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ABSTRACT

The spinning rotor is supported by torsional elements
in an elastically supported tuned gyro. These torsional elements
create a positive spring restraint on the rotor. By spinning the
entire support structure of the rotor at a "tuned" speed, the positive
spring restraints are cancelled by negative spring restraints created
from the dynamics of the spinning rotor and support structure. The
result is a freely supported rotor uncoupled from any case motion
inputs.

How the balancing of spring restraints is performed is
shown for an Oscillogyro, a Hooke's Joint Gyro, and a multigimbaled
gyro.

An error analysis for the multigimballed gyro is then given
with its error model for testing and a general description of a test
procedure for testing the instrument.
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Principal moments of inertia of rotor about
rotor x, y, z axes respectively.

Principal moments of inertia of the nth gimbal

about xn, YnI Zn axes respectively.

ax, ay, aZ

ax , ax , az

Dxn, Dyn, D

DD

Fm

j

Kxn, Kyn

Rotor linear accelerations resolved along case
fixed coordinate set.

Rotor linear accelerations resolved along rotor
fixed coordinate set.

Damping coefficients associated with the torsional
flexures of the nth gimbal about xn, n axes.

Damping coefficient due to rotor drag

Gyro figure of merit.

Torsional stiffness of flexures for the nth gimbal

about gimbal xn and yn axes respectively.

Translational stiffness of rotor to shaft suspension
along rotor fixed axes.

Mass of rotorM

Mass of the nth gimbal.
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Mx , My M z

Mx, MyS Mz

N

No

n

Externally applied moment to rotor resolved
along shaft fixed coordinate set.

Externally applied moment to rotor resolved along
case fixed coordinate set.

Speed of shaft rotation relative to case.

Gyro tuned speed.

Number of gimbals

Quadrature coefficients resolved along rotor
fixed axes.

LaPlacian operator.

Time.

Rotor to case drag torque.

Moment applied to the nth gimbal
the gimbal xn axis.

Moment applied to the nth gimbal
the gimbal n axis.

by the rotor about

by the rotor about

Shaft reaction moment exerted on the nth gimbal
about the gimbal xn axis.

Shaft reaction moment exerted on the nth gimbal
about the gimbal Yn axis.
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Angle between xn axis of the nth gimbal and x' axis
of the rotor.

Angular velocity of rotor relative to shaft resolved
along rotor fixed coordinate set.

Angular velocity of rotor relative to case resolved
along case fixed coordinate set.

Absolute angular rates of gyro case resolved along
case fixed coordinate set.

Absolute angular rates of the shaft resolved along

shaft fixed coordinate set.

Absolute angular rates of rotor resolved along
rotor fixed coordinate set.

Absolute angular rate of the nth gimbal resolved
along the coordinate set fixed to the nth gimbal.

Phase angle of vibration in space domain.

Phase angle of vibration in time domain.

Angular frequency of vibration.

Angular frequency of nutation.

Time constant at nutation frequency.

Gyro time constant.
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Introduction

A freely supported gyro is a spinning mass mounted on its

supported and protecting case so that the case can be turned and

translated in any direction without causing torques that disturb the

angular orientation of the rotor axis relative to inertial space.

One design approach has been to find a substitute for the

rotating wheel. Thus there are gyros designed with various kinds

of spinning fluids, vibrating masses, nuclear and atomic inertia
7,8,12effects, and laser frequency difference effects. These

designs have had some good performance but thus far none have

been operationally available in practical sizes and power ranges.

The other approach has been to refine the output axis support

to the rotating mass. In this class of gyros we have the fluid,

electrostatic, electromagnetic and gas bearing suspensions. 4' 9

The rotating suspension of the elastically supported tuned gyro that

this thesis talks about is in this class of instruments. Over the

last decade the elastically supported tuned gyro has been developed

with simplicity, low cost (25% of conventional floated gyro)2 and

long term drift rates of 0. 01 degree per hour, to give a promising

approach for future low cost inertial quality gyros.

This thesis will present the basic concepts of elastically

supported tuned gyros with particular emphasis on the two-degree-of-

freedom elastically-supported tuned gyro. It will also develop the

instrument's error model and present a test procedure for testing

that instrument in a dynamic environment.



Basic Concept

If a gyro with a rotating mass is to keep a fixed direction

in inertial space (it is then a free gyro), the support structure for

this rotating mass must apply no torques to the rotating mass when

the gyro is moved relative to inertial space.

Conventional approaches to achieve this freely supported

rotating mass have been to mount a rotating mass through a number

of gimbals to give it the required degrees of freedom. For a two-

degree-of-freedom gyro the support is as shown in Figure (1). This

type of approach creates the following problems: (1) The gimbal

bearing friction is a distrubance torque to the rotating mass,

(2) Mass unbalance torques on the rotating mass occur from the

spin motor mounted inside the gimbals. The stability of that unbalance

is directly related to the gyro acceleration drift stability. (3) The

electrical leads needed to carry wheel current from one gimbal

to another can create elastic restraint torques on the spinning rotor.

An alternate approach used in the elastically supported tuned

gyros is to support the spinning rotor from the inside out and rotate

the whole suspension by a spin motor connected to the shaft as shown

in Figure (2). Some advantages in this approach are that: (1) no

mass unbalance torques occur from the spin motor, (2) no electrical

power is transferred through the gimbals, (3) no bearings are needed

to give the rotor its degrees of freedom. Thus with this method of

motor suspension, only two restraints occur on the rotating mass.

One of these restraints is due to the torsion elements and creates

-9-
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an expected positive spring torque between the rotor and shaft.

The second restraint, and the key point in the basic concept of

these gyros, is that a negative spring torque is created between

the rotor and shaft due to the dynamic behavior of the rotating

mass. This negative spring restraint is proportional to the rotation

speed squared and can therefore be used to compensate for the

positive spring torque, produced by the restraint of the torsion

element, by rotating the entire system at a selected speed ("tuned"

speed) that balances the two restraints. Perfect balancing of these

two restraints on the spinning mass results in a freely supported

spinning mass -- the condition we are trying to achieve.

A better understanding of this concept will be developed in

the following sections after considering how this condition of

balancing spring restraints is performed for some specific gyros.

