 4-n-hexylphenyl 4-n-

nonoxybenzoate(609) in which the sulfur of the nS5 series is replaced

by an oxygen atom. All of these mesogens have isotropic, nematic and

smectic A phases.

The nematic phase differs from the isotropic phase by the

development of orientational order of the long axis of the molecules as

shown in figure 1.1.2. The unit vector(n(r)) which describes the local

alignment direction is referred to as the nematic director or sometimes

just the director. Nematics are uniaxial with the optical axis along

n(r). Since the index of refraction is different along n(r) and normal

to n(r), nematics are birefringent. This property combined with strong

thermal fluctuations of the director causes nematic to scatter light and

leads to their cloudy appearance. The constituent benzene rings are

highly diamagnetic enabling a magnetic field to align the director.
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Figure 1.1.1

Molecular structure for the molecules reported in this thesis. Starting
at the top, the molecules are;
1) 4-n-pentylphenyl 4-n-alkoxybenzoate(iS5)
2) 4-n-alkyl-4-cyanobiphenyl(nCB)
3) N-4n-(p-alkoxybenzylidene) -4-n-alkylaniline(nO.m).
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The smectic A phase is the least ordered layered phase. Again,

the molecules are orientationally aligned, however there is an

additional degree of order corresponding to layering. This is usually

expressed as a modulation of the density along the layering direction.

P = Po[ eiqo +c.c.] + ... 1.1.1

with p the average density, the amplitude of the modulation, and

qo-27/d where d is the average layer spacing. However, within the plane

of the layers the molecules are fluid-like. Strongly dipolar materials,

such as nCB, form bilayer smectics with a layer separation equal to

about 1.3 times than length of an individual molecule. These mesogens

have one aliphatic tail and a polar head group on the other end.

Molecules with two aliphatic tails, such as S5 or nO.m, form single

layer smectics with the layer separation approximately equal to the

molecular length. Some materials with weak polar head groups exhibit

both bilayer and single layer smectic ordering.

Below the smectic A phase, the smectic C phase often occurs in

which the molecules tilt with respect to the layering direction but

remain fluid within the plane of the layers. Lower temperature phases

involve the development of various degrees of order within the plane of

the layers including stacking sequences, tilt direction, bond

orientational order and herringbone order. The advent of free standing

x-ray scattering experiments have greatly facilitated the study of these

phases.6
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1.2
X-Ray Scattering Theory

This chapter serves as an overview of X-rays scattering as a

structural probe of matter. A good review of x-ray scattering theory is

provided by Warren.7 In all scattering experiments momentum and energy

are transferred between an incoming channel and an outgoing channel.

For X-ray scattering an incident photon with momentum ki and energy

EiO kic is scattered by the sample and emerges with momentum kf and

energy Ef-Kkfc. The momentum absorbed by the sample is q i-kf while

the energy transferred is Ei-Ef as shown in figure 1.2.1.

For all of the problems of interest this energy difference is at

least five orders of magnitude less than Ei, thus the scattering is

considered as quasi-elastic in that Ikillkf. Therefore, the momentum

transferred can be expressed in terms of the incident momentum vector

and the scattering angle relative to the incident angle

q = 2ksine , 1.2.1

where 2 is the angular difference between the incident and outgoing

photon. In reciprocal space, the magnitude of the momentum transferred

is given by Eq 1.2.1, whereas the orientation of the momentum

transferred in the scattering plane is given by as shown in figure

2.2.1. Bragg scattering occurs when Iq corresponds to a lattice vector

of the sample.

The process of x-ray scattering can be treated classically by

considering the radiation from an accelerated charge in a time varying

electric field.8 This mechanism yields the Thomson cross-section. To

simplify the derivation polarization effects are ignored. Consider an
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incident plane wave with wave vector ki and energy EO 1ic.

ikixx - i t
E(x,t) - Ee 1.2.2

From the equation of motion for a particle of mass m and charge e,

v E. 1.2.3

the accelerating particle radiates according to the standard form.

-P e2 2
UaP~ . e, 12 1.2.4

= 2 W 1.2.5

If an unpolarized source is considered this result is modified by a

8r Fe 2l
factor of (l+cos 2e) . The factor 3-Li-r]2 is the Thomson cross-

section, 0T. For electrons T .665x10 2 4 cm2 whereas for protons the

cross-section is more than a million times smaller since the cross-

section goes as m2. Therefore, it is only necessary to consider the

scattering from electrons in the analysis of X-ray scattering

experiments. A more thorough analysis would include the coherent

addition of all the electrons amplitudes within an atom. Relativistic

effects are minor because Ei<<mc2 .

The scattering cross-section can be calculated quantum

mechanically if the coupling to the electromagnetic field is included

through the standard interaction Hamiltonian

H = 2m + . 1.2.6

In the Born approximation the transition probability between the initial

and final states is given by
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ikf .r ikir >
P..Z o- <IP9Z IV(-) I 1P oe d(E Ef-CW i- f ) ) 1.2 7

iki.r
where the probe is initially in the plane wave state e and

ikf r
undergoes a transition to the final state e . For x-ray scattering

the A2 term dominates and the differential scattering cross-section

reduces to

d2 WN i2 M (e - ei ef) 2 S(q,.) 1.2.8

where

S(q,w) 2 dt e iWt<n(-,O)n(,t)> 1.2.9

is the dynamic structure factor. Expressing the number operator (n) in

terms of the density (p) and Fourier transforming yields the standard

form for the dynamic structure factor

S1q~) dt3~ eiqr-imt
S w) dtd3r ip(r,t)p(O,0)> . 1.2.10

The determination of the dynamic structure factor is hindered by

resolution functions which are imperfect by nature. The actual

scattered intensity is proportional to the convolution of the dynamic

structure factor and the resolution function

I(q,w) Id3q'dw' R(-q',-W') S(q,) . 1.2.11

In turn, the resolution function depends on the three components of

momentum and energy transferred to the sample. It is adequate to assume

that the resolution function is separable in terms of its four

components

R(q,w) Rx(qx)Ry(qy)Rz(qz)R() . 1.2.12
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It is convenient to normalize each element of the resolution function

such that it has unit volume. If the resolution is perfect, i.e. a

delta function, then I(q)=S(q). Equivalently, if S(q) is a delta

function then the scattered intensity has the same functional form as

the resolution function. For all practical purposes the energy

resolution function of the spectrometer, R (), is always much broader

than the energy width of S(q,w). Therefore, the spectrometer integrates

over all energies of S(q,w). From Eq 1.2.11 and 1.2.12 we have

I(q) a Jdsq' R(q-q) S(q) 1.2.13

where

S(q) = Jdw eiLtS(q a) 1.2.14

is the instantaneous structure factor. In summary, x-ray scattering

measures the Fourier transform of the electron-electron density

distribution function convoluted with the appropriate instrumental

resolution function. The actual form of the resolution function depends

on the spectrometer set-up. Resolution functions for particular

spectrometer configurations will be discussed in chapter 4.



- 21 -

1.3
Phase Transitions

Statistical mechanics is the study of many particles and their

collective behavior. Equilibrium is achieved when the free energy of a

system is minimized. A phase transition occurs when the state of the

system must change to achieve equilibrium. This is extremely difficult

to calculate exactly since the energies and degeneracies of all the

states of the system must be summed over to determine the precise phase

behavior. However there are many techniques which ignore these details

but provide excellent approximations to the physical behavior. These

theories provide a universal framework for the study of phase

transitions. Some of the basic principles and results are summarized in

this section. In the next chapter those techniques which relate to the

nematic to smectic A transition are presented.

A) Mean Field Theory

All phase transitions can be described by an "order parameter"

which is zero in the disordered phase and finite in the ordered

phase9 '1 0 The free energy can be expanded in powers of the order

parameter taking into account the appropriate symmetries. In many

instances, such as the ferromagnet to paramagnet transition where the

magnetization m is the order parameter, inversion symmetry only permits

even terms. Therefore, the free energy density can be expressed as

n= a m2n
f(m) = nm2n 1.3.1

n-O

where fluctuations have been ignored (mean field limit). Furthermore,

close to the phase transition m is small, therefore the series can be
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truncated after the first positive term. First consider the case where

the a term is positive, the free energy density is given by

f(n) a + 2 + m . 1.3.2

If a2 is positive then the free energy density is a minimum when m=0,

however if a2 is negative then the free energy density is minimized when

m(-a2/a) / 2 . Transitions of this kind are second order since the

order parameter is continuous at the transition. At the phase

transition the a term must vanish, therefore, to lowest order in

temperature

a, a' 2t 1.3.3

where the reduced temperature t is defined as

T-TC

t= TC 1.3.4

The critical exponent describes how the order parameter changes with

temperature below the transition, i.e.

m(t) Itls . 1.3.5

In the mean field limit, the magnetization is always zero on the high

temperature side. If this model is extended to incorporate a linear

coupling between an applied field and the magnetization, then the

susceptibility

X - am/aYh t- 1.3.6

Within the context of this model the heat capacity undergoes a ump at

the transition.
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The second case occurs when the coefficient of the fourth order

term a is less than zero. In this case it is essential to include a

positive coefficient of the sixth order term in a Landau expansion so

that the free energy has a bounded minimum. This implies a first order

rather than a second order transition since the order parameter is

discontinuous at the transition. For a first order transition the

equilibrium times can be very long since there is always a metastable

state at zero magnetization.

The third and final case considered occurs when the coefficient

of the fourth order term a, is exactly zero. The transition is referred

to as tricritical. Again the first step is to expand the free energy in

terms of a power series

f(m) a + am + 1.3.7

stopping at the first positive coefficient. Minimizing the free energy

with respect to the magnetization yields,

- 1/4 1.3.8

and

Y-1 . 1.3.9

In addition to the jump in the heat capacity, there is a power law

divergence for T<Tc given by

C t- ; a-1/2 . 1.3.10

Tricritical theory, beyond Landau theory, will be developed in the

latter part of this chapter.



- 24 -

B) Harmonic Approximation

In most real systems gradient terms must be included in a free

energy expansion. For the ferromagnet discussed above, including the

lowest order gradient term permitted by symmetry considerations, the

following form for the free energy is found.

F(m) = fd [ao + 2 x) +4 m(x)' + cCVm(X))2] 1.3.11

This is known as the harmonic approximation. Note that the free energy

density has been integrated over all space to account for the spatial

variations of the magnetization. The magnetization can be expanded in

terms of the average value which is spatially independent m<m(r)>, and

a spatially varying term 6m(r)

m(r) m + 6m(r) . 1.3.12

Just as before the average value of the magnetization on the high

temperature side is zero. Keeping terms to order (6m(r))2, Fourier

transforming and applying the equipartition theorem yields

F V<6m()6m(-k)>[a2+c2k2] 1.3.13

where,

<6m(~)6m(-4)> V(a2 BT 1.3.14
W~a, + c2kz)

is the structure factor for magnetic fluctuations. If the system is

translationally invariant, the Fourier transform of the structure factor

defines the correlation function. For a Lorentzian profile in three

dimensions the correlations fall off as

KBT -r/ 1.3.15
G(r) <m(*)m(6)> =4 r 1.3.15
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where

~i= a~· 1.3.16

is the correlation length which is the coherence length of fluctuations.

It is useful to define the critical exponent v which describes the

divergence of the correlation length

c t-v 1.3.17

where v is .5 in the mean field approximation. On the ordered side of

the transition it is useful to define the large Iq| limit of the

structure factor by the exponent ,11

S(q) a q-2+n 1.3.18

where is zero in Ornstein-Zernike limit.

A system which does not exhibit long range order is below its

lower critical dimension. For instance, in many two dimensional systems

such as continuous symmetry magnets the correlation function falls of

algebraically; therefore the lower critical dimensionality is two. The

smectic A phase is unusual since its lower critical dimensionality is

three.

Mean field theory is applicable if the Ginzburg criterion is

satisfied.1 2'13 Below the transition, this condition is met if the

fluctuations of the order parameter averaged over a correlation volume

are less than the order parameter itself. The spatial dimension of the

system where this occurs is the upper critical dimension. For instance,

the Ginzburg criterion is satisfied for d4 in the harmonic

approximation. At an isotropic tricritical point the upper critical

dimension is three. Below the upper critical dimensionality more
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sophisticated methods must be employed to calculate the critical

behavior. Such techniques include renormalization group methods and

various series expansion methods.

C) Scaling and Renormalization Group

Inherent in the renormalization group approach is the concept of

scaling. Scaling asserts that the long wavelength fluctuations are

responsible for all of the singular behavior at the phase

transition.9 '1 0 Accordingly, if the scale of the system changes by a

factor , the singular part of the free energy should obey the

homogeneity relation given by

G( att, aHH) = G(t,H) . 1.3.19

Embedded in the scaling hypothesis is the assumption that there is only

one relevant length scale. All other divergent quantities must scale as

a power of . From the scaling hypothesis the following scaling

relationships emerge

28 - v(d-2+n) 1.3.20

Y - v(2-n) 1.3.21

2-a - dv 1.3.22

where d is the dimensionality of the system. The final relationship,

known as hyperscaling, provides a direct link between the dimensionality

of the system and the critical exponents. In the next chapter

extensions to the scaling hypothesis will be made to incorporate more

than one diverging length scale.
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Perhaps the most important contribution to the theory of

critical phenomena is the renormalization group technique introduced by

Wilson. By starting at an atomic scale and moving to successively

larger scales the effects of thermal fluctuations can be integrated out.

At each step recursion relations for the coefficients of the free energy

can be calculated as a function of the dimensionality. These techniques

provide a prescription for calculating the critical exponents when mean

field theory is inadequate.

D) Tricritical Phenomena

Tricritical behavior occurs when a line of second order

transitions crosses over continuously to a line of first order

transitions. At an ordinary critical point there is an ordering field

and the temperature field, however, a nonordering field which drives the

fourth order coefficient of the Landau expansion to zero must be

considered at a tricritical point.1 2'1 5 Unlike an ordinary critical

point where only the ordering density fluctuates, at a tricritical point

both the ordering and nonordering densities fluctuate.1 6

In the vicinity of the tricritical point it is necessary to

introduce an additional scaling parameter, the crossover exponent *,

which relates how the critical behavior scales in different field

directions. The crossover exponent determines the shapes of the

critical line and the crossover lines to tricritical behavior. A

crossover exponent of two is expected from mean field theory1 2 and from

renormalization group calculations.1 7 These calculations are in good

agreement with experiments on He 3-He, mixtures1 8 mixtures and on

metamagnets. 1 9 Renormalization group calculations also predict
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logarithmic corrections to simple power law behavior, though current

experiments have not been able to distinguish these effects.

Within the formalism of tricritical scaling it is necessary to

introduce three pairs of conjugate variables. As might be expected, a

rather diverse set of notation has been employed by different authors to

maintain compatibility with ordinary critical theory and various real

systems. For the purpose of this discussion we will follow the notation

set forth by Griffith2 0 where the three conjugate variables are: entropy

density s and temperature T, ordering density M and ordering field H,

and nonordering density and nonordering field . To aid the reader

familiar with a different notation Table 1.3.1 is provided. For

instance, in systems exhibiting metamagnet-antiferromagnet transitions

the ordering field and density are given by the staggered magnetic field

and the staggered magnetization respectively, whereas the nonordering

field and density are just the internal magnetic field and the ordinary

magnetization. Likewise, for He3-He4 mixtures the nonordering field is

the chemical potential difference between the two species p 3 - 4 and

the concentration of He3 is the conjugate density. The ordering density

is the superfluid order parameter , though the conjugate field is not

experimentally accessible. This is also the case for the NSA

tricritical point as developed in section 2.1.

In developing a Landau theory from microscopic interactions the

coefficients of the order parameters must be functions of the field

variables H and T. At H-Ht the coefficient of the fourth order term in

the expansion goes to zero. Furthermore, at the tricritical point T=Tt

the coefficient of the second order term is also zero. Consequently,

the point (Ht,Tt) divides the first order line from the second order
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line thereby providing the link to Landau theory.

If the nonodering field is considered, the tricritical point is

the intersection of three lines of second order transitions. The line

of interest is in the H,T plane as shown in figure 1.3.1 whereas the

other two lines do not lie in this plane. More importantly, for most

real systems the field is not physically accessible. Therefore,

tricritical phenomena out of (H,T) plane will not be considered. In

describing tricritical phenomena it is necessary to define three sets of

exponents corresponding to the

1) First order

2) Second order

3) Tricritical

regions. For the second order region with T-0 and H held fixed the

critical exponents are given by , , Y, ... for T>Tt and by

a', 8', Y', ... for T<Tc. According to the Pippard relations 2 1 the

same exponents should apply if T is held fixed and H varied, ie.

<?> (H-H) B 1.3.23

where H is the critical field. Since the critical exponents are the

same for both directions all linear paths which cross the A line should

provide the same exponents.

The critical exponents in the tricritical region are not the

same as those along the A line. A subscript t is used to denote the

tricritical exponents. Once again, a prime indicates which side of the

phase boundary the exponent represents. For instance, if H<Hc, T-Tt and

C0
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H

T

Figure 1.3.1

Phase diagram for an idealized tricritical system in the H and T plane.
The tricritical point is the intersection of a first order line (dashed)
and a second order line (solid). For instance, the nonordering field H
corresponds to the internal magnetic field in metamagnets, the chemical
potential difference 3-A4 in helium mixtures and pressure in NHCl.
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(<> (Ht-H) , 1.3.24

is the analogue of Eq 1.3.5.

Along the first order line the subscript u is used to denote the

critical indices. The discontinuity of the magnetization is

AM a (Tt-T) . 1.3.25

The indices with a u subscript describe the behavior of the nonordering

density whereas the tricritical exponents refer to the ordering density.

Far from the critical point the system should be described by one length

scale, therefore one expects that

Cu u t * 1.3.26

The validity of this hypothesis must be reexamined for liquid crystal

systems where two lengths scales are required.

Scaling at a tricritical point requires an additional exponent,

the crossover exponent , since there is an additional field. The best

choice for a coordinate system for tricritical scaling is not where H, C

and T are all orthogonal. A more suitable choice is a coordinate system

defined by

g H - H1(T) 1.3.27

A - T - Tt 1.3.28

where H1(T) is the line which passes through the tricritical point lying

tangent to the first and second order transition lines. This choice is

not unique; however, different coordinate systems should not modify the

result.
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The singular part of the free energy in this new coordinate

system should scale as

Fs(QX,QgQa t ) = 2 - t F(,g,~) 1.3.29

where phi is the crossover exponent. Likewise, the correlation function

scales as

r(LA,Og, At;;&-Vt) . vt (d-2-nt)r(,g ;) 1.3.30

where is the size of the length rescaling and A is the gap exponent.

By assuming continuity of the free energy and the correlation function

scaling relationships on both sides of the tricritical point the

following relationships emerge:

CaLU 2'-(2-at) 1.3.31

Su ' (00°0) 1.3.32

Mu * OVt 1.3.33

as well as some additional relations among the various exponents. These

relationships provide a test for tricritical scaling.

The renormalization group technique has been applied to

tricritical behavior by Riedel and Wegner 1 7 and by Nelson and Fisher. 2 2

Despite the competition between the two densities they find that the

tricritical point is mean field/Gaussian for d3, albeit logarithmic

corrections for d3. This is rather unusual since the upper critical

dimensionality for an ordinary critical point is four!

