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Abstract
The major cause of anisotropic plastic response in polycrystalline metals is crystallographic
texturing resulting from the reorientation of the crystal lattices of grains during deformation.
There has been considerable recent progress in the continuum modeling of texture effects on
the plastic deformation of polycrystalline materials. Most of the previous work is based on
a simple power-law description for the shearing rates on the crystallographic slip systems.
Although this is a useful description of the viscoplastic response of crystals in a narrow
range of strain rates and temperatures, it is not able to capture the real strain-rate and
temperature sensitivity of flow of crystalline materials under high strain rates and/or low
temperatures.

A physically motivated constitutive function based on the thermally-activated theory for
plastic flow in face-centered-cubic (f.c.c.) materials together with the slip system hardening
equations has been incorporated in a polycrystalline plasticity model. The constitutive
model has been implemented in a finite element program to facilitate simulations of quasi-
static as well as dynamic non-homogeneous deformations of polycrystalline f.c.c. materials.
The material parameters in the model have been determined by calibrating it against
existing experimental data for aluminum. The physical description for the plastic flow
enables the model to reproduce the macroscopic stress-strain response and crystallographic
texture evolution upto large strains ( 100%) for a wide range of strain-rates (10- 3 - 102

sec- 1) and temperatures (77 - 298 K). The important differences in the behavior of f.c.c. and
b.c.c. materials with regards to strain hardening and strain-rate and temperature history
effects are also shown to be captured by the constitutive model.

In order to evaluate the applicability of the crystal plasticity model to actual deformation
processing operations, the phenomenon of formation of earing defects in cup-drawing has
been studied. Cup-drawing experiments were carried out on aluminum 2008-T4 sheets.
The predictions from the model for the load-displacement response, the number of ears,
their locations, and heights are shown to be in very good quantitative agreement with the
experiments.

The recent progress in the formulation of a mathematical theory of polycrystalline
plasticity has occurred primarily for materials with cubic structure. Much less work of
this type has been carried out for materials with hexagonal-close-packed (h.c.p.) crystal
structure, e.g., titanium. A large deformation, crystal-plasticity based constitutive model
for high-temperature deformation of titanium has been developed. The constitutive
model and the computational procedures have been implemented in a finite-element



scheme. Nominally homogeneous experiments have been conducted on commercially-pure
titanium at 750C, and the resulting macroscopic stress-strain response and evolution in
crystallographic texture have been measured. Full 3D finite element simulations of these
deformation modes have also been carried out. The predictions are in very good agreement
with the corresponding experimental measurements.

Thesis Supervisor: Lallit Anand
Title: Professor



Acknowledgments

The past five years at MIT have been very stimulating and enriching. I would like to

express my sincere acknowledgements to everyone whose input has proved invaluable in my

endeavor. I begin by thanking my thesis advisor and mentor, Prof. Lallit Anand, without

whose guidance and encouragement this work would not have been possible. Discussions

with him have always been educative. I am very grateful to him for helping me hone my

analytical skills. He has instilled in me the motivation and confidence necessary to pursue

a career in research and I am very thankful to him for the same. I express my sincere

thanks to Prof. Ali Argon, Prof. David Parks and Prof. Jung-Hoon Chun for serving on

my thesis committee. Their thoughtful and insightful suggestions have been very helpful

in my research. I would also like to thank Prof. David Hardt for kindly allowing me to

perform the deep-drawing experiments at the Laboratory for Manufacturing Productivity

and Dr. Barlat at ALCOA Technical Center who kindly provided us the aluminum sheets.

Research support for this work was provided by U. S. National Science Foundation under

Grant Numbers 9215246-DDM and CMS-9610130.

I am grateful to my colleagues in the Mechanics and Materials Lab, Manish Kothari,

Clarence Chui, Brian Gally, Suryaprakash Ganti, Chunguang Gu, Chuang-Chia Lin,

Hong Dai, Prakash Thamburaja, Michael Kim, Brian Gearing, Ronald Rezac, Alexander

Staroselsky, Oscar Yeh for their fruitful discussions and help, technical and otherwise. They

were instrumental in making the five years very enjoyable. I would like to thank my close

friend and colleague, Manish Kothari, for his important contributions in my work. I owe

him a debt of gratitude for being patient in teaching me valuable experimental skills. I

thank Ray Hardin for his help and patience. I acknowledge Peter Morley at the Laboratory

for Nuclear Science Machine Shop, for his kind help in designing experimental setups and

machining test specimens.

My special thanks go to my parents, brother, sister-in-law and sister whose affection

and constant encouragement has given me tremendous impetus in my academic pursuits.



Contents

1 Introduction

2 Plasticity of Polycrystalline F.C.C. and B.C.C. materials

2.1 Single Crystal Constitutive Model .......................

2.1.1 Constitutive Equation For Stress ....................

2.1.2 Flow Rule . ..................... . . . . . . . . .

2.1.3 Evolution Equations For Slip System Resistances ...........

2.2 Polycrystal Constitutive Model .........................

2.3 Computational Procedures ............................

2.4 Evaluation of the Constitutive Model ......................

2.4.1 Estimation of Material Parameters for Aluminum. ..........

2.4.2 Material Parameters for Tantalum ...................

2.4.3 Predictions of the Constitutive Model .................

3 Application to Deformation Processing of F.C.C. materials

3.1 Earing in Single Crystal Cups of Aluminum ..................

3.1.1

3.1.2

3.2 Earing

3.2.1

3.2.2

3.2.3

Material Parameters for Single-Crystal sheets of Aluminum . .

Cup-drawing simulation for the [001] and [111] oriented blanks

in Polycrystal Cups of A12008-T4 .................

Characterization of A12008-T4 Sheet ...............

Cup-Drawing Experiment .....................

Simulation of Cup-Drawing ....................

. . 73

. 74

.. 75

.. 75

. . 76

. 77

4 Plasticity of Polycrystalline H.C.P materials

4.1 Single Crystal Constitutive Model ....................

93

96

5

7

13

13

15

15

19

22

23

25

25

29

32

72

72



4.2 Study of Single Crystal Response ........................ 99

4.3 Polycrystalline Plasticity of h.c.p. Titanium ............... . 101

4.3.1 Simple Tension and Simple Compression of CP-Titanium at 7500C . 101

4.3.2 Plane-Strain Compression of CP-Titanium at 7500C ......... 110

4.3.3 Tubular Torsion of CP-Titanium at 750°C .......... . 112

5 Conclusions 171

5.1 Suggestions for Future Work .......................... 172

A Time Integration Procedures 174

A.1 Implicit Finite Element Procedure .. .............. .. 174

A.2 Explicit Finite Element Procedure ....................... 177

B Analytical Jacobian for ABAQUS/Standard 179

B.1 Calculation of Relevant Quantities ....................... 181

B.2 Algorithm for computation of the Jacobian ................. 185

C Procedures for Measuring Pole Figures 187

D Single Crystal Studies on Titanium 189

D.1 Simple Tension .................................. 190

D.2 Simple Compression . . . . . . . . . . . . . . . . . . . . . . . . ..... 191

D.3 Conclusions .................................... 191

E Effect of Latent Hardening on the Polycrystalline Response of h.c.p.

Titanium 199

6



Chapter 1

Introduction

The major factors that influence the degree of deformation that can be achieved in any

deformation processing operation without failure are: (i) the external process variables

such as stress, temperature, strain, strain rate, frictional and heat-transfer boundary

conditions and their evolution and (ii) the internal microstructural features such as

porosity, crystallographic texture, deformation localization and their evolution. In order to

optimize a particular deformation processing scheme (Process Design) and/or to improve

the performance of a structural component (Product Design), a complete understanding of

the individual effects of these factors and their interactions is desired. This investigation is

aimed at developing accurate anisotropic thermo-elastic-viscoplastic constitutive equations

and computational procedures for the modeling and simulation of inelastic deformations

in some industrially important face-centered-cubic (f.c.c.) and hexagonal-close-packed

(h.c.p.) metals and alloys. The computational capability will be useful in simulating

the development of anisotropy due to the evolution of crystallographic texture and the

development of some material processing defects such as earing in cup-drawing associated

with the evolution in texture during deformation processing.

The major cause of anisotropic plastic response in polycrystalline metals is

crystallographic texturing resulting from the reorientation of the crystal lattices of grains

during deformation. There has been considerable recent progress in the continuum modeling

of texture effects on the plastic deformation of polycrystalline materials (e.g., Gil Sevillano

et al. [1980]; Wenk [1985]; Asaro and co-workers [1983a, 1983b, 1988, 1989], Anand and

co-workers [1992, 1994], Dawson and co-workers [1989, 1990, 1994]; and various proceedings
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of ICOTOM [1991]). The theory is able to predict the macroscopic anisotropic stress-

strain response, shape changes and the evolution of crystallographic texture in complex

deformation modes.

Most of the previous work on crystal plasticity is based on a simple power-law description

for the shearing rates 4a on the slip systems:

1Ta l/r

y - [ a| sign(ra) (1.1)

In the equation above, Tr is the resolved shear stress on the slip system, and s (> 0) is

the slip system deformation resistance. The parameter -oo is a reference rate of shearing,

and the parameter m characterizes the material rate sensitivity. The rate-independent

limit is m - 0. The slip system shear rate is uniquely specified by this equation, and is

nonvanishing as long as the resolved shear stress r"' on that system is not identically zero.

Although this simple power-law description is a useful simplification of the viscoplastic

response of crystals in a narrow range of strain-rates and temperatures, it is not able to

capture the real strain-rate and temperature sensitivity of flow of crystalline materials under

dynamic loading conditions and/or low homologous temperatures. Deformation processing

operations are typified by wide range of strain-rates (10 - 3 - 103sec - 1) and temperatures

(0.2 8m - 0.6 Om). Hence, there is a need for an improved kinetic equation for plastic flow,

and this issue is addressed in this work.

The recent progress in the formulation of a mathematical theory of polycrystalline

plasticity has occurred primarily for materials with cubic structure. Much less work

of this type has been accomplished for materials with hexagonal-close-packed crystal

structure. Titanium is a h.c.p. metal which serves as an excellent candidate for applications

demanding high strength and light-weight. The development of constitutive models and

computational procedures for simulating the deformation processing of titanium is of

substantial technological importance.

The hexagonal materials, owing to their lower symmetry in comparison with the f.c.c.

materials, exhibit more complex modes of deformation. Inelastic deformation by slip in

hexagonal materials at the single-crystal level is highly anisotropic, i.e., the deformation

resistances of different classes of slip systems can be substantially different. Also, due

to the difficulty in operating certain slip systems at low homologous temperatures the
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accomodation of arbitrary strains through deformation twinning is quite common in these

materials. As a result of mechanical twinning, the yield loci of textured h.c.p. materials

are usually not centered around the origin in stress space. Plane stress yield loci for sheets

of titanium are given by Lee and Backofen [1966].

This work is focused on the plastic deformation of h.c.p. titanium. Titanium exists

in two allotropic forms: the a-phase which has a h.c.p. structure, and the /3-phase which

has a b.c.c. structure. In pure titanium, the h.c.p. a-phase is stable up to 8830 C, the /3

transus temperature, above which it transforms to the b.c.c. -phase. The most common

slip modes that have been reported in pure h.c.p. titanium are the prismatic slip systems

{1010} < 1120 >, the pyramidal slip systems {1011} < 1120 > and the basal slip systems

(0001) < 1120 > with a marked difference in their slip system deformation resistances (Rosi

et al. [1953]; Churchman [1954]).

Two important factors that influence the nature of plastic deformation in titanium are

the temperature and the impurity content. Conrad [1981] observed a dramatic decrease

in the critical resolved shear stress with temperature for basal and prismatic slip in single

crystals of h.c.p. titanium. Also, the ratio of the critical resolved shear stress for these two

families of slip systems changes significantly with temperature. The studies of slip traces

by Rosi, Dube and Alexander [1953] showed no evidence of basal slip at room temperature

owing to the large critical resolved shear stress associated with the basal slip system at

this temperature. At higher temperatures, the critical resolved shear stress for both types

of slip become less disparate, which then allows for the possibility of slip on either of the

planes. Rosi, Perkins and Seigle [1956] observed that the propensity for pyramidal slip

along < 1120 > directions also increased with increase in temperature.

The studies by Churchman [1954] and Conrad [1981] indicate that the nature of plastic

deformation in titanium is significantly affected by the presence of impurities like nitrogen,

oxygen, carbon and hydrogen. These authors noticed that an increase in impurity content

affected not only the critical resolved shear stresses on the slip systems but also their relative

values.

The < a >-slip on the basal, prismatic and pyramidal slip systems does not provide for

a mechanism for strain parallel to the c-axis of the crystals. Other slip or twin systems are

required to supply this missing degree of kinematic freedom. These additional mechanisms,

whether pyramidal slip on systems with < c + a > slip-directions or twinning, have a
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strong influence on the overall inelastic behavior of the polycrystal. At low temperatures,

due to the inability in activating < c + a >-slip, most of the deformation is accomodated

through twinning. The two common twinning modes for titanium that have been observed

at room temperature are the six equivalent "tensile" systems {1012} < i011 >, and

the six equivalent "compressive" systems {1122 < 1123 >; the first set of twinning

systems produces an extension parallel to the c-axis, and the second a shortening. Paton

and Backofen [1970] have reported that other twin systems are operational at elevated

temperatures (> 4000C), namely, the tensile systems {1121 < 1126 > and {1123 <

1122 > and the compressive systems {1124} < 2243 > and {1011} < 1012 >. However,

the tendency for titanium crystals to twin decreases with increase in temperature. At high

temperatures, slip along < 1123 > directions (< c + a >-slip) on pyramidal planes of the

{10il} and {1122} families has been observed to provide straining along the c-axis (Paton

and Backofen [1970]; Williams and Blackburn [1968]). Above 700°C, the mechanism of

plastic deformation seems to be predominantly crystallographic slip. This can be attributed

to the ease of operation of < a >-slip on all the three slip-planes at these temperatures,

plus < c + a >-slip on the pyramidal systems.

Crystal mechanics based treatments of plasticity of titanium are incomplete

and scattered. There does not exist a coherent set of data - stress-strain

curvesl , microstructure, and crystallographic texture evolution under controlled simple

tension/compression, plane strain compression and torsion. Further, the constitutive

modeling of the deformation of polycrystalline titanium taking into account the variety of

deformation modes is still an active field of research. The deformation resistances of different

classes of slip systems can be substantially different. In this context, a Taylor approximation

in which each grain is assumed to undergo the same deformation as the polycrystalline

aggregate would yield incorrect macroscopic stress-strain response. Hutchinson [1977]

proposed a self-consistent scheme2 that allows for variations in deformation from grain

to grain depending on the orientations. Accordingly, grains whose c-axes are aligned along

'Doner and Conrad [1973] provide stress-strain curves of CP-Titanium in the high-temperature regime
(0.31 to 0.59 Om) while dynamic stress-strain curves of CP-Titanium at low temperatures are provided by
Eleiche [1980]. However, the measurements of texture in conjunction with the stress-strain response are
lacking.

2Self-consistent theory (Hill [1965]) assumes that each grain is a spherical inclusion embedded in an
infinite matrix whose properties are those desired of the polycrystal. The overall stress and strain-rate are
determined by self-consistent averaging over all grain orientations.
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the loading direction are "hard" inclusions that do not deform while the grains in "softer"

orientations undergo deformation. Hutchinson has applied this model to provide estimates

for the overall uniaxial yield stress of a polycrystalline aggregate for different ratios of

critical resolved shear stress of the basal and prismatic slip systems. Hutchinson's analysis

is limited to small strains and does not deal with the aspects of texture development with

large straining of hexagonal crystals. Parks and Ahzi [1990] have proposed a Taylor-

type rigid-viscoplastic "constrained-hybrid" model which not only accounts for the local

kinematic constraints in hexagonal crystals lackiLg five independent slip systems but also

provides a method to calculate the "kinematically indeterminate" part of the deviatoric

stress tensor. The model has been used to accurately predict the deformation textures

as well as macroscopic stress-strain response in polymers with orthorhombic structure

e.g., High-density Polyethylene. Shoenfeld et al. [1995] have extended the same model

to account for elasticity. Recently, Prantil, Jenkins and Dawson [1995] have formulated a

model for simulating the large deformation behavior of polycrystalline titanium under slip-

dominated conditions. However, the predictions of their analyses have not been compared

with experimental results.

With this as background, the following tasks have been accomplished in this work:

1. A physically-motivated constitutive function based on the thermally-activated theory of

plastic flow in f.c.c. and b.c.c. materials together with the slip system hardening equations

are presented in Chapter 2. These constitutive equations have been incorporated in a

large deformation Taylor-type crystal plasticity model. The constitutive model has been

implemented in a "static,implicit" finite element program (ABAQUS/Standard) as well as

in a "dynamic,explicit" finite element program (ABAQUS/Explicit).

2. In Chapter 2, the ability of the constitutive model to reproduce the macroscopic stress-

strain response and the crystallographic texture evolution in f.c.c. aluminum for strains up

to 100%, at strain rates from 10- 3 to 103 sec-1 and at temperatures from 77K to 298K are

evaluated. The capability of the model to describe important differences in the behavior of

f.c.c. and b.c.c. materials with regards to strain-hardening and strain-rate and temperature

history effects has also been investigated.

3. In Chapter 3, the constitutive equations and computational procedures are used to

simulate the formation of earing defects during cup-drawing of face-centered cubic materials.

The results of the numerical simulations have been compared with existing experimental
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results on earing in single crystalline sheets of aluminum. In order to be useful in improving

designs of the cup-drawing process, a quantitative prediction of the location and the heights

of the ears is desired. To achieve this end, quasi-static cup-drawing experiments have been

conducted on sheets of A12008-T4 with an initial anisotropic texture. Numerical simulations

of the deep-drawing process have also been performed, and the predictions of the earing

profile and loads are compared with the same from the experiments.

4. In Chapter 4, results from simple tension, simple compression, plane-strain compression

and torsion experiments conducted on commerically-pure polycrystalline titanium in

the vicinity of 750°C are described. A large-deformation constitutive model for high

temperature deformation of single-crystal titanium is presented. The predictions of the

stress-strain response and lattice reorientation in simple tension of a titanium single crystal

are compared with existing experimental results. Full 3D finite-element calculations, where

each element represents a grain and the constitutive response is given through a single-

crystal constitutive model, have been performed. The slip systems operative during high-

temperature deformation of polycrystalline CP-Titanium are identified. The ability of the

constitutive model to predict the texture evolution and macroscopic stress-strain response

up to large strains for the different deformation modes are evaulated.

The conclusions and suggestions for future work are presented in Chapter 5.
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Chapter 2

Plasticity of Polycrystalline F.C.C.

and B.C.C. materials

In this chapter, a finite-deformation, rate- and temperature-dependent constitutive model

for plasticity of single crystals of face-centered-cubic (f.c.c.) and body-centered-cubic

(b.c.c.) materials is first described. For the shearing rates on slip systems, a physically-

motivated constitutive function based on the thermally-activated theory for plastic flow

is employed. For polycrystalline materials, the classical Taylor assumption is invoked.

The implementation of the constitutive model in a finite-element program is briefly

discussed. A procedure for estimating the material parameters in the model is described,

and the predictions of the stress-strain response and texture evolution are compared with

corresponding experimental results. Face-centered-cubic aluminum and body-centered-

cubic tantalum are taken as representative model materials. Important differences in the

behavior of the two model materials with regards to strain-hardening and strain-rate and

temperature history effects are highlighted and the capability of the constitutive model to

describe the distinguishing behaviors is demonstrated.

2.1 Single Crystal Constitutive Model

The foundations for the constitutive model for single crystal elasto-plasticity considered

here may be traced to the papers by Teodosiu [1970], Rice [1971], Hill and Rice [1972],

Mandel [1974], Teodosiu and Sidoroff [1976], Asaro and Rice [1977] and Asaro [1983a, 1983b]

from a continuum mechanics viewpoint, and Conrad [1964], Kocks et al. [1975], Frost and

13



Ashby [1982] and Argon [1995] from a materials science viewpoint.

The deformation of a crystal is taken as the sum of contributions from two independent

atomic mechanisms: (i) an overall "elastic" distortion of the lattice, and (ii) a "plastic"

deformation that does not disturb the lattice geometry. In a large range of low (< 0.3)

homologous temperatures and at sufficiently high stress levels, the major mechanism

of plastic deformation in ductile single crystals is dislocation glide on well-defined

crystallographic slip systems in the crystal. Attention is confined to this type of plastic

deformation.

The governing variables in the constitutive model are: (i) The Cauchy stress, T. (ii)

The deformation gradient, F. (iii) The absolute temperature . (iv) Crystal slip systems,

labeled by integers a. Each slip system is specified by a unit normal no to the slip plane,

and a unit vector m o denoting the slip direction. The slip systems (a, n1o) are assumed

to be known in the reference configuration. (iv) A plastic deformation gradient, FP, with

detF p = 1. (v) The slip system deformation resistance s a > 0, with units of stress.

An elastic deformation gradient is defined by

F e FF p- 1, detFe > 0. (2.1)

This equation may be rearranged as F = F e FP. The plastic part FP in this multiplicative

decomposition of F represents the cumulative effect of dislocation motion on the active slip

systems in the crystal, and the elastic part Fe describes the elastic distortion of the lattice.

Next, with S = (det F)TF - T denoting the first Piola-Kirchoff stress, the stress power

per unit reference volume is dj = S F, which, since det Fp = 1, is also equal to the stress

power per unit volume of the isoclinic relaxed configuration determined by F p. This stress

power may be additively decomposed as cD = e + Cip, where woe = T* Ee is the elastic

stress power per unit volume of the relaxed configuration, with

Ee -(1/2) {FeTFe - 1 and T* (detFe) Fe-lTF e - T (2.2)

the Green elastic strain measure and the symmetric second Piola-Kirchoff stress tensor

relative to the relaxed configuration, respectively, and

:P - (C T*) (P FP-1), e = FeTFe, (2.3)

14



is the plastic stress power per unit volume of the relaxed configuration.

