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ABSTRACT

This thesis develops an approximate, analytically based environmental assessment method that
provides fast evaluations of product concepts.

Traditional life-cycle assessment (LCA) studies and their streamlined analytical versions are
costly, time-consuming, and data intensive. Thus, they are not practical to apply during early
concept design phases where little information is available and ideas change quickly.
Alternatives currently used are mostly qualitative, ad-hoc approaches that often-provide overly
simplistic assessments difficult to trade-off with other design objectives.

The Learning Surrogate LCA method is an alternative approach that uses simple, high-level,
and accessible descriptive information about a product to provide approximate, yet useful,
analytical LCA results during early concept design stages. The method relies on a general
artificial neural network (ANN) trained on high-level product descriptors and environmental
performance data from pre-existing detailed life-cycle assessment studies or related data. To
quickly obtain an approximate environmental impact assessment for a product concept, the
design team queries the trained artificial model with new set of descriptors, without requiring the
development of a new model. The predicted environmental performance, along with other key
performance measures, can be used in tradeoff analysis and concept selection.

Foundations for the approach were established by investigating: (1) model inputs in the form of
a compact, and meaningful set of product concept descriptors; (2) ability to gather data and
appropriately train an ANN-based surrogate LCA model. Proof-of-concept tests on life-cycle
energy consumption showed that ANN-based surrogate models were able to: (a) match detailed
LCA results within the accuracy of typical LCA studies; (b) predict relative differences of distinct
product concepts; (c) correctly predict and generalize trends associated with changes for a
given product concept. A product classification system based upon concept descriptors was
developed to improve performance.

The method was then applied to a case study with a heavy truck manufacturing company. A
demonstration example was used to illustrate application scenarios for tradeoff analysis within
DOME (Distributed Object-based Modeling Environment). The study suggested that high-level,
customizable simulation interfaces of learning surrogate LCA models are likely to have a
significant practical impact in the early decision making process.
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1T INTRODUCTION

The push for sustainable development has begun to change the way many companies design
products. Product design teams are being asked to judge the environmental impact of the
products they are developing. Furthermore, it is key to understand how design changes can
affect the life-cycle environmental performance of a product during evaluation of concept
feasibility, together with the other traditional design criteria, such as technical performance and
cost. This prevents environmental impacts that may not be corrected or mitigated later from
occurring in the first place. However, conceptual design creates particular challenges for
environmental assessment. How can product design teams quickly evaluate and tradeoff
competing product concepts that are numerous and often dramatically different using only the
scarce information available at early conceptual design stages? Motivated by the lack of
methods for integrated, early conceptual, environmentally-conscious design this thesis proposes
the learning surrogate LCA method to apply on approximate life-cycle assessments early on in

‘the product design process.

1.1 MOTIVATION

Today’s pétterns o} consumption, energy production and waste generation must be dramatically
changed. The world population is growing along with our increased quality-of-life expectations.

Industry plays a key role in determining the sustainability of development. Further, the need to
change consumption patterns while meeting the needs of people, economies and natural
systems through less wasteful processes and life-enhancing goods and services creates new
business opportunities. This in turn requires technology innovation and the adoption of new
business models (WRI, 2002).

in order to commit to such changes one must be able to understand their implications, including

 the environmental impact of designed and manufactured products. When defining and adopting

strategies, we must be aware that every product we design and manufacture causes
environmental impacts during all stages of its entire life-cycle.

Design for environment (DFE) or environmentally-conscious design is a product design strategy
widely recognized to be useful to industry in acquiring long-term competitive advantage under
the “new rules of the game.” These new rules developed greatly during the 1990s through
factors, such as an increasing societal awareness of environmental issues, increased pressure
from environmental legislation or anticipated legislation, competition, and consumer demand
(Lewis et al, 2001; McAloone, 2000; Graedel, 1998; Fiksel, 1996).

DFE considers life-cycle environmental attributes as design objectives together with other
conventional design goals rather than as constraints (Berkel et al, 1997). Life-Cycle Assessment
(LCA) is a popular DFE analytical methodology that has been proposed to identify and assess
the environmental aspects and potential impacts associated with a product throughout its life
cycle. By tackling environmental issues in a product's life cycle, potential for cost savings are
likely to be found, such as using fewer raw materials and less energy or reducing waste
management and emission control costs.
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Environmentally-conscious design in-itself may promote sustainability, but it is not necessarily
actively aiming at sustainability (McAloone, 2000). In contrast, sustainable design or sustainable
product development actively broadens the design activity scope to collectively consider equity,
ethical and social impacts and total resource efficiency. The ultimate goals are to achieve inter-
generational equity and to maximize robust system-wide solutions in pursuit of more sustainable
modes of production and consumption (Lewis et al, 2001; McAloone, 2000; Thomas and
Weinberg, 1999). -

In order to achieve this holistic goal, it is essential to consider many factors during the front-end
of the design process, and to use them in the evaluation of concept feasibility along with other
requirements. This means product design teams must be able to evaluate the approximate
environmental performance of many product concept systems — solution concepts and their
upstream influences and downstream impacts — early in the design process. Further, these
evaluation techniques must be operable within the constrainis of real-world product
development and provide credible information that is sufficient for decision-making. This is a .
central issue addressed in this thesis.

1.2 PRODUCT CONCEPT SYSTEMS — OPPORTUNITY AND
CHALLENGE

Environmental impacts occur at all stages of a product’s life-cycle, and different types of
products create impacts at different stages of the life-cycle (Lewis et al, 2001). Regardless, the
largest part of environmental impact is “locked-in" into the product at the conceptual design
stage of product development (Lewis et al, 2001; U.S. Congress, 1992).

The conceptual design stage defines the basic characteristics of a product, ranging from cost
(Ulrich and Eppinger, 2000) to environmental aspects (Bhamra et al, 1999). Decisions that
emerge from the conceptual phase are often locked-in because of to the large amount of
resources — time, manpower, and money — needed to change path as launch deadlines
approach. In particular, early design decisions have environmental implications at each stage of
the product life cycle from extraction of raw materials, processing and manufacturing, to product
use and final disposal. At early design stages, critical decisions are made on product key
attributes, such as the materials used, energy requirements, recyclability, and longevity, which
ultimately determine its life-cycle performance. Figure 1.1 illustrates the environmental “lock-in”
concept over the life cycle of a product and maps the various strategies industry can potentially
adopt throughout the product’s development cycle. '
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Figure 1.1 Early design stages define key attributes that ultimately determine the environmental
performance of a product throughout its life-cycle. Adapted from Lewis et al (2001).

Therefore, it is key to bring environmental considerations into the front end of the design
process and use them in the evaluation of concept feasibility along with other requirements,
such as operational performance and price. The product design team must then be able to
evaluate the approximate environmental performance of many alternative concepts early in the
design process.

Conceptual design creates particular challenges for environmentai assessment. Time is usually
a scarce resource during the product development cycle. Development time can mean the
difference between leading or following in an industry, and thus it limits the ability to create
detailed models for many different concepts. Competing product concepts are numerous and
have dramatic differences. The lack of information is a significant barrier to the creation of
madels needed to evaluate different concept ideas, and muiti-attribute tradeoffs and decisions
must be made quickly.

Previous work by Borland and Wallace (2000) illustrated how the capabilities of parametric life-
cycle assessment (LCA) models developed by environmental experts could be integrated with
traditional design models and made available on demand using an Internet-based framework
called DOME (Distributed Object-based Modeling Environment). The approach seamlessly
linked parametric design models for rapid integrated tradeoff analysis. They propose and
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demonstrate a vision for practicing environmentally conscious design where teams of designers
and environmental experts collaborate during the product design process. Expertise is
distributed, allowing each party involved to concentrate on the fields they know best. In this
paradigm, the focus shifts from providing techniques that let designers make environmental
assessments to providing tools that facilitate timely communication and information transfer
between designers and environmental experts. However, the use of detailed parametric models
is still of limited value for early conceptual design because of the amount of time and information
needed to develop the parametric LCA models. Thus, both the overhead in developing
parametric LCA models for a diverse range of product concepts, and the lack of detailed
information make the integration of traditional LCA models impractical.

Several methods, qualitative and quantitative, have been proposed to simplify and significantly
reduce the amount of resources required for LCA modeling. They range from checklists (Clark
et al, 1999; Fiksel, 1996), qualitative matrices (Allenby, 1992), abridged LCA (Graedel et al,
1995), and LCA streamlining (Mueller and Besant, 1999; SETAC, 1999), to a variety of other
forms of approximate LCA. Although these existing methods are all useful, they are not ideally
fitted for early conceptual design in an integrated modeling context. Qualitative information is
difficult to use in highly dimensional, fast-paced tradeoff analyses, and the streamlined
analytical techniques are still somewhat prohibitive from a modeling effort viewpoint.

Empirical studies performed at companies, such as the one described by McAloone (2000),
have been substantiating the present lack of tools for environmentally-conscious design
decision-making at early conceptual stages. Existing methods and tools do not match at all the
nature of product concept systems to be able fully incorporate environmental aspects during
early conceptual design stages. They do not fulfill the need for:

» Conceptually support life-cycle thinking with lack of detailed, accurate information on ill-
defined product concepts, and their upstream and downstream influences;

* Credible information for decision-making in the design process within the time, data and
cost constraints of real-world product development;

« Analytically support highly dimensional multi-attribute tradeoff analysis on traditional and
environmental design goals, when designing a particular system;

» Simulation interfaces between environmental experts and the other product design team
members in a systems modeling context.

1.3 REFRAMING ENVIRONMENTALLY-CONSCIOUS DESIGN OF
PRODUCT CONCEPT SYSTEMS: THE LEARNING
SURROGATE LCA CONCEPT

The lack of analytically-based methods capable of supporting environmentally-conscious design
at early conceptual stages motivated a search for alternative evaluation techniques that better
suit the needs of early product development. This lead to the question:

Can life-cycle assessment using learning algorithms emulate existing heterogeneous
knowledge and generalize trends to allow fully integration of environmental assessment
into early conceptual design stages?
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The hypothesis is that models built upon learning surrogate LCA approaches can efficiently
provide, in a system-modeling context, approximate, quick and integrated environmental
analysis of new product concepts. The learning surrogate LCA concept developed and tested in
the thesis supports this hypothesis.

The learning surrogate LCA concept suggests the use of an approximate LCA model based on
learning algorithms that learns from existing detailed LCA studies. Yet, the model possesses
only a high-level input interface — product concept descriptors — allowing it to operate with the
limited data available in early conceptual design stages to meaningfully predict environmental
impacts for a wide variety of concepts. The model has the flexibility to learn as new information
becomes available, but it does not require the creation of a new model to make LCA predictions
for a new product concept. In addition, the surrogate model does not delay product development
as it supports the extremely fast comparison of the environmental performance of product
concepts and facilitates simulation interaction between designers and environmental experts.

it is proposed that existing environmental and product data are brought into early design stages

“through heuristic abstraction (see Figure 1.2). Pahl and Beitz (1999) discuss heuristic
abstraction as a key cognitive strategy to support both creativity and systematic thinking of
designers at early conceptual design stages. In the course of doing abstraction, designers find
higher level — generic and comprehensive — interrelationships, reduce complexity and
emphasize essential characteristics of the problem. In a similar way, both designers and
environmental experts can use abstraction to identify essential product and environmental
assessment features ignoring particular or incidental information stored for existing products
and emphasizing what is general.

The abstracted information is the used in learning cycles of LCA models based on artificial
neural networks (ANN) for quick and approximate preliminary analysis of product concept
systems’ environmental performance, as illustrated in Figure 1.2. ANNs are first trained to
generalize on high-level characteristics of product concepts, typically known in the conceptual
design phase, and environmental data from pre-existing LCA studies. The product design team
then queries the trained artificial model with high-level attribute data of new product concepts to
quickly obtain the corresponding approximate environmental performance, without the overhead
of defining new LCA models. The product design team can apply the predicted environmental
performance along with key performance measures from other models in tradeoff analysis and
concept selection.
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Figure 1.2 The learning surrogate LCA concept.

In supporting a-team-oriented, multidisciplinary design process at early conceptual stages, this
new method assumes that environmental experts and design engineers are specialists in their
own fields. Learning surrogate LCA models should be created, validated and maintained by
environmental experts. They are meant to be used by designers or by environmental experts as
a service provided to designers. Product descriptors are the simulation interface between
environmental experts and designers for this new approach, understood by designers in relation
to preliminary product concepts, and meaningful for an approximate environmental impact
assessment of product concept systems.

The learning system architecture of the surrogate LCA method has also been extended to
include a tree-based classifier to perform an initial product categorization based on the product
descriptors and direct the analysis to broad product category-based neural networks to
approximately predict environmental performance. The goal of the classification step is to
narrow down the learning space to enhance the prediction performance of ANNs specialized in
different types of products.

1.4 THESIS OUTLINE

Chapter 2 first provides an overview of the design process and highlights key features that
make the design activity such an ambiguous yet critical activity in the product development
cycle. The second part of the chapter introduces the standard methodological process for LCA
and alternative streamlined approaches that have been proposed to address some of the
jimitations of the LCA detailed approach. Fundamental gaps of existing DFE methodologies are
identified. These approaches are mapped together with the learning surrogate LCA concept to
methodological attributes that are key to early conceptual design stages.

Chapter 3 introduces the learning surrogate LCA concept and relevant background for the
developed method. It first explains the overall concept. Then it provides the basis from which
the learning system to support the concept was selected. Finally, it gives an overview of the
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DOME (Distributed Object-based Modeling Environment) simulation framework through which
environmental assessment services from learning surrogate LCA models can be extended to a
World-Wide Simulation Web (WWSW) for integrated design and tradeoff analysis.

Chapter 4 focuses on the proof-of-concept work that was performed to establish the learning
surrogate LCA method. The first part goes through the investigation of key questions critical to
the validation of the learning surrogate LCA concept: (1) What is a meaningful set of product
attribute descriptor inputs?; (2) Can a trained ANN quickly provide reasonabie estimates when
queried with descriptors? The second part of the chapter describes research performed to
explore product classification schemes to support learning surrogate LCA models specialized in
different general classes of products.

Chapter 5 presents an application study to a specific product development context in a Swedish
heavy truck manufacturing company. The process of customizing the learning surrogate LCA
approach in a company-targeted product concept system was explored. The implementation of

a demonstration example illustrated potential application scenarios for tradeoff analysis using
-integrated simulation.

Chapter 6 summarizes the main ideas developed in this thesis, key contributions and broader
implications of the work. A future work section includes methodological improvements, further
research on implementation and investigation of new application areas.
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2 NEED FOR LIFE-CYCLE THINKING IN PRODUCT
CONCEPT SYSTEMS

McAloone (2000) presents an interesting perspective on how life-cycle thinking is considered in
product design. McAloone realizes that there is a significant gap between the theory dictated by
concurrent engineering literature and design practice. While definitions of concurrent
engineering extend the term to consider a product throughout its life cycle, from concept to end-
of-life, many design models and design practice do not go further than manufacturing and
selling the product, after which the company’s responsibility ends. So why expect designers to
have a life-cycle philosophy and understand about the whole life of the products they design?

interestingly enough, there is also a significant inconsistency between the academic theoretical
view of environmentally-conscious design and design practice. Life-cycle thinking is theoretically
embedded in the framework of environmentally-conscious design and detailed analytical
approaches such as Life-Cycle Assessment (LCA) (a widely accepted method of assessing the
environmental impacts of a product throughout its life-time). However, environmentally-design
process in practice (or a life-cycle philosophy) is absent in the most critical phase — the early
conceptual design stages. The lack of realistic structured approaches to help incorporate
environmental considerations into early design stages can be viewed as an important factor that
drives this gap (McAloone, 2000). Qualitative research by McAloone (2000) tackled this problem
by developing a conceptual model of the transition from design to environmentally-conscious
design for the electronics industry organizational structure. Although necessary, his research
path was not sufficient to eliminate the gap. | believe the “established” environmental-conscious
design theoretical and methodological framework is an equally relevant barrier. It does not
match the particular nature of the design process, especially at early conceptual stages. Life-
cycle thinking is not happening in practice at the conceptual design stage given currently
available environmentally-conscious design framework and methods. This idea is further
itlustrated in Figure 2.1.
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Figure 2.1 Environmentaliy-cohscious design practice does not happen up-front.
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This chapter reviews key literature to develop the rationale of this argument. In the first two
sections, an overview of the early design process and the key features that make it so
challenging to the development of methods for environmentally-conscious design are provided.
The third section presents an overview of the LCA methodology, its streamlined forms, and
discusses key limitations of the framework when applied during the design process. Finally, the
chapter closes by discussing fundamental methodological gaps found in existing
environmentally-conscious design approaches that make them inappropriate for early design
stages and ultimately contribute to the lack of consideration of environmental issues in
mainstream design activities.

2.1 THE DESIGN ACTIVITY

A wide variety of models intended to systematically describe the design process have been
proposed by several authors (Pahl and Beitz, 1999; Ulrich and Eppinger, 2000; Clausing, 1995;
Ullman, 1992; Hoffmann 111, 1997; Pugh, 1996). These models, although recognizing the
-iterative nature of the design activity, propose systematic interpretations of the process by
dividing it into distinct phases. Based on the various existing approaches, the design process
can be generally outlined as follows:

1. Planning and clarification of task. The goal is to formulate a clear statement of the
product requirements that looks promising given the current market situation, company
needs and economic outlook. During this phase, the company decides development
strategies related with supply chain, life cycle support and manufacturing management.

2. Conceptual design. In this phase, the product is conceived in conceptual terms
emphasizing the purpose that the product will fulfill. It involves the identification of the
essential problems through abstraction, the establishment of function structures and the
search for the appropriate solution principles and their combination. The design tools
used at this phase in product design must be general in nature, questioning past design
approaches and directing the design team to new, improved design options.

3. Embodiment design. During this phase the designer, starting from the selected concept,
defines the layout and forms, and develops a technical product or system according with
technical and economic considerations.

4. Detail design. In this phase, the concept and the part structure have been well defined
and attention shifts to the design of individual parts. The arrangement, form, dimensions,
and surface properties of all the individual parts are finally laid down, the materials
specified, the technical and economic feasibility re-checked and all drawings and other
production documents produced.

Cagan and Vogal (2002) propose a new systematic approach — user-centered, integrated new
product development — to clarify the early phases of new product development, traditionally
perceived as the “fuzzy front end” of product development. They define four phases: identifying
the opportunity, understanding the opportunity, conceptualizing the opportunity, and realizing
the opportunity. The first three phases are the ones where the problem definition is still
uncertain and vague. The fourth phase is a transition phase into the more concrete and
analytical stages of product development.

Throughout the design process, the design activity is a combination of many different factors,
such as creativity, technical knowledge, mathematical knowledge, and team dynamics. Pahl
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and Beitz (1999) view the design activity through different perspectives: psychological,
systematic and organizational.

Psychologically, design is a creative activity that requires sound knowledge in various scientific
and engineering disciplines as well as knowledge and experience in the domain of interest.
Initiative, resolution, ecanomic insight, tenacity, optimism and teamwork are essential qualities
of a good designer. Designing is also a systematic activity that optimizes given objectives given
partly conflicting constraints in a particular set of circumstances. From an organizational
perspective, design is a key piece of the product life cycle where designers must understand
their role in close collaboration with specialists in a wide range of disciplines and expertise.

During the design process, designers have to determine a path that maps the need for a
specific object to the final product (see Figure 2.2). Many different solutions (paths) that meet
the need can be devised depending on the designer's knowledge of the process and problem
domain (Ullman, 1992).

Design process knowledge
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need products
—_— that meet

the need

Hydredynamics
Physlcs  Engineering

Matarlals science
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Figure 2.2 Knowledge used in the design process. Source: Uilman (1992).

Design is a problem solving activity that deals with ill-defined problems with many potential
solutions and no clearly best solution (Ullman, 1992). Using available or easily accessible
information to help understanding the problem and generate potential solutions, designers
evaluate the solutions by comparing the alternatives and deciding which is the best. Four basic
actions are involved: (1) establish the need or realize there is a problem to be solved; (2)
understand the problem; (3) generate potential solutions; (4) evaluate the solutions by
comparing the potential solutions and deciding for the best; (5) document the work.

Through this problem design activity, design reveals to be fundamentally a learning process.
Figure 2.3 shows a typical learning curve in a scenario known as the design process paradox
(Uliman, 1992). Throughout most of the design process the learning rate is high. The steeper
the slope the more knowledge gained per unit time, The design freedom curve illustrates that as
design decisions are made, the ability to change the product becomes increasingly limited
because of time and cost, typically the main drivers of design projects. While at the beginning
the designer has a high degree of freedom (few decisions have been made and little capital has
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been committed), by the time the product is about to go to production, any change is an
expense, limiting the designer's freedom to make further changes.

% Learning curve
100 (knowledge about design problam)
80 L
80 |-
40 L
Design freedom
20 |
0
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Figure 2.3 The design process paradox. Source: Uliman (1992).

This effect of cost commitment by the design process is directly represented in Figure 2.4, As
shown in the figure, one can rapidly realize that cost is most committed early in the design
process. Typically 75% of the manufacturing cost is committed by the end of conceptual phase
in the design process (Ullman, 1992). This means decisions made after this point in the design
process can determine only 25% of the product’s manufacturing cost.
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Figure 2.4 Design effect on manufacturing cost. Source: Uliman (1992).

Likewise, the environmental performance of a product is largely locked-in into the product at the
early stages of the design process (Lewis et al, 2001; U.S. Congress, 1992, McAloone, 2000).
During these early stages, critical decisions are made on product key attributes, such as the
materials used, energy requirements, recyclability, and longevity, which ultimately determine the
life-cycle performance of the product. Figure 2.5 shows the environmental “lock-in” concept over
the life cycle of a product.
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Figure 2.5 Environmental “lock-in" by design activities over the various stages of product development
and life-cycle. Adapted from Lewis et al (2001).

Thus, at early stages, product designers should have access to relevant environmental
information so .that they can make appropriate decisions and tradeoffs with other design
requirements, allowing a wide range of environmental concerns to be incorporated into the
decision-making process.

2.2 PRODUCT CONCEPT SYSTEMS

Product concept systems is a term used throughout this thesis to help position, define, and
characterize the research problem domain into the design process framework. From the
literature reviewed, the systems architecture framework proposed by Crawley and de Weck
(2001) is the one most appropriate for this purpose.

The close interaction between systems architecture and systems design as described by
Crawley and de Weck (2001) fits well with the conceptual interface model of the learning
surrogate method. The system architecture scope — embodiment of the concept and the
allocation of functionality and definition of interfaces among elements — manipulates
architectural variables (e.g. number of satellites, constellation type). The systems design scope
manipulates design variables (e.g. optical parameters, thermal strategy detector). Changes in
the design variables can have large consequences at the architecture level and influence
decisions, especially in high performance complex systems. The simulation interface of the
learning surrogate LCA concept (product concept descriptors) operates in this boundary by
incorporating a high level description of the concepts while at the same time accommodating a
{high) level of parameterization.

The problem domain of this thesis consists of a product concept system. The concept — a vision,
idea or mental image of a product — maps function, i.e. how the product behaves, to form, i.e.
where the chunks are. Based on a framework proposed by Crawley and de Weck (2001) the
product concept can be viewed as a system which interfaces with both upstream and
downstream influences of a whole product system, as illustrated in Figure 2.6.
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Figure 2.6 Product concept system interfaces with upstream and downstream influences.
Adapted from Crawley and de Weck (2001).

Product concept systems are key for the design and development process to the extent of being
able to shape cost, technical and environmental performance of products throughout their life-
cycle. Figure 2.7 maps levels of complexity, ambiguity and creativity to the GDIO (Conceive —
Design — Implement — Operate) generic product development process model developed at the
MIT Department of Aeronautics and Astronautics. Product concept systems and high level
trades occur and evolve at the conceive phase, characterized by:

Incomplete knowledge

Design concepts have little detail. Specific forms of linear or non-linear functionalities are
unknown or ill-defined. The complexity — defined here as the amount of information required to
fully describe the system — is then low (see Figure 2.7) and systems are defined and simulated
at a high, abstract and approximate level.

Uncertainty
Upstream influences on product conceptual systems are “not designed,” rather they occur with

incomplete, uncertain, overlapping or conflicting outcomes. Downstream influences are
themselves ambiguous because they are “in the future.” This lack of information and incomplete
knowledge about the systems leads to high levels of ambiguity or uncertainty (see Figure 2.7).

Design freedom

The creativity process can be very active (see Figure 2.7). Design concepts evolve rapidly in
innovative combinations of different pieces of information or ideas. Design freedom at this stage
can lead to architectural innovation — by further exploiting existing technology — or radical
innovation — by replacing existing technology (Henderson and Clark, 1990).
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Adapted from Crawley and de Weck (2001).

Design

2.3 LIFE-CYCLE ASSESSMENT
2.3.1 OVERVIEW OF STANDARDIZED LCA APPROACH

Life-Cycle Assessment (LCA) is a “cradle-to-grave” approach for assessing the environmental
performance of a product, process or service system from raw material acquisition through
production, use and disposal. The method systematically examines environmental impacts by:
(1) compiling an inventory of energy and material inputs and outputs of the product system, (2)
evaluating the potential impacts on resource use, human health and ecological systems
associated with those inputs and outputs, and (3) interpreting and communicating the results of
the assessment relatively to the goals of the study, which covers the whole life-cycle of the
system, from raw material acquisition through production, use and disposal (ISO, 1997; SETAC,
1993). Figure 2.8 illustrates the possible life-cycle stages considered in an LCA process and the
typical inputs and outputs measured.
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Source: Graedel! and Allenby {1995)

The LCA methodology has evolved over the past two decades, predominantly in Europe but
also in the USA and more recently in Asia (Lewis et al., 2001). The International Organization
for Standardization (ISO) developed the currently agreed international standard for the LCA
process (1ISO, 1997). LCA principles and framework as well as methodological details are
documented in four environmental management standards (ISO 14040-14043).

The LCA process consists of four components: definition of the goal and scope, life-cycle
inventory analysis, life-cycle impact assessment, and life-cycle interpretation. This phased
approach is illustrated in Figure 2.9, and generally outlined in the following paragraphs. A basic
yet comprehensive introductory overview of the LCA process is provided by U.S. EPA (2001).
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Figure 2.9 The standardized LCA process. Source: 1ISO (1997).

Interpretation

» Definition of goal and scope. This phase determines the direction and depth of the study.
The purpose of the study is defined by stating clearly the reason for conducting the LCA,
and the intended use of results. The scope of the LCA defines the system, boundaries,
data requirements, environmental effects to be reviewed, assumptions, and limitations.
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The system to be assessed is defined in terms of a “functional unit,” a measure of
performance that the system delivers. This functional unit is specified as a basis for
comparison: of a product before and after improvement; a comparison of several design
alternatives of a new product; or a comparison between different products with the same
function. Specific data-quality goals should be clearly established, including the degree
of confidence in the data, and ultimately in decisions that will be based upon the data.

« Life-cycle inventory (LCI) analysis. In this phase, the unit processes of the system are
analyzed to identify and quantify energy, water and materials use and environmental
releases (e.g., air emissions, solid waste disposal, wastewater discharge). The unit
processes are then linked together in process flow charts, and mass balance equations
are used to calculate the net flows of inputs and outputs of the system. The result of this
analysis is a long list of resources used and emissions to the environment. Detailed data
are required and the quality of the data should be consistent with the purpose and scope
of the study, including variability, uncertainties, and gaps. The degree of sub-division of
the total system into individual processes is frequently determined by the availability of
data and the requirements defined in the goal and scope of study.

¢ Life-cycle impact assessment. A stand-alone LCI can provide useful information for
product improvements, benchmarking, energy savings, and emission reduction, but it
does not place the inventory data and information into perspective for the comparative
assessment of product systems. To better understand the relative environmental
significance of the inputs and outputs of the system, environmental impacts associated
with the inventory are estimated and evaluated in three main steps:

(1) Classification. The data collected in the inventory stage are grouped together into
a number of impact categories (e.g. global warming).

(2) Characterization. All the inventory elements within each impact category are
translated into a common metric or equivalency factor (e.g. global warming
potential in CO,-equivalents, where, for example, carbon dioxide affects global
warming by a factor of 1 and methane affects global warming by a factor of 22).
A further development of the characterization step is to normalize the aggregated
data per impact category in relation to the actual magnitude of the impacts within
this category in some given area, to facilitate the comparison of the data from the
different impact categories.

(3) Valuation. The impact categories are weighted so that they can be compared and
trade-offs can be performed. The weighted impact can then be summed to
determine a single score or “eco-indicator”. In principle, this assessment reflects
social values and preferences.

» Life-cycle interpretation. In this phase, the results of the inventory analysis and impact
assessment are evaluated and tested to check their validity before making and reporting
the conclusions, with a clear understanding of the uncertainty and the assumptions used
to generate the results.

By promoting the life-cycle thinking, LCA supports a holistic, systems-based view, which is
required for properly assessing and reducing environmental impacts of products (Bras, 1997). A
systems approach is needed to avoid transfer problems between life-cycle stages. For example,
lead-acid battery-powered vehicles that may be considered to reduce emissions may increase
lead burdens to the environment (Rydh, 2001; Lave et al, 1995), or changes in material
composition of cars to improve fuel economy may increase the amount of automobile shredder
residue (which is not recyclable), leading to disposal concerns, or generate new emissions in
the production phase (e.g. SF6 emissions from magnesium production and manufacturing of
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magnesium components) (Rebitzer and Fleischer, 2000), or may not yield a better life-cycle
energy benefit (Sullivan and Hu, 1995).

LCA is one of several approaches for supply environmental information to the decision-making
process in industry, governmental and non-governmental organizations. Other methods, such
as risk assessment, environmental impact assessment, cost benefit analysis, and environmental
audit, are often applied for different purposes and using different technical approaches. For
example, risk assessment uses stochastic techniques for evaluating the probability of
catastrophic events at specific facilities to reduce risks to workers and community. CHAINET
(1998) provides a framework for structuring how different concepts (e.g. life-cycle thinking),
technical elements to obtain and process data (e.g. mass balance models), and analytical and
procedural tools (e.g. LCA and environmental management system) are related to the decision
process.

LCA has been perceived as a useful DFE analytical approach to select environmental areas of
attention and to support environmentally conscious product design options. For environmental
validation and prioritization of design options and environmental performance of products, this
approach provides a satisfactory performance, as long as it is applied transparently, with
acknowledgment of assumptions and methodological limitations (Newell, 1998).

2.3.2 LIMITATIONS

The LCA methodology has a number of limitations and therefore it must be used with caution
(Ehrenfeld, 1997; Owens, 1997). The following are key limitations of the method:

* Defining the system boundaries is an arbitrary and controversial task that depends on
many subjective judgements involving ambiguous analytical and conceptual
compromises in the inventory phase (Newell, 1998). The specification of the functional
unit is also not obvious and it is hard to recommend a consistent approach to either
procedure (Graedel, 1998). In addition, building the complete system model within the
defined boundaries is difficult and often impossible, especially if supplier data is
proprietary (Arnold, 1993).

+ Data collection and analysis are also limitations to accuracy and completeness of the
LCA approach (Graedel, 1998). Although databases are being developed in various
countries, in practice data are frequently obsolete, incomparable or of unknown quality at
the level of building blocks (combinations of processes, such as electricity production or
aluminum production) rather than on individual processes (Guinee et al, 2001). As a
result, different assessments can produce different although perhaps with equally valid
results.

* LCA is time-consuming, data-intensive and expensive to conduct. Often, LCA studies
get obsolete for the decision making process for which they were conducted in the first
place because the LLCA process takes too long (Rebitzer and Fleischer, 2000).

* Moving from inventory to impact assessment in LCA is fraught with scientific difficuities
(Owens, 1997). Limitations imposed by the inventory (LCI) are loss of spatial, temporal,
dose-response, and threshold information, varying widely according to the environmental
issue in question and models used to extrapolate the inventory data. As a result, LCA
may have limited value in local and/or transient biophysical processes, and issues
involving biological parameters, such as biodiversity, habitat alteration, and toxicity.
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« The impact assessment phase is an area of significant debate in the LCA community
with no commonly agreed-to methodologies to apply in practice. Variations in temporal
scale, spatial scale, and locale as well as questions of valuation based on subjective
elements of societal structure and preference are main limitations (Owens, 1997,
Graedel, 1998; Boustead et al, 2000).

In examining the appropriate uses of LCA one may adopt two main perspectives on the
methodology (Fava, 1997; Owens, 1997): (a) a thought process that guides the selection of
options for design and improvement, providing a spectrum of useful insights on a system; (b) as
a sound, complete characterization useful for all types of comparisons and judgments of
environmental performance. The difference between these points-of-view may also be
interpreted as whether L.CA is a stand-alone tool, sufficient for making definitive comparisons, or
must be integrated with non-LCA complementary tools, such as risk assessment and
environmental impact assessment, to provide meaningful and relevant answers. The scientific
and technical limitations inherent to LCA limits this approach for making comparisons in a stand-
alone fashion, and therefore its broad screening capabilities need to be integrated with other
environmental tools in an overail environmental management framework (Owens, 1997; Fava,
1997; Ehrenfeld, 1997).

The use of LCA in a “toolbox” of environmental assessment tools (Guinée et al, 2001) is then
the appropriate approach to support the decision process. The goal is to have each tool
performing the task and providing the information to which it is best suited, while other
complementary tools address its weakness and limitations (Fava, 1997). For example, if one
were trying to assess the efficient use of resources in a product system, LCA could provide
information internally to a company to identify opportunities to improve the efficiency. But, if the
goal were to address customer concerns on health and toxic effects, the problem could be
addressed by conducting a human health and ecological risk assessment. Finally, if one were
trying to address “overall environmental preference” of one product system over another, a
variety of tools, including site-based assessments and LCA could be suitable.

