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ABSTRACT

This study investigates the origin and structure of easterly waves
which form in the lower troposphere of North Africa and have a periodi-
city of 4-5 days. From June to early October these waves account for
approximately half of the tropical cyclones which form in the Atlantic
and may be a factor in the development of tropical storms in the eastern
Pacific.

Spectral analysis of five years of upper-air data shows that African
waves produce a spectral peak of the meridional wind at periods of 4-5
days with a maximum amplitude of 1-2 mn/sec near 700 mb. The waves nor-
mally originate between Khartoum (320E) and Ft. Lamy (150E) and affect
a greater depth of the atmosphere as they propagate westward. The wave
axis tilts eastward with height up to 700 mb and tilts westward above
this level. Cross-spectrum analysis of the wind and height fields re-
veals that the waves are geostrophically balanced. The thermal wind
equation indicates that the mean temperature amplitude is too small to
identify by spectral methods with existing data. In east-central
Africa convection associated with the waves is not well developed, but
convection becomes better organized as the waves propagate westward.
Even in West Africa, however, there is no preferred pattern of maximum
convection relative to the trough axis.

Wind statistics at stations flanking the mountains in Ethiopia
indicate that these mountains are not the cause of the easterly waves.
The waves are directly related to the mid-tropospheric easterly jet which
is found above the surface baroclinic zone to the south of the Sahara.
The mean zonal current in this region is barotropically unstable in the
middle troposphere during the same season that African waves are observed
and it is within this zone that the disturbances form. The waves trans-
port easterly momentum away from the mid-tropospheric jet and the jet is
maintained by a thermally direct, ageostrophic meridional circulation.
While the effect of baroclinic terms cannot be determined, the average
surface temperature gradient of 100 C in 10° latitude is so large that
baroclinic processes are quite likely important.

Thesis Supervisor: Frederick Sanders
Title: Professor of Meteorology
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Chapter 1

Introduction

The most spectacular and most destructive meteorological phenom-

enon in low latitudes is the tropical hurricane. The complete devasta-

tion of property and great loss of human life which result from the

most severe hurricanes have prompted considerable scientific effort

toward finding a method for mitigating these devastating storms. Al-

though the dynamics involved in the intensification of tropical storms

are sufficiently understood so that the life cycle of a hurricane can be

simulated numerically on high speed computers (see e.g. Ooyama, 1969),

there is much that remains unknown about the development of hurricanes

in the real world. For instance, while it is known that tropical

cyclones generally intensify from pre-existing wavelike disturbances

(Riehl, 1945), the origin of these disturbances remains a mystery.

Over the ocean these disturbances are most frequently observed either

along the Intertropical Convergence Zone (ITC) or completely within the

easterly trades. While the waves in the ITC are thought to be produced

by the horizontal shear instability of the converging trade winds in

cooperation with cumulus convection (Bates, 1969), no adequate explana-

tion has yet been given for the waves in the easterlies.

The most important achievement with regard to describing the

basic characteristics of easterly waves in the tropics has been the

availability of daily satellite pictures of global extent. This was

1 In the context of this paper the term easterly wave is intended to in-
clude any wavelike disturbance in tropical latitudes which propagates
toward the west.
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first accomplished on an operational basis during the late 1960's.

Satellites are now providing daily information on vast tropical oceanic

areas which had previously been void of any meteorological data. This

has made it possible to coordinate reports from the widely separated

regions of adequate conventional observations and to form a comprehensive

description of synoptic-scale circulations in low latitudes.

In the central and eastern North Pacific satellite pictures reveal

that the ITC is connected to most tropical disturbances (Denney, 1969);

but because of the complete lack of conventional observations in this

region, little is known about these disturbances. Only their most

rudimentary characteristics have been determined from satellite informa-

tion. In the corresponding part of the North...Atlantic the majority of

the perturbations are seen several hundred miles poleward of the ITC

From June to early October these Atlantic disturbances are recognizable

on satellite pictures as "inverted v's" and cloud blobs (Frank, 1969).

The "inverted v" is an oceanic manifestation of easterly waves which can

be tracked back to central Africa by both satellites and conventional

data;but near the Greenwich meridian the organized cloud pattern ceases

to exist and at 20E ground observations become very sparse with the

result that it has been impossible to determine the precise origin of

the disturbances (Carlson, 1969b)o

Little progress has been made toward understanding the origin

and dynamics of the African waves even though it was speculated prior

to World War II that the African continent might be a source region

for summertime disturbances in the Caribbean. Before the satellite era
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the almost complete lack of observations over the Atlantic Ocean pre-

cluded regular tracking of disturbances across the ocean; nevertheless,

Hubert (1939) succeeded in determining an African origin for the 1938

New England hurricane. Most observations of tropical disturbances in

the western hemisphere were confined to the vicinity of the Caribbean

where Dunn (1940) was the first to notice a westward progression of

areas of rising and falling pressure at regular intervals of three or

four days. Although most of these waves in the pressure field pro-

gressed through the Caribbean without significant change, those cyclones

which intensified within the data network had been previously noted as

disturbances in the surface pressures. Further study of these perturba-

tions led to the easterly wave model which was first developed by Riehl

(1945). He observed waves traveling through the Caribbean with an

average wavelength of 2000 km and a cold core from the surface to 600

mb, These disturbances propagated toward the west at about 15 knots with

upward motion and precipitation occurring to the east of the trough line.

On the basis of their investigations in the Caribbean both Dunn and

Riehl hypothesized that the easterly waves probably originated somewhere

over the African continent.

Piersig (1936) was among the first to document cyclones which

moved from western Africa into the eastern Atlantic. He used ship ob-

servations accumulated from 1881 to 1911 for his data and noted that

these cyclones occurred during the same season as Atlantic hurricanes.

Utilizing surface pressure data from land stations near the west coast

of Africa, Regula (1936) observed westward propagating disturbances
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with a period of four days and a wavelength of 2000 km: characteristics

very similar to those described by Riehl for the Caribbean.

Disturbance lines which appear to be generated by late afternoon

heating over north-south mountain ranges were investigated in southern

West Africa by Hamilton and Archbold (1945) and Eldridge (1957). Although

considerable confusion between the disturbance lines and easterly waves

has persisted for many years, Schove (1946) recognized them as separate

phenomena.. and concluded that the westward propagating trough lines rather

than the squall lines are the predecessors of the waves observed in the

Caribbean.

Prior to the first TIROS satellites investigations of easterly

waves were conducted separately on either side of the Atlantic. Over

the ocean the small amplitude of the waves at the surface and the

absence of regular meteorological information made identification of the

weak perturbations extremely difficult even after tropical cyclone

intensity had been attained. Arnold (1966) extensively studied both the

continent and ocean areas using conventional data from Africa and

pictures from TIROS III following its launch in July of 1961. He con-

cluded that there is a definite connection between disturbances over

Africa and wave activity over the Atlantic Ocean. This finding is

consistent with the climatology of easterly waves in the Atlantic

recently compiled by Simpson et al. (1968, 1969) and Frank (1970) who

have categorized all tropical Atlantic disturbances from 1967 to 1969.

For these years it was found that the majority of disturbances reaching

the Caribbean from the east during the summer can be traced to Africa
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and comparatively few originate within the Atlantic ITC. Although only

a small number of African waves ultimately intensify, these waves account

for about half of the tropical Atlantic cyclones observed during August

and September (Carlson, 1969b).

During 1967 and 1968 Carlson (1969a, 1969b) made daily synoptic

analyses over tropical West Africa between the longitudes of 20 E and

20 W. Using surface, 2000-ft and 10,000-ft maps, he completed the first

comprehensive examination of synoptic-scale disturbances over Africa and

determined that there were many wavelike disturbances which formed east

of the African bulge and propagated westward far to the south of the

surface confluence zone (ITC) in the southern Sahara. These easterly

waves reached a maximum amplitude near 600 mb in the lower tropospheric

easterlies near 10W and ultimately many progressed across the Atlantic

Ocean. There was no detectable relation between the strength of an

African wave and its subsequent development over the ocean. These waves

were found to have a wavelength of 1300 nm and a period of about 3 days.

Although it appeared that some waves formed within the data network,

many of the waves propagated into the analysis region from the east.

The absence of a recognizable cloud pattern associated with the waves

over eastern Africa and the lack of sufficient surface observations

prevented the source region of the African waves from being clearly

identified.

In spite of the vital role of African waves in the development

of tropical storms in the Atlantic region, the climatology and kine-

matics of these waves have only recently been described and their origin
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both in terms of location and dynamics has heretofore not been de-

termined. The research presented in this thesis grew out of a desire

to gain a better understanding of the origin of African waves. Power-

spectrum techniques have been used to analyze time series of upper-air

data at eight stations in North Africa. The statistics of westward

1
propagating waves with a periodicity of 4-5 days have been investigated

and related to the monthly mean atmospheric circulation over Africa.

The structure and source region of African waves are determined and

the dynamics which relate to the generation of the waves are examined.

1African waves are a turbulent phenomena which produce an increase in

the spectral density of the meridional wind at periods from three to
almost six days. At 700 mb the spectral peaks generally occur at
periods of 4.0 or 4.4 days. For convenience the waves are described
as having a spectral peak at 4-5 days or a periodicity of 4-5 days.
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Chapter 2

Description of the North African Summer Climate

Previous studies have speculated that African waves develop over

the African continent. Since the presentation of statistical evidence-

supporting this hypothesis is a fundamental purpose of this thesis, it

is appropriate to describe the properties of the African circulation for

the months which overlap the African wave season.