2.1.1 Constitutive Equation For Stress

Elastic stretches in metallic single crystals are generally small. Temperature changes need

not be small, but for simplicity attention here is restricted to small temperature changes

about a reference temperature 00. Accordingly, the constitutive equation for the stress in a

metallic single crystal is taken as the linear relation

T* = C [Ee - A ( - 80)], (2.4)

where C is a fourth-order anisotropic elasticity tensor, and A is a second-order anisotropic

thermal expansion tensor. Also, Ee and T* are the strain and stress measures defined in

equation (2.2).

2.1.2 Flow Rule

The evolution of the plastic deformation gradient is given by

tPF -1 = E -,a Sa, SO _ m ® n, (2.5)

where SI is the Schmid tensor, and

4a = pbi b a (2.6)

is the plastic shearing rate on the a-th slip system. The expression a = Pm b i is due to

Orowan [1940], and it represents the physical picture that the strain rate A1 is produced by

a density Pm of mobile dislocations with Burgers vector magnitude b (in the slip direction

mo), moving with an average velocity v through a field of obstacles.

Using (2.5) and (2.3), the resolved shear stress ar' for the slip system a is defined through

the relation iP = A-ft Tr7a, which yields

(CeT*) SI. (2.7)

With the resolved shear stress so defined, the average dislocation velocity on the slip system

15



a is taken to be governed by a constitutive function,

e° = v (, , >), (2.8)

where

sa -s- a(, microstructural state) > 0

is a temperature dependent critical slip resistance (units of stress) for the slip system a.

The average dislocation velocity Va at applied shear stress ra and a temperature 0 depends

on the waiting time of mobile dislocations at obstacles, and sa reflects the strength, density

and arrangement of these obstacles.

The constitutive equation for the average dislocation velocity is formulated as follows.

At a temperature of absolute zero let ha(O) denote the critical slip resistance; then the sign

of 0I is the same as that of the resolved shear stress ra , and its magnitude is idealized as

= if 7ra < (O), (2.9)
> 0 (and large) if Ira[ = 9a(O),

with stress levels Ira1 > sa(O) unattainable. The slip resistance 9a(O) at absolute zero is

called the mechanical threshold (Kocks et al. [1975]; Argon [1995]). Because of the usual

variability of the microstructural state of real materials the transition from no dislocation

velocity to a high velocity will not be as sharp as idealized in equation (2.9), but it should

still exhibit a "threshold" behavior. At a temperature > 0 this response is modified in

two important ways. First, since the underlying mechanism which governs the magnitude

of sa is an elastic interaction on the atomic scale of a mobile dislocation segment with the

microstructural state, an increase in temperature results in a decrease in the magnitude of

sa , primarily due to the attendant decrease in the elastic moduli, that is Pa(O) < Ja(0).

Second, and more importantly, with increasing temperature the local energy barriers to

dislocation motion due to short-range obstacles (less than :10 atomic diameters) can

be overcome at a lower applied shear stress with the help of thermal fluctuations, and

a finite dislocation velocity should be observable below the slip resistance so. Accordingly,

it is useful to distinguish between barriers that can be overcome with the aid of thermal

fluctuations, and those that cannot - thermal and athermal, respectively; and to assume
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that the slip resistance sa is decomposable as

sa microstructural state) + s('(, microstructural state), (2.10)

where sa represents the part of the resistance due to thermally-activatable obstacles to slip,

and sa the part of the resistance due to the athermal obstacles to slip. Typical examples

of athermal barriers are dislocation groups and large incoherent precipitates, whereas the

Peierls resistance, solute atoms, and forest dislocations typify thermally-activatable barriers.

In pure f.c.c. and h.c.p. materials the dislocations glide easily without any appreciable

Peierls resistance, and s is governed by interactions with localized forest dislocations. In

pure b.c.c. crystals, s is controlled by the interactions with the Peierls resistance, which

increases rapidly with decreasing temperature.

Let

-7.a = ir_ - Sa (2.11)

denote an effective stress, then equation (2.8) is modified as

Va = (, , so) (2.12)

At temperatures 0 > 0 the motion of the mobile dislocation segments is thermally activated.

Using the framework of transition-state theory (e.g. Krausz and Eyring [1975]), with

AGa denoting the difference in the free enthalpy between the saddle point and the ground

point for a shear increment, the quantity [exp is the probability that a thermal

fluctuation of the required energy (or larger) for a shear increment can be supplied at a

temperature 0 > 0. AGa is called the activation free enthalpy or the Gibbs' free energy for

activation, and kB is the Boltzmann's constant. The rate at which dislocations overcome

the obstacles is given by v [exp { k -IJ], where v is a characteristic frequency factor of

the order of 1012 sec- (10-2 - 10-1 times the Debye frequency of atoms). Then, with la

denoting the mean distance of advance of a mobile dislocation segment, the magnitude of

the average dislocation velocity may be written as

0 if °a <0 O,[0a[ = (2.13)
av exp { ac~?O'?'s')} if 0 < < C,v exp ~ kB 8 
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using which, the shearing rates may be written as

{ exp{ a( ) sign(ra) if o <, , (2.14)

with

ria = Pm b 1,.

Henceforth, for simplicity, the pre-exponential term -'% is taken to be the same for all

slip systems, and is denoted by o. This pre-exponential term has a typical magnitude

of to 106 to 107 sec-1. Also, the mobile dislocation density, which contributes to %yo, is

expected to be a function of the applied stress and the temperature (Kocks et al. [1975]),

but any such dependence is neglected here.

The considerations of Kocks et al. [1975] (also see Frost and Ashby [1982]) concerning

the nature of the activation free enthalpy suggest that AGa may be expressed as

AG *[ = AF* [ (2.15)

where AF*, the activation free energy required to overcome the obstacles to slip without the

aid of an applied shear stress, is taken to be the same for all slip systems and is expected

to remain constant provided the character of the obstacles does not change. AF* typically

lies in the range
AF,0.05 < F < 2, (2.16)

with ;t denoting an appropriate shear modulus for anisotropic materials; for example,

p O 0.5(C1 - C12)C44 for a f.c.c. material and jI P: C44 for a b.c.c. material, where

(Cll, C12, C44) are the elastic moduli for a cubic crystal. The quantities p and q are suggested

to lie in the ranges

O<p<l 1, and 1<q<2, (2.17)

and they control the shape of the AG versus (-- ) curve.

Note that for the case of non-zero plastic shearing rates we may write

7IrI = S + Z (, I'al) S, (2.18)
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where

Z = [1- < 1, with c = { In ( ) (2.19)

These equations show the temperature and strain rate sensitivity of resolved shear stress at

a fixed value of the deformation resistance sa = sa + sa, Fig. 2-1. At = 0 the parameter

Z = 1, and at = 0c, Z = 0. That is, at temperatures above 0c there is enough thermal

energy for the barriers to be overcome by thermal activation alone, without the aid of a

stress. At a given strain rate jA, the temperature Oc sets the limit of applicability of the

thermal-activation model for the plastic flow of metals at low homologous temperatures.

2.1.3 Evolution Equations For Slip System Resistances

The slip system resistance parameters sa are taken to evolve according to

a= Z hap It$|

where j'y is the shearing rate on slip system f,, and the matrix had describes the rate of

increase of the deformation resistance on slip system a due to shearing on slip system i3;

it describes both self-hardening and latent hardening of the slip systems. The use of the

absolute value of -y3 in the hardening equation reflects the assumption that the hardening

behavior is not significantly affected by the direction of shearing on a slip system. Each

element ha depends on the deformation history.

Since s has been decomposed as

s= s (9, microstructural state) + s (, microstructural state),

it is important to distinguish whether the source of macroscopic strain hardening is due to

the change of sa or sa, or both.

For pure f.c.c. materials, since the magnitudes of both sa and sa are controlled by the

interactions of glide dislocations with forest dislocations (Argon and East [1979]), both sa

and sa evolve with strain and contribute to the macroscopic strain hardening. Cottrell

and Stokes [1955] performed temperature-jump tension tests on aluminum single crystals

oriented for single slip. Fig. 2-2 is a schematic representation of their measured stress-strain

19



curves. In Cottrell and Stokes' experiments, let al and 2, respectively, denote the flow

stresses immediately before and after the temperature-jump from 0l to 02. Let e be the

tensile strain at which the temperature-jump is performed. They report that the ratio of the

flow stresses obtained by changing the temperature from 81 to 02 (< 01) was essentially

independent of the level of strain at which the ratio was measured. That is, with a1 and 

denoting the stress ratios measured in temperature jump experiments at strains e and e',

respectively,
0- : -2 (2.20)

a1 01

Let the resolved shear stress on the primary slip system corresponding to the flow stress

levels of al, a2, al and a be r1, T2, Tr and r- respectively. Since the Schmid factor pertaining

to this slip system is the same immediately before and after the temperature-jump, equation

(2.20) can be rewritten as

-- ~ -. (2.21)

Substituting for the expression for the resolved shear stress (2.18) in equation (2.21), we

obtain,
(s ) Z(), 92) 1 + () Z(' ,02) 222

\ ra .S (2.22))Z(-a, 1) 1 A ( , 1)
where s and Sa are the thermal and athermal parts of the slip resistance at the tensile

strain e respectively and s and s are the corresponding quantities at the tensile strain E'.

Equation (2.22) implies that
S* S
-- -I" (2.23)
Sa Sa

Since e and e' were arbitrary, the ratio is essentially independent of the strain. This ratio

is denoted by the parameter X, and for simplicity, X is assumed to be the same for all the

slip systems:
se

X = (2.24)

Cottrell and Stokes' experimental observations suggest that X lies in the range

0.5 < X < 1

for aluminum single crystals.
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Using the relation (2.24) the evolution equation for s a for f.c.c. crystals may be written

as

= a + 8a a I{1 + X} = E ha# 9~. | (2.25)

In contrast with the behavior of f.c.c. materials, for pure b.c.c. materials, since s,* is

controlled by the interactions with the Peierls lattice resistance, it is reasonable to assume

that it is a constant:

s* constant. (2.26)

Hence,

hsa-a=E ha 1|a1. (2.27)

Several simple phenomenological forms for the hardening matrix have been proposed

in the past; these have been reviewed by Peirce et al. [1982], and more recently by

Havner [1992], and Bassani [1993]. In their numerical calculations Peirce et al. [1982] (also

see Asaro and Needleman [1985]) used the following simple form for the hardening moduli:

hab = [ql + (1 - q)6a ] h, (2.28)

with h denoting the self-hardening rate and the parameter q representing a latent-

hardening parameter. The latent hardening parameter q is not necessarily a constant,

and may of course be history-dependent just as the self-hardening parameter hP is. This

simple form for h ad yields an acceptable description of the physical phenomena of latent

hardening, and this form is adopted here without modification.

The eventual goal in this study is to formulate constitutive equations for polycrystalline

ductile metals undergoing complex deformations encountered in metal-forming operations.

Thus the typical fine-scale description of hardening (Stage I, Stage II, etc.) during single

slip of single crystals is not considered here; instead, following Kalidindi et al. [1992], the

following specific form is adopted for the f:c.c. single-crystals:

h = o 1- - |sign 1- , (2.29)

where

h I(1-'I , ) (2.30)
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is the initial hardening rate, and

S = AP (li I,1) (2.31)

is a saturation value of sO. Both hg and s are in general expected to be strain rate- and

temperature-dependent.

For the b.c.c. single-crystals, a hardening form similar to (2.29) is adopted for the

change in :

h# = h 1 -- A sign - s (2.32)
Sa,8

where

hw = h (11 ' ) (2.33)

is the initial hardening rate, and

SS =, s ( I ,) (2.34)

is a saturation value of sO.

2.2 Polycrystal Constitutive Model

For polycrystalline materials the Taylor assumption (Taylor [1938a, 1938b]) is adopted,

according to which the local deformation gradient in each grain is homogeneous and identical

to the macroscopic deformation gradient at the continuum material point level. For such a

model, with T(k) denoting the constant Cauchy stress in each grain, the volume-averaged

Cauchy stress is given by (Asaro and Needleman [1985])

N

- = E v(k)T(k) , (2.35)
k=1

where v(k) is the volume fraction of each grain in a representative volume element. When

all grains are assumed to be of equal volume, the stress T is just the number average over

all the grains:
1 N

T = N T(k). (2.36)
k=l
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The accuracy of such an approximate Taylor-type polycrystal constitutive model (with a

simple power-law type of flow rule) has been previously evaluated by Bronkhorst et al. [1992].

Their experiments and calculations showed that the Taylor-type model is in reasonable

agreement with experiments with regards to the texture evolution and the macroscopic

stress-strain response for single-phase f.c.c. materials. Recently, Kothari and Anand [1997]

have shown that the Taylor-type polycrystal model is also reasonably accurate for b.c.c.

tantalum which possesses numerous slip systems.

2.3 Computational Procedures

The constitutive model has been implemented in a finite element program ABAQUS [1994],

which contains capabilities for both "static, implicit," and "dynamic, explicit" solution

procedures. In a finite-element implementation, (i) the time-independent slip systems

(m , ncl) are known; (ii) the list of variables {F(t), FP(t), s'(t), T(t)} and an estimate of

F(t+At) are given. The computational task is the stable, accurate and efficient computation

of {FP(t + At), s(t + At), T(t + At)}.

A brief summary of the constitutive time-integration procedures for use in

ABAQUS/Standard and ABAQUS/Explicit is given in Appendix A. For the implementation

in ABAQUS/Standard a stable implicit time-integration procedure is used for the

constitutive equations. However, for the implementation in ABAQUS/Explicit, a simple

Euler-foward scheme is used to solve for the list of constitutive variables at time t+ At. Note

that a central-difference integration rule is used in the "dynamic, explicit" procedure to solve

for velocities and accelerations from the momentum balance equations. This integration

procedure is only conditionally stable, and the stable time increment is given by

Atcr = min ( c)

where Le is the characteristic element length, and cd is the dilatational elastic wave speed 1

in the material. For the Euler-forward scheme used in the constitutive time-integration

procedure to be stable, the strain increment is bounded from above as given by the following

1For a cubic material Cd = /'9+p2C4 4 where C 12, C44 are the elastic moduli and p is the density.
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inequality (Lush [1990]),

eAt < 3mev, (2.37)

where m is the rate-sensitivity 2 parameter, e is the yield strain and @ is a small fraction

0.5.

With AE = At and At = ., Equation (2.37) yields

Cd
e < /me yCd (2.38)

For instance, with 1 0.5, m = 0.02, ey = 0.001, d = 5000m sec- 1 and Le = 10- 4m,

we have < 500 sec- 1. For situations where > 500 sec- 1, an unconditionally stable

Euler-backward scheme (e.g., Kalidindi et al. [1992]), which allows for large time steps, is

used.

For ABAQUS/Standard, the implicit finite-element procedure requires the computation

of a Jacobian matrix to be used in a Newton-Raphson type iterative method for revising the

estimated displacement field. A detailed computation of the analytical Jacobian matrix3 for

the constitutive model and the attendant fully-implicit Euler-backward method is presented

in Appendix B.

The sheet-metal forming application that is considered in the next chapter is essentially

quasi-static. Although a static, implicit finite element procedure is preferable for modeling

such processes, it has been found that the dynamic explicit procedure in which the solution

of individual time increments is inexpensive, is computationally more efficient for large

three-dimensional problems which are dominated by contact (Nagtegaal and Taylor [1968]).

The computational procedures are at present limited to the isothermal case for

ABAQUS/Implicit, and to the isothermal or completely adiabatic case for

ABAQUS/Explicit. For the adiabatic case, the temperature rise is calculated using

N (k)
pc6 = E E Pay (2.39)

k= (2.39)

2 The rate-sensitivity parameter for the kinetic equation of the plastic flow used in the crystal plasticity
model is given by m -.

3In contrast with the numerical Jacobian employed by Kalidindi et al. [1992], the Jacobian used in this
work is analytical. A comparative study has shown that the analytical Jacobian provides a faster rate of
convergence to the solution, resulting in substantial reduction in computational times. A preliminary version
of the analytical Jacobian was first suggested by Dr. Simona Socrate, MIT.
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Here, the first sum is over all slip systems in a grain, and the second sum is over all grains

in a polycrystalline aggregate comprising a material point. Also, p = (9) denotes the mass

density, c = (0) the specific heat, and 0.85 < C < 1 denotes the fraction of plastic work

converted to heat.

2.4 Evaluation of the Constitutive Model

In this section a procedure for estimating the material parameters in the model is given.

The experimental results of Carreker and Hibbard [1957] on 99.987% pure polycrystalline

aluminum, and those of Senseny, Duffy and Hawley [1978] on aluminum alloy 1100-0 are

used for this purpose. The predictions of the model of the macroscopic stress-strain response

and the crystallographic texture evolution are compared with our own experiments on

commercially-pure 1100 at two different temperatures.

Recently, Kothari and Anand [1997] have demonstrated the applicability of the model

for large-strain deformations of b.c.c. tantalum for a wide range of strain rates and

temperatures. The material parameters estimated for tantalum and the results for the

predictions of the crystallographic texture evolution and macroscopic stress-strain response

reported by these authors are also briefly summarized here to contrast the response of a

b.c.c. material with that of a f.c.c. material. The material parameters estimated for f.c.c.

aluminum and those reported by Kothari and Anand [1997] for b.c.c. tantalum are used

to simulate strain-rate jump and temperature jump tests at different levels of strain. The

predictions of the model are compared against existing experimental results to demonstrate

the model's ability to capture strain-rate history and temperature-history effects in both

f.c.c. aluminum and b.c.c. tantalum.

2.4.1 Estimation of Material Parameters for Aluminum

Elastic Moduli

For f.c.c. crystals the anisotropic elasticity tensor C may be specified in terms of three

stiffness parameters, Cll, C12 and C44. The values of the elastic parameters for aluminum

vary significantly in the range of temperatures of interest, Fig. 2-3 (from Simmons and
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Wang [1971]). This variation is approximated by a polynomial fit:

C1 = (123.323 + 6.7008 x 10-883 -1.1342 x 10-482 - 7.8788 x 10-30) GPa,

C12 = (70.6512 + 4.4105 x 10-883 - 7.5498 x 10-502 + 3.9992 x 10-30) GPa,

C4 4 = (31.2071 + 7.0477 x 10-9 3 - 1.2136 x 10-52 - 8.3274 x 10-30) GPa.

Slip Systems

For f.c.c. crystals crystallographic slip is assumed to occur on the twelve

{111} < 110 > slip systems. The components of the slip plane normals and slip directions

with respect to an orthonormal basis associated with the crystal lattice, for these slip

systems are presented in Table 2-1. The Schmid and Boas [1935]) convention of labeling

the slip systems is also shown in this table.

Table 2-1.
C [n],

1 111

2 111
3 111
4 111
5 ill
6 111
7 111
8 111
9 111
10 111
11 111
12 111

Slip Systems
[m]c Label
110 A2
101 A3
011 A6
101 D4
110o D1

011 D6
101 C3
011 C5
110 C1
110 B2
101 B4
011 B5

Flow Parameters

The flow parameters are determined by calibrating the model against experimental data of

Carreker and Hibbard [1957] on 99.987% pure aluminum and Duffy [1974] on 1100-0 for the

temperature sensitivity of the yield strength. Since the initial material in both these cases

have been reported to be well-annealed, in the calculations the initial texture is assumed to

be isotropic. This was represented by a set of 400 unweighted grain orientations. In order to
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speed-up the curve-fitting procedure, the data is first fit to an isotropic version of the model,

and the values of the material parameters so determined are then used as initial estimates

for the numerical calculations based on the crystal-plasticity model. In particular, the flow

parameters {AF*,p, q} are taken to be equal to those obtained for the isotropic model, and

the parameter A(o is obtained from the corresponding quantity o in the isotropic model by

setting o = V3 ~o. Initial estimates for the resistance parameters s,,o and sa,O are taken

as the values obtained for the isotropic model, divided by a "Taylor Factor" of M 3.06

that corresponds to a random texture. In order to account for the significant change in the

elastic modulus with temperature, the data for the initial yield have been normalized by

the factor E where Eo is the Young's modulus at absolute zero. Also, for simplicity, s,,0

and Sa,o are assumed to be identical for all the slip systems.

The fit of the model against Carreker and Hibbard's data and Duffy's data are shown

in Figs. 2-4(a) and 2-4(b) respectively. The flow parameters obtained from these fits are:

Table 2-2. Flow Parameters
_jyo AF* P q S*,O Sa,O X

Carreker & 1.732 x 106s - 1 3 x 10-19 J 0.141 1.1 8.76MPa 8.76MPa 1
Hibbard [1957]
Duffy [1974] 1.732 x 106s - 1 3 x 10- 19 J 0.141 1.1 8.82MPa 12.09MPa 0.73

The fit parameters for both cases are identical except for a difference in the initial value

of the athermal resistance which could be attributed to the difference in the alloy content in

the materials. Also, the parameter X is in the range suggested by Cottrell and Stokes [1955]

for both the sets of data.

Hardening Parameters

The hardening parameters are determined by fitting the predictions of the crystal plasticity

model against the stress-strain data of Carreker and Hibbard [1957] and Senseny, Duffy and

Hawley [1978]. The experimental data was obtained by digitizing the curves presented in

the papers by these authors. Carreker and Hibbard's tests (tensile) were all performed at

a constant true strain rate of 6.667 x 10-4s- 1 and temperatures ranging from 20 K to 300

K. Senseny, Duffy and Hawley provide data for the stress-strain response at two different
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strain rates, one at a quasi-static rate of 1.155 x 10-4s- 1 and the other at a high rate of

173.2s-1; and at two different temperatures of 77 K and 298 K.

In order to determine the hardening parameters, a two step procedure is followed.