Newell (1998) proposes a decision-oriented LCA tool called “Explicit LCA” (XLCA) as a
quantitative LCA methodology suitable to, at the most, environmentally rank alternative
technologies. In early design phases, a low precision assessment tool is appropriate and
sufficient for ranking technologies, so long as it addresses the objective and subjective elements
of LCA explicitly in order to explore their effects on the outcome (Newell, 1998). This
perspective on a low-resolution approach to meaningfully incorporate LCA into the design
process agrees with the methodological strategy proposed in the present research.

In any case, comparisons and choices have to be made in product design, and LCA, if used
appropriately and consciously regarding methodological limitations, can potentiaily add

important environmental content and context to other factors, such as performance and price

(Ehrenfeld, 1997). Although it does not provide the right answer, this methodology has the
potential for identifying environmental issues from a system-wide perspective, helping to
achieve better understanding of the problems.

In practice, however, experience has shown that a product-level comprehensive LCA with its
scoping, impact, and interpretation phases is infeasible, at least as a routine, useful tool to apply
in product development cycles in industry (Rebitzer and Fleischer, 2000; Graedel, 1998;
Graedel and Allenby, 1995; O'Connor and Blythe, 1997). There are key practical barriers:
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* High completion costs, time required, labor intensive: the staff time and expense needed
to complete a comprehensive assessment is often prohibitive.

* Unavailability of the required assessment data: much of the data are difficult or
impossible to acquire, e.g., factory energy use may not have been allocated to specific
products, and residue streams may have been merged.

* An assessment taking several months to perform makes no sense, with product life-
cycles and design-to-market intervals of several months to 2 or 3 years.

2.3.3 STREAMLINING LCA

To simplify and significantly reduce the amount of time and information required for the detailed
standardized LCA process, simpler approaches have been developed, bath in academia and in
industry. Most corporations and many other organizations have adopted the LCA philosophy but
have implemented it in a practical form adapted to their own needs and constraints in the

- product development process (Graedel and Allenby, 1995; O'Connor and Blythe, 1997; Eagan
and Weinberg, 1997; Hoffman I, 1995). Simplified approaches include qualitative matrices,
abridged LCA, and a variety of other forms of simplified or streamlined LCA.

In general, LCA streamlining refers to the design of LCA in terms of what is included in the study
and what is not (SETAC, 1999). Streamlining removes portions of a LCA deemed non-critical to
a specific product's environmental impact profile and can be performed within the existing LCA
framework or through alternative streamlining approaches based on life-cycle concepts.

Typically, streamlining approaches within the standardized LCA framework have included: (a)
simplification of the LCI phase through the elimination of life-cycle stages (e.g. cradle-to-grave
studies that ignore activities after the production phase), also referred by Fleischer et al (1998)
as restricted LCA; (b) reducing the data required on the unit process networks (e.g. by applying
thresholds or cutoff criteria or by limiting the analysis to first tier contributions), or focusing on
specific flows at the inventory level (e.g. life-cycle energy) or on specific impacts (e.g. global
warming}, generally referred by Fleischer et al (1998) as screening LCA. .

SETAC (1999) compared several streamlining approaches and found that the more streamiined
a LCA becomes, the less accurate its results when compared with a full LCA, especially when
streamlining decisions are ad-hoc. However, depending on the goal of the study these results
may still be just as useful as the full, detailed LCA.

Figure 2.10 shows the “assessment continuum” proposed by Graedel (1998) that frames the
scope of the streamlining activity. The region referred as extensive LCA corresponds to
detailed, quantitative LCAs. The scoping or eco-screening regions are those that are “quick and
dirty” to guarantee that no truly bad design choices have been made or to investigate the need
for additional assessment. The ideal point is within the SLCA region, where the assessment is
complete and rigorous enough, yet not so detailed as to be difficult or impossible to perform.
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Figure 2.10 The assessment continuum. Source: Graedel (1998)

Overall, a streamlined LCA (SLCA) is considered valid if all relevant life cycle stages and
environmental stressors are evaluated in some manner, and the LCA’s four elements
methodological steps are included, not necessarily in a quantitative manner (Graedel, 1998).

“ Several different techniques for SLCA have been proposed and used in academia, government,
industry, consulting firms, and professional associations (Graedel, 1998). An ideal goal has
been to keep the LCA concept and sufficient accuracy to obtain credible results while at the
same time meeting the scientific and logistical constraints. Some of these different”"SLCA
approaches are presented below. This is not as a comprehensive list, but an illustration of some
of the benefits and shortcomings of presently used SLCA techniques.

Matrix-based life-cycle assessment

Matrix-based LCAs can be performed through a sequence of steps equivalent, yet less data-
intensive and time-consuming, to the standardized LCA process, as shown in Table 2.1,

Table 2.1 Comparison of full LCA versus matrix-based streamlined LCA. Source: Lewis et al (2001)

Full LCA Matrix-based LCA

Goals, scope and definition. Flowchart or process tree, with a design or product development brief.
Inventory of (almost) all processes, with Inventory matrix, which is a list of materials and energy used by the
data taken back to basic materials (e.g. product throughout its life-cycle and the associated emissions.

ores, coal, COa).

Impact assessment. . Impact assessment matrix, which simplifies the inventory information
into groups of emissions or potential impacts. The information entered
in the malrix can be qualitative or may include a ranking of the
impacts.

Interpretation. Design strategies and practicality versus efficacy matrix.

Several variations of the matrix-based LCA approach have been developed by academia and in
industry to meet specific environmental assessment demands (Eagan and Weinberg, 1997;
O'Connor and Blythe, 1997; Graedel, 1998).

in a qualitative matrix approach proposed by Allenby (1992), to include the Environment in its
broadest sense, environmental issues are proposed to be further classified and analyzed under
four different category matrices for each design alternative - manufacturing issues like materials,
cost, energy; environmental impacts e.g. on air, water and soil, toxicity and exposure impacts
and socio-political impacts. Any scheme can be adopted so long as the items under each
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category created can all be consolidated into a single impact for a summary of the analysis. A
summary matrix is proposed which brings together for all design alternatives, the essence of

each of these categories and permits the comparison of alternatives for each category of
environmentai impact.

In the rating system suggested by Allenby (1992), slightly modified for the sake of illustration,
inapplicable or inappropriate elements are denoted by a dash and beneficial impacts by a ‘+' or
++', depending on the relative degree of benefit. Where there is an environmental ‘concern’, a
system of ovals is used with the darkness of shading representing concern, and the extent of
filling, the uncertainty. For example, in cell phones the 900 MHz electromagnetic radiation is a
suspected carcinogen but evidence is slim. So while the concern is serious, fetching a black
shading, it is highly uncertain and to that extent only a quarter of an oval for certainty. The
ranking system and a hypothetical environmental matrix are shown in Figure 2.11.
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Figure 2.11 Ranking system and hypothetical environmental matrix.

Each matrix is given an overall degree of concern/certainty in the assessment. The hypothetical
matrix shown in Figure 2.12 summarizes these grouped assessments for comparing different
design alternatives. In assessing an individual matrix element, or in offering advice to designers
exploring the rating of new design options, the environmental expert can refer to experience,

appropriate checklists, design and manufacturing surveys and other protocols for guidance
(Graedel and Allenby, 1995).
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Figure 2.12 Summary matrix for comparing between design alternatives.

The matrix approach presented herein is a framework that incorporates the life-cycle thinking
into the design process by manipulating data and analysis in a qualitative fashion. This is of
great importance for the product design area. There are aspects in product design that are
critical and cannot be ignored, such as consumer preferences, gquality, and aesthetics, for which
data in many cases are not quantifiable or not available to merit a probabilistic analysis. Also
environmental and social impacts are poorly understood and suffer from fundamental data and
methodological deficiencies (Graedel and Allenby, 1995). This gives rise to the notion of
uncertainty where there is a suspected effect but which isn’t known to a reasonable degree of
confidence to assert it as a fact. Consequently, some aspects, even if important, are relegated
to the qualitative world, particularly during conceptual phases. Therefore, relevant advantages
of qualitative matrix approaches are:

*« They incorporate representation and manipulation of qualitative data and value
judgments in the product design process;

* Qualitative matrices highlight the existence of uncertainties in the analysis. They can
help account for uncertainties in the environmental area, namely risks, potential
costs, and potential environmental impacts.

* They make life-cycle thinking more accessible and practical by simplifying the LL.CA
methodology. They reduce data and time required to perform an LCA and overall life
cycle assessment is less thorough.

* They bring effectiveness to design evaluations by estimating the first-order
environmental effects, capturing the essential points. Qualitative matrices help to
focus on key issues.

However, the limitations associated with this approach are felt when the trade-offs to be made
are complex, the "what-if" analysis involve multi-objective functions and several constraints that
are hard to manipulate. Although it provides a macroscopic comprehensive view of the
problems enabling comparative analysis, this approach limits the manipulation of the information
to assess new design strategies and corresponding scenarios in a fairly quick fashion. Indirectly,
this has the potential to affect the quality of the analysis since it may limit the number of
scenarios to explore due to fime constraints.

Abridged LCA (Graedel et al 1995) is a semi-quantitative matrix approach. The use of ALCA is
demonstrated in Graedel et al (1995) through a comparison of consumer products. Hoffman Il
(1997) also refers to abridged LCA tools to be useful in the conceptual phase, as opposed to
employing traditional LCA for the prototype manufacture, when more design details become
available. Like qualitative matrices, ALCA highlights only the most significant concerns. An
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additional benefit of abridged LCA is its numerical basis. The simplified LCA process can be
represented and handled mathematically through matrix manipulation. The ALCA matrix-algebra
computation is capable of generating a numerical rating for design or alternative designs
providing specific targets for analysis. To some extent, this approach may minimize the
limitation mentioned previously for qualitative matrices on performing efficient trade-off analysis
and decision-making analysis. At the same time, the associated numerical bases can improve
the effectiveness in capturing the essential points by allowing graphical representations.

On the other hand, the determination of the values of the matrix elements as quantitative indices
based on the combination of heuristics (rules of thumb of knowledgeable practitioners) with
precise information data might be controversial. There is the question of in what extent they are
reasonable and consistent enough to perform the analysis.

Simplified LCI modeling

Reducing the effort in modeling the product system affects the time and cost associated with the
inventory phase as data requirements can be decreased significantly. Rebitzer and Fleischer
(2000) developed a methodological approach that facilitates the set up of a simplified system
LCI model. The goal is to have a (semi-} automatic procedure that helps to decide whether
further inclusion of processes and therefore further gathering and computing of data in the LCI
model is necessary for the specific study.

In this approach, simplified models of product systems are derived from those of detailed
studies through a systematic procedure based on recursive modeling by path analysis. Starting
from the finished product, the flows into the final manufacturing process (level 0) are followed
and the processes having those flows as output (level 1) are determined and so on, ending at
the resources entering the system as elementary flows. The idea is to show a correlation
between the levels (or other criteria such as mass) included or the magnitude of cut-off criteria
to the results of the LCA. Mathematical indicators such as first and/or second derivative of the
correlation function can be used to identify the product system model that defines 80 or 90% of
the total impacts. The level of confidence in the simplified model is based on the probability of
occurrence of relevant function maximums with increasing number of levels. This can be
estimated based on a qualitative screening LCA, which screens specifically for hot-spot
emissions or inputs in the complete system.

Rebitzer and Fleischer (2000) tested this approach in two material options for a front sub-frame
system of a Ford passenger car. The approach has potential for greatly simplify, with a certain
level of confidence, the LCI model, and consequently allocate more efficiently the resources for
data gathering and computing. However, it still requires a significant modeling effort that in early
phases of the product development cycle such as early conceptual design is not cost-effective
to invest in. At this stage, it might even be impossible to develop such simplified models, as
these still require an explicit knowledge of the system. Another issue to consider is how general
these simplified models can be applied seamlessly in different types of systems, without
additional modeling tasks.

Canter et al (2000) propose a screening methodology for the inventory stage that uses the
linear structure within the deterministic LCI model. Each input data element is ranked and sorted
tin descending order based upon its contribution to the final output. Percentages of the top
ranked data elements are then selected, and their corresponding data quality index (DQI) value
is upgraded in the stochastic LCI model. The output variance of the original stochastic model
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and the one of the modified stochastic model are compared using Monte Carlo computer
simulations. Similarly to the method described previously, the modeling effort involved and the
limited generalization ability are still barriers to perform quick and approximate environmental
assessments of various concepts at early design stages.

A method proposed by Mueller and Besant (1999) models life-cycle parameters (LCP) in terms
of design parameters (DP) to present information that is required for the environmental
assessment in a more condensed manner. The analyst will have the LCl-data represented in
form of relationships and thus the amount of the data gathering effort is largely reduced. Once
the models are determined they will form the basis for a generic L.CA, although their
development requires an even larger amount of data. The first step is to select the parameters.
Design parameters (e.g. power output and speed of an electric mator) are physical
characteristics of the design that can be determined or are known with a certain degree of
accuracy. They must have a significant relationship to at least one LCP. Life-cycle parameters
(e.g. mass and size of the product) can be linked to the LCI and/or one or more life cycle
stages. They should be an accessible data source, describe features that change within the
product range in a continuous manner, and if described by qualitative data, the discrete levels
should be limited to a sensible number based on valid assumptions.

The second step is to define the relationships between the DPs and the LCPs in the form of
LCP = f(DP4, DPy, ..., DP,), based on theoretical reasoning, common practice and practical
considerations (such as standardization), empirical observations or combinations of those. The
accuracy of these models is considered by associating an error function with the actual model.
The life cycle parameters can be optimized by choosing different combinations of the design
parameters. Finally, the LCI data of the product described by the LCP's can be used to perform
the environmental impact assessment phase, which may not be limited to a particular method
and various methods may be applied. By highlighting the most important parameters of the total
life cycle, this analysis can be used for focusing design efforts to maximize improvements in the
design of the product.

This approach ultimately supports the development of modeling interfaces between traditional
design and environmentally-conscious design. However, the modeling step required to estimate
environmental performance using the LCPs is not explicitly addressed other than just selecting
relevant life-cycle parameters that help confining the design efforts to important elements of the
system.

2.4 FUNDAMENTAL GAPS OF EXISTING DFE METHODOLOGIES
FOR EARLY DESIGN STAGES

Limitations of LCA have determined many potential users in product development to exploit LCA
streamlined forms (such as the ones discussed in section 2.3) for conducting a simpler and
cost-effective assessment process. A variety of other DFE methodologies have been proposed
and used in practice for support the identification and evaluation of the environmental impact of
a product. They include team brainstorming sessions, environmental performance checklists at
certain points of the design process (e.g. waste reduction or material recycling), design
standards, design guidelines, and chemical and material databases. Although there are some
LCA success stories in industry (Wenzel and Alting, 1999), several studies performed at
companies (e.g. Evans et al, 1999; Griiner et al, 1999, Mizuki et al, 1996) reveal a general
agreement upon the valued use of “quick and dirty” analysis tools.
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Still, “quick and dirty” tools currently available are of limited use or even impractical if one needs
to address the analytical requirements of early conceptual design stages.

Table 2.2 provides a comparison between the learning surrogate LCA approach and other
approaches based on methodological, data, decision support and practicability criteria.

Table 2.2 Comparison of the learning surrogate LCA method with other DFE methodologies.

Checklists Qualitative Abridged Detailed LCA Simplified LCl Learning
matrix-based | matrix-based model surro_ga_te LCA
Methodolo
Mode of descriptive descriptive descriptive descriptive/pre descriptive/ descriptive/
analysis scriptive prescriptive prescriptive
Depth of none superficial superficial deep medium superficial
analysis
Precision in low low low higher medium, sufficient | medium, sufficient
analysis for early design for early design
Technical quality quality quality allocation, allocation, mass ANN, tree-
approach assessment assessment assessment mass balance | balance, empirical classifier models
models models
Data
Quantification qualitative qualitative qualitative/ quantitative quantitative qualitative/
of data quantitative quantitative
Specificity of generic generic generic/ typically typically generic/ averages
data averages primary secondary
Data quality high high high measured/ estimates/ high estimates/ high
uncertainty uncertainty uncertainty lower uncertainty uncertainty
uncertainty
Decision making support
Support life- no yes yes yes yes yes
cycle thinking
Model retains no no yes maybe, maybe, depends no
causal chain depends on on transparency
transparency of method)
of method)
Assistin no only in low- only in low- yes yes yes
ranking dimension dimension
environmental problems problems
alternatives
Support trade- | no anly for only for maybe, if maybe, if flexible yes, at early
off analysis obvious obvious flexible to be to be conceptual design
with other tradeoff tradeoff implemented implemented in stages
design goals sSCenarios scenarios in integrated integrated
simulation simulation
: frameworks frameworks
Practicability
Modeling none low low high medium none
effort required
Resource lowest low low, but with highest high low, but with
requirements environmental environmental
~time, expert expertise expertise required
knowledge required
and money
Intended user designer designer (or environmental | environmental environmental environmental
environmental expert (in expert (in expert (in product expert in product
experts) product product design team) design team
dasign team) design team)
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Figure 2.13 maps the methodologies -and the iearning surrogate approach according to key
properties of product concept systems.

Precision
. . P detailed
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Figure 2.13 Mapping the learning surrogate LCA method and other methodologies to modeling effort,
level of product detail required, and precision in analysis.

As illustrated in Figure 2.13, the learning surrogate LCA method is isolated in a space defined
by key attributes for product concept systems. While maintaining technical credibility with
sufficient precision in analysis for early conceptual stages, the learning surrogate LCA approach
is highly cost-effective with low data requirements and no modeling effort. Ultimately, these

methodological attributes allow feasible and timely life-cycle environmental assessment at early
design stages.
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3 LEARNING SURROGATE LCA FOR PRODUCT
CONCEPT SYSTEMS

3.1 THE LEARNING SURROGATE LCA CONCEPT

The lack of analytically based methods for incorporating environmental aspects into product
concepts motivated the development of the learning surrogate LCA concept (Sousa et al, 2000;
1999). The approach facilitates an integrated system design process, allowing the approximate
and rapid assessment of environmental impact based on high-level information typically known
in the conceptual phase.

An artificial neural network (ANN) is trained to generalize on characteristics of product concepts
typically known in the conceptual design phase, and environmental data from pre-existing LCA

- studies. The approach is illustrated in Figure 3.1. The product design team queries the trained
artificial model with high-level attribute data of new concepts — product descriptors — to quickly
obtain an approximate environmental performance for a new product concept. This is done
without the overhead of defining new LCA modeis on a product-by-product basis. The product
design team can then apply the predicted environmental performance along with key
performance measures from other models in tradeoff analysis and concept selection.

/”\

other
( design
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new cancept f A.

descriptors
Fultietad Cancom detall
! Fuil gescription . : lbsﬂadﬂl’ Arlificial Neural Network
data of existing g high-eve .
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' i of existing
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' data for existing * eycle inventory:
producis . for existing
products

Figure 3.1 Training the learning surrogate LCA model.

The learning process of the ANN begins when it is provided a set of product descriptors and
corresponding detailed LCA results from previously analyzed existing products. The training
algorithms adjust parameters within the network so that its output better emulates the actual
environmental impact resuits of the training data products. The process continues until the
network converges, or the two outputs — actual and predicted environmental performance —
match. ANNs do not require an explicit functional model for relationships between the system
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variables and they can learn from incomplete, inaccurate, and noisy data. However, effective
learning requires a training set representing a reasonable distribution of products.

After the compietion of training, the ANN is ready for use. Designers need to simply provide
high-level descriptions of new product concepts to gain LCA predictions based upon trends
inferred from the real products and LCA studies used as training data. The new values for the
product descriptors can come from other models integrated within a system model, such as
obtaining volume from a CAD model, or from the environmental expert, such as recyclability. A
new LCA model does not have to be constructed to analyze a new concept. However, results of
new detailed LCA studies should be continually added to enhance the training data set.

Although it is a good idea for product designers to have some environmental knowledge, it is not
and should not be their area of primary expertise. Ideally, the services of an environmental
expert should be extended to the designer. Communication, although necessary for such an
extension, is often a barrier as it takes time to establish and maintain synchronization of
information between designers and environmental analysts. Prior work (Borland and Wallace,
2000; Borland et al, 1998) has demonstrated the effectiveness of an Internet-based prototype
software called DOME (Object-based Modeling Environment) (Wallace et al, 2002; Abrahamson
et al, 2000; Pahng et al, 1998) in providing designers with rapid environmental impact
assessment based upon LCA models and tradeoff analysis with other design models.

In supporting a team-oriented, multidisciplinary design process at early conceptual stages, this
new learning surrogate LCA method assumes that environmental experts and design engineers
are specialists in their own fields. They exchange their simulation-based services through an
integration framework such as DOME. Learning surrogate LCA models should be created,
validated and maintained by environmental experts. They are meant to be used by designers or
by environmental experts as service provided to designers. Product descriptors are the
communication-simulation interface between environmental experts and designers for this new
approach. Designers naturally think in terms of materials, processes and form (Kljajin, 2000). By
considering these in the form of high-level product descriptors that potentially influence
environmental performance of product concepts, this method can be thought as a natural
extension of the designer's world to the environmental expert's world. Product descriptors are
then a set of keywords both understood by designers in relation to preliminary product concepts,
and meaningful in an approximate environmental impact assessment of product concept
systems. '

The purpose of the learning surrogate LCA method is not to explore environmental causalities in
the product concept system. The idea is that designers use it to better relate design changes
with approximate environmental performances, internalizing environmental effects of their
decision making in a holistic sense under the guidance of an environmental expert. They follow
the design path, not the environmental path. In product concept systems, high level information
and parameters are not suitable for timely and significant explicit modeling. However, there is a
need for approximate, fast answers for preliminary trade-off analysis with traditional design
goals. In addition, the learning surrogate LCA concept has an analytical purpose by helping
identify weaknesses and strengths rather than to suggest improvement strategies. It is important
to be able to separate analysis from improvement activities. The latter can be supported with
informed analysis provided by the learning surrogate LCA models but also may need other type
of inputs to be carried on.

The learning surrogate LCA model is envisioned to complement traditional full LCA, not to
replace it. In early design stages the learning surrogate LCA, trained on. previously conducted
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detailed LCA studies, provides rapid feedback on a wide variety of concepts. In later design
stages, when a smaller range of concept variations is under consideration, full parametric LCA
models can be used as envisioned in the work by Borland and Wallace. (2000), when fewer
concepts are under consideration and more detailed parametric LCA approaches provide the
appropriate support. Results from the detailed LCA models are then added to the training
database to enhance the training data set of the surrogate model. The simplicity of the learning
surrogate method is distinct however from the one of ad-hoc rules, which cannot generalize.
Even at early design stages, general environmental guidelines can be misleading when
designing and assessing a particular system.

Proposal of a hybrid learning system

Surrogate model tests that were performed using ANNs (Sousa et al, 2000), to be further
discussed in 4.1, showed that the implemented learning algorithm had difficulty predicting
characteristics for an extremely diverse range of products (for example, predicting the life cycle
energy consumption of a coffee filter and an automobile). Performance increased significantly
. when small mass products and products that do not transform energy when in use were trained
and tested separately from medium to large mass products that transform energy when in use.

These results suggest that it is unlikely that a single universal neural network will be able to
generalize well for an overly large range of products. A product categorization system based on
a decision tree classifier proposed in Sousa and Wallace (2002) was considered to be a viable
strategy to make the ANN learn faster and more effectively, as it narrows down the “learning
space”, into general product categories, prior to the prediction phase. The learning architecture
will then be a combination of a tree-based classifier, to perform the initial product categorization,
with “category-based” neural networks, to approximately predict environmental performance in
the subsequent step. The goal is to incorporate capabilities inherent to distinct methods that
complement each other, in order to reach better learning performance.

Classification criteria are based upon the product concept descriptors that are used to train and
query the learning LCA models. The prediction step takes place using neural networks,
previously and separately trained using products from one single category. This hybrid
approach is schematically represented in Figure 3.2
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Figure 3.2 The hybrid learning system.

The use of a classifier, in this case a decision tree, allows the automation of the classification
step. This potentially brings two main advantages: speed on the process and consistency in the
data for training and using the specialized neural networks.

As it will be described in Chapter 4, the set of product descriptors was systematically and
devised as a general set that can characterize many different products. However, there is no
universal set of attributes that fully represents every possible product. Therefore, the hybrid-
learning concept should accommodate the need for customizing general descriptors for specific
categories of products (e.g. lifetime drive distance and drive cycle for durable, mobile, active
(external energy based) products). Group-specific product descriptors can then be incorporated
accordingly in the training cycles and query tasks of each of the specialized learning surrogate
LCA models (see Figure 3.2).

3.2 MACHINE LEARNING TO SUPPORT A SURROGATE LCA
MODEL

There are several machine learning algorithms and reasoning mechanisms that have been
proposed, developed and used in various fields of application. The goal here is not to
exhaustively review them all. Instead this section provides a review of eight existing
methodologies that were selected as being reievant to consider for supporting the learning
surrogate LCA method.

Each methodology is explored in qualitative terms by its definition, main properties and basic
functionality. The idea is to use relevant background to properly identify advantages and
disadvantages associated with each methodology, given the problem domain and research
goals of this thesis. This discussion provided the basis for ultimately selecting artificial neural
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networks and decision trees as suitable methodologies to form the hybrid learning architecture
proposed for the learning surrogate LCA model.

3.2.1 NEURAL NETWORKS
Definition and general properties

Artificial Neural Networks (ANN), (or neural networks, neurocomputers, parallel distributed
processing systems and connectionist systems) are intended to model the organizational
principles of the central nervous system (Haykin, 1999). The motivation for the approach is that
the brain, a highly complex, nonlinear, and parallel computer, has the ability to perform certain
computations (e.g., pattern recognition, perception, and motor control) many times faster than
the fastest digital computers. For example, an image processing task, such as recognizing a
simple object projected against a background of other objects, can be solved by a small child’s
“brain in a few tenths of a second. However the same child might not be able to solve the
addition problem 3+3=6, while a serial machine can solve it in a few nanoseconds. A key
-difference is that image recognition is best solved in a parallel fashion (brain is believed to be
similar to a massively parallel analog computer containing about 10'® simple processors, each
requiring a few milliseconds to respond to input) while simple mathematics is best done serially
(McCollum, 1998). The biologically inspired computing capabilities of ANNs are thus believed to
perform cognitive and sensory tasks more easily and satisfactorily for solving real-word
problems than conventional serial processors (Bose and Liang, 1996).

An ANN is an interconnected assembly of simple processing logic units, nodes or neurons,
usually connected in layers. The knowledge of an ANN is stored in inter-unit connection
strengths, or weights, generated by a process of adaptation to, or learning from, a set of
experimental training patterns. There are several learning tasks that apply to the use of neural
networks. The classification and multivariate function mapping are learning tasks that are
relevant to a large number of problems.

A neuron is the information-processing unit that is fundamental to the operation of a neural
network. A basic model of a single neuron is shown in Figure 3.3. There are three basic
elements on the neuronal model:

1. Synapses, each of which characterized by a weight. A signal x; at the input of synapse |
connected to neuron k is multiplied by the synaptic weight w,. There might exist a
fictitious or internal constant input signal called bias.

2. Adder or summer, which sums the input signals, weighted by the respective synapses of
the neuron.

3. Activation or threshold function, which yields an output to a respective input. The
function limits the permissible amplitude range of the output of a neuron to some finite
value. Typically, normalized amplitude range of the output of a neuron is considered in
the closed unit interval [0,1] or alternatively [-1,1].
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Figure 3.3 A nonlinear model of a neuron. Adapted from Haykin {1999).

There are different ways in which the neurons of a neural network can be structured. The
multilayer feed-forward network is a popular type of neural network architecture. The network is
arranged in layers of neurons or units: an input layer, to take input values from the outside; one
or more hidden layers, which extracts useful features from the input data; an output layer, to
report the final answer. A schematic diagram of a multilayer feed-forward architecture, with one
hidden layer and one output layer, is shown in Figure 3.4. Each neuron or unit has activation
flowing into it from the preceding units, which is multiplied by the weight along which it flowed.
The vector of resultant inputs is summed and passed through the unit's activation function
before being passed onto the next layer.

QO
Input layer of Layer of Layer of
source nordes hidden output

neurons neurons

Figure 3.4 A feed-forward neural network with topology 5-2-1.

A neural network is supposed to learn a model of the world (environment) in which it is
embedded and {o maintain sufficient consistency with the real world in order to achieve the
specified goals of its application of interest. The training of an ANN is based on a simple idea -
learning through example. The neural network is provided input data for known problems and its
outputs are compared to the known answers. Training algorithms use this information to adjust
the weights of each connection to better match the target output. It is important to note that in

order for a neural network to learn effectively the examples in the training set should represent a

reasonable distribution over the system space.

There is a diverse variety of training algorithms for the design of neural networks, each of which
offers different advantages. They differ from each other in the way the adjustment to a synaptic
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weight of a neuron is formutated. The most commonly used method is called back-propagation-
of-error, a form of supervised learning which generally works well, is simple to understand, and
can be easily implemented as a software simulation. A multi-layer perceptron, back-propagation
network or feed-forward network is mathematically represented by:

Vi =P, (0t, -+ 2 ij(bh (a_j + 2 W,jx;)) Equation 3.1
i i

where i is the number of neurons in the input layer, j is the number of neurons in the hidden
layer, k is the number of neurons in the output layer, the parameters w; and «; are the weights
and:

* ¢y is usually the logistic ¢n(x) = e*/(1+€)

* ¢ is linear, logistic or threshold

* the biases «; can be replaced by weights to +1

In concept, the back-propagation method involves changing the values of the connection
weights according to their effect on the rate of change in output error. The error measurement is
initiated at the output neuron and back-propagates through the network to the input neurons.
Once the rate of change is calculated then each connection weight value is modified. The
mean-square error (MSE) or the sum of squared errors over the training sample may be“used
as a performance measure for the ANN, defined as a function of the free parameters of the
network and visualized as an error surface with the free parameters as coordinates. For the
ANN to improve performance over time, it has to move down successively toward a minimum
point of the error surface, which may be a local or a giobal minimum. To minimize the MSE for
the whole training set of input/output vector pairs the gradient of the error is calculated in the
whole weight space. Partial derivatives and the chain rule are used to calculate the contribution
that each of the weights makes on the total error. A downside of gradient descent optimization is
that it can be prone to converging to a local minimum instead of the global minimum (Zaknich,
1998). There are a number of technigues (e.g., simulated annealing and genetic optimization)
that have been proposed to address this problem (Masters, 1993). Also, a number of heuristics
have been suggested to accelerate the convergence of back-propagation learning (Haykin,
1999).

A neural network has the ability to learn and therefore to generalize (Haykin, 1999). A neural
network generalizes well when producing reasonable outputs for inputs not encountered during
training (learning). There is a trade-off between building a neural network model that
generalizes well and is robust, and one that is more accurate but more brittle. The more
complex, accurate, yet brittle a model is, the more closely it will fit to the data points in the
training set. A more general model describes a smoother curve through the training data points,
missing some, but not incorporating the effect of noise or peculiarities that might be present
within the training data. Figure 3.5 shows some of the decisions involved when dealing with the
generalization-accuracy tradeoff.
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Figure 3.5 Constraints and techniques that determine the complexity of a neural network model.
‘ Source: Swingler (1996)

Neural networks and statistical methods

ANNs can emulate some of common statistical techniques such as: generalized linear modeis,
polynomial regression, non-parametric regression and discriminant analysis, projection pursuit
regression, kernel regression, principal components and cluster analysis. ‘

However, a neural network and its learning process may be statistically interpreted in the sense
that it is merely a form in which “empirical knowledge” or a set of measurements about a
physical phenomenon or environment of interest may be encoded through training. In this
context, the interest is not in the evolution of the weight vector w as a neural network is cycled
through a learning algorithm, but rather on the deviation expressed in statistical terms between
a target function f{x) and the actual function F(x,w) realized by the ANN, where the vector x is
the input signal. Most neural networks that can learn to generalize effectively from noisy data
{statistical inference) are similar or identical to statistical methods. For exampie, feed-forward
networks with no hidden layer are basically generalized linear models — linear combination of
the predictor variables transformed via a nonlinear transformation; feed-forward networks with
one or more hidden layers adopt this as the basic element where, instead of using just one
element, they use multiple layers of many elements with the outputs from one layer
(transformed linear combinations from each basic element) serving as inputs to the next layer.
In addition, many of the traditional statistical estimation and optimization techniques (e.g., the
incorporation of Bayesian priors into the score function to drive small weights to zero) or the use
of more sophisticated multivariate optimization procedures (e.g., conjugate gradient techniques
during weight search) are used in training neural network models. The original contribution of
the neural network modeling approach lies in the nonlinear multilayer nature of its underlying
model structure (Hand et al, 2001).

Neural networks, contrary to many claims, can thus involve the same type of distributional
assumptions as statistical models (Bishop, 1995). However, while statisticians study the effects
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of these assumptions, many neural networkers ignore them. For example, least-squares training
methods are widely used by both statisticians and neural networkers. Under specific
distributional assumptions — normally distributed noise with equal variance for all training cases
and independent between different cases - least-squares training originates least-squares
estimates with certain optimality properties. These optimality properties are consequences of
the fact that, under those conditions, least-squares estimation is the maximum likelihood. If
distributional assumptions are studied, one can recognize and deal with violations of the
assumptions. For example, if a training data set has normally distributed noise but some training
cases have greater noise variance than others, then the weighted least squares instead of
ordinary least squares can be used to obtain more efficient estimates.

Feed-forward neural networks can be viewed as a subset of the class of nonlinear regression

and discrimination models. In consequence, many concepts and results from the statistical

theory of nonlinear models can be applied directly to feed-forward neural networks to provide

more powerful solutions with reduced computational load (Ripley, 1997). Bishop (1985) and
Ripley (1996) explore in detail the application of statistical theory to neural networks.

