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Introduction

The technique of finite support iterated forcing was developed by Solovay, Martin

and Tennenbaum in 1969. This method has been used to establish many consistency

results, most notably that CON(ZFC + GCH)) =* CON(ZFC + MA + 20o = ),

where X> R2 . In that construction, the value of the continuum is made arbitrarily

large by adding a huge number of reals. In 1974 Laver introduced the idea of countable

iteration and used it to prove that CON(ZFC +GCH) => CON(ZFC+2NO° = 2+

(All sets of strong measure zero are countable). Later on, Shelah, again using a

countable support iteration of length R2 constructed a generic extension in which

2 = 2 and there are no p-points. Both Laver's and Shelah's constructions use a

countable support iteration of length R2. The natural approach to establishing the

consistency of Borel Conjecture + 2 = R3 and there are no p-points + 2 °O = 3

would be to try an countable support iteration of length R3. Unfortunately this will

not work. The problem with such a construction is that R2 collapses onto Rl resulting

in the value of the continuum being R2. This is a recurring theme, not limited to the

previous two problems but is rather intrinsic to the method of linear iterated forcing

itself. There are a number of propositions whose consistency in known with the value

of the continuum being R2 but are open for 2O° = R3. The failure of countable support

iteration to establish consistency results with the continuum large has become known

as the continuum problem.

The theory of gap-1 morasses was originally developed by R. Jensen. Morasses are

fairly complicated combinatorial objects which pack immense combinatorial power.

Intuitively speaking, a gap-I morass at I, where K >w, is used to build an "object"

of size K+ in ic steps from "subobjects" of size less than . This suggests that the

theory of morasses may provide us with a strategy suitable to the continuum problem.

5



In this thesis I examine a new framework of iterated forcing, where modified w -

Cohen forcing notions are attached at the points of a gap- 1 morass at w1. More

precisely, forcing notions P(c) are attached at each morass point a satisfying certain

requirements so that the top level is completely determined by the morass construction

from below. The morass maps fUT, where < T are used to tightly control the

support of conditions in P(w2). The construction is arranged to guarantee that generic

sets fit together along the morass branches and that extendibility and amalgamation

hold.
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Chapter 1

Morasses and Forcing

1.1 Gap -1 morasses

The theory of Gap -1 morasses was developed by Jensen in the 1970's in his work

on cardinal transfer theorems. The gap -2 transfer property at a regular uncountable

cardinal ic is the statement that if G is a structure of type (c++, e), then there exists

an elementarily equivalent structure H of type (w2,w). In unpublished notes, Jensen

proved the following theorem:

Theorem 1 Suppose that ic is a regular uncountable cardinal such that 2 = +.

Then,

1. If there exists a gap -1 morass at w1, then the gap -2 transfer property at ic holds.

2. If V = L, then there exists a gap -1 morass at wl.

Jensen also formulated the theory of higher gap morasses and applied it to obtain

higher gap cardinal transfer theorems.

In section 1.1.2 we will present a sketchy account of the second part of the foregoing

theorem. The proof draws heavily upon the fine structure of L. Morasses can also

be added by forcing , thus avoiding the intricacies of fine structure theory. The gap
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-1 case of that statement was proven by R. Jensen. The higher gap one is due to

Stanley and Jensen.

In what follows, we state the definition of a gap-1 morass followed by some ex-

planatory remarks aimed at clarifying the many clauses of the definition and a proof

of theorem 1. Definition 1.1 will closely follow Devlin's exposition in [De].

In order to state the definition of a gap-1 morass we need to introduce some

terminology. Let K. be a fixed regular cardinal and let S be a set of ordered pairs of

pr closed ordinals satisfying the following two conditions:

1. If (a, ) E S then a < v < + and a < x.

2. For (al1, v1 ), (a 2, v2) E S, we have al < a2 -- V < a2.

We then define:

1. S={a E re + 1 (a, v) E S for some v}.

2. S={v E r+ I (a, v) E S for some a}.

3. S, = {v (, v) E S}.

In the sequel, we refer to S, as the ath morass level. We will reserve the letters v,

,p, r and a, 3, -y to represent elements of S1 and So respectively. If (al, v) E S then

a(v) = a,. Also, we define v <o r if Ca(v) = a(T) and v < r. Suppose that <1

is a tree order on S1 such that whenever v1 <1 v2 we have a(vi) < a(v 2) and let

{TrV 1I rIP : vI + 1 - v2 + 1, 11 <1 2} be a commutative system of maps. The

notation v <* ' and p < r stands for the immediate level and tree predecessor of v

and p respectively.

It is standard practice to represent a gap-1 morass at by a bent line at , as

depicted below. We use horizontal lines to draw the levels S, and slanted lines to
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connect morass tree related points. It is a consequence of one of the morass axioms

the tree and morass levels do not coincide. As a result, morass constructions can not

he viewed as heinf monotonicallv increasing.

K K+ K K +

a(X)

Figure 1.1 Figure 1.2

Definition 1.1 (S,S, {Iir, v <t T},S) is a gap-i morass at if it satisfies the

following axioms:

Axiom 1 =mazS°=sitp(S° n A), = supS t , So is closed iri supS° for all a E S°

and supS, E So, for a < Kc.

Axiom 2 Let v <i r. Then, we have:

(1) r, I a(v) = ido(,), lr,a(V)) = a(r) , r,(v) = r.

(2) If vl is a limit point of S,,(,) n (v + 1) then r,,(vl) is a limit point in S,(,) .

(3) If vl is the immediate successor of r1 in So(V) n (v + 1) 7r,(Vl) is the immediate

successor of r,,(rl) in So(,) .

(4) If vl is the first element of S(,,) then r,(Ll) is the first element of the set

So(r).

Axiom 3 (The Coherence Property) Suppose v <l . vl E So,() n * and let rT =

7rvr(vl) . Then, Tl <1 vI and ,7r. Iv 1 = 7Ir,, I Vl.