-11-



The Oscillogyro

3. 1 Ideal Operating Condition

In the oscillogyro, as shown in Figure (3), a single-degree-

of-freedom structure supports the rotating mass. 1 In this instrument,

the plane of rotation of the sensitive element should ideally remain

fixed in inertial space for small angular rotations of the instrument

about axes perpendicular to the shaft. This motion between the

oscillobar and a surrounding case is sensed by pick-offs and used

by some torquing mechanism to realign the oscillobar to a nulled

position. The pick-offs can be arranged in two pairs in each of

four quadrants to measure the proximity of the bar to a reference

plane on the instrument. One pair of pick-offs measures displace-

ment of the bar about an axis and a quarter of a revolution later the

other pair measures displacement of the bar about an axis at right

angles to it. The instrument can then be regarded as a two-degree-

of-freedom gyro by working on a time sharing-basis.

To achieve this ideal operating condition the resultant torques

on the sensitive element must be zero when the shaft is rotated through

this small offset angle about an axis perpendicular to itself. It will

be shown in the derivation of the rotor's equation of motion how the

dynamic torque acting about the suspension axis will be used to

modify the torsion torque of the suspension element to achieve the

ideal operating condition.

3. 2 Equation of Motion

A beam, called the oscillobar, is supported about the torsion

element axis, y', and free to rotate about that axis through a small

- 12-
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angle, . The entire support structure is rotated at a rate )

about the drive axis, Z, as shown in Figure (4). The entire shaft

and support structure is then rotated at a rate about an axis Y

which is perpendicular to the drive shaft and fixed in the gyro

case surrounding the entire system. The axes x y z are fixed in

the shaft and rotate with respect to the case fixed set X Y Z at a

rate N about the case Z axis. The x'y'z' set is fixed in the oscil-

lobar along its principal axes of inertia.

The angular velocities of the oscillobar with respect to

inertial space along oscillobar axes are

Wo, c Si siCO5 Go e - 'Swe (3. 1)
Ws, = .cos' + 

UJw S Vsi\p SnrG 4qCoSO

where wx,, wy,,Wz, are angular velocities of the oscillobar with

respect to inertial space.

Using Euler's equations of motion for a rigid body to describe

the motion of the oscillobar about the y' axis, one obtains

T2- X1,Q
(3.2)

where T2 is the torque applied about the y' axis and A, B, C

are the principal moments of inertia of the oscillobar.

Substituting equation (3. 1) into (3. 2) gives

*@ c (C-A)(l> - i rSipl swne Co5o ~ TA - '( C OS3
(3.3)

-14-



The torque T2 contains a contribution from the spring

torque, the windage torque, and a torquing mechanism torque.

Writing

- e -Ce +Tz' (3. 4)

where T2 is the torquing mechanism torque, KG is the spring torque,

C4 is the windage torque, and substituting into (3. 2) assuming that

)) >> , ~S ~n- A, e and cos5- A, one obtains

O Ace ++K+ (C-A)l TK cose'\ + ( C-A)Sril (3 5)

Finally assuming that -\ is constant Qi = N) , the equation

of motion for the oscillobar becomes

6 tcG tis(c-)Nt~e - T+'-eB cosNt +( 6C-A l\Nt (3. 6)

where T2 may have any designated variation in time.

3.3 Tuning Condition

The response of the gyro to a steady rate of turn, ~ =-L

and no control torque input, is

B -- c +e J (C-A)Nz - (8+C-A) CLCA s1n Nt (3. 7)

The desired response of this system to the steady rate input is

obtained by making K = (A + B - C)N2 (i. e. balancing the torsional

restraint by the dynamic restraint).

The equation of motion for the undamped case becomes

+ NG 0 ( C - A)/B L N so Nt (3. 8)

- 15-



4.

with expressed as ( GO, G as initial conditions)

(sB+C-A) (3. 9)O = os .n (.Nt + ) - (6+C ) -'t LcoS Nt (3)

The first term is small compared to the second term for

A << B, C,and 0 _ 0. 5 degrees. For this condition, the amplitude

of the deflection is proportional to the input rotation, lt. ,

thereby permitting a sensing element (pick-off) to detect inertial

rotations of the gyro case.

It can also be seen that the phase of the 0 response (again

neglecting the first term) is exactly 900° out of phase with

(B + C - A) J-L N sin Nt, the dynamic driving torque, causing the

oscillobar motion. When (B + C - A) = 1 , the plane of rotation of

2B

x' would lag the plane XY by exactly the rotation of XY, thus x' or

the oscillobar, rotates in a fixed plane in inertial space. This is

assuming that (A + B) = C and K = 0. This condition can only be

achieved approximately by concentrating the mass of the oscillobar

near the axis x' so that A << B and B ' C and keeping the value of K

as small as possible. The absolute movement of the plane of

rotation is then minimized and satisfies the condition for a free

elastically supported tuned gyro. Note again the tuning condition was

found by making the torsional restraint equal to the dynamic restraint

or by tuning the undamped natural frequency of the system to the

system's rotation speed.

A physical picture of how the oscillobar stays fixed in inertial

space is seen in Figure (5).

- 16-



The plane of rotation of the bar stays fixed in inertial

space, but has a cyclic rotation (with amplitude equal to the shaft's

offset angle) with respect to the shaft fixed coordinate set.

Fixed
Plane

90
0

180°
I

./

Figure 5 - Fixed Plane of Oscillobar
Oscillation
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Hooke's Tuned-Joint Gyro

4. 1 Ideal Operating Condition

This gyro's suspension gives the sensitive element two

degrees of freedom plus increasing the gyro's angular momentum

by adding an extra ring outside the oscillobar as shown in Figure (6).

This arrangement can be simplified to the symmetric representation

in Figure (7).

For this instrument, the ideal mode of operation is to have

the rotor spin axis remain fixed in inertial space when the shaft

is rotated through some small angle about an axis perpendicular to

the shaft. This small rotation of the shaft with respect to the

inertially fixed rotor, is then a direct measure of the case's motion

with respect to inertial space. This ideal mode of operation is

achieved by correct "tuning" of the positive spring restraints of the

torsion members to the negative spring restraints caused by the

rotor dynamics.

4. 2 Equations of Motion

For ideal gyro performance the torques that will be transferred

to the rotor when the case is rotated through small angles A

or 19y with respect to the rotor must equal zero. As a

simple model of this system, assume the torsion elements are replaced

by perfect frictionless pivot bearings.