In the first step, s, is taken to, be a free parameter. Finite-element calculations are

performed in ABAQUS/Explicit for simple tension on a single ABAQUS-C3D8R element

subjected to the appropriate strain rate and initial temperature, and the predicitons are

fit to the experimental results. The integration point in the element is assigned the

400 random unweighted grain orientations and the macroscopic stress is calculated using

Taylor-averaging. For the stress-strain data of Senseny et al. [1978] corresponding to the

strain rate of 173.2sec- 1, we expect appreciable temperature rise in the sample owing to

adiabatic heating. Hence, the stress-strain curve for this case is simulated by computing

the temperature rise according to equation (2.39), by assuming that all the plastic work is

converted into heat (C = 1.0), and using values of p = 2.77Mg/m3, and c = 920 J/kg K for

aluminum. Figs. 2-5(a) and 2-5(b) show the fits of the finite-element calculations to the

experimental data. As indicated earlier, the hardening quantities ({ho (I-YI, 9), s,(lral, 9a)

are in general expected to be strain rate and temperature-dependent. However, for

aluminum in the range of strain rates and temperatures examined, the initial hardening

rate ho was found to be essentially independent of both temperature and strain rate.

However, the saturation value of slip system resistance ss, was found to be dependent

both on temperature and strain rate

In the second step, the strain-rate and temperature sensitivity of ss is fit to the the

following phenomenological form suggested by Kocks [1976]:

S {70 } (2.40)

Here , %yo,, and AF1 are additional material parameters. This form is meant to capture

the observed increase in the saturation stress with increase in the strain rate, and with

decrease in temperature. The results from this fit are shown in Figs. 2-6(a) and 2-6(b). As

shown in Fig. 2-7, the goodness of the fit is preserved up to a temperature of 600 K . The

extrapolated plot captures the variation in the saturation value of the slip resistance with

temperature indicated by the data of Kocks [1976] for 99.99% pure aluminum.
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The values of the hardening parameters estimated4 by this procedure for the two sets

of data are:

Table 2-3. Hardening Parameters
ho r i AF. ',o qt

Carreker & 250 MPa 2 210 MPa 0.85 x 10-19J 1 x 1012 s -1 1.4
Hibbard [1957]
Senseny, Duffy & 250 MPa 2 200 MPa 1.4 x 10- 19J 1 x 1012 s -1 1.4
Hawley [1978]

Again, the hardening parameters for both sets of data agree closely with each other.

In order to evaluate the accuracy of the constitutive model, numerical simulations are

performed using the final set of material parameters listed in Table 2-2 and Table 2-3 for

each of the experimental data that was used to obtain the parameters. Figs. 2-8(a) and

2-8(b) show the final curve-fits of the model for the stress-strain response for both sets

of data compared against their corresponding experimental results. The fits are in good

agreement with the experiments.

2.4.2 Material Parameters for Tantalum

Elastic Moduli

The values of the elastic parameters for tantalum as a function of temperature are taken as

(Simmons and Wang [1978]):

C1l = (268.2 - 0.0248) GPa,

C12 = (159.6 -0.0118) GPa,

C44 = (87.1 -0.015 ) GPa.

4As for the flow parameters, the hardening parameters are also first estimated for the isotropic model,
and the values so determined are used as initial estimates for the corresponding quantities in the anisotropic
model. Specifically, initial estimates for s are taken to be equal to those obtained in the isotropic model
divided by a Taylor factor of M 3.06, and the initial estimate for ho is taken to be equal to the value
obtained in the isotropic model divided by M 2 : 9.36.
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Slip systems

Plastic deformation of b.c.c. tantalum is modeled to occur solely due to crystallographic slip

on the twelve {110} < 111 >, plus the twelve {112} < 111 > slip-systems. The slip-systems

are listed in Table 2-4.

Table 2-4. Slip Systems
c na ma a na mo
1 110 111 13 211 111
2 011 111 14 112 111
3 110 111 15 112 111
4 011 111 16 112 I11
5 011 111 17 121 111
6 101 11 18 121 111

7 101- 11 19 121 111
8 110 111 20 121 111
9 110 111 21 121 111
10 101 111 22 211 111
11 101 111 23 211 111
12 011 111 24 211 111

Flow Parameters

The other necessary material parameters are the quantities {yo, AF*,p,q, s*} in the flow

equations, the quantities {h (I-Y , ), a, as8 (l1I , 0), qt} in the hardening equations, and the

initial value of the athermal slip-system resistance sa,o, which are taken to be identical for

all the slip-systems. Kothari and Anand [1997] have determined these material parameters

and functions by calibrating the model against existing experimental results of Hoge and

Mukherjee [1977] on commercially pure tantalum.

The flow parameters are determined by fitting the experimental data of Hoge and

Mukherjee (1977) for the strain-rate and temperature sensitivity of the yield strength of

a tantalum rod. The initial texture of the tantalum rod was not reported by Hoge and

Mukherjee [1977]. To approximate this initial texture, Kothari and Anand [1997] measured

the texture of their own commercially-procured and annealed tantalum rod, and represented

this texture by a set of 400 weighted grain orientations by using the texture conversion

program popLA (Kallend, et al. [1994]). The experimentally-measured and numerically-
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represented pole figures are presented in Fig. 2-9. The flow parameters obtained by the

fitting procedure are:

o = 1.73 x 107 sec - 1, AF* = 2.77 x 10- 19J, p = 0.28, q = 1.34, s = 400MPa, (2.41)

with

sa,o = 22MPa.

The quantities s, and s,o are taken to be the same for all slip-systems. The fit of the

model against the experimental data of Hoge and Mukherjee [1977] for the strain-rate and

temperature sensitivity of the yield strength of tantalum is presented in Figs. 2-10 and 2-11,

respectively.

Hardening Parameters

Kothari and Anand [1997] determine the hardening parameters for pure tantalum by fitting

the predictions from the crystal plasticity model against data from the compression split

Hopkinson bar experiments of Vecchio [1994] and Nemat-Nasser, Li and Isaacs [1994]. These

experiments were performed on specimens cored from tantalum discs which were produced

by cross-rolling the initial ingots. Since these authors do not report the initial texture of

these discs, Kothari and Anand [1997] approximated the initial texture by using their own

texture measurements of a similarly-produced tantalum plate, and representing this texture

by a set of 400 weighted grain orientations by using popLA, Fig. 2-12. For the curve-

fitting procedure, both the isothermal5 and adiabatic stress-strain curves of tantalum at

different temperatures and strain rates were calculated by performing Taylor-model simple

compression ABAQUS/Explicit simulations on a single ABAQUS-C3D8R element subjected

to the appropriate strain rate and initial temperature in the experiment. For tantalum, the

hardening quantities {hig(lal, 9), , s(lhal , 9), qI}, are adequately described by taking the

initial hardening rate ho and the saturation value of the athermal slip-system resistance sa,s

to be independent of both temperature and strain rate, and the latent-hardening parameter

5 The technique used by Nemat-Nasser and co-workers to deduce the isothermal stress-strain curves at high
rates is to strain the specimen incrementally and unload, allow the specimen to cool to the test temperature,
and then re-load at the same initial strain rate. The curve connecting the peaks of these incremental tests
provides an estimate of the isothermal stress-strain curve at a high strain rate. For additional details, see
Nemat-Nasser, Li and Isaacs [1994].
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ql as a constant 6 equal to 1.4. The adiabatic stress-strain curves are simulated by computing

the temperature rise according to equation (2.39), by assuming that all the plastic work is

converted into heat ( = 1.0), and using values of p = 16.6 Mg/m 3, and c = 138 J/kg K. In

the simulations, the flow parameters are the same as those determined above from the data

of Hoge and Mukherjee [1977], equation (2.41). The values of the hardening parameters

estimated by the fitting procedure for the three sets of data are: Kothari and Anand [1997]

Table 2-5. HardeningParameters
8 aO o s8 as r qj

Nemat-Nasser and Isaacs [1994] 20 MPa 80 MPa 110 MPa 1.1 1.4
Vecchio [1994] 49 MPa 160 MPa 100 MPa 1.1 1.4

attribute the different values of the hardening parameters to the different initial states of

the specimens used in the two sets of experiments by the two sets of authors. The quality

of the fit to the data is shown in Figs. 2-13 and 2-14.

2.4.3 Predictions of the Constitutive Model

Strain Hardening to Large Strains and Evolution of the Crystallographic
Texture

The stress-strain data of Carreker and Hibbard and Duffy and co-workers are limited to

strains of EP 0.125. Since the strains in typical deformation processes are considerably

larger, and since there is a scarcity of stress-strain data for large strains, quasi-static

compression tests were performed at a constant true strain rate of 3 x 10-3s-1 on 1100-0

at 84 K and 298 K up to true strains of el = 1. The cryogenic temperature of 84 K was

obtained by immersing the sample in a liquid nitrogen bath while testing. The temperature

was measured using a K-type nickel-10% chromium (+) and nickel-5% aluminum and

silicon(-)} thermocouple. Teflon sheets were used to minimize the friction in the platen-

sample interface. The samples showed very little barreling.

Cylindrical samples of aluminum 1100 0.5" diameter and 0.75" tall were machined with

the axis of the sample coinciding with the initial rod axis. Prior to the tests the samples

6Kothari and Arnand [1997]) report that their predictions were not very sensitive to the value of the
latent-hardening parameter.
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were annealed. The annealing schedule consisted of heating the specimens in an inert

atmosphere (Argon) in a Lindberg furnace to 2600 C, holding for 1 hour, increasing the

temperature to 5380 C holding for another 15 minutes, and then furnace cooling to room

temperature (Brown, Kim and Anand [1989]). The initial crystallographic texture of the

as-annealed specimen was measured by x-ray irradiation. The details of the procedure

adopted for the preparation of the specimen and the methodology adopted for texture

measurement are described in Appendix C. Fig. 2-15(a) shows the measured pole-figures

(equal-area projections). Under the specified annealing schedule, the specimens retain a

large amount of the initial rod texture. The initial measured texture was represented by a

set of discrete weighted Euler angles using the popLA package7 . The ratio of the weight of

a grain orientation divided by the sum of the weights of all grain orientations comprising

the representation approximates the volume fraction of the grains that are oriented in a

small neighborhood of a particular grain orientation, assuming that all grains are of equal

volume. Since, in the computational procedure to follow unweighted grain orientations

are used to represent the initial texture, each weighted grain orientation computed by the

popLA package is replaced by a number of grain orientations equal to the integer nearest

to the weight and these grains are distributed in a small neighborhood (of 5 in each

of the three dimensions in Euler angle space) around the given orientation s . To increase

(decrease) the total number of represented discrete orientations used to represent the initial

texture, the weights are simply multiplied (divided) by an appropriate numerical constant.

Using this procedure, the initial texture, Fig. 2-15(a), is represented by 400 unweighted

discrete orientations. The numerical representation is shown in Fig. 2-15(b).

The same set of flow parameters as obtained from fitting the data of Duffy and co-

workers' are used for the following simulations. These parameters are repeated below for

convenience:

s*,o = 8.82 MPa, sa,o = 12.09 MPa, o = 1.732 x 106 sec-1 , AF. = 1.38 x 10-23 J,

p = 0.141, q = 1.1.

The values of the initial thermal and athermal part of the slip resistances of all the slip

7A detailed outline of the scheme for generating the weights is reported in Kocks, Kallend and
Biondo [1991].

8 The discrete numerical representation of measured crystallographic texture is still an area of research that
requires considerable additional work. A more rigorous methodology would facilitate a direct quantitative
comparison between measured and computed textures.
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systems in the representative polycrystalline aggregate are assumed to be equal. The

slip system hardening parameters and saturation value of the slip system resistance are

estimated from the stress-strain curve for simple compression at room-temperature. The

numerical simulation was performed using ABAQUS/Standard on a single ABAQUS-C3D8

continuum element where the faces of the element initially perpendicular to the compression

axis were constrained to remain plane and perpendicular to the loading axis through out

the deformation. The bottom face of the element was fixed in the loading direction while

the top face was subjected to displacement boundary condition which resulted in an axial

true strain rate of -0.003 sec-'. Each integration point in the finite-element was assigned

the set of 400 orientations employed for the representation of the initial texture. Fig. 2-16

shows the numerical fit to the measured stress-strain response. This fit yields the following

material parameters:

ho = 200 MPa, = 220 MPa, r = 2, 4o,s = 1 x 101 2sec- 1, AF = 1.4 x 10 - 19 J.

Here, the values for the parameters O,, and AF 1 are taken as shown in Table 2-3. Fig. 2-

17 shows the measured9 and the numerically calculated crystallographic texture at a true

strain level of-1.0. We observe that the final texture is the ideal compression texture with

{110} planes oriented perpendicular to the compression axis in contrast with the initial

texture which had a strong concentration of {111} and {100} poles along the rod axis,

Fig. 2-15. Both {111} and {100} textures are unstable under simple compression. The

texture departs from these components rapidly with progressive deformation leading to the

stable {110} texture at large strains. The constitutive model captures this evolution of

texture quite accurately.

Next, we simulate the stress-strain response and the evolution of texture for the simple

compression test at 84 K using the material parameters estimated above. Fig. 2-18 shows the

predicted stress-strain curve compared with the measured response, the prediction closely

matches the experimental stress-strain curves. Fig. 2-19 shows a comparison of the measured

and predicted texture at e = -0.75. The numerical predictions are in good agreement with

the experimental results.

In order to evaluate the accuracy of the constitutive model for a different mode of

deformation, plane-strain compression experiments were performed on the same 1100-0.

The plane-strain compression specimens were machined such that the constrained direction

9 The tested specimens were sectioned approximately along their mid-plane prior to texture measurement.
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was along the rod axis. The dimensions of the specimens were 7.62 mm in the compression

direction (e2), 9.53 mm in the free direction (el) and 14.73 mm in the constrained direction

(e3). The specimen and the sliding contact surfaces of the channel-die fixture were lubricated

with two sheets of teflon film containing a layer of MoS2 between them. The initial texture

was represented by the same set of 400 grain orientations, Fig. 2-15. The simulations

were performed on an ABAQUS-CPE4 plane-strain element. The measured and calculated

stress-strain response are shown in Fig. 2-20. The prediction is in reasonable agreement with

the experimental result. Fig. 2-21 shows the experimental and simulated textures, at a true

axial strain of-0.9. We observe that the measured texture is quite different from the usually

reported plane-strain compression texture for f.c.c. materials deforming by crystallographic

slip (e.g., Bronkhorst, Kalidindi and Anand [1992]). This is directly attributable to the

initial texture in the specimens. Unlike the situation studied by Bronkhorst, Kalidindi and

Anand [1992], the specimen in our experiments were strongly textured along the constrained

direction' °. We observe a reasonably good agreement between the measurements and

predictions indicating that the constitutive model provides good predictions for stress-strain

response and texture evolution to large strains even for initially anisotropic materials.

Kothari and Anand [1997] have evaluated the ability of the constitutive model to predict

the texture evolution and the stress-strain response of b.c.c. tantalum in some quasi-

static experiments. In the following, their results for simple compression and plane-strain

compression are summarized.

The simple compression and plane-strain compression tests were performed on specimens

machined from a tantalum rod. The initial crystallographic texture of the annealed rod

and its representation by 400 weighted grain orientations are shown in Fig. 2-9. Kothari

and Anand [1997] take the flow parameters to be the same as estimated from Hoge and

Mukerjee [1977] data. They estimate the initial value of the athermal part of the slip

system resistance and its hardening parameters by fitting the data from a constant true

strain-rate simple compression test performed along the rod axis, Fig. 2-22. The values

estimated from the curve-fitting procedure are:

l°In their experiments with initially anisotropic polycrystalline f.c.c. materials, Kalidindi and Anand [1994]
have also previously observed that initial texture had a significant effect on the texture evolution even at
large strains.
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sa,o = 15MPa, ho = 70MPa, s,,. = 160MPa, r = l.1,ql = 1.4

The experimentally-measured and numerically-predicted 222}, 110} and 200} pole

figures at a strain of -1.1 are presented in Fig. 2-23. The initial 110} texture of the rod is

unstable under simple compression and the texture evolves to the stable, ideal compression

texture of {222} and (200} components for b.c.c. materials.

Similar to the plane-strain compression tests on 1100-0, the specimen in the plane-strain

compression of tantalum was oriented with the rod axis along the constraint direction.

The predicted stress-strain response is compared with the experimental measurement in

Fig. 2-24, and the predicted crystallographic texture is compared with the experimentally

measured one in Fig. 2-25. The predicted stress-strain curve and texture approach the

corresponding experimental measurements, but the agreement could be better. We observe

in passing that the plane strain compression texture for b.c.c. tantalum, Fig. 2-25 bears a

close resemblance to that measured for f.c.c. aluminum, Fig. 2-21. The (110} pole-figure

in Fig. 2-21 is quite similar to {222} pole figure in Fig. 2-25 while the {111) pole-figure in

Fig. 2-21 is strikingly similar to the {110} pole figure in Fig. 2-25.

Strain Rate and Temperature History Effects

It is well known that the plastic behavior of metals is influenced by previous plastic flow and,

generally, by the strain rate and temperature at which that flow occured (Lindholm [1964];

Klepaczko [1967, 1968, 1975]; Campbell and Dowling [1970]). The magnitude of these

strain-rate and temperature history effectsll depends among other factors on the particular

material and its structure. These effects become evident in experiments in which a

rapid change in strain-rate or temperature is imposed during the deformation. There are

interesting differences in the stress-strain behavior of f.c.c. and b.c.c. materials when they

are subjected to strain-rate or temperature jumps. In this subsection, the ability of the

constitutive model to capture these important differences is demonstrated.

Fig. 2-26(a) illustrates schematically the typical stress-strain response of f.c.c. metals

for constant strain-rate and strain-rate jump tests. The flow-stresses immediately before

"'A comprehensive review of the investigations of history effects in f.c.c., b.c.c and h.c.p. metals is provided
by Duffy [1982].
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and after the jump reflect the constant state, strain-rate dependence of the flow stress. The

difference in the flow-stress levels in the constant strain-rate and strain-rate jump tests at

a strain ej, - 02, is an outcome of the strain-rate history. The flow-stresses a2 and a2

correspond to the same strain level but different states. The difference in the states is due

to the strain-rate dependence of the slip system hardening. As the strain level at which the

jump is performed increases, this difference in the states increases and as a consequence

a - a2 also increases. However, since the steady-state structure is the same for both

types of tests, at large strains beyond the jump, the stress-strain curve for the jump test

asymptotically approaches the curve for the constant strain-rate test. This pronounced

strain-rate history effect is a characteristic of f.c.c. metals.

Fig. 2-27(a) shows the stress-strain curves reported by Senseny et al. [1978]

demonstrating the effects of strain-rate history. At each temperature, the results from

two types of tests are shown: (i) Constant true strain-rate tests performed at two strain

rates, 1.155 x 10-4s- 1 and 173.2s- 1. (ii) Strain rate jump tests conducted between these

strain rates at three different levels of strain. The experimentally observed strain-rate

history effects are captured quite well by the predictions from the model which are shown

in Fig. 2-27(b).

Analogous to tests probing strain-rate history effects, temperature jump tests can be

performed to study the temperature-history effects. Fig. 2-26(b) shows a schematic typifying

the stress-strain response from an isothermal and a temperature-decrement test. Here, the

flow-stresses immediately before and after the temperature jump signify constant state,

temperature dependence of the flow stress. As in the strain-rate jump tests, the constant

temperature and temperature jump tests essentially highlight the difference in the flow stress

levels due to difference in the states, the latter arising from the temperature dependence

of the slip system hardening. Dorn, Goldberg and Tietz [1949] have reported temperature-

decrement experiments on commercially-pure aluminum (2S-0 annealed at 811 K for 20

minutes) that illustrate the effects of temperature history, Fig. 2-28(a). These tensile

tests were performed between two temperatures 12, 78 K and 292 K. The strain rate

was maintained at a constant value of 0.0011s- 1. The material parameters from Duffy

and co-workers's data is used to show the predictions from the constitutive model for

' 2Unlike the strain-rate jump tests, temperature changes here were not instantaneous. Instead, the tests
were interrupted between changes in the temperature of the baths.
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these conditions, Fig. 2-28(b). Again, the predictions are in very good agreement with

the experiments. As shown in Fig. 2-29, the predictions of the model are also in good

agreement with the experimental results for high-purity aluminum.

Dorn et al. [1949] also report temperature-increment tests where the initial part of the

tensile test was conducted at 78K which was followed by a change of bath-temperature

to 292K where the test was completed, Fig. 2-30(a). The predictions from the model

for this situation are shown in Fig. 2-30(b). The decrease in the flow stress is predicted

reasonably well at lower levels of strain, but at larger strains the model underpredicts the

change in the flow stress. It is known that during temperature-increment tests, the work-

hardened state reached due to straining at the lower temperature is unstable at the higher

temperature. This results in some initial work-softening leading to a larger decrease in flow

stress than would be possible with a temperature-increment at a constant state (Cottrell and

Stokes [1955]). The discrepancy in the predicted levels of flow stress can be attributed to the

inability in maintaining the state a constant between the changes -in the temperature of the

bath. Nevertheless, the qualitative aspects of a temperature-increment test are adequately

captured by the constitutive model.

Fig. 2-31 typifies the stress-strain behavior in b.c.c. materials under changes in strain-

rate history. We observe that though the flow stresses of both niobium and molybdenum are

sensitive to strain-rate they show little sensitivity to strain-rate history. Lopatin et al. [1992]

have reported the stress-strain response of pure tantalum under constant strain-rate and

strain-rate increment conditions, Fig. 2-32(a). The figure illustrates that pure tantalum

is quite insensitive to strain-rate history even at large strains. The slight overshoot in the

flow stress after the strain-rate increment above the flow stress level attained while straining

constantly at the higher strain rate can be attributed to yield-point phenomenon commonly

observed in b.c.c. materials. For the constant strain-rate and strain-rate jump simulations

on pure tantalum, the flow parameters estimated by Kothari and Anand [1997] for pure

tantalum are used:

O = 1.73 x 107sec -1, AF* = 2.77 x 10-19J, p = 0.28, q = 1.34, s = 430MPa.