For purposes of orientation a map of Africa (Fig. 2.1) is included

in which the upper-air stations used in this study are identified and

land elevations are indicated at intervals of one thousand meters. The

North African summertime circulation from May to October is depicted by

monthly averaged surface maps and meridional cross sections near 5 and

350E (Figs. 2.2 to 2.7); the observing stations which were utilized in

the cross sections are joined by dashed lines in Fig. 2.1. The surface

temperatures, pressures and rainfall are ten-year averages from 1951 to

1960 which were plotted from World Weather Records (1968) and the gradi-

ent-level winds were reproduced from Atkinson and Sadler (1970). The

information for the cross sections was obtained from data for the period

from July 1957 to December 1964 which were processed by Professor R.E.

Newell and students at MIT. These observations were supplemented with

reports from Port Sudan and Malakal for the years 1964 to 1966 which were

purchased from the National Climatic Center, Asheville, North Carolina.

The average latitude of the ITC over North Africa varies with

season in response to solar heating and the climate of North Africa can
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be characterized generally by distinct zones which are fixed relative

to the ITC. Within these zones prominent small-scale variations in mean

rainfall and temperature are caused by local orographic and oceanic

influences. Although these variations are important locally, they are

ignored in this discussion of the meteorological features common to

large areas of North Africa.

The maximum daily average surface temperature, which is usually

found near and parallels the minimum surface pressure, is farthest south

near 7 0N during January and February and most poleward north of 200 N

during July and August. Over the North African land mass the ITC coin-

cides with the minimum surface pressure; it is essentially a thermal low

which is elongated in the east-west direction, Consequently the weather

in its vicinity differs considerably from that associated with oceanic

portions of the ITC. Although the North African ITC is a zone of strong

confluence, little or no rain falls in its vicinity because of the

extreme dryness of the surface air on its poleward side and mean tropo-

sphericsubsidence aloft (see e.g. Kyle, 1970). At the ground the ITC

marks the discontinuity between the cool, moist maritime air of the south-

west monsoon of West and Central Africa and the warm, dry desert air from

the Sahara to the north.

Surface temperatures reach a maximum over Central Africa during

July and August but change very little from season to season near 5 N

over West Africa due to the moderating influence of the Atlantic Ocean.

The surface temperature gradient, therefore, is strongest during the

summer months. In the middle troposphere the meridional cross sections
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show that the temperature is nearly uniform from the equator to 25 N.

On the other hand a latitudinal cross section of monthly mean zonal

winds for those stations near 10-15 N- reveals that there is westerly

shear of the zonal wind from 600 to 400 mb (Fig. 2.8). The westerly

shear indicates by means of the thermal wind equation that warm air is

equatorward and cool air poleward of this region. The observed wind

shear is not consistent with the temperature field; however, the wind

field is considered to be more accurate and the temperature field

implied by the shear of the zonal wind is felt to be representative of

the actual temperatures.

As a response to the surface baroclinic zone and the reversal of

the temperature gradient in the middle troposphere, there is an east-

wind maximum near 600 mb which is strongest and farthest poleward in

July and August. This mid-tropospheric east-wind maximum is present

during the entire year above the baroclinic zone. Although easterly

flow is relatively weak on the 35 E cross section, the current becomes

organized into a well defined jet over the western two-thirds of Africa

from April to November. This phenomenon is distinctly separate from

the easterly wind maximum near 150 mb which is a remnant of the Indian

monsoon jet found to the south of the Tibetan anticyclone from June

through September.

Hamilton and Archbold (1945) described the climate of North

Africa in terms of latitudinal zones which are fixed relative to the

surface ITC. These same zones (see Fig. 2.9 for August) are appropri-

ate for this discussion but are additionally interpreted with regard to
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the upper-air observations processed during this study. The description

of these zones is generally valid during the African wave season from

35E to the Atlantic Ocean except that zone D exists only between 100W

and 100E.

Zone A lies poleward of the surface ITC in very arid, desert

regions of the continent. The air throughout the troposphere is extreme-

ly dry and the skies are generally cloudless although frequently dusty

and hazy. The combination of dry air and low heat capacity of the ground

produces a large diurnal variation of surface temperature (approximately

250C). There is a strong inversion near the ground at night, but during

the time of maximum daytime heating the lapse rate is nearly dry adi-

abatic up to 500 mb and vigorous deep but dry convection results. Near

the 500-mb level there is frequently an inversion which is apparently

caused by warming from mean subsidence in the middle troposphere (Kyle)

above the layer of dry convection.

Zone B is the region immediately equatorward of the ITC in the

baroclinic zone at the surface and on the anticyclonic shear side of

the easterly jet. In this area cloud bases are quite high and thunder-

storm activity is infrequent. Monthly mean precipitation is light (on

the order of one inch) and is inhibited by the extremely dry air above

the moist surface southwesterlies which are no more than 1000-2000 ft

thick.

Zone C lies in the southern part of the surface baroclinic zone

and on the cyclonic shear side of the easterly jet. This is a region

of maximum rainfall in which squall lines are frequent and African wave
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activity is centered. The amount of precipitation increases as the

depth of the southwesterlies increases and thunderstorms are common.

Much of the precipitation is associated with the passage of squall

lines (Eldridge, 1957) which are sometimes referred to as West African

tornadoes.

Zone D represents the south coastal region of the African bulge

during July, August and September except where orographic upslope motion

fantastically increases the monthly average precipitation. Although

the surface air is extremely moist, there is an inversion near 800 mb

which suppresses deep convection. During the summer months of the

year sea-surface temperatures in the Gulf of Guinea reach a minimum

(U.S. Navy, 1955); the air traversing the Gulf of Guinea is cooled

during its over-water trajectory with the result that convection is

generally unable to penetrate the stable layer near 800 mb. In the

absence of any mechanism for forced ascent there is a persistent layer

of thin stratus. Precipitation may occur but monthly rainfall totals

are generally less than an inch.

A major difference between the North African circulation and

normal tropical oceanic or middle-latitude weather patterns is that

warm advection and moisture advection are highly negatively correlated

in North Africa. The warm desert air is dry and the moist maritime

air is cool. This considerably complicates the synoptic patterns of

precipitation since, for instance, the advection of warm but extremely

dry air will not likely lead to saturation.
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Chapter 3

Power-Spectrum Method

African waves have been investigated synoptically since the mid

1960's, but the physical processes responsible for the generation of

these disturbances are not clearly understood because their source

region has not yet been identified. While the seasonal characteristics,

mean wavelength, mean period and rate of propagation of African waves

have been described by Carlson (1969a, 1969b), further study of constant-

level maps with the existing observing network probably will not con-

tribute significantly to present knowledge. Recently Yanai et al. (1968)

and Wallace and Chang (1969), among others, have shown that spectrum

analysis is a very powerful method for obtaining information on the

basic statistical properties of zonally propagating disturbances in the

troposphere. This method has been particularly informative in regions

where the observing stations are too widely separated for conventional

synoptic techniques. Since the upper-air observing network over Africa

is also very sparse, spectrum analysis offers a meaningful approach for

more extensive investigation of African waves with the current density

of stations.

The upper-air data used in this study were obtained on cards

from the National Climatic Center in Asheville, North Carolina, for

the eight stations listed in table 3.1. These were the only stations

in the latitudinal zone of African wave activity which took observa-

tions often enough for spectral analysis of waves whose period is
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Table 3.1

Station Latitude Longitude
Hour of

WMO No. Observation
Elevation
Meters

06Z(OOZ in 1964)

00Z

06Z(OOZ in 1964)

12Z(00Z in 1961)

06Z(OOZ in 1964)

06Z

06Z(12Z in 1964)

06Z(OOZ in 1964)

In several tables
from east to west

Aden
Khartoum
Ft. Lamy
Niamey
Dakar

Bangui

Lagos
Abidj an

in chapter 4 the stations are grouped
in the following manner

I
approximately 130N

approximately 5N

Ab idj an

Aden

Bangui

Dakar

Ft. Lamy

Khartoum

Lagos

Niamey

5015'N

12050'N

4023'N

14 44'N

120 8'N

15036'N

6035'N

130 29'N

3056'W

4502 ' E

18034'E

O
17 30'W

5.0 2 'E

32033'E

3020'E

2 10'E

65578

40597

64650

61641

64700

62721

65201

61052

7

3

366

24

295

380

38

234
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approximately four days. The number of soundings taken at each station

was tabulated and the years 1960 to 1964 were selected for study because

observations were more frequent during these years. It was somewhat

arbitrarily decided that a five-year record would be adequate for

obtaining meaningful statistical results. The months from May to

November were selected for examination because these months overlap the

period from mid June to early October when African waves are generally

observed. Each station reported once per day and Lagos in particular

had a large number of missing observations but no attempt was made to

interpolate for missing data. Fort Lamy and Bangui took measurements

of temperature and dew point for just one year, therefore, only wind

observations were analyzed for these stations. Time series of zonal

and meridional wind, temperature, specific humidity and geopotential

height were formed at the nine available mandatory levels from the

surface to 100 mb excluding 1000 mb. In order to eliminate grossly

erroneous reports, all observations more than three standard deviations

from the sample mean were rejected. Presumably a small fraction of

valid observations were rejected by this method but this was tolerable

in view of the fact that the data had not been checked previously for

errors.