Consider a system of Cartesian axes fixed relative to the gyro

case such that the Z axis coincides with the driving shaft and the XY

-18-
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plane includes the gimbal pivot intersection point. For a
2simple analysis (a more complete analysis is given in Section 5

for the non-symmetric gyro with "n" gimbals), consider the

rotor deflections from the case fixed axes X and Y to be x and

By respectively (Figure 7).,

If G,e and 0C,, represent small deflections of the

gimbal about the pivot axes, then

xit = ICosw +(\Y, S (inner pivot axis) (4.1)

G@,- 0o (outer pivot axis)

where 'x is the shaft rotation angle. yn is zero since the

gimbal is only capable of rotating about the inner pivot joint.

Transforming these rotations to case fixed coordinates XYZ, one

obtains the gimbal ring deflections as

W, -8x, ,\e = B C- os2' + s CoS
(4. 2)

yK = eynSth) - Ys;ncos) +ys\Wts

The torque about the X and Y axes to accelerate the gimbal

inertias are

7vt - AV\XV + CGEp
(4. 3)

YK = Bn -yn C54ss
where A and B are moments of inertia of the gimbal about then n

torsion element axes, and Cn is the gimbal moment of inertia

about the shaft axis. Txn and Tyn are external torques applied to

-20-
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the gimbal.

Since these torques cannot be transferred from the

gimbal to the rotor by way of the outer pivot joint, only the

components of the torques in (4. 3) along the inner pivot joint

axis are transmissable. Therefore

- =- Tx, cosT +Ty $s'\ (Ti along inner torsion
element)

(4.4)

T0 = O (TO along outer torsional
element)

Transforming these torques to case fixed coordinates,

-Tr =T.cos =, Tr cos +-Tyn sin- (cosl (4
-Txr Tj o~N5~WV~l(4.5)

which, after substitution of equations (4. 2) and (4. 3), become

T A An N - (A, -C,f n (4.6)T -erms in (4.6)
T At By _ An N G3 -(An C) t)N Js

Yr 2 z 

where An = Bn and % = N. Note, these equations describe

torques on the rotor in a cased fixed coordinate system as a

function of gimbal dynamics for perfect pivot bearings.

In this equation (4. 6) there exists a negative spring

torque on the rotor due to the dynamics of the gimbal. This nega-

-21-



tive torque appears in the third term on the right hand side. It is

caused by the combined effects of the gimbal swiveling and the

torque restraint T = 0 (the gimbal swivels as shown in Figure 8).

A spring restraint in any gyro's output axis suspension results

in the familiar rate gyro characteristics. Specifically, the float

is offset when the gyro is given an input rate. The offset produces

a torque (via the spring) that precesses the gyro to follow its input.

The net motion of the float is the familiar conical precession of

the rotor's spin axis. The above negative spring torque then

creates a coning of the rotor's spin axis.

The important feature of this negative spring restraint,

however, is that it can be used to cancel a positive spring restraint.

This cancellation is accomplished by replacing the pivot joints with

torsional elements. The positive spring restraints created by the

torsion elements causes the coning of the spin axis to be in a

direction opposite to the coning caused by the negative spring restraint.

Since the dynamic (negative) spring restraint is a function of the

rotor spin speed, .spinning the rotor at a specific speed that makes

the dynamic restraint equal to the spring restraint will cause the

two restraints to cancel one another. If one calculates the coning

due to each of the spring restraints, it can be shown that when

these two restraints become equal, the period of coning becomes

infinite, or the rotor becomes effectively uncoupled from its sus-

pension (Figure 9).

-22-
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4.3 Tuning Condition

The general open loop equation of motion (5. 10) for a two

degree of freedom instrument (derived in Section 5) can be used

to describe the equations of motion for this instrument. Assume

the gyro is symmetric and has no external torques or case motion

inputs. Also, consider the shaft has been rotated through some

small angle perpendicular to the shaft. The gyros equation of

motion becomes

(AA,,) , - NG (A CB-) (C- Cow t4NZ2,GK x O

Bos + N (A -- c B + tN4 (c-A E + 94 O (4. 7)

where

N - shaft rotation speed

A, B, C - inertias of rotor about principal axes x'y'z'

An, Bn , Cn - inertias of gimbal about principal axes xnYnzn

Kx, Ky - spring constant of inner and outer torsional
elements respectively

ax, 6y- rotations of the rotor with respect to the shaft
about rotating shaft coordinates

Remember it is desired to have no torques transferred through

the support structure to the rotor for ideal gyro operation. This

ideal condition is met when the above equations (4. 7) are satisfied

for a specific rotation speed N and torsional element spring

constants Kx and Ky. At this rotation speed, the gyro is said to

be "tuned".

-24-



The above equations are second order differential equations

having cross coupling terms in y and Ox. In general, solutions
y x

for and y will contain two sinusoidal terms of differingx y

frequencies.

If the gyro is to be a "free rotor" gyro (the rotor being

effectively uncoupled from its suspension), then after each cycle

of revolution of the gyro spin motor, the rotor should find itself

in the same position with respect to inertial space, therefore,

O and should contain terms in sin Nt and cos Nt.
x y

Assuming,

Ox = cos Nt + sin £t

Cos (t ) sin rtt + Y)

then

The equations of motion (4. 7) can be combined to give

A(4A~ s~ + T(C-* .-B 4C,-'3n) rt+\ 5NK (C-AI) ~+ -a ~a 6P+k-Ctx g'' (4. 8)
Substituting for 6 and from the abovex y

{KXl-(AB-C)- Nt(A,+ -C S)KP- N(A+B-Cl -Nb(A+B-Cj lox 0

This equation describes clearly the balance that must exist

between the positive spring torques K and K and the negativexn yn

-25 -



spring torques Nz(A4B-C) and NZ(A,c+nC,.

A "tuned" gyro is one that is so designed by varying the

inertias, spin speed, and torsional stiffness such that the above
3equation is satisfied. This requires the values of Kxn and Kyn

to satisfy the following equation

V " Y, - tr" (~i~z +njL~`(,~O~ll. ~~ p~4~9 ~O (4. 9)

where o( =(A + B- C) and =(A +B - C).
= n n

If, for design simplicity, K = K = K, the above equationxn yn
requires that (assuming o( » , )

K L ot(A,+B -C'

or

N V C ) (4. 10)

which is the "tuned" speed for this gyro. Note again,, as in the

oscillogyro, we have effectively "tuned" one mode of oscillation

of the sys tem to the rotation frequency by requiring any wobbling

of the rotor to return to its initial position with respect to inertial

space after one revolution of the shaft. Since, as was mentioned

earlier, the general solution is to contain two sinusoidal terms in

differing frequencies, there exists a second frequency of oscillation

of the system. This second mode of oscillation 3 is found by dividing

the combined equations of motion (4. 8) by (s2 + N2) providing the

tuning condition is met.