Logarithmic corrections raised to a fractional power were first

predicted by Wegner and Riede12 3 but were thought to be benign because

the fractional power is small. Using higher order diagrams, Stephen et

al. 24 found that the logarithmic corrections are non-universal since
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they depend on the size of the sixth order term in Landau theory. More

recently, Fisher and Sarbach25 have examined tricritical behavior in the

multi-component limit where n*. Again, the amplitude of the

corrections are non-universal. Although experiments do agree with 0=2,

they do not agree well with several of the other Gaussian tricritical

predictions. For example, at is should be 1/2 though Shang and Salamon

measure .65 in FeCl2 .
2 6 The same authors find agreement with the

predicted value by adding logarithmic corrections. The discrepancy for

Bu in FeC12 as measured by Birgeneau et al.2 7 is even greater than the

discrepancy for at. The origin of these deviations away from Gaussian

behavior may be due to random-field effects rather than logarithmic

corrections.28
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2.0
Theoretical Approaches to the NSA Transition

Many new theoretical ideas have been proposed to understand the NSA

transition, and at the same time experimental techniques ave been

improved. This chapter serves to review these theoretical concepts for

the reader. Unfortunately, these new theories do not adequately explain

the old experimental results (chapter 3) nor do they address many of the

new results presented here (chapter 5).

This chapter is arranged into four sections. The first section

presents a mean-field approach and an analogy to tricritical phenomena.

In the next section the De Gennes theory of the N+SA transition is

reviewed. Gauge transformation techniques which predict anisotropic

critical behavior are presented in the third section. In the final

section the N+SA transition will be discussed in the language of

dislocation mediated melting.
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2.1

Mean Field and Tricritical Predictions for the NS A Transition

Prior to the development of the DeGennes free energy for the

N+SA, mean-field theory provided the best theoretical framework for the

understanding of this problem. Mean field theory, which calculates the

order parameters self consistently, was developed independently by

McMillan1'and Kobayashi. 2 Although this theory does not provide an

adequate description of the critical behavior, it is useful in

constructing the proper phase diagram. Furthermore, mean-field theory

correctly predicts a crossover from a transition with zero latent heat

to a first order transition with finite latent heat as the nematic range

is shortened. However, the predicted crossover point is incorrect.

The starting point of all self-consistent mean-field

calculations is to describe the potential in terms of both a global

order parameter and the local order. Then, the average value of the

order parameter is determined self consistently from the partition

function. It is useful to review the self-consistent calculations of

Maier and Saupe3 for the nematic to isotropic transition since the

McMillan theory for the nematic to smectic A transition is an extension

of this important earlier work.

If the nematogens are assumed to be simple rods, then the states

n(r) and -n(r) are indistinguishable. Therefore, the order parameter

should not depend on the sign of the director. Thus, the nematic order

parameter is composed of a traceless tensor and a scalar contribution.

The scalar part is defined to be

S(T) - <cos 2e-> 2.1.1
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where is the angle between the optical axis and the local director

n(r). Maier and Saupe pointed out that the simplest form of the

potential must be proportional to cos2e. In the mean-field

approximation the potential close to the NI transition is written as

VNI(cos2e) - -Vo(1cos
2 8-)S(T) 2.1.2

where the temperature scale is set by V. The molecular distribution

function is given by

VS(T) <cos 2e_->
kBT

p(cos'e) P e 2.1.3

where p is the appropriate normalization factor. Using Eq 2.1.3 S(T)

is calculated self-consistently by

1

S(T) = Ip(cos2 ) <cos 2 8-j> d(cos(e)) 2.1.4
-1

Above the critical temperature S(T>Tc)-0. At the critical point,

however, S(T-Tc)-0.44. As the temperature is decreased further, the

nematic order parameter slowly increases. These basic features of the

Maier-Saupe model have been confirmed by NMR measurements4 though other

features such as the first order region do not agree.

McMillan1 has extended the Maier-Saupe theory to include a short

range anisotropic interaction.

VNA -V,[S(T)+oa cos(qoo' )] (ose-i) . 2.1.5

The coefficient a is a measure of the smectic condensation energy and

depends on chain length. The order parameter a describing the smectic

density wave is given by



- 41

a <csO(qa) ( cos2e4- )> 2.1.6

where qO is the momentum vector. This provides two self-consistenty

equations for the two order parameters. Three possible phases exist: an

isotropic phase with o - S - 0, a nematic phase with o - 0, S 0 and a

smectic phase with o 0, S * 0.

The solutions are found by minimizing the free energy while

maintaining the self-consistent condition on the two order parameters.

The nematic to isotropic transition temperature does not depend on a

whereas TNA/TNI does. Within the context of this model, if

TNA/TNI < 0.88 the NSA transition has no latent heat and both the

nematic and smectic order parameters are continuous at the transition.

However, if TNA/TNI > 0.88 there is a finite latent heat and the nematic

and smectic order parameters are discontinuous at the transition.

Although these general features agree with experimental results the

crossover point between first and second order is found to occur at a

much larger TNA/TNI.

In summary, McMillan predicts a crossover from second order to

first order behavior with increasing chain length though there are no

predictions for the critical exponents. However, within the context of

mean-field theory Y - 1; va .5 is expected.

The coupling between the nematic and smectic order parameters

can be incorporated into a Landau Theory without fluctuations as

described by DeGennes. This is analogous to the Rodbell Bean effect5 in

magnetism where the magnetization and density couple strongly to drive

the transition first order if the crystal is very compressible. In the
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liquid crystal case the smectic ordering enhances the nematic ordering

if the nematic ordering is unsaturated, thereby causing a first order

transition. The ideas which follow do not include fluctuation effects.

Ordering in the nematic phase is described by the Maier-Saupe

order parameter So(T), Eq 2.1.1, where the subscript denotes the

equilibrium value without any smectic ordering. The smectic order

parameter is the strength of the density modulation,

P Po[ eiqor+c.c.] + ... 2.1.7

where is the wave vector of the layer spacing. If the nematic order

parameter is at its equilibrium value, the free energy close to the NSA

transition can be expanded in terms of alone

F .a + .2Xj2 aI1 . 2.1.8S 2 2 ' 1'1' ·

The coupling between ? and S(T) must be incorporated to lowest order in

the free energy. Since the coupling increases S(T) from the equilibrium

value S(T) in the absence of coupling (i.e. absence of smectic layers),

the lowest order additional correction term is

FC -C1W1 26S 2.1.9

where

6S - S - So(T). 2.1.10

Finally, in the absence of smectic fluctuations, the free energy minimum

must correspond to 6S O, therefore the final form of the free energy

is

FNA FS - CI1 16S + s2 . 2.1.11

Here X is a measure of how susceptible the nematic order parameter is to
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an induced change from its equilibrium value. Minimizing Eq 2.1.11 with

respect to 6S gives

6S = xCl'1 2 2.1.12

which is the jump in the nematic order parameter at the transition.

From Eq 2.1.12 and Eq 2.1.11 a new free energy is obtained in terms of

of alone:

FNA a + ||1 + -l'!1 2.1.13

where the coefficient of the fourth order term is:

a4 ' a - 2C2X. 2.1.14

For long nematic ranges the nematic order parameter is

reasonably well saturated at the NSA transition, therefore, the

susceptibility must be small for 6S to be small. As the nematic range

decreases the susceptibility must increase. Eventually the

susceptibility becomes large enough to change the sign of the fourth

order term from positive to negative, thus the order of the transition

changes from second order to first order. For nematic ranges where the

fourth order term is small tricritical behavior should occur.

Although the above analysis only includes a coupling between the

nematic and smectic order parameters other couplings can have the same

effect. Other possible order parameters which might couple to include

higher harmonics of the density modulation as discussed by Meyer and

Lubensky6 , higher harmonics of the nematic order parameter, pressure 7

and impurities. Experiments on materials where there is a strong

coupling between the single layer order parameter and the bilayer order

parameter are currently under progress at Harvard.8
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If tricritical behavior occurs rather than ordinary critical

behavior, a nonordering field and the conjugate density must be

considered in addition to the ordering field and density. For the NSA

transition, following the notation set forth in section 1.3, the smectic

order parameter is the ordering field however, as is the case for

helium mixture the nonordering field is not physically accessible.

Alben9 has pointed out that the chain length acts as a nonordering field

since a crossover from first to second order can be induced by varying

the chain. Unlike tricritical points in metamagnets where the internal

field is impossible to measure or in helium mixtures where the chemical

potential can not be varied independently, the nonordering field can be

continuously adjusted by mixing a compound with a first order transition

with a compound with a second order transition.

Brisbin et al.1 0 point out that 6S acts as a nonordering

density. Thus, the NSA tricritical point should be characterized by

fluctuations in and in 6S. The field conjugate to 6S must tend to

align the nematic director such as a strong electric or magnetic field.

Alignment may also be accomplished by varying the chain length; the

chain length acts as the nonordering field and 6S acts as the conjugate

density.

There are several important differences between an ordinary

tricritical phase diagram such as in helium mixtures or in magnets as

shown in figure 1.3.1 and the NSA analogy which is shown in figure

2.1.1. Unlike an ordinary tricritical phase diagram where the X line

occurs for temperatures above the tricritical point, the second order

line is reversed with the first order line for the NSA problem. The

identification of 6S as the nonordering density and the chain length as
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the nonordering field raises several interesting issues. Compared with

metamagnets, where there is a competition between ferromagnetic and

antiferromagnetic order, the liquid crystal case is opposite. In the

liquid crystal problem, increasing S tends to enhance the smectic

ordering, whereas increasing the ordinary magnetization decreases the

antiferromagnetic magnetization. This difference may be essential in

developing an understanding of the NSA tricritical point.

The coexistence behavior is also rather different from an

ordinary tricritical point. On the first order side of the tricritical

point two phases with different densities should coexist. Presumably,

regions with different values of 6S will phase separate into macroscopic

regions. Unlike helium mixtures where a meniscus forms between the two

regions, the density difference between these two liquid crystal phases

is too small and the viscosity too large for this to occur. Impurities

may also influence the phase separation, however these effects are

poorly understood in the vicinity of a tricritical point. Observations

of the coexistence behavior may be impaired since a macroscopic probe

such as light scattering is only capable of measuring the average 6S and

not the difference between the two coexisting phases.

If there is only one relevant length scale the ordering density

correlation length , i.e. the smectic correlation length, scales as the

nonordering correlation length then the tricritical scaling relationship

Vu=Vt should apply. Unfortunately the 6S correlation length can not be

measured with x-rays nor is it obvious what probe would be suitable.

Furthermore, there is no a priori reason why one length scale should

provide an adequate description of the NSA problem (see section 2.3).
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2.2
DE GENNES MODEL

In this section the De Gennes free energy for the NSA

transition is developed.1 1 Prior to this point of the analysis,

fluctuations of the nematic and smectic order parameters, S(T) and ,

have been ignored. To incorporate spatial variations a phenomenological

free energy is developed which includes the lowest order elastic

energies. In many respects the smectic A free energy is analogous to

the charged superfluid. An important difference which will emerge is

that the smectic A phase does not have true long range order.

In the McMillan model, as presented in the previous section, the

N*SA critical exponents should be mean-field, v=vl=v-0.5; Y1.0.

However, in the De Gennes analogy the NSA problem is in the n-2, D3

universality class with vv mv-2/3; Y-1.32. This analogy ignores the

inherent anisotropies of the NSA free energy which are responsible for

the observed anisotropic behavior with v*vll. Anisotropic behavior is

predicted by a dislocation mediated melting model and gauge-

transformation techniques. Both theories build on the De Gennes free

energy and will be discussed in subsequent sections.

The deformations of the director in the nematic phase can be

described by a continuum theory in terms of simple elastic constants.

This theory is only valid in the limit that the distortions are slow on

a molecular scale, that is, Vn(r)<<l/d. The free energy must be even in

terms of n(r) as discussed in section 1.1. Furthermore there can be no

terms linear in V(). To order [Vn(r)]2 the distortion free energy is

expressed in terms of three elastic constants, K, K2, and K 3 as

developed by Oseen and Frank.12



FN(Ki) _= d3x[K(V n(r) )2 K2((r)n Vxr )) 2+ K 3( nx (Vxn( r) ) ) 2 ] 2.2.1

These distortions correspond to splay , bend , and twist as shown in

figure 2.2.1. Far from either the NSA or NI transitions, the elastic

constants are 10- 7 dynes. In the following analysis the average value

of the director, n<n(r)>, is assigned to the parallel () direction.

Transverse to n is the direction. To lowest order, the deviations

of the director are transverse to no, and given by

6n(r) n(r-n o 2.2.2

where,

6n'nO-O. 2.2.3

In the smectic A phase uniform rotations of the layers and the

molecules must leave the free energy unchanged. Including terms through

order 16n12 and IVl2' , where E is defined by Eq 2.2.7, yields the De

Gennes free energy

1 4
F - d3xEajlI2 + C1 V.1 1 ' + C Vl(V - iqo6n),l 2 + 1'14] . .2.2.4

The total free energy must also include the contribution from Eq 2.2.1.

Molecules are kept parallel to the layers through the C term which

vanishes at the SA+SC transition. Higher order terms are required to

preserve global rotational invariance; however, these terms are believed

to be irrelevant close to the N+SA transition and are ignored in future

analysis. 1 3 The transition proceeds, in the normal Landau sense, when

the coefficient of I12 goes to zero.

a - a' TNA -a't 2.2.5
L TNA

- 48 -
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Figure 2.2.1 The three types of nematic distortions. Each type of
deformation is obtained by distorting a slab of an aligned nematic.

I~~, ~ =~ c

4~~CII -



- 50 -

Summing the nematic free energy, Eq 2.2.1, and the smectic free energy,

Eq 2.2.3 produces the total free energy

FNA = FD + FN(Ki) . 2.2.6

All configurations are summed over in calculating the partition

function,

-FNA/kT
Z - IfDD6ne .; 2.2.7

In practice, the variables of integration are always in q space.

In the smectic A phase, the smectic order parameter, , is

described in terms of a magnitude and a phase

,(x -iqou( >) . 2.2.8

The phase, qou(x), reflects the displacement, u(x) from equilibrium.

Substituting Eq 2.2.8 into Eq 2.2.6 provides the smectic A free energy

in terms u(),

FA - 1/2 d3x [B(Vitu) 2+D(Vu - n)2] + FN(Ki). 2.2.9

The elastic constants for the layer displacements along and transverse

to the layering direction are given by

B 2C11q2l l2 2.2.10

and

D - 2C ql 2 . 2.2.11

There are many theoretical predictions which originate from the

De Gennes free energy. These include the divergence of the bend and

twist elastic constants on the nematic side of the transition and the

lack of true long-range order in the smectic phase.
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In the smectic phase, the line Integral, fIn(rc).dl, counts the

number of layers. Thus, the closed loop integral must be zero in a

dislocation free sample, therefore xn`(r)-O in the bulk. Bend and splay

distortions must correspond to dislocations! The energy associated with

breaking layers is much greater in the smectic phase, therefore an

enhancement of these elastic constants is expected from the development

of the smectic density wave.

The enhancement of K and K in the nematic phase are analogous

to fluctuation diamagnetism in superconductors. Just as the magnetic

field is expelled from the superconductor, K2 and K are expelled at the

N4SA transition. The size of the dislocation free smectic corresponds

to the smectic correlation lengths in the nematic, is and ElI'

Following Schmid's analysis for fluctuation diamagnetism 1 4 one finds,

K2 - K 2
0 + K2, 2.2.12

and,

K3 - K + 6K,, 2.2.13

where the elastic constant enhancements are related to the correlation

lengths via,

6K2 e X 2.2.14

and,

6K3 = Ill . 2.2.15

These relations provide a direct link between the correlation lengths as

measured by x-rays and the elastic constants determined by light

scattering measurements. The exact behavior of 6K2 and 6K3 depends on
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the precise behavior of the correlation lengths. If the correlation

lengths are isotropic both elastic constants should diverge at the same

rate. However, anisotropic behavior would be manifested by different

rates of divergence. In contrast to these relations, Eq 2.2.14 and Eq

2.2.15, Lubensky has shown that the correlation lengths observed by x-

rays may not be the same correlation length as those characterizing the

divergence of the elastic constants. 1 5 This is a consequence divergent

phase fluctuations and will be discussed in the following section.

In the smectic A phase, the molecules would prefer to be normal

to the layers. This is satisfied when n(r)=V u which eliminates the D

term in the free energy.This assumption is only valid on length scales

smaller than =\|K . Furthermore, in a dislocation free smectic A

phase bend and twist distortions are expelled from the bulk and only

splay distortions are permitted. Thus, in the smectic A phase the free

energy, Eq 2.2.9, reduces to

FLP - 1/2 d3x [B(Vu)2 + K(Vu)2] 2.2.16

which is often referred to as the Landau-Peierls free energy.1 6

Fourier transforming Eq 2.2.16 and applying the equipartition

theorem yields the spectrum for fluctuations of the layer displacement

in q space

kBT
<iu(q)12> - Bq + Kq- * 22.17

Transforming to real space gives the mean squared layer displacement

<u2 (r)> - d3q <u(q)1 2 > 2.2.18d <2) ! '
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I= 11d2 + q4 2.2.19(2T)I Bqn + Kq

KraTir dq xq'
(2k JAXB 'q 2+q' 2.2.20

where q 2 = K q . A2q4 . From Eq 2.2.20 is clear that the mean squared

displacements for the Sm A phase are isomorphic to the two-dimensional

system. Integrating Eq 2.2.20 provides the standard result that the

correlation function diverges logarithmically with the sample

sizel7,18,19

<iu(q)l> T (L/d) . . 2.2.21

This, of course, comes about because of the lack of a q term in the

free energy.

The correlation function is defined as

G(r) - <(r)?*(r)> 2.2.22

where all spatial dependence is contained in the phase of . Therefore,

the correlation function can be rewritten as

G(r) - 1 <iqo[u(r)-u()]>. 2.2.23

It is mportant to emphasize that on the nmatic side, where <>-0, is

spatially dependent as well as the phase. The harmonic nature of the

fluctuations permits further simplification of the correlation function

G(r) - Il z e- qO 2<u2> 2.2.24

This assumption may not be valid in the nematic phase where fluctuations

are always large. Substituting Eq 2.2.17 into Eq 2.2.24 yields
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_.21 dq 1 iqr
qo 2 Bq- -( 1 - e q )

G(r)=|1* 2 I 2.2.25

At large distances, Caille reports that the correlation function should

go as

G(r) r r 0 2.2.26

and

G(r) r- 2" ; r = 0 2.2.27

where

n= qo2KT 2.2.28
81r\K1 B

This is the standard result along the layering direction although in the

plane of the layers there is an additional factor of 2. Note that there

is only one n for both directions and this n depends only on fundamental

elastic constants, K and B corresponding to splay and layer

compression. Fourier transforming yields the structure factor for the

smectic A phase

S(q) q11-qo1 2+rT 2.2.29

S(q) Iq -q 4+ n . 2.2.30

It is important to emphasize that the structure factor diverges when n-2

and that this occurs somewhere below the transition when B is

sufficiently large. This behavior is certainly unphysical because the

susceptibility is predicted to diverge not only at T NA but also at an

additional temperature somewhere below the transition. There is nothing

inherent in the De Gennes model to prevent this from occurring.
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2.3
Anisotropic Scaling and Gauge Transformations

The scaling hypothesis asserts that all intrinsic properties

associated with the phase transition scale with the correlation length.

