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Abstract

The thesis consists of three essay on asset pricing topics.

The first essay finds that the market betas of value and small stocks have decreased by
about 75% in the second half of the twentieth century. The decline in beta can be related
to a long-term improvement in economic conditions that made these companies less risky.
The failure to account for time-series variation of beta in unconditional CAPM regressions
can explain as much as 30% of the value premium. In some samples, about 80% of the
value premium can be explained by assuming that investors tied their expectations of the
riskiness of these stocks to the high values of beta prevailing in the early years.

Moving from these findings, the second essay (co-authored with Tobias Adrian) explores
in detail the relation between the ‘value premium’ and the decrease in value stocks’ beta.
We develop an equilibrium model of learning on time-varying risk factor loadings. In the
model the CAPM holds from investors’ ex-ante perspective. However, the econometrician
can observe positive mispricing, whenever the expected beta is above the true level. Given
the finding of a decreasing beta, it is likely that investors’ expectation of the beta of these
stocks has been above the actual level. Therefore, our model can provide an explanation
for the ‘value premium’. We present the results of simulations in which the model accounts
for up to 80% of the ‘value premium’ in the 1963-2000 sample.

The third essay analyzes the response of stock returns to earnings information. First, I
test the assumption that market expectations of earnings reflect a seasonal random walk,
despite the actual process being autoregressive. This hypothesis is rejected. Second, I
test the opposite view that expectations are unbiased. The data rejects this possibility for
small firms. On the other hand, large firms’ prices provide evidence of efficiency. Finally, I
show that in the case of small firms the market understates the autoregression coefficient in
the earnings process, and it incorrectly assumes that this coefficient is positive, even when
actual earnings are seasonal random walks.
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Chapter 1

Where is Beta Going? The
Riskiness of Value and Small
Stocks

1.1 Introduction

Since the development of the Capital Asset Pricing Model (CAPM) by Sharpe (1964) and
Lintner (1965), beta risk has become an important input into many asset-pricing applica-
tions. The market beta of a portfolio plays a central role not only in the academic tests
of the CAPM, but also in muiunal fund performance evaluation, portfolio optimization and
cost of capital estimation. Beta is also of independent interest, as it summarizes some of
the relevant characteristics of the firm’s fundamentals. The analysis of the direction and
the causes of the change in a firm’s beta is informative on the relationship between the com-
pany’s payofls and general business conditions, as well as on the correct asset-pricing model.
Consequently, understanding whether and how the market beta changed for some portfo-
lios is informative on the reasons behind the failure of CAMP in pricing those portfolios
For all of thesevreasons, this paper takes a close look at the evolution of beta for book-to-
market (B/M) and size portfolios, specifically those stocks that create major problems for

the CAPM (e.g., Fama and French, 1992 and 1993).
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Using monthly data from 1926 to 2000, I find a striking decrease in the market beta
of value and small stocks. Beta fell by about 75% in sixty years for both these portfolios.
In the case of value stocks beta dropped from 2.20 in the early forties to 0.55 in the late
nineties. Similz;rly, small stocks’ beta dropped from 2.50 to 0.65. This decline does not
seem to follow mechanically from portfolio formation procedures, nor does it depend on a
) reduLction in the leverage of these companies. Also, the magnitude of this decline is by no
means éolely imputable to the behavior of these portfolios in the late nineties. Moreover,
the decrease in beta can be explained by a decline in the volatility of these portfolios relative

to the rest of the market, rather than by a drop in their correlation with the market.

The paper also attempts to explain this evolution of beta. The conditional CAPM
literature provides one way to go about this task. Following Shanken (1990), I assume
a iinear relation between beta and some state variables, and estimate the parameters of
this function in a conditional CAPM time-series regression. The resulting fitted beta series
tracks very closely the original estimated series, and it captures as much as 71% of its
variance in the case of value stocks. The variables that I use as instruments (the T-bill rate,
the dividend yield, the default spread, the term spread, and the growth rate of industrial
production) are tightly linked to general economic conditions (see, e.g., Fama and French,
1989). The general result is that when the state variables predict an improvement in the
economy, these stocks’ betas become smaller. This result not only applies to the cyclical
movements of beta, but also to the long run decrease, because some of these variables display
a trending behavior that is believed to be related to a long-term improvement in business
conditions. This evidence is consistent with the findings in Lettau and Ludvigson (2001),
who show that the returns of value.stocks are more highly correlated with fundamental

factors when times are bad.
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The evidence suggests that the decline in beta has to be tied to the effect of better
economic conditions on the structure of value and small companies’ cashflows. Since these
companies are presumably more prone to financial distress (Chan and Chen, 1991, Fama
and French, 1955), a general reduction in the likelihood of distress can have made their
payoffs less risky. To investigate this explanation, I consider whether the decrease in the
beta can be imputed to a decrease in these firms’ cashflow sensitivity to the market. After
breaking excess returns into components related to news about future dividends, news
about future excess returns, and news about future real interest rates, following Camphbell
and Mei (1993), I express the overall market beta as the sum of the betas of each of these
components with the market. Using this approach within a rolling regression ffa.mework,
I can determine the importance of each component in the observed decrease of the overall
beta. The conclusion of this analysis is that the decline occurs because of a fall in the
dividend news beta. Owverall, the results from the beta decomposition are consistent with
the interpretation of the conditional CAPM analysis, because they point in the direction of

reduced cashflow riskiness.

The decrease in the beta of value and small stocks is interesting by itself, as it sheds light
on the vbeh-avior of portfolios widely used in empirical studies and in the asset management
industry. However, the fact acquires even more relevance if it can be related to the debate
on the CAPM anomalies. This paper establishes a connection between the decrease in the
beta of these portfolios and the emergence of a premium in their expected return in two

ways.

The first way is suggested by the evidence that conditioning information tracks the
variation in beta. Failing to consider the variability of betas causes the constant in the

unconditional CAPM time-series regressions to capture some of the effect of the state vari-
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ables on the beta. Since the portfolios for which the decrease in beta is bigger (value and
small stocks) are the ones that load more heavily on the state variables, these portfolios are
more likely to have a high premium. It turns out that for value stocks as much as 30% of

the alpha in the time-series regressions can be explained by the time-varying beta.

A connection can also be drawn with the behavioral explanation of the CAPM anomalies.
Daniel and Titman (1997), for example, argue that characteristics, rather than risk, are
priced in equilibrium. They suspect that investors consider these stocks more risky than
they actually are. I argue that the large drop that occurred in the betas of value and small
stock; could have been the reason why investors made mistakes in the assessment of risk.
The market could have incorrectly tied its expectation of the price for risk to the high
levels of beta, which characterized these stocks until the early sixties, even after beta had
experienced a major decrease. Support for this conjecture comes from the result that about
80% of the value premium in the second part of the sample (1963-2000) can be explained

assuming a beta such as the one estimated in the first part, of the sample (1926-1962).

‘This paper is organized as follows. Section 1.2 presents in detail the decrease in the
estimated beta of value and small stocks, and tests the robustness of the fact to mechanical
explanations. Section 1.3 explains the path of beta using conditional information, as in
a conditional CAPM analysis. Section 1.4 implements Campbell and Mei’s (1993) beta
decomposition in order to identify the sources of the change in beta. Section 1.5 relates the
decrease in the beta to the mispricing of value and small stock portfolios. Section 1.6 draws

the conclusions of this work.
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1.2 The decrease in the beta of value and small stocks

1.2.1 The data

The data come from the merger of three different sources. Monthly return data are taken
from the Center for Research in Securities Prices (CRSP) database, which covers NYSE,
Amex and Nasdaq stocks between January 1926 and December 2000. Accounting data come
from two sources. The Compustat annual research file contains the relevant information for
most publicly traded US stocks. This information is supplemented by Moody’s book equity
information manually collected by Davis, Fama, and French (2000) *. Their paper contains
a precise definition of the book-value-of-equity variable.

Portfolios are formed according to the procedure described in Fama and French (1993).
At the end of June of year t stocks are sorted on either B/M or size. B/M is measured
as the ratio of book value of equity at the end of year t — 1 to market value of equity in
December of year ¢t — 1 Size is market capitalization, i.e. price times shares outstanding, at
the end of June of year t. All stocks are assigned to ten deciles for each characteristic using
the break-points of the distribution of NYSE stocks. For each decile a portfolio return is
computed between July of year t and June of year t + 1 as the value-weighted return of the
stocks in the decile. The excess returns (returns minus the one-month Treasury Bill rate)
on these ten B/M and ten size portfolios are the main variables of interest in this paper.
From now on, unless otherwise specified, when I refer to ’value stocks’ I mean the tenth
B/M decile, and by ’small stocks’ I mean the first size decile.

Panel A of Table 1.1 provides some summary statistics for the portfolios. Notice the

similarities between the small and value stocks portfolios in terms of means and standard

1 thank Ken French for providing me with the accounting data. The portfolio returns can be downloaded
directly from his web-site.
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deviations of returns, and the high negative correlation between the B/M and size decile
assignments, especially in the first part of the sample. These two categories of stocks become
more homogenous to the rest of the market in terms of mean and standard deviation of
returns in the second part of the sample, when also the correlation between the decile
assignment decreases in absolute value. This last fact is consistent with the results in Fama
and French (2001), who show that a large part of newly listed firms tend to be small firms

with the glamour characteristic.