-26-



The second frequency becomes

= -A) (4. 11 )

For (A + B + C) >> (An + B - C), which is a good approximation

for this gyro, and Kn, Ky on the order of N2(An + B - Cn)

B

This second frequency is always less than N and only approaches

N as C approaches 2A (i. e. the rotor approaches disk shape). As

an inertial observer, the gyro's spin axis would appear to be per-

forming a complex nutation motion about its spin axis. If the gyro

were not tuned, an inertial observer would see the above mentioned

nutation modes superimposed on a steady precessional motion of

the spin axis.

-27-



Two-Degree-of-Freedom Tuned Gyro with "n" Gimbals

5. 1 Ideal Operating Condition

For a more general case of Hooke's Joint Gyro presented

in section 4, consider a gyro with n gimbals supporting the rotor

(Figure 10). The additional gimbals increase the gyros angular

momentum by increasing the mass of the rotating structure. It

will be seen in Section 6 that the increased angular momentum is

desireable to reduce mass unbalance errors. Also, the extra

gimbals reduce errors due to twice spin frequency angular oscilla-

tions of the gyro case about an axis perpendicular to the shaft.

The ideal operating condition for a gyro with n gimbals is to

have the rotor remain fixed in inertial space for any type of case

motion input. This is the same condition required in the Hooke's

Tuned-Joint Gyro.

5. 2 Equations of Motion

The general open loop equation of motion derived below will

account for nonsymmetries, damping forces, and torsion element

stiffness differences in an n gimbal gyro.

The following four orthogonal reference frames to be defined

have origins coincident with the center of torsion established by

the rotor to shaft torsion elements (Figure 11).

XYZ - fixed in gyro case

xyz - fixed in the shaft which rotates with respect to
the case fixed set with angular velocity N about
the Z axis

- 28-
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Xn z - fixed in nth gimbal with xn axis along the
inner torsion element and rotated from the
x'y'z' set by On( ( 1 = 0° ) about the z axis

when the rotor is perpendicular to the shaft

x'y'z' - fixed in the rotor with the y' axis along the
outer torsion element axes

The equations of motion for the rotor have been derived

using Euler's equations of motion for a rigid body.5 A summary

of this derivation is given below.

Angular Velocities:

Shaft

The angular velocity of the shaft with respect to

inertial space in shaft coordinates is

w = C cos Nt -Y 5(.n Nt

w, = - 5WN + )y COS Nt (5. 1)

Case rotation speeds with respect to inertial space have

been assumed negligible compared to the shaft spin speed N.

Rotor

The angular velocity of the rotor with respect to

inertial space in rotor coordinates is

w, - 0x + Ox- bNor

An L 4 W 6 A 4-C Noe (5.2)

WL,= N

-30-



where and 8 are angular rotations of the rotor about
x y

the shaft fixed coordinate set. Small angle approximations

have been made, i. e. sin = and cos = 1; for most gyros

0 and 0 rarely exceed 0. 5° . The angular velocity terms
x y

along the z component, yWx OxWy, have been

neglected since they are small compared to the spin speed N.

Gimbal

The angular velocity of the gimbal with respect to

inertial space in gimbal coordinates is

TWn ( cityC tes +NS ( )of
Wrn -- Wx54si1n + U Cos$ , + N (, GOS°(n 8@.Sn C

The angular velocity terms, Wx sLnO41 ) r<e So50,

along the zn axis have been neglected since they are small

compared to the spin speed N.

Moments:

Gimbal

Applying Euler's equations of motion for a rigid body

to the gimbal

-T_.-T. = A._ G. +(.C_ -B_' u).._ u

5. 3)

-Av5 n- - 7 n -X' -I -. vV
(5.

i-n -Tit - L Bn - (Cnt - XJ UAIWE

where Tn and T are the moments applied to the gimbalxn yn

by the rotor along the gimbal xn and n axes respectively.

Txs and Tys , the shaft reaction moments exerted on the gimbal
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along the same axes, are given by

Tg=X K (sOc 5cX ±G+e c(,) 4- £xnv( C 4.OSc(,i SG.Sw )

(5. 5)

Substituting (5. 5) into (5. 4) yields

Txog = xv< ( 4x cosc -+- G D°x (Coo(,,+-(bD L4| Sit racn,)

AJX 4- (Cn-e$ U ) W vU 
(5. 6)

+ 6 COS 0.)

n 9 r \ (Cv, uJn )tv v

Rotor:

Applying Euler's equations of motion for a rigid

body to the rotor, where TD is a rotor to case rotational

damping torque whose vector lies along ',

MX x(Tx Coscq -T,, 5vi cK,) -D,0 =

Ai 4-(-&)Uj uie

Y - .( , it +T, 5 9 St + -
8 jJ' - Cc-A) x 1 't'

Z -A-To =

(5. 7)

0

where Mx , Myx y are externally applied moments

resolved along the rotor fixed coordinate set.
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The case fixed moments applied to the rotor are

M( - (M-DR,G')cos Nt (M- tQeG) sl Nt
(5. 8)

- (MX D-3) S;n Nt + (My - DR O) cos Nt

Substituting equations (5. 1), (5. 2), (5. 3), (5. 4) and (5. 5)

into equation (5.7 ) one obtains

Gx LA - ' A,%osu +6 Lc

+ Ox [N (C-B)

AG-e~l~~N~LV

+ EN·Z
·· ,~~~~~~~~ ~~~~n,~~~

+ N, Z (Cn - ) CO( °f + i, <xn COS °(, + Z
I I Y% I~~~~~~~~~~r

s n Z(c, + @, (C-A- B)

and

G A. I AK 5 Y1 4-G1 ·jVI D\

+ Ge(c-A)Nt+ - * (C1 - SZ(c'- ')5n ~

+,- (C-A- B) N

>Kx <nSin + < K Csto(n7

(5. 10)

+ GjlN~7('- ; )S SVI I VI z O (-T j1

= G t)
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where

- G () - A + AcosZ c

+[-N X (C"-B3+A) 51i X0cONt N +tySiv

sn t + y Cos N tK

qz (CN -Bu +A,)Co5sq- 1 Sn Nt X CoS N

cos Nt - (M - D Iesi,~ Nt

and

- GyGlt) A, sn ,2 -x > s Co Nt

±+iz C2NA (Cc,-Bw+t P,)is Sn Nt 

+ 2, s ZA in 2t p GoS N + ( 51s n lt
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In these equations, Dn = D = D, and the xxn yn
is displaced from the rotor reference x' axis

a 1' 2' ct 3 '... an (Figure 12).