Since power-spectrum and cross-spectrum methods are designed

to isolate periodic components, it is of utmost importance to choose

data samples which are nearly stationary with respect to the phenomenon

being investigated. In an attempt to limit the data to a time during

which African wave activity was stationary, two different sampling
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periods were used in creating the time series for this study. The

first sampling period, which is referred to in the text as seasonal

time series, included the time from July 15 to September 30 when

African waves propagate most uniformly and the second treated each

month separately (monthly time series). Frank (1970) has indicated

that there was very little difference between the total number of

African waves in 1968 and 1969 even though the Atlantic tropical

cyclone season was considerably more active during 1969. Since there

was no other evidence available which suggested that there have been

large year-to-year variations in the number of African waves, it was

decided to treat the entire five years of data as a single sample.

This has the advantage of greatly increasing confidence in the final

results. An aposteriori examination of the results showed that this

approach was justified.

Power spectra and cross spectra of the time series were computed

by means of the covariance method which has been described by Bendat

and Piersol (1966) and is discussed briefly in the appendix. A five-

year average linear trend which was determined by least-squares fit

was removed from each time series before analysis, but no other form

of filtering was utilized. The five-year average trend was formed by

averaging the linear trend calculated for each individual year. Ex-

tensive testing showed that the removal of the linear trend did not

contribute to a false amplitude peak near the observed frequency of

African waves and had generally negligible effects except at the very

low-frequency end of the spectrum. The covariance curves were computed
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with a lag of 20 days for the seasonal series and with a lag of 12 days

for the monthly series; the five-year average covariance curve was

formed by averaging the covariance curves for each year.

A fundamental problem for studies involving statistical results

is the choice of criteria by which definitive statements may be either

accepted or rejected. Since an important goal of this study is the

isolation of the source region of African waves between adjacent sta-

tions, a method is needed for determining the existence or non-existence

of a significant peak in the power spectrum at periods corresponding to

these waves. Since no generally accepted method was available, an

adequate test had to be developed. Initial research with the data at

Dakar indicated that the passage of African waves produced an increase

in variance over a broad range of periods from three to five and one-

half days. The main objective, therefore, was to determine the maximum,

mean and minimum amount of variance which would be expected in this

range of periods on the basis of chance. In order to ascertain the

magnitude of chance variations in the power spectra, computations were

made with series created by a random number generator. The mean one-day

lag autocorrelation and the distribution about the sample mean were

determined for the wind components at all levels for each station so

that the random number series could match the actual data samples in

these respects.

The random numbers were obtained from RANDU, an IBM 360 machine-

specific subroutine (contained in the IBM Scientific Subroutine Package),

which computes uniformly distributed random real numbers between 0.0 and
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1.0. Seven successive numbers from RANDU were averaged in order to

produce a new series with distribution properties about the sample mean

which resembled that of the actual data. The randomly generated series

were computed in the following manner

a = random number from RANDU

define 6 - a Ik
d 7 =}

Then a new series {C} was defined in terms of P where

= lag-one autocorrelation value or "persistence"

c = b,

Cj =+ Cj b for i

C C i , C,0 were used only as a means of starting the

desired sequence of numbers C C C The series

C} were spectrally analyzed in a manner identical to that

applied to the real time series and experiments were conducted which

simulated both the seasonal and monthly series. In order to approx-

imate the observed range of lag-one autocorrelation values, tests were

made with several values of which varied from-0.25 to 0.50 in

increments of 0.05. Thirty series of {C} were analyzed for each

value of . Because of the finite length of the random number

series, the actual lag-one autocorrelation values of {C} deviate

from the imposed value of but generally by less than +0.05.
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Three sets of numbers were spectrally analyzed for each of these

series: the first with no linear trend removed (method 1), the

second with a linear trend removed (method 2) and the third with

the linear trend subtracted and a periodic component added (method 3).

Comparison of the results of method 1 and method 2 verified that the

two procedures produced identical results except at the two or three

1
lowest frequencies . The power spectral density estimates for three

series obtained with method 2 and P = 0o0 (i.e. white noise) are

shown in Fig. 3.1. This figure depicts chance fluctuations which occur

in any given finite sample. Care must be taken to insure that varia-

tions similar to these are not considered to be significant, Fig. 3.2

reveals the effects of adding persistence (redness) and a periodic

component which contains only ten per cent of the total variance but

which is clearly isolated by the spectral procedure. Since persistence

is a measure of power in the low-frequency components, the general

shape of the spectral density function varies with ~ . It is readily

apparent that the one-day lag autocorrelation must be considered when

interpreting the statistical results,

At those stations known to be influenced by African waves,

preliminary analysis revealed an increase of variance in the periods

from three to five and one-half days. A satisfactory indicator of

wave activity was found to be the per cent of the total variance

(%TV) computed for the periods from 3.1 to 5.7 days for the seasonal

1
The random number analysis was completed after the results with the
actual data had been obtained and indicates that the removal of the
linear trend was an unnecessary step.
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series and for the periods from 3.0 to 6.0 days for the monthly series.

The %oTV was calculated for each randomly generated series and a summary

of these results is presented in tables 3.2 and 3.3. The value of %oTV

is normally distributed only for time series of pure white noise, how-

ever, the distribution of %oTV in those series with some redness is un-

doubtedly sufficiently close to normal that variations from the mean

of more than two standard deviations are significant.

There are two main reasons why the values in tables 3.2 and 3.3

represent approximate criteria for judging statistical significance.

First, only thirty random number series have been used to obtain the

statistics of 7%TV for each value of . If an infinite number of

series had been used, the value of %TV for = 0.0 for the seasonal and

monthly series would be 35.0 and 41.7% respectively rather than the

tabulated values of 34.2 and 42.0%. Second, there are missing observa-

tions in every time series so that the degrees of freedom in the calcu-

lations with the actual data are less than that for the random number

series; therefore, the appropriate standard deviation of %oTV for the

observed data should be larger than that which is given in the tables.

For these reasons African waves are assumed to exist at those levels

and stations where the 7%TV deviates from the expected normal by more

than two standard deviations and where there is a clear indication of

a zonally propagating disturbance.
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Table 3.2

Summary of calculations with random number series

Simulation of seasonal time series by method 2.

30 Sample

P Average %TV

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

32.9

33.6

34.0

34.2

34.0

33.6

33.0

32.1

30.9

29.6

28.0

26.2

24.2

22.2

30 Sample

Maximum %TV

40.9

41.3

41.5

41.4

41.1

40.7

40.3

39.6

38.7

37.5

36.1

34.4

32.5

30.5

30 Sample

Minimum %TV

26.4

27.6

28.3

28.6

28.3

27.6

26.6

25.4

24.1

22.5

20.8

19.0

17.1

15.2

Standard Deviation

of %TV

3.30

3.34

3.25

3.30

3.30

3.33

3.36

3.42

3.43

3.47-

3.46

3.43

3.38

3.30
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Table 3.3

Summary of calculations with random number series

Simulation of monthly time series by method 2.

30 Sample
p Average %TV

-0.25
-0.20
-0.15
-0.10
-0.05

0.00

0.05

0.10

0,15

0.20

0.25

0,30

0.35

0,40

0.45

0.50

38.1

39.4

40.5

41,3

41.8

42.0

42.0

41,6
41,0

40.2

39.0

37.6

35,9

34.0

32.0

29.7

30 Sample
Maximum %TV

47.3

49,1

50,4

51.4

52.1

52.4

52.5

52.2
51.8

51,2

50.4
4903

47.9

46.2

44.2

41.8

30 Sample

Minimum %TV

27,4

29.0

30.4

31.8

32.8

33,4

33.4

33.1

32.1

31.1
29.8

28.3

26,6

24.7

22.7

20.5

Standard Deviation

of %TV

4.99

4.99

4.87

4.85

4.86

4.86
4.89

4.93
5,00

5.03

5,12

5.22
5.30
5.35

5.31

5.30
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Chapter 4

Statistically Determined Features of African Waves

4.1 Statistical Significance of Spectral Results

Time series of zonal (u) and meridional (v) wind, temperature (T),

specific humidity (q), geopotential height (z) and surface pressure

(Psfci) were formed at the mandatory levels from the surface to 100 mb

for each station listed in table 3.1. No attempt was made to analyze

time series at 1000 mb since the normal surface pressure is lower than

this at four of the stations.