Though there may be several correlation lengths in different directions

due to anisotropic interactions they are related by a fixed scale

factor. The NSA problem is unusual since it appears that more than one

length scale is necessary to describe the critical behavior. In other

words, the correlation length along the layering direction and

transverse to the layering direction appear to develop at different

rates with reduced temperature. Anisotropic critical behavior is also

expected for directed percolation 2 0 and possibly for (3 x 1) structures

adsorbed on uniaxial surfaces.2 1

Following the analysis of Lubensky and Chen2 2 we now develop the

theory of anisotropic scaling at the NS A transition. The starting

point is to introduce two correlation length exponents via

ii tl and i Itl 2.3.1

For isotropic scaling vV, otherwise., a dimensionless representation

of the anisotropy is given by

2.3.2

If the elastic constant K remains constant at the transition,

it must appear explicitly in the scaling relationships. This provides

the following homogeneity relationships,
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G(q 11,q ,t,K1 ) =b (b( q bq btb- K,) 2.3.3

2-nn D O +) q.LI 2/vsDii(qll1qltK) b ijq(b )q ,b ,b t,b-K1 ) 2.3.41Jl +U) _(d-1 1/vt

1/u
f(t,K1 ) b-( +) b-(d-1)f(b lt,b-K ) 2.3.5

where b corresponds to the length rescaling. It can be shown that

From these homogeneous relations a number of new scaling

relationships are found. The isotropic scaling relationships between

r, v, 5 transform to

- (2-nl)t n -= (2-nI) * 2.3.6

If nnlln then the scattering in different directions should have

different line-shapes. The hyperscaling relationship Eq 1.3.22 must be

modified to

2-a v+2v 2.3.7

in three dimensions. These homogeneous relations also predict the

scaling form of the elastic constants for K2 and K in agreement with

the Schmid analogy to superconductivity and relationships for B and D

which are

6K2 E n 2.3.8

2

6K, 2.3.9

11
B = , 2.3.10

D 1 2.3.11
11,

in three dimensions.
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When the renormalization group is applied to the De Gennes free

energy, the following recursion relationship for K is obtained 2 2

-~ - -(¢-ji)K 2.3.12

Furthermore, at the fixed point K must not depend on the scale,

therefore, at least one of the following conditions must be satisfied

for K, which is the renormalized K,.

1) K = 0 2.3.13

2) K = X 2.3.14

3) e 2.3.15

If K =O then the De Gennes free energy reduces to the superconductor

free energy with vlul . For all K * 0 and z w the last case must be

satisfied. Anisotropic scaling clearly predicts that for non-zero K1

Vlz =2v . An important consequence of this and Eq 2.3.8 and Eq 2.3.10

is that the elastic constants B and K2 do not depend on temperature.

De Gennes has pointed out the analogy between the superconductor

phase of a metal and the smectic A phase.2 3 The director and the

smectic order parameter couple in the liquid crystal case in the same

manner that the electromagnetic vector potential and the superconductor

order parameter couple. However, there are several important

differences between the superconductor and the smectic A phase. Due to

the lack of the q term in the free energy, in contrast to the

superconductor, the smectic A phase does not have true long range order.

Halperin and Lubensky2 4 have proposed a gauge transformation which

restores long range order in the smectic phase. In analogy with the

superconductor this is often referred to as the superconductor (S.C.)
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gauge. Calculations of the order parameter are performed in the S.C.

gauge and then transformed back into the physical gauge.

The free energy of the smectic phase Eq 2.2.4 can be modified

such that the elastic constants C and C are equal by scaling the

lengths. This yields the smectic A contribution to the free energy

FA{Y,6n} - dxa Col V-iq + C.I(V-iq11n)WI2 + tb 2.3.16

where the total free energy must also include the nematic contribution.

The free energy of the superconductor 2 5 is given by

SC FAPAI + fd3x [C(Vxt)2+X(V x)2] 2.3.17

where the additional terms are analogous to K2 and K3 in the liquid

crystal problem. Fundamentally, the difference between the smectic and

the superconductor results from the splay elastic energy term which is

missing from the superconductor.

It is this term, K,(V.n)2 in the free energy that breaks the

gauge invariance for the smectic phase. Consider a gauge transformation

of the form

E = ?'e iq °L 2.3.18

- 6s + VL 2.3.19

u u' - L 2.3.20

where L-0 produces the familiar liquid crystal (L.C.) gauge with 6inn-0.

This L.C. gauge is mathematically troublesome since the K2 and K3 terms

increase with respect to K, as the transition is approached thus making

renormalization group calculations impossible.
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In the superconductor gauge where VA-O the phase fluctuations

which prevented long range order in the S.C. gauge are at a minimum.

There is a continuum of gauges between the S.C. and the L.C. gauges

which produces intermediate phase fluctuations.

Unlike the superconductor problem, the free energy and order

parameters are not gauge invariant. Correlation functions in different

gauges are related via the transformation

G(ir) <'(*)y'*(O)e-iqoL(r)-L(O)> 2.3.21

- GSCt()< 6-iqoL(r)-L(O)> -2.3.22

-R(r)
= GSC(r)e 2.3.23

In the limit that the phase and magnitude decouple the second step

becomes an equality. Application of the renormalization group is still

a formidable task and it is unclear how relevant the results are in

three dimensions. Recently this problem has been overcome by using a

1/N expansion which is well behaved in all dimensions between 2 and 4.26

However the calculation is only exact in the limit of large N, where

there are 2N degrees of freedom. The NSA problem corresponds to N-1

and not the large N limit but some features of the 1/N expansion are

independent of N. For instance, the thermodynamic properties such as

the specific heat and the corresponding critical exponent are

independent of the choice of the gauge.

Using the S.C. gauge Halperin, Lubensky and Ma2 7 found that to

first order in an e expansion the NSA transition should always be first

order. They predicted a first order region greater than 0.01 C.

Furthermore, by increasing the number of components of the order

parameter (N > 365.9 ) a crossover to a second order transition occurs.
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Recently Dasgupta and Halperin have shown that in three dimensions the

N4SA and superconductor transitions should be inverted XY like, that is,

the critical behavior is XY like but the temperature axis is reversed.2 8

Consequently the heat capacity amplitude should be reversed. For a

normal XY transition the heat capacity amplitude ratio A'/A, that is the

ratio of the amplitude below TC to that above, should be 0.9.29 However

for the NSA and superconductor transitions, which should be inverted XY

like, the ratio should be 1.11. Due to the inherent anisotropy in the

correlation lengths, heat capacity might be the best means of

identifying the universality class. A comparison with heat capacity

results is forthcoming in chapter 3.

Recently, Lubensky and coworkers have investigated isotropic

scaling in a continuum of gauges between the S.C. and L.C. gauges. The

process of gauge transforming back to the physical (L.C.) gauge always

introduces anisotropy in the critical exponents. It is important to

emphasize that even though anisotropy exists in the physical gauge, the

fixed point is still isotropic in the non-physical gauge. Accordingly,

the x-ray correlation lengths are not fundamental, rather, the

correlation lengths in the superconductor gauge are. Transforming back

into the physical gauge yields the correlation lengths as measured by

x-rays. The inverse correlation lengths in the two gauges are related

by additive constants and Z11

Xx-1 , -1 + -1 2.3.24
11 ILI I

x-E + -1 2.3.25

Close to the transition where the correlation lengths are large the

behavior is dominated by al, and .' These are given by
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a1 KBT -2 2_ 2-2 I1 v 2[1S _S __L] 1+S K32 -2.3.26

and,

-t X rL .+S\ 2.3.27
At small length scales (large reduced temperatures) the x-ray

correlation lengths are identical. Thus, if the 3D inverted XY

classification is correct, then, the x-ray correlation lengths should

diverge with v lv VXy. However, as the transition is approached, 

starts to effect at K3=KS 2. This has the effect of reducing v in

the X-ray gauge to Xy/2 close to the transition. For typical values of

the elastic constants this crossover occurs at a reduced temperature

between 10- 4 and 10- 3 which is in the middle of the experimentally

observable region. Eventually ,, undergoes a crossover, Eq 2.3.24, and

the x-ray correlation lengths diverge with respect to each other at a

rate given by

X)2

- 2 2.3.28
X

asymptotically close to the transition. According to the theory, the

bend and twist elastic constants should exhibit identical behavior with

VXY x6K2 = 6K, t X Y In closing, for the isotropic fixed point l, K 2,

and K diverge with an exponent vXy whereas x diverges at a slower

rate. The anisotropy in Ex is only a result of the transformation back

to the physical world.
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Halsey and Nelson 30 have considered a new class of NSA

transitions in which the nematic fluctuations are confined to an axis

rather than a plane. Unlike the anisotropic fixed point where v-2v 

they conclude that vlt=3/2vm. Therefore, by reducing the phase space

for fluctuations the anisotropy of the phase transition is reduced.

This finding supports the notion that the degree of anisotropy is

connected with the coupling of the nematic and smectic order parameters.
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2.4
Dislocation Mediated Melting

Kosterlitz and Thouless31 found that the unbinding of bound

dislocations may provide a mechanism for melting in two dimensions.

Helfrich 3 2 investigated the possibility that dislocations may drive the

N-SA transition. Unlike the two dimensional problem, the NSA

transition is characterized by a divergence in the size of unbound

dislocations. Nelson and Toner3 3 have shown that a smectic A with a

finite density of dislocation loops behaves like a nematic with elastic

constants K and K related to the dislocation core energies. As the

transition is approached the dislocation loops increase in size

anisotropically because of the peculiar elasticity of smectic

dislocations. As a result, the mean distance between dislocations which

acts as the correlation length must also grow in an anisotropic manner

with vll 2v

In the high temperature expansion of an arbitrary spin 1/2 model

the partition function is formed by counting the graphs of loops. 32

which inverts the high and low temperature axis. These loops must be

closed to have non-zero weight. For the smectic A phase, the loops

correspond to dislocations loops where the sign of the spin is the

direction of the Burgers vector.

There are two basic types of dislocations which can occur in a

smectic A crystal. Dislocation lines normal to the layering direction

are edge dislocations whereas dislocation lines parallel to the layering

direction are screw dislocations. Segments of both screw and edge

dislocations are shown in figure 2.4.1. Of course, any real dislocation

loop can be composed of both edge and screw dislocations.



Figure 2.4.1

Top: Edge dislocation in a smectic A crystal

Bottom: Screw dislocation 
in a smectic A crystal

- 64 -
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The self energies per unit length for edge and screw

dislocations have been calculated by Kleman and coworkers 3 4 and are

given by,

W Kd2 2.4.1
Wsedge = rc,edge

Bd4

Ws, screw 128 3r2 .4.2
C,screw

where d is the molecular size and rc is the core radius for the two

types of dislocations. In normal solids the elastic energies diverge

slower, often logarithmically with the size of the strain field. The

strain field of two interacting edge dislocations with one field at the

origin and the other at (x,z) is

Wl edge t sd eL Til 2.4.3

per unit length. The region of maximum strain generated by these two

dislocations is bounded by the two parabolae given by

z = ± - 2.4.4

Strain fields from screw dislocations need not be considered since they

fall off much slower then edge dislocations.

A transition to a state where infinite loops grow3 2 is suggested

by Helfrich. Entropic considerations promote large loops whereas the

core energy favors smaller loops. The free energy for a loop of length

N is approximated by

F = NE c- KBTh(n) ] 2.4.5

where Ec is the core energy and n is the coordination number. If the
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core energy is temperature independent then the free energy can be

expressed as

Tc-T
F = N T KBTcn(n). 2.4.6

Since free energy should be of the order of KBT the maximum chain length

is approximated by

Tc

Nx ToT 2.4.7

Thus, at the transition the size of the dislocation loops diverge.

In summary, Helfrich concludes that the NSA transition may be

driven by the divergence of the size of dislocation loops. The strain

field generated by these loops is parabolic in nature. It is this

parabolic elasticity which is the foundation for the predictions of

Nelson and Toner including the relationship vll 2vA.

Nelson and Toner have included the dislocation contribution to

the free energy of the smectic phase. By including a dislocation

density to the smectic free energy given by

FS(q l, qa) Bq, + K q . 2.4.8

the free energy can be expressed in terms of K and B, and the core

energies for edge and screw dislocations, Ee and E. The displacement

of the layers has the usual thermal fluctuation component plus an

additional term arising from dislocations. A smectic with dislocations

has the same functional form as the nematic where the Frank elastic

constants take the form
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K2 - 2E s 2.4.9

Ka = 2Ee . 2.4.10

If the correlation lengths reflect the distance between

dislocations then it is reasonable to assume the elastic constants

should scale as

K2
= i 2.4.11

and

K3 z 2.4.12

This is exactly the same result as the anisotropic prediction of Chen

and Lubensky.

For an edge dislocation, the phase difference between the

smectic order parameters on opposite sides of the region of maximum

stress defined by Eq 2.4.4 is 1800. Since this region is parabolic the

cross-sectional area contained is (zr) c r/A. The probability of

dephasing is unity when the product of the decorrelated area and the

dislocation density is one. This condition necessitates that iln scale

as F2, in agreement with the anisotropic fixed point of Chen and

Lubensky.

Toner has also carried out a renormalization group calculation

which assumes that dislocation loops are the sole excitation responsible

for the N+SA transition.3 5 He predicts an inverted XY transition with

critical exponents v11-6/5vXy and v-4/5vXy. These results have not

been confirmed by the dislocation loop calculation of Grinstein and

Toner.3 6



- 68 -

Grinstein and Toner3 6 have proposed a global picture of the

Nematic-Smectic A-Smectic C phase diagram based on the dislocation loop

theory. A new phase, N', which has long-range tilt but short-range

positional order emerges from the analysis. This phase, which might

separate the Smectic C and nematic phase, is the analogue of the hexatic

phase in two dimensions. Within the context of this model the Sm A to

Sm C and the N to N' transitions are in the isotropic XY universality

class whereas the Sm A to N and the Sm C to N' are inverted XY like. No

specific predictions for the critical behavior for the correlation

lengths are calculated for this model although the crossover form of

Lubensky may apply.
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3.0
PRIOR EXPERIMENTAL RESULTS

The NSA transition has been studied extensively via heat

capacity, light scattering, and x-ray experiments and the critical

exponents a, Y, v... have been obtained. Some early measurements were

consistent with mean-field behavior, whereas others supported 3D XY

behavior. More recent experiments are not entirely consistent with

either 3D XY or mean-field behavior although the critical exponents in a

particular material may support one of the two critical behaviors.

Recent experiments indicate that the transition is usually second order

to within a few millidegrees Centigrade; earlier experiments were unable

to rule out first order behavior. Though much progress has been made in

developing a better understanding of the NSA transition many important

issues remain unresolved. Before presenting my results, a cursory

summary of prior experimental results is presented.

Due to the inherent anisotropy of the NSA problem, heat

capacity measurements provide the most unambiguous determination of the

universality class. Heat capacity measurements have been performed on

many liquid crystal systems including the bilayer materials

4-n-octyloxy-4-cyanobiphenyl (80CB)1 ,4-n-octyl(1-4-cyanobiphenyl)

(8CB)2 and homologs of 8CB including 9CB and 10CB mixtures. 3

Measurements have also been carried out on the single layer smectic

materials 4-n-pentylphenyl-4-n-octyloxybenzoate (8S5) and homologs 9S5

and 10S54 and members of the N-(4-n-p-alkoxybenzylidene)-4-n-alkyaniline

family, 40.85 , 40.76 '7 , and 60.8.8 Johnson and coworkers heat capacity

measurements on 80CB1 found the transition to be slightly first order,

presumably because of an impurity induced two phase region. If the
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points close to the transition were ignored, they were able to show that

a=O, consistent with 3D XY behavior. More recent measurements by

Garland et. al, LeGrange and Mochel, and Hatta and Ikushima1 did not

reveal a two phase region and strongly suggested a=0.15±0.05 rather than

the 3D XY value. Heat capacity measurements in 40.8 showed that a is

the same as for 80CB, but measurements for a in 8CB gave 0.31. These

experiments do not support the 3D XY universality class.

Brisbin et al. 4 found that for the nS5 series a depends on the

nematic range with a=0 for 8S5 which has a 230C range (TNA/TNI-0.9 3 6)

and with a=0.145 for 10S5 which has a 5.50C range (TNA/TNI0. 9 8 5). They

made the important observation that these varying exponents might be

connected with a crossover from 3D XY behavior to tricritical behavior

with decreasing nematic range. Due to phase separation, however, the

data could only be analyzed for t > 104. Measurements in 40.7 6

(TNA/TNI=0.926), which extend closer to TNA, also support the 3D XY

value for a. However, the ratio of the heat capacity amplitude above

TNA to the amplitude below A/A'l1.035 does not agree with the inverted

3D XY prediction (see section 2.3). In mixtures of the bilayer

materials 7CB and 8CB, Thoen et al. also report consistency with the 3D

XY value of a. These measurements suggest that 3D XY behavior occurs

for large nematic ranges, trlcritical behavior for short nematic ranges

and crossover behavior for intermediate ranges. The crossover

temperatures, given by the McMillan number TNA/TNI, are not universal

numbers for different systems.

Most of the calorimetric measurements have used an ac-

calorimeter because of its superior sensitivity at second order

transitions but this technique is unreliable for first order
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transitions. Recently Thoen et al. 3have measured the heat capacity

for several nCB materials and mixtures using an adiabatic scanning

calorimeter. This technique is ideal for NSA tricritical region since

it is capable of separating the latent heat from the pretransitional

fluctuations. Furthermore, the sample can be mixed to prevent impurity

gradients from occurring. They conclude that 9CB (TNA/TNI-.994) is

still second order but very near the tricritical point with a-0.50. As

the nematic range is shortened by mixing 10CB with 9CB the latent heat

steadily increases from zero. The heat capacity ratio, A'/A, is still

close to unity, whereas it is predicted to be 3.56.9

Heat capacity measurements on the A transition in helium1 0 are

of particular relevance to the NSA transition because both are

predicted to be in the 3D XY universality class, therefore, they should

exhibit the same critical behavior. Recent measurements by Lipa and

Chui10 report that a - -0.0127i0.0026 and A/A' - 1.058_0.004.

Furthermore, these measurements confirm renormalization group

predictions for the 3D XY model of --0.007±0.006 and A/A'u1.03.11

According to the hypothesis of two-scale universality (section

1.3), the free energy per correlated volume should have the same

constant value, independent of temperature, for all systems belonging to

12the same universality class. 2 For the NSA transition this leads to

C itt 2 2 - constant 3.0.1

and the anisotropic scaling relation

V + 2v - 2 - a . 3.0.2

For all materials in which there are both detailed heat capacity and

correlation length data, Garland and coworkers7 have shown that Eq 3.0.2
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is satisfied within the combined uncertainties. Lubensky argues that if

the anisotropy of the x-ray exponents results from the lack of long

range order in the smectic phase (section 2.3), the relevant

relationship is 3vn1 -2-a, however, experimental results do not support

this prediction. In a comparative study of 80CB and 40.8, which have

have the same critical exponents, Birgeneau et al. found that both

materials have a universal constant. There is as yet no evidence that

this constant remains universal for materials with different critical

exponents.