The bias/variance tradeoff in non-parametric estimation, a statistical concept, is relevant for
neural networks when addressing the problem of over-fitting. A model with too little flexibility
(e.g., linear polynomial) has a high bias, while a model with too much flexibility (e.g., 10"-order
polynomial) has a high variance. The best generalization performance is determined by the
tradeoff between these two competing, and is achieved when the number of degrees of freedom
in the model is relatively small compared to the size of the data set (Bishop, 1995). A highly
complex (measured by e.g. the order of the polynomial) model that fits the data almost perfectly
can give a poorer representation of the systematic aspects of the data than would a simpler
model. On the other hand, a model that is too simple is not appropriated as it can fit the data
very poorly. These compromises occur with neural network models where the complexity of the
model can be controlled by structural stabilization (e.g., changing the number of free parameters
in the network). Generalization performance can also be optimized with different forms of
regularization (e.g., feature selection; weight decay target models with small weight values and
unnecessary weights become zero during training; models trained by using weight decay are
less prone to over-fitting since the approximated functions become smoother) and early-
stopping, as discussed by Bishop (1995). By using a sequence of successively larger data sets
and a corresponding set of models with successively higher complexity, both bias and variance
can be reduced simultaneously and therefore improve the generalization performance of the
network. Ultimately, generalization performance is limited by the intrinsic noise on the data.

The probabilistic and statistical characterization of neural networks is part of an important area
of study called statistical learning theory, which addresses the fundamental issue of how to
control the generalization ability of a neural network in mathematicai terms. In the context of
supervised learning, the question “do training examples contain sufficient information to
construct a learning machine capable of good generalization performance?” is answered by the
emerging theory of so-called support vector machines. In general terms, the supervised learning
problem is viewed as an approximation problem, involving finding the function F(x,w) that is the
best possible approximation to the desired function fx).

Benefits and limitations of neural networks

The massively parallel-distributed structure and the ability to generalize from noisy or
incomplete data are two information-processing capabilities inherent to neural networks that
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allow them to solve complex problems. The following points are relevant properties and
capabilities of neural networks (Haykin, 1999; Zaknich, 1998).

Functional use of knowledge based on experience. An artificial neuron can be linear or
nonlinear and a neural network, as an interconnection of nonlinear neurons, is itself
nonlinear, with the nonlinearity distributed throughout the network. Because of their
nonlinear nature, ANNs are often capable of performing functions beyond the capability
of optimal linear or conventional rule based processing techniques. Although ANNs lack
the exact precision and formal rigor of the traditional computing approach, they may be
powerful enough to allow construct near perfect approximations to systems about which
there is insufficient knowledge to allow an explicit, fully specified solution. A rule-based
approach to many problems such as an expert system is often difficult or even
impossible to apply as the rules are not easily obtained or defined, as in nonlinear
systems, are too many, or are not even known. Neural networks are generalizable
models with no explicit rules that overcome this problem by extracting relevant rules, in a
relatively short time, from a set of training data through learning. They are very flexible
techniques, which may develop intuitive concepts where the nature of computations
required in a task is not well understood or is poorly defined. ANNs are sensitive to
statistical regularities in large data sets so they can derive knowledge from actual
refationships implicit in the data. There are other methods for extracting rules from a set
of example data points. Decision trees, discussed next, are rule-based systems that are
popular for deriving rules from a data set. They are able to model nonlinear data with the
superposition of hierarchically arranged linear decisions. But they lack incremental
induction, relevant for changing environments, an inherent feature of ANNs. Neural
networks also allow for a fusion of diverse input measurements from various domains.

Input-output nonparametric_mapping. The close analogy between the input-output
mapping performed by a neural network in supervised learning and nonparametric
statistical inference suggest a fair comparison of the neural networks with conventional,
parametric regression techniques. The term parametric means that no prior assumptions
are made on a probabilistic distribution model for the input data. Regression, for

~example, requires conformance to the assumptions of a statistical model (e.g.,

independent variables are not correlated, errors of prediction for individual observations
are independent and normally distributed with a zero mean and constant variance) to be
applied; neural network models do not, being less sensitive to e.g., multi-colinearity. Due
to its nonparametric and nonlinear nature, neural networks can better provide suitable
solutions for problems generally characterized by nonlinearities, high dimensionality,
noisy, complex, imprecise, imperfect, limited, discontinued data (Gubta and Lam, 1996;
Kuo and Reitsch, 1995), and a lack of a clearly stated mathematical solution or
algorithm. When the sample size is very small, the functional relationship is known and
data explanation is required, multivariate regression methods perform better.

High dimensional spaces. Neural networks are greatly suited for function approximation
in spaces of many dimensions (Bishop, 1995). They deal with the problem of scaling
with dimensionality in a different way from what other general non-linear models in
multidimensional spaces (e.g., polynomials) do. Neural networks models represent
nonlinear functions of many variables in terms of superpositions of non-linear functions
of a single variable - hidden functions or units — which are themselves adapted to the
data as part of the fraining process. As a result, the number of these functions only
needs to grow as the complexity of the problem itself grows, and not as dimensionality
grows. The number of free parameters in such models typically only grows linearly, or
quadratically, with the dimensionality of the input space for a given number of hidden
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functions, in contrast with the d" growth for a general Mth-order polynomial. Barron
(1993) showed that the sum-of-squares error of neural networks falls as O(1/M) where M
is the number of hidden units in the network, irrespective of the number of input
variables. For polynomials (or any other series expansion in which it is the coefficients of
linear combinations of fixed functions which are adapted) the error only decreases as
O(1/M??), where d is the dimensionality of input space.

« Context sensitive. A neural network is context sensitive. This is relevant to nonlinear
systems as nonlinearities in @ system introduce the need for local, ungeneralizable rules.
Contextual information is naturally incorporated in a neural network because knowledge
is represented by the structure and activation state of the network, where every neuron
is potentially affected by the glabal activity of all other neurons in the network..

- Adaptivity. Neural networks are able to adapt their synaptic weights to changes in the
surrounding environment. ANNs trained to operate in a particular environment can be
easily retrained to deal with minor changes in the operating environmental conditions.
Additionally, an ANN can be designed to change its synaptic weights in real time when
operating in a non-stationary (time-dependent statistics) surrounding environment.

« Robust computation. A neural network is potentially able to exhibit a graceful
degradation in performance under adverse operating conditions rather than a
catastrophic failure due to the distributed nature of information stored in the network
through a large number of connections. If some of the processing elements are
destroyed the system will continue to function with only a minimal reduction in overall
performance. Therefore, ANNs are tolerant to errors or distortions in the input they
receive, losing little accuracy if model assumptions are violated (Gubta and Lam, 1996;
Kuo and Reitsch, 1995). In order to control fault tolerance, it may be necessary to
incorporate corrective measures when designing the algorithm used to train the network.

+ Fast computation. The massively paralle! nature of a neural network allows a very fast
computation of final results.

+  Simplicity. Neural networks require minimal programming and algerithmic development.

» Uniformity of analysis and design. Neural networks are universal as information
processors. Documentation is readily available through an expansive research
community and the same notation is used in all domains involving the application of
neural networks. Neurons represent an ingredient common to all neural networks, which
make it.possible to share theories and learning algorithms in different applications of
neural networks.

One of the main criticisms of neural networks is that is not possible to discover why they
produce the answers they do. Neural networks are black boxes that are simply fed in with inputs
and miraculously provide outputs. Swingler (1996) describes some methods for deriving
explanations of a neural network's outputs, based on the derivatives of the outputs with respect
to the inputs that caused them. These and other methods for the extraction of rules from neural
networks are important to:

« Validate neural network components in software systems by making the internal states
of the neural network accessible and understandable to users.

+ Improve the generalization performance of neural networks by identifying regions of the
input space where the training data are not adequately represented, or indicate the
circumstances where the neural network may fail to generalize.

» Discover salient features of the input data for data exploration.
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Still, the mathematical representation and manipulation of ANNs will not yield to intuition even
by examining the weights, architecture and nodal transfer functions associated with the final
trained model (Smith and Mason, 1997). Explaining in logical terms to the user how the ANN
arrived at its answer could be much like explaining how one plays tennis by doing a dissection
of the brain tissue of the tennis player.

A substantial quantity of quality training data is needed for a neural network to learn.
Generalization in a neural network is a non-linear averaging over a set of examples, and
therefore noise, bad and insufficient data do have an effect on its performance. Rules of thumb
have been proposed to be used in practice to define the training sample size for a given network
architecture and/or desired generalization performance (Masters, 1993; Haykin, 1999). Although
this size depends also on the complexity of the problem at hand, these rules tend to point to
hundreds or even thousands of samples needed to train a given network to generalize well,

Neural networks are limited to available data. The main methodological risk associated with a
neural network based approach is that either the data will not contain the information required to
carry out the task to the required degree of accuracy, or that the network will be unable to
extract that information. Assuming that a solution is possible, there is the risk that it will prove
impossible for sufficient data to be collected, or that the balance between generalization ability
and accuracy is difficult to optimize. Neural networks can also be ineffective when dealing with
certain numerical and symbolic manipulations (Deniz, 2000). For example, when -one of the
inputs of the network is a discrete value (e.g. a word), it has to be indexed into a number to
allow the network interpret it. However, the indexed input might loose the influence it has on the
system, or gain an unnecessary one.

The efficient scaling with dimensicnality of a neural network due to the nonlinear functions of the
adaptive parameters costs a number of additional complications associated with nonlinear
optimization such as the presence of multiple minima in the error function. In feed-forward
neural networks it is very easy for gradient algorithms to get stuck in local minima when learning
the network weights. There is no universal fast and reliable training algorithm that will guarantee
the convergence of a global minimum (Masters, 1993).

ANNs are then purely data driven models that iteratively change from a random state to a final
model through training. Two-layer feed-forward networks can be trained to approximate
arbitrarily well any functionally (one-one or many-one) continuous mapping from one finite
dimensional space to another, provided the number of neurons in the hidden layer is sufficiently
large (Bishop, 1995). Bishop (1995) outlines a simple theoretical proof of this universality
property for a two-layer network having sigmoidal hidden units and linear output units. However,
this result of universality property (Hornik et al. 1989) is of more theoretical than practical
interest. Theory may show that one hidden layer (with enough nodes in that layer) is sufficient to
model any continuous function, or any function with a finite number of discontinuities, but in
practice this will depend on the available data, or whether memory or training requirements for
that structure to solve a particular problem would be impractical.

There is no widely accepted method for determining the appropriate structure for feed-forward
multilayer perceptrons (Hand, et af, 2001). In practice, ANN struciures are often determined by
a trial-and-error procedure of manually adjusting the number of hidden nodes until satisfactory
performance is reached on a validation data set (not used in training). Masters (1993) discusses
some rules of thumb for choosing an appropriate muitiple-layer feed-forward network mode! and
defining specific characteristics of that model (how many hidden layers?, how many hidden
neurons?, how many training iterations?). Haykin (1999) presents a. model selection procedure
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that provides a principled approach guided by statistical learning theory to determine the
number of hidden neurons in a multilayer perceptron.

It is important to recognize that a neural network is far from having a performance that mimics a
human brain. Neural networks may be used to approach complex problems but, in practice, they
cannot provide the solution on its own by working individually (Haykin, 1999). Neural networks
should be integrated into a consistent system engineering approach, where the complexity of a
problem is decomposed into 2 number of relatively simple tasks. ANNs are then assigned a
subset of the tasks that match their inherent capabilities — they are applied in their “field of
expertise”. '

For example, let us compare symbolic Artificial Intelligence (Al) and neural networks cognitive
modeis. Symbolic Al can be described as the formal manipulation of a language of algorithms
and data representations in a top-down fashion. Neural networks, however, are parallel-
distributed processors with a natural ability to learn, and which usually operate in a bottom-up
fashion. The neural rules are local and simpler and the hoped-for emergent behavior is

- sophisticated pattern recognition and learning (Mitchell, 1996). For the implementation of

cognitive tasks, rather than seek solutions based on symbolic Al or neural networks alone, a
potentially useful approach could be to build hybrid systems that integrate them together. The
desirable features of adaptivity, robustness, and uniformity offered by neural networks would be
combined with the representation, inference, and universality that are inherent to symbolic Al.

Appropriateness for the learning surrogate LCA method

Artificial neural networks have properties considered relevant to address the problem domain —
product concept systems with product descriptors as inputs and prediction of environmental
performance as outputs — and specific research needs:

* Nonlinearity, high-dimensionality, uncertainty and incomplete knowledge of the system.
Product concepts systems have to incorporate a diverse number of factors dictated by
uncertain upstream conditions and downstream effects, spanning its whole life-cycle
(see section 2.2). Design concepts have little detail, and change rapidly and widely at a
high level of parameterization. Approximate predictions are needed quickly to assess
downstream (environmental), complex effects. Although lacking exact precision and
formal rigor (which actually is not a requirement for the purpose of the learning surrogate
LCA method), neural networks allow through learning from experience construct
approximations to nonlinear, high-dimensional systems about which we have insufficient
knowledge and don’'t need clearly stated mathematical solutions. Inputs can be
independent or highly correlated.

* Adaptivity. A neural network trained to operate in a specific environment can be easily
retrained to deal with changes in the surrounding environment and can be designed to
change its synaptic weights in real time. This feature is relevant to the present problem
domain as design concepts evolve rapidly and therefore there is a need for a readily
adaptation of the learning system to a new analysis scenario, without the overhead of
new modeling efforts.

* Robustness. If appropriate corrective measures are incorporated in the learning
- algorithm, a neural network exhibits a graceful degradation in performance under
adverse operating conditions rather than a catastrophic failure due to the distributed
nature of information stored in the network. This fault tolerance is important for the
present problem domain, as it enables the neural network not to be highly sensitive to
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errors or distortions that are frequent in “informed guessed” product data at the
conceptual level and in environmental data from LCA studies.

» Continuous numeric prediction. Neural networks are able to learn continuous numeric
functions and predict numerical real values. This is relevant for the approach, since the
output of the learning system, the approximate environmental performance of a product
concept, should be in a real-valued form for the purpose of simulation.

* Fast computation. The parallel nature of a neural network makes it potentially fast for the
computation of certain tasks. In addition, training cycles are attainable in acceptabie
times given the computational performance of today's personal computers, This is
important, as quick analysis tasks are required at the conceptual design phase.

* Simplicity. One can easily build, train and test ANNs without extensive mathematical or
programming background by using currently available plug-ins for mathematical analysis
tools (e.g. Matlab®), which provide all required functions and routines for designing and
applying ANNs in a transparent manner.

As mentioned previously, neural networks are often criticized as black boxes that are simply fed
in with inputs and miraculously provide outputs without revealing causal paths. This criticism
should be balanced with other methodological arguments and specifics of the research goals.
There are methods for deriving mathematical explanations of neural networks’ outputs, for
example, based on the derivatives of the outputs with respect to the inputs that caused them.
Probabilistic and statistical characterization of a neural network also makes internal states of the
neural network more accessible and understandable. Still, the weights learned by ANNs are
often difficult for humans to interpret, for example, learned ANNs are less easily communicated
to humans than learned rules.

However, the goal of this research it is not creating a comprehensive and exhaustive causal
model of the system. Given the purpose for which this methodology is being developed, it is
rather relevant trading-off full explanatory models with the possibility of rapidly and dynamically
obtain approximate predictions, appropriate to the practical problem being solved, without
compromising the necessary understanding of the system, which is not learning the target
function. At the conceptual stage, high level information and parameters are not suitable for
timely and significant explicit modeling. The real need goes into support designers to better
relate design changes originated by their decisions with corresponding approximate
environmental performances, under the guidance of environmental experts. These are the ones
who should be focused in exploring environmental causalities when creating, maintaining and
validating the surrogate LCA model based on existing detailed LCA studies. The ANN is
therefore a “suitable black box™ for the purpose of its application in this context.

Along with useful features and capabilities that are relevant for the purpose of this research,
neural networks also have their own limitations. A substantial quantity of training data for a
neural network to learn is required. Despite the potential robustness, generalization in a neural
network is a non-linear averaging over a set of examples, and therefore noise and bad data do
have an effect on its performance. Thus, there is a great effort in the design of a neural network
model and the preprocessing of data. Dealing with outliers, scaling, averaging, normalizing the
data and choosing a set of coding functions are used to smooth inputs for better training results.

Nevertheless, there is still the risk of it being impossible for: sufficient data to be collected; to
obtain the level of information required for a certain degree of accuracy; or the neural network to
extract the desired information. Curran (1999) reports that of the approximately 200 LCAs
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studies that Franklin Associates has conducted over the years, only a very small number have’
been presented publicly. However there is an increasing movement among different institutions
(e.g., SETAC, US EPA, OECD, UNEP) to join efforts in facilitating data exchange around the
world, working together with academia, government and industry. Still, great effort must be
devoted in establishing the necessary levels of collaboration and communication with industry
and consulting companies to overcome proprietary issues.

3.2.2 DECISION TREES
Definition and general properties

Decision trees represent attribute-value information about concepts for the purpose of
classification. They provide a particular way of breaking up data into classes or categories,
defined as structures that are either: a leaf node, representing a class after categorization; or a
decision node, specifying some test to be carried out on a single attribute value of the data, with-
one branch for each possible outcome of the test (Quinlan, 1993). A simple example of a
- decision tree is shown in Figure 3.6.

overcast

PLAY

false

PLAY DON'T PLAY DON'T PLAY PLAY

Figure 3.6 A simple example of a decision tree. Source: Quinlan (1993).

The classification of a case by a decision tree starts at the root of the tree and navigates
through the tree until a leaf is encountered. At each decision node, the case's outcome for the
test at the node is determined. The process then shifts to the root of the sub-tree corresponding
to this outcome. When a leaf is finally reached, the class of the case is predicted to be that
recorded at the leaf.

C4.5 is a software extension of the 1D3 decision tree algorithm (Quinlan, 1993). C4.5 inductively
constructs classification models in the form of decision trees by discovering and analyzing
patterns found in given data with known classification. The program also contains a module that
generates rules from a decision tree. The underlying algorithm in C4.5 is simple and
computationally efficient. Given a set of disjoint target classes {C;, C,,..., Ci} and a set of
training data, S (containing cases of more than one class), a divide and conquer algorithm uses
a series of statistical tests to refine S into subsets that contain cases of only one class. This
procedure builds a decision tree, where decision nodes correspond to {ests on a single attribute
of the data, and leafs are classified subsets of the data set. An information gain ratio criterion is
used to consistently choose the best possible test to decide which attribute will be tested. The
information gain criterion measures the ratio of information relevant to classification that is
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provided by the division (information gain) o the information produced by the division itself (split
information).

C4.5 also contains heuristic methods for pruning (simplifying) decision trees to create more
comprehensible structures without compromising accuracy on unseen cases, Pruning is done
by replacing a whole sub-tree by a leaf node if the expected error rate in the sub-tree is greater
than in a single leaf,

Benefits and limitations

The underlying algorithm in C4.5 for taking a training set and deriving a decision tree that will
correctly classify unseen objects is simple and computationally efficient. Its final product, the
decision tree, is an explicit model of the problem being solved. The time to build such tree only
increases linearly with the size of the problem. The system has aliso been adapted to cope with
noisy and incomplete data. The simplicity and efficiency of the algorithm make it a feasible
alternative to knowledge elicitation in expert systems if sufficient data of the right kind are
available (Jackson, 1998).

In comparison with more conventional statistical methods, there are a number of advantages in
electing to use decision tree methods over more conventional statistical methods. Methods like
C4.5 make no assumptions about the distribution of the attribute values (for example, that they
are normally distributed) or about the conditional independence of attributes (as would be
required by Bayesian classifiers). Studies have concluded that tree-based classifiers compare
favorably with other methods, in terms of accuracy, robustness across different tasks, and
speed of computation (Jackson, 1998).

The decision tree approach, or the particular algorithms embodied in C4.5, are not always
appropriate to be used as a classification task. The following requirements, which might
transiate into limitations, are key for successful application of decision trees:

* Attribute-value description. The data must be in a regular attribute-value format,
meaning that each datum must be characterized in terms of a fixed set of attributes and
their values, whether symbolic, ordinal or continuous. This restriction rules out domains
in which data have inherently variable structure. C4.5 handles missing attributes by
assuming that unknown test outcomes are distributed probabilistically according to the
relative frequency of outcomes that are known.

* Predefined classes. The classes or categories into which data will be divided must be
established ahead of time. C4.5 will not discover groupings of data.

* Discrete classes. The classes must be sharply delineated and must be disjoint — a case
either does or does not belong to a particular class - and there must be far more cases
than classes.

» Sufficient data. Large data sets are required, the larger the better. Training sets that are
too small will lead to over-fitting. The classification will be too heavily influenced by
individual data points, and the performance will be bad on unseen data. The amount of
data required is affected by factors such as the number of attributes and classes and the
complexity of the classification model. A simple model may be identified with a small
number of cases, but a detailed classification model usually requires hundreds or even
thousands of training cases. C4.5's pruning heuristic methods for simplifying decision
trees to produce more comprehensible structures, without compromising accuracy on
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unseen cases, will not correct for the problems cause by a small sample containing
atypical data.

* C’Logical’ clagsification models. C4.5 constructs only classifiers that can be expressed as
decision trees or sets of rules. This restricts the description of a class to a logical
expression with statements about the values of particular attributes.

From these requirements, it should be noted that the method lacks incremental learning and the
inability to predict numerical real values like neural networks. Additional training data cannot be
incorporated without reconsidering the classification of previous data. Another practical
distinction between neural networks and decision trees is that the tree algorithm is able to
automaticaily search through models of different complexities while there is no widely accepted
procedure for determining the appropriate structure for a neural network, as mentioned before
(Hand et al, 2001).

C4.5 is not guaranteed to find the simplest decision tree that characterizes the training data,
because the information-theoretic evaluation function for choosing attributes is only a heuristic.
Nevertheless, as mentioned previously, experience with the algorithm has shown its decision
trees are relatively simple and perform well in classifying unseen data. The search for the “best”
solution would increase the complexity of the algorithm and it is sometimes better to choose a
satisfying solution to a hard problem.

Appropriateness for the learning surrogate LCA method

C4.5 and its derived decision trees cannot be used for the purpose of learning quantitative
environmental performance from product concept descriptors, as the technique is only suitable
for learning predefined and discrete classes. However, this method was found to be useful for
performing the initial product categorization.

For product categorization it makes sense to have an explicit description of a product concept in
terms of its attributes and path used to classify it. Designers are familiar with, among other
methods (e.g. intuitive), systematic search with the help of classification systems to find and
evaluate design solutions and the combination of their essential characteristics (Pahl and Beitz,
1999). Decision trees, by providing a simple hierarchical multi-perspective view of the
classification problem, follow cognitive patterns, which are familiar not only to designers but also
to environmental experts who often use systematic, hierarchical presentation of data.

In addition, the C4.5 underlying algorithm is simple and computationally efficient. Tree-based
classifiers have been favorably compared with other methods in terms of accuracy, robustness
and speed of computation. C4.5 has also been adapted to cope with noisy and incomplete data.
The lack of incremental learning that requires reconsidering the classification of previous data
when incorporating additional training data might not be a relevant limitation in this case. The
initial product categorization, once satisfactory for the purpose, is meant to be final, even if more
training data is used to update the remaining learning system.

One limitation, especially for innovative design, might be the fixed structure and lack of
incremental learning in the classification step, as new cases emerge. However, this should not
compromise the whole learning system for incremental product concepts.
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3.2.3 GENETIC ALGORITHMS
Definition and general properties

Genetic algorithms (GA) are adaptive methods that may be used to solve search and
optimization problems, based on the genetic processes of biological organisms. By mimicking
the evolution process of the natural selection and “survival of the fittest”, genetic algorithms may
be able to “svolve” solutions to real world problems (Beasley et al, 1993).

GAs are not the only algorithms based on an analogy with nature (Beasley et al., 1993; Mitchell,
1996). Evolution strategies and evolutionary programming also draw inspiration from the natural
search and selection processes leading to the survival of the fittest individuals. Neural networks
are based on the behavior of neurons in the brain, as previously described. Their area of
application partly overlaps that of GAs.

A number of other techniques have been traditionally proposed for use in connection with
search and optimization problems (Goldberg, 1989). There are many optimization techniques,
some of which are only applicable to limited domains, for example, the enumerative scheme of
dynamic programming. Some of the more general techniques are calculus-based gradient
methods, and random search. Simulated annealing is another popular search mechanism that
uses random processes as GAs to help guide its form of search. -

Simulated annealing, genetic algorithms and evolutionary strategies are simitar in their use of
probabilistic search mechanism directed toward decreasing cost or increasing payoff. These
three methods have a high probability of lacating the global solution optimally in a multimodat
search landscape. Aithough these methods have different approaches, several hybrids of these
techniques have been proposed (Srinivas and Patnaik, 1994),

Genetic algorithms have been used for many machine learning applications, including
classification and prediction tasks. Particularly, they have been used to evolve aspects of
particular machine learning systems, such as weights for neural networks, and rules for learning
classifier systems, where GAs try to evolve (i.e. learn) a set of if...then rules to deal with some
particular situation (Mitchell, 1996).

In general, the basic elements of GAs are as follows, based on a direct analogy of natural
behavior of biological organisms (Beasley et al, 1993):

* Initially, there is population of “individuals”, each representing a possible solution to a
given problem. Each individual is assigned a “fitness score” according to how good a
solution to the problem it is.

* The highly fit individuals are given opportunities fo ‘reproduce”, and “cross breeding”
with other individuals. This produces new individuals as “offspring”, which share some
features taken from each “parent”. The least fit members of the population are less likely
to get selected for reproduction, and so “die out".

* A new population of possible solutions is thus produced by selecting the best individuals
from the current “generation”, and mating them to produce a new set of individuals, This
new generation contains a higher proportion of the characteristics possessed by the
good members of the previous generation.
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* Over many generations, good characteristics are spread throughout the population,
being mixed and exchanged with other good characteristics as they go. If the GA has
been designed well, the population will converge to an optimal solution to the problem.

The first step in preparing to solve a GA problem is the identification of a representation
scheme, where a suitable coding or representation for the problem must be defined. A potential
solution to a problem may be represented as a set of parameters or “genes”, which are joined
together to form a string of values or a “chromosome”. For example, if a problem is to maximize
a function of three variables, F(x,y,z), each variable might be represented by a 10-bit binary
number (suitably scaled). The chromosome would therefore contain three genes, and consist of
30 binary digits. A fitness function must also be devised. For a particular chromosome, the
fitness function returns a single numerical *fitness”, which is supposed to be proportional to the
“utility” or “ability” of the individual, which that chromosome represents. (Beasley et al., 1993).

A simple GA is mainly composed of three operators to solve the problem:

* Reproduction. The reproduction operator is a process in which individual strings in the
current population are copied into the next generation according to their fitness function
values, meaning that strings with a higher value have a higher probability of reproducing.
This has an effect of improving the average fitness of the population at the expense of its
genetic diversity.

* Crossover. The crossover operator randomly chooses a position along a string and
exchanges subsequences before and after that position between two strings or
chromosomes, which are selected to be “parents” based on their fitness values. Figure 7
illustrates a basic form of crossover.

+ Mutation. The mutation operator randomly flips some of the bits in a chromosome with
some probability, usually very small (e.g., 0.001). Figure 3.7 illustrates with an example
a single mutation. The fraditional view is that while crossover is more important for
rapidly exploring a search space, mutation provides a small amount of random search,
and helps ensure that no point in the search space has a zero probability of being
examined, potentially restoring lost diversity in a population.

Crossover point Crosgover point
Parents 1010‘001110 1011*010010

'\_Y_)H_J L_r_JLY_J
VT

{_A_\/_’H

Offspring 1010010010 1011001110

Mutation point

Offapring 1010010010

Mutated offspring 1010110010

Figure 3.7 Single-point crossover and a single mutation. Source: Beasley et al. (1993).

Given a clearly defined problem to be solved and a bit string representation for candidate
solutions, a simple GA may work as follows (Mitchell, 1996):
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1. Start with a randomly generated population of n I-bit chromosomes, which are the
candidate solutions to the problem.

2. Calculate the fitness f(x) of each chromosome x in the population.

3. Repeat the following steps until n offspring have been created:

(a) Select "with replacement” a pair of parent chromosomes from the current
population, the probability of selection being an increasing function of fitness.

{b) Crossover with probability p. the pair at a randomly chosen point (with uniform
probability) to form two offspring. If no crossover takes place, form two offspring
that are exact copies of their respective parents.

(c) Mutate the two offspring at each position with probability pm and place the
resulting chromosomes in the new population.

4. Replace the current population with the new population. If n is odd one new population
member can be discarded at random,
5. Goto step 2.

A GA is iterated (1 iteration = 1 generation) until some termination criterion is satisfied, typicaily
from 50 to 500 or more generations. If the GA has been suitably implemented, the population
will evolve over successive generations so that the fitness of the best and the average individual
in each generation increases towards a global optimum, in a run (set of generations). Due to
randomness, two runs may produce different detailed behaviors. Statistics, such as the best
fitness found in a run and the generation at which the individual with that best fitness was
discovered, are therefore often reported, averaged over many different runs of the GA on the
same problem.

There is no accepted “general theory” which explains exactly why GAs have the properties they
do. Nevertheless, several hypotheses have been put forward, which can partially explain the
success of GAs and be used to implement good GA applications. Holland's schema theorem
and the building block hypothesis (Goldberg, 1989) are two important “theories” that have
contributed for explaining how GAs work.

On the practical side, each GA application needs its own fitness function. However, there are
less problem-specific practicalities to deal with. For example, different parent selection
techniques have been proposed to overcome the fitness range problems of premature
convergence and slow finishing.

Benefits and limitations

Genetic algorithms are a powerful optimization technique. This technique is theoretically and
empirically proven to provide robust search in complex spaces, and therefore can deal
successfully with a wide range of problem areas (Goldberg, 1989). Genetic algorithms are
computationally simple yet powerful in their search for improvement, and are not limited by
restrictive assumptions about the search space, such as continuity, existence of derivatives, and
unimodality. GAs therefore provide an alternative to traditional optimization techniques by using
directed random searches to locate optimal solutions in complex landscapes. Specifically, GAs
have been shown to be able to outperform conventional optimization techniques in numerical
function optimization on difficult, discontinuous, muitimodal, noisy functions.

Genetic algorithms are not guaranteed to find the global optimum solution to a problem.
Specialized techniques that exist far solving particular problems are likely to out-perform GAs in
both speed and accuracy of the final result. GAs are however generally good at finding quickly a
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“satisficing” level of performance. Where existing techniques work well, improvements have
been made by hybridizing with GAs to combine the best of the local search method with the
more general robust scheme of the GA.

Appropriateness for the learning surrogate LCA method

Genetic algorithms could be used to improve the learning system. They could be applied to
evolve the weights of the neural network. GAs could also evolve the rules for the learning
classifier system performing the automatic product categorization. This additional optimization
feature could be added as a refinement of the method.

3.2.4 CASE-BASED REASONING

Definition and general properties

Case-based reasoning (CBR) model of reasoning incorporates problem solving, understanding,

-and leamning, and integrates all with the memory processes (Koledner, 1993). A reasoner

remembers previous situations similar to the current che and uses them to help to solve the new
problem by: adapting old solutions to solve new problems; using old cases to explain new
situations or critique new solutions; or reasoning from precedents to interpret a new situation or
create an equitable solution to a new problem.

Learning is an emergent behavior, it occurs as a natural consequence of reasoning, when a
case-based reasoner that remembers its experiences learns as it reasons. The learning process
is incremental, resulting in the learning of new procedures embodied in the cases, their
refinement, and the learning of when each procedure is appropriately used. Feedback and
analysis of feedback through follow-up procedures (e.g., explaining failures and attempting to
repair them) and explanatory reasoning are necessary parts for the complete reasoning/learning
cycle. Learning could not happen and references to previous experiences during reasoning
would be unreliable without evaluation processes based on feedback (Kolodner, 1993).

A case is a contextualized piece of operational knowledge representing an experience that
teaches a lesson fundamental to achieving the goals of the reasoner (Kolodner, 1993). Cases
are indexed by combinations of their descriptors that predict the situations in which they can be
appropriately used. They can present different shapes and sizes, covering large or small time
slices, associating solutions with problems, outcomes with situations, or both.

There are two different types of case-base reasoning: problem-solving and interpretive. In
problem solving CBR, cases are used to propose solutions, while in interpretive CBR cases are
used to provide context for understanding or assessing a situation. In the case-based reasoning
cycle (see Figure 3.8), both these two styles of CBR require at first case retrieval to facilitate
reasoning. To guarantee that poor solutions are not repeated along with the good ones, both
styles of case-based reasoning evaluate their solutions.
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Figure 3.8 The case-based reasoning cycle. The steps involved are recursive.
Source: Kolodner (1993)

The two styles, however, require that different reasoning be done once cases are retrieved:

* In problem-solving, a ballpark solution to the new problem is proposed by extracting the
solution from some retrieved case. Then follows adaptation, the process of fixing an old
solution to fit a new situation, and criticism, the process of critiquing the new solution
before trying it out.

* In interpretive CBR, a ballpark interpretation or desired result is proposed, sometimes
based on retrieval cases, sometimes imposed from the outside. This is followed by
justification, where an argument is created for the proposed solution, done by looking for
similarities between the new situation and others that justify the desired result and
differences that imply that other factors must be taken into account. Sometimes
justification is followed by a criticism step in which hypothetical situations are generated
and the proposed solution applied to them in order to test the solution.

The quality of a case-based reasoner’s reasoning depends therefore on: the experiences it has
had or those that have been put into its case library; its ability to understand new situations in
terms of those past experiences; adeptness at adaptation, evaluation and repair; and its ability
to integrate new experiences into its memory appropriately.