The coherence (see appendix for details of computation) is an

important quantity in cross-spectrum analysis which varies as a function

of frequency. It is similar to the square of a correlation coefficient

except that it measures out-of-phase correlation as well as in-phase cor-

relation. The statistical significance of the coherence is a function

of the number of degrees of freedom, which is the number of independent

observations that contribute to each spectral density estimate. The

number of degrees of freedom is defined by

degrees of freedom =

where N is the total number of data points in the time series and m is

the number of lags. Since a few observations are missing in most of

the time series, the individual spectral density estimates have 35

degrees of freedom for the seasonal time series and 23 degrees of free-

dom for the monthly time series. Phase difference and coherence in
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several of the figures represent averages from 3.1 to 5.7 days and 3.0

to 6.0 days for the seasonal and monthly series respectively. These

quantities were obtained by averaging individual co-spectral and

quadrature spectral estimates within the range of periods rather than

directly averaging the phase difference and coherence. When the number

of missing observations, the use of the Hanning smoothing procedure and

the averaging over several periods are considered, the averaged coherence

has 125 degrees of freedom for the seasonal series and 60 degrees of

freedom for the monthly series. Goodman has derived an approximate

formula (see Panofsky and Brier, 1958, p. 158) for determining the

minimum coherence value which represents a relationship between time

series at the 95% significance level. This formula gives

Period range Degrees of Significant coherence
in days freedom at 95% level

monthly 3.0-6.0 60 .22

seasonal 3.1-5.7 125 .15

In each of the figures the units of the spectral density estimates

are variance day. They can be converted to units of amplitude with the

following relationship

= total lag number in days

G ) = spectral density estimate i=O' /A

amplitude -=

Onr
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The symbol %TV is used frequently in the text, it is defined as

the per cent of the total variance in the period range from 3.1 to 5.7

days for the seasonal series. The same symbol is also used for the

monthly series but the per cent of the total variance is computed for

the period range from 3.0 to 6.0 days.

4.2 Analysis of Time Series of Zonal and Meridional Winds

4.2.1 General Characteristics of Power Spectra of Horizontal

Wind Components

Power spectral density estimates of the seasonal series of zonal

and meridional winds were computed at each level for every station and

are shown in Figs. 4.1 to 4.4 as a function of height and period.

There are two features which are common to many of the spectra. The

first is the spectral peak in the v component at periods near 4-5 days

which reaches a maximum amplitude of 1-2 m/sec in the lower troposphere

at 700 mb at all stations except Aden. This lower tropospheric spectral

peak is usually not found above 400 mb but does tend to affect a deeper

layer of the atmosphere toward the west coast of Africa. At 700 mb the

periods from 3.1 to 5.7 days account for approximately fifty per cent

of the total variance of the v component but no corresponding peak in

the u spectrum is observed. The amplitude of the u power spectral

density estimates is smaller than those for v near 4-5 days so that

the kinetic energy is mainly confined to the meridional wind. In

general the zonal wind contains much more energy at the low-frequency

end of the spectrum than the meridional wind. The second consistent

feature at many of the stations is the concentration of variance near
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700 mb in the lower troposphere and near 150 mb in the upper troposphere

with an intermediate minimum close to 400 mb. This same tendency for

relative maxima of the variance of the wind components to occur in the

lower troposphere and near the tropopause has been noted in the equa-

torial Pacific by several authors (see e.g. Yanai et al, 1968). Most

of the African stations have spectral peaks in the upper troposphere.

It seems unlikely, however, that zonally propagating disturbances are

producing most of the variance in the upper troposphere, since there

is a lack of compatibility between the periods of the spectral peaks

at adjacent stations. Perhaps much of the variance is the result of

errors in the data. The one exception is the v spectral peak with a

period of approximately five days near 150 mb, which probably represents

the westward propagating waves observed near the equator in the vicinity

of the tropopause and discussed by Yanai and Maruyama (1966). Although

the amplitude of the disturbances in the upper troposphere is generally

greater than that in the lower troposphere, the kinetic energy per

unit volume at the 700-mb level is greater than that at 150 mb.

4.4.4 The Source Region of African Waves

The results of subsequent sections show that the v spectral peak

in the lower troposphere at periods of 4-5 days is caused by zonally

propagating disturbances and that the wavelength, rate of propagation

and seasonal occurrence of these disturbances are similar to the charac-

teristics of African waves described by Carlson (1969a,b). He (1969b)

has shown that African waves influence all of the stations used in this

study except Aden and Khartoum which are east of his data network in a
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region insufficiently populated with observations for conventional

synoptic analysis. In order to determine whether Aden and Khartoum

are also regularly influenced by easterly waves, the %TV for the sea-

sonal series of the meridional winds was computed for each station

from the surface to 100 mb (table 4.1) and compared to the results of

the experiments with the random numbers summarized in table 3.2. The

%TV is consistently a maximum value at 700 mb, where the amplitude of

the wave motion is also greatest. At those sations where African waves

have been synoptically observed the 7%TV of the 700-mb meridional wind

is more than three standard deviations greater than the appropriate

value from table 3.2. While %TV may not be normally distributed except

for time series of pure white noise, its distribution with the addition

of some redness is sufficiently close to normal that values more than

two standard deviations from the mean can be considered to be highly

significant. The significance is enhanced if a consistent pattern is

observed between nearby stations. Though significantly large values

of %TV occur most often at 700 mb, other levels evidently become

affected to the west of Ft. Lamy. For example, although only the 700-mb

v component at Ft. Lamy has a %TV significantly different from the

random value, Dakar (which is more than 3000 km downstream from Ft.

Lamy) has a significant %TV at all levels from the surface to 300 mb.

At Aden and Khartoum the values of %TV for v at each level

(except 400 mb at Aden) depart by less than two standard deviations

from the number which would be expected by chance. Even though there

is a weak relative maximum in the spectra of the 700-mb v component
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at Khartoum, the %oTV is still approximately the value to be expected in

the absence of regular easterly wave passage. The value at 400 mb is

significant at Aden, but the data show no coherence with the stations

to the west. Perturbations in the meridional wind, therefore,are not

related to any zonally propagating disturbances which regularly reach

Africa. The variance characteristics of the seasonal time series of the

meridional wind at Aden and Khartoum are sufficiently like the random

number series that African waves did not normally influence these sta-

tions from 1960 to 1964. Since there is no reason to suppose that Aden

and Khartoum are unrepresentative of the latitude band of easterly wave

activity, no easterly waves regularly occurred east of 300E.

The usual source region of African waves is thus limited to the

region between Ft. Lamy and Khartoum; these stations are separated by

approximately 1500 km. Carlson (1969b) has documented the likely origin

of waves farther to the west and undoubtedly some waves form to the east

of Khartoum, but the area between Ft. Lamy and Khartoum is the pre-

ferred source region.

The same calculations were made with the monthly time series of

the meridional wind from 850 to 500 mb (table 4.2). From June to Septem-

ber the monthly time series support the contention that the African

waves originate to the west of Khartoum; however, August is the only

month when all of the stations to the west of Khartoum are clearly in-

fluenced by African waves. The number of degrees of freedom of the

calculation of %TV for the monthly series is less than half that for

the seasonal series and the computed standard deviation of the %TV



47

00 - CD 0 0 CY

I I I

Hr Hi 'I Cq O n d T

o F O C P C C3 o
t Cn t tf t )

0 LOo 1O
9 9~ 9C 9 C I Ot; o 

z o; o o; 1 C C ;00~-0~cr ,0
II I Ii

o- -- m o o o o

C t Cc L CX
m m c CL :v LO I'l

0

* o o o . o o ·

z ooo oT CV od CV
I I I

o
rt r *M LO * * -C E- i 0 v ml e o o * 

C4 Cql 1· 0 0 X C - 1D CY' C 0 CQ CX)'
C) c L t tD H Q > n C) LO V t L

v ( V O C M cq 
C , .H Cq C r-H O

I . .e . . . . ·

I

O :O ri t- N F d0 ", O ' . .t0 H - m 0 H H

I h

Co C C d -H(~ o~ o~ ~ ~.

' C C C b o C'

I

o qo 0 oo oH

4 I a -4J

~1 9 0 C3 bf0 , --a) Cd b o

" a .~ --H CS cd C QPl Z PM F

z

0
LO 

z

12

aS
a d

a) 0

1 o

r

0
.H

a4
,H

02

0
o
r.v

*r
a)

aoCd

,54
02
0

.rJ

4-)
m

a)

'0a)

Q Q

H

4) "r .,4
0 >

ol-

C, a)

(H
bDqa, 

0
000i

en;



L t t d LO o
O H O CH H C' H C 2

v U3~ LO 'ot LO u

o

O ¢

O -H NCH t 0 0 C
I O H

O C C 0 0 U3 "

0 t0 0 0 0N Cq U

Omt Ovt UOvU

C Or 0 0 . . . I0 1 
I I

LO OvlJO

0 C02tO 0 O D 0
CO t~C 00 Hl CQ 10 H

t- H-rO D 11 Q0D O t-
C. t3 O O 0 H- c\ C

o00

I

DOH Co 000 o
rH O NH q C C 1

a)
l,

a)P.

0)
00

0

t- 

F 1cHHo tO H
~LtVODUr Lo- o oD N o q4 : Le tl - Ln U: 
" " " ,m CD Un U

t'- -- 0000
co O O H O

o . . . . .

O
IO

tz

0000 00 CL- H
C H CD XD 00

d" : n to 0 t

0
I

CN t 0 00 
CH I C C 0 

o 

I I

0000 CQ Hc Cl 1I

OMOON-I *o No~~~~~~~~~~~~~~ 

+ 0) s 0 2 *-Cd h ·l Wclij 1c4Q k q Ico In g q W <bD0 z0) C C .° 9 bD H
70a 4J -H Cd Cd Cd
C P: 4z m = U Qc

48

z

0
&Zn

z CO 
I I

0
0I-- -P

0
bD

¢1
CN

z

o
!

a) p ) ;

< r z ll 
< t4 X Z; 

.H '

bD X

¢-m



49

is fifty per cent larger for the monthly series. This makes the sig-

nificance criteria for the monthly series more difficult to exceed.