1.2.2 The evolution of beta

The first graphical impression of the decrease in the estimated beta of value and small stocks
can be obtained from Figures 1-1 and 1-2. The figures plot the series of estimates of beta for
these two portfolios. The estimates come from rolling regressions, with five-year estimation
windows and one-month increments. The sample goes from July 1926 to December 2000.
The tenth B/M decile portfolio (Figure 1-1) displays drastic changes in beta that can be
as high as 2.2 between July 1938 and June 1943, and as low as 0.55 between December
1995 and November 2000. Similarly, the beta of the first size decile portfolio (Figure 1-2)
peaks at 2.5 between September 1939 and August 1944, and it touches the minimum at
0.65 between April 1991 and March 1996. For both portfolios, betas display an increase
at the beginning of the sample, peaking in the early forties. Then the series experience a
large decline until the beginning of the sixties, when for both portfolios beta drops below
one, this decrease being more pronounced in the case of small stocks. In the sixties the two
series rebound above one, being more or less stable through the beginning of the eighties,
when they start dropping again. From the mid-eighties through all the nineties the betas

stay below one. In spite of the short-term swings, the long-term picture that emerges is the
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decreasing trend that caused value and small stocks’ estimated beta to decrease by 75% in

about sixty years.

The magnitude of the standard errors of the betas is such that we can statistically rule
out the equality of the estimates from different subsamples. For example, the 2.2 estimate
of beta for value stocks in the 7/38-6/43 subsample has a standard error of 0.17, while the
standard error for the 0.55 estimate from the 12/95-11/00 interval is 0.07. In the middle
of the sample, namely in the first half of the sixties, when beta lingers around 1.2, the
standard error is about 0.10. More generally, one can check if beta takes on statistically
different values over time by performing tests of structural change. The results of these
tests for the tenth B/M and first size decile portfolios (not-reported) reject the équality of
the betas over any subsample in which the total 1926-2000 sample can be split. Even in
the shorter 1963-1991 sample, which is the one used by Fama and French (1993), the tests
reject the equality of the betas between subsamples for many possible splits. The beta in

the second subsample is significantly smaller than the one in the first subsample.

In order to compare the time behavior of the beta for the different B/M and size deciles,
I regress (the log of ) each beta series on a time trend. The results are reported in Table 1.2.
The t-statistics are computed using Newey-West estimator of variance which corrects for
the autocorrelation due to the use of overlapping windows in estimating beta. In the
entire 1926-2000 sample, the trend for B/M portfolios (Panel A) is negative for deciles four
through ten, and it decreases uniformly from the first to the tenth decile. The fact that beta
increases for the lower deciles is the mirror image of the increase for the highest deciles, and
1t is consistent with the theoretical constraint that the value-weighted sum of the betas is
one. The estimated trend in the beta of the tenth B/M decile portfolio is -0.1% per month

(1.1% annually). In the case of size portfolios (Panel B) the trends are negative for all the
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deciles but the last one. The trend in the small stock portfolio is -0.08% per month (-0.9%

annually).

One might wonder if the responsibility of the negative trend lies with the big drop that
the betas experienced in the fifties. In fact, the trend in the beta estimates for the high
B/M and low size deciles is still there, even when I let the estimation sample start in July
1963, which is the beginning of Fama and French’s (1993) sample. From Table 1.2 one can
see that trend coefficients for value and small stocks are actually larger in absolute value
in the shorter samples. The trend in beta for the first size decile portfolio in the 1963-2000

sample is twice as much as in the overall sample.

Given the large correlation between the small and val-t‘le characteristics reported in Ta-
ble 1.1, the question could rise whether the decrease in the betas is a small stock phe-
nomenon. A first reply to this question can be the fact that the negative trend is actually
larger for the tenth B/M decile portfolio than for the first size portfolio. The relevance of
the value characteristic also appears from a double sort of stocks by size and B /M. Compa-
nies are assigned to five quintiles for each characteristic, and then twenty-five portfolios are
formed from the intersection of the two sorts, like in Fama and French (1 993). I perform the
rolling regressions analysis on these twenty-five portfolios and obtain the series of beta esti-
mates. The estimated trend (not reported) in the portfolio of big high B/M stocks (fifth size
quintile and fifth B/M quintile) is still -0.1% per month (t-stat. = -6.54). Moreover, these
stocks are on average bigger than the companies in other portfolios that are in lower B/M
deciles, and for which the trend is positive. For example, the average size of the companies
in this portfolio is over twenty times that of the stocks in the intersection of the second size
and first B/M quintiles, for which the trend in the beta is instead 0.03% (t-stat. = 2.26).

This evidence confirms that the value characteristic is relevant independently of size. I

18
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can infer that also the size characteristic matters by itself from the fact that the beta of
the portfolio of small glamour stocks (first size and first B/M quintiles) has a significantly
negative trend (-0.04%, t-stat. = -2.69) /footnotel consider the effect on the observed trend
in the market sénsitivity of small and value stocks of the introduction of Fama and French’.s
(1993) HML and SMB factors. As one might expect, the coefficient on the market factor is
no longer decreasing over time for value and small stocks. In fact, this coefficient captures
returns sensitivity to the component of the market that is orthogonal to HML and SMB,
and these portfolios mimic the behavior of value and small stocks. Therefore, the trending
behavior in the beta that is peculiar of these two categories of stocks is filtered out by the

inclusio_p of HML and SMB..

1.2.3 A different perspective

A different way to look at the decline in beta is asking whether it is imputable to a decrease
in the correlation of these portfolios with the rest of the market, or to a drop in their
relative volatility. This analysis generates some additional evidence that any explanation

of the decrease in beta will have to account for.

We can consider the market index as composed of two portfolios. Portfolio 1 is either

the value or small stock portfolio, and portfolio 2 is the rest of the market.

R,y = w1 R + waRy, (1.1)

where tw; + wy = 1.
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The beta of portfolio 1 can be written as

CO'U(Rl, Rm)
Var(Ry)
Cov(R1, w1 Ry +waRy)
VaT(wlRl + ’LUZRQ)
'wlaf + woo2
w%a% + w%ag + 2wiwqoo
wir + wyp

= ) 1.2
WiT + wit + 2wiwap (12)

po=

where crz-2 is the variance of return 4, o1 is the covariance between R, and Ry, r = %12- and p
is the correlation coefficient between R; and Rs 2.
.The changes in beta are governed by the changes in its two components r and p. We

can study the sign of the derivatives of beta with respect to these components:

o) 0
ﬂ > 0, _@ >0« % > ﬂ
or dp w; gy
The size of both the value and small stock portfolios relative to the rest of the market
is so small 3 that the condition for 22t > 0 is always respected.

dp

Equation 1.1 implies that

w1 + wafr =1

Therefore 31 and §2 mechanically move in opposite directions, if weights are constant.

2A more straightforward way of decomposing beta is:

ﬁ] = P1,m 2’;

Orn

where g1, is the correlation coefficient between R; and the market return, o; is the standard deviation

of Ry, and o, is the standard deviation of the market return. This decomposition yields the same results

as the one in the text. In particular, gﬂm- and p1,m track closely %; and p, respectively. The advantage of

the decomposition in the text is that portfolio 2 does not contain stocks from portfolio 1, which makes the
interpretation of the results unambiguous.

®The share of the tenth B/M decile portfolio is on average 2% of total market capitalization, and that of
the first size decile is on average 1%.

20
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Figure 1-3 graphs the estimated beta for the tenth B/M decile portfolio along with its
two components: the ratio of the volatility of high B/M stocks (10th decile) to the volatility
of the rest of the market (1st to 9th deciles), and the correlation coefficient between these
two portfolios. The volatility is estimated as the standard deviation of the portfolio monthly
excess returns over a five-year rolling window. Similarly, the correlation is the correlation

coefficient between the returns of the two portfolios over five-year rolling windows.

It appears clearly from the figure that the driving force behind the movements in the
betas is the ratio of the volatilities. This impression is confirmed by regressing (the log of)
the ratio on a time trend. The coefficient is 0.08% per month, very close to the 0.1% of the
betas in Table 1.2, while the estimated correlation decreases only by 0.01% per month, and
this trend is largely driven by the drop in the nineties. From Figure 1-3 one can notice that
the estimated volatility of value stocks was 2.6 times that of the rest of the market between
August 1938 and July 1943, and it dropped to 0.7 times in the period between December
1995 and November 2000. A similar picture (not reported) describes small stocks’ beta and

its components.

One might be concerned that the change in the weights of the portfolios might affect the
comparability of the series in Figure 1-3 with the decomposition in Equation (1.2). In fact, I
obtain a similar plot when I use portfolios constructed to have constant weights throughout

the sample.

To complete the picture one needs to describe the evolution of idiosyncratic risk for these
portfolios. For both value and small stocks, idiosyncratic risk, computed as the estimated
standard deviation of the residuals from rolling window CAPM regressions, follows broadly
the path of market volatility, which is documented in Schwert (1989) and Campbell et al.

(2001). Hence, idiosyncratic risk peaks in the years of the Great Depfession and World War
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11, but then it drops drastically, without displaying any trending behavior. However, unlike
market volatility, the idiosyncratic volatility of these portfolios is high in the first half of
the nineties. The absence of a trend in portfolio idiosyncratic risk is not inconsistent with
the finding in dampbell et al. (2001) that individual stocks have become more volatile. In
fact their paper also finds that portfolio idiosyncratic volatility (in their case at industry

level) is not trending.