CBR's model uses the specific and the biggest chunks of knowledge available to reason befare
attempting to apply more abstract and smaller chunks of knowledge. Comparing with rule-based
reasoning, case-based reasoning is a process of adapting small numbers of large chunks, while
rule-base reasoning is a process of composing large numbers of small chunks to get to a
solution. Comparing with model-based reasoning, both were created to avoid reasoning from
scraich, and reason with large chunks. The knowledge they use, however, is quite different, with
models representing general knowledge while cases represent specific knowledge.

Benefits and limitations
The combination of reasoning and learning behavior in a case-based system, the use of cases

as the preferred form of knowledge, and the ability of cases to hold experience-acquired
associative knowledge leads this methodology to provide several advantages (Kolodner, 1993):
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* Solutions to problems are proposed quickly, avoiding the time necessary to derive those
answers from scratch. Case-based reasoning gives the reasoner a way of reusing hard
reasoning done in the past, making it possible not having to redo time-consuming
computations and inferences.

* Solutions to problems are proposed in domains that are not completely understood.
Case-based reasoning provides a method for dealing with incomplete knowledge by
basing reasoning on experience in the domain, with cases capturing an informal
understanding of the domain at a concrete level, rather than on formal models. A case-
based reasoner makes assumptions to fill in incomplete or missing knowledge on what
its experience tells it, based on what worked in the past, and goes on from there.
Resulting solutions will not always be optimal, or even right, but if proposed answers are
carefully evaluated, this methodology gives it a way to generate sclutions easily.

* Solutions are evaluated when no algorithm method is available for evaluation. Using
cases to aid in evaluation is particularly heipful when there are many unknowns, making
any other kind of evaluation impossible or hard. In case-based reasoning, solutions are
evaluated in the context of previous similar situations, based on what worked in the past.

* Cases are useful in interpreting open-ended and ill-defined concepts.

* Cases help a reasoner to focus its reasoning on important parts of a problem by pointing
out what features of a problem are the important ones.

* Previous experiences are particularly useful in warning of the potential for problems that
have occurred in the past, alerting a reasoner to take actions to avoid repeating past
mistakes.

In comparison with other reasoning methodologies, some case-based systems have
outperformed traditional expert systems. An interpretation for these results is that if a causal
model is not well known, a case-based system can perform beiter than the traditional model-
based one, and if problem situations are incompletely described, then case-based methods
work better than other classification methods.

There are also disadvantages or barriers associated with case-based reasoning that are
important to recognize. One disadvantage might be that CBR does not fully explore its solution
space, and therefore some optimal solutions might not be found. But, as mentioned in the GA
section, a goal might be getting answers “good enough” and some fine-tuning can be done to
make sure a system gets to answers that are “good enough”. Another disadvantage is that a
case-based reasoner requires a large memory to hold its cases, and this is a problem for
memory-limited systems.

In general, only common sense or guidelines have been provided to address fundamental
issues related with the capabilities of a case-based reasoning, namely, indexing issues, case
manipulation, and case representation. There is a need for better methodologies to overcome
performance barriers and enhance those capabilities. In particular, adapting rules for new
domains is a question that still remains to be fully answered. Although there are several
adaptation methods that have been developed and listed in literature, they are not enough yet to
cover all the kinds of adaptations special-purpose heuristics need to cover. The adaptation
problem becomes even more relevant in domains where knowledge is incomplete, interpreting
new data and adapting the old soluticns with little domain information.
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Appropriateness for the learning surrogate LCA method

Case-based reasoning was also ruled out as a method to support this research, although it
could be explored and tested for its performance. In effect, | am not disregarding its relevant
benefits, such as ability to reuse hard reasoning previously completed, avoiding redoing time-
consuming computations and inferences, and to handle domains that are not completely
understood. ’

For the classification task in the learning surrogate LCA method, the human cognitive patterns
mentioned previously to support the use of decision trees make decision trees a more
appropriate approach.

In addition, although practical retrieval technologies are available for adapting old solutions in
case-based reasoning, general adapting rules for new domains is though a question that still
remains to be fully answered. This becomes quite relevant if new design concepts are being
analyzed with littie domain information.

Nevertheless, Soibelman (1998) applied case-based reasoning in conceptual structural building
design, acknowledging particularities of his design problem that would allow a successful
implementation. He used GAs to perform adaptation of the objective standards provided by
case-based reasoning. Rivard (1998) also implemented a computer-based building design
environment using case-based reasoning to help designers remember and quickly retrieve
appropriate cases at early phases of buiiding design.

Rombouts (1998) applied case-based reasoning using product categories and attributes to
obtain environmental profiles of products in some form of aggregated quantitative loads. An
expert system is then applied to the environmental profiles to rank environmental improvement
strategies, as the final output. However, in the predictive phase of the learning surrogate LCA
method, low aggregated and quantitative output is preferred, as opposed to strategy ranking, to
provide greater flexibility for further analysis and the quantitative results necessary for integrated
conceptual design. | question into what extent this may compromise developing an appropriate
case library for the required system output.

3.2.5 EXPERT SYSTEMS
Definition and general properties

An expert system is a form of knowledge-based system defined as a computer program that
represents and reasons with knowledge of some specialist for solving problems or giving
advice. It may completely fuffill a function that normally requires human expertise, or it may play
the roles of an assistant to a human decision maker (Jackson, 1998). The following general
features characterize an expert system:

* It simulates human reasoning about a problem domain, rather than simulating the
domain itself. The goal is to emulate an expert's problem solving abilities by performing
some portion of the relevant tasks as well as, or better than, the expert. :

* It performs reasoning over representations of human knowledge, in addition to doing
numerical calculations or data retrieval. The knowledge in the program is normally
represented in a special-purpose language and kept separate from the code that
performs the reasoning.
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* It solves problems by heuristic or approximate methods. A heuristic is a rule of thumb
that encodes a piece of knowledge about how to solve problems in some domain.
‘Methods are approximate because they do not require perfect data and the solutions
derived by the system may be propased with varying degrees of certainty.

An expert system is built by assembling a knowledge base, which is then interpreted by an off-
the-shelf program that contains an inference engine (see Figure 3.9). An empty knowledge base
comes with the program, typically called a shell. The end user of the appiication interacts with
the shell via the inference engine, which uses the knowledge put in the knowledge base to
answer questions, solve problems, or offer advice.

Expert system shell

- Inference | ® Rnowledge - — Developer
User —» engine " base H

Figure 3.9 The structure of an expert system sheil. Source: Jackson (1998).

In expert systems, knowledge representation focus on finding ways in which large bodies of
useful information can be formally described in an unambiguous language or notation with a
well-defined syntax and semantics, for the purposes of symbolic computation. This computation
is non-numeric in which symbols and symboal structures can be created as representing various
concepts and relationships between them. '

Several conventions for coding knowledge have been suggested, including production rules,
structured objects, and logic programs. Production rules, intended as generative rules of
behavior, have become a mainstay of expert systems design and development. They determine
how the symbol structures that represent the current state of the problem should be
manipulated in order to bring the representation closer to the solution.

Benefits and limitations

Expert systems are best applied to problem areas that are objective, easily broken down to
specific components, and have well defined outcomes, providing straightforward answers in
situations where the rules are well defined. They then provide a greater accessibility to human
expertise to solve problems that cannot be solved by conventional data processing techniques,
along with a consistent application of rules and procedures.

Although expert systems can become highly intelligent systems to solve problems in a very
restricted domain, past experiences in expert systems, and other knowledge-based systems,
indicate that scaling up to broader scopes is extremely difficult, and as a2 consequence, poor
results have been obtained (Soibelman, 1998).
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Expert systems show inflexibility, as they are unable to handle data or problems that fall outside
of the parameters built into them. Also they do not change with changing conditions, meaning
that they do not “learn” as, for example, neural networks do.

Knowledge acquisition is known as “the bottleneck problem” of expert systems applications. The
transfer and transformation of potential expertise from a human expert to a program is usually
accomplished by a series of lengthy and intensive interviews between a knowledge engineer,
normally a computer specialist, and a domain expert who is able to articulate his expertise to
some degree. The productivity of this task is estimated to be typically very poor. Some reasons
for this limitation are that experts have their own jargon, it is difficult to them to communicate
their knowledge in everyday language. Also facts and principles of many domains of interest
cannot be characterized precisely in terms of a mathematical theory or a deterministic model
whose properties are well understood. Experts need to know more than the mere facts or
principles of a domain in order to solve problems. Also it is often difficult to delineate the amount
and nature of general knowledge needed to deal with a specific problem as human expertise is
often set in a broader context that involves a good deal of common sense knowledge. A variety
of tools and methods for knowledge acquisition have been proposed but none of these eliminate
the need for significant human labor.

Research in expert systems has been trying to address these limitations. One approach has
been considering hybrid systems that would combine an expert system with another problem
solving method, resulting in applications that take advantage of the strengths of each approach.
A fearning component capable of learning concepts from example is often considered to be
included. These hybrid systems could extend and refine expert system architectures for solving
problems.

Appropriateness for the learning surrogate LCA method

Expert systems are not suitable for the current research purpose. The problem domain is
sufficiently complex, not perfectly understood and nonlinear to cause difficuities in acquiring and
codifying all the necessary knowledge from the experts. Expert systems would not support the
evolution of design concepts, as they do not change with changing conditions, meaning that
they do not “learn” as, for example, neural nets do. Expert systems would also be inflexible with
incomplete and noisy environmental product data, as they are unable to handle data that fall
outside the parameters built into them. Not coping with noisy and incomplete data makes this
mechanism also inefficient to complement the neural network in product categorization.

3.2.6 QUALITATIVE REASONING
Definition and general properties

Qualitative reasoning is a framework that aims to formalize the ability to focus on the important
distinctions between deterministic systems and ignore the unimportant ones, in order to cope
with incomplete knowledge. This methodology addresses both the problems of model building
and model simulation, based on the belief of the value of a model representation that captures
incomplete, qualitative knowledge of continuous quantities (Kuipers, 1994). Qualitative
differential equations (QDEs) are qualitative abstractions of the ordinary differential equations
(ODEs), and are used for such representation (see Figure 3.10).
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Figure 3.10 Qualitative reasoning framework. Adapted from Kuipers (1994).

For example, consider a deterministic system such as a structural system of specific beams,
columns, connections, and applied forces, where the fundamental physics necessary to analyze
possible outcomes and the differential equations representing the physics are well known
(Soibeiman, 1998). The quantitative knowledge of its physical parameters (lengths, cross-
sections, materials, and forces) makes it a deterministic system, as its behavior may be
completely analyzed and accurate behavior predictions derived. The knowledge of such
physical parameters, however, may be incomplete (e.g. early in the design process), and
therefore conventional analysis, which relies upon solution of systems of differential equations,
becomes limited if some of the variables are unknown, and must be repeated if any of the
variabies change in value. The system, with unknown variable values, is no longer deterministic
because multiple outcomes are possible, depending on the values of the unknown variables.
Qualitative reasoning models this system using QDEs instead of ODEs to automatically
simulate all of possible outcomes, and to discover the dependencies of events in the system.

Qualitative reasoning methods are based primarily on ordinal knowledge of real-valued
quantities. The motivation is that human perception and memory seem to be particularly
sensitive to ordinal relationships, especially with “landmark” values or “natural joints” that break
a continuous set of values into qualitatively distinct regions (Kuipers, 1994).

The use of the language of differential equations provides the “expressive power" to state
models that capture the dynamic character of the real world, and the “inferential power” to
derive predictions from those models. The abstraction from ordinary to qualitative differential
equations allows: (a) a functional relationship between two variables to be incompletely known,
specified as being in the class of monotonically increasing (or decreasing) functions, with
behavior inferred for the entire class; (b) the real number line in which variables take their
values to be described in terms of a finite set of qualitatively significant *landmark values” and
the intervals between them.
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Benefits and limitations

Qualitative reasoning is appropriate for situations where all of the possible outcomes of a
deterministic system must be inferred. The system operates in accordance with known functions
of time but the quantitative knowledge of some of the parameters is incomplete.

Limitations for the application of this methodology occur when the underlying mechanisms of the
system are not sufficiently known or well understood to develop the appropriate qualitative
differential equations systems.

Appropriateness for the learning surrogate LCA method

Qualitative reasoning is also eliminated as an alternative or complementary method for the
current research purpose. The problem domain is not sufficiently well understood and
deterministic to develep the appropriate qualitative differential equation systems.

3.2.7FUZZY SYSTEMS AND FUZZY LOGIC
Definition and general properties

Classical set theory is based on two-valued logic: expressions of the form a and A, where ais a
constant representing an individual and A denotes a set of individuals, are either true or faise.
This crispness of the classical set theory cannot deal with concepts that are not sharply defined.
Fuzzy set theory is a formalism developed to deal with such imprecise or approximate concepts
and relationships.

Lofti Zadeh, its inventor, believes that humans reason not in terms of discrete symbols and
numbers but in terms of general categories, but not rigid, fixed collections — fuzzy sets (Cox,
1994). A fuzzy set is a function that maps a value that might be a member of the set to a
number between zero (value is not in the set) and one (value is completely representative of the
set) indicating its actual degree of membership. This produces a curve across the members of
the set. A simple example is illustrated in Figure 3.11.

Ar A durable product

1
Degree of
membership
Hx)

A 4

D 1 2 3 4
Lifetime { in years) x

Figure 3.11 Idea of a durable product.

The members of the fuzzy set “durable products” in Figure 3.2.7.1 are duration periods, in
years, for a specific product. The fuzzy set indicates to what degree a product of a specified
duration or lifetime is a member of the set “durabie products”. A product that lasts less than one
year would not be considered “durable”, a product with 2 years would have a moderate
membership in the set of “durable products”, and a product of more than 3.5 years is most
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certainly a “durable product”. The actual definition depends on the context in which is used, in
this case for example, the type of product.

The center of the fuzzy modeling technique is the idea of a linguistic variable. A linguistic
variable is the name of a fuzzy set. In the previous example, the fuzzy set “durable” is a simple
finguistic variable and could be used in @ rule-based system to make decisions based on the
lifetime of a particular product.

Fuzzy set qualifiers or hedges change the shape of fuzzy sets in predictable ways and function
in the same fashion as adverbs and adjectives in the English language. This allows writing
expressive statements about related concepts. For example, the following are linguistic

variables using the fuzzy set “durable”: “very durable,” "somewhat durable”, “minimally durabie”.

The theory of fuzzy sets supports the more general theory of fuzzy logic, which in turn supports
the logical construcis used to create and manipulate fuzzy systems. Fuzzy logic is @ calculus of
compatibility. Unlike probability, which is based on frequency distributions in a random
population, fuzzy logic deals with describing the characteristics of properties. Much of the
descriptive power of fuzzy logic comes from the fact that its semantic partitions of values can
overlap. This overlap corresponds to the transition from one state to the next, which arises from
the natural ambiguity that exists in intermediate states of the semantic partitions. Fuziness is
therefore a measure of how well an instance {value) is compatible fo a semantic ideal of
concept, assessing the degree of ambiguity or uncertainty attached to each value.

Benefits and limitations

Fuzzy set theory and fuzzy logic have been successfully applied in existing methods for
decision support, control and knowledge systems. In general, the membership functions or
fuzzy sets are easy to understand, can be deduced from situations and created with logical
reasoning. Therefore, some penefits of using fuzzy system modeling are:

» Modeling highly complex problems. Fuzzy systems are able to approximate the behavior
of systems with a variety of poorly understood and/or nonlinear properties.

+ Improving cognitive modeling of expert systems (Jackson, 1998). For many knowledge
engineers fuzzy system modeling provides the ability to encode knowledge directly in a
form that is very close to the way experts themselves think about the decision process.

» Improving neural networks (pre-processing and post-processing data) and genetic
algorithms (improving the objective function) performances (Soibelman, 1998).

+ Reducing model complexity. Fuzzy models require fewer rules than conventional
systems and these rules are closer to the way knowledge is expressed in natural
language. Fuzzy rule-based systems usually execute faster than conventional rule-
based systems and require fewer rules.

« Handling uncertainty. Fuzzy logic provides a way to represent uncertainty and
imprecision as an intrinsic part of the model. Park et al. (1999) applied a fuzzy clustering
approach to classify disposal products into recycling parts families as an alternative
approach to conventional clustering techniques.

These benefits, however, may not be fully provided for certain applications. There are projects
where knowledge acquisition for the definition of meaningful fuzzy sets is still a major barrier for
implementation (Soibelman, 1998). Also, the fuzzy representation of uncertainty and the fuzzy
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interpretation of the way experts think are areas of continual debate, confronted with other
existing approaches such as the probabilistic interpretation. Wallace (1994) discusses main
semantic differences between fuzzy theory and probability theory (based upon classical set
theory) in the context of decision making in product design. Following the fuzziness
interpretation, designers have a fuzzy internal concept of acceptability of design specifications.
However, given that all designs must belong to the unambiguous sets of needing improvement
(unacceptable) or not needing improvement (acceptable), and consequently designers have
only these crisp courses of action, Wallace (1994) concludes that the probabilistic interpretation
of decision making in product design seems more appropriate.

Appropriateness for the learning surrogate LCA method

Fuzzy logic is not considered for the approach as well. Given the problem domain and also
some experience already gained from contacts with experts, | think it would be difficult in
acquiring the necessary knowledge for the definition of meaningful fuzzy sets for its effective .
use.

3.2.8 TRUTH MAINTENANCE SYSTEMS

Truth maintenance systems are support algorithms, a group of algorithms dedicated to give
justifications to the decisions adopted by the different reasoning mechanisms. The following
overview is based upon Jackson (1998), Soibelman (1998) and Winston (1993).

Definition and general properties

Truth maintenance systems are mechanisms for keeping track of dependencies and detecting
inconsistency, by focus on beliefs and constraints that a set of beliefs must satisfy in existing
reasoners. Functions of a truth maintenance component in the context of a larger problem
solving program are:

* Maintenance of a cache of inferences. The purpose is to cache inferences made by the
problem solver, so that conclusions that have once been derived need never be derived
again.

* ldentification of assumptions and conclusions. The purpose is to allow the problem
solver to make useful assumptions and see if useful conclusions can be derived from
them. By providing explanations on the conclusions the problem solver enables the user
(or itself) to know what to change when things go wrong

* Handle the problem of inconsistency. This is done by either by maintaining a single
consistent world model, or managing muiltiple contexis, which are internally consistent
but which may be mutually inconsistent.

There are several different types of truth maintenance systems, with a large number of design-
alternatives. In general, the process involves proof by constraint propagation that makes it easy
to keep track of justifications enabling truth-maintenance procedures to withdraw assumptions in
the context. Expressions are used to built a truth-propagation net consisting of truth boxes,
which contain true and false values, and truth-propagation boxes, which propagate truth vatues.
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Benefits and limitations

Truth maintenance systems keep track of dependencies and detect inconsistency. This
additional functionality in a reasoner prevents deriving expressions all over again by tracking
dependencies, and accounts for influences and constraints that always exist in a system and
that should not be ignored to avoid inconsistency.

Truth maintenance systems deal with propositional calculus only. Therefore, they cannot deal
with expressions containing variables, unless the problem is such that there is a way to
transform the variable-containing expressions into a finite number of variable-free expressions.
Also, it can be shown that truth propagation cannot prove all true expressions, thus it is not a
complete proof procedure.

Appropriateness for the learning surrogate LCA method

Truth maintenance systems could eventually be implemented as a “quality maintenance”
structure, if reasoning mechanisms were chosen to be applied. In this case, | would add this
additional feature as a refinement of the methodology.

3.3 EXTENDING SUSTAINABLE PRODUCT CONCEPT SYSTEMS
MODELING USING DOME

The learning surrogate LCA method was developed under the assertion that environmental
issues can be successfully incorporated into product design only if balanced with the existing
traditional design criteria. Product concept descriptors are the feature in the method that can
facilitate the required integration efforts by providing a flexible, high-level simulation interface
between designers, environmental experts and other parties involved in the early design
process. This section starts by discussing why an integrated, emergent modeling approach is
critical for early design synthesis, particularly in environmentally-conscious design. Then the
World-Wide Simulation Web (WWS8W) and its software infrastructure — Distributed Object-based
Modeling Environment (DOME) — are presented as a new approach proposed by Wallace et al.
(2002) to model and simulate integrated product systems over the Internet. The last section
explains how such a framework can be used to allow LCA models communicate with other
design models, providing product designers with real-time environmental impact assessment. In
particular, an example will illustrate how DOME can be used to extend the simulation interface
capabilities of learning surrogate LCA models at early conceptual design stages.

3.3.1 NEED FOR INTEGRATED, EMERGENT MODELING APPROACH

Environmentally-conscious design only truly happens when environmental issues are viewed as
design goals to be traded-off against other, traditionally considered design goals, such as cost,
technical performance, and aesthetics. This is a key requirement for environmentally conscious
design approaches to actually be useful in practice. A mal-functioning, over-priced or
unattractive product that customers won’'t buy or use inappropriately is definitely not a
successful “sustainable product”.

The need for integrating environmental assessment into product design is closely related with
the need for designers to interact and collaborate efficiently by sharing common information,
reaching agreements in an integrated, concurrent design environment. This is important since
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product design problems require specialized knowledge from many different fields, such as
functional, aesthetic, and environmental, each of them characterized by different viewpoints,
goals and constraints that have to be balanced with appropriate tradeoffs (Jackson and
Wallace, 1997a; Senin et al, 1997; Borland et al, 1998).

In sustainable product development, such integration needs to be further extended to account
for many more stakeholders early on. When addressing sustainability issues at early conceptual
stages, evaluations and decisions have a social, political and environmental relevance, besides
the traditional technical and economical. Designers and engineers, although focusing their effort
on their own expertise, must internalize in their mental model this holistic view of product
systems to be able to collaborate with the other parties. This way chances of designers and
engineers effectively address current pressures to innovate with eco-efficient forms of
production get substantially higher. Communication and collaboration with the value creation
chain (e.g. supply chain) as well as with authorities (e.g. governmental agencies) and others
external to a company must then be enabled to pro-actively filter preliminary decisions and

support informed decision-making overall.

An integrated modeling approach in design allows us to predict the overall product performance
through mathematical analysis and simulation of integrated product behavior. It provides a
system perspective in a rational manner, by making technical, economical and environmental
dependencies more transparent and accessible (Wallace, 1994). As a consequence, informed
and more reliable decisions ¢can be made and quality and speed in product development can be
improved, for example by reducing costly design, build, test, and refine cycles in the process
(Abrahamson et al, 1999).

In particular, integrated simulations facilitate an early, less costly detection of environmental
impacts to be measured against environmental goals and in relation to other traditional design
goals. The number of factors to be considered in economical, social and natural systems is such
that it is impossible to evaluate and make decisions intuitively or on the basis of simple (linear)
connections (Saur et al, 2000). Through integrated simulations, product concept systems can be
explored inexpensively and quickly with a multitude of what-if scenarios and iterations. In
addition, up-front integrated design on the basis of integrated simulations is an incentive to try
more innovative solutions, as these bring no costly effects if they don’t work (Wallace et al,
2002). This potentially will yield higher quality products with better environmental performance,

Research groups in both academia and industry have been proposing and developing
integrated modeling environments. Borland et al (1998) and Wallace et al (2002) refer to
existing concurrent and integrated design modeling approaches. Wallace et al (2002) argue
they all have in common a major barrier for addressing integration challenges during design
synthesis — they all use some form of an up-front, consolidated explicit description of the
complete integrated system model. In contrast, product systems and design activities are
generally evolving and have high levels of uncertainty, with rapid — and often unplanned -
synthesis and evaluation cycles, involving many participants using different modeling tools (e.g.,
spreadsheet applications and CAD systems) in different geographical locations; therefore
making it inefficient to be modeled and supported by strict, centralized top-down explicit
consolidated approaches that in the same way don’t emerge with the design process.

This barrier is particularly relevant when predicting the integrated behavior in the design of
complex “sustainable-to-be” product concepts ranging from home air conditioners and other
household appliances, to automabile, aircraft, urban environments, and industrial ecosystems.
Such large systems usually emerge from individual actions and locally defined exchange
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relationships and incorporate complex technology, economic and natural systems with infarmal,
dynamic, heterogeneous, and evolving characteristics.

For example, imagine the following hypothetic scenario:

A car design firm realized the growing governmental, market and public pressure on automotive
companies to innovate towards the production of more eco-efficient automobiles — new
standards for life-cycle environmental performance of cars are expected to be phased in over
the next ten-year period. Industrial design solutions are already being explored internally but
other issues need to be concurrently addressed, such as:

What are combinations of weight reduction, fuel types, power train changes that can
meet the new requirements with the present design proposals?

What are alternatives of weight reduction that can provide life-cycle energy and material
efficiency with the present design proposals?

How should recycling strategies be traded off with weight reduction strategies?
What are the corresponding production, operational and end-of-life costs?
What are car concepts that best fit existing or predicted market niches?

What OEM (original equipment manufacturer) should be targeted to commit with
production and penetration in the market?

How will the existing industrial design solutions evolve to cope with all the other design
requirements in previous questions that need to be explored?

The company formed a partnership to pursue the project in collaboration with other interested
parties. It made sense to bring in other areas of expertise for technical and financial support.
Together they have to somehow integrate the first answers to these and many more questions —
and the sooner and faster the better — to filter down essential prefiminary decisions to move
forward to get further funding for a more detailed study and attract an OEM to “adopt” the idea.
Figure 3.12 illustrates the scenario.
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Figure 3.12 Hypothetical scenario
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This hypothetical scenario exemplifies some of the complexity, heterogeneity and uncertainty
that need to be addressed in product concept systems. The partnership, which includes several
participants located in different parts of the world, focused on different pieces of the problem,
and using different tools and proprietary information, hasn’t decided yet which OEM is going to
be targeted.

This means that at this point they need to delivery a convincing, profitable and feasible idea for
“marketing” it to a potential OEM and guarantee further funding with the governmental institution
(whose in turn is interested in attracting the OEM to the country for economy enhancement) for
follow up with more detailed studies. However, to deliver such a proposal without knowing who
is going to take on the production of the car, they will have to deal with a high degree of
uncertainty and still do a good job in the feasibility study: the car design will only include style
proposals with minimal information on structure dimensions and lack of detail in material
choices for the interior and other sub-systems, components and parts as it is not known who is

going to supply them — it will greatly depend on which OEM will be responsible for the
- manufacturing. This lack of information and ill-defined scenario propagates uncertainty to the
network of the other partners who will have to provide their approximate assessments based
only on their previous experience in the area of expertise and the high level information of this
project they can get at this point in time. In particular, the research institution 1SS will only be
able to deliver approximate environmental assessments using very high-level information
provided by the other participants on material composition, mass and dimensions, use of the
car, power train alternatives and plausible recycling scenarios.

This scenario will evolve with the desirable future interactions and negotiations amongst the
stakeholders. The partnership must be prepared with flexible assessment and decision-making
capabilities to deal with the resulting emergent situations in a similar organic, yet reliable, path
as the project moves along.

3.3.2 DOME FOR A WORLD-WIDE SIMULATION WEB

A World-Wide Simulation Web (WWSW) is a concept inspired by the vision of the World-Wide
Web as an emergent information-network building environment. Wallace et al (2002) proposed
this new concept for defining an emergent, integrated, simulation-building environment that
could overcome the barriers associated with the traditional explicit, procedural process of
modeling "integrated systems. The WWS8W concept envisions a global community, or
marketplace, of individuals offering access to simulation services related to their own expertise,
much as the WWW has enabled world-wide access to information. Within this envisioned
simulation network, it will be possible to quickly create and holistically assess technology
systems from many viewpoints, thereby helping individuals to make informed tradeoffs related
to complex sustainability issues.

DOME (Distributed Object-based Modeling Environment) is an ongoing project to develop and
test a computational infrastructure for the WWSW concept. DOME first-generation
implementation was developed in 1996 and emphasized computation, decision support, and
optimization (Panhg et al, 1998). The second-generation implementation focused on simulation
marketplace concepts using CORBA as a distributed communication protocol (Abrahamson et
al, 2000; Senin et al, 2000). The DOME project is now in the early stages of its third generation
implementation focusing on combining http protocol-based simulation service marketplace
concepts with the efficient solving of emergent mtegrated simulations. The kernel runs on any
platform (Wlndows (NT/2000/XP) Mac® OSX, Linux® and Unix®) supporting Python® 2.1 or
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higher. The graphic user interface components are Java Bean-based to easily write custom
interfaces for 3™ party application models. Distributed communication uses XML-RCP, which is
based upon htitp.

DOME allows participants interact and act locally to define and create a complex whole,
incorporating much more systemic knowledge than all the individual pieces of the system
model. Participants can offer their capabilities digitally through simulation service interfaces
instantiated by object models accessible over the Internet. They can define and publish
parametrically operable interfaces to their sub-system simulations on the Internet, much like
html pages are published in the WWW. Participants can also independently negotiate and form
local relationships between their simulations and those of other participants by defining
mathematical links between interface parameters without requiring a centralized understanding
of the global siructure or execution sequence of the integrated simulation. The resultant
simulation network becomes an emergent distributed computational system capable of solving
decentralized relationships while maintaining overall mathematical consistency and proprietary
information through a federated parametric solving mechanism. Service state changes, rather
than data models, are propagated to rapidly predict the integrated behavior of the emergent
system.

Publishing over the Internet and integrating 21 heterogeneous distributed simulations for a fulf
door glass drop proof-of-concept pilot study conducted at Ford Motor Company required less
than one person-month (Abrahamson et al, 2000). As a general benchmark to measure against
it several similar or smaller size integrated simulation environments have been observed to
require on the order of person years to construct (Wallace et al, 2002). A fully integrated
simultaneous design cycle required roughly 20 seconds to 1 day in comparison to a week to
three months in the traditional design cycle. These cycles typically occur nearly 20 times. In
addition, the opportunity for performing integrated, emergent simulation foster an iterative
process that improves systemic design by allowing many more learning and improvement
cycles while still reducing product development time.

A more detailed description of the process of building an emergent system simulation, using the
Ford pilot study as an application example, as well as of the federated parametric solving
mechanisms can be found in Wallace et al (2002). Several other DOME pilot applications both
in industry and academia are summarized in the same paper.

Tools for optimization, simulation structure analysis and tradeoff analysis have been developed
and incorporated in DOME. The optimization engine is based on genetic algorithms (GA) to
automatically search for model states that best meet design goals. In particular, the Struggle GA
have the potential to locate several locally optimal design alternatives in addition to the global
solution, in a single optimization, which provides designers with insight into the design space
and freedom to select from a number of possibilities (Senin et al, 1999). Simulation structure
analysis can be performed using a design structure matrix object to visualize service
interactions as they evolve (Abrahamson et al, 1999).

Decision-making support

DOME supports decision-making based on a goal-oriented design evaluation mode! (Kim and
Wallace, 1997). An evaluation model includes both the definition of the designer's preference
structure and the comparison of design performance variables to this preference structure, with
the possibility of associating uncertainty and evolving as the understanding of a design problem
changes over time. According to the goal-based approach, design solutions are evaluated
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against a set of designer's goals stated as requirements or specifications. These goals are
defined in terms of acceptability functions, which indicate the subjective probability that the
designer will judge values of a quantity as “acceptable”, to indicate desired performance levels.

A specification-like acceptability function is represented as a piecewise linear function of its
associated attribute, ranging from 0 (reject the performance variable value with certainty) to 1
(accept the performance variable values with certainty). A design criterion evaluates a
performance variable against a specification to determine its acceptability, meaning to compute
the probability that the current value of the quantity will be deemed acceptable. This goal-based
acceptability design evaluation is illustrated in Figure 3.13. The overall probability of acceptance
for a design is assessed by aggregating the probabilities of acceptance for all the individual
requirements. '

a) acceptability function b) design performance
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1 1= acceptable with certainty
0= unacceptable with certainty
0
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Pacceptance = f acceptability(x) - performance (x)dx

Figure 3.13 Goal-based acceptability design evaluation. Source: Jackson and Wallace (1 997).

The decision support object in DOME provides a real-time view of system-wide tradeoffs as
different participants make local design changes. Spider diagrams visualize performance
assessments on different axes axes, while expanded detail window show performance
predictions relative to the design specifications.

3.3.3 PROVIDING LIFE-CYCLE ASSESSMENT IN A WWSW

The DOME modeling infrastructure has been conceived to support environmentally conscious
design. It is currently being used to facilitate the construction of “virtual Tokyo" — a simulation
platform for evaluating holistically the tradeoffs between various technologies for reducing the
emission of greenhouse gases (Kraines et al, 2001).

DOME has been explored for supporting life-cycle assessment modeling capabilities distributed
over the Internet in a collaboration environment between product designers and environmental
experts. It pravides two types of approaches to facilitate the incorporation of LCA into product
design: (1) modular method; (2) collaborative method. These approaches are not necessary
mutually exclusive so that a design problem modeling may involve both methods combined in a
flexible way that fulfill the goals and scope of the study.

In the modular method, generalized modules may be used to represent the product life-cycle
using DOME environment. Jackson and Wallace (1997b) describe an approach for modeling
product life-cycles in order to create time-dependent inventories for use in environmental impact
assessment. A general process module is defined relating resource inputs and outflows, based
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upon an embedded mathematical model. The generality of the process module defined allows
sections of a network to be embedded within larger modules, thus facilitating the re-use of
network sections in different product life-cycles. A specific model used within modules
represents average process behavior as a function of a set of empirical process parameters for
simulating a variety of life-cycle processes, such as material processing, transportation, and
assembly. By linking process modules together, the designer can represent complete
manufacturing networks for product life-cycles, and specify the required system output or
product demand as a function of time. The integrated network calculates the necessary time-
dependent resource flows throughout the network, and this time-based inventory information
can be used in conjunction with existing LCA tools to perform an environmental impact
assessment that accounts for time-related effects.