Axiom 4 (Vertical Continuity) For all r E 5' the set {a(v) v <1 r} is closed

in a(r).
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Axiom 5 If v is not maximal in S,(), then {a(r) I r <1 V} is unbounded in a(v).

Axiom 6 If {a(r) T <1 v} is unbounded in a(v), then v = sup{Rng(r,,) r <l v}.

Axiom 7 (Horizontal Continuity) Let v be a level limit point of S,(,) and let

v <; . Let w = U7r,T[v], then v < w and Ir,, v = rT Iv. We depict that

situation in the picture 1.2.

In order to state Property (M8) we first need to define the notion of T being

"diagonally below" a.

Definition 1.2 Let T, a E S 1. We define:

T a 3T13a 1 [ 1 <| r A a1 <* a A a1 <o a, A T <1 7rG1 (T1)]

Using Definition 1.2 we may non; state the diagonal continuity property:

Axiom 8 (Diagonal Continuity Property ) Let v < v, and let v be a limit

point of S,(,) , and let v = supr,(vl). Then,

a(V) = Ua(T) I T - V}

In the next section we proceed to make a series of comments aimed at shedding

some light in the definition of a gap-1 morass.

1.1.1 Comments on the definition of a Gap-1 morass at r

To simplify matters in this and the following section we procced on the additional

assumption that we are dealing with a gap-1 morass at wl. The theory of gap-1

morasses for an arbitrary regular cardinal ri f wa, is essentially the same.
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The most important application of a gap-1 morass is the gap-2 cardinal transfer

theorem. Note the respective statement for the gap-1 case is a theorem of ZFC.

The proof of the gap-1 cardinal transfer theorem is a union of chains argument. It

entails the construction of a structure of size wl, using countable substructures in wI

steps. An easy cardinality argument shows that the union of chains technique is not

a suitable approach to establishing the Gap-2 cardinal theorem. A new kind of limit,

a tree-like one, is needed if one is to succeed in putting together such a construction.

A Gap-1 morass provides us with the combinatorial apparatus needed to construct

an object of size w2 in wl steps from countable subobjects. Note that the defining

property of morasses is reminiscent of 0, another versatile and more well known

combinatorial object used in the construction of a Souslin Tree. L possesses enough

condensation some of which is embodied in the statement of O to kill w2 antichains

in wl steps.

We now procced to make some comments on the defining axioms of a gap-1 morass.

1. Axioms 2 and 3 ensure that the maps embed "nicely", sending limit, successor and

minimal points in level ac(a) to like elements in level a(T). Axiom 2 of the definition

is a coherence property which ensures that different constructions mesh together; if

we follow the construction along branch T,, it agrees with the construction along

branch T,, 1,.

2. Axiom 4 is a "vertical continuity" principle assuring that limit points are on the

right place and there are no holes in the construction.

3. The effect of axiom 5 is to introduce as many tree limits in the construction as

possible. In essence, if r is not the right-most point on level a(r), then r is a tree

limit. A consequence of this axiom is that the ac-th morass level does not coincide

with the a-th tree level, for if a is a successor point in S ° , S, = 0.
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4. Axiom 6 ensures that if r is a limit of the morass tree, then the construction up

to r is determined as a direct limit. This will be of importance in later constructions.

5. Axioms 5 and 6 show that in a morass construction, the only place where something

new is possibly constructed is the last level point of a morass level which is not a

successor point in SO.

6. Axioms 7 and 8 refer to the range of the map xr,,. Axiom 8 is a diagonal continuity

property ensuring that if the map r,,, is cofinal in v, the "diagonal" limits are exactly

where they should be. Property 7 expresses continuity along level a(v).

1.1.2 Construction of a Gap-1 Morass in L

In this section, we outline the construction of a (, 1) morass in V = L. The account

we give here is fairly compact. For more details the reader is referred to [De]. For

the fine structural matters see [Jen]. In order to simplify notation we only consider

the case X = wl.

Let S = {(a, v) a < < w2, where v is a pr closed ordinal and J,, (a = w,

and a is the largest cardinal)}.

Since v E S1 implies that v wl, we may define:

* 1 (v) to be the least ordinal P such that v is singular in J+l

* 2 n(v) to be the least v < w such that there exists a Xn(J(,)) cofinal partial

map fit - v, where 7 is a bounded subset of v.

* 3 Let Q(v) = (Jp(,),A(v)) and let p(iv) = ()-and A(v) = _ denote

the n(v) - 1 projectum and master code, respectively, of the ordinal /3(v).

The following proposition is easy to prove:
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Proposition 1

1. p(v) > V. If p(v) > v then J() = v is regular.

2. If v E So,() then J(,) H a(v) is regular.

3. If r E ,(,) n then p(r) < P(r) < v < p(V) < P(v). Hence, Q(T) E L .

4. p(v) < a(v). -

The goal is to introduce a special parameter p(v), which in turn will enable us to

define on S1 the relation <1. We obtain the special parameter as follows. Using l(iv)

we define a parameter po(v) such that

Jp(v) = E - SHQ(v)[e(v) U {po(v)} (1.1)

Without loss of generality, we may assume that po(v) is least such 1.1 holds. We then

define,

(Po(v), 1, Ca()) if V1 < 

p() = <(pO(v), ,a(v)) if v < p(v)

(po(v), c(v)) if v = p(v), v a level limit

Having defined p(v) we now let <1 v if a(u) < a(v) and there exists a 1

elementary embedding a,,: Q(V) Q(v) such that a,(p(.)) = p(v),a ca(F) =

id,(v) and oa I J -<Q J,.

The following three propositions stated without proof summarize the most impor-

tant properties of the special parameter which are instrumental in verifying (MO)-

(M7).

Proposition 2 Suppose v, r E S1 and let v <1 7.

1. n(v) = n(r).
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2. p(v) = v p(r) = T.