Light scattering probes the long wavelength thermal fluctuations

of the nematic director. From the DeGennes free energy (section 2.2)

and the equipartition theorem the dispersion relations for these

fluctuations can be derived. By choosing a suitable coordinate system,

two independent modes for the fluctuations in the nematic phase are

obtained

KBT
<16na(q) l >W > q2 K-; t-1,2 3.0.3

where a denotes the mode. In the smectic phase, the smectic elastic

constants B and D modify this result. Since the director fluctuations

correspond to dielectric fluctuations the scattered intensity is

directly proportional to this expression.

According to the analogy with fluctuation diamagnetism (section

2.2) the divergent part of the elastic constants K3 and 6K2 should

scale as ll and . 2/EL, respectively. However, to analyze the light

scattering data close to the transition, Jahnig and Brochard 1 3 have

included the crossover effect from hydrodynamic to non-hydrodynamic

behavior. Using their results, in principle, the correlations lengths
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corresponding to the smectic fluctuations iU and 5A can extracted from

the measured intensity. In practice, the K2 behavior is difficult to

obtain due to the divergence of K3 as is obvious from Eq 3.0.3 when

ql*O. Lubensky predicts that if the transition is isotropic then

6K2 6K3 = n,, whereas A as measured by x-rays should not be

proportional to in (section 2.3). Nelson and Toner predict that

E11 c I2 (section 2.4) if the transition is mediated by dislocations,

implying that K2 and B are finite at the transition. To distinguish

between the two theories reliable measurements of K2 and B would be

extremely valuable. The critical behavior of the elastic constants can

also be obtained from Fredericks transition measurements.

There have been numerous measurements of K in a variety of

materials, however, there is little consensus as to the exact critical

dependence of the elastic constants. The early experiments did not

consider the crossover to non-hydrodynamic behavior close to the

transition, therefore, these measurements did not obtain the true

critical behavior near the transition. For CBOOA, Chu and McMillan14

reported mean-field behavior for K2 whereas Cladis 1 5 found that the

exponent for K3 varied between 0.5 and 1.0. More recent measurements by

Litster and coworkers1 6 have included these crossover effects in the

analysis and suggest that K3 is proportional to E1 as measured by x-

rays for 80CB1 6, 8CB1 6, 40.817 and 40.77. On the smectic side, both B

and D enter into the dispersion relations, hence, they can be obtained

from light scattering data. The value of B, obtained in this manner,

vanishs with an exponent 0.30 ± 0.05 for 80CB whereas D vanishes as

0.50 ± 0.03 16 The exponent for B in 80CB has been confirmed by Fisch

et al. who measure B directly through a surface scattering scattering
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technique, however the absolute magnitudes differ. The critical

exponent corresponding to B is not consistent with any of the theories

of the transition presented in chapter 2. Solomon and Litster 1 9 find

that the mode 1 light scattering data, which give B when K3 qn is small,

go to zero at a temperature which is approximately 0.0500 C higher than

the transition temperature extracted from the mode 2 data. This is

because the K3 term contributes on both sides of the transition thereby

complicating their determination of B.

In the early 1970's McMillan pioneered the use of x-ray

scattering as a probe of the smectic fluctuations in the nematic phase.

For p-cyanobenyzylidene-amino-p-n-octyloxybenzene (CBAOB)2 0 which has a

250C nematic range, he found that the scattering could be modeled by an

anisotropic Lorentzian modified by a q2-5 rather than the usual q2

term. The correlation lengths EU and 5a diverged anisotropically with

vll=.79 and v0.60 respectively and Y=1.49. These measurements did not

confirm either the predictions of mean-field theory or the 3D XY model.

Over the past several years x-ray measurements have been

performed on a number of materials at M.I.T. with much better

instrumental and temperature resolution than those of McMillan. The

measurements on CBOOA2 1 , 8CB2 2 and 80CB22 confirmed the predictions of

the 3D XY model for the susceptibility and for &,l however, i; diverged

at a somewhat slower rate. Although a Lorentzian was adequate to

describe the longitudinal scans, these studies found that a fourth order

term was necessary to describe the transverse scattering.

Recently, Safinya and coworker have conducted a detailed study

of the N+SA transition near the nematic-smectic A-smectic C

multicritical point in mixtures of 8S5 and 7S5. For pure 8S5 they found
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that both Y and v 1 were greater than the values predicted by the 3D XY

model by 15-20% although uv agreed with the predictions of this model.

It was suggested that this behavior was related to the nearby smectic C

phase, however, the measurements to presented in the next chapter

strongly suggest that these larger exponents are related to thd longer

nematic range in 8S5 compared to that in 8CB and 80CB. It is

interesting to note that McMillan's original measurements on CBAOB,

which has a comparable range to 8S5, gave critical exponents which are

close to those in 8S5.

The phase diagram of 80CB and 60CB mixtures is unusual in that

the nematic phase is reentrant upon cooling. Pershan and Prost2 3 have

postulated that the parabolic shape of the reentrant phase diagram

results from an optimal density for the formation of the smectic phase.

X-ray measurement by Kortan et al.2 4 have shown that the effective

correlation length critical exponents increase as the nose of the phase

diagram is approached. This behavior has been modeled with a Landau-

Ginzburg free energy expansion which incorporates the shape of the phase

diagram into the second order term of the expansion. One consequence is

that the effective critical exponents double at the critical endpoint,

however, the critical exponents vt=0.76, v,-0.62, and Y1.49 have been

extrapolated for the case where the density is only weakly temperature

dependent. At all concentrations the critical behavior in the reentrant

nematic phase is nearly identical to the behavior in the high

temperature nematic.
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4.0 EXPERIMENTAL TECHNIQUES

4.1 X-RAY SCATTERING

In all scattering experiments the goal is to measure a

particular aspect of the structure factor S(q,w) where q is the momentum

transferred to the sample and is the energy transferred(wE/b).

Spectrometers measure the convolution of the "real" scattering profile

with the instrumental resolution as discussed in section 1.2. An "ideal

spectrometer" would have perfect resolution, however, even if this were

possible it would be useless since x-ray sources are never perfectly

collimated. This "ideal spectrometer" raises the issue that a

compromise must be struck between resolution and signal. This

compromise must be made on an individual basis for each experiment.

The width of the smectic structure factor in the nematic phase

is inversely proportional to the smectic correlation length in the

nematic phase. Hence, the resolution of the spectrometer provides a

cutoff for the largest resolvable correlation length. Previous N+SA

measurements have shown that correlation length can grow continuously to

a micron, therefore the spectrometer resolution must be -10 4A- 1 to

resolve such large lengths. To achieve such high resolution with

appreciable count rates triple-axis spectrometers were used. An

excellent review of the set-up is found in theses by Kaplan1 and by

Safinya.2 An identical set-up is used for these measurements and is

sketched in figure 4.1.1. The "spectrometer" refers to the entire x-ray

scattering apparatus. It includes the x-ray source, monochromator,

analyzer, rotation stages, detection electronics and control

electronics. Before describing the triple-axis set-up in detail I will
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review some of the individual components.

A) X-RAY SOURCES

Since Wilhelm Roentgen first produced x-rays in 1895 using a gas

discharge tube considerable progress has been made in devising better

x-ray sources. Present day tube sources, as developed by Coolidge,

utilize a hot filament to produce an electron beam that bombards a metal

target. This gives rise to bremsstrahlung radiation as well as the

characteristic radiation from the target which is usually copper,

molybdenum, iron, cobalt or gold. It is also possible to excite these

characteristic lines using atomic beams from accelerators. Radiation

produced from radioactive isotopes such as Fe5 5 do not provide adequate

intensity for scattering experiments. Recent advances allow the dipole

radiation from synchrotron sources to be collimated to produce photon

fluxes many orders of magnitude more intense than conventional sources.

Unlike the visible counterpart, the development of x-ray lasers is still

on the drawing board.

The majority of the experiments in this thesis utilize a Rigaku

Rotaflex RU-200 as an x-ray source (preliminary experiments used a

General Electric XRD-5 tube source). A hot filament at a large negative

potential provides electrons that are focused on the anode. At full

power the electron current is 200 ma across a 40 kilovolt potential and

is focused onto a 0.5 by 10.0 mm 2 spot on the anode. By rotating the

anode at 3000 R.P.M. the heat is spread over the anode surface and

removed by circulating cooling water in the interior.
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The copper K lines were used for all of these measurements

since they are more intense than the other intrinsic copper lines. An

initial valence state with a vacancy in the s level with a final state

vacancy in the 2p shell gives rise to the K lines. There are two lines

resulting from the 2pi and the 2p final states corresponding to K and

Ks2 with energies 8048 ev. (A-1.54056A) and 8027 ev. (-1.54439A)

respectively. The K1 line is more than twice as intense as the K2

line. The finite lifetime of the initial and final states yield a

Lorentzian energy distribution where these widths are 2.66 ev and 3.77

3 Additionally, there is a 1% background due toev for K 1 and K2'.

bremmstrahlung.

B) Bragg Reflection

The x-rays emitted from a rotating anode target have no

collimation and are polychromatic. Bragg reflection from single

crystals provide collimation and improve the monochromaticity of the x-

ray beam. Reflection from a crystal occurs when the the incident beam

satisfies the Bragg condition (-2kosine). This happens when the

scattered wavefronts are in phase though the scattering amplitude

diminishes as the incident wave is reflected back. Effectively, only a

finite number of scattering centers contribute to the Bragg reflection.

As a result, the reflected beam has a finite angular width (Darwin

width) rather than the characteristics of a delta function. Figure

4.1.2 shows the calc'ulated angular dependence assuming no absorption.

Though the function is flat topped the wings are Lorentzian (q2 ) in

profile.
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The penetration depth depends on the scattering cross-section of

the crystal lattice and on the incident and reflected angles. Higher

order reflections always have smaller Darwin widths because the beam

enters the crystal at a steeper angle. Asymmetrically cutting the

crystal (i.e. not along an hkl plane) also modifies these angles,

therefore, the Darwin width can be changed in this manner. Another

useful technique is to cut a channel into a single crystal so that if

the Bragg condition is satisfied for the first bounce it will also be

satisfied for successive reflections. Although these channel cut

crystals have the same Darwin widths as their single crystal

counterparts, each additional bounce reduces the wings of the

distribution function by a factor of q. This feature is extremely

useful since real scattering profiles often have q2 tails making it

difficult to resolve the profile from the instrumental resolution.

Perfect crystals perform two distinct and essential features in

x-ray set-ups. For a well collimated polychromatic source a single

crystal acts a monochromator since only a narrow range of incident

photon energies are reflected. Likewise, for an uncollimated

monochromatic source a single crystal acts as an analyzer since rays

will be reflected for only a small range of the crystal orientation. In

either case, the distribution of reflected rays is given by the

intrinsic Darwin profile.

C) Triple Axis Spectrometers

Triple axis spectrometers were used for all the measurements

reported in this thesis and the essential elements are drawn in figure

4.1.1 and detailed below. It is important to note that the spectrometer
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described in this thesis only has two axes, hence, the scattering

profile can only be measured in a plane. The in-plane elements of the

spectrometer are presented first followed by a discussion of the

vertical component which is out of the scattering plane.

A small fraction of the total radiation emitted from the

rotating anode leaves the machine vacuum through two 1 cm Be windows on

either side of the anode. The beam is controlled by an on/off

electromagnetic shutter and travels to the monochromator assembly via a

flight path to eliminate air scattering. The beam collimation in the

scattering plane is limited by the size of the filament image on the

anode and the horizontal slit S1 in front of the monochromator. Though

the filament spot is .5 mm by 10 mm, viewed at 60 its effective size is

only .5mm by 1mm. When the entrance slit separation is matched to the

effective spot width (1mm), the collimation in the scattering plane is

3x10-3 radians HWHM. (This is for a 30 cm separation between the anode

and the monochromator entrance slit.) For a perfect monochromator

crystal, i.e. no mosaic, incoming rays will be reflected in an energy

range limited by the collimation, =3x10 3x8,000/tan6 ev - 100 ev for

copper K x-rays. This is adequate to reject most of the bremmstrahlung

and the KB although it is inadequate to separate out the K radiation

from the K 2 radiation since these lines are only 21 ev apart. The

horizontal exit slit after the monochromator serves only to reduce the

background reflections and is set such that it is marginally wider than

the beam.

The reflectivity and the integrity of the monochromator crystals

diminish with time from radiation induced surface oxidation. This

effect is manifested by slight changes in the instrumental resolution



- 89 -

over the course of several months. Translation to a different crystal

position or etching the entire crystal restores the crystal performance.

Intense radiation is also capable of knocking out atoms from the crystal

lattice to produce color centers. This effect is particularly

pronounced for Lithium Fluoride crystals which turn yellow after only a

few days exposure.

The next spectrometer element is the goniometer assembly. The

goniometer, a Huber 404, has two concentric rotations stages that can be

set to an accuracy of .0005°. These stages control the sample and the

detector arm rotation. Adjustments are made such that the sample

rotation is concentric with the goniometer axis via translation stages

that sit on the goniometer. The entire goniometer assembly is

positioned so that the x-ray beam passes through the goniometer's

rotation axis. At the sample position the beam width is a few

millimeters larger than the effective filament spot size since the K 1

and K 2 x-rays disperse. Vertical slits after the monochromator define

the beam height.

The purpose of the analyzer is to resolve the angular

distribution of x-rays scattered from the sample. The analyzer assembly

consists of a slit before the crystal to reduce the background and a

crystal mounted on a precision rotation stage attached to the goniometer

arm. X-rays Bragg reflected from the analyzer are counted by a NaI

scintillation detector. Since the sample acts as a point scattering

source of nearly monochromatic x-rays the detector angle is a measure of

the momentum transferred to the sample. In contrast to neutron

scattering, where the analyzer can also measure the energy lost or

gained by the sample, the x-ray analyzer primarily acts as a collimator.
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The analyzer also serves a secondary role of reducing the dispersion

from the finite width of the copper K lines.

The analyzer crystal is aligned such that it is parallel to the

monochromator crystal at the zero angle position. With this

configuration the dispersive nature of the monochromator crystal is

exactly canceled by the dispersion of the analyzer at the arm zero

position (2e-0) as shown in figure 4.1.3. The angular dispersion

results from an incoming energy distribution and Bragg's law. If, on

the other hand, the analyzer crystal reflects the main beam in the same

direction as the monochromator crystal then the dispersions from each

crystal add. This configuration is useful when the sample induced

dispersion cancels the combined dispersion from the monochromator and

analyzer crystals, this is labelled the W-configuration.

Bremsstrahlung with wavelength A/2 is eliminated by the

monochromator for Si(111) and Ge(111) monochromator crystals since the

222 reflection is not allowed. Photons with wavelength A/3 are

reflected by Ge(lil) and Si(111) crystals but the detection system pulse

height analyzer is sufficient to reject these events.

D) Spectrometer Resolution

The three dimensional resolution ellipse (section 1.2) results

from the uncertainty in the magnitude and direction of i and kif This

is calculated explicitly by convoluting ki with kf. In the scattering

plane the resolution is primarily due to the Darwin widths of the

monochromator and analyzer crystals with additional broadening due to

the dispersive nature of the spectrometer. Out of the

spectrometer/scattering plane the resolution is determined by the
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vertical slits before and after the sample and is independent of the

choice of monochromator and analyzer crystals.

Ideally, the resolution is the convolution of the Bragg

reflections from both crystals. The arm zero rocking curve measures the

non-dispersive contribution to the longitudinal in-plane resolution.

This results from the intrinsic Darwin widths of the perfect germanium

or silicon monochromator and analyzer crystals. Because of the q2

nature of the Darwin profile a Lorentzian provides a fair fit to the

profile. Typical arm zero scans for silicon(111) and germanium(111)

spectrometers are shown in figures 4.1.4 and 4.1.5. The widths of the

profiles are .0035° and .00650 full-width-half-maximum(F.W.H.M.)

respectively.

The arm zeros are fit to two functional forms: a simple

Lorentzian and the sum of several Lorentzians. Figures 4.1.4 and 4.1.5

clearly show that a single Lorentzian given by

I(e) - Io 4.1.1
(e-e 0 ) 2+6e 2

fails to fit the arm-zero scattering perfectly. Safinya improved the

fit by adding correction term to the Lorentzian so that at intermediate

6 the scattering falls off as q. The shape of the ideal Darwin profile

has q2 wings and the convolution of the two profiles should also have q2

tails. It is the flat center region of the profile that differs from a

Lorentzian. By adding several Lorentzians displaced in the

theoretical profile is better approximated. The advantage of this

scheme will become apparent when the convolution with the theoretical

line-shape is performed (see Appendix 1).
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The sum of three Lorentzians adequately describes the profile

since the addition of more Lorentzians does not significantly improve

the fit. For arbitrary Lorentzians this would require 9 parameters,

however, only a separation parameter as is statistically significant.

The arm zero is fit to

F 1 + 1 + 1 1 4.1.2
- -e(6 s)i+682 (-)+6e d o00+a)2+ 62e 

and best fits to the data are plotted in figures 4.1.4 and 4.1.5 as

solid lines. These fits have a goodness of fit parameter about ten

times better than a fit to a single Lorentzian.

The spectrometer resolution function at non-zero angles contains

two peaks corresponding to the two copper K lines. At the arm-zero it

is impossible to distinguish these lines because there is no dispersion.

However at 30, a typical angle for the smectic A (001) reflection, the

two peaks are separated by 0.007o. For a silicon spectrometer it is

possible to resolve these lines since the 28 resolution is 0.00350

F.W.H.M., however, for the germanium set-up the two peaks merge into a

single peak since the 28 resolution is 0.00650 F.W.H.M.. The intensity

ratio between the two peaks is always close to the actual value of .43

and is measured for each line-up.

The resolution for each of the two copper K lines is calculated

from the arm-zero fit and the intrinsic energy width of the lines. The

energy broadening can be calculated by differentiating Bragg's law and

gives,

Ae tan(e) A 4.1.3

where AE is the energy width of the line and E is the x-ray energy of

I
I
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Figure 4.1.4

Arm-zero profile for a germanium(111) line-up with the open vertical

set-up. The best fit to Eq 4.1.1 (solid line) gives 68 - 0.00240 with

X2 - 65. The best fit to Eq 4.1.2 (dashed line) gives 68 - 0.00190 and

8s - 0.00110 with x2 - 5.
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Figure 4.1.5

Arm-zero profile for a silicon(l1 ) line-up with the open vertical set-

up. The best fit to Eq 4.1.1 (solid line) gives 68 - 0.00140 with

X2 - 12. The best fit to Eq 4.1.2 (dashed line) gives 60 - 0.00120 and

as 0.00080 with X2 - 12.
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the line. Since the energy distributions of the K lines are

Lorentzian, the angular broadening must also be Lorentzian with the

width given by Eq 4.1.3. The uncertainty in 26 at the scattering

position must be the convolution of the uncertainty in 28 at the arm-

zero and the dispersive contribution to the uncertainty in 2 [see

Appendix 1. This amounts to a broadening in the 28 resolution by

=0.0010 as shown in figure 4.1.6. The transverse in-plane resolution is

smaller than the longitudinal in-plane resolution by a factor of sine,

hence for all practical purposes a delta function description is

adequate.