The initial value of the athermal part of the slip system resistance and its hardening

parameters are estimated by fitting the model to the measured "isothermal" stress-strain
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curve, Fig. 2-32(a). The fit yields:

sa,o = 48MPa, sa,, = 245MPa, ha,0 = 100MPa, r = 1.1.

A latent hardening factor of ql = 1.4 is assumed. Lopatin et al. [1992] do not report the

initial texture of their compression samples. In the simulations to follow, an initial isotropic

texture 13 is assumed. Fig. 2-32(b) shows the predictions of the stress-strain behavior

for constant strain-rate and strain-rate jump situations. The predictions reproduce the

qualitative aspects of the stress-strain behavior. In contrast with the situation in the

modeling of f.c.c. materials, in b.c.c. materials the thermally activatable part of the

slip system resistance s is approximately constant with strain. Also, the hardening of

the athermal part of the slip system resistance sa is independent of the strain-rate. As a

consequence, the state, as quantified by the slip system deformation resistance, after the

strain-rate jump at any given level of strain is identical to the state at the same strain

attained through constant straining at the higher strain-rate. Thus, the flow stress level at

the end of the strain-rate jump is the same as the flow stress reached at the same strain

through a constant strain-rate test at the higher strain-rate. Fig. 2-33(a) and 2-33(b) show

the experimental and numerical prediction for the stress-strain response under strain-rate

decrements. The predictions again capture the lack of history effects reasonably well.

In conclusion, the rate and temperature-dependent polycrystal plasticity model

developed in this chapter has been demonstrated to capture the macroscopic stress-strain

response and predict the crystallographic texture evolution up to large strains under a wide

range of strain rates and temperatures for both f.c.c. and b.c.c. materials. Also, the model

accurately predicts the differences in the strain-rate and temperature history effects between

the f.c.c. and b.c.c. materials studied here.

13The nature of the initial texture should not affect the qualitative aspects of the results.
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temperature above which there is enough thermal energy for the barriers to be overcome
by thermal activation alone. As shown in the figure, Oc is a function of the strain rate.
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Figure 2-2: Schematic diagram illustrating the stress-strain curves observed in Cottrell and
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Figure 2-2: Schematic diagram illustrating the stress-strain curves observed in Cottrell and
Stokes' [1955] experiments. The notation used in the text for the relevant variables is also
shown.
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Figure 2-3: Variation of elastic constants for pure aluminum with temperature (Simmons
and Wang [1971]). The experimental data is fit through a third-degree polynomial function.
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Figure 2-6: Saturation slip resistance plotted as a function of temperature and the model's fit
to the data of: (a) Carreker and Hibbard [1957] (b) Senseny, Duffy and Hawley [1978]. Both
axes are normalized by the temperature dependent shear modulus p. kB is the Boltzmann
constant and b is the Burgers vector.
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Figure 2-13: Comparison of the predictions from the Taylor-type crystal plasticity model
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[1997]).
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crystal plasticity model.
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Figure 2-22: Fit of the prediction from the Taylor-type crystal plasticity model against
the measured stress-strain response in simple compression experiment on annealed b.c.c.
tantalum (Kothari and Anand [1997]).

60

.2



X2

22)

.-X

2)

Xl

X 2 X 2

0})

XI

.0)

Xl

X2 X 2
!

)o} o)0

-X1

Experimental Simulation

Figure 2-23: Comparison of the measured texture in the simple compression experiment on
annealed b.c.c. tantalum against the texture predicted by the Taylor-type crystal plasticity
model (Kothari and Anand [1997]).

61

XI

2.25
1.94
1.64
1.33
1.02
0.71
0.41
0.10

I



600

500

400

200

100

0.2 0.4 0.6 0.8 1.0 1
Strain

Figure 2-24: Measured and simulated stress-strain response from the Taylor-type crystal
plasticity model for the plane strain compression experiment on annealed b.c.c. tantalum
(Kothari and Anand [1997]).
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Figure 2-28: Stress-strain curves for isothermal and temperature-decrement tests on 2S-0
aluminum: (a) Experimental results of Dorn, Goldberg and Tietz [1949] (b) Predictions of
the constitutive model with material parameters based on the data of Senseny, Duffy and
Hawley [1978].
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Figure 2-29: Stress-strain curves for isothermal and temperature-decrement tests on 99.98%
pure aluminum: (a) Experimental results of Dorn, Goldberg and Tietz [1949] (b) Predictions
of the constitutive model with material parameters based on the data of Carreker and
Hibbard [1957].
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Figure 2-30: Stress-strain curves for isothermal and temperature-increment tests on 2S-0
aluminum: (a) Experimental results of Dorn, Goldberg and Tietz [1949] (b) Predictions of
the constitutive model.
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Figure 2-32: Stress-strain curves for constant true strain rate and strain-rate increment
tests on b.c.c. tantalum: (a) Experimental results of Lopatin et al. [1992] (b) Predictions
of the constitutive model.
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Figure 2-33: Stress-strain curves for constant true strain rate and strain-rate decrement
tests on b.c.c. tantalum: (a) Experimental results of Lopatin et aL [1992] (b) Predictions
of the constitutive model.
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Chapter 3

Application to Deformation
Processing of F.C.C. materials

Ears which develop during the drawing of anisotropic sheets are important defects that

form during the production of deep-drawn containers. These ears must be trimmed to

produce the desired height and shape of the container. A better understanding of the

process of development of ears during forming should lead to improved process designs

which reduce earing, and possibly eliminate the need for trimming. The quantitative

prediction of earing patterns is a classical outstanding problem in anisotropic plasticity

(e.g., Tucker [1961]; Wilson and Butler [1961]). Becker et al. [1993] have attempted to

predict earing patterns in polycrystalline aluminum sheets. While their calculations are

noteworthy, they were unable to obtain fully-drawn cups in their simulations. In this

chapter, the constitutive equations and computational procedures presented in Chapter 2

are employed to simulate the formation of earing defects in (i) single crystal sheets of pure

aluminum and (ii) polycrystalline sheet of A12008-T4. The finite element simulations on the

single crystal sheets are compared with the experimental results of Tucker [1961] while the

numerical simulation for the polycrystalline sheet is compared with experiments performed

on A12008-T4.

3.1 Earing in Single Crystal Cups of Aluminum

Tucker [1961], in some pioneering work, reported on the different earing patterns in cups

drawn from circular blanks of aluminum with different initial orientations. Depending
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on the initial orientation of a blank, there is a wide variety in the number of ears, their

positions and heights, Fig. 3-1(a). In this study, the earing behavior in cups drawn from

circular blanks which were initially in the [001] and [111] orientations, Figs. 3-1(b) and

3-1(c) respectively, where these orientations refer to the crystallographic directions that are

normal to the blank are considered.

The geometry of the cup-drawing in the simulations approximates the apparatus used

by Tucker in his experiments, Fig. 3-2(a) (Becker et al. [1993]). Circular blanks 79 mm

diameter and 0.81 mm thick are drawn in an apparatus consisting of a punch and a die

of diameters 41.2 mm and 44 mm, respectively. Fig. 3-2(b) shows the finite element mesh

used for the simulation. Both the [001] and [111] orientations possess rotational symmetries

about the punch axis; accordingly, only a sector of the circular blank need be considered in

each analysis. Also, since the inplane-deformation of the sheet is of primary interest, the

sheet is modelled with two elements through the thickness ABAQUS continuum C3D8R

and C3D6 elements are used. The interfaces between the punch and the blank, the blank

and the blankholder, and the blank and the die are modeled as frictionless. Also, the die,

blankholder and the punch are treated as rigid surfaces. A constant force of 10 KN is

applied on the blankholder, and the punch speed is taken to be 1 mm/sec.

3.1.1 Material Parameters for Single-Crystal sheets of Aluminum

Tucker [1961] does not report the material properties for the single-crystal sheets used in

his experiments. The parameters used in our simulations are based on single-crystal data

available in the literature. The data of Cottrell and Stokes [1955] for the variation of

the yield-stress with temperature in single-crystals of 99.992% pure aluminum is used to

determine the flow parameters for the sheets in the simulations. The parameters obtained

from this fit, Fig. 3-3(a), are:

-Yo = 1.732 x 106 sec-l, AF* = 2.5 x 10-19 J, p = 0.131, q = 1.1, X = 0.695.

The flow parameters for the single crystal aluminum are in close agreement with the

corresponding values for relatively-pure polycrystalline aluminum enlisted in Chapter 2.

The slip-system hardening parameters for the simulations are obtained by fitting the

model's predictions for the stress-strain response with that obtained in the channel-die

compression experiments of Becker et al. [1991] on single-crystals of commercial purity
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aluminum as shown in Fig. 3-3(b). This yields the following parametersl:

s.,0 = 10 MPa,sa,o = 14 MPa,ho = 65 MPa,r = 2,s, = 186 MPa.

Also, the latent hardening parameter for all the deep-drawing simulations is taken to be

q = 1.4.

3.1.2 Cup-drawing simulation for the [001] and [111] oriented blanks

Fig. 3-4(a) is a schematic diagram of the earing pattern observed by Tucker in aluminum

single crystals in the [001] orientation (Fig. 3-1(b)). A total of four ears form along the

[100], [010], [00] and [010] initial directions in the blank. The symmetry of this orientation

permits a model which uses only a 450 sector of the blank. The 0° and 450 planes are

symmetry planes and are free of shear tractions.

Fig. 3-5(a), taken from Tucker's [1961] paper, shows the final shape of the aluminum

single-crystal cup in this orientation. Fig. 3-6(a) shows the predicted shape of the fully-

drawn cup. For clarity, the entire cup has been shown by suitably reflecting the 450 sector

that was simulated. This figure also shows the contours of the equivalent tensile plastic

strain e-P in the cup at the end of the drawing process2. The accumulated plastic strain is

maximum in the ears. The prediction of the number of ears and their position is accurate.

No attempt was made to compare the heights of the ears as the material in our simulation

is different from that used by Tucker in his experiments.

Fig. 3-1(c) shows that in the [111] orientation six ears form. Fig. 3-4(b) is a schematic

view of the earing pattern. The symmetry of this orientation permits a model which uses

only a 60° sector of the blank. The 0° and 60° planes are symmetry planes and are free of

shear tractions.

Fig. 3-5(b) (from Tucker [1961]) shows the final shape of the aluminum single-crystal

cup in this orientation. Fig. 3-6(b) shows the predicted shape of the fully-drawn cup. The

entire cup has been shown by suitably reflecting the 600 sector that was simulated. This

figure also shows the contours of the equivalent tensile plastic strain EP in the cup at the

1Due to the lack of single-crystal stress-strain data up to large strains for different strain rates and
temperatures, the dependence of the saturation value of the slip system resistance so on the strain-rate and
temperature is ignored. Since the deep-drawing experiments of Tucker [1961] were performed in isothermal
and quasi-static conditions, the qualitative aspects of the results are not expected to be affected by this
assumption.

2For single crystals the equivalent tensile plastic strain is defined as FP = f P dt, where

t = {E., 7 - }a /}/, with = (3/2)' 'ii.
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end of the drawing process. Again, the accumulated plastic strain is larger in the ears, and

the prediction of the number of ears and their position is accurate.

3.2 Earing in Polycrystal Cups of A12008-T4

3.2.1 Characterization of A12008-T4 Sheet

Polycrystalline A12008-T4 sheet3 , 0.7874 mm in thickness, was kindly provided by ALCOA

Technical Center. Metallographic specimens from the sheet were polished and then etched

with Keller's reagent (2mL 48% HF, 3mL conc. HC1, 5mL conc. HNO3 and 190mL H20)

to reveal the grains. The average grain diameter in the rolling plane was 60rm. The

initial crystallographic texture of the as-received sheet was measured by x-ray irradiation

using a Rigaku RU200 diffractometer. The procedure for the texture measurement is

provided in detail in Appendix C. Fig. 3-7(a) shows the measured pole-figures (equal-

area projections). Fig. 3-7(b) shows a numerical representation of this texture using a

weighted average over 192 components. Fig. 3-7(c) shows a numerical representation of

the texture using a weighted average over only 33 components. Although the texture

representation using 192 components is more accurate, in the numerical calculations for

cup drawing the computationally less expensive numerical representation, which employs

only 33 components, is used. Figs. 3-8(a) and 3-8(b) are inverse pole-figure plots for the

rolling and transverse directions, respectively.

Due to the lack of data for the yield-stress variation with temperature for A12008-T4,

for the deep-drawing simulation, the plastic flow parameters 4 obtained from the data of

Duffy [1974] for 1100-0 are employed,

; = 1.732 x 106sec -1, AF* = 3 x 10-1 9J, X = 0.73,p = 0.141, q = 1.1.

In order to obtain the material parameters for the slip system deformation resistance

and its evolution, a tension test was conducted on a sheet-tension specimen (ASTM E8)

cut parallel to the rolling direction. The strains in the gauge section were measured using

an extensometer. Fig. 3-9(a) shows a schematic of the sheet-tension specimen. A finite-

3 A12008-T4 is an automotive alloy widely used in car-body panels.
4We expect that due to the presence of alloying elements, AF* for 2008-T4 would be higher than that

for 1100-0. However, due to lack of the relevant data this difference is neglected in the calculation.
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element representation of the specimen using 180 ABAQUS C3D8R continuum elements

is shown in Fig. 3-9(b). The measured load-displacement and stress-strain curves prior

to the onset of diffuse-necking are shown in Figs. 3-10(a) and 3-10(b), respectively. The

values for the hardening parameters were adjusted so that the numerical results matched

the corresponding experimental data. The numerical fit to the data is also shown in Figs. 3-

10(a) and 3-10(b). The material parameters obtained from the fit are:

s.,o = 40 MPa, a,O = 55 MPa, ho = 542 MPa, ss = 337 MPa, r = 2.

Fig. 3-10(b) also shows the stress-strain curve from a numerical simulation of tension

on a single element with the sheet texture represented by 192 components. The stress-

strain response obtained by using the dominant 33 components is almost identical to the

stress-strain curve for the 192 components.

3.2.2 Cup-Drawing Experiment

A schematic diagram of the geometry of the cup-drawing apparatus is shown in Fig. 3-

11(a). Circular blanks of diameter 101.6 mm and thickness 0.7874 mm, were drawn in an

apparatus comprising a round-nosed punch and die of diameters 50.8 mm and 53.035 mm,

respectively. All surfaces in contact with the deforming blank were polished to a surface

finish of 4. The punch, blankholder and die were machined from AISI/SAE D2-steel with

a Rockwell hardness of 62. The cup-drawing experiments were performed on a double-

action hydraulic press, powered by two dual-acting hydraulic cylinders. The hydraulic

cylinders could apply a maximum binder force of 35 tons and a maximum punch force of

20 tons. The hydraulic cylinder applying the binder force was servo-controlled to produce

a constant binder force, and the hydraulic cylinder applying the punch force was servo-

controlled to produce a desired punch position. The press was instrumented to measure

the forces and displacements. Strain gauges detected the binder and punch forces, while

LVDT's sensed the punch position. The press was controlled through a microcomputer

(IBM-486 PC) equipped with a real-time data-acquisition board (DT2801-A). Strain-gauge

signal conditioners (2B31K) were used to output the force signals from the binder and

punch force strain gauge Wheatstone bridge circuits. A constant binder force of 10 KN was

applied and the cup was drawn with a punch speed of 1mm/sec. Teflon sheets were used
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as lubricants, to minimize the friction in the interfaces between the punch and the blank,

the blank and the blankholder, and the blank and the die.

The cups showed four ears: two along the rolling direction and two along the transverse

direction of the sheet, as shown in Fig. 3-12(a). Note that a cup drawn from a sheet with

a classical rolling texture (e.g., Hirsch et al. [1978]) forms four ears at 450 to the rolling

direction. The difference in the earing pattern between that situation and the situation in

our experiments, arises directly from the differences in the two initial textures. The inverse

pole-figure plots in Figs. 3-8(a) and 3-8(b) for the rolling and transverse directions provide

a clearer understanding of this situation. The texture contains predominantly two ideal5

components, namely, the 100} < 010 > Cube component and the 110} < 001 > Goss

component. Both of these orientations are known to form ears at 0° and 90° to the rolling

direction (Rollett et al. [1987]).

The thickness strains at the bottom and along the cup wall were measured at 0°, 560

(location of the trough) and 90° from the rolling direction, as shown in Fig.3-13. The sheet

thins at the bottom and at the nose of the cup while it thickens along most portion of the

wall. For all the three direcitons, the thickness strain is the minimum at the nose of the

cup. We observe that the thickness strains at the wall along the trough (56° from the rolling

direction) is higher than that along the rolling and transverse directions.

3.2.3 Simulation of Cup-Drawing

Fig. 3-11(b) shows the finite-element mesh used for the numerical simulation. A total of

672 ABAQUS continuum C3D8R and C3D6 elements were used, with 2 elements through

the thickness6. Since the initial texture of the sheet, Fig. 3-7(a), possesses orthotropic

symmetry, only a 900 sector of the circular blank was considered for the analysis. The die,

blankholder and punch were treated as rigid surfaces. A friction coefficient of = 0.1 was

used for the interface between the punch and the sheet top, and the interfaces between all

SThe indices {hkl} in the metallurgical notation {hkl} < uvw > denote the crystallographic planes that
are parallel to the rolling plane and the indices < uvw > refer to the crystallographic directions aligned with
the rolling direction.

6 The simulation with two elements in the thickness direction was found to provide a better quantitative
prediction of the cup-height when compared with that obtained from the calculation with one element
through the thickness. However, even with two elements in the thickness direction the bending strains are
captured only crudely. A further refined mesh was not employed owing to computational limitations.

7Although teflon sheets were used for lubrication, there was some contact between the punch and sheet
as a result of the tearing of the teflon sheet at large bending strains. The friction coefficient was assumed to
be 0.1. The results were not very sensitive to changes in this value.
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other contacting surfaces were considered frictionless. In order to speed-up the simulation,

the density of the blank was artificially increased to increase the stable time increment s.

Fig. 3-12(b) shows the predicted shape of the fully-drawn cup. This figure also shows

the equivalent tensile plastic-strain Et contours in the cup at the end of the drawing process.

The prediction of the number of ears and their positions is accurate. The equivalent plastic

strains in the ears are quite large suggesting significant texture evolution in these areas.

Fig. 3-14(a) shows a comparison of the predicted cup-height with the experimentally-

measured height. The discrepancy in the predicted cup-height is due to the difference

between the predicted and measured cup-thickness. Fig. 3-15(a), 3-15(b) and 3-15(c) show

the comparison between the measured and predicted cup thickness strains at 0 °, 56' and

900 from the rolling direction, respectively. We observe that the increase in thickness of the

cup-wall is underpredicted by the model. A better agreement of the prediction with the

experiment is anticipated with an increase in the number of elements through the thickness.

Fig. 3-14(b) shows a comparison of the predicted punch load-displacement curve with the

values measured in the experiments. The prediction is in reasonable agreement with the

measured response.

Overall, the quantitative prediction of (i) the punch force versus punch displacement,

and (ii) the number of ears, their positions, and their heights, is very good.

Earing could be minimized by either of the following two methods: (i) tailor the

processing scheme prior to the cup-drawing operation to produce a "near-isotropic" initial

texture in the sheet; (ii) choose an initial shape 9 for the blank that would minimize the

earing. The capability to quantitatively predict the earing pattern, developed in this work,

could serve as a useful design and analysis tool in either of the two methods.

8In such "density-scaled" simulations one must ensure that the inertial effects are small. To do this one
must monitor the ratio of the total kinetic energy to the total internal (stored elastic + dissipated plastic)
energy during the simulation, and ensure that this ratio does not exceed ;, 0.01-0.05 at any time during the
simulation.

9A shape which has more material along directions where troughs form would reduce the apparent earing
in the fully-drawn cup.
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Figure 3-1: (a) Deep-drawn cups from single crystal sheets of pure aluminum arranged on
stereographic projection of the standard unit triangle (Tucker [1961]). (b) Cup drawn from
blank with the [001] direction initially along the punch axis. (c) Cup drawn from blank
with the [111] direction initially along the punch axis.
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Figure 3-2: (a) Geometry of the cup-drawing aparatus for the deep-drawing of single crystal
sheets. (b) Exploded view of the finite element mesh used in the simulations
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Figure 3-3: (a) Experimental data for the variation of flow stress with temperature in
99.992% pure aluminum single crystals (Cottrell and Stokes [1955]) and the constitutive
model's fit. The stress at each temperature is normalized by the value at 90K. Also,
the flow stress has been corrected for changes in the elastic moduli with temperature.
(b) Experimental stress-strain response from channel-die compression of aluminum single
crystal with the initial orientation (001)[110] (Becker et al. [1991]) and the model's fit.
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(a)

(b)

Figure 3-4: Schematic view of the earing pattern observed in the drawing of f.c.c. single
crystals for (a) [001] oriented blank (b) [111] oriented blank.
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Figure 3-5: The earing pattern observed
by Tucker [1961] for: (a) a [001] oriented
blank. (b) a [111] oriented blank.

(b)

Figure 3-6: The predicted earing pattern for:
(a) a [001] oriented blank. (b) a [111] ori-
ented blank. The equivalent plastic strain
contours are also shown.
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Figure 3-9: (a) Geometry of the sheet-tension specimen (ASTM E8) (All dimensions are in
millimeters). (b) Finite element mesh used for the sheet-tension simulation.
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Figure 3-10: (a) Load-displacement response for sheet-tension. (b) Stress-strain response
for sheet-tension.
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Figure 3-11: (a) Geometry of the cup-drawing apparatus (All dimensions are in millimeters).
(b) Exploded view of the finite element mesh used in the simulation.
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Figure 3-12: Comparison of the predicted earing pattern with that observed in the
experiment. (a) Observed earing pattern (The rolling direction is indicated by the arrow).
(b) Numerical prediction. The numerical simulation also shows the equivalent plastic strain
contours.
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Figure 3-13: Experimentally measured thickness strain profile for the cup.
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Figure 3-14: (a) Comparison of the predicted cup-height profile with the experimentally
measured height. (b) Comparison of the measured load-displacement response during the
cup-drawing process with the numerical prediction.
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Chapter 4

Plasticity of Polycrystalline H.C.P

materials

In this chapter, a finite-deformation constitutive model for plasticity of hexagonal materials

deforming by crystallographic slip is proposed. A full 3D finite-element model in which each

element represents a grain and the constitutive response is given through a single-crystal

constitutive model is used to simulate the response of a polycrystalline aggregate. Particular

attention is given to the modeling of isothermal high-temperature deformation of h.c.p.

titanium. However, the constitutive model is expected to be applicable to the modeling of

deformation of other hexagonal materials in temperature and strain-rate regimes where the

predominant mode of plastic deformation is crystallographic slip.