Perhaps wave activity is more uniform in August and thus is able to

exceed the criteria.. Apparently a longer data sample is needed for

a thorough analysis of the monthly series.

4.2.3 Vertical Structure of the Waves as Determined from

the Meridional Wind

Carlson (1969b) has indicated that-the maximum amplitude of

African waves occurs in the vicinity of 600 mb but the spectral results

for only the mandatory levels reveal that the amplitude is greatest at

700 mb. It was decided, therefore, to calculate interlevel cross spectra

within each station for the time series of meridional wind at all levels

paired individually with the meridional wind at 700 mb. The resulting

coherence and phase differences averaged for the periods from 3.1 to

5.7 days are shown in Fig. 4.5 for the stations along 15 N. The figure

indicates that the depth of the atmosphere affected by the African

waves increases steadily toward Dakar; moreover, a consistent pattern

of phase differences shows that the 700-mb v component lags behind

those at all other levels. This means that the trough axis of the

average wave tilts toward the east with height up to 700 mb and toward

the west above that level. On the assumption of thermal wind balance,

this result implies relatively cold air behind the trough axis below

700 mb with warm air behind the trough axis above this level.. This is

compatible with the temperature structure to be expected from kinematic

distortion of the zonal mean temperature field. Since the meridional
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Fig. 4.5. Interlevel cross-spectrum results relative to 700 mb and

averaged for periods from 3.1 to 5.7 days for the meri-
dional wind, (a) coherence and (b) phase difference in
degrees where negative values indicate that the 700-mb
level lags behind the second pressure level.
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gradient of zonal mean temperature reverses at about 600 mb near 10-

15 N. the southerly winds which occur east of the trough axis produce

cold advection below 600 mb and warm advection above. The tilt of the

axis is similar at Lagos and Abidjan but at Bangui the axis slopes east-

ward with height throughout the lower troposphere.

4.2.4 Vertical Influence of African Waves

The magnitude of the relationship between two time series is given

by the cross spectral density function. Fig. 4.6 shows interlevel cross

spectral density estimates of the meridional wind relative to 700 mb

for selected stations. It is interesting to note that at those stations

where easterly waves occur there is a correlation between these waves

and disturbances in the upper troposphere with periods of approximately

4-5 days. This relationship increases toward Dakar as the wave grows

vertically and is also enhanced toward the south. It appears likely

that the African waves are contributing to the variance in the upper

troposphere.

4.2.5 Horizontal Wavelength of Waves

With the aid of both satellite pictures and conventional synoptic

analyses at 10,000 ft Carlson (1969b) has estimated the horizontal wave-

length of African waves to be about 2000 km for the summer of 1968. If

the African waves were periodically propagating in the zonal direction

during the summers from 1960 to 1964, the wavelength and direction of

propagation of the disturbances can be estimated by systematic use of

the phase difference between neighboring stations. Computations were
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made of the coherence and phase difference between stations for the

seasonal series of the 700-mb meridional wind. In Fig. 4.7 the phase

difference (Ae) is plotted against the longitudinal separation

(a ) ; these quantities are defined so that a disturbance propa-

gating toward the west has positive e 9 and iik The values of

the coherence are quite low and the d -43 ) relation shows some

scatter but is approximately linear. Since a longitudinal separation

0 0
of 35-40 is required for a phase difference of 360 , the wavelength

can be crudely estimated to be 4000 km and the wave propagates toward

the west. With the assumption that the average period is 4.5 days,

the waves propagate toward the west at 9.5 m/sec. This is slightly

slower than the average speed of the 700 mb zonal wind velocity.

The statistical estimate of the wavelength is larger than the

synoptically observed wavelength of 2000 km just as the 4-5 day period

of the peak in the spectrum is larger than the observed periodicity of

3.2 days (Carlson, 1969b). This discrepancy is also characteristic of

the spectral results of Wallace and Chang (1969), Chang et al. (1970)

and Nitta (1970a) who obtained estimates of the wavelength and period

of easterly waves in the equatorial Pacific which are larger than syn-

optic observations in that region (Palmer, 1952). The larger estimates

of the wavelength and period which have been computed with the power-

spectrum methods may result because of the use of unrepresentative

data; but it seems more likely that the discrepancy is due to a lack

of uniformity of the waves. Brief interruptions of wave activity and

variations of amplitude between successive waves can contribute to
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the larger spectral estimates of the wavelength and period.

4.2.6 Horizontal Tilt of Wave Axis

The horizontal tilt of the trough axis can be investigated by

computing the phase difference of the 700-mb v component for the sea-

sonal series between stations along nearly the same meridian. This

comparison can be made for two pairs of stations

phase lead of
northern station southern station Zi southern station coherence

Ft. Lamy Bangui

(1208'N, 150 2'E) (4 23'N, 18 34'E) 3 32' 110° .13

Niamey Lagos

(13 29'N 2 10'E) (6 35'N, 3 20'E) 1 10' 55 ° .06

When adjustment is made for the longitudinal difference of the stations,

the southern portion of the wave at 5 N leads the central part of the

wave near 13 N by about 1/6 of a wavelength. This result indicates that

the axis of the disturbance is directed from southwest to northeast in

the southern part of the zone of maximum African wave activity. Although

the coherence values are too small to be significant, the similarity of

the sign and magnitude of the phase difference gives credibility to the

result's.

There are no stations-near 20 N which took observations regular-

ly enough for spectral analysis to be applicable, therefore, nothing

can be said concerning the horizontal tilt of the waves north of 13 0N.

The observed tilt of the wave between 5 and 130N is such as. to produce
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an equatorward transport of easterly momentum away from the easterly

jet if the flow is approximately nondivergent.

4.2.7 Monthly Variations of Wave Activity

Carlson (1969b) and Frank (1970) indicate that easterly waves

progress across Africa and into the Atlantic from mid June to early

October. In order to investigate month-to-month variations of African

waves the spectral density estimates for the 700-mb meridional wind at

Niamey and Dakar are displayed in Fig. 4.8 for each month. These

stations are chosen because they represent the region where the waves

attain their maximum amplitude. A significant spectral peak near 4-5

days occurs from June to September but none during May, October and

November. The lack of a spectral peak which can be associated with

easterly waves during October probably implies that the waves occur for

part of the month only. At both stations the period of maximum power

spectral density is a minimum during August. Whether this is a random

fluctuation in the data, an indication of a change in the preferred

period in response to seasonal variations of the large-scale circula-

tion, or a manifestation of more uniform wave propagation is not clear

from an examination of the data. Evidence suggesting that this is not

a random fluctuation has been given by Frank (1970) who found that the

average frequency of waves passing Dakar during the years 1967 to 1969

reached a maximum near the first of August.
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Fig. 4.8. Power spectral density estimates (m2 sec- 2 day) of 700-mb

meridional wind for monthly time series (a) Niamey and (b)
Dakar, dashed line joins the peak spectral-density estimate.
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4.2.8 Seasonal Variations of Wave Amplitude

In both the Atlantic and Pacific Oceans the total number of

hurricanes and tropical storms fluctuates greatly from year to year.

Until recently it has been impossible to observe the annual number of

African waves. For this reason yearly variations in wave activity

could not be related to similar variations in the number of tropical

storms. Frank (1970) has noted that although there was a considerable

difference in the amount of tropical storm activity in the Atlantic

from 1968 to 1969, this difference was not accompanied by any signi-

ficant change in the number of African waves. While the number of

African waves may not change much from one year to the next, their

strength may vary from season to season. Such an effect has been

documented in the Pacific where Wallace and Chang (1969) found an order

of magnitude increase of variance in the lower tropospheric v components

of easterly waves from 1963 to 1964. The increased amplitude of the

easterly waves during 1964 may account for the unusual number of low-

latitude tropical cyclonesin the Pacific during 1964 (Chang et al.,

1970).

Since most of the energy of the African waves is in the merid-

ional wind component, the strength of the average wave should be pro-

portional to the variance of v. Fig. 4.9 shows monthly values of the

variance of the 700-mb meridional wind at Niamey and Dakar. The mag-

nitude of the variance changes at most by a factor of two or three from

one month to the next and no seasonal change is observed which compares

to that which occurred in the Pacific between 1963 and 1964.
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Carlson (1969a) has stated that approximately half of the

tropical storms and hurricanes which form during August and September

are attributable to African waves. Although no relationship has been

observed between minimum surface pressure or amount of convection of

African waves and subsequent tropical cyclone development, it seems

likely that the amplitude of a wave in the middle troposphere may be

related to its ability to intensify.

Table 4.3 contains the number of hurricanes and tropical storms

(both named and unnamed) which formed in the Atlantic region during

each month from 1960 to 1964 and table 4.4 lists the estimated seasonal

variance of African waves at Dakar and Niamey. These tables and Fig.