3. If p(v) > v then ao,(v) = r.

Proposition 3 Let o: Q(vi) -- r Q(v), where uo is not the identity on Q(l) and

let a i az(v,) = id,,(,,) and p(v) E Rng(o), then uo(p(v)) = p(v) and thus v, < v. q

Proposition 4 Let Q be transitive and assume that a : Q -- l Q(v), is not the

identity. Suppose that p(v) E Rng(o), then there exists a unique v < such that

Q = Q(1i), (p( )) = p(v) and aloa(v) = id. q

1.2 Iterated Forcing

The method of forcing was invented by Cohen in 1963 and was applied to show

that Con(ZF) - Con(ZF + -AC) and Con(ZFC) - Con(ZFC + 2 °O = R2)-

Earlier on Godel had established, in his work on the constructible universe, that

Con(ZFC) , Con(ZFC + V = L). Since (V = L) + ZFC - GCH, Cohen's

discovery coupled with G6dels results show CH is independent of the Axioms of set

theory. The Cohen construction opened a new era in set theory leading to a multitude

of consistency results. The method of forcing was greatly enhanced when Solovay,

Martin and Tennenbaum developed the method of finite support iterated forcing. In

1972, Laver introduced countable support iterated forcing, a further refinement of the

method.

In this section we present the technique of iterated forcing and describe what

has been known as the "Continuum problem". The terminology we follow is fairly

14



standard, and is briefly reviewed here. We assume familiarity with the rudiments of

Cohen forcing as developed in [Ku]. We consider forcing to take place over a ctm AM

of ZFC. For a given partial order (P, <) a filter G C P is P- Generic if GnD 0,

for all dense sets D in AM. We reserve the greek letter ic to denote an infinite regular

cardinal.

The following definition of iterated forcing, in its full generality, is taken from

[Bau 1].

Definition 1.3 (Iterated Forcing) Suppose that a > 1 and let P, be a set of

a -sequences. P, is an iteration of length a if the following conditions are satisfied:

1. If a = 1 then for some partial order Qo, P = {(p(O)) I p(O) E Qo}. The order on

P1 is defined by p < q if p(O) <o q(O).

2. If a = / + 1, then Pa = {pl/3 p E PO,} is an iteration of length /3 and there exists

a Qo such that Il' Qa is a p.o. and p E P, if pl/ E P and IF:j p(P3) E Qu. The

ordering on P, is defined by p < q iff pl/3 < q/ and plt3 I- 3 p(P) < q(P).

3. If Lim(a) then :

a. For all < a, P,],13 is an iteration of length ,

b. E P,, where lo(y)= lp for all -y < a and

c. If p E P,, 3 < a, and q < pl/3 then r C Pa, where r(6) = p(S) if 3 < 6 < a

and r(6) = q(S) otherwise.

The order on Pa is defined by: p a q -, V/3 < a pl3 < ql/.

It is easy to see that if a is a limit ordinal, P, is not completely determined by

(P j p/3 < a). We need to specify the kind of limit to be taken at a. The most

commonly used limits are either direct or inverse . Recall that the support of a

condition p E Pa is defined by supp(p) = {/3 < a I IH- p(/3) = 1}.
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We distinguish two cases:

Finite Support Iteration If Direct limits are taken at all limit ordinals y < ca then

P, is an a-stage iteration with conditions of finite support.

Countable Support Iteration If Direct limits are taken at limit ordinals y with

cf(y) > w and inverse limits elsewhere, then P, is an a-stage iteration with conditions

of countable support.

The preservation of cardinals in forcing constructions is shown by means of chain

conditions, distributivity conditions and fusion arguments . If P has the tc-cc then

all cardinals A > r are preserved in a generic extension. If P is -distributive then

all cardinals <K are preserved. Preservation of wl for Axiom A forcings, a wide class

of forcing notions, which includes Sacks and Laver's forcing is accomplished by the

technique of fusion. Let P, be an iteration of length a. Let us note the following:

1. Finite support iterations preserve chain conditions. In other words, if Pa is the

finite support iteration of {Qw < a} and for every /3 < a IV-p Q has the c-

cc, then Pa has the -cc . The respective statement for countable support iterated

forcing need not hold. However, if in addition we assume that whenever cf(a) = 

then {3 < a I Po = Dir'im<,P-} is stationary in a, then P has the K-cc. For most

practical purposes, if the iteration has length , where e >_ w2, it suffices to show

that for each cZ < w, there exists a dense subset W4T of Pa such that IW[,I < K.

2. The preservation of R1 in most forcing constructions is accomplished as follows:

2a. For the case ,of finite support iterated forcing, if the partial orders being

iterated are ccc, then the preservation of R1 follows from 1. However, if the

iteration contains cofinally many partial orders not satisfying the ccc, then R1

is not preserved. Moreover, many of the forcing notions we wish to iterate,

such as Sacks and Laver forcing fail to satisfy the ccc.
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2b. Countable support iteration preserves Axiom A. In other words, if for all

f, < a we have IFp Q, satisfies Axiom A, then Pa satisfies Axiom A. Thus R1

is preserved.

Shelah developed his theory of proper forcing in his search to find a property

which implies preservation of wl and which is itself preserved under countable support

iteration.

The most notable application of finite support iterated forcing is the relative

consistency of Martin's Axiom with the continuum large.

Theorem 2 (MST) Let > 2. Then,

Con(ZFC + GCH) - Con(ZFC + MA + 2o = r)

The proof of theorem 2 can be found in [MS]. In a finite support iteration Cohen

reals are added at each limit point. This is a problem in constructions where we wish

to preserve CH or avoid adding Cohen reals such as the construction of the Laver

model.

A set X C [0,1] has strong measure zero if for every sequence (en I n < w) in

R+ there exists (I, ] n < w), a sequence of intervals such that lh(In) < En and

X C Un<w In. In 1919, Borel conjectured that all set of strong measure zero are

countable. Subsequently, Lusin established in [Lu] that

CH + ZFC F- there exist uncountable strong measure zero set.