The collaborative method uses 3™ party LCA applications to be incorporated into modules so
that they become part of an integrated design model. This method is based upon the
collaborative modeling concept proposed by Borland and Wallace (2000). In this approach, an
expert-based collaborative structure allows environmental experts to rapidly provide an impact
-assessment to product designers, based on a given set of inputs. The collaborative approach
assumes that product designers and environmental experts are specialists in their own fields,
each may have some knowledge of and training in the other’s field, but neither is capable of
doing the other’s job in a thorough way.

This communicating object architecture for integrated environmental assessment has been
demonstrated successfully in prior work using DOME infrastructure (Borland et al, 1998;
Borland and Wallace, 2000; Abrahamson et al, 1999). The environmental experts build life-cycle
models, and designers separately build appropriate engineering models. Through an internet-
based communication using an interface negotiated between the environmental experts and the
designers, the two groups exchange relevant information, allowing for concurrent modeling even
though their proprietary data, specialized models and tools are separate. This method has the
advantage of timely distributing expertise and keeping models proprietary, yet integrated
(Borland et al, 1998).

LCA - based comparisons using DOME framework, if used appropriately acknowledging LCA
methodological limitations, can be a valuable interactive design tool in providing insight into a
product’'s potential impact in the environment and balancing a wide variety of design goals. LCA
models can communicate with other design models on the same numerical basis of material
and energy flows, providing product designers with real-time environmental impact assessment.

The following steps are a general description of the process:

1. First, an interface is negotiated among all involved parties, after the initial exchange of
information. The negotiated input-output interface is an agreement as to what data will
be exchanged and in what form, maintaining however any proprietary data, models, or
tools with its owner. The designer's model likely depends on some results from the
environmental expert and the life-cycle model requires inputs from the designer’s model.

2. Both the designer and the environmental expert build their own models. The LCA model
may be built from scratch, by modifying an existing model, or by reusing an existing
model. It alsoc may be anything from a detailed LCA to a straight materials analysis,
depending on the amount of information provided to the environmental expert. Time and
proprietary information might prevent building a detailed model built from scratch.
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3. The environmental expert makes his/her data available as distributed objects on the
WWSW. The designer integrates these objects into the product system model and
immediately gains the services of the environmental expert's LCA model.

4. The designer now is able to evaluate and compare the impacts of many parametric
variations to the initial design. For example, when the designer changes the design by
adding a part, this additional part is translated through the established interface over the
WWSW as an input to the life-cycle model, e.g. as added mass of a particular material.
The result of the added mass is increased environmental impact of the design and the
quantitative result is propagated back to the designer. A decision will have to be made
on the importance of the added part with respect to its environmental impact.

In a similar fashion, learning surrogate LCA models can use DOME to extend sustainable
product concept systems modeling services to other models (see Figure 3.14). At conceptual
design phases, with limited data available, wide solution space and need for fast, approximate
analysis, a learning surrogate LCA model has a high level interface (product concept
descriptors) that can support through the WWSW almost real-time fast comparison of different
design concepts. Comparisons may be based on changes broader than just low-level
parametric variations as in detailed LCA.

;. - Expert X
H . Expert¥Y
Design team e Erpert Z
new product 4 propagated Ay Environmental expert | ANN training,
concept integrated maintenance,
descriptore y simulation resulis use guidance
/ DOME framework
N
Learning Surrogate LCA model
Product Eavironmental
descriptors ¥ performance
(inputs) \
e valien sunluaien agaeist
ag;g'ﬁmi £ haryely arrirammenta oy gels

Model Z

Flgure 3.14 Extending sustainable product concept systems modeling in WWSW
using DOME framework
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4 IMPLEMENTATION AND RESULTS

4.1 DEVELOPING THE LEARNING SURROGATE LCA MODEL. .

In proof of concept work, foundations for the learning LCA approach are established, and then a
surrogate model testing is performed within DOME integrated modeling environment (Sousa et
al, 2000). Key questions critical to the validation of the learning surrogate LCA concept are
investigated:

* What is a meaningful set of product attribute descriptor inputs?

The product attribute descriptor inputs must be meaningful to and known by designers during

conceptual design and, as a set, span the scope of the product life cycle. In particular, these

conceptual descriptors should map to a set of key environmental impact categories of a

. product’s life cycle. A life-cycle inventory (LCl) could provide the most flexibility for testing those

relationships and as the model output — different aggregation schemes can then be applied
subsequently. However, the inventory also needs to be compact to increase the chance that the

learning surrogate LCA model will be effective. Therefore, the feasibility of establishing a

compact LCI ~ abbreviated LCI list — that can represent key environmental impact categories

must be tested. A list of reasonable product attributes must be identified and correlated with LCI

data to create a set of meaningful product descriptors.

* Can a trained ANN quickly provide reasonable estimates when queried with descriptors?

The training database must represent a range of products and contain many complete samples
of input product attribute data and corresponding LCI outputs. Data transparency should be
maintained as with any LCA by fuily stating in writing any assumptions, estimations, or
uncertainties. Finally, the structure of the learning surrogate model must be chosen, trained, and
validated to effectively emulate LCI results. In application, the surrogate model must be fast and
provide reasonable LCl estimates.

Figure 4.1 highlights the main components of the surrogate LCA model that were explored to
answer these questions. The training database will be developed through the course of
gathering information to assess the three questions.
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Figure 4.1 Key components of the learning surrogate concept model.

411 THE ABBREVIATED LCI LIST (MODEL OUTPUT)

A life-cycle inventory (LCI) is a very long and comprehensive list of different raw materials,
energy, and releases to air, land and water, over the entire life-cycle of the product. The LCI
data are used to estimate and evaluate the environmental impacts associated with the product.
It is the most objective and informative form of environmental performance to an environmental
expert. Situational values and subjectivity increases as these data are then aggregated to
compute environmental impact categories and the high-level environmental indicators that are
more comprehensible and useful to the typical designer. Thus, the most versatile solution would
be for the surrogate model to provide inventory data as its output, and to leave aggregation to
be determined on a case-by-case basis to bring the information back to the designer’s level.

It is not feasible to gather sufficient information to train a surrogate model to predict all inventory
data associated with a detailed LCA, and substantial complexity would be added to the learning
architecture of the model. Therefore, an abbreviated LC! list was proposed and evaluated for its
ability to meaningfully predict different environmental impact categories.

The framework for the abbreviated LCI study is schematically shown in Figure 4.2. Inferences
were drawn on the validity of the abbreviated LCI list by comparing results of statistical and
product ranking analyzes using a simplified approach and a detailed LCI approach. For this
purpose, three lists were defined and used for comparative analysis:

» Simplified list of LCl elements, the abbreviated LCI list, which only includes key LCI
elements deemed relevant to the majority of environmental impacts;

* Comprehensive list of LCI elements, the full LCI list, to be used as a baseline to validate
environmental impacts predicted using the abbreviated list;

* Impact categories list to be calculated by both the abbreviated and the full LCl lists in
order to compare differences in impact results.
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Figure 4.2 Testing the validity of the abbreviated list

Table 4.1 provides a list of the environmental impact categories that were used to assess the
abbreviated LClI list. The categories are based on the Eco-Indicator'95 classification scheme
used in SimaPro 4.0 (PRé Consultants, 1999) and are named and computed according to this
method. Eisenhard et al. (2000) performed experiments to identify a simplified set of inventory
data, consisting of only key LCI elements, which could be linked to the impacts in Table 4.1.1.1.

Table 4.1 Impact categories used to assess the abbreviated LCl list.

Greenhouse effect [kg eq. CO;]
Ozone layer depletion [kg eq. GFG11]
Acidification [kg eq. SO2]
Eutrophication [kg eq. PO4]

Winter smog (kg eq. SPM)
Summer smag [kg €q. CzH.]
Pesticides [kg act.s]
Energy [MJ LHV]

Heavy metals [kg eq. Pb) Solid material (kg eq. waste]

Carcinogens [kg eq. B(a)P]

Detailed LCI data were obtained for 20 different consumer products (see Table
4.2). These data were obtained from three sources: LCA studies conducted at TU Delft (DfS
Group, 1994-1997); published studies in the SimaPro 4 User's Manual (PRé Consultants,
1999); and a study by PA Consulting Group (UK Ecolabeling Board, 1992).

Table 4.2 Product used in the abridged LCI study.

1 washing machine 1 oak chair

1 heater 1 silver chair
2 vacuum cleaners 1 paper bag

1 mini vacuum cleaner 1 PP crate

3 coffee machines 1 showerhead
4 radios 1 PE bag

2 juice squeezers

The impact categories identified in  Table 4.1 were predicted using full LCI data for each of the
products. Through an iterative experimental process analyzing classification schemes of
different environmental evaluation methods, discussing with experts and performing data
inspection, the abbreviated LCI list in Table 4.3 was proposed (De Schepper, 1999). This list
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incorporates inventory elements identified as commonly used in existing evaluation methods to
calculate impact categories.

Table 4.3 The abbreviated LCl list

Energy [MJ LHV] Carbon dioxide [kg CO:]

Solid material [kg waste) Sulfur dioxide [kg SO;]
Chiorofluorocarbons (CFC) Nitrous oxides [kg NO.J

Lead [kg Pb] Hydracarbons [kg C,Hy)

Cadmium [kg Cd] Methane [kg CHj]

Chromium [kg Cr] Chemical oxygen demand [ kg COD]
Nickel [kg Ni] Total nitrogen [kg N Total]

Polycyclic aromatic hydrecarbons [kg PAH] Polyhalogenated carbons [kg Halons)
‘Dust [kg SPM]

Finally, the abbreviated LCl! list was used to compute the impact categories for each product,
and then compared with impact predictions based upon the full LCI. The differences between
the numerical results produced by the abridged and detailed LCI data varied widely between
categories. Results were normalized around the detailed LCI| approach and 90% confidence
intervals using a t-distribution were plotted to graphically show the difference between impacts
predicted using the two LCI approaches. These intervals are shown in Figure 4.3.
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Figure 4.3 Normalized 90% confidence intervals comparing impact categories based
upon a full LCI and the abbreviated LCI.

Based upon the conﬁdence mtervals it was concluded that certain environmental impact
categories — energy’, solid material', greenhouse effect, and ozone layer depletion — were
numerically weli represented by the abbrevnated list while others — acidification, eutrophication,

' The energy and solid material categories were identical in the two approaches
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winter smog, and summer smog — were reasonably suited to the abbreviated LCI. Heavy
metals, carcinogens, and pesticides were not. This result seems reasonable given that one
might expect heavy metals, carcinogens, and pesticides to be determined by trace details. Note
that no material impacts in the study were allocated to the pesticide category. Any such
allocation was deemed highly dependent on product and therefore pesticides may not be a
useful impact category to use in a more generically based learning surrogate model.

Additionally, products were ranked within each impact category to see if the fuil LCI and the
abbreviated LCI led to the same ordering of products within an impact category. For the 20
products studied, the energy, solid material, greenhouse effect, and summer smog impact
categories were identically rank-ordered. The acidification, eutrophication, heavy metals, and
winter smog categories had discrepancies, but they were very minor, limited to a shift of no
more than two places (e.g. from 3rd to 5th most detrimental product). The ozone layer depletion
and carcinogens categories contained more deviations — up to a shift of four and six places,
respectively. The carcinogens impact category produced the least consistent results, having
only nine matches and the largest shift in product ranking (Café Sima from 13th to 7th), yet the
-first six most detrimental products were still ranked identically. This worst case for carcinogens
is illustrated in Table 4.4, When the rank order of variations of products with similar functions
was considered, several discrepancies were observed within the heavy metals and carcinogens
categories, while only a single instance was observed in both acidification and winter smog
categories.

Table 4.4 Rankings for the carcinogens category produced the least consistent of all results. Product
ordering based upaon energy, solid matetial, greenhouse effect, and summer smog were identical.

Carcinogens
Detailed approach Approximate approach
Washing Machine Washing Machine
Heater Heater
Vacuum Cleaner 2 Vacuum Cleaner 2
Vacuum Cleaner 1 Vacuum Cleaner 1
Café Pro+ Café Pro+
Café Comfort Café Comfort
Mini Vacuum Cleaner Café Sima
Radio 1 Mini Vacuum Cleaner
Juice Squeezer 1 Juice Squeezer 1
Juice Squeezer 2 Radio 1
Qak Chair Juice Squeezer 2
Silver Chair Oak Chair
Café Sima Silver Chair
Radio 3 Showerhead
Radio 2 Radio 3
Radio 4 Radio 4
Paper Bag Radio 2
PP Crate PP Crate
Showerhead PE Bag
PE Bag Paper Bag

Based upon the two studies, it was concluded that the abbreviated LCI, needed to reduce
demands on the surrogate model outputs, could potentially be used to predict life-cycle energy
consumption, solid material waste, greenhouse effect, ozone layer depletion, acidification,
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eutrophication, winter smog, and summer smog levels. The remaining three categories — heavy
metals, carcinogens, and pesticides — were not well represented by the abbreviated LCI in all
cases. For these categories a checklist developed by an environmental expert may be a more
appropriate conceptual design tool.

4.1.2 PRODUCT CONCEPT DESCRIPTORS (MODEL INPUT)

After defining and bounding the prediction scope of the surrogate model, product attributes, or
descriptors, must be identified for use in training and querying the surrogate model. It is
hypothesized that when a set of basic product properties, extended from those of traditional
design, is defined meaningfully for both product designers and environmental experts any
product can be thoroughly described from an environmental viewpoint (Eisenhard, 2000).

The attributes need to be both logically and statistically linked to elements in the abbreviated
LCl list, and also be readily known during product concept design. They must be sufficient to
discriminate between different concepts and be compact so the input demands on the surrogate
model are reasonable. Finally, the attributes must be easily understood by designers and, as a
set, span the scope of the product life-cycle. These criteria were used to guide the process of

.developing a product descriptor list systematically.

Defining a set of candidate product attributes

First, a set of candidate product attributes, based upon literature and the experience of experts,
was formed. Ecodesign checklists and design improvement strategies (e.g., Alting and Legarth
(1995), Fiksel (1996), Brezet and Hemel (1997), Sfantsikopoulos and Pantelis (1997), Hanssen
(1999), and Clark and Charter (1999)) provided a starting point to identify product attributes. For
example, checklist questions like "What type of energy is required when using the product?"
suggest in use energy consumption and in use energy source as possible attributes
characterizing the product use phase.

Cther researchers (Rombouts, 1998; Mueller and Besant, 1999) also specifically addressed the
problem of defining product attributes for environmental evaluation. Rombouts (1998) derived a
list of descriptors from the Ecodesign Checklist defined by Brezet and Hemel (1997), while
Mueller and Besant (1999) modeled life-cycle parameters as functions of design parameters.
For example, mass, material composition, and efficiency are functions of the power of a
standard motor.

Experts in both product and environmentally-conscious product design were interviewed or
contacted through email to augment candidate descriptors derived from the literature. A
common view (Baumann, 2000) was that, in practice, product descriptors at the conceptual
stage are few, simple, and expressed in a product-specific language. For example, frequently
used environmental descriptors in the automotive industry are weight and fuel consumption.
Also, different levels of information are available and used at the early stage of product design,
depending on the purpose of the design — improvement or innovation (Potts, 2000).

Based upon literature and the experience of experts, a set of candidate product attributes was
then identified (see Table 4.5). Definitions of all attributes along with examples can be found in
Appendix A. :
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Table 4.5 The initial candidate product descriptor set.

Mass Transport distance In use energy source Recycled content
Volume Transport means In use power consumption  Recyclability
Materials Lifetime Modularity Biodegradability
Durability Use time Upgradeability Disassemblability
Distribution mass Mode of operation Serviceability Reusability

Distribution volume  Additional consumables  In use flexibility

Conceptual linkage with the abbreviated LCI

With candidate attributes identified, they were grouped for organizational purposes, reviewed for
conceptual linkages to the abbreviated LCI, and for potential coverage of the entire life-cycle.

The attributes were first grouped according to the method developed by Hubka and Eder
(1992), which is based on recognized phases of the life-cycle and the nature and purpose of
technical systems. The defined groups are: general design; elementary design; functional;
operational; distribution; end-of-life.  Table 4.6 lists the six groups defined — general design;
elementary design; functional; operational; distribution; end-of-life — along with corresponding
atfributes.

Table 4.6 Organizational grouping of the product attributes.

Group Attributes
General design Biodegradability, durability

Elementary design ~ Material content, recycled content
Functional Mass, volume

Operational Life time, use time, energy source,
mode of operation, power
consumption, in use flexibility,
upgradeability, serviceability,
modularity, additional consumables

Distribution Distribution mass, distribution
volume, means of transport,
transport distance

End-of-life Recyclability, reusability,
disassemblability

In Figure 4.4 the grouped candidate attributes are provided, along with efforts to qualitatively
identify potentially strong links amongst attributes and between attributes and the abbreviated
LCI list. The representation in Figure 4.4 is based upon the house-of-quality (Hauser and
Clausing, 1988).
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Figure 4.4 Conceptual relationships among product attributes and between product attributes and
elements of the abbreviated LCI list.

Level of information in conceptual design

Once satisfied that the candidate descriptors were appropriate conceptually, an online survey
(see Appendix B) was distributed to designers to verify what descriptors are likely to be known
during conceptual design. The survey provided clear definitions for each of the candidate
descriptors to sixteen practicing product designers working on products ranging from industrial
equipment to very new consumer goods. The majority of the designers worked for firms
specializing in product design, and thus had experience designing a wide range of products.

If the designer was able to specify or estimate a descriptor in an appropriate qualitative or
quantitative sense, the attribute was deemed specified. If the designer could not specify the
descriptor, but could typically rank order concepts, the attribute was deemed ranked. If an
attribute of couid not be specified or ranked, but the designer could provide a yes or no type of
answer, the descriptor was deemed binary. For example, the designer might know a concept wiil
contain polymers, but not be able to specify or rank the amount used. If the designer could
typically provide no information about a descriptor, it was deemed unknown. Finally, if a
descriptor did not apply to the class of products designed by the participant, the attribute was
categorized as not applicable (N/A). Results assessing descriptors based upon operational
grouping are shown in

Figure 4.5. The complete set of results can be found in Eisenhard (2000).
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Figure 4.5 Survey results for operational properties.

This study helped the authors identify descriptors that designers could both understand and had
knowledge of during conceptual design. For example, descriptors such as in use energy source
and mode of operation were readily specified, whereas upgradeability and serviceability are
more likely to be ranked with respect to other concepts. A ranking system, however, was
considered difficult to be implemented within the learning surrogate LCA method — what would
the baseline product be for such a system? Therefore, all attributes pointed by designers as
rank-specified were brought down to the binary information level.

While some attributes, such as material content, can be commonly found in existing studies or
easily estimated from other existing information, some gqualitative properties may not even be
discussed in those studies or there is not sufficient information or common perceptions on what
they might be to perform reasonable “informed guesses”. This could cause iargely inconsistent
estimates entering the training database for some of the qualitative attributes, leading to poor
predictions of the surrogate model when queried.

Thus many of the product attributes were analyzed more thoroughly in an attempt to avoid
inconsistencies when building the training data set. For example, upgradeable products can
also be thought of as reusable — the parts that are not upgraded are reused to form an improved
product. And if a product is reusable or serviceable, it can be thought of as having an extended
lifetime. In use flexibility and modularity can convey impact information at a very high level.
However, they can be too ambiguous to be consistently captured from existing information.

Further, it was possible to assess what attributes are likely to vary significantly from concept to
concept. For example, while in practice the ranked attribute disassemblability may provide
meaningful information, collapsing it to a binary level of information will carry little meaning.
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Binary information does not convey the degree to which a product can be disassembled, just
that it is or is not disassembled. Therefore there will be little variation from concept to concept
with regard to disassemblability.. Table 4.7 shows a refined product descriptor set.

Table 4.7 Refined candidate product descriptor set. [Q] means quantitative leve! of information and [B]
means binary qualitative level of information

[Q] Mass (kg) [Q] Transport distance (km) [B] In use energy source

[Q] Volume (m ?) [B] Transport means [Q] In use power consumption (W)
[Q] Materials (various) (% mass) (Q] Lifetime (hours) [B] Recycled content _
{B] Durability [Q] Use time (hours) [B] Recyclability
[Q] Distribution mass (kg) [B] Mode of operation [B] Biodegradability
Q] Distribution volume (m % [B] Additional consumables

Test for first order relationships

The refined candidate descriptor set was then tested for first order relationships with the
abbreviated LClI list. In addition to the 20 products used for the study to define the abridged LCI
list, data for 28 other products (see Table 4.8) were included from studies provided by TU Delft
(DfS Group, 1994-1997) and nonproprietary studies conducted by the Research Triangle
Institute (Sharma et al 1996a; 1996b; Peters, 1996) and Franklin Associates, Ltd. (1990; 1994).
Linearity and bivariate normality in the data was assumed in checking for trends.

Table 4.8 Additional products used in the correlation tests.

1 coffee filter 2 newsprint productions
1 vacuum dustbag 2 coatings

2 towels 2 antifreeze solutions

5 refrigerators 3 diaper systems

10 televisions

Bivariate Pearson product-moment Correlations were computed, and correlation tests to 95%
statistical significance were performed between quantitative descriptors and the abbreviated LCI
data for the 48 different products. The Pearson correlation coefficient, r, was calculated by

O (X =)y, - y)
r= 2 _'__yt_L Equation 4.1
=~ (N —l)sxsy

where N is the number of data points and x and Sy are, respectively, the mean and standard
deviation of variable x, and likewise for variable y. If p-value (correlation significance) is less
than 5% (0.05) then independence is rejected and x and y show linear correlation.

This first order examination required careful interpretation and grouping of products. For
example, the data in table 9 suggest that mass is not correlated with many of the abbreviated
LCI list elements as expected. However, when the same test was preformed including only
durable goods, indeed the correlation with many of the LCI categories is strong (see Table 4.9).
These results suggest grouping products to train specialized surrogate LCA models might then
improve prediction performance of the ANNSs.
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Table 4.9 Correlation coefficients and tests: mass vs. abbreviated LC! list elements.

Highlighted results indicate correlation.

Abbreviated LCI list elements

Correlation coefficients (p-value)

all products durable products
Energy_ —RB0.015). e S
Solid waste -.663.(0:000)
Chlorofluorocarbons (CFC) -0.024 (0.874)
Lead (Pb} -0.015 (0.919)

Cadmium (Cd)

20.047 (0.749)

Chromium (Cr)

~0.04 (0.788)

Nickel (Ni)

-0.036 (0.807)

Polycyclic aromatic hydrocarbons (PAH)

-0.027 (0.855)

Dust (SPM) -0.:948 (0:000) -
Carbon dioxide (CO_2) 70,485.(0.000)
Sulfur dioxide (SO 32) /(:835:(0.000)
Nitrous dioxide (NO ) D.629:(0.000)

~10:838.(0.000

Hydrocarbons (C Hy) -0.969:(0:000) ,

Chemical oxygen demand (COD) -0.077 (0.601) -0.101 (0.574)

Total nitrogen (N Total) 0.165 (0.262) 0.830.(0.000) .
Polyhalogenated carbons (nalons) -0.041 (0.78) 0,691 (0:000) :

Methane (CH 4)

20.036 (0.809) | 0663 (0.000) |

Lifetime, power consumption, and material composition were most strongl

y correlated with the

abbreviated LC| elements. These attributes are correlated with almost all abridged inventory
elements. The effect of qualitative descriptors on the abbreviated LC| was assessed visually
using scatter piots. In general, these descriptors influence product’s environmental performance
(Eisenhard, 2000). For example, product LCA studies taking into account the use of additional
consumables showed a trend in producing larger COD values.

Overall, the product attributes seem likely to provide adequate life-cycle coverage. Every
category in the abridged LCI was correlated with at least one product descriptor. Additionally, it
is believed that some correlations were not apparent because of potentially non-linear
relationships between descriptors. Inconsistency in data should aiso be taken into account. For
example, the lack of a COD significant correlation in Table 4.1.2.6 is thought to be due to
differences in system boundaries — some studies looked farther upstream than others.

Table 4.10 shows the final list of product descriptors chosen for using the learning surrogate
LCA model. The analysis provided a basis for belief that that descriptor list could span the
elements in the abridged LCI, and insight for ways that surrogate models might be specialized
on different product groupings. Note that durability was removed from the list to be considered
in a higher level for product classification purposes, as it will be explained next. Transport mean
and transport distance were also excluded as they are not “intrinsic” to a product, its design or
intend for design. Volume and biodegradability, although considered as part of the final list,
were not thoroughly tested due to lack of data.
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Table 4.10 Product descriptor list used in testing the surrogate model.

Descriptor Unit Level of Information
Mass kilogram quantitative, specified
Ceramics J%mass guantitative, specified
Fibers - %mass quantitative, specified
Ferrous metals %mass guantitative, specified
Nonferrous metals %mass quantitative, specified
Plastics Y%omass quantitative, specified
Paper/Cardboard %mass quantitative, specified.
Wood %mass quantitative, specified
Chemicals %mass quantitative, specified
Other materials %Mmass quantitative, specified
Recycled content %mass guantitative, specified
Recyclability Y%mass quantitative, specified
Lifetime hours quantitative, specified
Use time hours quantitative, specified
Operational mode dimensionless | qualitative, specified

{no power, manual, standby, sensor)
Additional consumables dimensionless | qualitative, binary (yes, no)
Energy source dimensionless | qualitative, specified

(none, human, batteries, electric, solar,

solar/electric, hydro, gasoline)
in use power consumption | Watt quantitative, specified

Preliminary product classification based on product descriptors

The analysis on first order relationships provided insight about product groupings as a structure
for specializing the surrogate LCA models to improve results. Although the goal is to develop a
surrogate LCA that is as general as possible, it may also be necessary to specialize surrogate
LCA models for different classes of products. The classification of products into general
categories may lead to more specific relationships between product attributes and LCI elements
of the abbreviated list.

Rombouts (1998) uses a case-based product classification scheme in an expert system for
ranking ecodesign strategies. Research work using results of 18 different LCA studies of
product systems carried out by @stfold Research Foundation (Hanssen 1996) provided a basis
for a product classification according to functional properties. Criteria used for this classification
focused on a product's use phase, and product attributes that are a potential cause for dominant
environmental impacts. A first exploration of potentially useful classification schemes suggested
a preliminary binary classification structure, shown in Figure 4.6. The binary categories are
described in Table 4.11. For each category's definition, negation leads to products that cause
opposite trends in the way product atiributes mentioned in the category generate significant
impacts.
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Table 4,11 Preliminary product classification into general categories.

Product Categories

Description

A. In use energy conversion

Product does or does not transform energy when in use. The majarity
of environmental impacts caused by this type of product, frequently
astimated at more than 90%, are related to energy conversion for
consumption in the use phase (Alting and Legarth, 1995; Hanssen, 1999).
Consequently, lifetime, use time, mode of operation, energy source, and
power consumption are dominant product attributes in causing significant
impacts.

B. In use mobility

Product is or is not mobile or transported when in use. This type of
product will exhibit dominant influence an the indirect effects of mass and
materials: weight of the product in part determined by type and properties
of materials is proportional to emissions and energy source consumption
generated by the transportation activity.

C. Durability

Product is durable or consumable. These products are expected to
create higher flows in the usefreuse stage than if they were consumable.
Therefore, they will make a relative difference on the direct and indirect
impacts related with materials and all the aftributes listed as operational.
Consumable products are expected to produce higher flows in the
upsiream and downstream stages than if they were nat consumables.
Thus, they will cause materials and the attributes listed as end-of-life to
dominate in causality of environmental impacts.

D. Service system

Product is or is not designed as a service. This type of product is
expected to create higher flows in the use/reuse stage and significantly
reduce upstream and downstream flows. Dominant product attributes are
the same as those mentioned for category C. However, as services, these
products potentially have typical ranges of impacts that are distinct (and
likely less) from those caused by durable products.

product categories

product atiributes abbreviated list
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Figure 4.6 Product categories and corresponding relations with product attributes.
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4.1.3 SURROGATE MODEL TESTS

With product descriptors and abridged LCI defined, ANN-based surrogate LCA models were
trained in an effort to validate the method. Tests were focused only on the total life-cycle energy
consumption component of the abridged LCI list. Training data with product attributes and
corresponding life-cycle energy consumption from true LCA studies were collected for 158
products (see Table 4.12). These data were obtained from the same sources as the data used
in the development of the abridged inventory list and product attribute list with additional studies
provided by Keoleian (1997; 1998), Schuckert (1996), and TEAM® databases (Ecobilan, 1996).

Table 4.12 Additional product types used in surrogate madels tests
(175 total training and testing data points).

1 instrument panel 1 transformer

7 vehicles 1 speaker

42 metals 1 keyboard

9 paper products 3 communication cables
36 plastics 2 light bulbs

3 glass fibers 12 LCD projectors

3 batteries 6 wood products

Through the data collection process using the available studies, a common bottle-neck was to
find the data necessary to specify the product descriptors. In the available documentation, some
of these were not explicit or in the form of assumptions made in the studies. Some “detective
work” was required to get an “engineering estimate” to replace the missing data. The idea was
to use these “educated guesses”, although not accurate data, to end up with a figure “in the
right ball court” (Kljajin, 2000). When data were not available, generic data on similar products
or from the same brand were searched on the Web or existing catalogs and databases. These
were used to get the values directly or to use related data to make an engineering estimate of
the missing data.

In this process, the detailed accuracy that is lost {also when estimating missing environmental
data) is more than compensated by the ability of the design team to intrinsically incorporate
environmentalA issues at very early stages in the design phase.

A general artificial neural network was implemented in C++ as an object in the DOME system
and used to develop the surrogate models. A detailed discussion on implementation,
benchmarking and application of the DOME ANN object is provided by Deniz (2000). The
design of the ANN-based LCA model involved the tasks illustrated in Figure 4.7.
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Figure 4.7 ANN design procedure.

A multiple input, single output, feedforward two-layer ANN with back propagation training was
used (see Figure 4.8). Architectures with one hidden layer and 5 to 20 neurons were tested in
several training sessions. ANNs with fifteen hidden neurans performed best. Training for 2
million epochs required 32 minutes on a 233 MHz Pentium* Il processor. ‘

Intemal o fistitious input
-

.  — —

] Dies =1 A

input layer hidden layer ouiput layer

Figure 4.8 Schematic representation of the ANN model, with p=18, M=15, and K=1. Adapted from
‘ Zaknich (1998).
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The backpropagation training was performed using a mathematical framework as described
next. To minimize the mean square error for the whole training set of input/output vector pairs,
the two sets of network weights — output layer weights and hidden layer weights — need to be
adjusted and so the gradient of the error in the whole weight space needs to be calculated.
Partial derivatives and the chain rule are used to calculate the contribution that each of the
weights makes on the total error (see Appendix C).

Figure 4.9 shows a screen image of the surrogate LCA object in the DOME environment. The
ANN runs its learning cycle by reading a text file containing the training data. Once trained,
users can log into the surrogate model over the Internet using a web browser, and set the model
inputs (product descriptors) to values corresponding to a product concept. The input product
descriptors or attributes are shown in the upper right of

Figure 4.9. The surrogate model then immediately provides the predicted life-cycle energy
output (lower right).

Figure 4.9 Surrogate LCA model as a DOME object.

The trained neural network was evaluated using products with known LCA results, but on which
the ANN had not been trained. The surrogate LCA model was assessed in three different ways:
absolute accuracy; precision in predicting relative differences; and ability to generalize trends.
Six different products were used in the assessment.

The accuracy comparisons for goods with large in-use energy requirements (vacuum cleaner,
refrigerator and vehicle) are provided in Figure 4.10. Life-cycle energy predictions were between
0.4 and 41 percent of the levels given by the true LCA analyses. The accuracy of a life cycle
energy assessment from real LCA is typically +30% (UK Ecolabelling Board 1992 Franklin
Associates Ltd. 1994) so these resuits seem satisfactory.
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Figure 4.10 Comparison of the life cycle energy consumption of products with large in-use energy
requirements as predicted by the surrogate LCA with results from detailed LCA studies.

A separate surrogate LCA model was trained for products with no or very small in-use energy
requirements, and assessed for accuracy using a chair, coffee filter, and 3.785 liters of
antifreeze. Results are in Figure 4.11. The results seem adequate, but are not as good as the
large energy use products. This may be because the training sample for this surrogate model
was small (55 products).
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Figure 4.11 Comparison of the life cycle energy consumption for low in-use energy products predicted by
the surrogate LCA with results from real LCA studies.

A second test compared how the trained surrogate models would rank the different products in
a relative sense. This test is important for cases where designers are comparing very different
design concepts. In Figure 4.12, the six products are compared relative to the energy consumed
by the refrigerator. Detailed LCA results are relative to the detailed refrigerator LCA, and
surrogate results are reiative to the surrogate refrigerator LCA. Rank order remains the same for
all products except the antifreeze and chair. However, the energy consumption ratios for the
chair and antifreeze are almost identical, so one is likely to interpret the chair and antifreeze as
being about the same.

100
} « detailed LCA

= surrogate LCA
10 +

1 | - - Il ] | I\
ICV | refigerator = vacuum | char cofteefiter | antfreeze
>

{ Products

0.1 -

0.01 A . P

Lag baseline ratios

0.001 -

0.0001 -

- 0.00001 -

Figure 4.12 Ranking different products with the detailed and surrogate LCA results using the refrigerator
as the baseline product.