Multiplying equation(5. 10)by j = IA

(5.9) noting the definitions

axis of each gimbal

by angles

and adding to equation

ex = ex -e,

The basic equation of motion for the rotor in rotating shaft

coordinates becomes

I ex -+k n ) + -j3 + CC+155A G,

- j (C-A-B)N~,y & nX +AK+N tLAI,
(5.1.3)

+ Ip xq + 3 p x - GH Ct)

Since case fixed pickoffs and torquers are generally used

in these instruments, one needs to determine the motion of the

rotor with respect to case fixed coordinates. Transforming then

the above equation into case fixed coordinates 5 gives
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\ e y ( 

- ky(S) (S), t (S-Zj N - PN QS-Zj, S (_{I

- 4. (s-2zjN)iF, (5, (S-Zj3N) -, S -Zj N) T?( 

+X y (S) js (S -Z jN) - y (5 - 3N) z (s)

where

r\(si = Tsli4DtD R cj(AiB-C-2Tl ti ~-nD i A

Tz =S (t +j§)s l- as (T ; I5)S K ++ Dj k -NtC -J

L(5-Ijt 1 5 n + 5n - j Nt +-Cs2LK N L-j 

_jn k-N Z (A+ CB- 4-3

T; (-.Z) - (a1- jI)53 - 2j N (LI - j+N- L M - jbl cNthS

-36-
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-z- s jN(C4 I, - 3i)s + 2N(CIT, -T')

(-2N'jN) = (T + jl s -(I+ I1R) - j (A1s + A)N s

T~lrZ 2AV

L \A-

A= L..2,- t.

B + A, cos
l l

(Kn+ <n

V (<Y ) CS
ZK

VI

A- +iTI s= Z (C,- Be) cos 2Z0(

+,(C,'- ,
I,

T, -~~A, -5' z , v

R Z 

I = I (Car By) SVloec2\

-37-
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N

2 iLi Sn s20(, 

I

- ' : X . ,(Ay,+ B CZ

This equation of motion of the rotor is completely general

and describes the performance of an asymmetric gyro in response

to any form of angular or torque input. Note that F2(s) and T2(s)

result from nonsymmetries and torsion element stiffness differences

in the gyro.

An operational instrument is constructed as symmetric

as possible and operated at its tuned speed. For a symmetric and

tuned gyro, the general open loop equation above reduces to

God (so = ( tYy i (s) + F~y (s(5. 15)

Neglecting damping effects and operating the instrument at tuned

speed, this equation reduces to
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As\jsZ +(NC) 

(5. 16)

S (55 Q ( r)Ms + 5 My ¢~)

These are the classical equations of motion for a two axis,

symmetrical, free rotor gyro.

Note that for no externally applied moments on the

rotor, the case motion inputs cdA and W¥ are equal and oppo-

site to the rotor motion with respect to case fixed coordinates.

This is the desired relationship for an ideal free gyro.

5. 3 Tuning Condition

The tuning condition necessary for this gyro to operate as

an ideal gyro is found using the general open loop equation of motion.

For a step angular input to the case, a constant rotor to case angle

is desired for ideal operation considering all other disturbances are

zero. From the general open loop equation this requires that

be a constant, or, from equation (5.10)

Patss 0 n,$)L(s-Zj)-rJ (5. 17)

(The second term in the numerator of equation (5. 14) has been

neglected in the above expression since it equals zero in the
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limit as s-0O). The functions F (s) and F2(s-2jN) both have

roots equal to zero, therefore, for ~y to be constant in the

limit, the denominator must have one root equal to zero or the

characteristic equation must equal zero, that is

LK i ) 3 ( , ,Nu)) - 4(2A+-~C+-1) (5. 18)

- LK-lOd - j +tautN c NZJ + j S

The value of N that satisfies this equation (neglecting damping)

is then the gyro "tuned" speed. It can be shown5 that the value of

N which satisfies this equation is

N- 1 j 4(M+ C) (K + ) -1A (5. 19)

For a practical design

thus, the (Angular velocity of spin ncessary for unrestrained

thus, the angular velocity of spin necessary for unrestrained

operation is

I/.
(5. 20)N = WJ

j 
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The tuned condition has balanced the negative and positive spring

restraints such that the gyro operates as free rotor gyro. This

is the same tuning condition derived for the one gimbal Hooke 's

Tuned-Joint Gyro.
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Errors for Multigimbal Elastically Supported
Tuned Gyros

Errors for the elastically supported tuned instruments

usually occur from the following sources: (1) mistuning

(2) windage friction forces (3) mass and quadrature unbalance

(4) twice spin frequency angular oscillations (5) anisoelasticity

(6) and rotor angular offset. The errors produced by these sources

differ for each type of instrument, therefore, one particular instrument

(a Two-Degree-of-Freedom Tuned Gyro with three gimbals), 5 will be

analyzed to illustrate how the above error terms can be derived.

The instrument can be modeled by the general open loop equation

(5. 14) for the case of n=3 gimbals.

6. 1 Mistuning

For the Tuned Hooke's Joint Gyro, it is shown (Section 4)

that the rotor is unrestrained in space if the positive spring restraint

from the torsion elements cancel the negative spring restraint from

the rotor dynamics. Since the negative spring restraint is a function

of the rotor's spin speed, it can balance the positive spring restraint

when the rotor is rotated at a specific speed, i. e. the tuned speed.