Thus, the following question was raised: Is Borel' Conjecture consistent with ZFC?

In [La] Laver answered that question by proving the following theorem:
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Theorem 3 Con(ZFC) - Con(ZFC + 2 °O = R2+ Borel Conjecture)

In the proof of theorem 3, Laver introduces the method of countable support iterated

forcing. The construction uses an R2 long iteration of Laver forcing notions with

conditions of countable support. Preservation of cardinals is handled by 1 and 2b.

1.2.1 The Continuum Problem

The natural approach to establishing the consistency of Borel's Conjecture with the

continuum being R3 would be an R3 long countable support iteration of Laver forcing.

Unfortunately, this approach will not produce the desired consistency result. The

following proposition, due to Roitman, and cited in [Bau] shows that for non-trivial

forcings, the value of the continuum will be R2, even in a countable support iteration

of length R3 ; the problem is that 2 ° gets collapsed onto R1 after iterating wl steps

past a stage where 2 °O > RI.

Proposition 1 Let 2uo > R1 and let P(wi) be a countable support iteration of length

w1 such that for all < wl the following condition is satisfied

IF- 3p#, q fE Qp[131r E Q(r < p, q)]

Then, if G is P(w1) - generic over Al, V[G] F 2'N = R1

Proof: A density argument. H

The problem of obtaining the consistency of Borel's conjecture with the continuum

large was solved by H. Woodin 1981. Woodin showed that assuming oN,, adding

random reals to the model obtained by Laver's countable support iterated forcing,
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produces a model satisfying 2 °O = R3 in which there are no uncountable sets of strong

measure zero. A different proof by Shelah can be found in [Sh].

There are many propositions whose relative consistency is known with the value

of the continuum R2 but not known to hold with the continuum R3. A representative

problem of that type is the p-points problem.

An ultrafilter D on w is called a p-point if for every countable sequence (X" I n <

w) of elements of P(w) there exists an X E D with the property that X - Xn is finite,

for all n < w. Note that in the presence of CH, it is a theorem of ZFC that there

exist p-points. The consistency, relative to ZFC, of the non-existence of p-points with

the continuum being R2 remained open till 1982, when Shelah proved the following

theorem, using a countable support iteration of length R2:

Theorem 4 Con(ZFC) - Con(ZFC + 2 = 2+ there are no p-points).

The respective statement with the value of the continuum being R3 remains open.

Another relevant statement which is again not known to be consistent with the con-

tinuum large is the statement that there are no p or q points. Taylor showed that

2" ° = R2 implies that there exist either a p or a q point.
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Chapter 2

The Construction

2.1 Introduction

In light of the failure of the method of countable support iteration to establish consis-

tency results with the continuum large, it appears that a new framework of generalized

iterated forcing is needed to surpass these difficulties.

T. Jech and M. Groszek have done some relevant work in the direction of nonlinear

iterated forcing. They have devised a generalized iteration of forcing along a well

founded partial order. Their technique has been used to show the relative consistency

of FP(C,w 2), an MA type principle stating that if P is a forcing notion on a class

C of forcing notions called "Perfect Tree Forcing"- which contains Cohen, Laver and

Sacks forcing among others- and D =< Da I a < w > is a family of w1 -dense subsets

of P, then there exists a filter G on P such that G n Da, 0, for all a < wl:

Theorem 5 Con(ZF) , Con(ZFC + 2so = n + FP(C,wl))

In this thesis we develop a new framework of iterated forcing by attaching forcing

notions to the points of a gap-1 morass at wl in, such a way as to have the top

level being an w2 iteration determined by the morass tree. We look at a special case,
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the ol - Cohen case. The definition proceeds by morass induction on r E S1 and is

comprised of several subcases.

Before commencing with the definition of {P(r) I r E S1} we list some of the

requirements governing our construction. We proceed inductively and define for each

r E S the sets P(r), P*(T) such that the following conditions are met:

* 1 ForeachrES P*(r)CP() CL,.

* 2 A condition p E P(r) is a function p: Predo(r) U {a(r)} - L,, where

Predo(r) is the set of level predecessors of r.

* 3 P*(T) is dense in P(T).

* 4 Suppose that a is not a level limit and let a <1 . We want

" to pull back to a "generic at a", for a <l , via the map

The concept of "generic at " is formulated in definition 1.

* 5 Intuitively the dense sets P*(r) defined at morass point 

conditions which axe generic with respect to a tree predecessor.

of conditions which are extended by conditions in P*(r).

a set "generic at

f : Lo - Lt.

will contain the

P(r) will consist

* 6 The definition is monotone along the levels, that is for all a, r E S', if a <o r

then, there exist a natural embedding it: P(a) ) P(r).

* 7 For p E P(T) the support of p is controlled by the morass maps from below.

More precisely, we require that if r Min<oSI, then there exists r1, a such

that a <1 rl <o r , and

supp(p) C Rngf,, U {Tr}

* 8 P = Dirlim{P(a) I a(a) = wl} is w2 -cc and w -distributive.

21



Note P(r) will not be a (linear) iteration in the standard sense.

We first define the notion of a set G C P(a) being a-generic:

Definition 2.1 Let P (a) be the forcing notion inductively defined at a and let o*

denote the last morass point on level a(a).

G C P(a) is a-generic if G n D ¢ 0 for all D E L.* which are dense in P(a).

The goal is to prove that there exists a morass indexed system of forcing notions

satisfying the foregoing requirements. In section 2.2 we define a new framework of

iterated forcing followed by some remarks aimed at clarifying the many clauses of the

definition. In section 2.3 we prove the key lemmas related to this construction.

Let us first dispose of some terminology which will be used in the definition of the

forcing.