From a market model, where portfolio return is broken into market risk and idiosyncratic

risk, it follows that the variance of portfolio 1 can be expressed as
o} = (%02 + 0‘%,5, (1.3)

where o2, is the variance of the market return, and 0‘19"5 is the idiosyncratic variance of
portfolio 1. Since beta can be expressed as the product of the correlation coefficient between
portfolio 1 and the market return (p1 ) times the ratio of portfolio 1 standard deviation

to market standard deviation (see footnote 2), Equation (1.3) can be rearranged to obtain

2 2
Tle gy

— = —— (1] — . 1.4
U?n Urzn ( pl,m) ( )

Given that U{t, like %;-, is decreasing much more strongly than p;m,, which in turn
tracks closely p, it has to follow that idiosyncratic risk as a fraction of market volatility has
decreased. The data confirm this prediction, and the evolution of the ratio of idiosyncratic

volatility to market volatility follows closely the ratio of total portfolio volatility to the

volatility of the rest of the market that is plotted in Figure 1-3 (thick solid line).
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1.2.4 Robustness checks

The decrease in the estimated market beta of value and small stocks might be the artifact of
portfolio formation procedures or, more generally, it can be a mechanical result with little
econcmic content. In order to investigate this possibility I perform a number of robustness

checks.

The share of value and small stocks’ capitalization over total market size has changed
over time. This could have caused the decrease in these portfolios’ betas, by mechanically
reducing their weight in the market. I construct a portfolio that includes the highest B/M
Stdcks up to a certain share of market capitalization, which I keep constant over the entire
sampie. I try with a market share of 2%, Which is the a-:rerage market share of the tenth
decile portfolios, and with other values as well (1%, 3%, 5%, and 10%). In all of these
cases the beta of the resulting portfolio, estimated with the rolling regression methodology
described above, displays a Cqmparable decrease to the one for the original value portfolio.
Similarly, T rank the stocks by size, and construct a portfolio of small stocks that has a
constant share of market capitalization. For different market shares (0.1%, 1%, and 5%),

the beta of this small stock portfolio is still decreasing.

Another change that occurred in the portfolio composition is the strong increase in the
number of stocks included in the portfolios. There were 42 companies in the value portfolio
in July 1926 (52 in the small stocks portfolio), while this number was 480 in December
2000 (the number is 2502 in the case of small stocks) . The increased number of included
stocks might have affected the portfolio beta if it was combined with some change in the

shape of the cross-sectional distribution of betas. Hence, I form portfolios of high B/M and

“The reason why there are so many stocks in the lower size deciles is that size portfolios are formed using
NYSE capitalization break-points, and many Nasdaq stocks are small compared to NYSE stocks.
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small stocks that have a constant number of stocks throughout the sample period. These
portfolios continue to display a decline in their estimated betas, for all the number of stocks

at which the composition is held fixed.

A related fact is the inclusion in the data set of Nasdaq stocks in 1973. This event was
relevant especially for the small stock portfolio, since Nasdaq stocks were in general smaller
than NYSE stocks. This inclusion could have affected the portfolio beta because the market
index is heavily tilted towards NYSE stocks. However, when Nasdaq stocks are excluded
from the portfolios, the trend in both the small stocks’ beta and the value stocks’ beta is

unaffected.

Another objection that could be raised against $he relevance of the fact under examina-
tion, is that the industry composition of the value and small stocks portfolios might have
changed over time in such a way that these portfolios are now composed of firms belong-
ing to industries that bear less market risk. The first control that I perform is a within
industry analysis. I construct the value and small stock portfolios using only stocks in one
industry, and restrict the attention to industries that presumably did not experience major
technological changes, so that I control for industry effects. For all the industries I consider
(food, cons;umer products, clothing and oil), the betas of value and small stocks significantly
decrease over time. An alternative control for industry effects consists of replacing the re-
turn of each stock in the portfolios with the return of the industry portfolio to which the
stock belongs °. If the trend in beta is due to the B/M or size characteristics, as opposed
to industry effects, we should expect that the beta of these new portfolios does not trend
down. Consistent with this expectation, the resulting portfolios do not display the same

decrease as the original value and small stock portfolios. In the case of value stocks, for

°I used the 17 industry portfolio classification that can be found on Ken French's web site.
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example, the estimated trend in the portfolio constructed with industry returns is -0.03%,
compared to the -0.10% of the original value portfolio. I interpret the fact that there is still
some decrease in the betas of the new portfolios as due to the correlation between industries

and the B/M characteristic.

The decrease in the market beta of value and small stocks could be the result of a decline
in the leverage of these companies. Lower leverage should lead to a smaller beta. To assess
whether this phenomenon is driving beta, Figure 1-4 plots the leverage series, defined as
book value of debt over market value of equity, for the value stock portfolio and for the rest
of the market ®. The figure shows that, if anything, there was an increase in the leverage of
valug¢ companies over time, so that leverage is not driving the decrease in beta. As leverage
in the overall market is increasing, one might be concerned with the evolution of leverage
for the portfolios of interest relative to the rest of the market. In fact, not even the ratio
of Value companies’ leverage to the leverage of the rest of the market displays a decreasing

trend. Similar results rule out a leverage effect for small comparnies.

Other possible explanations of the observed decrease in the betas are linked to changes
in the informational flows in the market. Lo and MacKinlay (1990) note that the positive
autocorrela;tion of stock indices is mainly determined by cross-autocorrelations. In partic-
ular, large stocks tend to lead small stocks, possibly because of non-synchronous trading.
As noted by Scholes and Williams (1977), if a stock is infrequently or non-synchronously
traded, the standard estimate of beta is not representative of its true sensitivity -to the
market. Hence, it is possible that changes in the pattern of non-synchronous trading for

small and value stocks determined the decrease in their beta. In order to control for this

5The accounting data come from the Compustat annual dataset and they start in 1950. Debt is defined as
‘the sum of book value of current liabilities, long-term debt, convertible debt and preferred stocks. Portfolio
leverage is computed as value weighted average of company leverage.
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possibility, T compute a corrected version of the sensitivity to the market as the sum of
the beta on the lagged monthly return and the standard beta (as suggested by Scholes and
Williams, 1977). This correction does not affect the size of the estimated negative trend in

the value and small stock portfolios’ market sensitivity.

More generally, every explanation that relates to changes in the informational structure
in the market should have different implications at different frequencies of the data. In
low frequency data information has had more time to reveal itself than in higher. frequency
data. Hence, if the decrease in the beta is related to some informational story, it should
be less pronounced at lower frequencies. Using quarterly and annual overlapping data, and
extending the estimation window to ten years in order to have enough data points, does not
seem to give different results from the ones obtained with monthly data. For values stocks,
ﬁvith all three data types the estimated beta drops from about two to below one. Similarly,
for small stocks the beta drops as much with annual and quarterly data as with monthly

data.

In summary, the drop in beta does not seem to depend on mechanical explanations
relating to portfolio formation procedure, nor does it depend on changes in leverage over
time. Moreover, changes in the patterns of non-synchronous trading do not seem to be

relevant.

The next section, which relates the decrease in beta to macroeconomic conditions, is,
I believe, the most convincing reply -to most doubts that still linger about the economic

relevancé of the decline in beta of value and small stocks.
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1.3 Relating beta to macroeconomic conditions

1.3.1 Time-varying betas and conditioning information

Several studies have produced evidence of time-varying betas for single stocks and for portfo-
lios (e.g., Ferson and Harvey, 1991, Ferson and Korajczyk, 1995, Braun, Nelson, and Sunier,
1995). Shanken (1990) models the time variation of conditional betas as a linear function
of predétermined state variables. Later studies apply this approach to testing multi-factor
pricing models (Ferson and Korajczyk, 1995, Ferson and Harvey, 1999, Lewellen, 1999), and
mutual fund performance evaluation (Ferson and Schadt, 1996).

In the context of this paper, modeling conditional betas as a function of staté variables
can help identify the macroeconomic factors, if any, that are driving the decrease in the
beta of value and small stocks.

The rationale to believe that some economic state variables are related to the decrease
in betas is that the value and small characteristics supposedly denote companies that are in
a condition of relative distress 7. Hence, it is reasonable to believe that changing macroe-
conomic conditions affect the severity of this condition of distress, and consequently the
riskiness of these stocks’s payofls, as summarized by their market beta.

Suppose the following conditional one-factor model describes the excess portfolio return
R

Rit1) = a; + BitBm 41 + €41, (1.5)

where Ry, 1 +1 is the market excess return, and Ei(eiy1) = E¢(et4+1Rm+1) = 0, which implies

that the unconditional expectations of the same expressions are also zero.

“Chan and Chen (1991) show that small firms are more likely to have higher leverage, lower Returns-On-
Equity, and have cut dividends in the recent past.
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Following Shanken (1990), portfolio’s betas are assumed to be a linear function of a

vector of k state variables z;

Bie = boi + b1 32 + mis. (1.6)

While not imposing any constraint on the process of the market factor, the assumption
that conditional betas depend linearly on some lagged variables allows the second moments
of the conditional distribution of portfolio and market returns to change over time in a
simple way. The variables used to predict conditional betas are public information, and
summarize the state of the macroeconomy.

Using Equation (1.6) to replace for 8; 41, Equation (1.5) can be rewritten as
Rity1 = 044 boi R pa1 + (0] 120) Rt + 734 R gr1 + €5541- (1.7)

Providing that 7;, is regressively independent of all the information at time t, the sum
7i,tfm t+1 + €5,141 can be considered as an orthogonal error term Ut+1, and the regression
in Equation (1.7) yields consistent estimates.