The hexagonal crystal structure (h.c.p.) is created when close-packed layers of atoms

are stacked in the order ABABAB... such that every third layer is in exactly the same

relative position as the first, Fig. 4-1(a). The interatomic spacing on the A plane is denoted

by a while the spacing between adjacent A planes is denoted by c. The ratio c/a is termed

the axial ratio. This ratio is different in different hexagonal metals; it has an ideall value

of 1.633. Titanium has an axial ratio of c/a = 1.587.

Unlike the cubic crystals, the native basis in a h.c.p. lattice is non-orthogonal, Fig. 4-

1(b). The native basis is denoted by the set of non-orthogonal base vectors, {al, a2, a3, c}

with al + a + as = 0. For computational purpose, an orthonormal basis is defined from

'The ideal value of the axial ratio is derived from a hexagonal-close-packed arrangement of equal-sized
hard spheres.
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a combination of these crystallographic vectors. Fig. 4-1(b) shows the relation between a

simple hexagonal cell with base vectors, (al, a2, as, c) and its corresponding orthohexagonal

cell with base vetors, {a, b, c} which is used to calculate an orthonormal basis associated

with a h.c.p. lattice structure. The orthohexagonal and the hexagonal cells share the base

vector c. The other base vectors are related to the native base vectors by the relations,

a = a2 and b = a3 - al. The orthonormal basis, {ec, ec, ec}, is obtained by normalizing

these components, i.e., ec = , ei = T and ec = .

The hexagonal materials owing to their lower symmetry exhibit complex modes of

deformation. Unlik' the cubic crystals, hexagonal crystals possess more than one family of

slip systems. Also, the deformation resistances of the different families of slip systems

can be substantially different resulting in a highly anisotropic response at the single-

crystal level. For titanium, studies on single crystal2 (Rosi, Dube and Alexander [1953],

Churchman [1954], Akhtar [1975a, 1975b]) and coarse-grained polycrystals (McHargue and

Hammond [1953], Rosi, Perkins and Seigle [1956] and Paton, Williams and Rauscher [1973]),

aimed at determining the operative deformation modes in titanium, indicate that the

commonly observed slip systems in pure h.c.p. titanium are: the three equivalent basal

{0001} < 1120 >, the three equivalent prismatic {1010} < 1120 > and the six equivalent

pyramidal {1011} < 1120 > slip systems, as illustrated in Fig. 4-2. All of the three classes of

slip systems share a common slip direction, < 1120 > or < a >-direction. For convenience,

we shall refer to slip on these three classes of slip systems as < a >-slip.

Temperature is an important factor that affects the nature of plastic deformation in

titanium crystals. Conrad [1981] has reported the change in the critical resolved shear

stress with temperature for the basal-< a > and prisrmatic-< a > slip in single crystals,

Fig. 4-3. Both these slip resistances decrease dramatically with increase in temperature.

At temperatures below 300°C, the critical resolved shear stress for the basal-< a > slip is

nearly 5-6 times higher than that for the prismatic-< a > slip. At higher temperatures, the

critical resolved shear stress for both types of slip become less disparate, which then allows

for the possibility of slip on either of the planes. Rosi, Perkins and Seigle [1956] observed

that the propensity for pyramidal-< a > slip also increased with increase in temperature.

But these authors do not report the critical resolved shear stress on this slip system.

The < a >-slip on the prismatic {1010}, basal (0001) and pyramidal {10i1} planes

2 Studies on single crystals of titanium are limited due to the difficulty in growing them.
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constitute twelve physically different slip systems but comprise only four independent ones

(Groves and Kelly [1963]). Slip on these systems does not provide for a mechanism for

strain parallel to the c-axis of the crystals. Other slip or twinning deformation modes are

required to accommodate a strain parallel to the c-axis of the hexagonal system. These

additional mechanisms whether slip on pyramidal planes with < 1123 > (< c+a >)

slip directions or twinning, have a strong influence on the overall inelastic behavior of

a polycrystal. At low homologous temperatures, the high deformation resistance on the

pyramidal < c + a >-slip systems precludes their operation. Under these conditions, the

ability to undergo generalized plastic flow is achieved through deformation twinning. The

two common twinning modes in titanium that have been observed at room temperature

are the six equivalent {1012} < 1011 >, and the six equivalent 1122} < 1123 > twin

systems (shown in Fig. 4-4). The direction of shear on the twin system (1012)[i011]

depends on the axial ratio. For c/a < V3V, which is the case for titanium, the direction

of shear i3 [1011] and twinning will occur under tension parallel to the c-axis. For this

reason, the {1012} < 1011 > twin systems are referred to as the "tensile" twin systems.

The magnitude of twin shear strain on the {1012} < 1011 > twin system in titanium is

0.1751. The {1122} < 1123 > twin systems are "compressive" systems (for c/a > VA) that

operate under compression parallel to the c-axis. The magnitude of twin shear strain on

the {1122} < 1123 > twin systems is 0.218. The propensity of titanium crystals to twin

decreases with increase in temperature, Fig. 4-5(a). Lii et al. [1970] performed tension tests

in a wide range of temperatures on specimens cut from a rolled plate with a strong alignment

of the basal planes parallel to the rolling plane. They observed that the volume fraction of

twins at a particular strain level decreased with increase in temperature, Fig. 4-5(b). At

temperatures in the vicinity of 700°C, the volume fraction of twins was quite small (< 3%)

even at large strains, eI - 0.8. In this temperature regime, < c + a >-slip on pyramidal

planes of the {1011} and {1122} families (see Fig. 4-2) has been observed to provide straining

along the c-axis (Paton and Backofen [1970]; Williams and Blackburn [1968]). Since the

focus of this study is the deformation of titanium single- and polycrystals in the vicinity of

750°C, attention is confined to plastic deformation solely by crystallographic slip.

In summary, at elevated temperatures, generalized plastic flow is maintained through

< a >-slip on the prismatic, pyramidal and basal planes in conjunction with < c + a >-slip

on the pyramidal planes. It is important to note that even at high temperatures, < c + a >-
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slip is a significantly harder mode of deformation. As a consequence, the crystals in a

polycrystalline aggregate are to some degree still kinematically restricted.

4.1 Single Crystal Constitutive Model

The mathematical framework for the constitutive model of hexagonal materials is the same

as that for the face-centered-cubic and body-centered-cubic materials described in Chapter

2. For the sake of clarity, the same is summarized below.

The constitutive equation for stress is given in terms of the linear elastic relation:

T = C [Ee], (4.1)

where

Ee _ (1/2) {FeTFe- 1} and T* (detF e ) Fe-lTFe-T (4.2)

are the work-conjugate elastic strain and stress measures, respectively, and C is a fourth-

order anisotropic elasticity tensor. Fe is an elastic deformation gradient defined by

Fe FFp - i, det Fe > 0, (4.3)

where F is the deformation gradient and FP is the plastic deformation gradient with

det FP = 1.

Hexagonal materials exhibit transverse isotropy in their elastic behavior. As a result,

five independent elastic constants are required to describe the anisotropic elasticity tensor

C . These five constants are defined as follows,

Cll = (elc ® elc) C[elc ® elc],

C12 = (elc ® elc) C[e2 e2C],

C13 = (el c elc) · C[e3c ® e3c],

C33 = (e3c ® e3c) C[e3 X e0C],

C55 = (el c ® e3c) - C[2 sym {elc ® e3C}],

with C22 = C1 1, C23 = C13 , C44 = C33 and C66 = (C - C1 2). In eqns. 4.4-4.8, eic,
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i = 1,2,3 is an orthonormal basis aligned with the [210], [1010], [0001] directions of the

hcp crystal lattice, respectively, Fig. 4-1(b). The values of these constants for a variety of

materials are tabulated as a function of temperature in Simmons and Wang [1971].

The evolution equation for the plastic deformation gradient is given by the flow rule:

PF - 1 = a So, SO -- m ® na, (4.9)
a

with mc and no denoting the slip direction and the slip plane normal of the slip system a,

respectively, defined in the fixed reference configuration.

The components of the slip plane normals and slip directions with respect to an

orthonormal basis, as defined in Fig. 4-1(b), for the three basal-< a > (0001) < 1120 >, the

three prismatic-< a > {1010}' < 1120 >, the six pyramidal-< a > {1011} < 1120 >,

the twelve pyramidal-< c + a > {1011} < 1123 > and the six pyramidal-< c + a >

{1122} < 1123 > slip systems are presented in Tables 4-4, 4-5, 4-6, 4-7 and 4-8 respectively.

For the high-temperature isothermal deformation of titanium, a simple power-law for

the plastic shearing rate -ja on a slip system is adopted:

ja =~ - ,l sign(r'); t Aexp (- (4.10)

where )y is a reference plastic shearing rate, r' and s are the resolved shear stress and

the slip system deformation resistance respectively on the slip system a and the material

parameter m characterizes the material rate-sensitivity.

Finally, the slip system resistance is taken to evolve as:

hat= Z ha jy (4.11)

where had describes the rate of strain hardening on slip system a due to shearing on the slip

system /l; it describes both self-hardening and latent-hardening of the slip systems. Each

element ha/d in this matrix depends on the deformation history. It is fair to state that the

characterization of these instantaneous hardening moduli ha ~ for hexagonal crystals is a

formidable task if not an impossible one. For example, in a titanium crystal deforming

by three equivalent basal-< a > (0001) < 1120 >, three equivalent prismatic-< a >

{0100} < 1120 >, six equivalent pyramidal-< a > {1011} < 1120 >, the twelve equivalent
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pyramidal-< c + a > {1011} < 1123 > and the six equivalent pyramidal-< c + a >

{1122} < 1123 > slip systems, there are 900(= 30 x 30) elements in this matrix that

need to be specified!

In order to obtain a tractable description of the crystal hardening, the following simple

form for the slip system hardening matrix had is adopted:

hap = qaf hP (4.12)

Here, hE denotes the self-hardening rate and qa is a matrix describing the latent hardening

behavior of a hexagonal crystal.

Very little information is available in the literature regarding the latent hardening

behavior of titanium crystals. Hence, a simple description for the matrix qa3 is adopted:

0qa/ ( 1 if a! and p are coplanar slip systems, (4.13)

q otherwise.

The following is the set of coplanar slip systems:

(i) the three basal slip systems:

{(0001)[1120], (0001)[2110], (0001)[1210]}

(ii) the six sets of first-order pyramidal slip systems:

(1011) [210], (1011) [2113], (1011) [11i23]},

(01l) [2110], (0111) [1i23], (0111) [1213]},

{(i101)[I120], (101)[1213], (101)[2113]},

{(1i011)[1210], (011)[213], (011)[1123]},

{(0111) [2110], (011)11 123], (0111) [1213]},

{ (1101)[112013], (10)[23], (101)[2113]}.

The parameter q could in general be different for different types of slip system pairs,

e.g., q for the interaction between basal-< a > and prismatic-< a > slip could be different

from q for the interaction between basal-< a > and pyramidal-< a > slip. Due to lack

of the relevant data, the same value of ql is assumed for the interaction between any two

non-coplanar slip systems. Also, any history-dependence of qj is neglected; q is taken to be

a constant for all deformation histories.

As in the case for the cubic crystals, the self-hardening rate h3 is taken to be given by
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the following saturation form:

ha- ha 1-s sign - (4.14)

For hexagonal materials, the initial hardening rate ho and the saturation slip deformation

resistance s may in general be different for different families of slip systems. Also, for

situations involving large changes in strain rates and/or high temperatures, the saturation

value s cannot be taken as a constant. Therefore, the following phenomenological form

(Anand [1982]) is employed for the saturation value s:

s -- (2_)n (4.15)

where and n are slip system parameters which may be different for different families of

slip systems. The parameter m measures the instantaneous rate-sensitivity while m + n

measures the total macroscopic rate sensitivity in a strain-rate jump test.

The single crystal constitutive model has been implemented in a user-material subroutine

for ABAQUS/Standard.

4.2 Study of Single Crystal Response

In this section, the single crystal constitutive model is evaluated in terms of its predictions

for stress-strain response, slip system activity and evolution of the crystal lattice orientation

for monotonic tension of a high-purity titanium single crystal at 750C. The predictions are

compared with the experimental results of Akhtar 1975a].

The values of elastic parameters for single crystal h.c.p. titanium at 750C are taken as

(Simmons and Wang [1971]):

C11 = 125.3 GPa, C12 = 99.4 GPa, C13 = 68.8 GPa, C3 3 = 154.5 GPa, C55 = 31.6 GPa.

Fig. 4-6(a) shows the standard (0001) stereographic projection for titanium with the

important poles. The location of the loading axis for the initial orientation chosen by Akhtar

is shown as A inside the primary stereographic triangle in Fig. 4-6(b). This orientation is

given by the following three Euler angles in the notation of Kalidindi et al. [1992]:
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The crystal was oriented such that basal-< a > slip initiated the plastic flow. Akhtar

measured the change in resolved shear stress on the active basal system and the evolution

of the crystal lattice orientation with strain, which are shown in Figs. 4-7(a) and 4-7(b)

respectively. He observed that the specimen deformed up to a resolved shear strain of

0.48 with virtually no work hardening at which point the resolved shear stress decreased

gradually by roughly 30%, Fig. 4-7(a). Also, he noticed that the tensile axis initally rotated

towards the [1120] direction (A to B in Fig. 4-7(b)). At a shear strain (resolved on the

basal slip system B1) of x 0.48, the lattice reoriented sufficiently to activate prismatic-

< a > slip. As a result, the tension axis changed its direction of rotation towards [2110],

the slip direction for the prismatic slip system (B to C in Fig. 4-7(b)). Akhtar reports

that there was no evidence of pyramidal-< a > for this orientation. Accordingly for the

simulation, only basal-< a > and prismatic < a > slip systems are considered. Also, based

on Akhtar's observation that there was very little work-hardening, the slip systems are

assumed to be non-hardening.

The the slip system deformation resistance on the basal-< a > and prismatic-< a > slip

systems are taken to be 8 MPa and 6.5 MPa, respectively. These values provide a reasonably

good fit for the resolved shear stress -shear strain response. The reference shearing rate is

taken to be - = 0.001sec- 1. The macroscopic strain-rate sensitivity of polycrystalline h.c.p.

titanium at 750C has been measured by a true strain-rate jump test in simple compression

(see Fig. 4-8). The rate-sensitivity parameter obtained from this test is m = 0.16. The

same value of m is assumed for our single crystal simulations.

The finite element calculation was carried out in ABAQUS/Standard. The finite element

mesh contained 20 ABAQUS-C3D8 elements, as shown Fig. 4-9(a). In accordance with

Akhtar's experiment, the simulation is performed at a constant true tensile strain rate

of 1.66 x 10-4sec-1 in the e3 direction. The top and the bottom X3 faces of the mesh

are constrained to remain parallel to each other and perpendicular to the straining axis.

Fig. 4-9(b) shows the deformed mesh. The deformation is reasonably homogeneous in the

central portions of the mesh. The following analysis is based on the response of an element

in this region of the mesh. Figs. 4-10(a) and 4-10(b) show the slip system activity and
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the evolution of the crystal orientation with straining, respectively. Initially, the basal slip

system B1 is activated, Fig. 4-10(a). This results in the rotation of the tension axis towards

[1120], Fig. 4-10(b). At e 0.2, the prismatic slip system P2 becomes active, Fig. 4-10(a),

with an attendant rotation in the tension axis towards [2110], the slip direction for the slip

system P2 as shown in Fig. 4-10(b). With continued straining, the activity on the basal slip

system B1 is significantly reduced, Fig. 4-10(a). On approaching the 0001 - 1010 boundary,

another prismatic slip system P3 is activated. This results in the rotation of the tension

axis towards the (1010) pole. Fig. 4-10(c) shows the comparison of the predictions of the

resolved shear stress - shear strain response with the experimentally measured response.

The predictions are in very good agreement with the experiment. The model captures the

drop in the resolved shear stress at e 0.5 accurately.

4.3 Polycrystalline Plasticity of h.c.p. Titanium

In this section, we study the deformation of polycrystalline commercially-pure titanium

at an elevated temperature. Simple compression, simple tension, plane-strain compression

and tubular torsion experiments have been conducted on commerically-pure polycrystalline

titanium at 7500 C. The measured stress-strain response and evolution in crystallographic

texture are presented. The operative slip-systems are inferred from the observed textural

evolution. Finite element simulations of these simple deformations are performed on an

aggregate of grains and the predictions of the evolution in crystallographic texture and the

macroscopic stress-strain behavior are compared with experimental observations.

4.3.1 Simple Tension and Simple Compression of CP-Titanium at 750°C

Experimental Results

Nominally homogeneous tension and compression experiments have been performed on

commercially-pure polycrystalline titanium (98.88% pure) at 7500C. The titanium stock

used for all the experiments discussed below was obtained in the form of a 0.5" diameter

rod.

The as-received rod was sectioned and polished to a mirror-finish. The polishing

procedure adopted is outlined in Appendix C. The polished surface was then etched with

Kroll's reagent (1-3 mL HF, 2-6 mL HNO3 and 100 mL H2 0) to reveal the grains. Fig. 4-11
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shows the micrographs for the longitudinal and transverse sections of the rod. The average

grain diameter was determined to be approximately 110pm.

Samples were also prepared from the as-received titanium stock for the measurement of

the initial crystallographic texture. The procedure employed for the measurement of the

texture is presented in detail in Appendix C. Fig. 4-12 shows the (0001), 10il and {1120}

pole-figures for the as-received titanium rod. We observe that the rod possesses a strong

texture with the basal planes aligned nearly perpendicular to the rod axis and the < 1120 >

directions along the rod axis.

After machining the specimens from the rod and prior to the experiments, the specimens

were annealed in an atmosphere of argon. The annealing schedule comprised of heating the

specimens to 750C, holding them at that temperature for 45 minutes, and then furnace

cooling the samples to room temperature (ASM Handbook Vol. 4 [1990]). The state of the

annealed specimen was characterized by measuring its grain size and the crystallographic

texture. Micrographs of the annealed sample are presented in FIg. 4-13. The grains were

reasonably equiaxed and the average grain diameter was approximately 175jtm. Fig. 4-14(a)

shows the (0001), 1011} and 1120} pole-figures for the annealed titanium sample. On

comparing the texture of the annealed specimen against that of the as-received specimen,

Fig. 4-12, we observe that a significant portion of the initial texture of the as-received rod is

retained after annealing. For the finite element simulations to be presented in later sections,

the texture of the annealed rod is represented by a set of 729(= 93) unweighted discrete

grain orientations as shown in Fig. 4-14(b). It is important to note that due to the lower

symmetry of the hexagonal crystal, a smaller collection of grains for the polycrystalline

aggregate would result in an artificially stiff response.

Two servo-hydraulic test systems manufactured by Instron Corporation were used to

perform all the experiments presented. The first is a Model 1322 tension/torsion machine

equipped with a high-temperature, vacuum furnace3 . Maximum vacuum attainable is

approximately 10-6 torr. Heating is provided by a cylindrical heating zone consisting of

tungsten mesh heating elements surrounded by a multiple layer set of molybdenum heat

shields. A Type R thermocouple {Platinum-13% Rhodium (+) versus

platinum (-)} spot welded to a titanium piece and placed close to the specimen served as

the feedback transducer to the temperature controller. The maximum load capacities of

3 The furnace was built by Centorr Associates, Suncook, New Hampshire.
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the axial thrust cell and the torque thrust cell are 10,000 lbs and 10,000 lbs-in respectively.

The second test system features a custom manufactured high stiffness biaxial test frame.

The load capacity of the frame is 50,000 lbs/20,000 lbs-in. Heating for experiments on this

machine was provided through an Ameritherm Induction Heating System. The induction

heating coil was approximately 1" in diameter with 5 turns, made of 0.25" diameter copper

refrigeration tubing. Power was supplied by a 5KW self-tuning generator. The temperature

was controlled with the aid of feedback from a K-type thermocouple spot-welded to the

specimen in the gage-section by a Electromax V General-Purpose Single-Loop Controller

from Leeds and Northrup Instruments. The hydraulic grips of the testing machine were

water cooled making the ends of the specimens significantly cooler than the gage section.

However, the specimen was heated uniformly in its gage section.

Simple Compression

The simple compression experiments were performed at 750C, 5 x 10-6 torr in the

Model 1322 Instron machine. Low thermal-conductivity 94% alumina ceramic rods were

used for loading in compression. Compression platens used for the experiments were made

from either TZM (Mo-Ti-Zr alloy) or MA956 (Fe-Cr-Al-Ti high-temperature superalloy).

The platens were polished before each experiment to provide a smooth compression surface.

Compression specimens were initially 0.4" in diameter and 0.6" tall with the compression

axis along the rod axis. Shallow concentric grooves were machined on the end-faces of the

compression specimens to hold special high-temperature lubricant as shown in Fig. 4-15.

The lubricant used was boron nitride 4 and powdered glass 5 (glass classification code: 0010)

mixed in the ratio of 1:4 by weight (Brown, Kim and Anand [1989]). The lubricant mixture

was suspended in a medium of methyl alcohol and applied to the specimen ends. On drying

a thin layer of the lubricant mixture was deposited uniformly over the specimen end-faces.

The specimens deformed (with only a slight roll-over) to a true strain of-1.0, at a constant

true strain rate of -0.001 sec -1. After the completion of the test, the specimens were allowed

to cool6 in the furnace under vacuum.