The resolution out of the scattering plane is the convolution of

the incoming vertical distribution with the outgoing accepted

distribution. The distribution of i in the vertical is limited by

vertical slits after the monochromator which produces a square

distribution function. For most of the experiments reported here the

distribution of if is determined by the vertical acceptance of the

detector - 1cm which has a square acceptance function (open vertical

configuration). The vertical divergence of Ri is matched to the

acceptance of kf by adjusting the exit slits after the monochromator

such that the detector is just fully illuminated at 2-0. Hence, the

vertical resolution function should be modeled by a triangular function

since it is the convolution of two square waves of equal width.

To measure the vertical resolution a perfect crystal is placed

in the sample position. By rocking the crystal the intensity verses

tilt angle is measured. The vertical component is calculated from

geometry and Bragg's law. Figure 4.1.7 shows a typical measurement of

the vertical resolution function. The vertical resolution may be
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Figure 4.1.6

The dashed line is an arm-zero profile for a silicon line-up. The solid

line is the calculated resolution at 2e8 3.0o.

/

1.0

I
.,

.e

L

.,. -1.0

.0p

0.8

0.6

0.4

0.2

0

-10 10



- 98 -

Vert ical

-0. 08 -0. 04

Resolution

0
X-1

0.04

Figure .1.7

The vertical resolution function as measured by a LiF (220) crystal in
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equally well modeled by a triangular or a Gaussian function. For this

configuration the vertical resolution is typically 0.05A-1 H.W.H.M.

which is much broader than the in-plane resolution.

To verify that the NS A line-shape does not depend on the

vertical resolution several experiments were performed with better

vertical resolution. Better resolution is obtained by placing Soller

slits (parallel metal plates) before the analyzer. In a similar manner

to the "open vertical" configuration, the divergence of the incoming

beam is matched to the Soller slit acceptance with the vertical

monochromator exit slits. This yields a vertical resolution of .012A- 1

H.W.H.M., a factor of 4 better than the "open vertical configuration".

E) CONTROL ELECTRONICS

During the last several years of data acquisition the NSA

scattering profile has been measured at over 1000 temperatures for the -

20 samples studied. Furthermore, for each profile the x-ray flux is

counted in a period from one to several hundred seconds at 100 different

goniometer angle settings. To accumulate this vast quantity of data

nearly all aspects of the data collection and analysis have been highly

automated. The back-bone behind this effort is a PDP 11/34 computer

connected to a CAMAC crate for data acquisition and control.

Figure 4.1.8 shows the block diagram of the various electronic

components utilized to collect data. The analyzer and sample angles are

set by stepping motors connected to the goniometer through 10/1 gear

reducers. A pulse train of length n is output by the pulse generator,

where n is the number of steps necessary to reach the desired position.

The pulse trains are connected to chopper type stepping motor drive
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units which provide uniform acceleration and deceleration and current to

drive the motor coils. For each step received the goniometer angles

move .00050°.

The counting circuit works as follows: X-rays strike the

detector consisting of a NaI scintillator, a photomultiplier tube and a

preamplifier. An electrical pulse is generated for each incident x-ray,

with the pulse height proportional to the incident energy. A single

channel analyzer (SCA) reduces the noise background to -.2 counts per

second. The output of the SCA goes into the hex scaler and is gated for

a fixed period of time by the timing generator. One advantage of CAMAC

is that interrupts are generated when a task is completed allowing the

computer to run other processes in the interim.
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4.2
Temperature Control, Alignment and Sample Preparation

A) Temperature Control

There are many constraints placed on the design of the oven used

in these experiments. The oven must be as small as possible since the

magnetic field is inversely proportional to the pole piece separation.

To accomplish this and achieve excellent temperature control a custom

made two stage oven was constructed as shown in figure 4.2.1. The

primary advantage of this oven over an earlier design by Safinya is the

ability to evacuate the oven or flow controlled amounts of N to

stabilize the transition temperatures. This oven was used for all

measurements except the 40.7 and 9S5 experiments which used Safinya's

oven.

The oven is constructed from two concentric brass cans, 1.0 and

1.5 inches in diameter that are 2.0 and 3.375 inches high. These cans

are isolated from one another by 1/8 inch stainless steel tubes Two o-

rings provide a vacuum seal between the outer can and the beryllium

cylinder. An inner beryllium cylinder helps the inner oven maintain a

constant temperature over its entire surface which tends to minimize

surface cooling of the sample. The sample cell is attached to the

bottom of the inner vessel via an aluminum support. Temperature

gradients across the illuminated sample region must be considered to

determine the temperature resolution of these measurements.

Vertical temperature gradients are most likely to influence the

results since the beam is much larger and the oven less symmetric in

this direction. Since the scattering at the q vector corresponding to

the smectic A phase increases sharply at the NSA transition it provides

/
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Sketch of two stage liquid crystal oven. The' tubes at the top allow the

oven evacuation or N2 gas to flow. Two o-rings provide a vacuum seal

between the outer can and the beryllium cylinder. (Kevin Evans-

Lutterodt was instrumental in designing the oven.)
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a probe of the local transition temperature. By adjusting the vertical

exit slit after the monochromator different parts of the sample .an be

illuminated and the associated transition temperatures measured. Much

to our surprise the transition temperature for a sample of 9CB differed

by 0.0200C from the top to bottom of the sample. By using just the top

or bottom inner heater the transition temperature gradient changed to

either 0.0100 C or to 0.0300C. If the T gradient results from a real

temperature gradient then adjustment of the heater power would have a

much more pronounced effect. Therefore, this 0.0200C gradient is due to

an impurity gradients within the sample. Additional experiments on

substances less susceptible to impurities allowed us to establish that

the temperature gradient across the illuminated sample volume at 500C is

less than 0.0010C!

Both stages are temperature controlled by independent circuits.

The heater coil power amplifier is controlled by the output voltage

generated by a thermistor bridge with a filtered integrator circuit.

This circuit adjusts the heater power until the error voltage generated

by the bridge is nulled. The oven temperature is varied by manually

changing the resistance on one leg of the bridge. Control about this

set-point is obtained by a computer generated offset voltage added to

the bridge error voltage. The circuit is balanced when the bridge

produces an error voltage that cancels the offset voltage. To minimize

the control temperature dependence on changes in the room temperature

all components were selected to have small temperature coefficients.

The voltage produced by placing an ultra stable current source

(1 part in 10- 5) in series with a calibrated glass encapsulated

thermistor mounted a few millimeters from the sample measures the
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temperature. This voltage is measured with a 5 1/2 digit voltmeter

producing 0.0010C resolution.

B) Sample Alignment

For all the experiments reported in this thesis, alignment is

obtained by magnetically orienting the liquid crystal director. Both

the electromagnet and the sample must rotate with the goniometer angle

*. A special design allows the beam to pass through the center of the

pole pieces when the magnet is rotated by over 750. The magnet,

weighing -1000 pounds, is suspended from the ceiling via a hoist, a

precision swivel bearing and a leaf spring. Early experiments used a

magnet capable of 4 kilogauss in a 1.6 inch gap. This was superseded by

a custom made commercial magnet manufactured by ANAC Inc., figure 4.2.3,

that produces a 7 kilogauss field in a 1.6 inch gap. Calibration curves

for the ANAC magnet are shown in figure 4.2.4.

The performance of the photomultiplier tube is very sensitive to

magnetic fields, especially the large field generated by the

electromagnet. To minimize this effect the detector is surrounded by

several layers of mu-metal. The susceptibility is checked by rotating

the magnet, both on and off, with the detector positioned at 26-0. With

proper shielding there is no difference and the only angular dependence

is from the increase in the effective sample adsorption with angle.

The nematic director aligns along the magnetic field direction

to reduce the diamagnetic free energy and should scale as the field

squared. The diamagnetic susceptibility varies between compounds and is

-0.15 cm3mo1-1 for most materials. 4 X-ray scattering techniques are not

capable of measuring the alignment in the nematic phase since the
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Side view of the ANAC electromagnet.
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transverse order is limited by the finite size of smectic fluctuations.

However in the smectic A phase the transverse width measures the layer

distribution directly which is the sample mosaic.

The sample mosaicity depends on the strength and the homogeneity

of the aligning magnetic field, the anchoring of the liquid crystal

molecules to the wall of the sample cell and the particular compound.

Materials with long nematic ranges such as 40.7 and 8S5 produced

excellent alignment 0.05°0H.W.H.M.. This might result from the nearby

smectic C phase in both materials that allows the molecules to

slide(tilt) easier with respect to one another or to a nearly saturated

nematic order parameter. As the nematic phase decreases in a homologous

series the mosaic worsens but is always better than 1.00F.W.H.M..

Varying types of sample cells were used (see the next section) however

no correlation was found between the mosaic and the sample cell walls.

Misalignment between the layer direction preferred by the walls and the

magnetic field often caused the peak position of the scan to shift and

the width to increase as the temperature is lowered further into the

smectic. The mosaic degraded the most for materials with the largest

thermal coefficient of expansion since many more defects must be created

for these materials as the temperature is lowered further into the

nematic phase.

C) Sample Preparation and Cells

The materials studied in this thesis have been obtained from

several sources. The nO.m samples (40.7 and 60.8) were purchased from

CPAC Organix Inc.. A second sample of 40.7 was synthesized by John

Goodby of Bell Labs. All of the fiS5 samples and the 609 samples were



- 110 -

provides through the generosity of Mary Neubert and Dave Johnson of the

Liquid Crystal Institute at Kent State University. Finally, the nCB

samples were commercially prepared by British Drug House.

Impurities are an inherent feature of all liquid crystal systems

although in most instances the most pronounced effects are to shift

transition temperatures rather than altering the essential physics.

These impurities may be neighboring homologs, adsorbed gasses, liquid

crystal fragments, solvents, other chemical contaminants or just dust.

Repeated recrystalization removes some of the contaminants, filtering

removes dust, and pumping removes the adsorbed gasses, solvents and some

of the fragments and other chemical contaminates. These shifts provide

great difficulty in determining the critical behavior close to the

transition when the drift exceeds 0.0100C per day. Furthermore, these

drifts promote transition temperature gradients across the sample.

Nevertheless, our results on 40.7 and 9CB indicate that the NS A

critical behavior is independent ,of these features when corrections are

made for the drifting TNA.

To remove impurities many of the samples were heated to the

nematic or isotropic phase under vacuum. Though this technique usually

improves the transition temperatures by removing adsorbed gasses, the

liquid crystals naturally drift downward as the gasses are readsorbed.

Since these impurities are apparently benign, pumping on the samples

provided needless complications if the sample is reexposed to air. To

reduce the TNA drift some of the measurements were performed in an

evacuated oven while others were made with flowing N2 or Argon at very

slow rates through the oven. Both of these techniques were invaluable

in stabilizing TNA. A table summarizing the sample preparations is
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presented in Appendix 2.

Several improvements were made to the liquid crystal sample

cells over the period of these measurements however all the cells used

beryllium windows. For most of the experiments the windows, 1/2" by

1/2" by 0.010", were attached to a machined aluminum cell with vacuum

epoxy. To maximize the sample scattering, the thickness was closely

matched to the x-ray adsorption length which varies between - 0.030" for

the S5 compounds to - 0.100" for 40.7. The cross-sectional sample area

was 0.35" by 0.35" with a typical volume of a few hundred micro-liters.

As described by Safinya2, these cells were filled through holes in the

top while the liquid crystal remained in the isotropic phase.

Several sample cells were constructed that enabled the

concentration to be varied by adding one of the liquid crystal

components to the existing cell mixture. This wasn't possible in

"Safinya's cell" since not all of the material added entered the sample

volume; instead some of it collected near the fill holes, hence a

precise calculation of the concentration was impossible. To minimize

this uncertainty, a slot was machined between the two fill holes so that

the new material could be added directly to the sample with a micro

pipette. The concentration was calculated from the empty cell weight

and the weight after adding liquid crystal. After a day of agitation

the transition temperature gradient was always less than a few milli-

degrees across the sample volume. The latter experiments utilized an

all beryllium cell with a slotted top and sealed by an aluminum top with

an indium o-ring. This sealed environment allowed the cell to be turned

upside down during mixing and reduced the transition temperature drift.

To neutralize the beryllium and epoxy surfaces some of the cells were
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coated with a 1% solution of

N,N-dimethyl-N-octadecyl-3-aminopropyltrimethoxysilyl chloride (DMOAP).5

This did not reduce the transition temperature drift nor did it effect

other aspects of the measurement. A summary of the sample cell

configuration is presented in Appendix 2.

For samples with downward drifting transition temperatures the

top of the cell always has a lower T than the bottom. The drift

presumably corresponds to impurities diffusing through the open top

since pumping on the oven reversed the gradient and caused T to drift

upwards. Likewise, opening the evacuated oven to air caused both the

gradient and drift direction to reverse. These effects are a

manifestation of a small diffusion coefficient 106cm2sec1, hence the

diffusion times are of order 106 seconds for a 1cm3 sample.
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5.0

SUMMARY OF RESULTS

In this chapter high resolution x-ray scattering results on the

smectic fluctuations in the nematic phase are presented. As described

in the last chapter, the spectrometer resolution is primarily limited by

the Darwin-widths of the perfect germanium/silicon monochromator and

analyzer crystals. A summary of the exact spectrometer configuration

for each experiment is shown in Appendix 2. The sample is contained in

a beryllium window cell, contained in a computer controlled two-stage

oven and aligned by an electromagnet.

For all of the scattering experiments, the scattering has been

fit to

1~ q ~ (qll qll) 0~~~ il 5.0.1S ,+ 2, (q q )2 2 + 7q 5.021

convoluted with the appropriate resolution function. This line-shape is

a Lorentzian with a fourth order correction in the transverse direction

(LFC). The details of the convolution are given in Appendix 1. Some of

the data have been fit to a Lorentzian raised to the power 1-n /2 (LPC)

along the transverse direction

S(qlq ) = -. 1 - n/2 5.0.2i /22(q -ql 0)2 + (1 + 2q.2)

convoluted with the resolution function. Both forms evolve continuously

from a pure Lorentzian , cO or n -0 to a Lorentzian squared,

c= 0.25 or hn- -2. In order to fit the data, c or n must vary, hence

the cross-section changes shape with temperature.
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Experiments were performed with different values of the aligning

field for some of the samples. Although the mosaic distribution in the

smectic phase depends on the field strength, the critical behavior in

the nematic phase does not. In the nematic phase, therefore, it is

assumed that the nematic director is always well aligned, hence, it is

not related to the mosaic in the smectic phase where wall effects are

more dominant. Thus, no corrections have been made for the mosaic

distribution.

This chapter is divided into three subsequent sections. In the

first section results are presented for 609 and 40.7. Both 609 and 40.7

have long nematic ranges (=250 C) and exhibit saturated second order

transitions with very long correlation lengths. In section 5.2 the

results for the S5 series are presented. Experiments were performed on

the pure materials 9S5, 10S5, and 11S5 as well as mixtures 8.5S5,

9.75S5, 10.2S5 and 10.4S5 where the non-integer number gives the average

chain length by weight. In section 5.3 results are presented for the

pure materials 9CB and 8CB as well as for the mixtures 9.05CB, 9.09CB,

9.14CB, 9.20CB, and 9.28CB. We find that 10S5 and 9CB are very near

their respective tricritical points. In Appendix 3 results in 60.8,

which only has a 1.0°C nematic range, are presented.
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5.1
Results in 40.7 and 609; The Saturated Limit

40.7 Results

Extensive studies have been conducted on Shiff-base liquid

crystal compounds because of their diverse phase behavior.

Unfortunately, they tend to decompose when exposed to the moisture in

air. These fragments, together with other impurities, renormalize the

interactions resulting in lower transition temperatures. The transition

temperature shifts much more rapidly in the nematic phase than in the

smectic phases. Therefore, decomposition presents the greatest

difficulty in measuring the NSA critical behavior close to the

transition.

Studies were performed on two samples of 40.7. Sample 1 was

prepared commercially (CPAC Organix), Sample 2 was synthesized by John

Goodby at Bell Labs. In sample 1, before we took measures to reduce

decomposition, the critical temperature drifted by over 0.10C per day.

To prevent further decomposition, we permanently sealed the sample cell

with a low vapor pressure epoxy (Torr Seal). This reduced the drift of

TNA to 0.0020C per day. For sample 2, the oven with Kapton windows was

modified to allow flowing argon (1 litre/hour); this also reduced the

drift to 0.0020 C per day. Because appropriate precautions were taken

from the beginning, TNA for this sample was 1.00C higher than for sample

1. Nevertheless, our results, to be presented later in this section,

indicate that the critical behavior is identical for both samples.

Using the silicon spectrometer set-up described in the last

chapter, the wave vector dependent susceptibility of the smectic
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fluctuations have been measured in 40.7. These fluctuations are

centered about the q vector for smectic layering (O,O,q n0) where

oql = .2333A- 1 for sample 1 and q = O.2339A- 1 for sample 2 as shown in

figure 5.1.1. In order to map out the critical scattering longitudinal

scans (q u0) and transverse scans (q=q; q varied) were taken for a

series of reduced temperatures t T/TNA-1 equally distributed on a

logarithmic scale.

The transition temperature, TNA, could be determined by

longitudinal and transverse scans through the (O,O,q ) peak in the

immediate neighborhood of TNA. As the transition temperature is

approached from the nematic side both scans continuously narrow due to

the diverging correlation lengths. The longitudinal width continues to

narrow until at TNA the width is comparable to the spectrometer

resolution. As may be seen in figure 5.1.2, subtle changes in the

longitudinal width manifest themselves in the depth of the dip between

the K 1 and K 2 peaks. Since the integrated intensity of the (O,O,qo)

peak increases dramatically at the transition, this provides a second

measure of the transition temperature.

The behavior of the transverse width with temperature provides

the most sensitive determination of TNA. At the transition, the width

of the transverse scan changes abruptly, by about a factor of five over

a few millidegrees Centigrade. The width, which is controlled by the

mosaic of the smectic layers, was better than 0.050HWHM. The transition

temperature, determined in this fashion, showed no hysteresis effects to

within two millidegrees.
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Longitudinal and transverse scans at a series of temperatures in the
vicinity of the nematic to smectic A transition for sample 2 of 4007.
The transition temperature (TNA) is 56.332 ± 0.003°C. The two peaks in
the longitudinal scans correspond to K 1 and K2 x-rays.
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In figure 5.1.2 typical longitudinal and transverse scans, above

and below the transitions, are shown for sample 2. The transition

temperature is taken as 56.332 0.003C which clearly brackets both

phases. The uncertainty in TNA may include a small coexistence region

or a transition temperature gradient across the illuminated sample

region.

As mentioned earlier, steps were taken to reduce the drift in

the transition temperatures. Since the shift was found to be linear

with time the actual critical temperature could be interpolated

accurately. The uncertainty in this correction always represents a

negligible error in the reduced temperature. Impurities could have the

effect of smoothing an otherwise first order transition into a

continuous transition if the impurities are quenched. Since the smectic

A phase is fluid within the plane it is likely that all the impurities

would anneal.