If the rotor is not rotating at its tuned speed, the torsional

and dynamic spring restraints will not cancel, resulting in a net

gyro spring restraint. This restraint will result in a conical

precession of the rotor's spin axis about an inertial space fixed axis.
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In the three gimbal, two-degree-of-freedom gyro, a similar balance

between torsional and dynamic restraint must exist as in the single

gimbal Hooke's Tuned-Joint Gyro. This unwanted conical precession

resulting from incorrectly setting the rotor speed, i. e. mistuning

the gyro., is called drift.

The precessional period of this drift is somewhat analogous
4to a conventional two-degree-of-freedom gyro. The precessional

period is

T _z-u- 

where the denominator is the gyro net spring restraint and H is

the rotor angular momentum.

The inverse of the gyro precessional period times 27r is

then the drift rate (D in radians/second) due to the uncancelled

spring restraint given by

)= K, - C,N

where
KLI 4 K51)

For H = AN (assuming gimbal inertias are much smaller than

rotor inertias),
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AN

1_ __ CN (6.1)
AN A

At the tuned speed, NO, the drift equals zero, thus

K , = Cam
A NO A

or, (6. 2)

Substituting equation (6. 2) into equation (6. 1), the gyro drift

is given by

or, normalizing the drift,

D _ 

C, ore NSN N0

This drift is plotted as a function of spin rate in Figure 13. For

spin rates below NO, the inherent suspension spring rate creates

a positive direction gyro drift (i. e. in a direction expected for

a gyro with positive spring restraint). For spin speeds above

N0, the anti-spring nature of the dynamic coupling force controls,

resulting in a negative gyro drift. At No the two drifts cancel one

another.
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Figure 13 - Sensitivity of Gyro to Changes
in N is indicated by the slope of
this curve
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The change in the gyro drift near its tuned condition with

spin speed change is the slope of the curve at NO. As C1 /A is

decreased, the slope of the curve at NO becomes smaller and thereby

the sensitivity of the gyro to changes in its spin speed is reduced.

6. 2 Mass and Quadrature Unbalance Errors

Refer to the coordinate frames defined for the Two-Degree-

of-Freedom Gyro with "n" gimbals (Section 5. 2). The coordinates

of the center of mass of the nth gimbal are Xgn, Ygn' Zgn' The

coordinates of the center of mass of the rotor are xr, Yr' Zr

Assume that the center of rotation of the torsional elements can not

be perfectly aligned with gimbal and rotor coordinate frames.

Since mass unbalances in the radial direction (along any direction

perpendicular to the shaft) create a zero net torque on the rotor

for one rotor revolution, only mass unbalances along the spin axis

need to be considered. The torsion element axes are displaced

from the rotor and gimbal reference frames only in the z direction

by Zxr and zyr (Figure 14).

Mass unbalance torques from shifts of the gimbal and rotor

centers of mass are now derived accounting for misalignments in

the torsion element axes from the reference coordinate sets.

Moments acting on the rotor along the rotor fixed coordinate
5set due to rotor mass and quadrature unbalance are

TX,= (,-x,,r)- - M(a + %, 
T -(i,-zr') , + MXr. i. + % (6.3)

(6.3)
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Center of Mass of Rotor--

Center f Mass of the Nth

Rotor to Shaft Twist Axis

Rotor to Shaft Twist Axis

Nth Gimbal to Shaft Twist

Origin of XYZ, xyz

XnYnzn frames of reference

Position of Torsion Twist Axes

Figure 14
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The source of quadrature unbalance torque is related

to the characteristics of torsion bars when subjected to axial

stress from an acceleration field. 6 The quadrature torque is in

the same direction as the acceleration field.

The nth gimbal will cause a torque on the rotor. This

torque resolved along the gimbal fixed set is

Tx, = (si -Xn I) M- Yv cae (6.4)

The gimbal is restrained from moving about the n axis,

therefore no torques can be transmitted to the rotor about this

axis, i.e. T = O.yn
Resolving gimbal accelerations into rotor accelerations

one obtains

0yn = - x s;n n - a Cos ( ,

The total moment applied to the rotor will be equal to the sum of

rotor mass unbalance torque and gimbal mass unbalance torque,

or

Tx - Txr T A- oscar
(6. 5)
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Substituting and combining terms from equations (6.3.) and

(6.4) yields

Tl C- AVx , + p4
7- 

-

where

ajx I

a'= :z + a% 
P~~~~~~~P= M ( -Zxr) , ; C"

PF = M (Zgr)- ( t 

M VI -z x,)sin °(n COS '(n
VI (t V xn) Isi n n CoS (

ax rn) 5 C( n

xn) 5 i o(v

2J ,n n CoS o( 

Rearranging- the terms in (6.),

Rearranging the terms in equation (6.6),

T= (%+ax, 4 (p+ aL, FI4.
NTL = Q01L )%+ (F-Ap) " -i-
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where

p. PIZ
2

a
Ls= QI eQL 2

p U

Combining the torques in equation (6.7 ) and transforming the

torques into case fixed coordinates, equation (6.7 ) becomes

) where (pj p N

where

A = T os Nt -TCsic VNt

Ty T sin t + C Nt+ Transformations
from rotating
frame to case
fixed frame

(1 ~ ~ xr"·r = axu jy

Equation (6.8) represents the torque acting on the rotor due

to mass unbalance in case fixed coordinates. Note, linear accelera-

tions at spin frequency, twice spin frequency, and constant mag-

nitude cause time invariant torques on the rotor. These unwanted

- 50-
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torques cause the instrument to drift.

For '(y = constant

TXy-= ( S-j LP)a 0

Cx + ? + jpay -J jApFcx

-v

Y

:-- 0, Y - tpCu

i_ ab~_ 
7- X

-i-

Ty -l (tr - x+_ ) + +N(I-VI + Z 
Note that for no torsion element axis displacement

z2
(6. 9)

- - M ax + A n , + CXz Cy

as one would expect.

How these unwanted torques affect the drift of the instru-

ment can be seen by substituting into the classical equations of

motion, equation (5. 16), for a two axis, symmetric free rotor gyro.
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if tsz A (9C)1 2 (. l
(6. 10)

For constant values of torque Tx and Ty

(6. 11)

N C

To decrease these drift rates the Z axis inertia and

spin speed must be increased as one would expect. Note here

the two-degree-of-freedom instrument could be considered as two

uncoupled single-degree-of-freedom instruments.