The measured stress-strain 7 response for the compression test is shown in Fig. 4-17.

4Boron Nitride powder, grade HCP, was purchased from Union Carbide Corporation.
5Glass was purchased as a powder from Corning corporation, Corning, New York.
6 The typical duration for the deformed specimen to cool down to room temperature was approximately

30 minutes.
7The measured compressive strains were corrected for the compliance of the load-train in the test setup.
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The initially circular cross-section of the specimen did not remain circular with progressive

deformation due to the strong anisotropy of the initial texture. Fig. 4-18 shows the change

in the shape of the cross-section with deformation.

In order to ascertain that crystallographic slip is the predominant contributor to plastic

deformation in polycrystalline h.c.p titanium at high temperatures, the microstructure in

the specimens deformed to a true strain of -1.0 were studied. There were very few twins in

the deformed sample.

The deformed specimens were cut approximately along the mid-plane perpendicular to

the compression axis, polished and the crystallographic texture was measured. Fig. 4-19

shows the measured (0001), {1011} and {1120} pole-figures at a true strain of-1.0. The

directions el, e2 and e3 in the global basis are aligned with the directions of the material

axes, e, e and e', respectively, which are illustrated in Fig. 416.

An inverse pole-figure of the compression axis provides more insight into the deformation

mechanism leading to the evolution in texture. An inverse pole-figure plot is a representation

of a particular sample direction with respect to crystal coordinates. Since the crystal bases

of each crystal in a polycrystalline aggregate are oriented differently, the same specimen

direction projects differently in different crystals. Hence, the inverse pole-figure plot is the

distribution of a given sample direction when referred to the crystal bases.

The inverse pole-figure of the rod-axis for the deformed specimen at strain levels of 0,

-0.5 and -1.0 are presented in Fig. 4-20. We observe that on straining, the compression axes

at A migrate towards the 0001 - 1210 boundary, shown as the dashed lines from A to B in

Fig. 4-20. On approaching the boundary, the compression axes rotate along the boundary

towards the (0001) pole (B to C in Fig. 4-20). At a true strain of -1.0, the (0001) planes of

the crystals are approximately 45° from the compression axis.

Simple Tension

The simple tension experiments were performed at 750°C. The specimen was induction

heated in air. The tension specimen geometry is shown in Fig. 4-21. The gage section was

1" long and 0.25" in diameter. The tension test was performed at a nominal strain rate

of 0.001 sec - 1. The true-strain in the gage-section at any point in the deformation was

calculated based on the the cross-head displacement.

The measured stress-strain response is shown in Fig. 4-22. The gage-section deformed

without necking up to a true strain of 0.3. The initially circular cross-section ovalized with

104



deformation suggesting a strong anisotropy. Lii et al. [1970] have also reported pronounced

ovalization of their tension specimens with similar initial texture. The initial and deformed

cross-sections of the specimen are shown in Fig. 4-23.

Fig. 4-24 shows the (0001), {1011} and {1120} pole-figures at a true strain of 0.3. The

inverse pole-figure of the rod-axis for the deformed specimen at strain levels of 0, 0.2 and 0.3

are presented in Fig. 4-25. The tension axes migrate from a predominant [1210] direction

towards 0001 - 1100 boundary (A to B in Fig. 4-25). At large strains, the tension axis is

aligned in the neighborhood of the (1100) pole in most crystals.

Finite Element Simulations

In this section, full three-dimensional finite element simulations for simple compression and

simple tension are performed. A continuum material point in a polycrystalline aggregate

is represented by a 3D finite element mesh in which each element represents a grain. We

numerically represent the initial texture by 729 discrete grain orientations, shown in Fig. 4-

14. The set of grain orientations is randomly assigned to the elements (see Fig. 4-27(b)).

In these simulations, both compatibility and equilibrium are satisfied in the "weak" finite

element sense over the entire polycrystalline aggregate.

In order to identify the operative slip systems, simulations are carried out with different

assumptions for the operative slip systems. The predictions for the evolution in texture

are compared with the experimental measurements for each case. In these simulations, the

individual slip systems are assumed to be non-hardening 8. After identifying the operative

slip systems, hardening is introduced on the different slip systems and the predictions of the

stress-strain response and texture evolution are compared with the experimental results.

Identification of the Operative Slip Systems

In Appendix D, some simulations for a specially oriented single crystal which is

representative of the initial texture observed in the annealed rod are shown. The calculations

show that during simple compression basal-< a > slip rotates the compression axes towards

the (0001) pole while prismatic-< a > slip or pyramidal-< a > slip rotates the compression

axes towards the 0001 - 1210 boundary. During simple tension, basal-< a > slip rotates th.

tension axes towards the 1100 - 1210 boundary while prismatic-< a > slip or pyramidal-

8We do not expect the qualitative aspects of the texture to change significantly due to slip system
hardening.
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< a > slip rotates the tension axes towards the 0001 - 1100 boundary. The inverse pole

figure plot for simple compression, Fig. 4-20, shows initial rotation of the compression axes

towards the 0001 - 1210 boundary (A to B) indicating the presence of prismatic-< a >

and/or pyramidal-< a > slip. On approaching the 0001 - 1210 boundary, the compression

axes migrate along the boundary towards the (0001) pole indicating the operation of basal-

< a > slip systems. The inverse pole figure plot for simple tension, Fig. 4-25, shows the

rotation of the tension axes from the [1210] direction towards the 0001 - 100 boundary

(A to B) consistent with the rotations brought about by the operation of prismatic-< a >

or pyramidal-< a > slip systems. In summary, the evolution of texture during simple

tension and simple compression indicate the presence of basal-< a > slip in conjunction

with prismatic-< a > and/or pyramidal-< a > slip. Since Akhtar did not observe any

pyramidal-< a > slip in his experiments on single crystals in a wide range of orientations,

the possibility of absence of pyramidal-< a > slip is also considered in the simulations.

In order to identify the operative slip systems, simple compression and simple tension

simulations are performed for each of the following cases:

(A) All 5 families of slip systems: Basal (0001) < 1120 >, Prismatic {1010} < 1120 >,

Pyramidal {1011} < 1120 >, Pyramidal {1011} < 1123 > and

Pyramidal {1122 < 1123 > slip systems.

(B) All families of slip systems with the exclusion of pyramidal-< a > slip: Basal

(0001) < 1120 >, Prismatic {1010} < 1120 >, Pyramidal {1011i < 1123 > and Pyramidal

{1122} < 1123 > slip systems.

All the slip systems are assumed to be non-hardening. With regards to the slip system

deformation resistances, for the basal-< a > and prismatic-< a > slip systems, Akhtar's

observations suggest that the ratio of the two deformation resistances 1 at elevated

temperatures, as shown in Fig. 4-26. Accordingly, the same deformation resistance is

assumed for both these families of slip systems. There is very little information available

in the literature regarding the critical resolved shear stress for pyramidal-< a > slip at

high temperatures. Rosi, Perkins and Seigle [1956] have reported some activity on these

slip systems at 8000C but the authors do not report the critical resolved shear stress. In

the simulations, the deformation resistance for the pyramidal-< a > slip systems is taken

to be the same as that for the prismatic-< a > and basal-< a > slip systems. Regarding

pyramidal-< c + a > slip, Paton and Backofen's [1970] measurements of yield strengths at
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750°C in titanium single crystals oriented parallel to c-axis, where pyramidal-< c +a > slip

is the only mode of deformation, and perpendicular to the c-axis, where prismatic-< a >

slip is operational, indicate that the deformation resistance on the pyramidal-< c + a >

systems is 10-15 times that of the prismatic-< a > slip systems. For the simulations, the

value of the deformation resistance for the pyramidal-< c+a > slip systems is assumed to be

10 times that for the prismatic-< a > slip systems. Table 4-1 summarizes the assumptions

made above.

Table 4-1. Deformation resistances for different slip systems
so so so so

(0001) < 1120 > {1010} < 1120 > {1011} < 1120 > {1011} < 1123 > +
{1122} < 1123 >

so so so 10 so

The value for so is determined by fitting the experimentally measured yield strength

in compression. For the strain-rate sensitivity parameter m, the value measured from the

strain-rate jump test, m=0.16, is used. The material parameters used in the simulations

are tabulated in Table 4-2.

Table 4-2. Material Parameters for h.c.p. Titanium (Non-hardening)
0so so so so ho m

(0001) < 1120 > {1010} < 1120 > {1011 < 1120 > 1011} < 1123 > +
{1122} < 1123 >

8.2 MPa 8.2 MPa 8.2 MPa 82 MPa 0 0.16

The polycrystalline aggregate is represented by a 3D-Finite Element Mesh comprising

of 729 (93) ABAQUS-C3D8 elements, as shown in Fig. 4-27(a). This mesh represents

one-eighth of a rectangular parallelopiped specimen. Each element represents a grain and

is assigned an orientation which is chosen randomly from the set of 729 orientations. All

the nodes on the planes X1 = 0, X2 = 0 and X3 = 0 have zero displacements in the 1, 2 and

3 directions, respectively. All the nodes on the top X3 face are moved in the e3 direction at

a constant true strain rate of -0.001sec- 1 for the simple compression simulation, and at a

nominal strain rate of 0.001sec- 1 for the simple tension simulation. Deformed finite element
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meshes at late stages of the simulation are shown in Fig. 4-27(b) for compression and in

Fig. 4-27(c) for tension. The deformation of the aggregate is highly non-homogeneous as is

evident from the shape of the deformed finite elements.

The predicted macroscopic stress-strain curves for simple compression for the cases (A)

and (B) are shown in Fig. 4-28. The predicted crystallographic texture for each of the case

along with the experimentally measured texture is shown in Fig. 4-29. The stress-strain

response in both the cases show initial geometric softening. The nature of the stress-strain

curve is similar in both the cases; however, due to the additional slip systems available in

case (A), there is an attendant decrease in the flow-stress levels. We observe that there is

very little difference in the texture prediction for both cases, Fig. 4-29. Both predictions

agree reasonably well with the experiment. These observations suggest that either of the

assumed cases for the operating slip systems are plausible.

The predicted macroscopic stress-strain curves for simple tension for the cases (A) and

(B) are shown in Fig. 4-30. The stress-strain response for both cases are similar but for

a slight decrease in flow-stress levels for case (A). The measured and predicted texture for

each case along with the experimentally measured texture is presented in Fig. 4-31. The

texture prediction for case (B) matches the measured texture more closely. In particular,

the presence of pyramidal < a > slip systems in case (A) accentuates the concentration

of {1120} poles along the tension axis. However, the measured texture shows a high

concentration of {1120} poles 10- 15° from the tension axis. This feature is well-captured

with the assumption of basal-< a >, prismatic-< a >, 1st-order pyramidal-< c + a > and

2nd-order pyramidal-< c + a > slip systems. Hence, for the simulations that follow we

consider only these four sets of slip systems.

Simulation of Simple Compression and Simple Tension with Hardening

Based on the study in the previous subsection, the operative slip systems are taken

to be the basal-< a >, prismatic-< a >, 1st order pyramidal-< c + a > and 2nd order

pyramidal-< c + a > slip systems.

For the slip system hardening, the forms presented in equations (4.12), (4.14) and (4.15)

are adopted. Due to lack of relevant data, the initial hardening rate ho is assumed to be the

same on all the slip systems. Also, the saturation parameter is taken to be the same for

the basal-< a > and prismatic-< a > slip systems and 10 times this value for the pyramidal-

< c + a > systems. Since there is very little information available in the literature regarding

108



the nature of latent hardening in titanium crystals, simple tension and simple compression

simulations have been performed with different values for the latent hardening parameter ql

in the range 9 , 0 q < 1.5. The simulations and results are presented in Appendix E. The

study indicates that there is very little effect of changes in the latent hardening parameter

qj on the crystallographic texture evolution. The value, qt = 1, is chosen for the simulations

in the following sections.

The material parameters so, ho, 9 and r are determined by fitting the model to the

measured stress-strain response in simple compression. The parameters m and n are

determined by fitting the model to the strain-rate jump test. The curve-fits are shown

in Fig. 4-32. The fits yield the following set of parameters:

Table 4-3. Material Parameters for h.c.p. Titanium
so 50 _ so ho r m n ql

(0001) < 1120 > {010} < 1120 > {1011} < 1123 > +
{1122} < 1123 >

8.2 MPa 8.2 MPa 82 MPa 12 MPa 1 0.16 0.1 1

(0001) < 1120 > {1010} < 1120 > {10i < 1123 > +
(0001) < 1120 > {10i0} < 1120 > {10i1} < 1123 > +

{1122} < 1123 >
18 MPa 18 MPa 180 MPa

Figs. 4-33 and 4-34 show the comparison of the predicted texture with the measured

texture at e=-0.5 and e=-1, respectively. The predictions agree closely with the experimental

results.

Fig. 4-32 also shows the prediction of the stress-strain response for the case when

pyramidal-< c a > slip is absent. We observe a severe locking in the stress-strain

response. This highlights the significant role played by the pyramidal-< c + a > slip

systems. Although the deformation resistance of these slip systems are substantially higher

9In choosing the range of values for ql, we were guided by observations in cubic crystals where this value
has been experimentally determined to lie in the range, 0 < q < 1.5.
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than that of the basal-< a > and prismatic-< a > slip systems, pyramidal-< c + a > slip

has a profound effect on the stress-strain response of the polycrystalline aggregate. However,

the slip activity on the pyramidal-< c + a > systems is substantially lower than that on

the basal-< a > and prismatic< a > systems. Hence, pyramidal-< c + a > slip has only a

slight influence on the texture evolution.

The parameters estimated from the fit to the simple compression experiment are used

to predict the stress-strain response and texture evolution for simple tension. Fig. 4-35

shows the comparison between the predicted and the measured stress-strain response. The

prediction is in very good agreement with the experimental result. The predicted textures

at e-=0.2 and E=0.3 are compared against the measured textures in Fig. 4-36 and Fig. 4-37,

respectively. We observe important changes in texture in deforming from =0.2 to e-=0.3.

The 1120} poles are aligned very close to the tension axis at e=0.2. When deformed to

e=0.3, the {1120} poles rotate by 10 - 150 from the tension axis. These changes in texture

are accurately captured by the model.

The predictions of the stress-strain curves along with the corresponding measurements

for the simple compression and simple tension experiments are presented in Fig. 4-38. We

observe from Fig. 4-38(a) that at a large strain-level of IEI ; 0.3, the flow-stress level for

tension is higher than that for compression. This is due to the difference in the evolution of

texture in the two situations. The calculations correctly predict this difference, Fig. 4-38(b).

4.3.2 Plane-Strain Compression of CP-Titanium at 750°C

Experimental Results

In order to probe the capability of the model to predict the stress-strain response and

textural changes in other deformation modes, plane-strain compression experiments have

been conducted on specimens machined from the rod. The plane-strain compression

experiments were performed at 750C in the Model 1322 Instron Machine under high

vacuum. Fig. 4-39 shows a schematic of the plane-strain compression apparatus. The die

and the plunger were machined from MA956. The die was seated on an alumina ceramic

rod. The load was applied on the plunger through another ceramic rod. All the specimens

were cubes with a side-length of 0.3". The tests were performed at a constant true strain

rate of -0.001 sec - 1. An attempt was made to minimize the friction between all contacting
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surfaces by the application of boron nitride-powdered glass mixture. However, frictional

effects became significant at large strains, resulting in roll-over of the specimen sides.

The plane-strain compression samples were cored out from the rod as shown in Fig. 4-40.

The el, e2 and e3 directions of the global basis are aligned with the directions e, e and

e3, respectively, of the material basis. Two types of plane-strain compression experiments

were performed on the samples: (A) The compression direction was aligned with the rod

axis, e was the constraint direction and e'2 was the free direction; (B) The compression

direction was aligned with the rod axis, e' was the constraint direction and e' was the free

direction.

The measured stress-strain curves for the two types of tests are shown in Fig. 4-42. The

plane-strain compression test with e as the constraint direction shows a higher level of

flow-stress. The texture measured at e=-0.9 for the two tests are shown in Fig. 4-43.

Finite Element Simulations

Full 3D-finite element simulations are performed on the same finite element mesh, Fig. 4-

41(a), as was used for the simple compression and simple tension simulations. e3 is the

loading direction for both types of plane-strain compression simulations. All the nodes on

the bottom X3 face are fixed in the e3 direction and the nodes on the top X3 face are

moved in the e3 direction. In addition, for the first simulation, all the nodes on the outer

faces normal to the el direction have zero displacements in the el direction, while in the

second simulation, all the nodes on the outer faces normal to the e2 direction have zero

displacements in the e2 direction.

Figs. 4-41(b) and 4-41(c) show the deformed meshes for the plane-strain compression

simulations with e' and e' as the constraint direction, respectively. The predicted stress-

strain response for the two cases are compared against the corresponding experimental

results in Fig. 4-44. In both cases, the predicted initial flow-stress levels agree reasonably

with the corresponding experimental result for e < 0.5. But, at larger strains, the model

underpredicts the flow stress by a significant amount. The comparison of the predicted and

measured textures at =-O.9 is presented in Figs. 4-45 and 4-46. The predictions are in

reasonable first-order agreement for both cases.

The observed roll-over in the specimen at large strains and the attendant increase in

the measured flow-stress suggest the presence of significant friction between the contacting
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surfaces. Hence, both the calculations have been repeated with a friction coefficientl ° of

p = 0.05 between all contacting surfaces. The predictionsll of the stress-strain response are

now in better agreement with the measurements, as shown in Fig. 4-47. The predictions of

the texture at e=-0.9 are shown in Figs. 4-48 and 4-49.

4.3.3 Tubular Torsion of CP-Titanium at 750°C

Experimental Results

Fixed-end, tubular torsion experiment has been conducted at 7500C. The initial geometry

of the torsion specimen is shown in Fig. 4-50. The tubular specimen has an inner diameter

of 6.35 mm and an outer diameter of 8.89 mm in the gage section. Two important geometric

ratios in the tubular torsion experiment are l/d and d/t, where 1, d and t denote the gage

length, the mean diameter and the wall thickness, respectively. A large d/t ratio ensures a

reasonably uniform shear strain distribution through the wall. For our specimen geometry' 2,

d/t = 6. The shear strain distribution in the wall is only approximately uniform. A large

l/d ratio can cause the specimen to buckle. The specimen had a lid ratio, 0.67. The

specimen was twisted to a nominal shear strain of 1.0. The specimen walls did not buckle

during the deformation. The rate of twisting was such that the nominal shear strain rate

was 0.001sec - 1. The shear stress was evaluated using the torque measurements through the

following relation:
2

-r = td2 Torque (4.16)

where t is the gage section thickness and d = (di + do)/2 is the mean diameter of the gage

section. The normal stress was evaluated as:

Axial Load (4.17)
rdt

The crystallographic texture was measured by grinding flat and polishing a location on the

radius of the gage section such that the measurement surface was perpendicular to the e',

l°In the presence of friction, the overall stress-strain respsonse is sensitive to the aspect ratio of the finite
element mesh. Hence, the aspect ratio of the mesh is taken to be the ratio in the samples in our experiments.

l The results indicate that the use of an evolving coefficient of friction could further improve the
predictions. But, such a task is not undertaken here.

12 The outer diameter of the gage section was limited by the diameter of the rod and the wall thickness
was made large enough to accomodate 10-15 grains through the thickness. Starting with a 0.5" diameter
rod, this was the optimum geometry that could be obtained.
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direction of the material axes.

Finite Element Simulations

The finite element simulation is performed on a 3D finite element mesh13 containing

720 elements, shown in Fig. 4-51(a). Note that the initial texture, Fig. 4-14(a), is not

axisymmetric about the specimen axis, e3. Figs. 4-52(a) and (b) show the pole-figures

(viewed along a direction perpendicular to the plane of shear) for the situation when 2 - 3

is taken to be the plane of shear and the situation when 1 - 3 is taken to be the plane of

shear, respectively. The two sets of pole-figures are quite different. This poses a problem in

choosing the plane and direction of shear while approximating the torsion by a simple shear

simulation. We overcome this problem by carrying out a full 3D simulation of torsion.

The l/d and d/t ratios used for the simulation correspond to those of the experimental

specimen. In the simulation, the nodes on the bottom X3 face are fixed in the el, e2 and

e3 directions. The nodes on the top X3 face are fixed in the e3 direction and prescribed

a twisting motion about the axis of the torsion specimen with the twist rate used in the

experiments. Fig. 4-51(b) shows the deformed mesh at a nominal shear strain of = 1.

Fig. 4-53 shows the calculated shear stress and normal stress response compared against

the corresponding experimental measurements. The predictions match closely with the

experiments up to a shear strain of y = 0.5. In particular, the model captures the sign

of the normal stress response. The sign of the normal stress is an outcome of the initial

texture of the torsion specimen. Bronkhort et al. [1992] observed a compressive normal

stress in their fixed-end thin-walled tubular torsion experiments on f.c.c. copper with an

isotropic initial texture. It is interesting to note that the normal stress for the torsion test

on titanium is tensile. This can be attributed to the strong "rod-type" initial texture in this

case. For y > 0.5, the model slightly overpredicts the shear stress. Also, the calculations

show a decrease in the the normal stress level at a smaller shear strain than that observed

in the experiments. The agreement could be improved by an increase in the number of

grains used to represent the sample. A comparison of the experimentally measured and

calculatedl4 textures is presented in Fig. 4-54. The predictions are in close agreement with

13In order to capture any strain gradients that may occur through the thickness of the gage section, 5
elements were used along this direction.

14The texture was calculated from a set of 180 grains that were approximately perpendicular to the global
el direction in the deformed configuration.
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the measurements.