4.9 show that there is a tendency for the average 700-mb amplitude of

the waves a t Drak ar to be greater than normal during those months

and seasons when tropical cyclone frequency in the Atlantic is above

average.
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4.3 Analysis of Temperature, Specific Humidity and Geopotential

Height

The structure of the waves was examined further by means of

spectral analysis of the seasonal time series of temperature, specific

humidity, geopotential height and surface pressure. Power spectra of

these quantities were computed from the surface to 300 mb and intra-

level cross spectra of T, q and z (or Psfc) calculated relative to v.

Table 4.5 lists the TV of the T, q, z and Psfc spectra at Niamey

and Dakar where the waves are strongest and extend through the deepest

layer. The power spectra of temperature and specific humidity do not

show any consistent peak at periods near 4-5 days. The %oTV of the geo-

potential height, however, is consistently higher than the appropriate

value from the random number calculations while the %TV of the surface

pressure is significant at both stations. An examination of the cross

spectral calculations reveals a distinct relationship between varia-

tions of the meridional wind and geopotential height (Fig. 4.10) with

the maximum height trailing the maximum southerly wind by 1/4 of a

wavelength (table 4.6). The computed amplitude of the geopotential

height at 700 mb at Dakar is 5 meters. Although this value seems very

small, a recent study concerning the accuracy of radiosonde-measured

heights by Lenhard (1970) indicates that this amplitude is capable of

being resolved with radiosonde methods which were used from 1960 to

1964. The 90° phase difference between meridional wind and height

suggests that the waves may be in geostrophic balance, a fact which is

verified by a simple calculation with the geostrophic equation.
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P(MB)

PERIOD (DAYS)

Fig. 4.10. Intralevel cross spectrum of meridional wind and
geopotential height (m2 sec- 1 day) at Dakar.
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A similar relation also exists at Ft. Lamy and Niamey.

While the spectral technique does not identify significant tem-

perature oscillations in association with the waves, it is possible to

estimate the amplitude of the temperature fluctuations. by means of the

geostrophic thermal wind equation. At Dakar the temperature amplitude

is estimated to be 0.2 C at 850 mb, which is the level of the maximum

observed temperature variations. With allowance for the fact that the

vertical derivative of the meridional wind is difficult to compute

precisely, the amplitude of the temperature fluctuations should be no

greater than 0.40 C and less than this value at those stations to the

east of Dakar where the waves are not as well developed.

The reporting scheme for the temperatures on the data cards

(card format 525 of the National Climatic Center) allocates only one

column of the card for reporting the tenths digit of the temperature

and dew point combined; this limits the temperature to an accuracy of

about + 0.2 C. In addition there is a random error of 0.3 or 0.4 C

(Lenhard, 1970) in the method of observing temperatures with radio-

sondes. When communication errors are considered also, the amplitude

of the errors is greater than the amplitude of the signal and it is

not surprising that the temperature spectra do not reveal a significant

peak at periods of 4-5 days. A consistent pattern is found, however,

in the phase angle between meridional wind and temperature (table 4.6)

which agrees with the structure inferred from the slope of the wave

axis with height. From the surface to 700 mb v and T are out of phase

indicating that cold air lies to the east of the trough axis but v and
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T are in phase at 500 mb revealing that relatively warm air is east

of the trough. The lack of any relationship between meridional wind

and temperature in the upper troposphere results from the weakening

influence of African waves above 500 mb.

Over the tropical oceans there is a characteristic sequence of

weather associated with easterly waves: fair weather occurs a day or

two in advance of the trough line and showery weather follows the

passage of the trough line (see e.g. Riehl, 1945, and Palmer, 1952).

Power spectral analyses of vertically averaged humidity in the equator-

ial Pacific by Wallace and Chang (1969) and Chang et al (1970) corrobo-

rate the observed convective pattern for oceanic easterly waves by re-

vealing a distinct spectral peak at 4-5 days.

If either vertically averaged or constant-level specific humidity

is an indicator of convection, it is difficult to draw any conclusions

concerning the relation of convection to African waves from the satis-

tical results with specific humidity. This is true also of synoptic

observations and satellite pictures (Carlson 1969a, 1969b) which reveal

that cloudiness becomes an organized part of the waves only after the

waves have reached western Africa; but even in western Africa Carlson

has found no preferred position of cloudiness relative to the trough

axis. Immediately downstream from the source region of African waves

the waves propagate horizontally without influencing the surface layer.

During this time no organized cloud pattern is usually observed on

satellite pictures. Apparently convection is not an important factor
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in the formation of the African waves or in the maintenance of the

waves east of the Greenwich meridian,

The lack of a consistent relation between convective cloudiness

and the waves is somewhat surprising since it might be supposed that

boundary layer convergence and large-scale ascent would promote organ-

ized convection in a manner similar to that observed in oceanic

easterly waves. In the African waves warm advection and upward

increase of cyclonic vorticity advection normally occur downstream

from the trough axis in the lower troposphere, Quasigeostrophic

reasoning indicates that upward vertical motion should be favored

to the west of the trough line. The actual formation of clouds,

however, is greatly confused because warm advection is accompanied

by dry air.

4.4 Horizontal Transports by African Waves

Computations of the horizontal eddy transports of zonal momentum

and sensible heat were made for each month from May to November from

the surface to 500 mbo The total horizontal eddy transport and the
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contribution of the easterly waves in the period range from 3.0 to 6.0

days were calculated. The total horizontal eddy transport includes

all turbulent eddy processes with periods less than a month; the effect

of most lower frequency disturbances has been removed by subtracting

the linear trend. The horizontal transport by eddies in the period

range from 3.0 to 6.0 days (frequency range from 0.17 to 0.33 cycles

per day) is estimated by

i .17

=.33

uT'T =Z C,T($A

where the overbar represents averaging for a particular calendar month

from 1960 to 1964, f is frequency, C(f) is the co-spectral density

-1
function and Af = 0.042 day .

Since the time series are available at only eight stations, a

detailed representation of horizontal transports as a function of lat-

itude, longitude and height cannot be made; nevertheless, some infer-

ences concerning the horizontal transports by African waves can be

made by examining the covariances u'vT and v'T'. The similarity

of the covariances at several stations suggested that they be averaged

for Aden and Khartoum, for Ft. Lamy, Niamey and Dakar, and for Bangui,

Lagos and Abidjan.



70

The sensible heat transports are shown in Fig. 4.11. In general

the horizontal transport of sensible heat is negligible at the surface

even at those stations within the baroclinic zone and is also negligible

at all levels near 5 N (a region of weak zonal temperature gradient).

At Ft. Lamy, Niamey and Dakar the heat transport is equatorward at 850

and 700 mb and weakly poleward at 500 mb both for African waves and all

eddy motions. For these stations the direction of the transport is

down the temperature gradient at each level above the surface.

As might be anticipated, the statistics for the covariance of u

and v at each station depend on the position of the station relative to

the mid-tropospheric easterly jet and the baroclinic zone at the surface.

The number of upper-air stations is insufficient to determine the precise

latitude of the jet axis; however, an examination of the monthly mean

temperature maps and the monthly mean zonal winds at 700 mb suggests

strongly that the jet axis is south of Ft. Lamy, Niamey and Dakar from

October to June and north of these stations during July, August and

September.

The horizontal transport of momentum is shown in Fig. 4.12 from

which it is seen that momentum transports are quite small at the sur-

face and 500 mb. At the stations near 5 N there is generally an equa-

torward flux of easterly momentum. There is, however, a poleward flux

of easterly momentum at the 850-mb level at Ft. Lamy, Niamey and Dakar.

This poleward transport of easterly momentum was also found at Taman-

rasset (22047'N, 5031'E) and Ft. Trinquet (25 14'N, 11 37'W) in the

u'v' covariances for June to August which were computed by Professor
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R.E. Newell and students at MIT and may be related to the shallow,

transitory thermal lows which have been frequently observed near the

ITC over the Sahara in association with African waves (Carlson, 1969b).

The magnitude of the momentum transport by African waves is largest at

700 mb at Ft. Lamy, Niamey and Dakar. At this level the direction of

the transport changes from a poleward transport of easterly momentum

in June to an equatorward transport of easterly momentum in July,

August and September. This change occurs at each of the stations.

As mentioned previously, the core of the easterly jet stream is south

of these stations during June and north of them during the other

months of easterly wave activity. Thus for each month from June to

September the eddy motion is exporting momentum from the vicinity

of the easterly jet; this confirms the direction of the momentum flux

which was inferred from the southwest to northeast tilt of the 700-mb

wave axis.
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Chapter 5

Discussion of Possible Causes of African Waves

Speculations concerning the causes of African waves have been made

by Carlson (1969b) and Frank (1970). Carlson suggested that the waves

form as squall lines which are produced by afternoon heating over ele-

vated regions and Frank felt that the waves originate from the mechanical

effect of the easterly flow of air over the mountains of Ethiopia.

5.1 Airflow Over Mountains

In the latitude band of 10-15 N, where African wave activity is

centered, there is an extended region of mountains in Ethiopia and a

smaller mountain range near 230E in the western Sudan (see Fig. 2.1).

Near 39 E in Ethiopia there is a north-south ridge line which stretches

from 5 to 170N. To the west of this ridge line the mean meridional

cross sections at 35 E show that during most of the African wave season

the zonal winds are from the west up to 800 mb (6500 ft) and from the

east above this pressure level. The elevation of much of the land in

Ethiopia is over 6000 ft and many of the mountains are higher than

10,000 ft. The wind, therefore, is easterly only for those mountains

which penetrate above 800 mb and is in the proper direction to account

for westward propagating disturbances over North Africa.