The estimates of by and b; from the time-series regression in BEquation (1.7) allow us to

obtain a fitted value for 3, |

Biz = boi + by 21, (1.8)
which gives the benchmark series to which compare the observed decrease in the estimated
betas of value and small stocks.

1.3.2 Empirical implementation

The state variables that I use in the analysis are the ones that in previous studies proved to

be good predictors for expected returns and betas. They are: (1) the dividend vield on the
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S&P Composite Index (see, e.g., Fama and French, 1988, Ferson and Harvey, 1999); (2) the
one-month T-bill rate (see, e.g., Shanken, 1990); (3) the growth rate of industrial production,
computed as the first difference in the logarithm of the monthly seasonally adjusted index of
industrial prodﬁction provided by the Federal Reserve Board (see, e.g., Campbell and Mei,
1993); (4) the term spread defined as the end-of-month difference between the yield on Aaa
corporate bouds and the annualized one-month T-bill rate (see, e.g., Fama and French, 1989,
Ferson énd Harvey, 1999); (5) the default spread, defined as the end-of-month difference

between the yields on Baa and Aaa corporate bonds (see, e.g., Fama and French, 1989,

Ferson and Harvey, 1999).

Panel B of Table 1.1 provides summary statistics for the state variables. Figures 1-5

and 1-6 graph them, along with NBER business cycle dates.

Fama and French (1989} give a thorough discussion of the cyclical behavior of the state
variables. Here I summarize the main points. The default spread, although showing some
negative correlation with the business cycle, displays major swings that go beyond the
economic cycle (Figure 1-5). The spread is high during the thirties and the early years of
World War II, a period characterized by major economic uncertainty. In the rest of the
.sample it is lower except for some blips in the periods of recession during the seventies and
early eighties. A similar behavior characterizes the dividend yield (Figure 1-5), which is
highly correlated with the default spread. What is peculiar about the dividend yield is the
drop that occurred during the bull market of the second half of the nineties. The T-bill rate
gravitates around zero in the 1933-1951 preriod that covers much of the Great Depression
~and the period after World War II, when the Fed fixed T-bill rates. Outside that interval the
T-bill rate comes close to defining the business peaks and troughs identified by the NBER

(Figure 1-6). Since the Aaa yield does not track the business cycle as closely as the T-bill
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rate, the term spread, except for the 1933-1951 period, follows more closely the business
cycle (Figure 1-6) . It is low at peaks, predicting recessions, and high at troughs, predicting
recoveries. Finally, the growth rate of industrial production is strongly mean-reverting, so
that high growt-h rates are soon followed by negative growth.

The estimation of the regression in Equation (1.7) for B/M and size portfolios produces
estimates of by and b that can be replaced in Equation (1.8) along with the series of the state
variables to fit the path of these stocks’ beta. Figure 1-7 graphs the fitted beta for value
stocks, along with the series resulting from the rolling regressions estimation. The fitted
series in the graph has been constructed using two sets of estimates of by and b; coming from
the 1926-1962 and the 1963-2000 subsamples. The series of the estimated beta is aligned
with the end date of the five-year estimation window. The tracking ability of the fitted beta
(solid line) is striking. The estimated beta series appears smoother than the fitted series,
because the effect of one month of data is not relevant over a five-year estimation horizon.
However, the fitted beta follows closely all the main swings in the estimated beta. The
correlation coefficient between the estimated and the fitted series is 0.84. The reader may
be concerned that this high level of correlation is affected by a ‘spurious regression’ type of
problem. To tackle this concern, I perform a test of unit root on the difference between the
two series. In other words, I test whether the estimated and fitted beta are cointegrated
with a (1 -1) cointegration vector. If the high correlation is spurious, the test should detect
a unit root in the difference. In fact the correlation is authentic, as a Dickey-Fuller test
on the difference in the two series produces a test statistic of -7.2, which rejects the null

hypothesis of unit root at the 1% confidence level °. The picture is very similar if by and b;

8The T-bill series and the term series in Figure 1-6 appear to have different volatility. This is a result of
using different scales for the two series. In reality they move together, being the term spread mainly driven
by the T-bill rate component. :

Notice that the Dickey-Fuller test does not reject the null hypothesis that the estimated beta series has
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are estimated over the whole 1926-2000 sample. The correlation is 0.78, and again the two

series are cointegrated at the 1% confidence level.

Figure 1-8 plots the estimated and fitted beta series for small stocks. Although the
fitted series doeé not track so closely the estimated one as in the case of value stocks, still it
captures the major drop in the beta that occurred in the twenty years between the 1940 and
1960. The correlation coefficient is in this case 0.63, suggesting that perhaps some relevant
state variable has been left out from the information set.

Table 1.3 reports the coefficients from the estimation of Equation (1.7) in the case of
B/M portiolios. Looking at the column for the tenth decile, we notice that in the whole
1926-2000 sample (Panel A) the risk free interest rate has the highest predictive‘ ability: a
one-standard deviation increase (0.25%) in the monthly T-bill rate would cause a decrease of
about (.25 in the conditional beta. This coefficient decreases in absolute value as we move
towards lower B /M deciles, consistent with the theoretical constraint that the weighted
sum of the by coefficients is zero (while the weighted sum of the by coefficients is one). The
default spread and the dividend yield have a similar predictive power for the conditional
beta of value stocks: an increase in both variables causes the conditional beta to go up.
For example, an increase of one percentage point in the annualized default spread causes
the beta of the tenth decile portfolio to rise by 0.1. In the whole sample the term spread
is generally not significant, while the growth rate of industrial production is significantly

positively related to conditional betas only for the higher deciles.
The analysis by subsamples (Panels B and C of Table 1.3) helps to further clarify the
effect of each conditioning variable. As far as the tenth B/M decile portfolio is concerned,

the default spread and the dividend yield take turns in explaining the conditional beta. The

a unit root
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first variable is significant only between 1926 and 1962, while the second one is significant
only between 1963 and 2000. The T-bill rate is always negative and significant, although
more so in the first subsample. The term spread is significant with a negative coefficient in
both subsampleé. The impact of the growth rate of industrial production on the conditional
beta changes from positive to negative. In general, as we move towards lower B/M deciles
the predictive power of the state variables drops, suggesting that it is correct to focus the

attention on the changes that affected value stocks.

The regression results for small stocks (first size portfolio in Table 1.4) are similar to
the case of value stocks. However, the predictive power of the state variables tends to drop
in t-hé second subsample. This fact is in line with the reduced tracking ability of the fitted
series in Figure 1-8. Nevertheless, the major drop in small stocks’ beta occurs before 1960,

and that is mostly captured by the state variables.

Finally, other state variables turn out to be significant predictors of beta for both B/M
and size portfolios. They have not been used for the plots in Figures 1-7 and 1-8, because
their inclusion would have increased the high frequency volatility of the fitted series, and
decreased its ability to track the smooth estimated series. The most important of these
variables are the lagged excess market return and the volatility of the T-bill rate, constructed
like in Shanken (1990). A positive market return predicts an increase in the beta of value and
small stocks, whereas the effect of interest rate volatility is positive in the first subsample
and negative in the second one. The purpose of my analysis was tracking the long run trend
in the estimated beta series, but if the goal is predicting the future evolution of beta, then
one may want to include these instruments, which capture the high frequency movements

in the series of interest.
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1.3.3 Discussion

As mentioned above, the connection between variables that summarize the state of the
macroeconomy and the beta of value and small stocks can be drawn because these companies
are more likely to be in a situation of relative distress. The likelihood with which they
actually are in distress can reasonably depend on the general state of the economy. Hence,
their riskiness, as summarized by the market beta, can vary as a function of the business
cycle and the general economic conditions.

In more detail, one can think of a model where distressed firms approach default, or
move away from it, depending on the evolution of economic conditions. When a company
is closer to the earnings cutoff point below which it defaults, the firm’s payoff distribution
can become more volatile, and so can its stock returns. Then, this model can yield the
prediction that the beta of distressed firms decreases when economic conditions improve,
and vice versa.

The relationship between the macro variables and the beta of value and small stocks,
that was found in the previous subsection, seems to be in line with this model. Notice
that the improvement in business conditions that I refer to, can take place both along
the business cycle, and over the long run. In the first case the model describes the high
frequency variation in beta. In the second case, the result is the long-term decrease in beta
that is the main focus of the paper.

Fama and French (1989) interpret the power of the dividend yield and the default spread
to predict increases in the expected return of stocks and bonds as related to the long-term
evolution of business risk. These two variables track some components of expected returns
that are high during periods like the Great Depression when business is persistently poor,

and low otherwise. Consistent with their interpretation, I find that the measure of riskiness
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of some companies that are a priori believed to be more exposed to changes in business
conditions, their beta, follows closely the evolution of these two variables. In particular, the
decrease in the default spread and the dividend yield that occurred after the war explains
a large part of t.he decline in beta in that period. Similarly, the drop in the dividend yield

in the late nineties is responsible for the plunge in beta over those years.

The term spread tracks more closely the business cycle. It is low at the top of the
expansion, and high af the end of a recession. I find that an increase in the lagged term
premium predicts a decrease in the beta of value and small stocks. This result is in line
with the above interpretation, because a high term premium predicts a recovery from a
recession, from which distressed firms should benefit. The significance of the term spread in
the subsamples, and not in the whole period, suggests that this variable captures the high

frequency variation of beta, rather than the long run trend.