The ability to assess very different products consistently is necessary during early stages of
design when wildly different approaches might be under consideration for achieving the
product’'s goals. For smaller parametric variations of a given product, ideally parametric LCA
models would be used as described in our earlier work (Borland and Wallace, 2000), but tests
were also performed to determine consistency of the method in maintaining rank order of
product variations of the same type. Rank order of life-cycle energy consumption was
maintained for the three vacuum cleaner products and for the three coffee maker products
tested. Of the four different radios also evaluated, the rank order of only one of the similarly
performing products was inconsistent. Thus, the surrogate LCA was quite successful at rank
ordering the test cases. However, the ANN can only reflect the trends of the technologies used
in the training data. Thus, when a refrigerator using new technology was introduced it did not
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rank well because it was an‘anomaly to the trends the ANN inferred for the traditional goods
used for training.

Finally, the six products were used to test the surrogate model's ability to generalize and predict
trends correctly for a given product concept. The characteristics of each test-case product were
held constant, with the exception of the attribute for which trends were being assessed—mass,
power consumption,-energy source, and use time. The mass and power consumption results for
the vacuum cleaner, shown in Figure 4.13, are representative in illustrating trends as predicted
by the surrogate LCA.
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Figure 4.13 Results of power consumption and mass trends for the vacuum cleaner.

The trends predicted for energy source and use time are shown in Figure 4.14 and Figure 4.15.
The use time resuits were generally as expected. However, only very large changes in use time
caused life-cycle energy to vary. The wide variety of use time values in the training data set is
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one possible explanation for this insensitivity. For example, for products using an electric energy
source, refrigerators are on all day, during their entire lifetime, while vacuum cleaners are used

infrequently, i.e. for a smaller percentage of their lifetime.

(4] ) -
260 + predicted data

6250 - = known data
6240

6230 - .
6220 - .

6210 -&
6200
6190 - T | |

Life-cycle energy (MJ)

0 1000 2000 3000

vacuum cleaner total use time (hrs)

4000

Figure 4.14 Use time trends predicted by the surrogate model for the vacuum cleaner.
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Figure 4.15 In use energy source trends predicted by the surrcgate model for the vacuum cleaner.

The results generalizing trends for different energy sources are less certain as only a few
products in the training data set used each source. It should also be noted that the LCA studies
used for training did not account for food eaten by humans as part of human power, or the
energy used to produce photovoltaic panels as part of solar power. Thus, it seems plausible that

the no energy; human power, and solar vacuum scenarios are very similar.
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4.2 PRODUCT CLASSIFICATION FOR LEARNING SURROGATE
LCA MODELS

Insight gained in proof-of-concept testing about the effect of product groupings suggested it
might be necessary to specialize surrogate LCA maodels for different classes of products. This
section presents further work to develop an automated classification system to support the
specialization of surrogate LCA models for different groups of products (Sousa and Wallace,
2002). Hierarchical clustering is used to guide a systematic identification of product groups
based upon environmental categories. These groupings are then used to create automated
classification schemes using the C4.5 decision tree algorithm.

4.2.1 PRODUCT CLASSIFICATION

Products have been classified in several different ways. Product classifications vary in their
application, completeness and specificity. Reuleaux (1904) devised one of the first product
classification systems after recognizing the identicalness among various properties of different
products. Reuleaux categorized machine elements with respect to shared properties, something
that was previously thought to be impossible.

Different perspectives on what a product is and the purpose of the classification lead to distinct
classification systems. Krishnan and Ulrich (2001) refer to at least four perspectives in the
research community on what products are within different product development decision
frameworks:

= Marketing: product is a bundle of attributes; product attribute levels and price are
examples of decision variables.

+ Organizations: product is an artifact resulting from an organizational process; product
development team structure and incentives are examples of decision variables.

- Engineering design: product is a complex assembly of interacting components; product
size, shape, function, dimension are examples of decision variables.

+ Operations management: product is a sequence of development and/or production
process steps; development process sequence and schedule and point of differentiation
in production process are examples of decision variables.

Decision variables within and across different product perspectives can be used as classification
criteria. For example, economic classifications are often based on a demand-side/market-
oriented classification framework to coordinate the collection, tabulation, and analysis of output
and price data for products (ECPC, 1993). From an organizational perspective, distinct
incentives on product development can drive the classification of products into technology-push
products (e.g., Gore-Tex), platform products (e.g., instant films used in Polaroid cameras),
process-intensive products (e.g., chemicals) and customized products (e.g., motors) (Ulrich and
Eppinger, 2000). From an engineering design perspective, products can be seen as engineered
(e.g., computer peripherals) vs. non-engineered (e.g., sweaters), discrete (e.g., power tools) vs.
non-discrete (e.g. gasoline), physical (e.g., bicycle) vs. non-physical (e.g., services). Specific
engineering variables such as type of materials, size or lifetime can also serve as a basis for
different classification systems. When adopting an operations management perspective,
manufacturing processes can be used as the classification criteria.
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Environmentally-conscious product design can be thought of as a fifth perspective. Examples of
decision variables are product characteristics (e.g., mass), level of environmental impacts (e.g.,
impact indicators) and types of environmental improvement strategies (e.g., material use,
efficiency, end-of-life strategies). Several environmental product classification systems can be
developed driven by distinct classification purposes. Table 4.13 lists possible environmental
classifications of products proposed or inspired by work found in literature.

Table 4.13 Examples of environmental classifications of products

Classification Classification criteria Product categories Source
purpose
Simplify environmental Product's characteristics *  Products with greater impacis at Kaebemick and
assessment of products {e.g.. mass) and presence use phase (energy driven) Soriano (2000)
for the conceptual or absence of *  Products with greater impacts in
design phase environmental issues {e.g. material phase (material driven)

acidification)
Identify environmental Product's functional and *  Products being chemically Hanssen (1999)
improvement strategies life-cycle properties related transformed in use {e.g. solvents)
for distinct types of with significant *  Stationary inert products without
products environmental impacts internal energy consumption in use

(e.g., raw material
production and .
maintenance generate the
significant impacts for
stationary products without ¢  Transportable products without
energy consumption in internal energy consumption in use
use) (e.g. food packaging).

. Transportable products with internal

energy consumption in use {e.g.

(e.g., electric cables).

Stationary products with internal
energy consumption in use (e.g.,
lighting armature)

boat with outboard motor).

Enhance knowledge-
based system
performance for ranking
ecodesign strategies

Aspects of product use
which are answered by yes
or no

Product does [does not] transform

energy when is use

Product does [does not] transform

materials when in use

Product is [is not] transported during

Rombouts (1998)

use
Determine products’ Technical product's * Reuse Rose et al (1998,
feasible end-of-life characleristics that affect ¢  Service 1999, 2000}
strategies early in the product's end-of-life *  Remanufacture
design cycle treatment (e.g. number of *  Recycle (separate first)
parts, wear-out life) *  Recycle (shred first)
Design recycling cellular ~ Design attributes (e.g., *  Subassemblies for reuse Park et al (1999)
system material composition), *  Subassemblies for special
usage attributes (e.g., reprocessing
breakage of parts) and *  Subassemblies for recycling with
recycling attributes (e.g., existing technologies
condition of thermostat)
Select products with Targeted life-cycle stage . Disposable goods Galiery of
superior environmental (e.g., use phase) and/or *  Durable goods Environmental
performance design approach for . Packaging systems Preferably Goods
superior environmental . Production process and Services
performance (e.g., *  Agricultural products (http://tbe.mit.edu)
resources used to deliver . Product systems
service)
Rate products’ Level of environmental =  Strong Gallery of
contribution to progress performance (number of *  Moderate Environmental
towards sustainable targeted life cycle stages) «  Weak Preferably Goods
development and/or level of rethinking * None and Services

the product as a service
(e.g., product designed
primarily to deliver service)

(http://tbe.mit.edu)
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Hanssen (1996) investigated environmental impacts related to specific product groups using
results of 18 different LCA studies of product systems. Criteria used for classification focused on
functional properties during the use phase and included chemical transformation, energy
conversion, and transportable vs. stationary products (see Table 4.13). Although the validity and
generality of the LCA results were questioned due to uncertainty and variation in the studies,
relevant trends were identified:

+ The importance of environmental impacts differed among product types. Depletion of
fossil fuel energy sources, global warming and acidification were most significant for
stationary products and transportable products with energy conversion. Photochemical
oxidation and human toxicity were most important for products being chemically
transformed and transportable products with energy conversion. Solid waste generation
was also significant for transportable products without energy conversion.

+ The most important life-cycle stages were generally raw material production and product
use. For both life-cycle phases, conversion of fossil energy to electricity, process energy,
heat or transport was a dominating factor. The production phase, distribution phase and
production of packaging were in most product types of very low relevance.

+ Raw material production was dominant for products being chemically transformed,
stationary products without energy conversion, and transportable products without
energy conversion. Use phase was important for products being chemically transformed,
stationary products with energy conversion, and transportable products with energy
conversion. Waste generation was relevant for products being chemically transformed,
and stationary products with energy conversion.

Research work using results of 18 different LCA studies of product systems carried out in
@stfold Research Foundation provided a basis for a product classification (Hanssen, 1996),
according to their functional properties. Criteria used for classification focused in product's
application phase and included chemical transformation, energy conversion, and transported vs.
stationary products. Based on the LCA studies, the most significant environmental impacts as
well as the contribution to different impacts from different life-cycle phases for each type of
product were analyzed. Although the validity and generality of the LCA results were discussed
due to uncertainty and variation in the studies, important trends that were found are as follows:

* The importance of environmental impacts differed among product types: depletion of
fossil fuel energy sources, global warming and acidification were most significant for
stationary products without and with energy conversion, and transport products with
energy conversion; photochemical oxidation and toxicity were most important for
products being chemically transformed and transport products with energy conversion;
solid waste generation was also significant for transport products without energy
conversion.

* The most important life-cycle stages were generally raw material production and use of
products. For both life-cycle phases, conversion of fossil energy to electricity, process
energy, heat or transport was a dominating factor. The production phase, distribution
phase and production of packaging were in most product types of very low relevance.

* Raw material production was the dominating life-cycle for products being chemically
transformed, stationary products without energy conversion, and transport products
without energy conversion. Use phase was important for products being chemically
transformed, stationary products with energy conversion, and transport products with
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energy conversion. Waste generation was relevant for products being chemically
transformed, and stationary products with energy conversion.

Kaebernick and Soriano (2000) assessed 33 products. Different product groupings were
investigated according to:

« Rank of the life cycle phase impact indicators. Three major groups were identified: (1)
material phase produces dominant impacts; (2) use phase produces dominant impacts;
(3) material and use phase are of equal importance.

» Contribution of material types to the top 70% of material impact. Two major groups
were identifies: (1) materials with impact contribution proportional to product mass
contribution; (2) materials with significant impact despite the almost negligible
contribution to product mass.

« Top impact indicatar classes. Five clusters were identified.

» Degree of association between multiple variables including product variables (mass,
service life, frequency of use, energy requirement) and environmental variables
(presence or absence of environmental impacts). Two major clusters were identified:
(1) intensity of impact in the material phase; (2) intensity of impact in the use phase.

4.2.2 TREE-BASED CLASSIFICATION FOR LEARNING SURROGATE
LCA MODELS

Purpose of classification

The goal is to develop a systematic product classification system that supports the development
of appropriately specialized learning surrogate LCA models.

Framework for environmental performance of product concepts

The system may learn faster and more effectively if the learning space is narrowed into general
but coherent product categories. The categorization should be based on properties that
potentially create common dominant environmental impacts or similar scaling trends so that the
surrogate models are better able to emulate impacts of specific products within the group.
Figure 4.16 shows a conceptual framework for environmental performance of product concepts,
driven by the product descriptors of the learning surrogate LCA models.
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Figure 4.16 Conceptual framework for environmental performance of product concepts,
driven by product descriptors.

Classification criteria should be based upon the product concept descriptors that are used to
train and query the learning LCA models. Instead of a single general surrogate LCA model for
every product there would be a number of surrogate LCA models, still general yet specialized,
trained to cover different categories of products. A simple example to illustrate the idea for a
hybrid learning system with automated classification is provided in Figure 4.17.
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Figure 4.17 Simple example to illustrate a classification scheme preceding the prediction phase.
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Preliminary development of an automated classification system

Product data and LCI data were collected for 61 different products (see Table 4.14) from several
sources: LCA studies conducted at TU Delft (DfS Group, 1994-1997) and KTH (Eriksson and
Izar, 2000); studies published in SimaPro 4 User's Manual (1999); a study by PA Consuiting
Group (UK Ecolabeling Board, 1992); a case study of an entire automotive body-in-white (BIW)
and car fenders (Newell, 1998); and nonproprietary studies conducted by the Research Triangle
Institute (Sharma et al, 1996a, 1996b) and Frankiin Associates, Ltd. (1990, 1994).

Table 4.14 Products used in the classification study

1 washing machine 1 oak chair

1 heater 1 silver fir chair

2 vacuum cleaners 1 paper bag

1 mini vacuum cleaner 1 PP crate

3 coffee machines 1 showerhead

4 radios 1 PE bag

2 juice squeezers 1 coffee filter

1 vacuum dustbag 2 newsprint productions
2 towels 2 coatings

5 refrigerators 2 antifreeze solutions
10 televisions 3 diaper systems

6 Body-In-White (BIW) 4 sauce pans
3 car fenders

Conceptual grouping

Hierarchical clustering techniques have been used in several applications (e.g. gene expression
data and market segmentation) to suggest potentially useful ways of grouping objects based on
their proximity (similarity) with each other. Hierarchical clustering procedures are among the
most widely used methods, in part due to their conceptual simplicity and graphical dendrogram
representations (Duda et al 1997).

Agglomerative hierarchical cluster analysis of the 61 products using the Ward method was
carried out to help identify environmentally-driven product categories. This technique has been
applied as a useful procedure to classify products into similar groups that can be profiled for
environmental similarities and differences (Kaebernick and Soriano, 2000). The product
descriptors were used as the clustering variables. The resulting clusters of products are then
formed based on product descriptors but conceptually should be groups of which we can
“environmentally think” in the same way.

These muitivariate statistical procedures for clustering units on a battery of variables have
inherent problems with multi-colinearity and autocorrelation. It is also recognized that other
approaches might provide different “lenses” to view data patterns. However, the goal was to use
cluster analysis as an exploratory data method to provide systematic qualitative guidance in
defining product categories. There is no expectation of a unique and definite solution.

Hierarchical clustering analysis was performed using Matlab®. An improved version of the
Matlab® routines was implemented to deal with mixed qualitative and quantitative data, and to
balance over-weighting of material composition caused by the many material attributes. This
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improvement was based on a combined distance matrix approach proposed by Romesburg
(1984), and is symbolically written in Equation 4.2.2.1.

3
R=wR, +w,R, +w,R, = Y w R, Equation 4.2
qn

where R is the combined distance matrix; R, is a distance matrix using z-score-standardized
quantitative material attributes and squared Euclidean distance; R, is a distance matrix using z-
score-standardized quantitative non-matetrial attributes and squared Euclidean distance; R; is a
distance matrix using qualitative attributes and Jaccard coefficient; ws, ws and w; are the
corresponding weights, which are nonnegative and sum to 1.0.

There is no single method for selecting the candidate cluster solution. In this study, a number of
options were explored by analyzing the agglomeration schedule and dendrogram to identify
marked increases in the value of the distance coefficient between stages. The final cluster
solutions were chosen according to the desired level of classification (general vs. specific),

_interpretability of the clusters (mean profiles of clusters), and the number of observations in

each cluster. Clusters with very few products (1 or 2) were considered probable outliers and/or
not representative enough for classification purposes.

Figure 4.18 shows the dendrogram produced by cluster analysis.
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Figure 4.18 Hierarchical clustering tree (dendrogram).
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The dendrogram shows evidences of sudden increases in distance values — ranges of the
distance coefficient for which the number of clusters remains constant. These indicate stages at
which well-separated clusters are being brought together, and thus suggest the number of
clusters to consider. Newsprint, forming clusters with 2 elements (in cuts A and B) and 1
element (in cut C) were discarded. Newsprint data are very atypical with respect to the other
values in the data set. Due to its material and operational properties, one would expect them to
be included in other clusters.

In an attempt to capture patterns of the clusters from different cuts in the dendrogram, the
corresponding mean profiles of the quantitative variable z-scores were computed. Clusters
originated by cut C were considered too specific for our classification needs. Mean profiles
obtained by cuts A and B are illustrated in Figure 4.19. Table 4.15 presents a summarized
interpretation.
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Figure 4.19 Mean profiles of product groups originated by cuts A and B in dendrogram.
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Table 4.15 Summarized interpretation of mean profiles for cuts A and B.

ferrous, plastic and recycled materials, and
with (efficient) power consumption.

Cluster Interpretation Sample products
A1 Durable products, with a significant amount of Refrigerators, vacuum cleaners, mini-vacuum
plastics or ceramics/glass, and with power cleaner, coffee makers, washing machine, radios,
consumption. juice squeezers, heater, LCDs, TVs.
2 Generally non-durable, low-mass products, Paper bag, coffee filter, dust bag, PE bag, PP crate,
and with no power consumption showerhead, disposable diaper, coatings,
antifreezes, disposable towel, chairs, plastic fender.
3 Low-mass products, with a significant amount Home and commercial washed cloth diapers,
of fibers materials in their composition, and reusable towel.
with no (internal) power consumption.
4 Durable, recyclable products, made primarily BIWSs, car fenders, sauce pans.
of metals, and with (external) power
consumptionb.
1 Durable preducts, with a significant amount of Refrigerators.

2 Durable products, with a significant amount of

plastic materials, and with power consumption.

Vacuum cleaners, mini-vacuum cleaner, coffee
makers, washing machine, radios, juice squeezers,
heater.

3 Durable products, with a significant amount of LCDs, TVs,
ceramic/glass materials, and with power
consumption.
4 Generally non-durable, low-mass products, Paper bag, coffee filter, dust bag, PE bag, PP crate,

and with no power consumption

showerhead, disposable diaper, coatings,
antifreezes, disposable towel, chairs, plastic fender.

5 Low-mass products, with a significant amount
of fibers materials in their composition, and
with no {internal} power consumption.

Home and commercial washed cloth diapers,
reusable towet.

(3] Durable, recyclable products, made primarily
of ferrous and/or non-ferrous material, with
(external) power consumption during use

BIWs and car fenders

7 Durable, low-mass, recyclable products, made
primarily of ferrous and/or non-ferrous
material, with (external) low power
consumption during use.

Sauce pans

b.
.

amang highest average values for use time due to chairs;

highest average values for wood, paper, and chemicals due to chair, paper-based disposables, coatings and antifreezes, respectively;
highest average values for lifstime due t0 saucepans; sampte products are all highly recyclable and partially recycled;
highest average values for mass due to BIWs; highest average values for post consumer materials due to steel BiWs.

In addition to the mean profiles, basic cross tabuiation tables that relate the clusters previously
defined with the categorical product descriptors were also analyzed. While none of these results
are unexpected, they do serve to make more explicit differences/similarities between/within
clusters (i.e., do the relations make sense?) and can provide useful information on how to reach
the cluster members. Table 4.16 shows the percentage breakdown of each cluster group into
the specific sources of energy during the use phase.
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Table 4.16 Sources of energy cross table.

Clusters A Clusters B
Type 1 2 3 4 Total 1 2 3 4 5 6 7 Total
none count 2 14 16 2 14 16
% 6.9 | 93.3 27.1 14.3 93.3 271
solar count 2 2 2 2
% 6.9 3.4 20 34
hydro count 1 1 1 1
% 3.4 1.7 100 1.7
solar- count 1 1 1 1
electric % 3.4 1.7 100 1.7
batteries | count 2 2 2 2
% 6.9 3.4 14.3 3.4
electricity | count | 21 3 4 28 5 10 6 3 4 28
% 72. 100 | 33.3 4751 100 | 714 60 100 100 47.5
4
gasoline count 1 8 9 1 8 9
% 8.7 66.7 15.2 6.7 100 15.2
Total count [ 29 29 3 12 59 5 14 10 15 3 8 4 59
% 10 100 | 100 | 100 100 ]| 100} 100 | 100 | 100 | 100 | 100 { 100 100
0

The majority of products in cluster A1 and all the products in cluster A3 (B5) use electricity (wall
. outlet) as the source of energy. In cluster A1, there are also products that do not consume
energy during the use phase (self-powered radios) or use renewable energy sources (solar-
powered LCDs and TVs). In cluster A3 (B5) electric energy is accounted for as externally
consumed in washing operations, The majority of products in cluster A2 (B4) do not consume
energy during use (confirming their lowest average values for power consumption). The car
plastic fender is an exception. Material composition and recycleability properties dominated the
grouping in this case, separating the car plastic fender from the other car fenders. In cluster A4,
electric energy and gasoline are accounted for as externally consumed in heating the
saucepans and in influencing the mobility of the cars. All the products of clusters B1 and B7 and
the majority of products in clusters B2 and B3 use electricity as the source of energy. In clusters
B2 and B3 there are also products that do not consume energy during use (self-powered radios
in B2) or use renewable energy sources (solar-powered LCDs and TVs in B3), lowering the
groups’ average values for power consumption. In cluster B7, electric energy is accounted for
as externally consumed in washing the diapers and towel. Products of cluster B7 are BIWs and
car fenders that externally drive the consumption of gasoline (and high power consumption).

Results for operation mode showed that all the products in clusters A2 (B4), A3 (B5), A5 (B7,
B8) do not have any operation mode. Although mode of operation can partially encode level of
performance in energy efficiency, it was not considered a property for products that,
nevertheless, induce energy consumption during use. In clusters B2 and B3, the majority or ail
of the products are on/off manually operated. This potentially causes a greater influence of
different patterns of consumer usage in use time and power consumption trends. Percentage
breakdown for additional consumables showed that the majority of products do not add
consumables during the use phase. All products in cluster A4 (B6, B7) add consumables during
the use phase.

The grouping of products defined by cuts A and B in the dendrogram maps partially to the ones
defined by Kaebernick and Soriano {2000) (who used hierarchical clustering). Kaebernick and
Soriano (2000) grouped products using both product characteristics and environmental
performance indicators as the clustering variables. Two major clusters were formed: one
including products that manifest intensity of impact at the use phase (cluster A1 contains the
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same or similar type of products, e.g., coffee makers, refrigerators, TVs, washing machine,
heater); and the other including products with the main impact intensity in the material phase
(cluster A2 contains the same or similar type of products, e.g., paper bag, PE bag, chairs, coffee
filter, other disposable products). Cluster A1 contains products (self-powered radios and solar-
powered TVs and LCDs) likely to have less impact intensity in the use phase than in the
material phase (as they are eco-designed products with “non-traditional properties” positively
relevant to the environment) due to a smaller effect on clustering of the energy consumption
properties relatively to other properties (e.g., material composition). Cluster A2 contains other
types of products (e.g., antifreezes, coatings, chairs), even though one can also consider them
as material-based products. The car plastic fender is an exception, as explained previously. In
addition to these groupings, clusters A3 and A4 were created. A plausible interpretation is that
in these products, although expected as being material-based, indirect (external) energy
consumption during the use phase is accounted for. Cluster A3 is strongly isolated also due to
the particular material composition, with a high percentage of fibers.

The groups defined by cuts A and B in the dendrogram also follow general patterns proposed by

-Hanssen (1996), for example: A1 are “stationary products with energy consumption™ A2 are
“stationary products without energy consumption™; A3 and A5 are products “without internal
energy consumption”. A4 further specializes into cluster B6 — “moveable products without
internal energy consumption” — and cluster B7. :

For specific-purpose use the dendrogram should be cut to produce groupings that are
maximally related to other specific variables of interest (Romesburg, 1984) — in this case
environment-related variables. The cluster solution generated by cut B was then chosen for its
level of specificity and interpretability. Table 4.17 summarizes a final conceptual grouping of
products, guided by the previous clustering exploratory analysis, to be used for further analysis.

Table 4.17 Final conceptual grouping of products.

Group Definition Sample Products

1 Durable, high-mass household appliances, with Refrigerators
efficient energy consumption during use (active).

2 Durable, {generally) low-mass consumer products, Vacuum cleaners, mini-vacuum cleaner,
(generally) with a significant amount of plastic coffee makers, washing machine, juice
materials, and with energy consumption during use  squeezers, heater, radios
(active).

3 Durable electronic consumer products, (generally) LCDs, TVs
with a significant amount of ceramici/glass
materials, and with energy consumption during the
use phase (active).

4 (Generally) non-durable, low-mass consumer Paper bag, coffee filter, dust bag, PE
products, with no energy consumption during use bag, PP crate, shower head, disposable
{passive). diaper, coatings, antifreezes,

disposable towel, chairs, radios *

5 Low-mass consumer products, with a significant Home and commercial washed cloth
amount of fiber materials, and with external energy diapers and reusable towel,
consumption for maintenance during use (active).

6 Durable, recyclable products, with external energy BIWs and car fenders **
consumption for mobility duringuse phase (active).

7 Durable, low-mass, recyclable products, with a Sauce pans

significant amount of metals, and with external
energy consumption for maintenance during the
use phase {active). '

* seff-powered radios included in category 4 for further analysis in classification.
** plastic fender included in category 6 for further analysis in classification.
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Product classification system

Product descriptors data and environmentally driven categories were then used to develop an
automated classification system based on decision trees algorithms applying C4.5, a software
extension of the basic ID3 decision tree algorithm (Quinlan, 1993). C4.5 is both well

documented and publicly available (http://www.cse.unsw.edu.au/~quinlan/).

The method implemented in C4.5 by Quinlan (1993) for constructing a' decision tree is simple,
yet fairly efficient. Given a set T of training cases let the classes be denoted {C;, Cs,...,Ci} one
of the following is true:

+ T contains one or more cases, all belonging to a single class Cj. This corresponds to the
situation where the decision tree for T is a leaf identifying class Cj.

+ T contains no cases. Here the decision tree is a leaf but the class to be associated with
the leaf must be determined from information other than 7. For example, some
background knowledge of the domain (e.g. overall majority class) might choose the leaf.
C4.5 uses the most frequent class at the parent of this node.

+ T contains cases that belong to a mixture of classes. In this case the algorithm refines T
into subsets of cases that are or seem to be heading towards single-class collections of
cases. A test is chosen, based on a single attribute, that has one or more mutually
exclusive outcomes {Oy, Oy, ..., Oy). T is partitioned into subsets Ty, 75, ..., T, where T;
contain all the cases in T that have outcome O; of the chosen test. The decision tree for
T consists of a decision node identifying the test, and one branch for each possible
outcome. The same divide and conquer algorithm is applied recursively to each subset
of training cases, so that the ith branch leads to the decision tree constructed from the
subset T; of training cases.

This method highly depends on the choice of appropriate tests, which should lead to a partition
that reveals the structure of the domain and so has predictive power. In C4.5 the selection of the
test — decide which attribute will be tested — is made on the basis of the information-based gain
ratio criterion. It is assumed that the information conveyed by a message depends on its
probability and can be measured in bits as minus the logarithm to base 2 of that probability. The
message of selecting one case at random from a set S of cases and reporting that it belongs to
some class C; has probability:

freq(C,,5)
!

where freq (C, S} is the number of cases in S that belong to class C;and |§| is the number of
cases in set S. Therefore the information it conveys is:

—logz(ﬁql(;ﬁ) bits.

The expected information from such a message pertaining to class membership is found by
summing over the classes in proportion to their frequencies in S:
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freq( »5)

_i freq(C,5)
N

J=1 | |

info(S) = xlog,(———"—) bits. Equation 4.3

It follows then that info(7T) measures the average amount of information needed to identify the
class of a case in T. Considering a similar measurement after T has been partitioned in
accordance to the n outcomes of the test X, the expected information required can be found as
the weighted sum over the subsets:

infoy @) = E x info(T;) Equation 4.4
iml
The quantity:
gain(X) = info(T) — infox(T) Equation 4.5

measures the information that is gained by partitioning T in accordance with the test X. The gain
criterion selects a test to maximize this information gain. To avoid a bias in favor of fests with
many outcomes gain(X) is normalized as follows. By analogy with the definition of info(S):

split info(X) = 2 ] x logz(IT | Equation 4.6

a

which represents the potential information generated by dividing T into n subsets, different from
the information gain which measures the information relevant to classification that arises form
the same division. Then,

gain(X)

— Equation 4.7
split info(X)

gain ratio(X) =

represents the proportion of information generated by the split that is useful — expected helpful
for classification. To avoid unstable ratios (when split is near-trivial) the gain ratio criterion
selects a test to maximize the gain ratio, subject to the constraint that the information gain must
be at least as great as the average gain aver all tests examined.

Once the attribute is chosen, if the attribute is discrete, the test creates one outcome and
branch for each possible value of that attribute. If the chosen attribute A has continuous numeric
values, a binary test with outcome A<Z and A>Z is performed, based on comparing the value A
against a threshold value Z. To find the appropriate value of the threshold Z, the training cases
T are first sorted on the values {v,, v,,..., vy} of the attribute A. The m-17 possible splits on A are
all examined. C4.5 chooses the largest value of A as the threshold in the entire training set that
does not exceed the midpoint of each interval * +2V-'+1, rather than the midpoint itself, to ensure

that all threshold values appearing in trees and/or rules actually occur in the data.

Given that only a small data set was available to construct the decision tree, cross-validation
was used to more robustly estimate the accuracy for unseen cases. In this procedure, the
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available data were divided into N blocks to build N different classification models, in each of
which one block is omitted from the training data. The resulting model is then tested on the
cases in that omitted block. Provided that N is not too small - 10 is commonly used- the
average error rate over the N unseen test sets is considered as a good predictor of the error
rate of @ model built from all the data (Quinlan, 1993). The following parameters were
considered in analysis of the average pruned tree:

« Grouping attribute values. This was done to address two types of concerns: (1) one
consequence of partitioning the training set into numerous subsets is that as each
subset is small useful patterns in the subsets may become undetectable because of an
insufficient data; (2) if discrete attributes vary greatly in their number of values, it is
highly uncertain that a selection criteria such as gain ratio is assessing them equitably.
The denominator of this ratio grows rapidly as the number of subsets increases and
therefore biases against attributes with many values. If the number of outcomes from
testing a muilti-valued attribute is to be reduced, one or more outcomes must be
associated with a collection of attribute values rather than a single value. The default
procedure forces the partition to a binary split. If there are numerous discrete attributes
with 3 or more values, it is worth trying to group attribute values.

Minimum cases. C4.5 requires that any test used in the tree must have at least 2
outcomes with a minimum number of cases. Situations where tests in which almost all
the training cases have the same outcome may lead to odd trees with little predictive
power. The default minimum can be changed to a higher value when there is a lot of
noisy data. This constrains the degree to which the initial tree can fit the data.

Size. The number of nodes of the average simplified decision tree.

Observed error rate for unseen cases. Error, defined as the average of the observed
error rates of the N classification models generated by cross-validation. Each observed
error rate is the total number of observed errors in each classification model divided by
the total number of unseen cases in that model.

Expected error rate for unseen cases: Error, estimated as the average of the expected
error rates of the N classification models generated by cross-validation. Each expected
error rate is the sum of the predicted errors at the leaves in each classification model
divided by the total number of training cases in that model. For a given confidence level,
the predicted errors at the leaves are found from the confidence limits for the binomial
distribution, assuming that the classification tree has been constructed to minimize the
observed error rate.

To run C4.5, a file with definition of attributes, attribute values and classes was first created (see
Figure 4.20). The quantitative attributes are described as continuous while a list of all possible
discrete values are provided for the qualitative attributes
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lAuthor: Inés Sousa
|Email: iss@mitedu
1Date: 4/30401

[Title: Product zlassification lo support learning surrcgata LCA models

Combination (1)

|Classes: claseifies inta 7 environmenial product calegories derived trom clustering cul 8
11 =Lurable, high-mass, efficiently active household appliances

12=Durabie, active, household appliances

13=Durable aclive, electronic consumer products

14=Low-mass, passive products

|5=Low-mass, fiber-based aclive (exizrnal energy based) products

18=Durable, mobtile, active (axternal ensrgy based) producis

(7=Durable, low-mass, active (external energy based) producis

1,2,3,4,56.7.
|1Altributes:

mass: continuous.

ceramies_glass _concrele: conlinuous.

fibers: conlinuous.

{errous_metal: continuous.

non_ferraus_mstal: conlinugus.

plastics: continuows.

wood: continupus.

paper_cardboard: continuous.

chemicals: conlinupus.

others: conlinuous.

lifetime: continuous.

use_time. continuous.

opperalion_mode: none, sensor, stand _by. manual.
addittonal_consumables: yes. no.

energy _source: none, solaf, hydro, solar_selectric, batleries, electricity, gasoline.
power_consumption: continuous.
post_consumer_tnaterial: Lonlinuous.
retycleability: conlinuous.

Figure 4.20 File classBcomb1.names.

The second step required create a data file containing all the individual cases available in the
data set (one line per case), each of which described by corresponding values of each of the
attributes and class. Each line contains the values of the atiributes in order followed by the
case’s class, with all entries separated by commas. An unknown value of an attribute is
indicated by a question mark “?”.

The 10-cross-validation procedure was rerun with a pruning confidence level of 25% for different
combinations of parameter options and product descriptors, exploring error estimations
associated with different decision trees. Table 4.18 displays the results of some of these
combinations: (1) all aftributes are included in the analysis; (2) energy source and operation
mode were excluded as discrete variables that reveal insufficient data for all categories; (3)
energy source is re-introduced in the analysis. Figure 4.21 shows the decision trees
corresponding to the highlighted combinations in Table 4.18. The default options of parameters
did not group attributes and used 2 minimum cases. Grouping attribute values was considered
in other options as there are qualitative product descriptors with three or more values (energy
source and operation mode). Table 16 reveals a discrepancy between the observed and
expected error rates for unseen cases. This type of results can occur when there is an almost
pure partition of the training cases into single-class subsets. However, much of the tree
structure induced by this partition is over-fitted, with little predictive power. This often happens
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when there are many continuous attributes since a single continuous attribute can give rise to
numerous possible divisions. By increasing the number of minimum cases overly fine-grained
divisions of the training set may be prevented. When the expected error rate for trees is almost
exactly correct it indicates an appropriate level of pruning (Quintan, 1993).