In conclusion, the constitutive model captures fairly accurately the anisotropic stress-

strain response and the evolution of crystallographic texture in h.c.p. titanium under

nominally homogeneous deformations to large strains at high temperatures. To the best of

our knowledge, this is the first-time a combined experimental and computational effort of

this nature has been carried out to study the deformation of hexagonal materials.
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Table 4-4. Basal Slip Systems (0001) < 1120 >
a Miller-Bravais [no] c [mle Label

Notation

1 (0001)[1120] 0 0 1 _- 0 B1

2 (0001)[2110] 0 0 1 0 B2

3 (0001)[1210] 0 0 1 -1 0 0 B3

Table 4-5. Prismatic Slip Systems {0100} < 1120 >
a Miller-Bravais [noa]C [moa l Label

Notation

1 (1010)[i2i0] 0 1 0 1 0 0 P1

2 (0110)[2110] 0 0 P22 22

3 (1100)[1120] - - ° P32 2 2 

Table 4-6. Pyramidal < a > Slip Systems {10il} < 1120 >
a Miller-Bravais [no c [moa ]c Label

Notation

1 (1011)[1210] 0 2c V- Za 1 0 0 R1

2 (01i11)[2110] vc _ c IVS 2 s 0 R2

4c2 3a2 /4+3a 4c+3a2 -2 2
3 (1101)[120] 3 C3a O R3

41 (1011)[1210] 0 2c 2 V3a -1 0 0 R4/4C2+3a2/4C2 _ -3O R
5 (0i11)[2ii0] - 3ic c3- 3 o R5/4c 2+3a2 4+3a 2 4c2+3a2 2 2

6 (1io01)[1120 v'c C va _v 0 R6-4-+3a C 4c2+3a 2 2 2
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Table 4-7. Pyramidal < c + a > Slip Systems {1011} < 1123 >
Miller-Bravais

Notation

(1011)[2113]

(0111)[1123]

(1101)[1213]

(1011)[2113]

(0111)[1123]

(1101)[1213]

(101il)[1123]

(0111)[1213]

(1101)[2113]

(i011)[1123]

(0111)[1213]

(1101)[2113]

2c va
°- 4 /4c2 +3a2

_ _ _c c v_ _a

'4c2 +3a2a 4 c 2 +3a27 /4c 2 +3a2~c'K~Z tv4o2 +32 4c+3 a

2c ac

4c+3a+3a2 V44c2+3a 2

__ _ _c c __ _ a

/0 v'4c/cC2+3a0s~i~i -743a= 4n~ c v3a

C+3 V4c2 +3a 2 4c2 +3a2
03c c %F/a

- 4c+ 3a 24c 2 +3a

[mlc

a a c
2(c 2+a) 2(ac2 ±-2 ) (Vc-+a2)

a a c
2(725) 2(c2,a/-) (c2+a2)

a c
2(c 2+a2) 2(1c2+a2) (C 2+ 2)

a V,a c
2(7v+'a7) -2(v-c 2+a2) ( 2+a)

a 0 c

2(-'+a2) 2(c 2 +a) ( 2-a)

a 0 c

a _ 3__ c
2(7c2 +a2 ) 2(/ 2+O) (+aT)

a _ ¶ a c
2( 2+) 2(1c) ( 2)

a _ c
2(7c2+a2 ) 2(v'c2-a 2) ( 2+a2)
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1

2

3

4

5

6

7

8

9

10

11

12

Label

R7

R8

R9

R10

R11

R12

R13

R14

R15

R16

R17

R18
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Table 4-8. Pyramidal < c + a > Slip Systems {1122} < 1123 >
a Miller-Bravais " [n]. [ma]c Label

Notation

2 (i2i2)[1213]( i ° ('4c+a2) a- °0TT) c R20
( (VC-a) ()

3 (2112)[2i3]1 c - T- V4 rC a 2 a 2 2 ) a c R2132 2 (-212) 2 (v) 2(c2 +a 2) ( 2 -- a2 )

4 (I22)11-23] - - Z f a Ala 2 R224 (2(v'-+a2) 2(vc'+a2) ( 2+-a2 ) 2(4 2 -+a) 2(,/y2n) (c 2 +-a2)

5 (1212)[1213] 0-- 0 (v ) (a ) 0 ( ) R23

6 (2112)[2113]1 2(vT va2) Za _R2(,'~-ay)-(V 7 '~) (2) z(V----7 ) (vc%-+a) (V )
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Figure 4-1: (a) Structure of the hexagonal lattice. (b) Schematic diagram illustrating the
relation of the simple hexagonal cell (light lines) to the orthohexagonal cell (dark lines) and
the hexagonal prism (dashed lines).
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Figure 4-2: Slip systems in high-temperature deformation of h.c.p. titanium.
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Figure 4-3: Effect of temperature on the critical resolved shear stress for basal and prismatic

slip in high-purity titanium (Conrad [1981]).
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Figure 4-4: Twin systems in room-temperature deformation of h.c.p. titanium.
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Figure 4-5: (a) Influence of temperature and purity on the volume fraction of twins at 5%
compression in a-titanium (Paton, Williams and Rauscher [1973]). (b) Volume fraction
of twins as a function of true strain in h.c.p. titanium deformed in tension at various
temperatures (Lii, Ramachandran and Reed-Hill [1970]).
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Figure 4-6: (a) Standard stereographic (0001) projection for titanium. (b) Primary
orientation triangle showing the initial orientation of the tension axis.
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Figure 4-7: Simple tension experiment performed on a titanium single crystal at 750°C
(Akhtar [1975a]): (a) Resolved shear stress vs. shear strain curves for basal slip. (b) Inverse
pole figure showing the change in orientation of the tension axis with strain (A-B-C).
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Figure 4-8: Experimentally measured
-0.0001sec- ' to e = -O.Olsec- l .
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stress-strain response during strain-rate jump from 
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(a) 12

(b) Li

Figure 4-9: (a) The initial finite element mesh used in the simulation of tension of a titanium
single crystal. (b) Deformed mesh at = 0.7.
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Figure 4-10: Comparison of the simple tension experiment performed on a titanium single
crystal at 7500C (Akhtar [1975a]) with our numerical simulation: (a) Accumulated slip
vs. macroscopic strain for active slip systems. (b) Inverse pole figure of the change in
orientation of the tension axis. (c) Resolved shear stress vs. shear strain response on the
basal slip system B1.
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(a)
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Figure 4-11: Micrograph of the as-received titanium rod, 50X: (a) Transverse Section (b)
Longitudinal Section
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Figure 4-12: Experimentally measured crystallographic texture of the as-received titanium
rod. The rod axis is aligned with the e3 direction.
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Figure 4-13: Micrograph of the annealed titanium rod, 50X: (a) Transverse Section (b)

Longitudinal Section
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Figure 4-14: (a) Experimentally measured texture in the annealed CP-Titanium rod and
(b) its numerical representation using 729 unweighted discrete grain orientations.
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Figure 4-15: Geometry of compression specimens (All dimensions are in inches).

e3

Figure 4-16: Schematic illustrating the orientation of the material axes in the compression
specimen.
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Figure 4-17: Experimentally
CP-Titanium at 7500C.

measured stress-strain response during simple compression of
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Figure 4-18: Photographs of the section of the compression specimen perpendicular to the
loading axis: (a) Initial (b) e = -0.5 (c) E = -1.
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Figure 4-19: Experimentally measured crystallographic texture at e = -1 in CP-Titanium
deformed in simple compression at 750C.
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Figure 4-20: Inverse pole figure of the compression axis: (a) Initial (b) e = -0.5 (b) e = -1.
The figures also show the lines of symmetry (bold lines) in the plot. The dashed lines
(A-B-C) trace the evolution of the compression axis with strain.
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Figure 4-21: Geometry of tension specimens (All dimensions are in millimeters).
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Figure 4-23: Photographs of the section of the tension specimen perpendicular to the tensile

axis: (a) Initial (b) e = 0.2 (c) e = 0.3.
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Figure 4-24: Experimentally measured crystallographic texture at e = 0.3 in CP-Titanium
deformed in simple tension at 750C.
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Figure 4-25: Inverse pole figure of the tension axis: (a) Initial (b) e = 0.2 (b) = 0.3. The
figures also show the lines of symmetry (bold lines) in the plot. The dashed lines (A-B)
trace the evolution of the tension axis with strain.
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Figure 4-26: The ratio of the critical resolved shear stress for basal to that
in high-purity h.c.p. titanium (Akhtar [1975a])

of prismatic slip
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Figure 4-27: Initial and deformed finite element meshes in simple compression and tension
simulations: (a) Octant of a cube (b) Initial finite element mesh (c) Deformed mesh at
e --1 in simple compression (d) Deformed mesh at e = 0.4 in simple tension.
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Figure 4-28: Stress-strain curves from simple compression simulation for the non-hardening
case with two different assumptions for the slip systems.
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Figure 4-30: Stress-strain curves from simple tension simulation for the non-hardening case
with two different assumptions for the slip systems.
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Figure 4-31: Experimentally measured texture after simple tension to e = 0.3 and calculated
texture with two different assumpations for the slip systems.
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Figure 4-32: Experimentally measured stress-strain response in simple compression and
strain-rate jump tests and the corresponding numerical fits from the simulation. The figure
also shows the calculated stress-strain repsonse for simple compression in the absence of
<c+a> slip.
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Figure 4-33: Comparison of the experimentally measured texture after simple compression
to e = -0.5 with the texture predicted by the finite element model.
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Figure 4-34: Comparison of the experimentally measured texture after simple compression
to e = -1.0 with the texture predicted by the finite element model.
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Figure 4-35: Comparison of the experimentally measured stress-strain response in simple
tension with the numerical prediction.
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Figure 4-36: Comparison of the experimentally measured texture after simple tension to
e = 0.2 with the texture predicted by the finite element model.
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Figure 4-37: Comparison of the experimentally measured texture after simple tension to
= 0.3 with the texture predicted by the finite element model.
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Figure 4-38: (a) Measured stress-strain response for simple compression and tension. (b)
Simulation using the finite element model.
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Figure 4-39: Schematic of the plane-strain compression apparatus.
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Figure 4-40: Schematic illustrating the orientation of the material axes in the plane-strain
compression specimens and its relation to that in the simple compression specimen.
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Figure 4-41: Initial and deformed finite element meshes in the plane-strain compression
simulations: (a) Initial finite element mesh. (b) Deformed mesh at e = -0.9 for the case
with e' as the constraint direction. (c) Deformed mesh at e = -0.9 for the case with e'2 as
the constraint direction.
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Figure 4-43: Experimentally measured crystallographic texture at e = -0.9 in CP-Titanium
deformed in plane-strain compression at 750°C with: (a) e' as the constraint direction and
(b) e2 as the constraint direction.
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Figure 4-45: Experimentally measured texture after plane-strain compression to E = -0.9
with e as the constraint direction and the corresponding texture predicted by the finite
element model assuming no friction between contacting surfaces.
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Figure 4-46: Experimentally measured texture after plane-strain compression to e = -0.9
with e as the constraint direction and the corresponding texture predicted by the finite
element model assuming no friction between contacting surfaces.
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Figure 4-47: Comparison of the experimentally measured stress-strain response in plane-
strain compression with the numerical predictions assuming a friction coefficient of j- = 0.05
between contacting surfaces.
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Figure 4-48: Experimentally measured texture after plane-strain compression to = -0.9
with e as the constraint direction and the corresponding texture predicted by the finite
element model assuming a friction coefficient of u = 0.05 between contacting surfaces.
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Figure 4-49: Experimentally measured texture after plane-strain compression to e = -0.9
with e2 as the constraint direction and the corresponding texture predicted by the finite
element model assuming a friction coefficient of ,p = 0.05 between contacting surfaces.

165

3.00
2.57
2.15
1.72
1.29
0.86
0.44
0.01 ,,S

(0001)

Xl

/' 

il1

X,

,%. [ 11201

.X

X2·:
-Iel~'11 171 11 1 -- ,,I



127

Ii--~~~~~~~~l
8.89

- - I
. -I1- - -- -Ii ------ I

6.35 12.07

Figure 4-50: Geometry of tubular-torsion specimen (All dimensions are in millimeters).
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Figure 4-51: Initial and deformed finite element meshes in tubular torsion simulation: (a)
Initial finite element mesh (b) Deformed mesh at = 1.
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Figure 4-52: Initial pole-figures in the tubular torsion specimen measured perpendicular to:
(a) 2-3 plane of the specimen (b) 1-3 plane of the specimen.
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Figure 4-53: Comparison of the experimentally measured shear stress-shear strain res ponse
and normal stress-shear strain response in tubular torsion with the predictions from the
finite element model.
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Chapter 5

Conclusions

A reasonably successful physically-based model for polycrystalline plasticity of face-

centered-cubic materials has been developed. The model is essentially an extension of the

previous work by Anand and co-workers (Kalidindi et al. [1992], Bronkhorst et al. [1992],

Kalidindi et al. [1994]). The simple power-law relation for the plastic flow is replaced

by a more physically-motivated constitutive function based on the thermally-activated

theory of plastic flow (Kocks et al. [1976], Argon [1995]). The constitutive equations

have been implemented in both "static,implicit" and "dynamic,explicit" finite element

programs. The physical description for the plastic flow enables the the model to reproduce

the macroscopic stress-strain response and the crystallographic texture evolution up to large

strains ( 100%) for a wide range of strain-rates (10- 3 - 102 sec- 1) and temperatures (77

- 298 K). The material parameters in the model have been determined by calibrating it

against existing experimental data for aluminum (Duffy [1974], Senseny et al. [1978], and

Carreker and Hibbard [1957]). The predictive capability of the model has been evaluated by

comparing its predictions for the macroscopic stress-strain response and texture evolution

in simple compression and plane-strain compression for two temperatures, 77K and 298K,

with corresponding experimental results on A11100-O. The predictions are in reasonable

agreement with the experiments. The important differences in the behavior of f.c.c. and

b.c.c. materials with regards to strain hardening and strain-rate and temperature history

effects are also captured by the model. The predictions of the stress-strain repsonse compare

well with existing experimental data on strain-rate and temperature jump tests (Dorn et

al. [1949], Lopatin et al. [1992]).
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In order to evaluate the applicability of the crystal plasticity model to actual deformation

processing operations, the phenomenon of formation of earing defects in cup-drawing has

been studied. Cup-drawing experiments were carried out on aluminum 2008-T4 sheets.

The predictions of the model of the load-displacement response, the number of ears, their

locations, and heights are in very good quantitative agreement with the experiments. This

capability could serve as a design and analysis tool for cup-drawing and related sheet-metal

forming applications.

A large deformation, crystal-plasticity based constitutive model for high-temperature

deformation of titanium is presented. The constitutive model and the computational

procedures have been implemented in a finite-element scheme. Quasi-static simple-

compression, simple-tension and plane-strain compression experiments have been conducted

on commercially-pure titanium at 750C, and the resulting macroscopic stress-strain

response and evolution in crystallographic texture have been measured. Full 3D finite

element simulations of these deformation modes have been carried out and comparison

of the predictions from the same against corresponding experiments shows the model to

be reasonably accurate. To the best of our knowledge, this is the first-time a combined

experimental and computational effort of this nature has been carried out to study the

deformation of hexagonal materials.

5.1 Suggestions for Future Work

The following are some suggestions for future areas of research:

* Twinning is an important mode of plastic deformation in hexagonal materials at room

temperature. The incorporation of twinning in a rate-dependent crystal plasticity

model would facilitate the study of deformation processing of h.c.p. materials at room

temperature. For a recent rate-independent crystal plasticity model for incorporating

both crystallographic slip and twinning, see Staroselsky and Anand [1997]

* For polycrystalline materials of the low symmetry crystal structure, the Taylor-type

averaging procedure does not work well. Other types of polycrystalline averaging

schemes such as the self-consistent method (Hutchinson [1977]) and the constrained-

hybrid method (Parks and Ahzi [1990]) have been developed for this situation.
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There is a need to evaluate the applicability of these schemes to high-temperature

deformation of h.c.p. titanium.

* Other details of microstructure such as porosity, localized shear bands, etc. and their

evolution need to be incorporated in the constitutive model. Such details are necessary

in order to predict failure during deformation processing.
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Appendix A

Time Integration Procedures

The time-integration procedure for a Taylor-type polycrystal modell may be stated as

follows. Let r = t + A t. Then, given

(1) F(t), F(r), (t), 0(7)

(2) (mn, no) - time independent quantities, for each grain,

(3) FP(t), 8a(t), T(t)} in each grain,

calculate

(a) {FP (r), sa (r), T (r) for each grain,

(b) volume averaged macroscopic stress T(r),

(c) texture {(mC(r)(k), na(T)(k)} at time r. and march forward in time.

The computational procedures for items (a), (b) and (c) depend on the nature of the

finite element procedure adopted. Fully-implicit Euler-backward schemes are employed for

the "static,implicit" finite element procedure. For the "dynamic,explicit" finite element

procedure, the computation of the time-integration steps are performed through a simple

Euler-forward scheme. In the following, the computational methodologyv for each of these

finite-element procedures is described.

A.1 Implicit Finite Element Procedure

For the computation of the list of variables in (a), the computing scheme of Kalidindi et.

al [1992] is adopted:-

'The time-integration procedure for a single crystal model is obtained simply by setting the number of
crystals in the Taylor-aggregate to be one.
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(i) Compute

A FP- T(t) FT(r) F(r) FP'(t), (A.1)

T*t C [ {A- 1}] (A.2)
2 L 2 ~CI- L~J ) (A.2)

B a _ AS +So T A, (A.3)

C c [ o] (A.4)

where SI = (ml ® ng).

(ii) Solve

T*(7) i T*tr- A 'Ca, (A.5)
a

8a(7) - sa(t) + Z h(r) A-YI, (A.6)

with

A a - - (7) At, (A.7)

for T*(7) and s(7r) using the following two-level iterative procedure.

In the first level of iterations, solve (A.5) for T*(7), keeping s(7r) fixed at its best

available estimate using a Newton-type iterative algorithm as follows:

Tn+l(7r) = Tn(r) - Jn'[Gn], (A.8)

where

Gn T(7r) - T*tr + ya (T(7r), s ()) Ca, (A.9)
a

Jn - + +C ® a y' (T(T),s(7r)), (A.10)

where the subscripts n and n + 1 refer to estimates of T*(-) at the end of n and n + 1

iterations respectively, in the first level of the iterative scheme. The second level of the

iterative procedure involves a simple update (without iterations) of s(7r) using

S+1 = s-(t) + I, hea (sA(7)) IAY~ (T+l(T), sk(r)) I (A.11)
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where the subscript k refers to the value of 8a (r) at the end of the kth update in the second

level of the iterative scheme.

In the rate-independent limit of plastic flow, i.e., for small values of ', the set of

equations (A.5) becomes very stiff and it becomes necessary to apply constraints to the

Newton corrections (A.8) in the first level of the iterative procedure. In this work, the

following constraint procedure has been adopted:

Let

{IA'Ylmax(r) = max0 IAyT(r)l (A.12)

If

IA IAmax < A7tol, (A.13)

then accept the Newton correction, else

(Ti)n+l(7) = (Tij)n(r) + 77 AT, (A.14)

where is a small factor. A value of 7 of 0.25 was found to give good results in the

calculations in this study.

(iii) Compute

FP(r)-1 + yaS } FP(t). (A.15)

It was necessary to normalize FP(T) by dividing the computed values of each of its

components by the cube root of the computed determinant so as to ensure that the

determinant of FP(-) is unity.

(iv) Compute

etF) I F(r)F P - (T)T*(T)FP - T ()FT(T) (A.16)
det F(7)

After calculating the Cauchy stress in each crystal T(r), the macroscopic stress in (b)

is obtained by a simple volume-average,

qT = N=1k= vk T ( k) ,

The texture at time r is evaluated as follows:

m'(-r)(k) = Fe()mo = F(T)F P- (- )ma,
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n(r)(k) = Fe- T(T)no = F-T()FpT ()nl,

The time-stepping for the implicit finite element procedure is automatically controlled

based on the maximum value of the slip increment. A parameter R = -a " is used as a
"lim

measure for controlling time-increments where Ayaax is the maximum value of A7y over

all the crystals and all the integration points in the finite element mesh and A71im is a

prescribed value of slip increment based on the desired accuracy. A value of A71im = 0.02

was found to give good results in this work. If the value of R is greater than 1 then the

time-step is repeated with a time increment, Atnew = Atold. If 0.5 < R < 1, the value

of the time-increment is maintained and if R < 0.5, the time-increment is doubled i.e.,

Atn+l = 2Atn. The efficiency and speed of the scheme depends on the rate- sensitivity of

the material. The equations (A.5) become stiffer in the rate-independent limit requiring

more iterations to solve for the stresses.

A.2 Explicit Finite Element Procedure

(i) Calculate

FP-1 () -- Fp - (t){1 - A yQ(t)S } (A.17)
a

Fe(T) = F(r)FP (r) (A.18)

Ee( ' ) = 1 {Fe()TFe())- 1} (A.19)

T* (T) = C[Ee(r)] (A.20)

(ii) Compute the hardening modulii,

hfl(t) = ho 1 (t) sign 1 - s(t) (A.21)

haP(t) = qch(t) (A.22)

(iii) Calculate the slip system deformation resistances and the resolved shear stresses on

each slip system at time T

8(T) = sa(t) + E h(r) IAy1 (A.23)
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(A.24)

(iv) Calculate the shear increments on the slip systems at time r

if r' *<0'
Aly a= I 0c(sg (" if 'r.- < , (A.25)

Af -- Atexp {- kGa(," ) I sign(ra ) if 0 < ra < s ,,

A time-stepping scheme is not required for the explicit finite element procedure. The

problem is solved with nearly equal increments in time subject only to slight variations due

to changes in the stability limit arising from changes in the mesh geometry.
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Appendix B

Analytical Jacobian for

ABAQUS/Standard

An implicit finite element procedure employs a Newton-type iterative method for revising

the estimates of the nodal displacements. This requires the evaluation of a Jacobian matrix

that is consistent with the time-integration procedure used in the constitutive model.