The interest rate is highly pro-cyclical. However, like the default spread and the dividend
yield, it also tracks the long-term changes in business conditions that occurred starting from
the early fifties. Therefore, its relevance as a predictor of beta is due to both its long-term
swings and its cyclical movements. This fact is confirmed by the significance of the T-bill

rate in whole sample and in the subsamples.

The reason behind the predictive power of the growth rate of industrial production is
moré dubious since its coefficient changes from positive to negative. The positive coefficient,
that prevails when the estimation is performed on the whole sample, would suggest that
due to the strong mean reversion of growth, a positive growth rate predicts a worsening of

economic conditions in the future.

The interpretation of the relation of these macro variables to the decline in beta that

is proposed here is also consistent with the evidence from the beta decomposition in Sec-
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tion 1.2.3. The general improvement of macroeconomic conditions can have made these
stocks, normally prone to distress, less risky, and their volatility smaller relative to the

volatility of the rest of the market.

The above analysis suggests a relation between a conditional CAPM approach and the
Fama-French three-factor model. The explanation of the link between these macroeconomic
variables and the beta of value and small stocks involves changes in the sensitivity to the
overall discount factor. The effect of these changes shows up in the beta of these companies
because they are presumably more sensitive to business conditions. If this is the case, the
loading on the market factor seems to capture some of the risk sources, like distress risk,
that Fama and French (1993) use to justify the introduction of additional facfors in the
pricing model. Consequently, a conditional CAPM can be more appropriate than a three-
factor model in pricing portfolios other than value and small stocks, for which the HML

and SMB factors are bound to perform weli.

Notice that the argument in favor of a conditional pricing model is consistent with the
results in Lettau and Ludvigson (2001). Similar to the evidence in my paper, they find
that the correlation value stocks’ returns with fundamental factors increases when risk or
risk aversion is high. This situation in turn occurs when econcmic conditions are poor, as

signalled by their cay state variable.

Finally, it has to be acknowledged that the behavior of value stocks’ beta in the second
half of the nineties lends itself to a different interpretation from the one proposed so far.
The drop in beta that occurs in that period is entirely driven by the decline in the dividend
yield, which in turn depends on the surge of the price level during the bull market of the
nineties. If a speculative bubble was behind that price increase, then the explanation for

the decline in beta cannot hinge on the evolution of the stochastic discount factor. Hence,

35



At em e o2+ g

.y e g

one may want to invoke a style investing argument (Barberis and Shleifer, 2001). In such
a scenario, beta could have dropped because the returns of value and glamour stocks have
become delinked, as a result of flows of funds moving from one style of investment to the

other. The investigation of this explanation is left for future research.

1.4 A decomposition of market betas

1.4.1 Theoretical framework

If the interpretation of the link found in Section 1.3 between beta and the conditioning
variables is correct, the decrease in the bef'a of value and small stocks should be associated
with a reduction in the sensitivity of these companies’ cashflows to the factors that cause
movements in the market. The reason behind this prediction is that, according to the
above interpretation, an improvement in the distress condition of these companies makes
their cashflows less volatile in response to shocks. I use Campbell and Mei’s (1993) beta

decomposition to address this issue.

Campbell and Shiller’s {1988) log-linearized present value relationship allows one to
express unexpected excess returns, or excess réturn innovations, in terms of news about
dividends, news about excess returns and news about real interest rates. Following Camp-
bell (1991), e;+41 is the (continuously compounded) excess return on portfolio ¢ over the
(continuously compounded) real return ;441 on a one-month T-bill, and d; 1+1 is the (log)

real dividend. Then, portfolio i’s unexpected excess return é; ;41 can be expressed as

cO o0 o0
Girvr = (B —E) <S> P Adigpryg — > P - Z Pei iy
=0

Jj=0 i=1

= i+l — Erp4l — €eittl- (1.9)
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The notation (E;+1 — Ey) indicates a revision in the conditional expectation between
times ¢ and t+1. The constant p comes from the linearization process, and can be interpreted
as a discount factor. The value of p is assumed to be the same for all portfolios 1°. The
second equality-in (1.9) introduces simpler notation for dividend news €g; ;1.1, real interest
rate news &, 411 and excess return news €e; ¢41.

Equation (1.9) follows from an approximation of a present value identity after ruling
out expiosive behavior of stock prices, and can be thought of as a consistency condition for
expectations. It simply states that, if unexpected returns are high today, then either there
has been an upward revision in the expectation of future dividends, or a downward revision
in the returns that the stock is expected to pay in the future, or both. The effect of future
real returns is similar to that of future excess returns.

The Appendix describes in detail how to obtain each component of the return innova-
tions. Briefly, the expected return on each portfolio is assumed to be a linear function of a
vector of predetermined state variables, one of which is the real interest rate. The residuals
in these predictive regressions represent the return innovations. The state variables are
assumed to follow a VAR process. It is therefore possible to compute the revision in the
expectatioﬁ of every future value of the state variables, and take the discounted sum of these
terms, which, combined with the parameters in the predictive regression, gives the expectéd
return news component of returns. The real interest news component is also obtained from
the parameters of the VAR. The cashflow news component is obtained residually using
Equation (1.9) and the other two components.

As far as the cross-sectional aspects of the analysis are concerned, Campbell and Mei

07 refer to the Appendix in Campbell (1991) for the derivation of Equation (1.9) and to Campbell and
Shiller (1988) for a discussion of its approximation accuracy. It turns out that p = Hﬁ;_—p, where d — p is

‘set to the average log dividend price ratio. Campbell and Mei {1993) argue that the assumption of a unique
value of p across all portfolios does not affect the results for plausible variations in p.
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(1993) define a portfolio beta using unconditional variances and covariances of portfolio
and market innovations. That is, beta is the unconditional covariance of the excess return
innovation &; with the market innovation €,, divided by the unconditional variance of the

market innovation

_ Cov(€;,ém)

Bim = Var(en) (1.10)

This beta is neither an unconditional beta (which would use returns themselves rather
than innovations) nor a conditional beta (which would use conditional moments). However,
it would coincide with a conditional beta if the conditional variance-covariance matrix of
innovations had constant elements, or at least elements that changed in proportion to one

another.

The definition in {1.10) has the advantage that the portfolio beta can be expressed as the
sum of the market betas of the three news components. From Equations (1.9) and (1.10),
it follows directly that

Cov(€g;, Em,) B Cov(ér,&m) Cou(ée,ém)

Bim Var(ém)  Var(en)  Var(em)

= ﬁdi,m - ﬁ'r,m - ,Bei,my (111)

where (B4, is the market beta of news about portfolio i’s cashflows, 5, m is the market
beta of news about future real interest rates, and ; », is the market beta of news about

portfolio i's future excess returns.

The assumption behind this analysis is that the vector of state variables represents en-
tirely investors’ information set. If this was not the case, the estimated dividend component
of returns would contain a reaction to changes in expected returns, which would undermine

the interpretation of the results.
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1.4.2 Empirical Implementation

The first step in implementing the beta decomposition developed in Section 1.4.1 is to
estimate the return components. To this purpose one needs to estimate the VAR system (A-
5), along with the predictive regressions in (1.18), and to replace the estimated parameters
in the expressions given in (1.21).

The VAR and the predictive regressions are estimated using OLS on each equation. In
this case, where all the equations have the same right-hand-side variables, the estimates
coincide with the ones obtained with a GMM procedure. Then, I combine the sample
variances and covariances of the estimated return components to obtain the betas.

The purpose of this analysis is to find out the source of the observed decrease in market
beta for value and small stock portfolios. Thus, I insert the beta decomposition method-
ology into the rolling regression framework that I adopted to document the fact under
consideration. The use of annual data allows the state variables to have considerably higher
predictive power in both the VAR equations and the portfolio predictive regressions. This
finding is consistent, for example, with the results in Fama (1990), who argues that the
predictive variables contain information that pertains to several months of return data,
creating an error in variable problem that is attenuated in annual data.

However, the use of annual data reduces the number of available data points and this
creates a problem for the convergence of the estimated parameters. Therefore, I construct
the annual data from monthly data, so that two consecutive observations have a three
quarter overlap. Each annual observation spans the period up to the end of a quarter.
Moreover, I use twenty-five-year estimation windows, so that each regression is estimated
using one-hundred overlapping annual data points. The estimation window advances by

one data point at a time, which means that one quarter of new data is added to the right
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of the sample, and one quarter is lost on the left.

At this point a caveat is necessary. The Campbell and Me1 (1993) procedure makes
an implicit stationarity assumption. The parameters of the VAR, as well as the variance-
covariance structure of the portfolio returns are assumed to be constant, not only throughout
the estimation period, but, as far as the VAR is concerned, over an infinite horizon. The
facts that beta changes over time, and that the estimated parameters of the VAR are not
constant, might cast some doubt on the validity of the analysis. However, the assumption of
a constant beta can be considered as a descriptive shortcut to look at the average beta over

the estimation window, as it was the case in Section 1.2, when the rolling window procedure

was first introduced. Moreover, the instability of the VAR should not considerably afiect’

the results as long as the VAR coefficients vary at low frequencies, because in that case
discounting should reduce the importance of the terms of the present value formulas that

are distant in the future.