In order to determine the role of the mountains in the generation

of African waves the statistical results for Aden and Khartoum were

examined. Khartoum is the only station immediately to the west of
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Ethiopia which made a reasonably complete series of observations from

1960-1964. Observations from Malakal (90 33'N, 31039'E), which were

available for only a limited time from 1964 to 1966, were used in the

cross sections but were not taken frequently enough to be of value for

spectrum analysis. Although Khartoum is located near the northern end

of the Ethiopian mountains, it presumably would be affected by any

periodic disturbances which might arise from airflow over the mountains.

Aden is located just to the east of Ethiopia and has been used to examine

the existence of wave motion in the 700-mb flow before it reaches the

mountains. The absence of a significant peak in the power spectrum of

the meridional wind at Aden (except the peak at 400 mb which is not co-

herent with any other station to the west) indicates that there are no

waves in the easterly flow upstream from Ethiopia-; moreover, %oTV at

Khartoum is not significantly larger than that at Aden so that easterly

waves do not arise immediately downstream from the mountains (table 4.1).

The mountains in the western Sudan between Khartoum and Ft. Lamy are

generally 3000-5000 ft high. In the spring and fall the zonal wind is

from the east near the mountain tops but during the African wave season

the mountains are usually completely within the southwest monsoon. The

airflow~ is not in the proper direction to produce the periodic distur-

bances which are propagating toward the west at Ft. Lamy.

Since these are the only mountain ranges in the area of African

wave formation, airflow over mountain ranges cannot be responsible for

the generation of African waves.
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5.2 Squall Line Formation over Elevated Land Areas

On the basis of daily synoptic analyses Carlson (1969b) has esti-

mated the longitude where each African wave was first observed during

1968. He found that half of the waves originated east of 180E and that

twenty per cent first appeared between 10 and 12 E. This source region

between 10 and 12 E prompted Carlson to suggest that the waves may form

as squall lines over the Cameroon Mountains; however, the longitude where

a wave actually forms is not likely to be where the wave is first ob-

served since the average v amplitude of the waves at 700 mb is only 1-2

m/sec. A second difficulty in the synoptic determination of the origin

of these disturbances is the use of once.-per day analyses; this automa-

tically introduces a westward bias in the longitude of the origin of the

waves. While an occasional wave may form in the region between 10 and

o
12 E, it is unlikely that this area is an important source of African

waves since an examination of the 700-mb wind statistics from 1960 to

1964 at Ft. Lamy indicates that the vast majority of the waves formed

to the east of Ft. Lamy.

Squall lines, however, do develop regularly as the result of

afternoon or evening convection over elevated ground of Cameroon and

Nigeria and have been discussed by Eldridge (1957). These squall lines

occur nearly every day, propagate westward at 15 m/sec and generally

dissipate before traversing 500 miles. Since satellite pictures and

statistical methods have not detected any relation of convection to

the initial stages of wave development, it seems unlikely that African

waves also form as the result of enhanced convection over mountains.
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5.3 Barotropic Instability

During each month of African wave activity the waves transport

easterly momentum away from the mid-tropospheric jet at 700 mb. The

transport of easterly momentum away from the et suggests that baro-

tropic instability may be an important factor in the generation of

African waves. In order to examine this possibility, meridional profiles

of monthly mean absolute vorticity (-- +f ) were computed for the

850, 700 and 500-mb surfaces from the cross sections at 5 and 350E

(Figs. 5.1 and 5.2). Although the stations are not sufficiently dense

to determine the details of the horizontal shear of the zonal wind, at

both meridians there is a clear indication of a maximum in the merid-

ional profile of absolute vorticity which is most apparent at 700 mb

and also occurs at 500 mb. A relative maximum in the absolute vorticity

profile is a necessary condition for barotropic instability (see e.g.

Nitta and Yanai, 1969) and is observed near 10-15 N during the same

months that easterly waves occur. At 850 mb, however, --- 4-+ is

approximately a linear function of latitude. During November the rela-

tive maximum in the meridional profile of absolute vorticity is weaker

o
and farther south at 5 E and from December to May it does not occur as

a monthly mean phenomenon. The combination of relative maxima in the

monthly mean profiles of absolute vorticity and the transport of momen-

tum away from the easterly jet by the waves suggests strongly that baro-

tropic instability is the source of energy for African waves.

Since the horizontal shear of the zonal wind increases by a

factor of two from 35 to 5 E, the degree of barotropic instability also
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increases between these longitudes. This may account for the fact

that the source region of African waves is in east-central Africa

rather than farther to the east.

The idea that barotropic instability may be the initial source of

energy for tropical disturbances at low latitudes has been prevalent

for many years (Yanai, 1961). Recent stability analyses with the lin-

earized vorticity equation by Nitta and Yanai (1969) and Lipps (1970),

both of which simulated conditions in the Marshall Islands region of

the Pacific, have found that the wavelength of maximum growth rate is

about 2000 km and the e-folding time is 5-7 days. The wavelength is very

similar to that observed by Carlson (1969b) for African waves but the

growth rate may be too slow to overcome the effects of friction. The

mean zonal shear, however, of 12.6 m/sec between Niamey and Lagos for

August at 700 mb is approximately double the shear considered in the numer-

ical studies. Barotropic instability would undoubtedly yield a more reason-

able growth rate if they had used a larger value of horizontal shear.

The 700-mb zonal wind component doubles in speed between Khartoum

and Niamey (Fig. 2.8) even though this is the region where easterly

waves are transporting momentum away from the mean zonal flow. If

the 700-mb height field were aligned so that the heights at Khartoum

were 5-6 meters higher than at Niamey, then the increase in wind speed

could be explained by the flow of air down the height gradient; but the

averaged heights at Khartoum, Ft. Lamy and Niamey differ by less than

one meter and do not support the model of airflow down the height

gradient. Since the surface isotherms, zonal flow and height fields
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are oriented nearly east-west, a likely source of kinetic energy for

the easterly flow is an ageostrophic meridional circulation in which

warm air is rising and cool air sinking (Fig. 5.3). The meridional

winds averaged from June to September at Khartoum, Ft. Lamy and

Niamey (table 5.1) corroborate this model since there are southerly

winds near the surface and in the upper troposphere with northerlies

between these regions. The windsat Dakar do not follow this pattern

but the 700-mb zonal wind at Dakar is less than that at Niamey, so

the meridional circulation is not required. Note that Dakar is on

the west coast of Africa and is not representative of stations in the

baroclinic zone at the surface. The vertical motion in the upper

branch agrees with calculations by Kyle (1970) for the 500-mb vertical

motion averaged from June to August. The frequent inversions near

800 mb at Lagos and Abidjan which were first noted by Hamilton and

Archbold (1945) and the small values of monthly mean precipitation

along the south coast of the African bulge from July to September

must be the result of subsidence in the equatorward branch of the

meridional circulation. Typical temperature soundings for consecu-

tive days at Abidjan (Fig. 5.4) show that an isothermal layer or inver-

sion with a rapid decrease of dew point occurs almost daily near 800 mb.

5.4 Baroclinic Instability

Unfortunately baroclinic -theory has not yet been developed for

the latitudes considered in this study. The monthly mean surface tem-

perature gradient of 100C in 100 latitude which occurs during the

African wave season is comparable to that observed in middle latitudes
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Table 51

Meridional winds (m/sec) averaged from June to September

for the years from 1960 to 1964, southerly winds are positive.

Khartoum Ft. Lamy Niamey

sfc 3.4 1o2 1.4

850 0.7 0.1 0.7

700 -2.3 -2.3 -1.6

500 0.5 -1.1 -1.6

400 -0.4 -0,3 -1 4

300 0.0 0.1 -1.0

200 1,9 1.2 0.3

150 4.2 1,6 1.7

100 3.4 0.7 0.5
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during the winter; it is likely that baroclinic processes are important

in such a large temperature gradient. Since the amplitude of the merid-

ional wind of the average African wave is only 1-2 m/sec, it is unlikely

that an observational study would be able to determine the magnitude of

baroclinic processes in producing the kinetic energy of the waves; there-

fore, the role of baroclinicity in the initial generation and maintenance

of these disturbances merits investigation by numerical methods.
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Chapter 6

Discussion and Conclusion

This thesis has investigated the origin and structure of easterly

waves in the lower troposphere of North Africa. Systematic use of

power-spectrum and cross-spectrum analysis has shown that these tropi-

cal disturbances form over east-central Africa in the latitude band

of 10-15N and that these waves first appear near the 700-mb level.

African waves are closely associated with the mid-tropospheric easterly

jet (easterly wind maximum in eastern Africa) which arises in response

to the strong surface baroclinic zone between the Sahara and equa-

torial Africa and is not part of the well-known higher-level easterly

jet. The narrow latitude band of 100 in which the monthly mean tem-

perature changes by 100C produces a large vertical shear of the zonal

wind and also creates a large horizontal shear of the zonal wind.