* 1 Let T E S 1. The notation Min<('r), Succ<O(r), Lim<O(r) is used to signify

that r is a level minimal, level successor, level limit respectively. Similar nota-

tion for the respective <1 notions. We denote the set of level predecessors of r

by Predo(T). Also, let Min<OS' = E S1 1 r is level minimal}. Lim<oS' is

defined similarly.

* 2 Let p E P(r) and let G C P(r). Suppose that a <1 r. We define Gen,,(p)

and Gen,,(G) by:

Gen,,(p) = {q E P(a) I f,,(q) > p}, Gen,,(G) = {q E P(a)} I far(q) E G}

* 3 When we say that p pulls back to a generic at a we mean that Gen,,(p) is

a a generic set. Similarly, G pulls back to a generic at a if Gen,,(G) is a a -

generic set. Also,

Gen,(a) = {p E P(r) Gen,,(p) is a - generic 
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* 4 In the definition of our forcing it will not necessarily be the case that if

p E P(r) and a <o T then pla E P(a). Since we will be taking inverse limits

at certain morass points, we need to use the following modified definition of

an inverse limit. Let a be a level limit and let us assume that P(al) has been

defined for each al <o a. Then,

Invlim,<o P(al) = {p E L,. I Val <o a[al Lim<oS' - plri E P(al)]

2.2 Definition of the Forcing

In this section we present the definition of the generalized iterated forcing along a

gap-1 morass at wl. The definition and all subsequent proofs will be a morass induc-

tion.

Definition 2.2 Let r E S1 . We define P*(r) C P(r) C L, using morass induction

on S:

CASE A: r tree minimal point

Subcase 2.2.1 T is level minimal. Let P(T) = (w1 - Cohen)L(T) and let P(r) =

P*(').

Subcase 2.2.2 r is level successor to a Min<OS' point or r is a level double succes-

sor. Let < r and let a 4 Lim<oS. If G is T -generic, let Go {pla I p E G}. We

will show in proposition 4 that Go is a - generic.

We define:

P*(r) = {(p,) I p E P*(a) A p IF-, a E (wl - Cohen)L } (2.1)
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P(T) = P*(T) (2.2)

Subcase 2.2.3 r is a level successor to a level limit. Let a be a level limit and let

a < r . Define P*(r) and P(r) as follows:

P*(r) = {p E Invlim*O,<OP(a,)nL, I (Isupp(p)l < )r ' } (2.3)

P*(r) = P(r) (2.4)

Subcase 2.2.4 r is a level limit. Define

P(r) = Dirlinit,<OTP(a) (2.5)

P*(r) = P(r) (2.6)

CASE B : r is a tree successor

Subcase 2.2.5 r is level minimal. Suppose y <* r; then Min<o(). Define:

P*(T) = {p E (wl - Cohen)LT I p E Genr()} (2.7)

P(r) = {p E (w1 - Cohen)Lt I 3q E P*(r)(q < p)} (2.8)

Subcase 2.2.6 r is level successor to a Min<o S1 point or r is a level double succes-

sor. Suppose that y <; r, a <; r, and Min<(a) or Succ<(a). Let a = f,(a) <1 a.

By induction, it is dense on P(a) for p E P(a) to pull back to a a -generic set. See

lemma 2.1.

Hence the following definition is justified:

P*(r) ={(p,) E P*(a) * (w1 - Cohen)L I {(Yp,o) E P*(T) J p E

Gen,(p) A p I '0 > }) is - generic} (2.9)
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Note that P*(r) is of the form: P*(r) = P**(a) * Q(a), where P**(a) is dense in

P*(a). We may then define P(r) to consist of weakenings of P*(r):

P() = {(p, 0) E P(o) * (wl - Cohen)LT I 3(pl, 01) E P*(T) such that p1 < p and

p 11 81 < }.

Subcase 2.2.7 r is a level successor to a level limit. Suppose that o* <O r, Lim<(a),

r < r.

We define P*(r) and then let P(T) to be the upward closure of P*(r):

P*(r) = p E Invlim< 0oP(:) nL,T (|supp(p)| < w)L' A p E Gent,()} (2.10)

P(r) = {p E Invlim<oLP(T)nL, I (Isupp(p)l < w)L' A

3p* E P*(,) such that p* < p}. (2.11)

Subcase 2.2.8 is a level limit. Define:

P(r) = Dirlimit<ofP(a) (2.12)

P*(7) = {P E P(r) 3p P( ) r1)1 <1 r, r,(P) =} (2.13)

Case C: r is a Tree Limit

In this case we define:

P(r) = Dirlim{P(ri) r1 <1 r} (2.14)

P*(T) = P(r) (2.15)

Let us note the following with regard to definition 2.2:

1. We have assumed that if G C P(r) is r- generic and a <O r, where a V Lim<OS1,

then Glr = {pla I p E G} is a-generic. We prove that claim in proposition 4.
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2 We have to establish that the above construction is well defined and nontrivial; for

instance we need to show that P*(r) y 0, for all r E S1 . This is a consequence of the

extendibility lemma.

3. It will not necessarily be the case that a restriction of a condition p E P(r) to a

level predecessor a of r will a condition in P(a). We examine that in lemma 2.2.

4. The notions of support and length have to be defined. This is done next.

5. In the case of r E Lim<oSn Lim<, S1, we need to prove that the definitions of

the forcing corresponding to Case C and 2.2.8 coincide. This is proven in proposition

7.

We now clarify the notions of support and length of a condition p E P(r).

Definition 2.3 We proceed by morass induction on E S and define supp(p),

lh(p) > a, for p E P(r), a E ORD.

Subcase 2.2.1 r is a level minimal point.

Since P(T) C (w, - Cohen)LT, Ih(p) > a is well defined. For the support of p we

let:

supp(p)=0 ifp = 

{a(T)} otherwise

Subcase 2.2.2 is a level successor to a level minimal point or a double successor.