The returns Qf interest are the Continﬁously compounded returns on B/M and size
portfolios, from July 1926 to December 2000. For the definition of the vector of state
variables I follow the previous literature. As said before, the first two variables have to be
the market return and the real interest rate. Therefore I use the return on the CRSP value-
weighted index, and the continuously compounded return on the one-month T-bill, deflated
by the change in the (log of the) CPI index. Campbell and Mei (1993) also include the
aggregate dividend yield, the inflation rate, and the growth rate of industrial production,
defined in Section 1.3. T use the dividend yield on the S&P Composite Index, which turns out
to have slightly more predictive power than the one constructed from the NYSE universe.
The inflation rate is the change in the log of the CPI index. In addition to these variables

I include the term spread, which is defined as in Section 1.3 {Table 1.1 provides summary
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statistics for portfolio returns and the state variables). For this sample, consistent with
previous studies, a reasonable value for p is 0.96 in annual data and 0.9962 in monthly

data.

I can provide some evidence on the increased predictive power allowed by the use of
annual data rather than monthly data. In my sample the average R? over the ten predictive
regressions for B/M portfolios in the whole 1926-2000 period is only 1.7% with monthly data
(892 observations per regression). Instead it is considerably higher, 10.6%, with overlapping

annual data (291 observations per regression).

The evidence on the sources of the decrease in beta comes from both a split of the main

sample into two major subsamples, and a rolling regression analysis.

The analysis by subsamples is presented in Table 1.5 for B/M portfolios. Each beta
estimate and the corresponding standard error have been obtained from OLS regressions of

the appropriate return component on the market innovation.

In Panel A the estimation period coincides with the entire 1926-2000 sample. The
plausible values of market betas in the first row testify that using innovations to define
betas, as opposed to returns themselves, does not significantly affect the results. The betas
of high decile portfolios (value stocks) are in general higher than those of low B/M deciles.
This ranking differs from what reported in previous studies, such as Fama and French
(1993), because my sample starts much earlier, in a time when value stocks used to have
higher betas. The ranking in the overall betas seems to be determined entirely by the
market sensitivity of the excess return news component Sir,, which, especially for value

stocks, is the most sizeable part.

In Panel B the sample covers the 1926-1962 period. The spread in the betas of value over

the beta of glamour stocks is even more pronounced than the one‘in the overall sample.
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Again, the responsibility of the difference in the overall beta lies with the excess return
betas, rather than the cashflow betas.

The results in Panel C (1963-2000 sample), where the ranking in the overall betas is
inverted with réspect to Panels A and B, reflect the empirical fact that hés inspired this
paper. The beta of value stocks has decreased considerably over the years, while the opposite
happened for glamour stocks !!. From the comparison of Panels B and C it is clear that
the sour.ce of the decrease in the overall beta of value stocks is the decrease in Bid,m, namely
the cashflow beta. The rolling regression analysis will make it even more clear that the
reduction in cashflow beta plays the dominant role. The beta of real interest rates, which
was not significant in Panels A and B, becomes negative and highly significant in Panel C.

In order to further define the source of the decreasing trend in the value stock beta,
I now turn to the rolling regression analysis. A first graphic impression of the results is
provided by Figure 1-9, that graphs the evolution of the estimated beta of the tenth decile,
along with its cashflow component and the negative of its excess return component. It
is evident from the picture that the responsibility of the decreasing trend in the overall
beta lies with the cashflow beta, which drops from 1.11 in the twenty-five-year estimation
window ending in June 1961, to -0.65 in the window ending in December 1995. The excess
return beta does not seem to have any apparent trend. This impression is confirmed by the
statistical tests that follow.

To quantify the evolution of the different beta components, I fit a trend line through
each of the beta series obtained from the rolling regressions. The results are reported
in Table 1.7, Panel A. As said above, I use overlapping annual data, and the estimation

window advances by one quarter per observation, so that the trend coefficients measure the

*'For market betas of innovations, as for normal betas, it holds that the weighted average of the population
betas of the different partitions of the market (e.g., B/M or size portfolios) is equal to one.
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change in the beta per quarter. The t-statistics are computed using Newey-West estimator
of variance which corrects for the autocorrelation due to the use of overlapping windows in
estimating beta. Equation (1.11) implies that the trend in Big,n , minus the trend in Sie m,
minus the trend‘ in Brm (-0.001), equals the trend in the overall market 3; y,. The trend line
is negatively sloped for the highest B/M deciles, and the slope gradually becomes positive
as we approach the portfolios of glamour stocks.

Table 1.7 provides detailed evidence on the sources of the decrease in the overall betas.
The cashflow betas of all portfolios trend down, and this effect is stronger for values stocks 2.
However, in the case of glamour stocks this trend does not affect the overall betas, given
that the negative estimates of 8;e m become progressively bigger in absolute value. Instead,
in the case of value stocks the negative trend in the cashflow beta is much stronger (-0.007
per quarter for decile ten), and it is not counterbalanced by a decrease in the excess return
beta. Hence, I can conclude that the decrease in cashflow beta is the source of the observed -
decrease in the overall beta.

The fact that the results presented in this section hinge on the cashflow news component,
which is estimated residually, might raise some concerns, which would be justified in case
the VAR process was misspecified. To tackle this issue, I follow Campbell and Mei (1993)
and form a direct measure of cashflow news by regressing annual log real divideﬁd growth
on the state variables, and using the VAR process for the state variables to form revisions
in expectations of future dividends (details in the Appendix). Then, I can compute the
cashflow beta series in the usual way, and fit a trend line through the series of estimates.
The results, not reported, confirm the picture presented above. If anything, the decreasing

trend in the cashflow beta for the value stock portfolio is stronger (-0.012, with t-stat. = -

12Notice that the beta components do not have to satisfy the constraint of adding to one across portfolios.
Therefore it is possible that the cashflow betas of all portfolios decrease over time.

43




3.36). Hence, the use of residual cashfiow news does not seem to affect the significance of

the evidence presented in this section.

The picture for size portfolios largely resembles that for B/M portfolios, and small stocks
play the role of value stocks. Over the entire sample the major drop in the overall beta
is again imputable to a drop in the cashflow beta. However, after the beginning of the
eighties the high frequency movements in the overall beta depend on the decrease in the

excess return beta.

Table 1.6 confirms the decline in the beta of small stocks and the corresponding increase
in the beta of large stocks. The market beta of the first decile portfolio, for example, is 1.60

between 1926 and 1962, and it drops to 1.36 in the 1963-2000 subsample.

The big drop in Sic m that appears from the table, is not indicative of the global source
of decrease in the overall beta, because it is affected by the last years of data. In f;?mt
Figure 1-10 shows that 3;. becomes very small in absolute value only around the end of the
sample. Instead, the graph indicates that over the entire 1926-2000 period the drop in the
cashflow beta is the main source of the decline in the market sensitivity of small stocks.
Moreover, it is also evident from Figure 1-10 that after the beginning of the eighties the

overall beta follows the path of B;c m, which declines in absolute value.

The analysis of the linear trends in the estimates from the rolling regressions procedure
confirms that the source of the drop in the overall beta of small stocks is the decrease in
the cashflow beta. Panel B of Table 1.7 shows that the overall beta of decile one portfolio,
for example, has a linear trend of -0.005, which is entirely imputable to the -0.008 trend in
Bid,m- Notice, however, that if the trend 1s computed using only the betas whose estimation
window ends after January 1980, then the -0.004 (t-stat. = -10.96) trend in the overall beta

depends on the decrease in the absolute value of the excess return beta (trend in Gy m equal
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to 0.010, with t-stat. = 8.64). The use of direct, rather than residual, cashflow news, in the
way described above, confirms entirely the results presented so far.

So, as in the case of value portfolios, the evidence suggests that the observed instability
in the overall rﬁarket betas of small stocks can be imputed to changes in the sensitivity of
cashflow news to market returns.

Overall, the evidence from the beta decomposition is consistent with the conclusions
from Séc’cion 1.3, which used conditional information to track the evolution of beta. That
analysis suggested that the decrease in the beta occurred because the general improvement
in the economic conditions has made the activities of these companies less risky. This section
showed that, indeed, the decrease in the beta is imputable to the fact that the cashflows of

these firms are less sensitive to market news.

1.5 Relation to mispricing

The previous sections have established that the beta of value and small stocks has expe-
rienced a major decline over the past sixty years. A question that arises naturally is how
this fact relates to the debate surrounding the failure of the CAPM to price correctly these
categories of stocks.

Figure 2-1 plots the beta and the intercept (i.e. the alpha) from time-series CAPM
regressions for value stocks 3. A one-tailed t-tests rejects the hypothesis that the intercept
is equal to zero at 5% level in most of the estimation windows from the early seventies to the
mid-nineties. It ig evident from the picture that the occurrence of mispricing starting from

the seventies goes side by side with the decrease in beta. Alpha started to rise in the early

Y¥The series are produced using rolling fegressions with a ten-year estimation window. I extended the
estimation window from five to ten years to obtain smoother series, and to have more power in the t-tests
on the intercept.
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sixties, when beta was experiencing a major drop, and its growth is always accompanied
by a decline in beta. The correlation between the two series is about -50%. The graph for
small stocks (not reported) also shows that alpha rises when beta declines, although for this

portfolio the mispricing disappears in the late eighties.

The decrease in beta can be related to mispricing in at least two ways. First, if the correct
pricing model is a conditional CAPM, and the estimated model is an unconditional CAPM,
the preﬁnium estimated by the econometrician contains a bias due to correlated omitted
variables. Secondly, the drastic changes in beta can have caused investors to formulate the
wrong expectations on the riskiness of these stocks. The next subsections examine these

two explanations.