For ay = twice spin frequency

Errors produced by twice spin frequency accelerations along

an axis perpendicular to the spin axis are found by substituting

ag a Si (YNt;,Y)
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into the general torque equation (6.8).

invariant torque becomes

or substituting for Aq and P

-Tx:.I1A(war -,r) ((x - SI) 4

which reduces to

(6. 13)
~-·, ed4

for no torsion element axes displacement or quadrature unbalance.

Note only gimbal pendulosities contribute to the torque.

Separating equation (6.13)

W, tZV CoS zc<,) 
4

K~~~

+ (a t4 9 5tv 2" r) t yo
4 ( nn (6. 14)

-( "' 13y, Z~ tyTY = (a L <4 En Sun in ,L/VY~~ r )iW
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It is seen that the torques on the rotor are coupled for acceleration

inputs at twice spin frequency.

For a:v = spin frequency

Errors produced by vibrations at spin frequency along the

shaft axis are found by substituting a1 -- a,1 Str (N% + )

into the general torque equation (6.8)

substituting for p and pb

- _X 4 e _ [ rtao n (6. 15)

Again, as in the twice spin frequency acceleration input, the

torques are coupled.

6. 3 Twice Spin Frequency Angular Oscillations of the Case

A. steady state drift of the rotor with respect to the case

can exist when the case is oscillated at twice spin frequency about

an axis perpendicular to the shaft.
5To derive an expression for this drift rate, consider case

motion inputs of the following

py (c)' - 4 bin t + )A AS eI
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where P and X are arbitrary phase angles in space and

time domain respectively.

Multiplying the Y-input by j- I , combining the inputs,

and substituting into the gyro's general open loop equation of motion

(5.14), the gyro's drift becomes

-6y~s B =-&0>y ) SI,(s) _ (6. 16)
ncs) taLs)

where

A(= F;(s)Y, N) -(s- Fz )s- 2N) s)

AoSa +A s-t+ ' + A _t,s + A

s)=z (,s)F , (( - N2j-(s)z (s2 CS)

-A .S. + A s+c C

Applying the final value theorem to this expression, the steady

state drift becomes

s -, o '$(5) A s) s+o 1 y A2js) sZ> 5)) 6LIM Y Z3 st3C (6. 17)

The first term of this expression vanishes as S -_ O

The second term expanded becomes
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* 0
{ D=-L~ So e W cos Y +(s zj s 
Ps 5-90 (5 _tj -j (S -2j N + IJw)

x _b_+_b___ B_ _ s + Bb (6.18)

where

c [ SK- (D %+ n &J)) ~j 15 i (TD+nN ) -+(2A+B-2C +J

If the instrument is operated at tuned speed the Ac term will

vanish provided damping is neglected (i. e. TD + nND = 0)

and K = N2J.

When the gyro is oscillated about an axis perpendicular

to the shaft at twice spin frequency (i. e. w = 2N ), equation (6. 18)

reduces to

Uk ¢~ (6. 19)

Assuming that,

JA+B+

A+~+e.
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then

(6. 20)

N =- Ne 0;K-Ke K (Ay+ B,- C ) e
m t~ L(K.W-Kv% . (A,,B , C,)

Notice that angularly spacing three gimbals equally (i. e. n=l at 00° ,

n=2 at 120°, n=3 at 2400) about the spin axis, reduces the term in

brackets to zero and therefore reduces the drift to zero. A. three

gimballed gyro has its three gimbals angularly displaced in this

manner. The error sensitivity to twice spin frequency angular

inputs can be reduced by making the ratio Fm/NO as large as possible.

This error term would be difficult to test for since table

oscillations would have to be around 200 cps. This alone might

justify not considering this error term in more detail for this

thesis.

6. 4 Damping forces due to windage

When the rotor is rotating in a fixed plane and the driving

shaft is misaligned by some small angle o( , the gimbals will

oscillate about its torsion bar hinges + o( in one revolution relative

to the rotating shaft (Figure ). This motion introduces a

damping torque from the windage forces which precesses the gyro

about the axis of misalignment in a direction to reduce the misalign-

ment to zero.
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Consider a gyro where rotor inertias are much larger

than gimbal inertias (which is a good approximation for this

instrument) and differences in inertias of the rotor about x' and y'

axes and differences in torsion bar stiffnesses are negligible. The

characteristic equation for the gyro becomes 5

r, s) (-2N ) (6. 21)

where

IVs-, -.I + '- - j(z- + -j
DR D( N D o

D)- E L T Lo )& )

Notice from the gyros characteristic equation that the gyros

time constant is reduced by adding the damping term DR/I.

For the gyro to operate ideally, the closed loop response time

must be faster than the gyro's response to the damping force.

The damping forces are then undesireable. If the closed loop

null torquing response is much faster than the rot or response to
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the damping force, the windage forces can be completely neglected.

For a three gimballed instrument this will be true.

6. 5 Rotor Offset Angle

Drift rates can occur when the rotor spin axis is offset

from the shaft Z axis. This offset angle is produced by a pick-off

null shift, when operating the gyro in a torque to balance mode, or

an angular tilt of the gyro case with respect to the rotor, if the gyro

is operated in an open loop mode.

The errors that are produced by the rotor offset angle can

be derived from the gyro's general open loop equation (5.14).

Assuming gimbal inertias are much smaller than rotor

inertias, the general equation of motion reduces to

Ixy (5) -_ () (S) (6. 22)

Substituting for T'Is() FC(s), and assuming a step input in

y (m = y ( ) the solution in the time domain is5

-_x ~ V, (6. 23)
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where

_ uD

z (a"+ Ln

For the input + -4Q(O)
rotor deflections with respect to case fixed coordinates become

IG (i) --
-tr

cos i t cC)e 'S i% t
rFn, F

(6. 24)

By () - (oYC ) e/ F -C
F,,

Expressions for the error rates due to rotor angular offsets are

obtained by evaluation of the differentials of the above equations.-' y ) SN
eF

(6. 25)-c () SN

OFM
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These drift rates can be reduced by minimizing the rotor

offsets (o) and y Co) ) damping, and operating the gyro

at a spin speed corresponding to its tuned speed.

6. 6 Anisoelasticity

In this family of instruments, the anisoelastic effect is

a function of mismatch between translational stiffness of the

rotor to shaft suspension along the spin axis and along an axis

perpendicular to the spin axis.