Let cr <o r. Suppose that p = (q, 0). Define:

supp(p) = { supp(q) U{0} if -q IF 0 = 1

supp(q) otherwise

For Ih(p) > a, since lh(q) > a has been inductively defined for q, let

lh(p) > a lh(q) > a A q I- h(O) > a
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Subcase 2.2.3 r is a level limit.

Since P(r) = Dirlim<o,,P(a), lh(p) > a and support have been inductively

defined.

Subcase 2.2.4 is a level successor to a level limit.

Define

supp(p) = U{supp(pli) I Succ<o (f) A F <o r}

and

lh(p) > a V <o r [ E Succ<oS - lh(pl) > a]

The foregoing completely specifies the support of a condition p E P(r). If T is a tree

limit, the support of a condition p E P(T) may also be characterized as follows. Let

p E P(r). There exists T <1 r and p E P(T) such that p = f(p). Inductively,

lh(p) > a has been defined at stage . Then, lh(p) > a X lh(f(j)) > a and thus

supp(p) = f(supp(p)).

2.3 Key Lemmas

In this section we establish several lemmas key to the definition and show that the

above construction satisfies the requirements set forth on page 22. The key lemmas

are the Extendibility and Amalgamation Property. Both properties will be proved in

a simultaneous morass induction. The following two propositions are easy to prove

and will be used extensively in subsequent proofs.

Proposition 2

(a) Let q < p,- <1 and let p E Gen,(T). Then q E Gen,(Y) and Gen**(p) =

Gen (q).
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(b) Suppose that r is a tree limit and let a <o r. There exists 7,7 E S' such that

<1 r , ?F <0 T and a = fT(b)

Proof

(b) Since r is a tree limit point {a(v) I v <1 r} is unbounded in a(r) and thus not

maximal in S,(,). By axiom 6, there exists a T <1 r and E y such that a = f().

By Axioms 1 and 2 we have a <o T.

(a) Easy. q

Proposition 3 Suppose that a <o r,X E L, and let L, IXI < Ro. Suppose that

X C ORD and supX < a. Then X E L and La, XI < o.

Proof Let a = supX. Working in L, since w~l = a(a), let us choose a bijection

f : a -+ a('u). Then letting X = RngflX, we have X C 71 < a(u), for otherwise

in L,, we have cof(a(a)) = w which is a contradiction, since a(a) = wLr. Then,

X E L(). But since L() C La we then have f-'lX E L,. Since f-l'X = X, it

follows that X E La and obviously L l= IXI < Ro. -t

Some of the key properties of the definition are contained in extendibility and

amalgamation lemmas, which are proved by a simultaneous morass induction. The

amalgamation lemma will be applied to show that P(w 2 ) has the w 2 -cc. The ex-

tendibility lemma is used to establish the nontriviality and w-distributivity of the

forcing. Lemma l(ii) states a natural closure condition of the forcing notions P(r)

which is needed to carry on the induction.

Lemma 2.1 (Extendibility Lemma) Suppose that X C Pred<0(r) = {a S 

a <o T}, iwhere X E L and L, = I XI < Zo Let p E F(T) and let a < (T). Then:

(i). There exists q E P(T) such that q < p , Ih(q) > a and X C supp(q). Further-

more, if f <1 , 7r Lim<oS1 , then q may be chosen to be T -generic.
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(ii) Let f <1 r, and let p E P(T). Then f(p) E P(r).

(iii) Suppose ao <1 ao <o r, T1 <1 r where ao f Lim<Sl', and let E P(r).

Suppose that po E Gen,o (ao). Then, there exists a p in P(r) such that:

(a) plao = po, if r V Lim<oS then p E Gen,(Yl).

(b) E {q E P(7f) I f(q) > p} = Gen-f (p).

Lemma 2.2 (The Amalgamation Property) Suppose that a <o r, and let a f

Lim<oSl'.

(a) For every p E P(r) we have pla E P(a).

(b) Suppose that q E P(a), p E P*(T) and let q < pla . Consider the function

p {u7b 1 a <o <o I -r} LT defined by pu() = p(a). Then, p E P(r), where

p*: Pred<o(Qr) -, L is defined by:

P*({) - { q) if < 
p() otherwise

Proof: We use the notation p* = q U pu to refer to the amalgam of q and p , in

Lemma 2(b). We prove lemma 2.1 and 2.2 by a simultaneous induction on r. The

proof splits into 10 cases, corresponding to the definition of the forcing.

CASE A: r is a tree minimal point

Subcase 2.3.1 is level minimal. Parts 2.1(ii), (iii) of lemma 2.1 and lemma 2.2

are vacously satisfied. For 2.1(i) we merely take q < p with lh(q) > a.

Subcase 2.3.1 r is level successor to a level minimal point. Suppose that a < T,

Min<o (a).

To show lemma 2.2 let p = (w, ) E P(r). By definition, pla E P(a). If q < w,

then (q, 0) E P(r). To prove the extendibility property, by induction hypothesis
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applied to a, we have that there exists ql < pla such that ql E P(a), X n a c supp(ql)

and lh(ql) > a. If p = (pla,0) let 0 E TermnL[G(wl - Cohen)L- be such that

lh(8) > a and 0 > . The condition (q1,0) satisfies the conclusion of the lemma.

Parts (ii) and (iii) of lemma 2.1 are vacuous.

Subcase 2.3.2 r is a level double successor. Let r2 < rl1 < rT. In lemma 2.2,

if r1 = a or a = r2 the result is immediate as in the previous subcase. Write

p = (w,0). If a y$ r,r 2 , as w E P(r) and wla = pla , by inductive hypothesis

wla E P(a). Also, inductively (b) is established for T1, a, w ; hence, q U w" E P(ri).

Then (qUwu, 0) E P(T). If a = r2, then it is also immediate as above. This establishes

lemma 2.2.

For the extendibility property select ql E P(al ) satisfying 1 (i) and 0 E TermL[G (w1 -

Cohen)L, as in the previous subcase.