1.5.1 The omitted variable bias

The time-series tests of the CAPM, like the ones in Fama and French (1993), which rely
on the significance of the intercept to decide if the market value-weighted portfolio is on
the mean-variance efficient frontier, fail to incorporate the time variation in beta. So, for
example, Fama and French (1993, Table 9a) find that the portfolio of small high B/M stocks

has a monthly premium of 0.54% (t-stat. = 2.53) in the 1963-1991 sample.

However, even if the CAPM holds conditionally, it does not necessarily hold uncondi-
tionally. For it to be the case the relevant moments of the joint conditional distribution
of returns would have to be constant over time, or change proportionally. The evidence
of a decreasing beta does not depose in favor of this possibility. In fact, the analysis of
Section 1.3 showed that beta can be closely tracked by a number of state variables sum-
marizing the .state of the economy. Hence, there are reasons to believe that part of the

premium found for these categories of stocks in the time-series tests can be explained by
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time variation in beta, in the form of a correlated omitted variable bias.

Suppose one estimates the following unconditional CAPM regression

Rit1 = ai + BiRmy1 + wizya, (1.12)

but the correct model is a conditional CAPM

EiRitr1 = BitEtBmt11, (1.13)

where the conditional beta is a linear function of some state variables, as in Equation (1.6).
Then; solely because of the omission of the time variation in beta from the uncénditiona.l
regression, the estimated intercept turns out to be different from zero. In particular, the
probability limit of &; is

Plim & = b} {(EZ — vERp), (1.14)

where z = 2 Rm 141, and «y 1S the linear projection coefficient of %, on the market return
Rmpt+1. So, when beta is a non-trivial function of the state variables, and the term in
parenthesis is also not zero 4, part of the premium in the time-series unconditional CAPM
regressions can be explained on the basis of Equation (1.14).

From Panel C of Tables 1.3 and 1.4 it appears that the tenth B /M portfolio and the first
size portfolios are those that in the 1963-2000 subsample have the highest absolute values of
the coefficients in the vector by ;. This fact makes it more likely for the estimated intercept
from an unconditional CAPM regression to be different frofn Z€ero, as it can be seen from

Equation (1.14).

YMNotice that the term in parentheses in Equation (1.14) is trivially zero if the state variables are constant
over time. It is also zero if the market return is independent of the state variables.

47




e ]

WU UR T NS W

In order to assess what part of the premium of value and small stocks is accounted for
by the omission of the time variation in beta, one can compute the sample equivalent of
the expression in Equation (1.14) and compare it with the intercept from the regression
in Equation (112) An equivalent, and more simple, way to do that is estimating Equa-
tion (1.7), and comparing the intercept from that regression with the intercept from the
unconditional regression in Equation (1.12). In the case of value stocks, about 30% of the
0.44% monthly premium in the 1963-2000 sample can be accounted for when beta is allowed
to vary. For small stocks this share is 66%, but the premium in the 1963-2000 sample is just
0.10%, and it is not significant. In shorter samples, like the 1963-1980 one, this procedure

does not seem to account for any sizeable part of the premium to small stocks.

Besides shedding some light on the sources of the value premium, the results from
this analysis suggest that the conditional version of the CAPM should be preferred to
the unconditional one in most applications. The time variation in portfolio betas and the
ability to track it with state variables, which have been documented in this paper, make

the stationarity assumption behind the unconditional CAPM not realistic.

1.5.2 Eﬁcaggerated perception of risk

Daniel and Titman (1997) argue that characteristics, as opposed to covariation with risk
factors, generate the observed premium of small and value stocks. In their view, the market
dislikes these categories of stocks, so that a premium is required for investors to hold them.
This negative attitude towards small and value stocks might depend on the fact that in-
vestors overestimated their systematic risk. As more powerful computing resources become

publicly available, these anomalies should disappear. The size effect actually disappeared

in the early 80’s, as well as the B/M effect in the late nineties.
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Consistent with this argument, I argue that the large decline that the beta of value and
small stocks experienced starting from the early forties can be the reason why investors
made mistakes in the assessment of risk. The observation that these assets used to bear a
great deal of m:-.%rket risk in the years of the Great Depression and World War II can have
convinced investors that the value and small characteristics were associated with higher risk.
Consequently, these stocks had to pay a premiurn, even when the amount of systematic risk

they were bearing had declined.

Suppose the return that the market expects in the next period for the portfolios of

interest is based on the unconditional CAPM

ER;t11 = B{ERm 141, (1.15)

where (3¢ is the expectation of beta. This assumption implies that the probability limit of

the estimated intercept in a time-series unconditional CAPM regression is
a; = (B — Bi)ERm,+1. (1.16)

To keep things simple, suppose for now that the expectation of beta is identically equal
to the value of beta estimated from all past return realizations. More complicated setups

in which the market learns from the path of realized betas will be discussed later.

From Equation (1.16) it is evident that whenever the expectation of beta exceeds the true
beta, the portfolio pays a premium relative to the CAPM, and the estimate of alpha from
the time-series regression tends to a positive value. Hence, in the case of value and small
stocks, the decreasing path of estimated betas and the assumption of adaptive expectations

can actually explain part of the premium.
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To implement the model empirically, I split the sample of realized returns in two sub-
samples, from 1926 to 1962 and from 1963 to 2000. The second subsample more or less
coincides with the time period when the CAPM was known to financial markets. Further, I
assume that the- market expected return for the portfolio of interest in the second subsample
is formed according to Equation (1.15), and the expectation of beta is equal to the estimate
of beta from the first subsample. Finally, I assume that these expectations are not revised
until the end of the second subsample. Although these assumptions are obviously unrealis-
tic, they capture the idea that the high level of market risk born by value and small stocks
in the years of the Great Depression and World War II affected the market expectations of

how risky these stocks would be later on.

By replacing sample estimates in Equation (1.16), I can compute the fraction of the
estimated intercept in the CAPM regression in the 1963-2000 subsample that is explained
by the model above. For value stocks the intercept is 0.44% (t-stat. = 2.9) between January
1963 and December 2000, while beta is 1.64 in the first subsample, and 0.97 in the second
subsample. The product of the difference in these betas and the mean excess market return
between ‘1963 and 2000 (0.52% monthly) is equal to 0.35%, which is the sample equivalent
of the exp?ession in Equation (1.16). Hence, under these assumptions, the misperception
of the riskiness of value stocks can have caused about 80% of the premium that they paid

in the 1963-2000 subsample.

Small stocks did not have much of a premium in the whole 1963-2000 subsample (only
0.10%). Therefore, the above method would imply an intercept that is almost three times
as big as the actual intercept. Instead, when I restrict the second subsample to end in 1980,

which was approximately when the size effect disappeared, the estimated premium is 0.59%

(t-stat. = 2.1). Beta in the 1926-1962 subsample is 1.65, and in the 1963-1980 subsample
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is 1.29, while in the same period the mean monthly market excess return is 0.34%. Hence,
misperception of risk, as defined above, generates a (.12% monthly premium, which is about

20% of the realized premium for small stocks.

More complicated setups than the one described above can be thought, where the market
revises its adaptive expectations on the basis of realized returns. Suppose, for example, that
investors form their expectations of beta by combining the corresponding expectation in the

previous period and the last estimate of beta, as in the following equation
B = 8B, + (1= 8)B8¢ 4, (1.17)

where [f is the beta expected to apply to time ¢ +1, Et is the estimated beta at time ¢, and

4 is a weighting coefficient.

To make this model operational, I insert it in a ten-year rolling regression framework,
starting from 1963. So, Et corresponds to the estimate of beta in the last ten-year window.
In some estimation windows the mean value of the market excess return is negative and
I cannot use it as an estimate of the market premium, because it would be inconsistent
with CAPM. Hence, I estimate E;R., ;41 using the mean excess market return from the
beginning of month ¢ + 1 to December 2000. The estimates obtained with this procedure
are consistently positive. So, for each window I can compute an estimate of the « in
Equation (1.16) using the expectation of beta from Equation (1.17), the estimate of beta in
the window, and the estimate of the market excess return. I calibrate § to minimize the sum
of the squared differences between the estimates of o and the estimated intercepts in the
CAPM rolling-regressions. Finally, I set the initial condition for 87 to equal the estimate

of beta in the 1926-1962 subsample.
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When this model is applied to the value portfolio, the optimal § is around 0.002. This
small number is consistent with the idea that one additional month of data is not very
informative about beta. The distribution of the share of the premia in the CAPM rolling
regressions expléined by the estimates of o has mean equal to 104%, median equal to 70%,

maximum equal to 487%, minimum equal to 32%, and standard deviation equal to 94%.

Again in the case of small stocks I restrict the sample to the years up to 1980. Further,
I consider only the estimation windows for which the intercept in the CAPM regressions is
positive, namely the ones in which there is actually a premium. The optimal value of § is
then 0.06. For these windows, the distribution of the share of the premia that is explained
by the estimate of o has mean equal to 75%, median equal to 66%, maximum equal to

331%, minimum equal to 22%, and standard deviation equal to 54%.