This horizontal shear is sufficiently large that the zonal current is

barotropically unstable at 700 and 500 mb. During the same season

that the zonal wind is unstable, easterly waves form which have a

statistically determined horizontal wavelength of 4000 km and period

of 4-5 days and a synoptically observed wavelength of 2000 km and

period of 3.2 days. While baroclinic processes may be important,

their effect can not be determined from the data and should be

investigated numerically. The African waves transport easterly

momentum away from the mid-tropospheric jet, yet in this same zone

the easterly flow actually increases. The source of kinetic energy

for the easterly jet is undoubtedly an ageostrophic meridional
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circulation (Fig. 5.3) in which warm air is rising and cool air sinking.

The kinetic energy balance of this jet is quite unlike that of the mid-

latitude westerly jet in which transport of momentum by eddy motions

maintains the jet and a weak meridional circulation tends to decrease

it.

Convection is not an important factor in the origin of these

disturbances nor is the ITC directly involved since its mean position

is well to the north of the main formative zone of African waves. In

the zone of maximum African wave activity the magnitude and direction

of the surface wind are quite uniform with the result that the hori-

zontal shear of the surface wind is not a factor in the origin of

these perturbations.

Gray (1968) investigated the global origin of tropical distur-

bances over the oceans for which he demonstrated that cyclonic shear

of the surface wind and small values of the vertical shear of the hori-

zontal wind are favorable factors for the formation of tropical distur-

bances. He concluded that large-scale frictionally forced surface con-

vergence acting in cooperation with cumulus convection accounts for the

generation of most tropical perturbations. Over North Africa, however,

the shear of the horizontal wind between the surface and 600 mb is

frequently greater than 15 m/sec and the horizontal shear of the sur-

face flow is negligible. The typical environment which favors the

generation of oceanic tropical disturbances is considerably different

than that which produces African waves.
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Spectral analysis techniques have been used to investigate east-

erly waves in the equatorial Pacific. Three studies of approximately

the same stations but for different seasons have been published and

confirm that there are fluctuations of the meridional wind in the trop-

osphere with a period of 4-5 days.

Wallace and Chang (1969) examined disturbances in the lower

troposphere from July to December 1963 and found fluctuations in the

meridional wind with a period of 4-5 days which had a horizontal wave-

length of- approximately 3000 km and propagated toward the west. The

ridge and trough axes of these easterly waves were nearly vertical

with negligible phase difference from the surface to 500 mb. Although

the temperature oscillations were too small to resolve, Wallace and

Chang estimated that the troughs were cool and that convection was

generally a maximum to the east of the trough axis.

Chang et al. (1970) studied the same region from July to December

1964, a season in which the variance of the meridional wind was nearly

an order of magnitude greater than for the previous year. At Canton

Island (3 S. 172 W) during 1964 it was noted that the wave axis sloped

rapidly toward the east with height. Farther west the vertical struc-

ture of the waves resembled that of the previous year but the amplitude

was considerably larger, the period was 6-7 days and the wavelength

approximately 40001km. In the lower levels of the troposphere the

easterly waves transported horizontal momentum down the gradient of

mean zonal wind so that zonal kinetic energy was converted to eddy

kinetic energy.
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Nitta (1970a,b) spectrally analyzed time series of stations in

the Pacific from April to July 1962. He concluded that there are two

types of lower tropospheric wave motion with periods near four days.

The first type was observed east of the international date line near

the Line Islands and Canton Island. The axes of these waves tilted

toward the east with height in a similar manner to that described by

Chang et al. for Canton Island during the fall of 1964. He estimated

that the horizontal wavelength was about 10,000 km. The second type

of wave motion was found in the western Pacific with a wavelength of

5000 km and a nearly vertical trough axis. Nitta observed that the

direction of the momentum transport was such as to create zonal kinetic

energy at the expense of eddy kinetic energy: the opposite of the

transformation computed by Chang et al. during 1964. Estimates of all

energy transformations indicated that the wave motion might be driven

by lateral forcing from middle latitudes in a manner similar to that

suggested by Mak (1969). Nitta was unable to find any relation between

the low-level disturbances in the eastern Pacific and those in the

western Pacific.

These three reports present results which are difficult to combine

in a single theory. At least part of the disparity may reflect lack of

reliability of the statistical results due to the small length of the

data samples; nevertheless, with the possible exception of the fall of

1963, there appears to be a consistent difference between the charac-

teristics of tropospheric wave disturbances of the eastern Pacific and

those of the western Pacific. The year-to-year variations of the
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direction of the energy transformations and the variations of the

estimates of the wavelength and period of easterly waves which have

been observed in the western Pacific indicate that there may also be

yearly changes in the generating mechanisms of these disturbances.

Although the period and wavelength of African waves and oceanic

easterly waves of the Pacific are nearly identical, there are some

consistent distinctions between the two regions. For example, the

waves in the Pacific are centered on the equator in a zone of nearly

uniform surface temperature while the African waves occur above a strong

surface temperature gradient. Barotropic instability is essential to

the initiation of tropical disturbances over Africa during each year

from 1960 to 1964, yet Wallace and Chang (1969) found little or no

horizontal shear during 1964 when wave activity in the Pacific was

considerably enhanced. They conclude that lateral shear inhibits

the Pacific waves. In addition convection may be important to the

maintenance of the Pacific easterly waves since spectral analysis

shows a peak of mean relative humidity at 4-5 days but convection is

not a significant factor in the generation of African waves.

It is important to note that Wallace and Chang, Chang et al,,

and Nitta have not isolated the origin of tropical disturbances but

have studied propagating waves which formed outside of their data net-

work. Many of their conclusions concerning energy transformations are,

therefore, relevant only to the maintenance of these waves.

While surface temperatures in each of the other equatorial land

masses reach a maximum at latitudes approximately 15-25° poleward of
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the equator, the temperature gradients are considerably less than that

found over Africa. Exclusive of North Africa, Australia is the most

likely place for surface temperature gradients sufficiently large to

produce a barotropically unstable current in the middle troposphere,

but the existing data network is not capable of showing it. Since

tropical disturbances form in the surface easterlies both to the east

and the west of Australia (see e.g. Gray, 1968), the cyclonic shear of

the zonal wind in the northern part of Australia during the southern

hemisphere summer may merely enhance the development of pre-existing

disturbances rather than cause the formation of new waves.

There are other land areas which merit investigation as possible

influences on the development of tropical disturbances. These include

the suppression of tropical perturbations north of South America in the

eastern Caribbean and the enhanced development of disturbances in the

eastern Pacific south of Central America.
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Appendix

The method of analysis in this study closely parallels the tech-

nique of Bendat and Piersol (1966). For data values { A<} ,

= , a~ · - N , which are obtained by sampling at fixed intervals

At from a stationary series with zero mean, the estimated autocorrela-

tion function is defined at lag j by

N-j

where j is the lag number and m is the maximum lag number. The power

spectral density function is the Fourier transform of the autocorrela-

tion function. For a continuous covariance function R (r) the

power spectrum E() is given by

E(Lw) = . i R(r) Co tOa"r 
0

where b arT, T is frequency in cycles per unit time and Z is

delay time. When R (') is obtained by discrete sampling at inter-

vals At, the estimate of the power spectral density function is

G()-a tp to) Aaz + o R) cooM1(r f ) 

where + is the highest resolvable frequency in the
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discrete record and f need be evaluated only at the frequencies

lkfI

The number of lags involved in the autocorrelation curve is generally

not sufficient to insure that (~I) approach zero. In order to

minimize the effects of a non-zero R(nl) , the Hanning method of

smoothing is applied to the 6(f)

6 (o) o. 5 G(o) +o.5 G( -)

= o.asG6((*-) )+o .sG( ) +o. as G((i) to)

G(,c) =o.s G T o.5 G(4)

The (are the desired estimates of the power spectral

density.

While the power spectrum yields information concerning the dis-

tribution of energy as a function of frequency for a single time series,

cross-spectrum analysis determines the relationship between two or more

different time series. Just as the power spectrum is the Fourier trans-

form of the autocorrelation function, the cross spectrum is the trans-

form of the cross-correlation function. The cross-correlation function,

however, is not generally symmetric so that odd terms as well as even

terms are required to represent it. The cross-correlation function is

defined by



'R,,s ) = -

N-j

N-j

4- yJ ) X(M+j)

j-= ' '

The even and odd parts of the cross-correlation function are

F() = ea cR,, c +r rl j

B() ~i CRxa() - ax(i

For the continuous case the cross spectral density function is

Ex= Cx.(W) te Q± 4 (W)

where

C X(W) = R (r) cod todr

Q y (W) = iTr
o

B( 4) d. w e' dr

is the co-spectral density function and Q&(k) is

the quadrature spectral density function. The discrete approximations

and QXI(W) are

rm-A

CX I( ) -= 921&i E P () +2 Y () )+ A (,M) C ( ).

QK( ) = a g i 2 B ( ) ( r~ B (M) *tQX Al~ ~~~~,f) c- h(--)
s,,~)=n~a g~sB~j ~oc -) ~r f L
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of Cta')

CX1 (a)
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and are evaluated at f = - 0) -o · n ./ For smooth

estimates of C () and Qx3(4) the Hanning method is

applied in a similar manner to that used for the power spectrum. The

magnitude of the cross spectral density function is

The phase lag for frequencies relative to

The phase lag for frequencies in time series relative to

{X} is given by

(3X (i) =I

The coherence is a measure of the fraction of the variance in f X 

that can be specified by t } for each frequency

CdoA ( G)) = .c1) G ()
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