Subcase 2.3.3 r is a level limit. For lemma. 2.2, let p E P(r) and let a <o T. We

have supp(p) !_ al <o r for some rl E Succ<OS1. If al < a, the result is immediate;

if a < al, it follows by induction hypothesis. For the extendibility claim, apply

induction hypothesis to al. There exists q < p such that X al C supp(q) and

lh(q) > a. By definition of support and length, q is the required condition.

Subcase 2.3.4 r is a level successor to a level limit. Let Lim<o(rl) and r < fr.

Since o ri, pla E P(a), by definition of inverse limit. Also, if q < pla, then, for

v E Succ<OS1 we have:

P IvP if a <<o v <o 

q Il if < 0oa

Therefore,

p*E Invlim <P( l)n L,
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This establishes lemma 2.2 For lemma 2.1, let

0a <o al <o O2 <0 ...

be a countable sequence with supn<WT, = a, such that for all n < w, r, Lim<OS'.

Since ao Lim<OS , we have plo E P(ao) by 2.2(i) and thus, applying inductive

hypothesis to X ao, there exists a wo < ploo in P(ao) such that X n ao C supp(wo).

Consider

W = wo U (lwo)a

Since the amalgamation property has been established for r we have that wl E P(r).

Hence, we may now induce on w lal and X n al, etc.

CASE B: r is a tree successor point

Subcase 2.3.5 r is level minimal. Suppose that T < rT. Lemma 2.2 and 2.1(iii) are

vacuous. To establish the extendibility lemma we only need show that we can extend

p

to a - generic condition. ( Note that (ii) is then immediate since f, = idL).

To show that there exists q < p with q E GenT(T), we proceed as follows. In L,, let

< D i n < w > be a countable listing of the dense open sets of P(T) in Li,.. Using

the density of the Dn we construct

l1 >0 2 >0 3 > ..

a countable sequence such that qn+l E Dn and let q = U<,,< . Since -n E (wl -

Cohen)L-, it follows that E ( 1 - Cohen)Lr. Hence we have that q E Gen,(T).

Subcase 2.3.6 is level successor to a level minimal point. Suppose that 7 < r,

U < r and f =.(a). Let p = (pla,0).
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For the amalgamation, since p E P*(r) we have p E GenT(Y) and thus, by induc-

tion, pla ( Gen,(). Thus, since q < pla , Geny,(pla) = Genw,(qla) and therefore

p* E P*(r). The proof of the extendibility clause is the same as in the next subcase:

Subcase 2.3.7 is a level double successor. Let < r, al < a < Tr and let

a = f(cr). Suppose that p = (pla,O). We first show 2.1(i). Notice that we can

assume without loss of generality that a = a( 1l) for some a < a. Furthermore,

we may choose p E P*(r). By proposition 2, Xna E La and La 1= IXfnal < w.

Hence, by applying inductive hypothesis to X n a, pla there is a ql < pla such that

X fna C supp(q) and lh(ql) > a. We consider a term 0* E TermLnaGlwlo-Cohcn)L

with lh(O*) > a such that 0* < 0 . The condition q = (qj, 0*) satisfies 2.1(i).

To prove the second clause of lemma 2.1, let us first assume that l1 = . Since

fT,(p) E P(a) * (w1- Cohen)L" we only need show that we can extend f(p) = p to

a condition q E Gen, (T). Let q* < pla , where q* E Gen,(a). Now, working in L,,

let (D, I n < w) be a listing (in Lo(T) ) of of the dense open subsets of P(T) in L,.

We construct a sequence

P = (o, o) > ( 1 ) > ...

with (+,, n+l) E Dn and n+, E Gena(q*) . Obviously, Un<, ,n = is an w, -Cohen

term. Then, (q*, 0), 0 = f(O is the required extension of p. If Tl # , note that

since inductive hypothesis implies that f((P) E P(T) , the foregoing implies that

ffr(P) = fir(ff, :T()) E P(r).

For 2.1(iii), again it suffices to show the claim for Tj = , for having established

that the case T < T is handled by considering f,,(p). Suppose now that P E P(T)

and Po E P(ao), where Po E Geno,(). Since po E Gen(u) we proceed as in 2.1(ii) to

construct a T - generic condition p E P(r), by considering a sequence (qn, in I n < w),

where (n ,,O,) E Dn and qn+, E Genvo(po). Let p = (po,0). The amalgamation
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Property is shown as in the previous subcase.

Subcase 2.3.8 ( r is a level successor to a level limit) Suppose that al < r and

< . For the amalgamation property, first note that by assumption p E Gen,(y).

Notice that p* = q U p is a condition in the Invlinm<o P(a ) since for M E Succ<oS1

we have:

q=q v if v < 0 a
q*V={

p I otherwise

We have that p* < p. Thus, p* E Gen7,().

For the extendibilty property we first show 2.1(ii) assuming 2.1(iii). As in the

previous subcase, we need only establish that the statement holds for E P(T).

By inductive hypothesis and the elementarity of f,, f(P) E Invlim< <o,1P().

By 2.1(iii), there exists a p E P(T) with p E GenT(T) and ff,(p) > p. Hence,

fT,(P) E P(T).

To show 2.1(iii), it suffices to assume that Tj = y. If Rng(fr) n a is bounded in

al apply induction hypothesis, otherwise let < D I n < > be a listing of the dense

open sets of P(g) in L*. We construct

Po > P >

a sequence of of conditions in P(T) such that Pn E Dn+l and a sequence of conditions

in P(T) ,

Po > Pl > P2...