At equally spaced reduced temperatures on a log scale,

longitudinal and transverse scans are taken. In figure 5.1.3, top data

panels, typical scans are shown at t7.3x10- 4. The scans through q

are fit to a Lorentzian, modified by a fourth order term in the

transverse direction, convoluted with the resolution function at each

temperature (Appendix 1). A thorough discussion of the resolution

function is given in chapter 4. The fitting routine adjusts the

parameters to minimize the standard deviation between the model and the

data. In this manner, the parameters o, g l, , c and the peak

positions are obtained. It is important to note that q is a vector

with a component in and out of the scattering plane. As is evident from

figure 5.1.3, the fit gives an excellent description of the critical
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scattering with a goodness-of-fit parameter x2 typically around 2.

The scattering always falls off faster than a Lorentzian in the

transverse direction, therefore, the fit always chooses c greater than

zero. In figure 5.1.5 (bottom) the coefficient of the fourth order term

is plotted as a function of reduced temperature. Close to the

transition c is small indicating that a pure Lorentzian is adequate;

however far from the transition c approaches 0.25 implying that a

Lorentzian squared is a better description. There is no theory for this

evolution from Lorentzian squared to Lorentzian profiles. Furthermore,

the line-shape evolves so that the correlation length no longer

represents the inverse half-width of the scattering cross-section.

Although Eq 5.0.1 provides an excellent description of the NSA

cross-section when fit to the longitudinal and transverse scans through

the (O,O,qL) peak, the universality of this form can not be ascertained

from these scans alone. In order to probe this further, transverse

scans through (0,0,0.99q ) and (0,0,0.98q 0) and longitudinal scans

through (0.1q O,0,q 0) and (0.2q 1 ,O,q,,) were taken at several reduced

temperatures. In figure 5.1.3 the results of these scans are shown at

t-7.3x10 . The solid lines are fits to Eq 5.1.1 using the parameters

obtained from fitting the scans through (O,O,q ); the dashed lines

involve slight adjustments of the intensity and peak position to

optimize the fits. From these figures, it is apparent that the cross-

section is nearly adequate to describe the complete critical scattering

although cross terms, i.e. (q11-qUl)
2xq , would clearly improve the

fits to the wings of the scattering ellipse.
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Lubensky crossover form described in section 2.3.
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The fitted parameters, o, EL' and E1 are plotted over the

range 3x10-5 < t < 2.5x10-2 in figure 5.1.4 for both samples. Though

the transition temperatures differ by 1.4°C for the two samples, there

are no significant differences in the critical behavior. This important

results supports the hypothesis that impurities are benign. From figure

5.1.4, it is also apparent that the parallel and perpendicular

correlation lengths are diverging at slightly different rates. The

ratio, ~n/S , varies by a factor of two over the range measured, as

shown in figure 5.1.5(top). Thus, as found previously in other

materials, a single length scale is not adequate to describe the NSA

transition in 40.7.

In figure 5.1.4 fits to simple power laws (solid lines)

Go t-1. 4 5 ±0.0 3 5.1.1a

o ' 1.5 5t
- 0 '7 8±0.02 5.1.lb

& q o , 0.25t-0. 6 5±0. 0 2 5.1.lc

are shown, where qO.2337A-1. It is evident from these fits that

mean-field theory vv,0.50, anisotropic dislocation behavior v=2vl,

and non-transformed 3D XY behavior do not provide a suitable explanation

of the critical fluctuations in the reduced temperature range

10-5<t<10-2 in 40.7.

Lubensky and coworkers (section 2.3) have proposed that at the

N+SA transition the liquid crystal correlation lengths may exhibit

crossover from 3D isotropic XY behavior vvl-vXy to 3D anisotropic XY

behavior v2vl-vXy. In an attempt to describe the measured data, the

essential features of the crossover have been preserved with vll fixed

at 0.78 rather than at vXy-0.66. This is necessary since ,, does not
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undergo a crossover according to the theory, however, should exhibit

a crossover when the rescaled bend and splay elastic constants are

equal, that is, when K/K 3 S2 where S is the length anisotropy. The o

data have been fit to Eq 2.3.25 with S7, K8x10-7dynes, and

K,3 (KBT/24w)ql 0 2' 1 . In figure 5.1.4 the best fit to the crossover form

is shown as a dotted line and is slightly worse than the single power

law fit. The theory, albeit with v =0.78, predicts the right crossover

temperature, however, the data are not sufficient to show uniqueness to

the precise form for the crossover.

609 Results

These measurements in 40.7 as well as Safinya's measurements in

8S5 do not agree with the 3D XY values for Y and vll, whereas the

earlier experiments in 40.8, CBOOA, 8CB and 80CB seemed to.

Furthermore, 40.7 and 8S5 have nearly identical nematic ranges and

critical exponents with Y-1.45, v,,1 0.78, and v,-0.65 in 40.7 and

Y-1.53, v-0.83, and v-0.68 in 8S5. This unusual behavior, in light

of the earlier measurements, is probably due to the longer nematic range

in these materials. To strengthen this hypothesis, the NSA critical

behavior has been measured for 4-n-nonaphenyl-4'-n-hexaoxybenzoate 609

which has a 26°C nematic range. As yet, there are no heat capacity

measurements in 609.

The 609 sample was obtained from Kent State University and

without further preparation it was placed into a silane treated aluminum

cell with beryllium windows attached with epoxy. Temperature control,
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-±0.001°C, was provided by the two stage oven with Be windows. Although

609 is inherently very stable, flowing nitrogen gas was used to reduce

the effects of impurities. Over the course of the experiment there was

no noticeable drift in the transition temperature, furthermore, there

was no apparent TNA gradient across the illuminated sample. Most of the

data were obtained using the silicon spectrometer set-up; however, the

highest temperature points utilized the germanium set-up to reduce the

counting time. The resolution in-plane is described by the sum of three

Lorentzians for both the silicon and germanium set-ups as shown in

figure 4.1.4 and figure 4.1.5, and the vertical resolution is triangular

with 0.05A 1 HWHM . Alignment was obtained with the ANAC electromagnet

which produces a 7 kiloGauss field at the sample position. In the

smectic phase, the mosaic distribution was often less than 0.0200 WHM.

Smectic A ordering in 609 occurs at q-0.2038A- 1 corresponding

to a layer spacing of 30.83A. The transition temperature could be

determined to within 0.0010 C by rocking the sample at the 26 angle

corresponding to the (0,0,qlo) peak. As is apparent from figure 5.1.6,

the shape of the rocking curve changes drastically in just 0.0020 C from

a spectrum which is flat over the scale .10 to a spectrum with =0.0200

HWHM. Therefore, the transition temperature is taken to be

40.125±0.0010°C. Further below the transition the intensity of the

central peak continues to increase, albeit at a much slower rate.

Longitudinal and transverse scans are performed at equally

spaced reduced temperatures on a logarithmic scale from t 2x10- 5 to

10- 2 for the silicon set-up and from t=2x10-3 to 5x10- 2 for the

germanium line-up. In the longitudinal direction the data are always

fit to a Lorentzian, however, in the transverse direction either a
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Rocking curves above and below the N+SA transition in 609.
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Lorentzian with a fourth order correction (LFC), Eq 5.0.1, or a

Lorentzian squared raised to the power 1-n /2 (LPC), Eq 5.0.2, is used.

As is the case with 40.7, a pure Lorentzian does not provide an adequate

description of the data. The LFC cross-section provides a reasonable

description of the data, however, there are still systematic deviations

between the data and the line-shape in the transverse direction,

especially for the temperature points closest to the transition. In

figure 5.1.7 (top) the transverse scan and the LFC fit are shown at

T-TNA-0.0070 C. At this temperature, the LFC fit gives & 1 -17,300±600qao,

=3l47±50qo, and c4±2x10 - 4

In figure 5.1.8 the fitted parameters &., 94, and O are

plotted as a function of reduced temperature. A pure Lorentzian never

describes the scattering since the data are never consistent with c-0.

In figure 5.1.9 c is plotted as a function of reduced temperature on a

log-log scale. Below t=10- 2 the fourth order term is allowed to float

freely, however, above this reduced temperature c is fixed at 1/4. When

c is allowed to grow much greater than 1/4, the correlation length

deviates significantly from the inverse half width.

The parameters &n', i, and ao derived from fits to the LFC

line-shape have been fit to single power laws

0c t -1 .450.03 5.1.2a

11q 2.10t - 0.7 7 5 ±0.0 2 5 1.2b

q 11 0 O.26t -0 .6 8 + 0 0 2 5.1.2c

as shown in figure 5.1.8. The correlation lengths ill and l are about

10-20% larger in 609 than in 40.7 though the nematic ranges are

comparable. Although the data extends out to 5x10- 2, deviations from
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Transverse scans in 609 at T - TNA + 0.0070C.

Top: Solid line is the best fit to the LFC line-shape, Eq 5.0.1.
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single power law behavior are apparent beyond 10-2 at which point the

line-shape has evolved to a Lorentzian squared. Since the asymptotic

behavior is important, the fits have been restricted to the range

2x10-5<t<10 2 . Allowing the transition temperature to float from the

experimentally obtained value 40.1250C does not alter the exponents.

The scans with t10 - 2 have also been fit to the Lorentzian

squared raised to the power 1-n /2 (LPC) line-shape. On average, the

X2 for these fits is better by a factor of two than fits to the LFC

line-shape at most reduced temperatures. In figure 5.1.7 fits to the

LPC and LFC line-shapes are shown at T TNA + 0.0070C. The LPC fit

(bottom) clearly fits the transverse scan best and gives

1-6000±300q , =-186±20ql,, and n -0.45. For q>>l/E the

2.i15
correlation function falls off as q245 even though the fit to the

Lorentzian only required a small fourth order correction term! The

correlation length &I is not the same for both functional forms, hence,

it is not surprising that both fits give different results.

The parameters ll, o, and o obtained from fits to Eq 5.0.2

are shown as dashed lines in figure 5.1.8. Fits to single power laws

for these parameters give

o0 = t-1' 39± 0.0 4 5.1.3a

L9qlol = 2.43t - 0 '7 4 5 + 0 .02 5.1.3b

oq1%1 = 0.25t-0. 64±0.03 5.1.3c

where the transition temperature is chosen to be the same as the LFC

fits. In comparison to the coefficients obtained from the LFC line-

shape fits, the parameters obtained from the LPC fits deviate from a

single power law, furthermore, these exponents are slightly lower. Over

I
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the range 2x1 5 <t<10 3 the parameter Un--0.45±0.05 whereas c varies by

two orders of magnitude over the same range (figure 5.1.9). From t-10- 3

to t-10 - 2 n evolves from -0.45 to -2, hence, the line-shape evolves

-2.45 -4from q 45 to q4 for large q.

From the anisotropic scaling relationship, Y - vll (2-n ),

the line-shape exponent n is related to the critical exponents v and Y.

Using this relation and the critical exponents obtained from the LPC

fits, n - 0.13+-0.15 and Tn - -0.17±0.15 should describe the line-

shapes. However, n,,IO always fits the longitudinal scan, whereas,

TnI -0.45 fits the transverse scan close to the transition. Thus, the

anisotropic scaling relationship is not verified by Eq 5.0.2 although it

does improve the fits to the transverse scan. Further theoretical

effort is required to determine the proper form of the N+SA cross-

section which incorporates the evolution of the line-shape with

temperature.

Both 40.7 and 609 have the longest nematic ranges of all the

materials studied with 260C and 24°0C ranges respectively. These

materials exhibit saturated second order transitions with almost

identical critical behavior. By saturated, we mean that the nematic

order parameter is saturated at the transition. It is likely that

experiments on nematogens with even greater nematic ranges will generate

agreement with the measured critical exponents in 40.7 and 609.
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5.2
Results in S5 Samples

X-ray scattering experiments have been carried out in the

4-n-pentylphenyl-4-n-alkyloxybenzoate series (S5) including the pure

materials 9S5, 10S5, and 11S5. In analogy to tricritical phenomena

(section 2.1), the chain length n represents the nonordering field. By

mixing neighboring homologs one can effectively vary n continuously

where the average chain length is determined from the weight of the

constituent materials. The mixtures 8.5S5, 9.75S5, 10.2S5, and 10.4S5

have been prepared.

The phase diagram for the S5 series is shown in figure 5.2.1.

Over the range of chain lengths studied the NI transition temperature

is relatively constant although it is noticeably higher in 10S5. The

N4I and I+SA transitions are always first order as is the NSA

transition if the nematic range is sufficiently short. In 12S5 there is

no nematic phase, upon cooling from the isotropic phase a transition

occurs directly into the smectic A phase. As the chain length is

decreased the nematic phase emerges and increases in range as shown in

figure 5.2.2. At about 10S5 the NSA transition crosses over from first

order critical behavior to second order behavior. Eventually, at

-7.5S5, the smectic A phase disappears and the nematic phase transforms

to the smectic C phase upon cooling. Experiments on the NSA transition

near the smectic A-smectic C-nematic multicritical point are reported in

Safinya's Thesis.1

Though the exact details of the spectrometer set-up are

described in chapter 4, a brief summary is provided for the reader. The

in-plane resolution of -5x10 4 or -1x104A 1 HWHM was achieved by
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employing either perfect Si(t11) or Ge(111) crystals as monochromators

and analyzers. The precise in-plane resolution for each set-up was

obtained by convoluting the direct beam profile with the appropriate

energy broadening. The vertical resolution was set by matching the

vertical divergence of the beam to the vertical acceptance of the

detector which typically yielded a triangular function with a

0.050.005A 1 HWHM.

Over the course of the measurements several improvements in the

sample preparation and experimental set-up were made; these details are

summarized in Appendix 2. All of the S5 material was obtained from

Dave Johnson or Mary Neubert. Some of the material was pumped on in the

nematic phase; however, the nematic to smectic A transition temperature

drifted much more rapidly for these samples. After pumping, for

instance, the 9S5 TNA drifted at a rate of 0.004°C per hour and the 10S5

transition temperature drifted at 0.0070C per hour. This is somewhat

unusual in that the nS5 series is chemically very stable, furthermore,

experiments in 8S5 by Safinya under similar conditions did not encounter

such difficulty. A second sample of 10S5 was prepared via High Pressure

Liquid Chromatography (HPLC) and never pumped on. This sample only

drifted by 0.0050C per day under flowing nitrogen, a much more

acceptable rate. These procedures contributed to reduced rates of the

transition temperature drift; however, it is very plausible that

compounds that are closer to the NSA tricritical point are more

susceptible to impurity induced drifts. This is consistent with weak

solution theory2 which predicts that the coexistence region should be

inversely proportional to the latent heat for first order transitions.
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The layer spacing d is determined by measuring the q vector

corresponding to smectic layering, q -2w/d at the NSA transition. For

8S5 the layer spacing is -28.3A and increases linearly with chain length

to -31.3A for 11S5 (see figure 5.2.2). Phase separation does not occur

for the mixtures since the average layer separation varies linearly with

chain length; furthermore, scattering occurs at only one q vector. The

McMillan ratio (TNA/TNI) , see figure 5.2.2 (bottom panel), does not

vary linearly with temperature as predicted by mean-field theory. There

is no obvious explanation for this deviation, except perhaps the

influence of the nearby smectic C phase.

In the smectic phase, the scattering profile is resolution

limited in the longitudinal direction and mosaic limited in the

transverse direction; therefore, quantitative analysis of the scattering

line-shape is difficult. However, the integrated smectic intensity and

the layering q vector, q,, can be measured quite accurately in the

smectic A phase. In figure 5.2.3 q is plotted as a function of

temperature throughout the smectic A phase and into the smectic C phase.

As the temperature is lowered from the nematic phase into the smectic A

phase the q vector decreases; hence, the layers are getting thicker.

This is somewhat unusual since most materials contract upon cooling.

Since the total density decreases with temperature the molecules must

move closer together in the plane of the layers. The coefficient of

thermal expansion is largest near TNA, suggesting that the layer spacing

may have a critical contribution. In contrast, no noticeable change in

q 0 has been observed in 40.7 over the entire smectic A range.11
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The N+SA transition temperature TNA is determined from the x-ray

scattering profile through (0,0,qn0). Above the transition the

scattering is symmetric, at the transition the smectic peak emerges at

q,0 and continues to grow as the temperature is lowered further. In the

longitudinal direction the peak is always resolution limited, however in

the transverse direction the profile is determined by the angular

distribution of the layers (mosaic) and is always asymmetric. The

mosaic depends on the strength of the aligning field, wall effects and

the inherent properties of the compound. Our findings show that the

longer nematic range samples produce better quality crystals; for

instance, the mosaic ranged from 0.10 HWHM for 8.5S5 to 0.90 for 11S5.

At TNA the nematic order parameter is more saturated for the long

nematic range samples, concomitantly, the correlation lengths are larger

than those in samples with shorter nematic ranges. Thus, smectic

ordering is most developed at TNA for materials with the longest nematic

ranges before the mosaic distribution is locked in. The improved mosaic

for samples with long nematic ranges may also result from the nearby

smectic C phase. As the smectic C phase is approached, the free energy

associated with neighboring molecules sliding with respect to one

another decreases, therefore, it is expected that defects can anneal

more readily.

In principle, if the smectic phase were to have long range

order, the integrated intensity of the smectic scattering would scale as

the average smectic order parameter squared <o2>. Thus, the exponent B

could be extracted from the data for second order transitions. However,

because phase fluctuations destroy long-range order in the smectic A

phase it is unclear how o2 should scale. For a first order transition,
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with a coexistence region between the high and low temperature phases,

the density of the two phases usually varies linearly within this

region. For instance, the NI transition in 60.8 exhibits this behavior

as shown in Appendix 3. The smectic intensity varies linearly on the

high temperature side of the NS A transition but is rounded on the low

temperature side. As a result, it is difficult to determine the

coexistence range precisely.

To measure the smectic integrated intensity, the smectic

scattering from the (,O,q no) peak must be summed over. Since the

sample mosaic width is always much less than the vertical resolution

width, the spectrometer acts to integrate over the transverse out-of-

plane direction. In the longitudinal direction, the smectic line-shape

is resolution limited, therefore, this direction is also integrated

over. There may be a slight correction due to the smectic A phase n

line-shape; however, we believe that these corrections are negligible.

In the transverse in-plane direction the sum must be performed

explicitly since the mosaic distribution depends on temperature. This

was accomplished by summing the intensity over at the 2 position

corresponding to q or by explicitly fitting the scattering to a sum of

a Gaussian plus the N+SA line-shape. This latter procedure will be

discussed subsequently in the context of the 10.4S5 measurement. Both

methods yield identical results.

The smectic integrated intensity is presented in figure 5.2.4

for 8.5S5, 10S5, 10.2S5, 10.4S5, and 11S5 as a function TNA-T. As

mentioned previously, TNA is taken to be the temperature where the

resolution limited smectic peak emerges in the transverse scan. The

smectic integrated intensity has been normalized for all samples at
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T=TNA-0.1C. The intensity is reasonably well saturated at this

temperature for all samples, except for 11S5 which doesn't saturate

until TTNA-0.500°C. Furthermore, this sample displayed 0.0200°C

hysteresis between heating and cooling whereas the behavior for the

other samples showed no hysteresis effects.