The fully implicit Euler-backward time integration scheme has been implemented in the

finite element program ABAQUS/Standard [1996]. This program represents the symmetric

Cauchy stress tensor T(r) and a symmetric relative strain tensor Et(r)l as vectors according

to the following convention,

T(T) 11

T(r)22

T(r) 33

T(T) 12

T(')13

T(r)23

Et(T)11

Et(T)22

Et(7)33

2Et()12

2Et(r)13

2Et(j23

(B.1)

1This relative strain increment is given as Et(r) = lnUt(r), where Ut(r) is the relative stretch obtained
from the polar decomposition of the relative deformation gradient, Ft(-)
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where T(r)ij and Et(-r)ij are the components of the tensors T(r) and Et(7), respectively.

The Jacobian matrix required by ABAQUS is defined as,

w = ae (B.2)

The Cauchy stress tensor for the time r = t + At is related to the second Piola-Kirchoff

stress measure by,

T( d) etF ) [Fe(r)T*(r)F eT ()] (B.3)

From (B.3) we obtain,

dT detFe1 [FeT*F eT + FedT*FeT + FeT*dFeT - (FeT*Fe)tr(dFeFe-')] (B.4)

In (B.4) all the variables are at time r. In what follows, unless otherwise stated all variables

are evaulated at time r. Equation (B.2) can be rewritten in the indicial notation as follows,

dTij = WijkldEt,k (B.5)

For convenience, let us define two fourth-rank tensors S and Q as,

aF e OT*
S = Ew Q = (B.6)OEt ' Et

Rewriting (B.4) in the indicial notation and substituting (B.6) in this, we obtain the

following expression for the Jacobian,

Wijkl detFe [SimklTnFej + FiemQmklnJ + Fim-TSjnkl - FimT1nFe (SpqkFqpikl nndetF n
(B.7)

Note that Wijkl in (B.7) can be reduced to the WIJ form in (B.2) by the following
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transformation,

Wl112tWt2l1
2

W2212+W2921
2

Ws12+Wsl21
2

W1212+Wl221
2

2

W2S12±W23U1
2

W1113+Wsss
2

W1221L+W22al
2

2

W 213+W,31
2

Ws313+W s331
2

W2313+W231
2

W12123W113
2

W222:+W2232
2

W3 s2 A +WAs92
2

W1223+W122
2

W1s2s +W1.32
2

W2 23 +W 2 33 2
2

For relatively small incremental stretch,

Et = lnUt(7) - Ut() - 1, Ut(r) -+ 1.

So, dEt : dUt. With the aid of this approximation, we can modify S and Q as,

F e OT*
OUt Ut (B.9)

In order to compute Wijkl in (B.7), we need to calculate S and Q. In what follows, we

enumerate the steps for the same.

B.1 Calculation of Relevant Quantities

(i) Calculation of S = 8F :

Fe(T) = RtUtFe(t) {01 - 'yASO} (B.10)

where Rt, Ut is obtained from the polar decomposition of the relative deformation gradient

Ft. Differentiating (B.10),

dFe = RtdUtFe(t) - RtdUtFe(t) E A'yaSa - RtUtFe(t) E dAy'aSo
0 0~~~~~~t

R= aA7'
OUt 
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W221 1

W 33 11

W1 211

Wi 3 11

W2 31 1

W112 2

W 2222

W3 3 22

W1222

W2132 2

W 2322

¥W113 3

W2 23 3

W3 3 33

W1 2 33

W1 3 33

W 23 3 3

(B.8)

With

(B.11)

(B.12)



we rewrite (B.11) in the indicial notation as follows,

d = [RtikFl(t) - Rt,,ikFle(t) E AYSopj - RtmUtmnnFp(t) 

Therefore,

Sijkl = Rt,ikFi;(t) - Rt,ikFe(t) AySopj - RtimUt,mnFp(t) E R*Sopj-
a a

(ii) Calculation of Q = :

T*(r) = T*t r - > AyaCa
a

Differentiating this expression,

dT(r) = dT'"' (B.16)- E dA7oCa - X A7yOdC"
a at

Let
T tr

8T = D.
aut

With
aA 

dT~t = CijmnmnkldUt,kl23 

1
Dijkl = 2Cijmnmnkl

acO

aUt

C = C [AS + STA],

dC' = C [dASo + S TdA],
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(B.13)

(B.14)

(B.15)

Therefore,

(B.17)

(B.18)

(B.19)

(B.20)

Next, let

Since

(B.21)

(B.22)

a S
Rk'I O,pj



Substituting for dA from (B.19),

dCj = {CijmnImpk1Spn + CijmnS0ppnk1 } dUti

Therefore, 1n + m
sil 2 MPjm~mn

The relation for dT*, (B.16), can be rewritten in terms of V, R a and ja as,

dT*j = VDijkldUt,kL- Z RndUt,,lC~ - Z AaC7iJjdUtkl1,

From (B.25), we obtain Q as

Qijkl = -Dijkl- CijRn - k "r>J,

(iii) Calculation of Z = A:

A = FeT (t)Ut(T)Ut(T)Fe(t)

On differentiation,

dA = FeT(t)dUt(t)Ut(T)Fe(t) + FeT (t)Ut (t )dUt(t )Fe (t)

In the indicial notation,

dAij = Fiek (t)dUt,klUt,lmFj(t) + Fm(t)Ut,mkdUt,klF e(t)

Therefore,

Lijkl = F Tek (t)Ut,ImFej(t) + Fiem (t)Ut,mkFlej(t)

(iv) Calculation of R' = :I SW

A-y = ATy(T*(Ut)) (B.31)

Here for the sake of simplicity, the change in the deformation resistances during increment

At is neglected. Consequently, the plastic shear increment is dependent only on the resolved
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(B.24)

(B.25)

(B.26)

(B.27)

(B.28)

(B.29)

(B.30)



shear stress. Equation (B.31) is differentiated using the chain rule as,

oyaa {Ut + aX} = ASya {T*(Ut) + aX} (B.32)

d hy U + aX)}l = OT x= a A(B33)~ oUt --- u- a- [ out I 'T*X

Let

Ba = a. (B.34)
9T*

Then,

Ri = B' Qklij (B.35)

We can now substitute the expression (B.35) in equation (B.26) to get the final

expression for Q as follows,

Q = Z - (C a ® Ba)Q- y ATaJ (B.36)

Therefore,

Q = Z + '(C 9 ® B ) {V - E AyaJ} (B.37)

where Z is the fourth-rank identity tensor.

(v) Calculation of Ba = a:

B a A7 a A.T a = Oa 2(sO + SOT) (B.38)
OT*= Ora OT* - 0ra 2

(vi) Calculation of Cijkl in global co-ordinates:

Let CC and C be the anisotropic elasticity tensor in the crystal and global basis

respectively. Then, the stress-strain relation referred to the crystal basis is given by

T*C = CC[EeC]

If Q is the orthognal tensor that rotates the crystal basis to the global basis,

T* = QT*CQT; EeC = QTEeQ.

T* = QCC[QTEeQ]QT, (B.39)
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T. = QimCmnopQokQTPQjEkl (B.40)

Therefore,

Cijkl = QimQjnQkoQipCnnop (B.41)

B.2 Algorithm for computation of the Jacobian

1. Calculate

Cijkl = FiekT (t)Ut,lm(r)Fer (t) + Fjm(t)Ut,mk(r)Fje(t)

2. Calculate Cijkl in global co-ordinates,

Cijk = QimQjnQkoQlpCmnop

3. Calculate

Dijkl = 2CijmnZmnkl

4. Calculate

(a) nkl = CmpklSOpn + SSmppnkl

(b) Jijk, = "Cijmngmnkl

5. Calculate

B = aa 2(S + )

6. Calculate

(a) rCijkl = 1ijkl + E (CijBk )

(b) Qijkl = imn kl - E. a- amnkl

7. Calculate

(a) Rij = Bk Qklii

(b) Sijk, = Rt,ikFi(t) - Rt,ikFip(t) I E Sp) - Rt,imU,mnFnp(t) E RkS

8. Calculate the Jacobian

ij detFe [SimkTnne + FieQmnklFe + FTmnSjnkl -FiTmn (SpqklFqp )]Lj detFe . cs m nj
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9. Reduce the Wijkl to the Wij form through equation (B.8). This Jacobian is for the

constitutive response of a single crystal. Compute the Jacobian for the constitutive

response of each of the crystals in the polcrystalline aggregate in a similar manner.

10. Calculate the overall Jacobian for the constitutive response at the integration point

as a volume-average of the Jacobians associated with the constituent crystals,

WIJ = Sk v(k)W(j)
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Appendix C

Procedures for Measuring Pole

Figures

The crystallographic texture in the as-annealed and deformed specimens were obtained

by x-rayl irradiation using a RIGAKU RU200 diffractometer equipped with a pole-figure

goniometer. The specimens were all sectioned approximately at the mid-plane using a a

diamond wheel mounted on a BUEHLER ISOMET low speed saw. This ensured that the

cutting process did not alter the texture in the sample. The mounted samples were rough

ground in an ABRAPOL automatic polisher to a 10 #m finish with the application of 150

N force. This was followed by fine-grinding for 10-15 minutes using a 5 pum SiC paper with

the application of 100 N force. The specimens were then oxide-polished for 5-10 minutes

to a mirror-finish ( 0.05pm) using colloidal-silica suspension with the application of 50 N

force. The resulting surface was free of visible grinding marks.

For the measurement of the crystallographic texture, at first the 20 positions for the

specific crystallographic planes were located. For the 20 scans, a 1 divergence slit, a 10

scatter slit and a 0.3 mm receiving slit were used. Partial pole figures were generated by

using the Schultz reflection method on the {111}, {200} and {220} crystallographic planes

in aluminum and (0002), {1011i} and {1120} crystallographic planes in titanium. For the

pole-figures, the slits used were a 1 divergence slit, a Schultz slit, a 6 mm receiving slit and

a 7 mm scatter slit. The diffractometer used for the measurement of texture had a focussing

circle 185 mm in radius. With this geometry for the focussing apparatus, the irradiated

'The x-rays were generated from a copper target serving as the rotating anode.

187



surface was approximately 5.2 mm x 1.2 mm in area. The average grain diameters for the

aluminum and titanium specimens were 150 pm and 175 m , respectively. Consequently,

the irradiated surface samples about 280 grains in the aluminum specimens and 210 grains

in the titanium specimens. The background radiation for each pole-figure was measured

at approximately 2 from the corresponding 2 peak. All the x-ray measurements were

performed with a power level of 50 KV and 150 mA.

The experimental pole-figure data in its raw form is uncorrected and is in the form of

discretized intensities as a function of the goiniometer position angles. The raw data was

processed using the popLA software package (Kallend et al. [1994]). Each pole-figure was

corrected for background and defocusing2 In addition, spherical harmonics were used to

extrapolate the outer 15° of each pole-figure which was not measured in the experiments.

All the pole-figures presented in this study are equal-area projections of the specified

crystallographic planes.

2 The defocusing curve for the slit geometry used in the experiments was constructed theoretically using
the methodology proposed by Tenckhoff [1970].
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Appendix D

Single Crystal Studies on Titanium

In this chapter, the effect of different choices of slip systems on the stress-strain response,

slip system activity, and the evolution of the crystal lattice orientation in simple tension

and compression experiments on h.c.p. single crystals is anlayzed. This study is aimed at

providing information regarding the operative slip systems in high-temperature deformation

of h.c.p. titanium.

Fig. D-1(a) shows the inverse pole-figure of the rod axis for the annealed titanium rod.

The rod axis is located predominantly in the neighborhood of the [1210] direction. For the

simulations, a single crystal orientation that is representative of this initial texture, Fig. D-

1(b), is considered. Accordingly, the initial orientation of the single crystal is taken to be

specified by the following three Euler angles (Kalidindi [1992]):

B q w

850 250 00

The simple tension and compression simulations are performed for each of the follcwing

three different choices of slip systems:

(i) Basal-< a > slip systems only

(ii) Prismatic-< a > slip systems only

(iii) Pyramidal-< a > slip systems only.

The values of elastic parameters for single crystal h.c.p. titanium at 750°C are taken as
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(Simmons and Wang [1971]):

Cu- = 125.3 GPa, C12 = 99.4GPa, C13 = 68.8 GPa, C33 = 154.5 GPa, C5 = 31.6 GPa.

The slip systems are assumed to be non-hardening. Also, for all the simulations, the

slip system deformation resistance is taken to be equal to so = 8 MPa. For the slip system

rate-sensitivity, the value measured from strain-rate jump tests on polycrystalline titanium

at 750°C, m = 0.16, is used.

A single eight-noded brick ABAQUS C3D8 element is used to perform the finite element

simulations in ABAQUS/Standard. The tension or compression direction is aligned with

one of the element axes. The two loaded faces of the cube are constrained to remain

parallel to each other and perpendicular to the tension or compression axis throughout the

deformation. The simulations are carried out at a constant true axial strain rate of ±t0.001

s- 1 to a final true strain of 0.25 in tension, and -0.25 in compression.

D.1 Simple Tension

Fig. D-2 shows the predictions of slip system activity, and evolution of the crystal orientation

when only basal-< a > slip is allowed. Initially, the basal slip systems B1 and B2 are

activated as shown in Fig. D-2(a). On straining, the tension axis rotates towards the

1010 - 1120 boundary, Fig. D-2(b). On approaching the boundary at a macroscopic strain

of e 0.05, the Schmid factors on both the slip systems become very small resulting in an

arrest in their activity.

Fig. D-3 shows the predictions of stress-strain curve, slip system activity, and evolution

of the crystal orientation when only prismatic-< a > slip is allowed. Two prismatic slip

systems, P1 and P2, are active, Fig. D-3(b). This results in the rotation of the tension axis

towards the 0001 - 1010 boundary as shown in Fig. D-3(c).

Fig. D-4 shows the predictions of stress-strain curve, slip system activity, and evolution

of the crystal orientation when only pyramidal < a > slip is allowed. Two slip systems, R2

and R5, are active, Fig. D-4(b). The orientation of the the tension axis rotates towards the

(1010) pole, Fig. D-4(c).
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D.2 Simple Compression

Fig. D-5 shows the predictions of stress-strain curve, slip system activity, and evolution of

the crystal orientations for simple compression when only basal-< a > slip is allowed. Two

slip systems, B1 and B2, are active, Fig. D-5(b). The compression axis rotates towards the

(0001) pole along a great circle, Fig. D-5(c). The geometric softening in the stress-strain

response, Fig. D-5(a) is due to the decrease in Schmid factor with strain.

Fig. D-6 shows the predictions of stress-strain curve, slip system activity, and evolution

of the crystal orientations when only prismatic-< a > slip is allowed. Activity on slip

systems P1 and P2 (see Fig. D-6(b)) causes the compression axis to rotate towards the

0001 - 1120 boundary, Fig. D-6(c). Also, the compression axis has a slight tendency to

rotate towards the (1120) pole.

Fig. D-7 shows the predictions of stress-strain curve, slip system activity, and evolution

of the crystal orientations when onlt pyramidal-< a > slip is allowed. Two slip systems,

R2 and R5, are active, Fig. D-7(b). As in the case of prismatic slip, the compression axis

rotates towards the 0001 - 1120 boundary, Fig. D-7(c). But unlike the case of prismatic

slip, the compression axis has a slight tendency to rotate away from the (1120) pole.

D.3 Conclusions

The following conclusions can be made from the simple tension and compression simulations

on the titanium single crystal:

1. In tension, basal-< a > slip rotates the tension axis towards the 1010 - 1120 boundary.

Prismatic-< a > slip rotates the tension axis towards the 0001 - 1010 boundary while

pyramidal-< a > slip rotates it towards the (1010) pole.

2. In compression, basal-< a > slip rotates the compression axis towards the (0001) pole

while prismatic-< a > slip or pyramidal-< a > slip rotates the compression axis towards

the 0001 - 1120 boundary.
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Figure D-1: (a) Inverse pole figure of the compression axis in the annealed titanium rod.
The figure also shows the lines of symmetry (bold lines). (b) Primary orientation triangle
showing the initial orientation of the single crystal considered in the simulation.
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Figure D-2: Numerical simulation of simple tension of a titanium single crystal at 750°C
when only basal-< a > slip is allowed: (a) The accumulated slip vs. macroscopic strain for
active slip systems. (b) Inverse pole figure of the change in orientation of the tension axis.
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Figure D-3: Numerical simulation of simple tension of a titanium single crystal at 750°C
when only prismatic-< a > slip is allowed: (a) The macroscopic stress-strain response (b)
The accumulated slip vs. macroscopic strain for active slip systems. (c) Inverse pole figure
of the change in orientation of the tension axis.
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Figure D-4: Numerical simulation of simple tension of a titanium single crystal at 750°C
when only pyramidal-< a > slip is allowed: (a) The macroscopic stress-strain response (b)
The accumulated slip vs. macroscopic strain for active slip systems. (c) Inverse pole figure
of the change in orientation of the tension axis.
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Figure D-5: Numerical simulation of simple compression of a titanium single crystal at
750°C when only basal-< a > slip is allowed: (a) The macroscopic stress-strain response
(b) The accumulated slip vs. macroscopic strain for active slip systems. (c) Inverse pole
figure of the change in orientation of the tension axis.

196

I An

12C

(

-;

90

60

30

0

(a) o.oo

1JU
n sac



2C

20

> 15

10

5

0

0.3

_- 0.2

0.1

0.0
(a) °00 0.05 0.20 0.2515 0.00 0.2505 0.10 o.5 0.20(a) 0.0 II I

0001

1120

(C) loio

Figure D-6: Numerical simulation of simple compression of a titanium single crystal at
750°C when only prismatic-< a > slip is allowed: (a) The macroscopic stress-strain response
(b) The accumulated slip vs. macroscopic strain for active slip systems. (c) Inverse pole
figure of the change in orientation of the tension axis.
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Figure D-7: Numerical simulation of simple compression of a titanium single crystal at
750 C when only pyramidal-< a > slip is allowed: (a) The macroscopic stress-strain
response (b) The accumulated slip vs. macroscopic strain for active slip systems. (c) Inverse
pole figure of the change in orientation of the tension axis.
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Appendix E

Effect of Latent Hardening on the

Polycrystalline Response of h.c.p.

Titanium

In chapter 4, the following form for the slip system hardening was introduced:

s= h| y3[, (E.1)

where ha describes the rate of strain hardening on slip system a due to shearing on the

slip system ,(. For the slip system hardening matrix h"a , the following simple form was

adopted:

ha = p q hp 1- sign 1 ( - (E.2)

where qap is a matrix describing the latent hardening behavior of a titanium crystal, y is a

reference shearing rate and ho, r, and n are slip system hardening parameters.

Also, the latent hardening matrix was taken to be decribed as:

pqk -( 1 if a and , are coplanar slip systems, (E.3)

qI otherwise.

Here, the parameter qi is assumed to be a constant and the same for interaction between

any two non-coplanar slip systems.
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Since there is no experimental information available about the numerical value for qt, in

this chapter, numerical simulations of simple tension and compression are performed with

three different choices of the latent hardening parameter ql of 0, 1 and 1.5, respectively. The

effect of the different choices of the latent hardening parameter on the evolution of texture

and the stress-strain response in simple compression and tension of polycrystalline h.c.p.

titanium is analyzed.

The simulations are carried out with the assumption of basal-< a >, prismatic-< a >

and pyramidal-< c + a > slip systems. The initial texture is numerically represented by

729 unweighted grain orientations as shown in Fig. 4-14. The calculations are performed in

ABAQUS/Standard with a finite element mesh comprising 729 C3D8 elements where each

element represents a grain. The material parameters used for the calculations are estimated

by fitting the predictions from the model for q = 1 with the measured stress-strain response

for constant strain-rate and strain-rate jump compression tests, Fig. 4-32. The parameters

estimated from this fit are:

Table E-1. Material Parameters for h.c.p. Titanium
so so so ho r m n

(0001) < 1120 > {1010} < 1120 > {1011) < 1123 > +
{1122} < 1123 >

8.2 MPa 8.2 MPa 82 MPa 12 MPa 1 0.16 0.1

(0001) < 1120 > {10i0} < 1120 > {1011} < 1123 > +
{1122} < 1123 >

18 MPa 18 MPa 180 MPa

Fig.E-1 shows the predicted stress-strain curves in simple compression for the three

different values of ql. The stress-strain responses for ql = 1 and ql = 1.5 are nearly the same

but the stress-strain curve for ql = 0 differs significantly from the other two. In order to

capture the stress-strain response for values of the latent hardening parameter other than

1, there is a need to determine a "new" set of slip system hardening parameters for each
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assumption for qj. Such a task is not undertaken here. Fig. E-2 shows the predicted texture

at e = -1 for the three different cases compared against the experimentally measured

texture. We observe that the texture evolution is quite insensitive to the changes in the

latent hardening parameter, q. The predictions of the stress-strain curves and the texture at

e = 0.3 in simple tension for the three different assumptions for q are presented in Figs. E-3

and E-4, repsectively. Again, the stress-strain curves differ but the texture evolution for

the three cases are nearly identical.

In conclusion, the study shows that the assumption for the latent hardening parameter

qt is not crucial for the calculation of texture evolution in polycrystalline h.c.p. titanium.

For the simulations on polycrystalline h.c.p. titanium, the value of the latent hardening

parameter is assumed to be q = 1. The effect of different values for q could be more

significant in the deformation of single crystals. In this context, there is a need for careful

experimental studies probing the latent hardening behavior of h.c.p. titanium and hexagonal

materials in general.
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Figure E-1: Measured stress-strain response for simple compression and calculated stress-
strain curves with three different assumptions for the latent hardening parameter qt.
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Figure E-2: (a) Experimentally measured texture after simple compression to e = -1;
Numerically calculated texture with three different assumptions for the latent hardening
parameter qt: (b) ql = 0 (c) q = 1 (d) qt = 1.5
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Figure E-3: Measured stress-strain response for simple tension and calculated stress-strain
curves with three different assumptions for the latent hardening parameter ql.
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Figure E-4: (a) Experimentally measured texture after simple tension to e = 0.3;
Numerically calculated texture with three different assumptions for the latent hardening
parameter ql: (b) q = 0 (c) q = 1 (d) ql = 1.5
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