For a non symmetric rotor to shaft suspension, the aniso-

elastic coefficient is given by5 (assuming rotor mass >> gimbal

mass)

h~z ( % if) 4 V 2 2J (6. 26)

(moment per unit acceleration 2)

where

M = z

For the radially symmetric gyro, equation (6.26)

reduces to

mQt pr uni_) (6. 27)
(moment per unit acceleration )-61-



Error Model for a Two-Degree-of-Freedom Tuned Gyro

One philosophy of inertial gyro testing is that the test

program should provide accurate measurement of the coefficients

of a modeling equation which mathematically defines the gyro per-

formance in any environment.

This model should contain the errors which have been

measured over a wide range of environments for a given gyro family.

Requirements for a particular application are then included in the

test and evaluation program to extend the model to more accurately

describe its performance for that particular application. A. "complete"

model of the gyro is finally obtained which describes the gyro's

performance in a given environment without having to test in that

particular environment ("complete" is enclosed in quotation marks

since an adequate model for today's applications will not necessarily

be adequate for future applications).

To derive an error model for the family of two-degree-of-

freedom elastically supported tuned gyros consider the type of

previously derived error terms in Section 6. The error terms can

be divided into terms independent of an acceleration field (mistuning,

windage friction forces, rotor offset angle), proportional to an

acceleration field (mass and quadrature unbalance), and proportional

to an acceleration field squared (anisoelasticity).

The general torque equation about the Y axis is divided into

these three torque categories as follows
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MY = Y 8\o y M May (7. 1)

where

MIy = acceleration insensitive torques about the Y axis

May = acceleration sensitive torque about the Y axis

Ma2Y = acceleration squared sensitive torques about the Y axis

In spite of the differences in this gyro from the single-degree-of-

freedom gyro,. the gyro is found to be susceptible to the same type

of errors when subject to translational accelerations.

The acceleration sensitive torques can be represented from

equation (6.8 ) as

Day 'C q$y K VpyraX (7.2)

where

- er a r) + xn

The acceleration squared sensitive torques occur from

compliance effects. The compliance coefficients are defined as

follows:

IR t= displacement along spin axis due to a unit

force along Z

K(y = displacement along spin axis due to a unit
force along Y
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The displacement of the rotor center of mass due to the com-

pliance of the support structure along the Z axis is then

d = Kii ~(5)2 + gay m(S&)y + RX < (S)X (7' 3)(7.3)

where

= effective displaced mass

[Sf)x (s)y (s$) = specific force with respect to
inertial space along X, Y, Z axes
respectively

The displacement of the center of mass along the x axis will

not contribute to a steady state torque about Y for a constant

aZ input since the whole support structure is rotating about the

Z axis (i. e., in one revolution of the rotor, the resultant torque

on the rotor due to aZ would equal zero. )

This displaced mass creates a torque on the rotor in an

acceleration field aX of

May = (S,''m (s m (S)y 4ix m (sx

or

e¥ __ l & a la, + KyacOy Ck + KxZ (7.4)
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where

t = , etc.

K,, - - kx

(Sf)¥ = -o.¥

The total torque about the Y axis is the sum of the

acceleration insensitive torque M YJ the mass unbalance torque

May, and the compliance torques Ma2y . therefore,

yM i o-Y + Kpy 0-T a: +iam a,, + Kjy Axay +K (7.5)

Equation (7. ) characterizes the error torques about the

gyro's Y axis on the basis of linear theory.

With a similar analysis to the above, the X axis torque

equation becomes

Mi + h Ka + x ay -.Kay-yo - (7.6)

where

qz, = accelerv--iom insensit+ve orque along X asis

z

KVI frY. VI
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These error models take into account only errors terms that

have been analyzed thus far in this thesis. It is likely that more

error sources will become evident as the gyro is tested. In
2particular, error terms proportional to aZ, aZ , ayaZ (for the

Y torque equation), and aaZ (for the X torque equation) might

become apparent.
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Test Procedure for a Two-Degree-lof-Freedom Tuned Gyro

A. general format for gyro testing should include the

following: 13

(1) 'Verification of assembly procedures (commonly
called acceptance tests)

(2) Verification of design parameters (commonly called
qualification or engineering evaluation tests)

(3) Development of the gyro error model equation

(4) Development of advanced test techniques

(5) Indication of the need for development of advanced
test equipment

(6) Determination of the reasons for failure to perform
as expected (commonly called diagnostic tests)

It was noted in Section 6 that for constant g inputs the two-

degree-of-freedom instrument could be considered as two uncoupled

single-degree-of-freedom gyros (for oscillatory linear and angular

inputs, the instrument cannot be considered as two uncoupled single-

degree-of-freedom gyros). The two-degree-of-freedom gyro can

therefore be subject to all the tests for a single-degree-of-freedom

gyro in the one g environment. By amplifying the output axis of the

X axis pickoff, the instrument is reducd to a single-degree-of-

freedom gyro, having the X axis as electrical input axis while the

Y axis serves as pickoff output axis and mechanical input axis. The
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gyro coefficients in equation (7.5) (drift about the Y axis, or

equivalently, the null torque applied to the X axis) can then be

determined by conventional isolation techniques used in testing

single-degree-of-freedom instruments. 14 The gyro is then reconnected

so that pickoff Y drives torquer X to determine the coefficients in

equation (7.6).

For tumble testing, it is more efficient to utilize the

signals of both X and Y torquers simultaneously. Signal gere rator

Y is connected to the X axis torquer and the signal generator X is

connected to the Y torquer. By positioning the X and Y axis

orthogonal to the table axis, (i. e. with the spin axis along the table

axis), the coefficients in equations (7.5) and (7.6) can be attained

most efficiently.

A. typical test procedure to test this instrument after it

has passed its acceptance tests would be to:

1) Identify gyro drift stability in fixed orientation

2) Identify gyro drift stability across a disturbance

3) Multiple position drift coefficient calibration

4) Repeat 3) for stability determination

5) Put in disturbance
a) cooldown
b) shut rotor off

c) temperature

6) Repeat 3) and 4)
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7) Evaluate torque generator characteristics
a) dc linearity

b) ac linearity at two frequencies and float angle

8) Evaluate instrument as a strapdown unit; constant
rate input

9) Dynamic tests
a) Vibrations at spin frequency along spin axis
b) Vibrations at twice spin frequency ( if test

equipment permits)
c) Angular oscillations at twice spin frequency

(if test equipment permits)
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