NSA Fits

Longitudinal scans (q-uo0 , q varied) and transverse scans

(q1 -q0,' q varied) have been performed at equally spaced reduced

temperatures tTNA/T-1 on a logarithmic scale in samples of 8.5S5, 9S5,

9.75S5, 10S5, 10.2S5, 10.4S5, and 11S5. At each reduced temperature,

both scans are fit to a Lorentzian with a fourth order correction term

(see Eq 5.01) convoluted with the appropriate resolution function (see

Appendix 1). The fits are of comparable quality to those in 609 and

40.7 with X2=2.

Results of these fits a function of t are presented for the

parameters 11 (figure 5.2.5), Cl (figure 5.2.6), o (figure 5.2.7), and

c (figure 5.2.8). There is a dramatic evolution in the length scale as

a function of chain length. At t2x10 5, for instance,

&(8S5)/ 1 (10S5) is - 14 whereas (8S5)/&I(10S5) is - 7, therefore,

the correlated smectic volume V differs by E2 n=750. If two-scale

universality holds, then the heat capacity ratio Cp(8S5)/Cp(10S5) should

equal V- 1. Therefore, at t2x10 - 5 the heat capacity ratio should differ
c

by nearly three orders of magnitude, a rather drastic effect. For

concentrations which exhibit second order NSA transitions
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single power law fits give t'>O. The 8S5 data was taken by C.R.
Safinya.
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(8.5S5, 9S5, 9.75S5, and 10S5) single power law behavior with t'=O is

exhibited by ll ,, 0o over the reduced temperature range -5x10- 5 to

-10 -2 However, if the transition is first order then TNA, defined by

the appearance of a resolution limited smectic peak, should be too high

and accordingly the data should saturate at small reduced temperatures.

Such an effect is indeed observed for 10.2S5 and 10.4S5 with llql

saturating at 220±40 and 100±20 respectively. The data strongly suggest

that the tricritical point occurs very close to 10S5.

As mentioned previously, the data were obtained with both

silicon(111) and germanium(111) spectrometer set-ups. Both

configurations yield consistent results after deconvolution, as shown

for 10S5 in figure 5.2.9. The uncertainty in is larger than in &zH

because of the influence of the fourth order correction term in the

transverse direction. The uncertainties in the other samples are

comparable to those in 10S5.

The fitted line-shape parameters ll, E , and o, have been fit

to single power laws

-v
5,q9l 0 ll(t+t,) 5.2.1a

-v
q = S0(t+t') l 5.2.1b

oo - A(t+t') -Y 5.2.1c

for each sample where t' measures the difference between TNA and the

temperature that gives the best fit to a single power law (This

effectively permits the transition temperature to float). In table

5.2.1 the results of these fits are summarized. For 8.5S5, 9S5, 9.75S5,

and 10S5 the fitted t' is less than 10- 5 and setting t'-O does not
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TNA/TNI

0.936

0.954

0.967

0.981

0.984

0.987

0.989

Y V 1 1

1.53 0.83

1.48 0.78

1.31 0.71

1.22 0.66

1.10 0.61

(fixed at 10S5

(fixed at 10S5

t'"1 E 

0.68

0.66

0.57

0.53

0.51

values)

values)

1.02

0.86

0.88

0.71

0.68

0.66

0.50

0.173

0.142

0.189

0.205

0.187

0.182

0.156

0.0

0.0

0.0

0.0

0.0

5.5x10- 5

1.1 10-4

Table 5.2.1

Summary of single power law fits for the fS5 system.

8S5

8.5S5

9S5

9.75S5

10.2S5

10. 4S5
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significantly alter the exponents. Therefore, t' has been fixed at zero

for these samples. For first order transitions, such as in 10.2S5 and

10.4S5, a single power law with t'-0 is clearly inadequate. To fit

these samples, the exponents Y, v, and vl have been fixed at the 1OS5

(tricritical) values which gives t of 5.5x10 -5 and 1.1x10- 4 for 10.2S5

and 10.4S5 respectively.

Besides the dramatic evolution in the length scale with chain

length, the critical exponents Y, v, and vs also evolve, albeit at a

more moderate rate. The critical exponents at the saturated nematic

order parameter limit (8S5 and at 8.5S5) and the tricritical limit

(10S5) do not agree with the theoretical predictions developed in

chapter 2. At the tricritical point mean field theory predicts Y1 and

11 -1/2 whereas these measurements yield Y-1.10 and v=-0.61 in 10S5.

In the saturated limit, the 3D XY model predicts Y-1.32 and v -0.66,

whereas, these measurements yield Y=1.48 and v-o0.78 in 8.5S5. On

average, at both ends of the theoretical spectrum, the measured

exponents are higher by 0.13 for Y and 0.11 for vll. Materials with

intermediate nematic ranges, such as 9S5 , 40.8, 80CB, and 8CB exhibit

crossover behavior since the critical exponents are between the limiting

values. It is very likely that the excellent single power law behavior

is a manifestation of a very slow crossover, in this picture, these

critical exponents would only represent effective exponents. As yet,

there is no theory which explicitly predicts the behavior in the

crossover regime between the saturated second order and the tricritical

regimes.
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At the tricritical point, the crossover exponent relates

critical exponents along different field directions. As developed in

section 1.3, the relationship vu.vt emerges from such an analysis where

vt describes how diverges with t whereas u describes how the

correlation length at the transition, s diverges with reduced

concentration (this is the nonordering field). Since Es has only been

obtained for three first order samples (10.2S5, 10.4S5, and 11S5) it is

difficult to obtain vu reliably. However, it is possible to show

consistency with the mean field crossover exponent (2). In figure

5.2.10 is (5n) is plotted vs. reduced concentration where nt equals 10

-2vt
(10S5). The straight line is the best fit to &s(n-nt ) where vt is

fixed at the 10S5 value of 0.61. A more thorough analysis would also

include the evolution in the length scale with concentration since it

also effects is.

An essential feature of the NSA transition is that v is

smaller than v, thus, there are two relevant length scales. Although

both vll and v evolve with chain length, the difference v-v, appears

to remain at the constant value 0.14±0.02. The determination of v is

complicated by the evolution of the transverse line-shape with the

fourth order correction term (see figure 5.2.8). This correction

becomes increasingly significant at large t and for samples with short

nematic ranges. It appears as if c is identical in different samples

when 1 is chosen to be the same. Therefore, the evolution in the

line-shape depends on &a in a universal way for all samples.
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5.3
Results in nCB Samples

X-ray scattering experiments have been carried out in

alkoxycyanobiphenyls (nCB), including the pure materials 8CB and 9CB.

By mixing 10CB with 9CB the nematic range can be reduced from 20C (9CB)

to no nematic range at all. The mixtures 9.05CB, 9.09CB, 9.14CB,

9.20CB, and 9.28CB have been prepared where the effective chain length

is determined from the weights of the constituent materials. The phase

diagram for the 9CB/10CB mixtures is shown in figure 5.3.1.

A brief summary of the spectrometer set-up is provided here (see

chapter 4 for more details). The in-plane resolution of -10 4A- 1 is

provided by germanium(111) analyzer and monochromator crystals. The

vertical resolution -0.05*0.005A- 1 HWHM is achieved by matching the

vertical divergence of the incoming beam with the vertical acceptance of

the detector. Temperature control, provided by a two stage oven with

beryllium windows, is stable to within 0.0020 C per hour. A 7 kiloGauss

field aligns the director along the field direction.

The 8CB, 9CB, and 10CB samples were obtained from BDH and used

without further purification. As discussed in section 4.2, impurities

caused the transition temperature TNA in an open cell to drift downward.

More importantly, TNA was lower at the top of the cell than at the

bottom by over 0.0200°C. The drift and TNA gradient are undoubtedly due

to gases diffusing into the sample from the top of the cell. Flowing N2

caused the direction of the TNA gradient to change by removing some of

the absorbed gasses from the exposed top part of the sample, but the

magnitude of the gradient was unchanged. To minimize these impurity

effects, measurements were carried out under vacuum and in an all
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beryllium cell sealed with indium o-rings. To achieve a homogeneous

sample, the entire oven was agitated in the isotropic phase before

acquiring data rather than relying on diffusion to achieve

equilibration. Using these techniques, the gradient across the

illuminated sample was reduced to less than 0.0030C. Measurements

carried out under vacuum in 9CB agree with data taken without any

precautions outside of t-10- 4, although the transition temperature is

0.300C lower in the latter case.

The layer spacing d is determined by measuring the q vector

corresponding to smectic layering, q-2s/d at the NSA transition. For

9CB the layer spacing is -33.7A and increases linearly with increasing

concentration of 10CB to -34.2A for 9.28CB (see figure 5.3.2). Also,

the McMillan ratio TNA/TNI (see figure 5.3.2 bottom panel) varies

linearly with temperature from 0.994 for 9CB to 0.998 for 9.28CB.

The NSA transition temperature TNA is determined from the x-ray

scattering profile through (O,O,qtP). Above the transition the

scattering is not resolution limited, however, at the transition a peak

emerges which is resolution limited in the longitudinal direction and

mosaic limited in the transverse direction. Since the mosaic is

temperature independent (10%), the peak intensity and the integrated

intensity have the same temperature dependence. The mosaic increased

with the 1CB concentration from 0.20°HWHM for 9CB to 0.50°HWHM for

9.28CB. In 9CB the intensity increases by over one and a half orders of

magnitude in less than 0.0020C as shown in figure 4.2.2. Of course,

this range depends on the impurity induced TNA gradient across the

illuminated sample volume as shown in figure 4.2.2. In contrast to

10S5, where the intensity saturates in 0.100 C, the behavior in 9CB is
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rather unusual.

For first order transitions, the peak intensity does not rise as

sharp, furthermore, the behavior depends on the temperature slew rate.

In 9CB, which is second order, TNA determined by heating and cooling

runs always agreed within a few millidegrees Centigrade at a slew rate

of 0.0500°C per hour. However, in 9.20CB there is a 0.0200°C hysteresis

at this same rate as shown in figure 5.3.3 (top). The precipitous

change in the peak intensity in the bottom panel reflects a decrease in

the mosaic width, perhaps due to a coexistence region between the two

phase. Reducing the slew rate by an order of magnitude decreases the

hysteresis to 0.0050C. In summary, for materials exhibiting a first

order transition the smectic intensity displays hysteresis and longer

equilibration times than for materials exhibiting second order

transitions.

Longitudinal scans (qA=O, q varied) and transverse scans

(q,,-q,, qvaried) have been performed at equally spaced reduced

temperatures on a logarithmic scale t-TNA/T-1 in samples of 8CB, 9CB,

9.05CB, 9.09CB, 9.14CB, 9.20CB, and 9.28CB. In figure 5.3.4 scans are

shown for 9CB at t-2x10 - 5. At each reduced temperature, both scans are

fit to a Lorentzian with a fourth order correction term (LFC), Eq 5.0.1,

or to a Lorentzian raised to the power n (LPC). For both forms, the

data have been convoluted with the appropriate resolution function (see

Appendix 1). The fits are of comparable quality to fits in 609, 40.7,

and S5.

Close to the transition for the 9CB/1OCB mixtures the best fit

gives c 0.05 whereas at large t it is necessary to restrict c to 0.25.

The quality of the fits is insensitive to the choice of c though the
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Figure 5.3.4

Transverse scan (top) and longitudinal scan (bottom) at t-2x10- 5 in 9CB.

The dashed line is fit with c0 (Lorentzian line-shape); the solid line
is fit with o-0.25 (Lorentzian squared transverse line-shape).
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correlation length &X depends strongly on the value of c at all

temperatures. For instance, at t10- 4 in 9CB the best fit gives c-0.16

and q 0=19.2, however, if c is fixed at 0.10 then q 0=21.0 and if c

is fixed at 0.25 then q 0-17.7. Although ~ varies by over 20%, the

goodness of fit parameter X2-1.5±0.05 for all three fits. Therefore,

after convolution in the vertical, the profile shape is nearly identical

for 0.10 < c < 0.25. Measurements with better vertical resolution are

necessary to determine the precise line-shape in the transverse

direction.

In order to fit the data, c is held fixed at the same value for

each sample. Results of these fits in 9CB to the LFC line-shape for 

and i are shown in figure 5.3.5 with c-0.10 (open circles) and c0.25

(filled circles). It is apparent that the slopes do not depend on the

choice of c, whereas the bare lengths do, especially . The

correlation lengths il and 5a and the susceptibility o have been fit

to single power laws

-v
iq 0 . X (t+t') - 5.3.1a

-V

~q n0 ' &,(tot') 5.3.1b

-o ' A(t+t')- Y 5.3.1c

for each sample where t' measures the difference between TNA and the

temperature that gives the best fit to a single power law. As noted

previously, this effectively permits the transition temperature to

float. In 9CB the data are fit from 2x10 5 to 2x10 3 giving

t'-10 5 ±10- 5. When c is held fixed at 0.10 or at 0.25, the critical

exponents v0.57, v-0.37 and Y-1.09 obtained are identical although
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0i differs by - 20% (see figure 5.3.5). If c is allowed to float

between 0.05 and 0.25, the best fit gives v=0.59, v.L0.43 and Y1.13.

The increase in is because of the additional 20% change in ~ over

the entire fitted range.

The data have also been fit to a Lorentzian raised to the power

1-nI/2 (Eq 5.0.2). When n is allowed to float, the best fit gives

iA= -1 at small reduced temperatures crossing over to nAw -2 far from

the transition. The critical exponents obtained by fitting fl, and

oo to single power laws (Eq 5.3.1) are comparable to the LFC fits.

Measurement of the critical behavior in the nematic phase have

also been carried out in the mixtures 9.05CB, 9.09CB, 9.14CB, 9.20CB,

and 8CB. The data have been fit to the convolution of the LFC line-

shape convoluted with the resolution function. The fourth order term

has been fixed at 0.10 for all of the 9CB/1OCB mixture fits because of

the strong correlation between c and i; as discussed above in reference

to the 9CB fits. This is not necessary in 8CB as evolves much more

over the measured range. Results of these fits are shown for F.,

(figure 53.6), (figure 5.3.7) and o (figure 5.3.8). As the

nematic range is reduced by varying the average chain length, the

correlation lengths decrease and the slopes evolve slightly. Subtle

variations in these trends may result from slight variations in the

background, vertical resolution and absorption corrections which are not

properly accounted for in the fits.

For the samples which exhibit second order N+SA transitions,

8CB, 9CB, 9.04CB, and 9.09CB, each of , to, and o exhibit single

power laws with t'-O.0±10- 5 over the temperature range -2x10- 5 to 2x10- 3

with t' - O. These results are summarized in table 5.3.1. As is



- 165 -

I nn_
IUUU

o -
4A7

C

InC

L
L

in
l -U -5 4 -3 10

10 10 10 10

t = (T-TN) /TNA

Figure 5.3.6

Longitudinal correlation lengths ( ) vs. reduced temperature (t) for
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the power law fit gives t'*O.
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Susceptibility (oo) vs. reduced temperature (t) for nCB samples. The

relative amplitudes have been adjusted for graphical purpose. The solid
lines are single power law fits. For first order transitions (9.20CB

and 9.28CB) saturation occurs at small t, therefore, the power law fit

gives t'*O.
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evident from the table, the correlation length critical exponent

anisotropy, v-v , equals 0.20±0.02 whereas in all of the other systems

studied the difference is less pronounced. The increased anisotropy.

primarily results from a smaller vA relative to other materials with

comparable nematic ranges. This may be connected with the complications

of the fourth order term in the fits.

For transitions which are clearly first order (9.14CB, 9.20CB,

and 9.28CB) a single power law describes t~, E1, and ao provided that

the transition temperature is allowed to float from the measured value.

This is achieved by letting t' and the amplitudes float with Y, vll, and

v¥ fixed at the 9CB (tricritical) values. These fits are shown in

figures 5.3.6, 5.3.7, and 5.3.8 where t'- 2x10- 5 (9.14CB), 10- 4

(9.20CB), and 2x10- 4 (9.28CB). If t' varies linearly with reduced chain

length then the tricritical point occurs at 9.09CB; however, our data

are also consistent with a quadratic dependence, in which case, the

tricritical point occurs at 9CB. At the highest temperature points,

especially in the shortest nematic range samples, there is a noticeable

deviation from single power law behavior. This may be connected with

the nearby isotropic phase which alters the N*SA critical behavior.

To determine the sensitivity of the critical exponents to the

form of the line-shape, the 8CB data have been fit to a Lorentzian

raised to the power 1-qn/2 in the transverse direction (LPC) and to a

Lorentzian with a fourth order correction (LFC). The correction terms

n, and c are allowed to float for both forms. Over the entire range

the LFC fits fits are better than the LFC fits as is the case in 609

(see section 5.1). For all reduced temperatures 11(LFC) and 11(LPC)

are almost identical, in fact, over the range 10-4<t<10- 2 the two
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Y V1 V 11 A ~~~~~11

1.31

1.09

1.07

1.07

(fixed

(fixed

(fixed

0.70 0.49

0.57 0.37

0.54 0.38

0.56 0.35

at 9CB values)

at 9CB values)

at 9CB values)

0.75

0.87

1.02

0.71

0.65

0.60

0.53

0.48

0.75

0.59

0.72

0.58

0.63

0.57

tI

0.0

0.0

0.0

0.0

2x10- 5

14
10-42x 0 4

Table 5.3.1

Results to single power law fits for o, i, n and El in 8CB, 9CB and
9CB/10CB mixtures.

TNA/TNI

8CB

9CB

9. 04CB

9. O9CB

9.14CB

9.20CB

9.28CB

0.979

0.994

0.995

0.995

0.996

0.997

0.998
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results are indistinguishable as shown in figure 5.3.9, thus, vll must

be the same. In the transverse direction the line-shapes differ and the

fitted E. for the two forms do not agree, however, the slopes are

identical. Therefore, the critical exponents do not depend on the

precise choice of the line-shape. As is apparent from figure 5.3.10,

n is -1.2 over most of the measured range and eventually crosses over

to -2 at t-10- 2, whereas, c varies from 0.03 to 0.25. At about the same

reduced temperature the correlation lengths start to diverge from single

power law behavior, therefore, this might be connected with the

evolution in the line-shape as measured with or c.

As mentioned previously (section 4.2), the mosaic in the smectic

phase does depend on the aligning field. In the nematic phase, mosaic

effects should be most pronounced close to the transition for the

longest nematic range materials since ~ is the largest for these

samples. Such an effect would be manifested if El depended on the

field strength; however, no such behavior is observed in either 8CB or

9CB over the range 3x10 5<t<10 2. Therefore, the director must be well

aligned in the nematic phase.
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Top: n (equation 5.0.2) vs. t in 8CB.

Bottom: c (equation 5.0.1) vs. t in 8CB.

I fI I I . I -.

1., I- ' ---. -' ' I 
a00

0

a O a OO 
~0 000I~00

-------- -- - -

--- --- --- -- - -



- 173 -

REFERENCES

.. 1. C. Safinya, M.I.T. Thesis(1981).

2. L.D. Landau and E.M. Lifshitz, Statistical Physics Part 1; Pergamon

Press, Oxford(1980).