Table 4.18 Error estimations for combinations of parameter options and product descriptors.

Options Size Observed errorrate %  Expected error rate
%

Combination (1)

default 15.7 18 8.7
attribute grouping 11.3 16.2 6.7
4 minimum cases 14.9 20.6 13.7
aftribute grouping + 4 minimum cases 9.3 19.6 18.7
Combination (2)
default 14.6 20.3 13.3
attribute grouping 14.6 20.3 13.3
4 minimum cases 12 26 22.3
attribute grouping + 4 minimum cases 12 26 22.3
Caombination (3)
default 16.2 17.9 6.7
attribute grouping 12.2 16.2 8.3
4 minimum cases 15.2 211 17.7
attribute grouping + 4 minimum cases 11.6 19.1 19.3

In combinations (1) and (3), formation of value groups decreases the observed error rate.
Formation of value groups and 4 minimum cases give rise to similar observed and expected
error rates at the expense of increased errors rates and smaller simplified decision trees. In
combination (2), formation of value groups has no effect on the observed or expected error
rates, but 4 minimum cases results in observed and expected error rates which are closer
together.
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Figure 4.21 Classification systems produced by combinations (1), (2) and (3).
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Figure 4.21 shows that the combinations produced by differently structured classification
systems. In combination (1), the category low-mass, fiber-based, active products was not found
by the algorithm. Instead, the training products corresponding to this category were
misclassified in the category durable, low-mass, active products.

In all three combinations, as well as in other experimented combinations, robust patterns could
not be distinguished from chance coincidences. Data were insufficient to induce a good
generalization. For example, materials decision nodes and energy source decision nodes were
highly biased towards particular patterns in material composition and energy consumption.
However, the goal is to explore the viability of a product classification system that could be used
to support specialized learning surrogate LCA models. The lack of good generalization does not
prevent considering the results of this analysis as relevant for the purpose of this research.

The selection of a suitable classification system need to be done concurrently with tests
performed with the specialized trained surrogate LCA models. The best performance of this
hybrid learning system would drive the selection of the suitable automated classification scheme
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5 APPLICATION STUDY

5.1 GOAL AND SCOPE OF APPLICATION STUDY

The goal of this study was to explore the application of the learning surrogate LCA approach to
automotive products within a product development company. The application study was
performed to:

« Explore the feasibility and process of customizing the learning surrogate LCA approach
for a more narrow class of products - durable, maobile, active (external energy-based)
products

e |llustrate the use of the learning surrogate LCA approach in an integrated simulation
environment for trade-off analysis in a multiple objective application scenario.

The case study was conducted with a Swedish heavy truck manufacturing company and
targeted a pre-development project for a new door concept. An existing detailed environmental
assessment of two (present and new) door concepts by Berg and Lindgren (2001) provided
detailed product and environmental life-cycle data and a basis for benchmarking the application
study. ‘

5.2 BACKGROUND

Product development, methods and tools at the company

At Scania, product development projects involving cross-disciplinary teams are classified as
shown in Figure 5.1. Pre-development projects are launched continuously to explore new
concepts and test new technologies. The purpose is to create a foundation of projects and
knowledge that will be included later on in a Concentrated Introduction project or in product
Follow-up. (Berg, 2001). The output is an assignment directive, which triggers either the start of
concentrated introduction or product follow-up projects (Schiiiter, 2001).

Assignment Directive

\ Concentirated
Pre- Introduction
development i Product

/) Follow-up

Figure 5.1 Project categories at the company. Source: Schitter (2001).

Concentrated introduction projects are based on proven technology and are carried out in five
phases: Pre-study, Feasibility study, Development, Implementation, and Termination. Follow-up
projects are top-priority projects to ensure fastest possible problem solving to meet quality and
customer satisfaction, with no restrictions in introduction date of product/production changes.
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In conceptual phases, there is little methodological support available for the designer (Schlter,
2001). Brainstorming, competitor analysis, TIPS (Theory of Inventive problems solving), re-
design of existing products, and discussions with other designers in the team are common
approaches. At the system design level, the company uses a modularization method intemally
developed to maximize product customization with a minimum number of parts. At the detail
design level designers use state-of-the art CAE tools.

In the environmentally conscious design arena, the company is using LCA in a small scale
(Schiiiter, 2001), not systematically applied as a standard procedure to obtain information for
design and decision-making. The LCA approach is mostly used for comparing different design
concepts for a component, and focusing on inventory results rather than on impact assessment.
As in most companies in the industry, the trend at this company is to choose and adopt methods
and tools that are perceived as appropriate for their specific needs, based on their
understanding and experience with such tools as well as their familiarity with a particular
method. Grey and black material lists and DFE training programs for product and manufacturing
" engineers within the organization are then the common approaches used at the company to
promote environmentally conscious design.

Pre-development project for a new lightweight door concept

A pre-development project was carried out to develop a new door concept in collaboration with
another company that specialized in door systems. The purpose of the new door concept is to
reduce weight — a lighter truck will increase load capacity for the customer and decrease fuel
consumption and wear (especially the wear of tires).

A change in materials, using aluminium and plastics instead of steel, was the design strategy
selected to achieve weight reduction of the truck cab door. The new door concept only exists as
a prototype. It is based on a space frame structure, where a load-carrying frame of aluminium
profiles is covered with plastic panels on both the inside (polypropylene) and outside
(polyurethane). The total weight of the new door concept is approximately 30% less than the
current door, which consists of steel outer and an inner door panels.

Still, it is important to realize that the new light-weight concept has other unintended implications
for the environment and natural resource use. Material substitution changes the whole life-cycle
system from mining and refining through to manufacturing, use, and disposal/recycling.

A life-cycle perspective is needed to provide the ability to holistically address all these issues.
For this purpose, Berg and Lindgren (2001) performed a six-month long detailed life-cycle
assessment study to comprehensively compare the current and the new door concepts.

Since concept has been prototyped, quite detailed information is already available. While there
is still flexibility to make changes they are confined to a limited solution space because of a
significant level of parameterization already applied to the design problem.

Once prototypes have been evaluated, the pre-development project enters a decision making
stage. The environmental assessment of the door concepts and recommendations for
environmental improvement should complement the information on other design criteria such as
safety, economy and customer requirements. All together, they potentially provide an informed
and comprehensive basis for the decision-makers evaluate on how to proceed with the project
{Berg and Lindgren, 2001).
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About the life-cycle assessment study

Berg and Lindgren (2001) conducted the comparative detailed LCA study on the two door
concepts at Scania in Sodertélje, Sweden, between September 2000 and February 2001, as
part of the pre-development project. Six months were required to carry out this study. To define
the goals and scope as well as to get relevant background information, several preliminary
discussions took place with employees at the company involved with the project.

An extensive search for relevant literature, articles and data followed. Most of the required
secondary data was collected at Scania in Sodertélje through personal communication, written
material and databases. Visits to the company’s production plant in Oskarshamn, Sweden, and
the development partner company as well as telephone interviews were also required to acquire
the necessary data and information. The majority of the primary data (collected specifically for
this study) was provided by employees at Scania in Sédertslje and Oskarshamn, and some
were obtained from the development partner company. Data on fuel consumption and
-emissions of Scania trucks, an employee at Scania separately ran simulations using a
simulation software developed at Scania. When no data was available, assumptions were made
in collaboration with experts.

TEAM®, a commercially available LCA software was used to perform inventory calculations amd
an impact assessment. Product systems and boundary definitions, allocation procedures,
assumptions, data quality issues and methodological limitations underlying this LCA study were
carefully documented by Berg and Lindgren (2001).

The results from the inventory analysis on energy use and air emissions (CO,, CO, NO,, SO,
and hydrocarbons) showed that:

+ The new door concept consumed less energy and causes lower emissions of carbon
dioxide, carbon monoxide, nitrogen oxides, hydrocarbons.

» The production of the new door concept requires more energy and causes higher
emissions of nitrogen oxides, sulfur oxides, and hydrocarbons than the production of the
present door. Production of the present door originates higher carbon monoxide and
dioxide emissions.

» The use phase has the largest influence on the results for energy consumption and all
emissions (except carbon monoxide) both in the size of the impacts and in the difference
between the concepts. The new door concept is about 40% better than the present door
due to the difference in fuel consumption.

+ The production phase has the largest influence on carbon monoxide and plays a more
important role in the new door concept, especially regarding energy consumption.

+ In the end-of-life worst-case scenario - 65% steel recycling, 50% aluminum recycling
and 100% plastics go to landfill — the present door is the best concept in half of the
inventory categories. In the end-of-life best-case scenario — 100% stee!, aluminum and
polypropylene recycling, and 100% polyurethane incinerated — the new door concept is
the best for all but one category (carbon dioxide).

The resuits from the impact assessment using different valuation methods (IPCC-greenhouse
effect, CML-eutrophication, CML-air acidification, CML-depletion of non-renewable resources
and EPS-total) showed that;

APPROXIMATE LIFE-CYCLE ASSESSMENT OF PRODUCT CONCEPTS USING LEARNING SYSTEMS INES SOUSsA 2002 e




« For the total life cycle, the new door concept is best concerning all environmental
impacts except the depletion of non-renewable resources in the worst-case scenario
(large depletion of bauxite due to low recycling rate of aluminum).

+ The present door performs best in the production phase for all methods except the
IPCC-greenhouse effect and the EPS total.

« The new door concept performs best in the use phase for all methods.

+ In the end-of-life phase, the new door concept is the best concerning air acidification and
depletion of non-renewable resources, whereas the present door is the best in global
warming, eutrophication, and EPS-total.

Berg and Lindgren (2001) conclude that for almost all impacts and effect categories, the new
door concept performs beiter than the present door concept. In addition, the study showed that
the use phase is the life-cycle stage with the largest environmental impact (with the exception of
depletion of non-renewable resources) and exhibits the greatest difference between the two
concepts. A 40% difference in favor of the new door concept is interpreted as resulting from the
difference in weight, where the new door concept was modeled as 40% lighter than the present
one. The size of the impact from the use phase is interpreted as being related to the total
distance driven. Overall, the new door concept is considered to be better than the present one
from an environmental point of view. Still, for this conclusion to be true for all the studied
emissions and effect categories, the recycling rate for aluminum must be high.

Berg and Lindgren (2001) also proposed improvement strategies for the new door concept
based on the findings from the LCA study. They then used the eco-design strategy wheel for
qualitatively comparing the improvement proposal with the new door concept. Some
recommendations include use of recycled polypropylene instead of virgin material for the inner
panel, and aluminum sheets instead of polyurethane for the outer panel.

Finally, Berg and Lindgren (2001) also investigated economical consequences of weight
reduction. Based on estimated correlations between fuel consumption and weight for different
types of heavy trucks, the investigation showed that 1 kg of reduced weight is worth between 20
and 40 SEK in fuel cost savings during the truck’s active lifetime. In addition, tare weight critical
customers benefit from the possibility to carry more payload as a result of the reduced weight of
the truck. For the company, new light weighting concepts may lead to higher development,
implementing and production costs. However, a significant weight reduction may result in a
competitive advantage. ‘

5.3 CUSTOMIZATION OF THE LEARNING SURROGATE LCA
METHOD

Here, the customization process will result in the definition of product concept descriptors and
key environmental inventory elements tailored to the particular context of the company and its
products.

First, a qualitative approach was used to collect data and capture key organizational,
methodological and technical aspects of the company's product concept systems (Lagerstedt et
al, 2002). The approach used a roadmap proposed by Eisenhardt (1989) for building theories
from case study-based research. The case study was conducted targeting two levels of
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analysis: system (vehicle) and sub-system (door). Interviews, questionnaires, observations, site
visits, field notes and company reports were used as data collection methods. The evidence
from this iterative process was both qualitative and quantitative. Appendix D summarizes main
steps taken in this bottom-up approach.

Customized product concept descriptors set

The general product concept descriptor set (see section 4.1.2) was customized using the criteria
listed below. Product concept descriptors should:

* Be relevant to the product design activity: {(a) be known and easily understood by
design engineers to facilitate readily interface with the product design process; (b) be
of high-level information content and parameterization to accommodate the degree
of abstraction at early design stages; (c) be sufficient to discriminate between
different design concepts.

* Be logically linked to vehicles’ environmentai performance: (a) span the scope of the
life-cycle environmental performance of vehicles; (b) account for functional-
environmental synergies between the whole vehicle system and its sub-systems
(e.g. fuel consumption of the truck, partially determined by driving behavior, might
influence decision-making on mass of the door).

* Be exchangeable within the product design framework to facilitate integrated
simulation: (a) span the scope of traditional design decision drivers, which generally
are measurable and/or strategic for the company (e.g. cost, fuel economy, power
train technology); (b) as a set, form a useful, simple, high-level parameterization
structure that facilitates the negotiation of service exchange in the system model.

The final customized set of product descriptors was defined based on data and information
provided by this case study research as well as findings from literature (Sullivan and Cobas-
Flores, 2001; Lave et al, 2000; McLean and Lave, 2000) and discussions with experts in the
automobile industry (Sullivan, 2001) on vehicle attributes and life-cycle environmental
performance.

The conceptual framework described next, based on work by Sullivan and Cobas-Flores (2001),
was used as a basis to perform the customization. Although proposed for cars, it was
considered to be logically extendable to other automotive products (such as heavy trucks and
associated sub-systems) for the purpose of the present research.

Consider the total life-cycle burden vector of a vehicle {B},, to be defined as follows:

(B} 1o ={B} py + {B} sssm +{BY sp +{BY utn + {B} eor = {B) gt +{B}vus Equation 5.1

where:

- subscripts tot, mp, assm, op, mnin, and eol relate to the vehicle's life-cycle stages and
denote total, material production, part and product manufacture and assembly,
operation, service and maintenance, and end-of-life, respectively.

- subscripts fxd and var relate to a conceptual partition of the vehicle's life-cycle burdens
and denote fixed and variable burdens, respectively.
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By normalizing the burden vectors with LTDST, the life time drive distance for the vehicle (a
measure of service rendered), these burdens can then be mathematically written as:

— {B}um i

By =—"2 Equation 5.2
{ }rat LTDST q
- {B}m +{B}assm +{B}mnm +{B}eal H

B = 2id Equation 5.3
1B} pua LTDST a
— {B}, :

B}, = —2 Equation 5.4
{8} LTDST a

The overall vehicle life cycle performance for a particular data category is the sum of the
variable and fixed terms times the vehicle life-time drive distance. Both fixed and variable terms
should then be targeted when considering reducing life cycle environmenta! impacts caused by
automotive products. Based on a thoroughly review of vehicle life cycle inventory studies,
Sullivan and Cobas-Flores (2001) concluded that:

+ The variable term is dominant when considering energy and carbon dioxide during
vehicle operation.

» The fixed term is the most or comparably significant when considering solid waste and
SO, emissions during the material production and vehicle manufacturing, maintenance
and repair phases.

For energy consumption and CO, emissions, the variable terms (operation) increase with
increasing mass and at a rate that decreases with increasing power-train efficiency. This is
consistent with the expected operational energy equation:

1 :
E, = E[A + Bmy |JHHYV Equation 5.5

where 7 is power-train efficiency, & is fuel production efficiency, mris the vehicle total mass, A
represents parasitic energy dissipation (e.g. aerodynamic drag), B is the coefficient of inertial
energy consumption, and HHV is the high heat value. The same type of equation could be
written for {B},, in general including CO».

Table 5.1 lists the product concept descriptors selected to form the customized set and relates
them with the framework just described. Figure 5.2 illustrates how the customized set can be
related with the general set of product concept descriptors, and the ones that were selected for
the Scania demonstration prototype (due to the company’s particularities and data and models
availability).
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Table 5.1 Customized product descriptors and relation with environmental burdens.

Descriptor Environmental burdens: fix var

Life time drive distance | Normalization factor. Multipiicative effect for all burdens. i
[km] :
Mass [kg] Per-mile vehicle operating energy (inverse of fuel efficiency) and

. direct CO ; emissions are expected to increase with mass. Energy

(incurred CO ; emissions) required to move vehicle through drive
cycle is dependent (not only) on mass.
Energy and CO ; emissions increase with vehicle mass due to the
dominance of energy in material production (e.g. aluminum
vehicle/parts have higher fixed term than steel vehicle/parts).
For solid waste and SO . burdens, increasing trends with vehicle
mass are expected. Any burden that is proportional to the amount of
fuel used should increase with vehicle mass due to reduced fuel
efficiency.
For solid waste and SO , burdens, increasing trends with vehicle
mass are expected due to material composition and amount.
Average vehicle fuel Per-mile vehicle operating energy and direct CO  : emissions are
efficiency [I/100km)] expected to decrease with fuel efficiency (inverse of vehicle mass).
Energy (incurred CO 2 emissions) required to move it through drive
cycle is dependent (not only) on fuel efficiency.
Efficiency of emission Hydrocarbon emissions might not increase with fuel used due to the

control device [%] effectiveness of the emission control technology used in the vehicle.

Type of power train Energy (incurred CO3; emissions) required to move a vehicle through
a drive cycle is dependent (not only) on power train efficiency.

Type of fuel Effects due to fuet production efficiency (see Equation 5.5).

Aerodynamic drag Effects due to parasitic energy dissipation {see Equation 5.5)

coefficient

Material composition Effects due to the use (non-use) of significant amount of energy

[%] intensive materials and processes.

Recyclability {%] Influence life-cycle waste production and resource consumption

and {materials and energy). Since most materials used in motor vehicles

Recycled content [%] are recycled back onto vehicles again only in small part, open loop
recycling may be assumed. However there is no generally agreed
upon method for allocating recycling credits to products and their
manufacturing systems.

* According to Sullivan and Cobas-Flores (2001) fixed burden can be approximated by;

Equation 5.6

By is the specific burden i (e.g., CO or BOD) originated in the production of material j
D i is the fraction of material § on the vehicle

o is a constant from service and maintenance and part/product assembly.
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Figure 5.2 Customized set of product concept descriptors.

Customized environmental performance output

The environmental performance output was left at the same level of aggregation as the
abbreviated LCI list (see section 4.1.1), with no weighted results. The purpose was to keep
enough flexibility so that different valuations could be easily performed if weighting factors
and/or regulations change, and decision makers can use their expertise in weighting results
according to regional factors and corporate policy (Sullivan et al, 1998). The customization was

then carried on such that:

* “Wants” for decision-making are incorporated. For design to be also environmentally

driven, there is a need to create environmental drivers:

Address company environmental strategy in prioritizing environmental issues
Address ways of “lobbying” the core design team

Need to be more measurable

- Team keeps focused only on a few prioritized goals

*  “Musts” of regulation are incorporated

* OQutputs are LCl-based to be readily used as inputs in existing or company specific
aggregation schemes; these should be determined on a case-by-case basis.

The list presented below is a “pool” of environmentally significant metrics for automotive

products.

* Life-cycle carbon monoxide [kg CO] [regulated exhaust emissions]
* Life~cycle nitrogen oxides [kg NOx] [regulated exhaust emissions]
» Life-cycle hydrocarbons [kg HC] [regulated exhaust emissions]

* Life-cycle particulate matter [kg PM] [regulated exhaust emissions]
» Life-cycle carbon dioxide [kg COZ2] [proactive company strategy]
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Life-cycle strong GHG [SF6, PFCs, HFCs, N20O, CH4] [proactive company strategy]
Life-cycle sulfur oxides [kg SOx] [proactive company strategy]

Life-cycle energy [MM BTU] [proactive company strategy]

Life-cycle solid waste [kg solid waste] [proactive company strategy]

Life-cycle heavy metals [air, water emissions] [reactive, proactive company strategy]
Life-cycle Biological Oxygen Demand [kg BOD] [regulated water emissions]
Life-cycle Chemical Oxygen Demand [kg COD] [regulated water emissions]
Life-cycle total suspended solids [kg] [regulated water emissions]

Life-cycle dissolved solids [kg] [regulated water emissions)]

At a more aggregated level, the following could be useful indicators:

* Global warming potential, in eq. kg of CO; of warming gases, mostly CO2 and CH4

* Acidification potential, in eq. kg SO- of acidifying gases (SO,, NO,, NHs, HF)

* Waste index, in % relative to weight of reference system, % of EOL materials that go to
landfill.

Environmental performance can potentially correlate well with stock price performance.
EcoValue 21 environmental ratings (Innovest, 2001), for example, uncover hidden value
potential for investors by identifying environmental risks, management quality and profit
opportunity differentials typically not identified by traditional equity analysis. The following are
performance indicators that could rate high with these ratings:

* Global warming [risk factor]:
- Reactive/proactive to average fleet CAFE in the US (mpg)
- Reactive/proactive to direct GW risk: reducing total CO2 emissions (%)
» Saving high waste treatment costs [eco-efficiency initiative):
- Reduction of non-recyclable waste (% material efficiency)
* Increasing energy efficiency [eco-efficiency initiative]:
- Reduction of energy consumption per vehicle (%)
* Vehicle recyclability [eco-efficiency initiative]:
- Reactive/proactive to meet recycling targets (%)

The life cycle CO, emissions were selected as outputs of the learning surrogate LCA method for
demonstration purposes in the present application study. They were referred in the case study
as part of the environmental priorities at the company.

Customized learning surrogate LCA model

The next step focused on building, training and testing a customized learning surrogate LCA
model, given the defined set of inputs and outputs. The training and testing data sets were
randomly generated using the detailed TEAM® LCI mode! previously developed at the company
for the new door concept pre-development project.

In total, 4 multiple input {9 concept descriptors), single output (each specialized on total,
production, use and end-of-life CO, emissions) feedforward two-layer (5 hidden neurons) ANNs
were implemented using Matlab® Neural Network Toolbox. The log sigmoid and the linear
transfer functions were used for the hidden and output layers, respectively. The training and test
data sets were pre-processed with normalization to zero mean and unity standard deviation.
Each ANN was trained (in batch mode) and tested with 600 training and testing data points. The
Lavenberg-Marquardt backpropagation algorithm was used to train the ANNs for faster training
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cycles. Figure 5.3 illustrates a fairly good function approximation performed by the total CO,
ANN, when tested with data points corresponding to different concepts of doors.

O Life-cycle CO2 emissions predicted by ANN
¥ "True" life-cycle CO2 emissions

Figure 5.3 Function approximation by the total life-cycle CO, ANN

The ANNs were further tested with data points corresponding to other vehicle-type parts or sub-
systems — cab, chassis, and car fenders (see Figure 5.4). In terms of accuracy, the ANN did not
perform well. Life-cycle CO, predictions were between 88% (cab) and 1250% (aluminum car
fender) of the levels given by the “true” LCAs. Note, however, that the “true” LCA values for the
cab and chassis were calculated by a simplistic mass allocation procedure using the detailed
values for the doors. Still the ANN performed better for the cab and chassis predictions than for
the fenders predictions. The ANN ranked the concepts (normalized to the emission values of the
chassis) correctly except the two car fenders.

The bad performance for the fenders concepts can be interpreted in two ways (not necessarily
exclusive). The detailed LCA results for the fenders were estimated using a LCl model
developed based on very distinct system boundaries, allocation procedures, assumptions, and
primary and secondary data (Newell, 1998); while the total CO, ANN was trained using only
values generated by the same LCI model (the one developed at Scania). The ANN was trained
only on heavy truck-related concepts, while car-related concepts were not part of the training
data set. One then can argue that the ANNs are biased towards truck door concepts. The level
of specification is too high if the company wants to make a more efficient use of the model,
applying it to other truck parts and/or sub-systems assessments. To neutralize this bias effect,
the training data set should be updated to include a broader range of automotive products.
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Figure 5.4 Testing the accuracy and ranking performance of the total CO, ANN using other vehicle-type
concepts not included in the training cycles.

5.4 DEMONSTRATION

A simple illustrative example is herein presented to demonstrate the applicability of the learning
surrogate method in the context of an integrated design process. How could a product design
team at the company apply the learning surrogate LCA method to make integrated assessments
and tradeoffs?

A DOME system model such as the one schematically shown in Figure 5.6 could be useful for
this purpose. Due to a limited number of available models for this case study, the implemented
system model includes only the models highlighted in Figure 5.5. Still, the implementation
example was considered sufficient for demonstration purposes.
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Figure 5.5 Schematic representation of the DOME system model.

The environmental experts built, trained and validated the learning surrogate LCA models in
Matlab® and are responsible for maintaining and guarantee their proper use by designers and
engineers. To be able to customize the learning surrogate models for their practicai use at the
company, they played a key role in negotiating useful model interfaces with the other team
members, together with the project manager. During data collection and training cycles,
environmental experts can best explore and interpret the effects of assumptions and quality of
data, understand sensitivity tests to key model parameters, and adjust the training data and
learning system accordingly and iteratively. They are the ones in the pre-development project
team who have the time and expertise to do so. In pre-development projects, these types of
‘services are extremely relevant for the product development team to be able to early on
articulate important environmental issues together with other design goals. The environmentai
outputs provided by the learning surrogate LCA models, although backed-up with environmental
expertise, are of low precision. They are suitable, however, to identify key areas that can be
later on analyzed in more detail, when the design systems get further detailed (e.g., in the
concentration introduction phases).

There was an initial overhead in setting up and customizing the learning surrogate models but
ultimately only future maintenance will be necessary for their use in door systems or other sub-
systems.

The operating costs model is a simple Excel® spreadsheet developed for the purpose of the
demonstration. It only predicts the operating costs associated with fuel consumption. In a real
scenario, cost models — including production costs - could be developed and maintained, for
example, by purchase and marketing personnel at the company.
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Inputs for the operating costs model are door material composition; door and truck weight
(assuming door mass ratios of cab and truck); total distance driven; diesel price; and driving
performance. The driving performance, or driver factor, represents the individual driver's driving
style. For the company, choosing the right truck engine for a given transport assignment is more
important than choosing an engine with the lowest emissions certification rate — the wrong
engine has to work harder and consumes more fuel which leads to higher total emissions
(Scania, 2000). For example, according to the company experience, the driving style can
account for a difference of up to 20% in fuel consumption. In the model, driving performance
and is simplistically included in an estimated fuel consumption as follows:

Fuel_consumption [I/km] = A [I/km] + driver_factor x A [I/km)] Equation 5.7

where A = 4.85x10° x truck weight [kg] + 0.151 is an empirically estimated linear relation
between long-haulage heavy trucks tare weight and fuel consumption (Berg and Lindgren,
2001); and driver_factor is a fuel consumption scaling factor that represents how good (positive
%), indifferent (zero) or bad (negative %) a driver performance can be in relation to fuel
consumption. Although simplistic, | envision this type of approach and/or others to be further
explored by the company based, for example, on their recently developed Fleet Analysis
System that can monitor in real time driver's performance and transport network structure and
availability.

A production costs model of past development projects could also be included in the system
model. Spreadsheet-based technical cost models such as the ones developed by the Materials
Systems Laboratory at the Massachusetts Institute of Technology for vehicles’ body-in-white
(BIW) could be used to predict trends in manufacturing and assembly operation costs, based on
the door's weight and material composition. These models account for not only design
specifications and material properties, but also use as inputs production-specific information and
economic parameters {(e.g. labor wage rates and energy, material and capital costs).

Product concept descriptors such as door weight and material composition are envisioned in
this example as services provided by technical models developed by the company specialized
in door systems that worked in collaboration with Scania in the door pre-development project.

In a first step of building an integration simulation within the second-generation DOME
framework, model owners use simple DOME publishing programs to define parametric
interfaces to their simulations. The publishing programs allow model owners to transparently
create metadata defining service interfaces for their models and the types of DOME objects that
will embody those services (Abrahamson et al., 2000). For example, in Excel® a wizard-like
publishing macro is used to select cells and define model inputs and simulation outputs. Then,
model owners use a web browser to log into a DOME model server and use wrapper objects
(software plug-in to DOME for third-party applications) to make their published services
available over the Internet (see Figure 5.6). Through this publishing process, each model owner
brings in expertise and formal representations in the form of data and models, and selectively
exposes model parameters while protecting inner workings developed in their own modeling
tools of choice. Their model services can now be accessed and operated through a web-
browser.
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Figure 5.6. DOME interfaces to the published (a) learning surrogate LCA models (b) and the operation
cost model (mapped wrapper objects for Excel® and Matlab® ).

Interfaces to environmental and cost simulations are now remotely accessible and operable
over the Internet. A second step is to provide each individual participant with the ability to define
systems interactions locally and build system models. Suppose that the project manager
(system integrator) is now interested in studying the effect of system changes concerning the
new design concept. He wiil then log into a DOME server, subscribe to the environmental expert
model and the cost model services, and use the DOME synthesis environment to define an
overall door simulation model by relating these services and create new services. In Figure 5.7
the project manager has completed the system model by mapping parameters from the
subscribed remote simulations to appropriate parameters and using mathematical relationships
he introduced to perform a consistent integration.
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Figure 5.7 The pre-development project manager buiit an integrated door study simulation with remote
parameters mapped to relationship parameters.

The project manager was not required to have any special programming knowledge to
coordinate the services of these distributed multiple-platform product design models. in addition,
he is not supposed to have a centralized control over the distributed system model. Through
federated parametric solving capabilities, the simulation network can solve itself in an
appropriate manner.

The project manager is now ready to further explore the integrated simulation services he just
specified for the overall door system model. He first added catalog objects to easily switch
between different driving performance and end-of-life scenarios (see Figure 5.8). The catalog
interfaces manage the back-side mappings to the chosen scenario so that he can swap
scenarios without redefining model relationships.
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Figure 5.8 The project manager added catalog objects to easily explore different driving performances
and end-of-life scenarios.

To grasp a real-time view of system-wide tradeoffs when making changes, the project manager
added a decision support object to the system model. Figure 5.9 shows the services provided
by the DOME decision support object.
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Figure 5.9 The services of a decision support object are added to visualize system-wide tradeoffs.

A spider diagram visualizes performance assessments on five axes, while expanded detail
windows show the predictions relative to their design specifications:

EuroEmissionCO;. The acceptability function and its extreme points are defined based
on CO; emission factors estimated for Scania engines. These factors specify the
quantity of emissions released in relation to the amount of fuel consumed, in grams per
liter of fuel. They are not definitive though. For example, they do not take into account
inadequate maintenance such. as blocked air filters or tuned engines. The specification
as it is now defined drives a complete acceptance of Scania Euro 3 engines. Scania
Euro 3 engines are approved in accordance with current European Union legislative
requirements for NO,, PM, HC and CO (CO; is not regulated).

ProductionCO,. The acceptability function is defined such that the production emissions
of CO; are to be reduced to approximately 30% of the current production values. As an
extremely ambitious goal, in practice this acceptability function will drive a constant need
to surpass current performance.

FuelEfficiency. The specification is defined such that fuel efficiency of up to 0.2 l/km is
completely accepted. A fuel efficiency of 0.3 I/km is not acceptable.

FuelCost. The acceptability function is defined such that operation fuel costs up to
3000000 SEK are completely accepted. Fuel costs of 5000000 are not acceptable.
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- DoorCost. Design and performance specifications of this axle are shown only for
ilustration purposes. A technical cost model of doors was not available to incorporate in
the demonstration.

The project manager can now simulate different scenarios and explore various tradeoffs by
changing parameter values and/or design specifications. For illustration purposes, some
examples are presented in the following section.

Simulating present and new door systems

Figure 5.10 shows the spider graphs corresponding to the simulations of the present and the
new door systems. Under present design specifications, the new door concept performs best.

s
oduttion_¢02_2000 -
1

or_sast

Present door bdhé-ebt' - ' ~ New door concept
Figure 5.10 Spider graphs for the present and the new door concepts.

Changing EuroCOs, specification

Figure 5.11 shows the spider graphs corresponding to the simulations of the new door system
under the previously defined EuroCQ; specification (extreme points drive complete acceptance
of Scania Euro 3 engines) and using a more stringent specification. Performance decreased
under this new target as expected, although it did not affect significantly the overall acceptance
of the concept.
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Figure 5.11 Changing the EuroCO2 specifications and visualizing results for the new door concept

Simulating different driving behaviors

Figure 5.12 shows results for the new door concept for simulations with different driving
performances. This analysis scenario could occur, for example, if the company wanted to
explore the impact of introducing new IT equipment in the truck for driving optimization The
overall acceptance of the new door concept changes significantly. Driving performance is
therefore an important factor to consider in early stages of design, even at the sub-system level
of a cab door in a heavy truck.
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Figure 5.12 Changing the EuroCO; specifications and visualizing results for the new door concept.

5.5 DISCUSSION ON THE APPLICATION STUDY

The application study provided a valuable experience in the process of customizing and using
the learning surrogate LCA method in a specific product development context. The case study
research facilitated the incorporation of experts’ knowledge and heuristics in the design of the
surrogate model simulation interface. However, one might argue:

*  Why not just simply use existing empirical data on automotive products to roughly define
(e.g. Equation 5.6) or estimate (e.g. using linear regression) relationships between key
automotive characteristics and environmental performance?

These product data and empirical knowledge are useful to capture key conceptual linkages
between product characteristics and environmental burdens that are specific to a certain type of
products. However, they are “pieces of puzzle” that, in order to be able to describe the “whole
puzzle system,” require further modeling tasks and assumptions involving often unknown non-
linear interactions. The effort involved is time and resources consuming and cannot be justified
at early stages of development when only high-level knowledge of the concept is defined. In
contrast, the product descriptor set for the door concept system put together a number of
different key characteristics in a high-level parameterized input structure that is also useful for
the pre-development team members to interface with other simulation models. The ANNs can
rapidly learn from different sources of data, such as existing empirical data or simulation results
and information from literature, to approximately emulate key environmental burdens without
having to spend time and resources in explicitly model the whole system. The structure of the
simulation interfaces — the product descriptor set and predicted set of environmental burdens —
can be redefined as needed at the expense of re-training the learning system redefined training
data vectors, however without having to invest in reformulating an explicit model of the whole
system.