Let < A I n < w > be a a cofinal sequence in Rng(f.) n a, such that for all

n < w , Lim<oS and a0o <o A. Furthemore, let A, = fT-Tl(A). We first

prove the density of Dllao in P(-o). Since the amalgamation property has been

established for T,C o, if w E P(o), then letting ql : Pred<o( ) -- L be defined
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by q1(y) = (-y) if y <o o and ql(y) = 1 otherwise, we have, by the density of

D1 , that 3q2 E D(4 2 < l). Let = 2~o. Then U < w A E Do. Since

po E Gen (O) using the density of D lo, we select P1 such that p, < Po, Pl E D1

and P o E Genao(po). By 2(i), Pl|IXi E P(T1 ). Applying induction hypothesis to

PlIA1 A, , po, and oo, there exists a condition pi E P(Al) such that pi is Al -generic,

plu Io = Po and P 1 E {q E P(A1) I fla, (q) > pi} . We select a condition P2 E P()

such that P2 < Pi, P2 E D 2,p 21A 2 E P(A2 ) and PlA2 E Gen, (pl). As before we apply

inductive hypothesis to p2IA2, Al, A2 and pl. This way we generate the sequences in

(*) and (**).

We now prove 2.1(i). We may assume that p E P*(r). Using the above notation,

let w < plao be such that X ncro C supp(w). By amalgamation, wl = wUp o E P(r).

We apply induction hypothesis to wll A, etc. If r is a level limit proceed as in the

tree minimal case.

CASE C: is a tree limit

Both lemmas are shown by reflecting to an appropriate tree predecessor of r. For

the Extendibility lemma, clause (ii) is immediate from the definition of the forcing.

To prove clause (i), let r1 be a tree predecessor of r such that

3p E P(ri) [p = fT T(p) ] A X E Rngf~,

Inductively, let E P(r1 ) be such that < , lh(?) > a and X C supp(q) , where

X = fTlT(X). Then, letting q = f T (), Ih(q) > and supp(q) = f, 1 (supp(ql)) D X.

To prove the amalgamation property, let r1 <1 be such that

3p E P(T1 ) [p = f(p)] A (a, q E Rng,,,)]

Letting al = f (or) we may now apply inductive hypothesis to p , q and r. -
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The following two propositions examine genericity along the morass levels and

along the branches of the morass tree.

Proposition 4 Suppose that G C P(r), G is r-generic , a <o r, oa,r Lim<oS1

and let Gla = pla I p E G}. Then Gla is a-generic.

Proof: Let D C P(a) be dense in P(a) and let D1 = {p E P(r) I pla E D}. We

show that D1 is dense in P(r). Since pla e P(a), by density of D there exists q < pla

with q E D. Let p* = qUp,. Then by amalgamation, p* E P(r), p* E D1 and p* < p.

Thus, D1 is dense in P(r). Now if D E L,*, since L, = L,., we have D1 E L,.

Since D1 n G : 0, we have that Gla meets D. -

Proposition 5 Let GC P(r) be r-generic, a <1 r and let r f Lim<OS1 .

G* = {q E P(a) I f,(q) E G} is a-generic.

Proof: Let D be dense in P(a) , D C P(a), D E L,.. It suffices to show that there

exists a p0 E G such that Gen,,(po) is a - generic for then, since Gen,,(po) = {q E

P(a) I ft(q) > po} nD # 0, letting q be such that f,,(qo) > po, qo E D we have

qo E Gen,,(G). The existence of p0o follows by extendibility. -i

Proposition 6 (Monotonicity of The Definition) Suppose that a, r E S' and

a <o r and let a V Lim<oS '. There is an embedding i,,: P(a) -- P(r) such that if

V <0 a, ir = iZa o ia.

Proof: Procced by induction on r. If r is a double successor, we use the fact that

P(r) is a two step iteration and define the maps accordingly. Otherwise use the fact

that P(r) is either a direct or (type of) inverse limit. q
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The next proposition shows that if ' is a level and tree limit, then the direct limit

along its tree branch coincides with the direct limit along its level.

Proposition 7 Let r E Lim<(S) nflLim<, (S). Then:

Dirlim<o,,P(-) = Dirlimn<, P(T)

Proof: If p E Dirlim<<,,P(T), then there exists a rs <1 r and a E P(r)

such that f 1T(p) = p. By Property M2 of the morass r1 is level limit ; thus there

exists Ta <o r1 such that P E P(T1 ). Let a = f,,(Yl). Then, f,(p) E P(a), by

the extendibility lemma. But f(P3) = f~(P) E P(a). Therefore, p E P(a), and

Dirlima<oP(F).

Conversely, if p E Dirlim<OTP(T), let p E P(a), a <o r. Since r is a tree limit,

by proposition 1, there exists a r1 E S1 , with a E Rngirnl. Thus, letting is be such

that f(irl) = a, we may proceed as above. -

2.4 Preservation of Cardinals

The next two propositions establish preservation of cardinals for P(w2 ).

Proposition 8 P(w 2) is w2-cc

Proof: Let A be a maximal antichain in P(w 2). There exists a r E S1 such that

An L(T) is an antichain on P(r), where cof(r) = w1, building T in wl steps. Trivially,

A n P(r) is a maximal antichain in P(r). We show that it is a maximal antichain in

P(w2). Since cof(r) = w1, plt E P(r) if p E P(w2). Thus, given p E P(w2), let q be

an extension of plr in X f P(r). By the amalgamation property of our conditions,

q* = q U pl r is a condition in P(w 2). -t
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We now prove that P(w 2) is w - distributive. The proof uses the extendibilty

lemma.

Proposition 9 P(w2) is w -distributive.

Proof: In order to establish distributivity, let (Dn n < w be a countable sequence

of dense open sets in P = P(w 2) and let p E P. Since P(w 2) has the w2 -cc, we

may choose E S with a(r) = wi,cof(r) = w1 such that p,Dn E L. Now we

may choose rl <1 , T E S such thatDi Rngf,,. By the extendibility lemma

3q < p (q E Gen(rln)). Letting Dn = r;l(Dn), we have that Dn is dense in P(T),

for all n < w. Then there exists a PI E P(T), such that PI E (nn<,, Dn) nGen,,(q).

Let fn(p) = pi- Then pi E n<,, Dn and pi < p. -P
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