- 174 -

6.0
CONCLUDING REMARKS

The smectic fluctuations in the nematic phase have been

characterized by measurements of the x-ray scattering profile at the

(0,0,1) reflection. If the nematic order parameter is saturated, that

is, there is a long nematic range, then critical behavior is observed;

however, as the nematic range is reduced the coupling between S and 

increases and a crossover to tricritical behavior is observed. This

crossover occurs at TNA/TNI0. 9 8 4 for the S5 series and at

TNA/TNIO0.9 9 4 for the nCB system. McMillan's mean field theory predicts

TNA/TNIO0.88 at the tricritical point. As the nematic range is further

decreased the NS A transition becomes first order.

The three materials with the longest nematic ranges studied,

40.7 (260C), 609 (24°0C), and 8.5S5 (170C) exhibit nearly identical

critical behavior with averaged critical exponents Y-1.48 0.03,

11-0.78 ± 0.03, and v-0.66 ± 0.04. These measurements provide an

excellent test for the anisotropic hyperscaling relationship 2-a-v U+2vI

which gives a--O.10 ± 0.11. This agrees within the errors with a

obtained from heat capacity measurements in 40.7 and 8S5 and the

predictions of the 3D XY model (-O). Although vu agrees with the 3D

XY value (vXy.0.66 and YXy-1.32), both v,, and Y are larger than

predicted. There is no theory which accounts for these differences.

Additional measurements on materials with longer nematic ranges would be

useful in determining whether the current results are indeed in the

saturated nematic order parameter regime. Though several materials

exhibit -1000 C nematic ranges, these same materials are complicated by

the tendency to form a smectic phase at two q vectors.
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As the nematic range is reduced, by increasing the chain length,

the critical exponents v, v, and Y decrease; in addition, the

absolute lengths decrease. None of the current theories address this

dramatic evolution of the length scale. At 10S5 and 9CB a crossover to

tricritical behavior is observed, consistent with heat capacity results,

with nearly identical critical behavior for both samples as shown in

figure 6.0.1. Single power law fits give Y-1.10 ± 0.05,

+0 06
v 11 0.59 ± 0.03, v 0.51±0.03(10S5), and v -0.37 + 03(9CB) while the

tricritical mean field values are Y1.0, v-0.50, and -0.50. These

measured exponents, along with heat capacity results, a-0.45(10S5) and

a-0.53(9CB) are consistent with the anisotropic hyperscaling

relationship. Fluctuations on the high temperature side appear to be

more pronounced at the NSA transition then at a Gaussian tricritical

point since the measured heat capacity ratio A'/A is close to unity

rather than 3.56 as predicted. One of the initial goals of this thesis

was to measure the tricritical crossover exponent . This, however, was

limited by the uncertainty in the tricritical concentration and by

transition temperature gradients and drifts, which of course broaden the

transition, thereby complicating the determination of the saturated

values of .

Materials with intermediate nematic ranges, such as 8CB and 9S5

exhibit single power laws for El, E, and a and satisfy the anisotropic

hypersaling relationship. These samples should exhibit crossover

between tricritical and critical behavior, however, it is very difficult

to distinguish a slow crossover from single power laws. There are no

specific theoretical predictions for the precise scaling crossover form.
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Figure 6.0.1

Longitudinal correlation length (9 ), transverse correlation length

(i ), and susceptibility (o@) in 98B and 10S5. The susceptibility has

been adjusted for graphical purposes. The straight lines are power law

fits as described in chapter 5.
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The observed anisotropy in the critical exponents may be the

result of divergent phase fluctuation characterizing the smectic A

phase. To incorporate this feature, Lubdhsky and coworkers have

transformed to a frame with well behaved fluctuations. In this frame

the behavior is isotropic, but the transformation back to the physical

frame introduces a crossover for v from vl to v /2. This crossover

adequately describes Fo, albeit with vvXy, however, the appropriate

hyperscaling relation is violated. Improved light scatting experiments

might play an important role in determining whether the NSA transition

is inherently isotropic since this theory predicts K, K3 , B, and D

-v
should scale as t . There are no quantitative predictions for il

and i in the dislocation model except v=2v close to the transition.

The critical scattering is nearly Lorentzian, albeit

anisotropic, with the profile widths inversely proportional to the

correlation lengths ll and o . Along the transverse direction the

scattering always falls off faster than a Lorentzian, especially for

large t and for samples with short nematic ranges. To incorporate this

feature we have modified the Lorentzian to include either a q term or

a power law correction. For both cases the absolute value of ~ varies

with the profile shape but not the critical exponents. However, it is

difficult to determine the exact line-shape after convolution in the

vertical direction because the current experimental configuration

effectively integrates over this component. To determine the precise

scattering profile measurements must be performed with better vertical

resolution (-0.005A 1). A comprehensive theory of the N+SA transition

must incorporate the non-Lorentzian scattering profile, perhaps through
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the scaling relationship Y-v(2-n) along both directions.

As yet, there are no detailed light scattering measurements in

the neighborhood of the NSA tricritical point. Measurements of K2

would be of particular interest in 9CB since anisotropic scaling

predicts that K2 should diverge with a critical exponent of

2x0.37-0.57-0.17±0.12, a rather small number. On the smectic side, the

x-ray scattering saturates much more rapidly below the transition in 9CB

than other materials studied. Therefore, one might expect anomalous

behavior for B and D. Detailed measurements of the nematic order

parameter at the tricritical point should help elucidate the coupling

between S and .

In summary, the critical exponents and correlation lengths

evolve with the average chain length of the liquid crystal molecules.

This appears to be consistent with a crossover from critical to

tricritical behavior. At all concentrations the critical behavior is

anisotropic, that is v *v . There is no theory which properly explains

the entire behavior of the NSA transition from the critical to

tricritical region.
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Appendix 1

Resolution Functions and convolutions with S(q)

As described in section 1.2, the resolution function can be

separated into three orthogonal components the directions of which

correspond to the principal axis of the spectrometer. Let us define x-y

to be the spectrometer plane and z the direction normal to this plane.

The scattering vector has two components, q and q , where we define

q11 to lie along y and q to lie in the x-z plane. To simplify the

analysis, all q vectors are normalized at q-ql~. The resolution

function is given by

Rn(q).Rx(qx) Ry(qy) R(qz) A.1X y y z A

where

Rx (qx ) A.2

1-IqZI/A
R - A.3
z 2A

and

Ry(q y)-E (q)*A (qy).4

where n-1,2 corresponding to copper K 1 and Ka2. The dispersive element

of the resolution En originates from the energy spectrum of the copper
y

lines which is intrinsically Lorentzian. The arm zero profile Ay is

non-dispersive and is either modeled by a pure Lorentzian or the sum of

three Lorentzians.

The convolution of two Lorentzians is also a Lorentzian where

the widths simply add. That is, if
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ff/af(x) = a + (-xa)2 A.5

and

g(x) = /+ (xxb) A.6

are two normalized Lorentzians with widths a and b and peak positions Xa

and xb then the convolution is given by

h(x) - f(x)*g(x) - (a + b)2 + (Xa-) 2 A.7

where h(x) is also a normalized Lorentzian with width (a + b) and peak

position Xa+Xb .

To calculate the scattering intensity the line-shape must be

convoluted with the resolution function

I(q) - S(q)*R(q) - d3q' S(q-q')R(q') A.8

where S(q) is given by Eq 5.01 and-Eq 5.02. Both reduce to

oO/,1
S(l)=(q A.9(qy q,0) 2 + W(qxq) A.9

where

1 + (qx2 + qzZ)2{1 + c(qx2 + qz2).2}
W(qxqz) A.10-11~~~A.10

for the Lorentzian with the fourth order correction and

1 - /2
(1 + (qx2 + qz22) )

11A.11W(qx,qz)
A.11

for the Lorentzian with a power law correction.

The convolution procedure is as follows. First, Ry(qy) is

calculated for both K1 and Ka2. Specifically, En is convoluted with

the arm-zero profile which is the sum of three Lorentzians. Because of
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the two Ka peaks, Ry(qy) is characterized by six Lorentzians. These

need only be calculated once since the resolution does not vary. Then,

each Lorentzians is convoluted with S(q) to obtain the parameters for

the new Lorentzians without explicitly evaluating S(q). The

intergration over the vertical is performed by a variable step size

algorithm developed by Mark Sutton. By adjusting the parameters, the

fitting routine minimizes the x2 between the data and the line-shape.

The C language line-shape subroutine is presented starting on the next

page.
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linclude "/usr/gasfit/fitdefn.h"
#include "/usr/gasfit/fitext.h"
# define GAUSS .84932 / converts half width to Gaussian width"/
# define PI 3.14159
J define NVERT 4. / number of half widths n the vertical*/
# define IO fpartO].p b
# define ZPAR parl[.p b
# define RATIO fpar[2].p b
# define H1 fparC3].p b
# define H2 H1 *(1. + SALPHA)
# define DK (dp->d k - fpar[4].p.b)
# define FOURTH fpar[53.p b
# define QVERT par[6].p b
# define RALPHA fparC7].p b
# define SALPHA par[8].p b
I define RES parC9].p b
J define ABS fparC10].p b
I define DELRES fpart[12.pb
struct lorent [

double wid;
double poe;
double norm;
1;

struct lorent armz;
struct lorent el; / alpha 1 energy broadening*/
struct lorent e2; /* alpha 2 energy broadening*/
struct lorent real; /*armzero convoluted with el*/
struct lorent res2; /*armzero convoluted with e2*/
struct lorent shape;
struct lorent shapel; / linshape convoluted with the resl*/
struct lorent shape2; / linshape convoluted with the res2"/
extern char bufr;
struct initial initial[]{

'peak amplitude",O,
"longitudinal len",O,
"ratio: of lengths",O,
"long peak pos",O,
"trans peak pos",O,
"coeff: 4th order trm",O,
"vertical(HHM)",O,
"ratio:alpha2 toti",O
"rel sep of alpha n,O,
"resolution hwhm",O,
"Absorption lengths",0,
'Integration Error",O,
"Res. displacement",O,
};

int nmax 13;
double model(deriv)
int deriv;

double vconv0),modl,cos(),exp(),varint();
int err;
if(fpar[t7.p fit -- 1) resolution();
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modl-IO * varint(vconv,O.O,I.0,rpar[Cll.p b,&err) ;
dp->d rb -odl;
dp->d dmb dp->dy;
return(modl);

}
double veonv(qv)

double qv;

double gauss(),crossec(),triang( ) ,square();
return( triang(qv) * rossec(qv) );

double uss(qv)
double qv;

double tempv, exp(), sqrt();
tempv qv/( GAUSS * QVERT);
tempv - qrt(2. / PI ) * exp( -.5 * tempv * tempv) / (GAUSS * QVERT);
return(tempv);

double triang(qv)
double qv;

double tempv;
if( qv > (2 · QVERT)) tempv 0;
else toepv * ( 1. - .5 * qv / QVERT )/ QV&RT;
return(tempv);

double square(qv)
double qv;

double tempv;
it( qv > QVERT) tempv 0;
else tempv 1./ QVERT;
return(tepv);

double rossec(l)
double 1;
{
double zperp2 ,sqrt(),loreval(),sum;
zperp2 ZPAR * RATIO ;
zperp2 - zperp2 zperp2 ( DK DK * 1 * 1);
shape.wid sqrt(l. + zperp2 * (1. + FOURTH zperp2))/ ZPAR ;
it( DELRES <- 1-5 || ZPAR < .1/R6S)(

1r(ZPAR <- .2/SALPHA)(
shape.nor - 1 RALPHA;
ehape.pose ( H1 + RALPHA * H2)/(1. + RALPHA);
lorcon(&shape,&res1,&shape1);
suo loreval( dp->d h ,&shapel) ;
return(summ);

else(
shape.norm - 1.;
shape.pos - H1
lorcon(&shape,&res1,&shape1);
shape.pos - H2 ;
lorcon(&shape,&res2,&shape2);
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summ loreval( dp->dh ,&shapel + loreval( dp->d h ,&shape2);
return(summ);
}

else{

double lpfact(dd
struct data ddp

shape.norm 1./3.;
shape.pos - H1 + DELRES ;
lorcon(&ashape,&res1,&shape1);
shape.pos H2 + DELRES ;
lorcon(&shape,&res2,&shape2);
suim - loreval( dp->d h ,&shapel) + loreval( dp
shape.pos Ht - DELRES;
loroon(&shape,&resl,&shape);
shape.pos H2 - DELRES ;
lorcon(&shape,&res2,&shape2);
sum - summvloreval( dp->d_h ,&shapel)+loreval(
shape.pos H1 ;
lorcon(&shape,&res1,&shape1);
shape.pos H2 ;
lorcon(&hape,&res2, &shape2);
summ - suui+loreval( dp->d h ,&shape1)+loreval(
return(sum);

)

->d h ,&shape2);

dp->d h ,&shape2);

dp->d h ,&shape2);

double v,oosphi,exp(),Cos);
cosphi a cos(ddp->dphi);
vc cosphi exp(ABS*(./oosphti -1.));
ddp->dy v ddp->dy ;
ddp->d w /vc;
i ( dp so data ){

resolution();
}

return(1.);

double back()
(return (0.);)
resolution()(

armz.wid- RES ;
armz.pos-O;
armz.norm RES / PI ;
e1.wid - 1.9e-4;
el.pos - 0;
el.nori - e.wid/ ( PI * ( 1+ RALPHA ));
e2.wid - 2.5e-4;
e2.pos - 0;
*2.norm a RALPHA * e2.wid / ( Pt ( 1+ RALPHA ));
lorcon(&armz,&e1,&resl);
lorcon(&armz,&e2, &res2);

lorcon(11,12,13)
struct lorent 11;
struct lorent 12;
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struct lorent 13;

13->wid l->wid +12->wid;
13->norm P * ll->norm * 12->norm 13->wid;
13->norm 13->norm/(ll->wid * 12->wid);
13->pos - ll->pos + 12->pos;

double loreval(qpos, 14)
struct lorent 14;
double qpos;

qpos 14->norm/(1 4->wid ' 14->wid + (qpos - 14->pos)0(qpos - l->pos));
return(qpos);
}

lorprint(lorp,15)
struct lorent 15;
char 'lorp;

write(l ,lorp,5);
printf(" Sr st sf 0, 15->wid, 15->pos, 15->norm);

derine STAKSIZ 50 /*size of stack in varint(). Finest mesh will be
*length of nterval divided by 2(STAKSIZ/2) e/

*Variable step size ntegration routine
*Works by comparing 2-point integration results with 3-point results
*If the error of the integral over the segment is greater
*than abser" the interval is split into 2 and the test is repeated
*for each side, and so on recursively.
varint() is very sensitive to high frequency fluctuations. It is

*OK to have a sharp function only it it peaks at one of the end
'points or the middle. Otherwise, varint should be called several
'tiLes, with the ntegral broken up so the wavelength or fluctuations
'is larger than or on the order of the size of the segment

funo function
a beginning point
b end point
relerr estimate of allowed per centage error
err pointer to return error message and number

of funotion calls made. (error it < O )

double varint(tunc,leftpt.rightpt,relerr,err)
double (uneo)(),leftpt,rightpt,relerr;
lnt err;

double ntl, nt2, h, new, bnew, sum, fa, b, abser;
lnt stakflo, noalls;
float staok[STAKSIZ];
double abs();
register float ptr;
float end;
Zum - 0.;
stakflo - 0;



Portions of the text
on the following page(s)
are not legible in the
original.
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ptr stack;
end a &stack[STAKSIZ];
ir(rightpt -- lertpt) t

'err - 0;
return(O.O);

fa (runc) (lettpt);
fb (func) (rightpt);
rncalls * 2;
abstl - '.(rC!,, * (fa + b) * (rightpt - leFtpt));

/*caloulate new width of integration, middle, value at middle*/
h (rightpt - leftpt) / 2.;
bnew - leftpt * h;
tnew (unc)(bnev);
tnoalls++;
intl a (fa + b) h;
int2 - ntl / 2. + tnew h;
/*ompare results o 2-point and 3-point integration*/
it((rabs(intl-int2) < abser) || (ptr > end))(

if(ptr >= end)(
if(lstakflo)
printft(Ran out of stack space. a * Sr, b SfC
stakflo 1i

lsIelse{

),leftpt,rightpt);

I
/.this sub-integral is good enough*/
sum -+ int2;
if(ptr--stack) {

/we have reached the top of the stack--integral done*/
/'lett-hand endpoint is old right-hand endpoint
/*pull new right-hand indpoint off stack*/

*err - stakrlo ? -ncalls rncalls;
return (sum);

ra rb;
leftpt rightpt;
fb *(--ptr);
rightpt - (--ptr);
/*Error too large.
/*Stick right hand
*hand end point is 
*(ptr++) - rightpt;
*(ptr++) = b;
tb * new;
rightpt bnew;

Subdivide urther*/
end point onto stack.
old middle point*/

New right

while(1

)
}
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APPENDIX 2: Experimental Configuration
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Appendix 3

X-ray scattering measurements were performed in 60.8 to better

our understanding of strongly first order NSA transitions. Of all the

samples studied, 60.8 has the shortest nematic range 0.80 C with a

corresponding McMillan ratio TNA/TNI0.99 8. The 60.8 sample was

obtained from Organix and recrystalized twice with light petrol(60-40).

To minimize the transition temperature drifts, measurements were

performed in the beryllium window oven under nitrogen gas. Initial

measurements utilized the germanium set-up (chapter 4.1), however, the

scattering was very weak since the scattering profile is broad, that is,

the correlation lengths are small. To increase the counting rates, a

LiF(220) analyzer crystal was used in place of the germanium analyzer,

this degrades the resolution by an order of magnitude, however, the

scattering remains broader than the resolution in the nematic phase.

In figure A3.1 (bottom) the (O,O,q xo) scattering intensities are

shown from the isotropic phase through the nematic A phase to the

smectic phase. The intensity only varies by a factor of - 2 over the

entire nematic range. Heat capacity measurements (a.c.) in 60.8 are

shown in the top panel of the same figure. The transition temperatures

and the coexistence ranges agree absolutely. There is no indication of

any precritical behavior at either the NSA or the N+I transitions.

In figure A3.2 the integrated (O,O,qo) peak intensity is shown

at the NSA transition. Note that the intensity does not increase

linearly with temperature. In contrast, the peak intensity at the NI

transition, which is also first order, does have a simple linear'

relationship as shown in figure A3.3. This behavior is consistent with
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a coexistence region with a simple tradeoff between the nematic and

isotropic phases.

The scattering line-shape evolves only slightly throughout the

entire nematic phase in 60.8. In figure A3.4 typical longitudinal and

transverse scans are shown at T-TNA+0.o200 C and at T-TNA+0.320C. The

line-shape widths only change by -50% for the two scans shown.
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Appendix 4

Summary of Experimental Results

The following pages contain tables of the correlation lengths

(il and &i) the susceptibility (o) and the fourth order correction

term (c) obtained by fitting the data to Equation 5.0.1 convoluted with

the resolution function. Each page contains the fits for one sample

whereas each line of the table represents the parameters obtained by

simultaneously fitting the longitudinal and transverse scans at a given

temperature. The associated weights are the inverse of the one standard

deviation errors.
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