* The existing detailed TEAM® LCI model only required a small redefinition of its external
variable structure in order to be at a level to cope with identified interface simulation needs.
This redefinition task however originally only took place to allow random generation of
appropriate training data. So why not just incorporate this detailed model in the system
model (using the TEAM® DOME plug-in) and use it to perform integration simulations with
the other models?
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That could have been done for this particular study where a detailed LCl model already existed.
However, the purpose of the study was to explore the applicability of the learning surrogate LCA
method in the company’s pre-development projects using existing data and resources. It
happened that the detailed model had been already developed, and it was made available to
help on generating training data for door concepts. Training data could also have been
extended to incorporate existing data (empirical, simulation, or provided by experts) on other
vehicle-type concepts (e.g., whole truck, cabs, chassis), and for those there were no detailed
LCI models, most likely there were isolated empirical studies and expertise. Still, these
‘knowledge pieces” could have been included in the learning cycles of the ANNs, unlike the
door detailed LCI that is highly specified to only incorporate door concepts. Unfortunately, the
extension of the training data was not possible under the circumstances of this particular
application study (e.g. restricted timing, nature of communication channels, logistic issues). An
“‘over-specialization” of the trained ANNs was actually confirmed with some tests, previously
presented, using other automotive parts and/or sub-systems.

-Although not addressed by this research, it is likely that such flexible, high level, “multi-

language” simulation interfaces of learning surrogate models, when integrated with other design
models using a framework such as DOME, will have a greater, real impact in the early decision-
making process of the company than that of isolated LCA studies, highly specialized in each

- one of the pre-development projects. integrated learning surrogate LCA models can provide

“visible” scenarios with what-if integration simulations, which can be highly effective in getting
the commitment of all involved stakeholders early on and increasing the overall awareness of
the company. The real need at these early stages is to perform representative, rather than
precise, integrated simulations and high-level tradeoff analysis. These need to be credible
though. For that, proof-of-concept testing showed already that learning LCA models at their
general level are capable to predict trends correctly, and make predictions sufficiently accurate
for the purpose of their use.
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6 CONCLUSIONS AND FUTURE WORK

6.1 SUMMARY AND CONTRIBUTIONS
The learning surrbgate LCA concept

Early conceptual design stages are an opportunity and a challenge for environmentally-
conscious design. While widely recognized as the critical stage for shaping the life-cycle
environmental performance of a product, these early stages lack detailed information needed for
thoroughly assessments and require quick decisions on diverse and numerous product
concepts.

The lack of analytically-based methods capable of tackling these issues at early design stages
motivated the development of an approximate life-cycle assessment (LCA) concept based on
learning algorithms. The learning surrogate LCA method facilitates an integrated system design
process at early conceptual stages, allowing the approximate and rapid assessment of
environmental impact based on high-level information typically known in the conceptual phase.

An artificial neural network (ANN) is trained on product attributes and environmental
performance data from pre-existing full life-cycle assessment studies and/or other available
simulation or empirical data. The product design team queries the trained artificial model with
high-level product attribute data to quickly obtain an approximate environmental impact
assessment for a new product concept. This is done without requiring a new LCA model and
under the guidance of environmental experts who train, validate and maintain the ANN-based
LCA models. The product design team can then use the predicted environmental performance,
along with key performance measures from other models, in trade-off analysis and concept
selection.

A method that works

Foundations for the learning system approach were established. Two critical areas were
investigated: (1) model inputs in the form of a compact, meaningful, and understandable set of
product concept descriptors; (2) the ability to gather LCA data and appropriately train an ANN-
based surrogate L.CA model.

First, the feasibility of establishing a compact Life-Cycle Inventory (LCI) that can represent key
environmental impact categories and be used to assess the environmental significance of
product descriptors was tested. An abbreviated LClI list of suitable size for outputs of a surrogate
LCA model was proposed, and tested for its ability to predict impact categories. It was
concluded that the abbreviated LCI list could possibly be used to predict life-cycle energy
consumption, solid material waste, greenhouse effect, ozone layer depletion, acidification,
eutrophication, winter smog, and summer smog levels. The abridged LClI list cannot be used to
predict impact categories related to carcinogens, heavy metals, and pesticides.

Then, a list of meaningful product concept descriptors, needed as inputs to the surrogate LCA
model, was defined. The descriptors should: utilize only product information readily available
during conceptual design; be compact to reduce demands on the surrogate model, and; be
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related to elements of the abridged LCI list. A candidate set of product descriptors was
identified, and tested for first order relationships with elements in the abbreviated LCI list.

Finally, LCA data and descriptors were collected for 175 products or variations, and ANN-based
learning surrogate LCA models were trained to predict life-cycle energy consumption and tested
within DOME (Distributed Object-based Modeling Environment), a software infrastructure that
facilitates integrated, emergent simulations over the Internet. These proof-of-concept tests
showed that the ANN-based learning surrogate LCA models were able to: (a) match detailed
LCA results within the accuracy of typical LCA studies; (b) predict relative differences of distinct
product concepts; (c) correctly predict and generalize trends associated with changes for a
given product concept.

Product classification to enhance learning performance of surrogate LCA models

Insight gained with previous testing motivated further research to develop a product
classification system enabling systematic support to specialized learning surrogate LCA models
- of different categories of products. Hierarchical analysis of 61 products was carried out with the
product descriptors as the clustering variables. The results of this exploratory clustering analysis
guided the definition of environmentally driven categories of products: (1) durable, high-mass,
efficiently active household appliances; (2) durable, active, household appliances durable: (3)
durable, active electronic consumer products; (4) low-mass, passive products; (5) low-mass,
fiber-based, active (external energy based) products; (6) durable, mobile, active (external
energy based) products; (7) durable, low-mass, active (external energy based) products. Using
these product categories and the concept descriptors as classification criteria, C4.5 decision
tree algorithms generated classification systems with different structures and error estimations
by varying algorithm parameters and product descriptors.

Although data were not sufficient to induce good generalization, such product classification
systems were considered to be a viable strategy to make ANNs learn faster and more
effectively, as it narrows down the “learning space”, into general product categories, prior to the
prediction phase. The learning architecture will then be a combination of a tree-based classifier
based upon the product concept descriptors, to perform the initial product categorization, with
‘category-based” neural networks, to approximately predict environmental performance in the
subsequent step.

Application study explored method customization

An application study was conducted in a large Swedish heavy truck manufacturing company
and targeted a pre-development project concerning a new door concept. A simple example was
presented to illustrate how a product design team could apply the learning surrogate LCA
method to make integrated assessments and tradeoffs in the context of a pre-development
project at the company.

The study showed that it is possible to customize the learning surrogate LCA approach to a
particular specific product development context:

* Case study research supported definition of door product concept systems by
incorporating expert's knowledge and heuristics.
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* Product descriptors incorporated system and sub-system features in a simple, high-level
parameterized input structure, suitable for designers to interface with other models in
simulation and tradeoff analysis.

The ANNs were further tested with data points corresponding to other vehicle-type parts or sub-
systems — cab, chassis, car fenders — and did not perform sufficiently well. They were perceived
as highly specialized and biased towards truck door concepts. To make a more efficient use of
the model in other truck parts and/or sub-systems assessments, it was considered that the
training data set should be updated to include a broader range of automotive products.

The examples showed to illustrate application scenarios for tradeoff analysis using DOME
integrated simulation environment suggested that such flexible, high level, “multi-language”
simulation ‘interfaces of the learning surrogate models, when integrated with other design
madels, can have a greater, real impact in the early decision-making process of the company
than that of isolated LCA studies, highly specialized in each one of the pre-development
projects.

Contributions

if one desires to position the learning surrogate LCA concept in the existing structure of
simplified LCAs, this new approach can be considered a form of streamlined LCA that covers
the whole life-cycle to identify hot spots from a systems perspective, at early conceptual design
stages. However, the strategy that it uses to address the methodological challenges of early
design stages does not follow the standardized LCA framework.

As streamlined LCAs, learning surrogate models only predict selected key life-cycle
environmental issues or screening indicators (e.g. energy consumption and CO, emissions) and
reduce the requirements for data quality by learning from life-cycle data that can be primary,
secondary or other existing empirical data or simulation results. The simplification process is
based on life-cycle concepts but occurs implicitly, based on algorithms that learn from high-level
product characteristics, rather than expiicitly through engineering process analysis and mass
balance equations as in the standardized LCA framework.

This strategy agrees with the purpose of the learning surrogate LCA method. It is not to explore
environmental causalities in the product concept system. Instead, the goal is that designers use
it to better relate design changes with approximate environmental performances, internalizing
environmental effects of their decision making in a holistic sense and under the guidance of an
environmental expert, who trains, validate and maintain the learning system. Designers follow
the design path, not the environmental path. By being able to quickly explore a greater variety of
scenarios using high-level parameterization in what-if analysis, the quality of preliminary
analysis can be improved and innovation can actually be stimulated with the degrees of freedom
provided by the various simulations.

The learning surrogate LCA concept is then a powerful alternative to existing approximate LCA
approaches. It simultaneously supports:

* Life-cycle thinking with lack of detailed information of ill-defined, complex product
concept systems. System outcomes of early conceptual design decisions shouid be
considered. For example, design changes can easily transfer unintended environmental
burdens from one life-cycle stage to another. Scarce details on the concepts should not
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be a barrier to integrate life-cycle environmental assessment early on. The learning
surrogate concept overcomes this barrier by bringing into early stages life-cycle
knowledge of pre-existing products from which it learns and averages life-cycle
performances.

* Analysis of substantially different concepts, without the need for building new modeis.
The implicitly modeled LCAs and their generalization power imply no modeling effort in
contrast with the standard LCA approach and its streamlined forms.

* Analytically-based simulation for use in high-dimensional systems and problem specific,
multi-attribute trade off-analysis. On one hand, the approach relies on approximated
models that consequently bring down the large amount of resources, typically needed for
detailed assessments. On the other hand, surrogate LCA models perform and interface
on a quantitative, analytical basis. This is a key element of the method that simplifies
detailed approaches and still incorporates the inherent complexity of environmental
systems early on in the design process. Qualitative approaches such as DFE guidelines,
abridged LCA matrices, rules of thumb or simple intuition fail in grasping the multi-
dimensional, highly contextual and often contradicting environmental effects originated
by design changes. The simplicity of the learning surrogate method is distinct from the
one of ad-hoc rules, which cannot generalize. Even at early design stages, general
environmental guidelines can be misleading when designing and assessing a particular
system.

« Simulation interface between environmental experts and other members of the product
design team, in a systems’ modeling context. Environmental issues can be successfully
incorporated into early stages of product design only if balanced with the existing
traditional design criteria. The simulation capabilities highlighted in the previous point are
extended to support integration simulation with other design models traditionally
considered in product design. Product concept descriptors are a flexible simulation
interface between environmental experts and designers for this new approach. They can
be viewed as a set of keywords that simultaneously are part of a designer’s language in
relation to preliminary product concepts (e.g., materials, mass, form) and meaningful in
shaping the environmental performance of product concept systems. They are also
customizable to different high-level parameterized structures that are more helpful in
some product design contexts than others, without the need for investing in new explicit
modeling tasks. In supporting a team-oriented, multidisciplinary design process at early
conceptual stages, this new learning surrogate LCA method assumes that environmental
experts and design engineers are specialists in their own fields. They can exchange their
simulation-based services and perform tradeoff analysis through an integration
framework such as DOME.

In addition, this research contributed significantly with the development of a fairly large database
that includes both product and environmental data. It is a very useful data source for future
research work.

6.2 APPLICATIONS OF THE LEARNING SURROGATE LCA
METHOD

The learning surrogate LCA method is appropriate to inform system design decision making in
early conceptual stages of product development. It is most useful when members of the product
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design team, including environmental experts, participate in the design process using their own
expertise, and negotiate and perform integrated, high-level simulation in a modeling
environment for tradeoff analysis.

Different types of product development organizations can benefit from the internal use of this
approach. They can range from consulting firms, such as product design or environmental
consulting firms, to large manufacturing companies, such as automotive original equipment
manufacturers. The general level of the learning surrogate concept with the classification step to
feed category-based ANNs is more appropriate for consulting firms that work with different types
of products. A customized approach fits better in companies specialized in a certain type of
products.

Still, for each of these types of application, this method will vary in practice in terms of when,
how and by whom it is used. For instance, there were various answers, which in general did not
agree with the “theory” found in the literature, to the question “When does the early conceptual
design stage take place in the product development process?” and “What is the early

- conceptual design stage?”. In the automobile development process, for example, learning

surrogate LCA models could be more useful in the concept stage rather than on the design
studio stage as generally defined for the automobile industry by U.S. Congress (1992). Or
perhaps in both stages, or in different organization units (e.g. overall strategy groups, sub-
systems research units), within the company or outside, depending on which OEM we are
talking about.

This range of applicability could eventually be broadened. Traditional product design is not the
only area where this type of method would be helpful in the early stages of development to
quickly assess and discard the most detrimental of concepts. Use of this approach can be
aimed beyond traditional consumer product design, at being able to, through an appropriate
customization process, handle services systems, construction projects, policy issues, and other
developmental ventures.

6.3 IMPLICATIONS OF THIS RESEARCH

There is a general consensus that LCA, if used appropriately and consciously regarding
methodological limitations, can play an important role in systematically fueling a holistic thought
process that guides the selection of design options and provides a spectrum of useful insights
on a system. However, a continuing concern has been the cost and time required to conduct
LCAs, which are beyond the reach and practical usefulness of most potential users. The various
methodological technigques that have been proposed for simplifying analytically-based LCAs are
still costly and do not yield timely information for the product development cycle. Streamlined
LCAs are currently often performed only after a specific product embodiment had been already
decided. They become even more prohibitive to use in early stages of the cycle, where they are
of most value.

The innovation of this research focuses on rethinking the LCA framework. It proposes a method
that requires simple, high-level and readily accessible product information to provide
approximate yet powerful resuits — these are the realistic analytical information channels
through which environmental assessments can be timely and effectively incorporated into early,
critical steps of the decision-making process. In addition, the cost of decreased accuracy can
easily breakeven by acknowledging in the first place the rather arbitrary quality of LCA data,
which still carries high levels of uncertainty and depends on judgmental factors. Estimated data
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with sufficient accuracy is better than no data at all, and very often not much worse than “real”
LCA data. Current alternatives being used in practice are qualitative, ad-hoc approaches, such
as matrices, guidelines, rules of thumb, that alone do not match the complex, ill-defined, high-
dimensional and contextual nature of environmental systems.

Therefore, key implications of this research are:

* The assimilation of LCA by the product development cycles becomes feasible, as
environmental assessments supported by learning surrogate modeling can be timely
incorporated into short time intervals between decision-making gates. The time frames
required for producing data and training cycles are still very different from the ones
needed to use the method. All the potential LCA users, in particular the industry, who
have been wondering about cheap methods that can provide sufficiently precise,
credible environmental information for decision-making within the time, data and cost
constraints of real-world product development may now rethink the possibility of using
life-cycle approaches in product development and start to explore the potentials of the
learning surrogate LCA method to do so.

+ The current paradigm of believing that the feasible way to incorporate environmentai
issues early on in the design process is to only rely on DFE guidelines and ad-hoc
general rules can now be argued against with the proposal of a credible and feasible
alternative. The learning surrogate LCA method is a better alternative that allows easy,
prablem specific incorporation of life-cycle thinking into the mainstream design activities
of muiti-disciplinary teams. It can give product design teams the ability to consider
environmental issues in a handy, assertive and integrated way at a stage of the product
development process where decisions are not yet locked-in.

6.4 FUTURE WORK

The learning surrogate LCA concept developed by this research suggests interesting avenues
to pursue in future investigations. They all are relevant if the learning surrogate method is to be
improved for its actual application in the real world.

Method improvements

There are important issues worthwhile to further investigate in order to enhance the
performance and usability of the learning surrogate method. Relevant questions to be answered
are:

* How faster and better could the ANNs become if other network architectures, learning
algorithms and methods for improving generalization had been used? In this thesis, only
feedforward, two-layer ANNs with backpropagation training cycles were tested. It would
be useful to conduct a benchmarking, systematic comparative study using different
network architectures coupled with various training algorithms and regularization
methods. Radial-basis function networks, another class of layered neural networks,
could also be explored. This way a more systematic knowledge of learning networks
appropriate to be used in learning surrogate models could be developed. And this could
be a starting point to evolve current available network techniques to fulfill the specific
needs of a new field of application created by the learning surrogate LCA concept.
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» How sensitive is the learning surrogate LCA method to different levels of data quality
and system boundaries? Although proof-of-concept testing showed a significant
robustness to different sources of data collected and/or estimated to train the models,
the subsequent variability in the input parameters, system boundaries, data quality and
assumptions made should be more thoroughly investigated. For example, it could be
useful to search for different levels of desired performance that would correspond to
distinct degrees of training data quality and agreement on system boundaries and
assumptions involved. This way the developer and/or user can better evaluate what level
of performance to expect, given the available data and information resources.

« What are suitable decision tree structures that can better support specialized learning
surrogate LCA models? This thesis found this type of classifiers as appropriate for this
task. Still the different trees obtained in this work were not further explored to test the
level of performance enhancement they were able to provide. By using more data,
further studies should be conducted to assess the performance of hybrid learning
systems for different classification schemes and select the best ones for implementation.

» To what extent can the learning surrogate method provide reasonable predictions to
innovalive products? Major technological shifts, for instance, might disrupt models’
prediction performance given that they learn by example. An important future
investigation is to try to define a validity range of their learning capabilities, which can be
limited by thresholds that make data usable for training cycles corresponding to different
levels of re-thinking product concepts.

Improvement of model reusability

Learning surrogate LCA models, general or category-specialized, can be made more reusable.
Key benefits are costs in madel development, timing in expertise to be readily available, and
reliability due to accumulation of knowledge of system, interactions and user problems (Magee,
2001). Reusable learning surrogate LCA models should be: (1) able to efficiently incorporate
new training data as needed; (2) usabie in different contexts of product development projects at
the organization; (3) maintainable by a range modelers (environmental experts) in different
times and development teams.

For this purpose further research should be done in particular areas, namely:

» Development of environmental information systems — or adaptation of existing ones —
capable of supporting a systematic data collection and quality control by the
environmental experts and automatic data retrieval by the learning models.

* Development of mechanisms that allow the ANNs undergo continual training with time-
ordered examples. A dynamic approach to learning could be based on procedures such
as the one proposed by Haykin (1999), based on selecting time windows short enough
for the input data to be considered pseudostationary.

= Development of a friendly graphical user interface that help environmental experts in
building, training, validating and maintaining the learning models.

Research on implementation

The application study presented in chapter 4 already gave a flavor of how important is to
consider organizational issues when trying to implement a new approach and make it usable in
a given “real world” product development context. The work of this thesis can only be extended
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to be actually used in practice if further studies are conducted aiming at investigating
organizational structures that better accommodate the introduction of this new approach in the
product development cycle. Qualitative research on industry's experience of integrating
environmental considerations into the design process such as the one described in McAloone
(2000) is appropriate to identify key organizational and behavioral factors to consider when
implementing the method.

Investigation of new application areas

An interesting avenue to pursue is to broaden the method'’s range of applicability by exploring a
possible extension to areas of development beyond traditional product design and life-cycle
analysis. For example, in construction project environmental impact assessments,
‘socioeconomic effects’ is a widely used impact category because the public demands it.
Frequently, a particular construction project will adversely affect a particular group of people. In
contrast, consumer products are typically developed to benefit or aid society in some fashion.
Therefore, a product of construction and a consumer product will likely be two different “super-

. classes” of products that will require two separate learning surrogate modeling frameworks to be

developed. Service systems design can be another possible area of application that will require

its own adjustments to use the method. Finally, technology policy design is a potential area of _
application worthwhile to be explored. What are technology and/or socio-economic descriptors

that best emulate different environmental policy strategies, based on past experience? This can

be a question that policy makers might want to answer to filter out irrelevant strategies early on,

before thoroughly moving forward to a more detailed policy design.
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APPENDIX A

PRODUCT CONCEPT DESCRIPTOR SET DEFINITIONS

I{Descrigtor name ||Definition (example of value, ranking, and hinary levels of information)

. Product requires additional consumables during use (e.g., 200 coffee filters,
dditional
more-same-less amount used, product [does not] needs consumables
onsumables . .
uring the use phase)

Product contains biocdegradable materials (e.g., %, more-same-less amount
iBiodegradability used, [no] biodegradable materials used) (e.g., pen made of biodegradable
material that degrades when disposed in a composting site)

Product contains ceramics (e.g., %, more-same-less amount used, [no]
ceramics used) (e.g., oxides, porcelain, stoneware)

ICeramics

Product contains concrete (e.g., %, more-same-less amount used, [no]
oncrete used)

IConcrete

! Ease of disassembly to recover/separate parts and materials (e.g., # of parts
Disassemblability r fasteners, high-mid-low level of disassemblability, disassembly [not]
pplicable)

Total product volume including packaging (e.g., 60 m°, more-same-less

iDistribution volume
volume, [no] volume)

IDurability ﬁ;g;:;agtl::)for wear or decay (e.g., time to failure, tougher-same-more

Product contains ferrous metals (e.g., %, more-same-less amount used, {no]
errous metals used) (e.g., steel, cast iron)

iFerrous metals

; Product contains fibers (e.g., %, more-same-less amount used, [no] fibers
iFibers
used) (e.g., cotton, nylon, cloth, wool, polyester)
Product contains glass (e.g., %, more-same-less amount used, [no] glass
Glass
used) (e.g., decor glass, toughened glass)

In use energy vpe of e?lergy source when in use (e.g., batteries vs. Solar vs. wall outlet,
source n/a, does [not] need an energy source during use)

Product can be configured by the user to exhibit different capabilities (e.g., #
of configurations, high-mid-low level of in use flexibility, single or multi-
unctional) (e.g., 35mm cameras can be used with different lenses and flash
options)

lin use flexibility

gln use power

LF:ower consumption when in use (e.g., 60 W, high-mid-low wattage, [no]

consumption ower consumed while in use)
i S Life period of product once it is produced until it is disposed of (e.g., 5 years,
Lifetime . P

fong-mid-short lifetime, n/a)

otal product mass (e.g., 8 kg, more-same-less mass, [no] mass) (e.g., a
ervice or data file has no mass)

iMass

Main mode of operation (e.g., manuai on/off vs. standby vs. sensor control,
n/a, does [not] require power)

iMode of operation l
I

iIModularity of modular components, more-average-less components, is [not] modular)

e.g., electric motor systems)

Froduct integrates a combination of distinct building biocks or modules (e.g.,
(

3 ' nferrot g, % - - s
IN onferrous metals lrroduct contains nonferrous metals {e.g., %, more-same-less amount used,

no} nonferrous metals used) (e.g., aluminum, copper, zinc)
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[IDescrigtor name ]lDefinition (example of value, ranking, and binary levels of information)
- = = = =
lOth er materials Product contamg other materials (e.g., %, more-same-less amount used,
no} other materials used)

Product contains of paper (e.g., %, more-same-less amount used, [no]
iPaper
aper used) (e.g. a label)
IPolymers Product contains polymers (e.g., %, more-same-less amount used, [no]
y olymers used) (e.g., PET, PC, PVC, ABS)
Recyclability Product is easily recycled after use (e.g., % product that can be recycled,
3[ 4 high-mid-low level of recyclability, can[not] be recycled)

i —— s - . 2 _ N
iRe cycled content IProduct contains post-consumer material (e.g., %, more-same-less amount

used, [no] post-consumer material used) {e.g., recycled paperboard)

Reusability lts:lfe Los gg)reused (e.g., # of times reused, more-same-less reuse, can[nof]

Ease of maintenance when needed (e.g., time required by technician, high-

Serviceability mid-low level of servicability, does [not] require service)

ITransport distance

Lfotal transport distance in product's life-cycle (e.g., 5000 km, farther-same-
horter, transport [un]necessary)

Transport means

iil\fans of transportation (e.g., train vs. vehicle vs. airplane, n/a, transport
un

|necessary)
. 7 Product accommodates evolutionary technological or user needs through
EUpgradability upgrades (e.g., n/a, high-mid-low level of upgradability, can[not]

accommodate upgrades)

lUse time } otal time (or frecTuency) the product is expected to be used (e.g. for
requency 24 hr, continuous-some-limited use, does [not] require power)

Volume IProduct volume (e.g., 42 m*, more-same-less volume, [no] volume)

#Product contains wood (e.g., %, more-same-less amount used, [no] wood

i

EWOOd Hused) (e.g., pine, linden, chestnut)
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APPENDIXB

ON-LINE SURVEY

This survey was orgénized in an effort to identify what designers know about their products during the
conceptual phase of design. Your responses will help advance our research at MIT in the Center for
Innovation in Product Development (CIPD). Thank you in advance! - Ines Sousa (iss@mit.edu) and Julie

Eisenhard (liberty@mit.edu)

Please enter your name and company information.

Last name:L e First name:! -

Company:i.

1 Please mark the type of information you know (or can easily find out) about the following product
attributes while in the conceptual phase of design. Attribute definitions can be found by clicking on their
appropriate names (a second browser window will pop up). Use the following examples as 'definitions’ for
the levels of information:

+ if you are able to specify or estimate an atiribute in a qualitative or quantitative sense, select
value. ‘

= if you cannot specify the attribute, but would be able to rank concepts with respecit to the attribute,
select ranking.

« if you know whether or not your product will contain (e.g.} polymers, but cannot estimate the
percentage or rank a concept among others with respect to polymers, select binary.

« if the attribute is not able to be known in conceptual design, select unknown.
* if the attribute does not at-all apply to the types of products you design, select N/A.

Product Attribute Name known: at what level? unknown N/A

value ranking binary
]manufacturing cost
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known: at what level?
value |{ ranking || binary

ouabity | i

Product Attribute Name unknown N/A

Eeans of trans;ortation "_
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Ifroduct Attribute Name _known: at what level? unknown N/A

value || ranking ]I binary

2 How you would characterize the products you design? (Check all that apply.)

aerospace/defense housewares toys

automotive industrial equipment [Other (please indicate)
| buildings/building materials medical

cheﬁical | packagilg

consumer electronics shoes

exhibits soft goods (textiles)

furniture sporting goods

3 If you feel you have absaclutely no experience in environmentally conscious design, you may skip to
section 4 now.

A Which do you think are the most important attributes from an environmental standpoint from the
attributes listed below? (Check all that apply.)

lmanufacturing cost.|serviceability llconductivity Huids/lubricants
I@roduct price !lgggradabilig l[giodegradabiiig 'B@ncrete

[!Iiﬁtim_e ![gssemblabilig Ibolymers Jl_gost-consumer material
ﬂin use energy source ,[gisassemblabilig "@m {Igther materials
|lmanufacturing process ]ﬁn use flexibility |m ]Ic_iistribution volume

Mjn use power consumed [[ecyclabilig H!errous metals }hansgorl distance

[Iln use operation Il[eusabilig |Inonferrous metals lmeans of transportation

in use hours of l ‘l .

w trenqth ' ramics
)i

Eurabili& ]lmass 'iglass

llmodularig ﬁgroduct volume ' ]klbers
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B Background: You are designing a product. Suppose all eise remains equal; the
following 5 decisions will affect only the environmental performance of the product. The
boxes below represent stages of the thought process, or a chain of logic, you would go
through when making a decision in each of the 5 presented cases with respect to the
product you are designing. Please let us know the product you are designing:

Instructions: In each case:

make a realistic decision;

2. then select the impact category for which you feel your decision will have the
most impact (positive or negafive). Try to select a different impact category to
think about for each decision.

3. Fillin as many or as few of the boxes in between to try to help us understand
how you link these two selections. If you run out of boxes, simply insert a
comma between your thoughts within a box.

Example (see below): If | am making a decision with regard to the attribute means of
transport, perhaps | would select [cargo truck] from the drop menu as the means for
transporting my product. Then, | might choose [particulates] as my impact category from
that drop menu. | chose this category because | associate cargo trucks with [low fuel
economy], therefore [more diesel fuel consurnption], therefore a [greater amount of
particulate emissions], where the brackets represent the boxes below. Feel free to edit
the example if you don't agree with our decision or our logic!

Decision Example: Means of Transport Decision 1: Material choice Decision 2: Reusability

aiplane plagtic dispasable
ship paper reusable once
glass reusable multiple times
. l@in o aluminum
i lowfuel economy | !7 i
i more diesel consump: i ]

¢

i more patticulate emis { l

oo
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life-cycle enemgy
CFC

solid matedal
particulates

source
publiceledricty

gasoline
diesel .

|

on which your decision above will have the most impact.

Choose the category below,

c0o2

life-cycle enegy
CFC

solid matesdal
particulates
NOx

keci

S0z
sion

potoivaing
casting metals
plastic molding

4: Manufact. process

shaping powder

|

coz

lifecycle enemgy

CFC

solid matesal

particulates

NOx
‘SOZ.A.AK.W m -

Decision 5: In use operation
constant use
manual on/off
stand-by mode

|{ sensorfeg. themnostat, motion)

Choose the category below, o

co2 ik cO2 co2

lifecycle enemy : lifecycle enemgy B lifecydle enemgy
CFC - CFC CFC

solid matefai solid matefal solid matefal
particulates partiaulates particulates
NOx NOx NOx

802 S0z : s02

n which your decision above will have the most impact.
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APPENDIX C

EVALUATION OF ERROR FUNCTION DERIVATIVES IN BACK-

PROPAGATION TRAINING OF THE ANN

Change in error due to output layer weights

The partial derivative of the error with respect to the output layer weights is:

3E, 9E, dy

k=dy,-h i
=0y, n; Equation C.1
du;  dy, duy
where:
K
1 2 . .
E, = Ez(dk —¥,)" error function for input vector X, K = 1 output nodes Equa
: k=1
d =desired output, y=ANN ouiput
hi =)™ hidden layer node, yx =k " output layer node
ug = weight between j - ™ hidden layer nodeandk ™ output layer node
. M
ay, =y, —-d,)- f;(; U, “h,) , f() =activation function, M= 15 hidden nodes Equation C.3
Change in error due to hidden layer weights
The partial derivative of the error with respect to the hidden layer weights is:
oF
E S ahj ‘X, Equation C.4
ow
where:
hj =" hidden layer node, x; =i "input layer node
w; = weight betweeni "input layer node andj ™ hidden layer nade
K M P
’ ! .
oh, = [2 (ya_— d) fi (Z Uy "hy) 'qu] fJ(Z W " X,) Equation C.5
a= vl Jm=
Weight adjustments
Au, =-n-3Ex _ g -h ¢ u™ =ul +ou is learning rate cte > 0 Equation C.6
g =1 =-1-dy,h, an yoo= Uy 4 + M isleaming rate cte quation C.
&
Aw, =-pu ‘aW—X =-p oh;"x, and wi" = w;'.:d + 0w, , (islearning rate cte > 0 Equation C.7
Ji

Additional momentum factor
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W(k+1)=W(k)—u%%+a(W(k)—W(k—l))

JE Equation C.8 and Equation C.9
Ulk+1)= U(k)-n&—(}‘+ BUk)-U(k-1))

where 1,1,0,f are positive learning rate constants, all less than 1.

Note: The above formuilas are for a single presentation of an input vectar. To compute for an entire training epoch,
the gradients for each sample are summed.
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APPENDIX D

MAIN STEPS IN CASE STUDY RESEARCH, BASED ON FRAMEWORK BY
EISENHARDT (1989)

Step

Activity

Output

Getting started

Definition of research question

Specification of a priori construct

What is a general-specific approach, based on
product attributes, which can support
environmentally conscious early design for
automotive-type products?

Functional-environmental characterization
framework

Selecting cases

Selection of population

Theoretical sampling

Automotive industry

Two sub-cases were selected as polar types:
door (sub-system) and truck (system)

Crafting instruments and
protocels

Multiple data coliection methods

Qualitative, quantitative data
combined

Muitiple investigators

Visit to case study site; meetings with
environmental expert, environmental
coordinator, project manager; questignnaires;
interviews; observations; documentation.

Collection of data on target values, ranges of
values and prioritisation both at the truck and
the door levels.

Two investigators

Entering the field

Overlap data collection and analysis

Flexible, opportunistic data collection
methods

Field notes, observations and iterative
creation of two questionnaires: 1% on
organizational framework of design for
environment at the company; second on
functional-environmentat product attributes
and environmental performance - to adjust
data collection on product specific attributes
within company's design context.

Meeting on-site, use of phone and email while
answering second questionnaire - to capture
emergent issues. Reviews and clarification of
biases by consulting project manager and
environmental expert (key informants)
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Step

Activity

Output

Analysing data

Within-case analysis

Cross-case pattern search

Analysis of 2" questionnaire; use of tabular

displays and graphs of information to evaluate
and rank atiributes and environmental
burdens, for each sub-case. Clarification of
biases with project manager.

lterative creation and analysis of 3" and 4"
questionnaires to evaluate and rank attributes
uncovered in the 2; selection of dimensions
(functional vs. environmental, materiai vs.
energy) followed by search of within-sub-case
similarities and between-sub-case differencss.
Reviews and clarification of biases with
project manager and environmental expert .

Shaping hypotheses

Measuring constructs and verifying
relationships

Iterative development and analysis of
qualitative matrices on system and sub-
system attributes — functional and
environmental; definition of customized lists of
attributes.

Enfolding literature

Comparison with conflicting and
similar literature

Support from literature on anvironmentally
relevant vehicle attributes, e.g. Sullivan and
Cobas-Flores (2001).

Reaching closure

Theoretical saturation

Stopped iterating between theory and data
when incremental learming was minimal.
Outlined candidate product descriptor set and
environmental outputs.
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