Notice that these exercises do not account for the effect on returns of the revision in
the expectation of future discount rates. Investors’ realization that beta is lower than they
thought causes a positive surprise in returns, because future payoffs are discounted at a lower
rate. To the extent that these surprises are correlated across periods, this effect shows up
as a positive premium in the CAPM regression. Therefore, the distributions of premia
that were computed above represent a lower bound on the premia that can be generated
under the assumption that investors slowly learn about beta;. A non-arbitrary assessment
of the impact of the revision in discount rates on the premium can be provided within an

equilibrium model of learning on beta, which is developed in Adrian and Franzoni (2002).

Although the assumptions underlying the above models are certainly restrictive, the
results presented in this subsection suggest that misperception of risk based on the higher
values of beta characterizing value and small stocks in the early years of the sample can

play a big role in explaining the premia of these portiolios. This hypothesis is pursued in
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further research (Adrian and Franzoni, 2002), which develops a formal models of learning
on beta, and assesses the relevance of the decrease in beta for the estimated premium of

value and small stocks.

1.6 Conclusions

This paper found a striking decrease in the market beta for portfolios of value and small
stocks. In the course of sixty years the beta of each of these portfolios decreased by about
75%. The maximum estimated beta for value stocks was 2.2 in the early forties, and the
minimum was 0.55 in the late nineties. The situation for small stocks evolved simi]arly:_

The fact that the path of beta can be closely tracked using state variables that are related
to business conditions, such as the nominal interest rate, the default spread, the term spread,
the dividend yield, and the growth rate of industrial production, suggested the interpretation
that a change occurred in the structure of these companies’ cashflows. According to this
argument, the improvement of business conditions reduced payoff uncertainty for all firms,
and especially for value and small companies, which are believed to be more prone to distress,
and therefqre more sensitive to the status of the economy. Support for this intuition came
from the result that the source of the decrease in the beta is the decline in the sensitivity of
cashflow news to market news. This interpretation generates the out-of-sample prediction
that we should observe a rise in the beta of these portfolios in conjunction we the recent
economic downturn and the interest rate cuts.

This evidence is relevant for the debate on the premium to value and small stocks
in the CAPM regressions. The amount of market risk born by these stocks went down
conterporaneously to the appearance of the premium. The paper found some evidence

that a part of the premiun, which can be as high as 80% for value stocks, originates from
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investor beliefs that a high level of market risk would characterize these stocks even when,
due to the decrease in beta, this was no longer the case. This argument is in line with some
behavioral explanations of the anomaly (e.g., Daniel and Titman, 1997) that suggest that

the market may have misperceived the riskiness of these portfolios.

Finally, the paper provided further evidence in favor of the adoption of a conditional
version of the CAPM in place of the unconditional one. The sizeable changes in the beta
of these portfolios, the close relationship between these changes and the evolution of some
state variable, the ability to explain 30% of the value premium once the time variation of
beta is taken into account, are all elements that motivate a model that lets beta depend on

some conditioning information.

These findings can have applications in the areas of portfolio selection and performance
evaluation. Mutual funds that adopt value or small cap strategies should know that the
amount of market risk born by their portfolios is subject to variation over time. For example,
the fund manager should expect value and small stock portfolios to become more risky
during recessions. The good news is that this evolution can be predicted on the basis of
information that is easily available, and using a simple linear relationship. Also, when
evaluating performance of mutual fund managers, one needs to take into account the fact
that the manager can predict changes in the portfolio beta, especially for these categories
of stocks. Hence, the manager should not be rewarded for portfolio returns that can be
anticipated using conditioning information. Ferson and Schadt (1996) develop this idea by
assessing what part of mutual fund performance is imputable to changes in beta that were

predictable using a conditional CAPM.

Further research should extend different aspects of this paper. The interpretation of the

link between beta and the state variables was not tested directly, and it was not supported
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by some economic model. Possibly, one should look into the evolution of the accounting
and financial figures of the companies in the portfolios of interest, and assess whether they
conform with the change-in-distress interpretation that was provided in the paper. Prelim-
inary evidence éuggests that a measure of distress, such as the ratio of interest expenses to
operating income, is not only higher in the case of value and small companies, but it is also
maore positively related to recessions. Moreover, the gap between the level of this ratio for
the companies of interest and for the rest of the market has been shrinking, consistent with
the negative trend in the beta.

Another promising direction of research concerns the implications of the decrease in
beta for the misperception of the riskiness of these stocks, and the premium that they
pay. More sophisticated models of learning on beta than the ones used in the paper can be
developed to fit these data. In order to feature a slow learning process, necessary to generate
the premium, these models can either assume that investors learn about the default risk
of these stocks from infrequent events like recessions, or they can be founded on some

psychological bias in probability assessment and expectation formation.
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Appendix

Obtaining the news components of returns

This Appendix describes how the different components of excess return innovations in Equa-
tion (1.9) are obtained. In this I follow, with some minor modifications, Campbell and Mei
(1993), who assume that expectations of portfolio excess returns are linear in a vector z; of
state variables x;;, I = 1, ..., L, which represent investor information set. The first element
of this vector is the excess return on the market, and the second one is the real return on
a one-month T-bill, while the other elements are variables kﬁown at the end of period t¢.

Thus, the excess return on portfolio 7 can be written as
1 —~
€ithl = G;Tg + €5 p11 (1.18)

for some portfolio specific L-element column vector of coeflicients. The expected return on

the portfolio is thus a}z;, while the unexpected return is Bitrl = €441 — QLT

Next it is assumed that the state vector follows a first-order VAR process
Ti+1 = [zy + Ty, : (1.19)

where the Z;41 denotes the innovation in the state variables. The assumption of a first-order
VAR is not restrictive since a higher-order VAR can always be rewritten in first-order form
(see, e.g., Campbell and Shiller, 1988). The L x L matrix II is known as the companion
matrix of the VAR. Given the VAR model, revisions in long-horizon expectations of z;.1
are

(Bip1 — B)xir1ey = W ' (1.20)
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Further, I define the L-elements vectors ¢; and t; to have a one in first and second
position; respectively, and zeros in all other positions. These vectors pick the excess return
on the market and the real interest rate out of the VAR. Thus, Equation {1.20) and the
definitions of éd%,t—}—l and €g; 141 In (1.9) imply that the components of portfolio z return and

of the market return can be written as follows

Eeitt1 = paj(l — pI) 7 E 4,
i = (I — pIl) 1y,
€aigr1 = Eier1 + (th+ pal)(T — pII) 713,44,
Bl = puTI(T — pID) ™ Feyq,
ampt1 = Emert + (0 + p,IN{T — pID) 17,01 (1.21)

The discounted sum of the revisions in expectations for the vector of state variables at
t+1is (I — pII)~'Z;.q, where I is the L x L identity matrix. This term is translated into
revisions of forecast portfolio returns through the vector a;, which links the state variables
to expected returns. Finally, the revision in expected cashflows is determined residually
from Equation (1.9).

The cashflow news éomponent can also'be computed directly under the assumption that
the state variables predict dividends as well. In particular, if ¢ is the vector of regression
coefficients of dividend growth on the state variables, and ti4+1 are the residuals from this

regression, the direct cashflow news is

€idt+1 = i1 + pc' (I — pIl) "' Zpy . {1.22)
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Table 1.1: Summary statistics. Panel A reports means and standard deviations of
selected portfolios returns, and the average share of market capitalization for these portfolios
Panel A also reports the correlation coefficient computed over all the stocks and years
between the size and B/M decile assignments. Panel B reports mean, standard deviations,
and sample autocorrelation coefficients (p) for: the one-month T-bill rate, the dividend yield
on the S&P Composite Index, the growth rate of industrial production, the term spread,
and the default spread. Panel C reports the correlation matrix for the state variables.

Panel A: Portfolio Returns
Mean St. Dev. Avg. mkt share

Sample: 1926-2000

BM decile 1 93 5.82 26 7
BM decile 10 1.37 9.35 .02
Size decile 1 1.44 10.49 01
Size decile 10 96 5.18 62
Market 99 5.49

Avg. corr. of size and BM deciles -.33

Sample: 1926-1962

BM decile 1 91 6.42 27
BM decile 10 1.28 12.22 .02
Size decile 1 1.71 13.48 002
Size decile 10 91 6.03 .67
Market .95 6.46

Avg. corr. of size and BM deciles -.47

Sample: 1963-2000

BM decile 1 .95 5.18 24
BM decile 10 1.46 5.30 .03
Size decile 1 1.19 6.43 .02
Size decile 10 1.01 4.20 .57
Market 1.03 4,37

Avg. corr. of size and BM deciles -.19

continued on nezt page
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Panel B: State Variables

Mean Std. Dev. P P2 P3 P4 P12 P

T-bill 231 .25 .97 95 94 93 .87 .78
Div. Yield .042 015 .98 96 93 91 73 .56
Growth L.P. .003 019 .53 24 08 -.02 -15 -.11
Term spr. 2.11 1.36 .84 7 74 69 47 21
Default spr. 1.13 73 97 .94 91 90 .75 .55

Panel C: Correlation matrix of State Variables

T-bill Term Def. DY Gr. 1P

T-bill 1

Term -0.39 1

Def. -0.07 0.41 1

DY -0.29 0.09 0.56 1

Gr. I.P. -0.07 005 -0.11 -0.11 1
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Table 1.3: Conditioning information (B/M portfolios).

The table reports the

coeflicients by; and by; from the estimation of Equation (1.7) in the text: R;1y1 =
;b i R ep1 + (b’l’izt)Rm,H_l + u; t41. The dependendt variables are the excess returns on
B/M deciles portfolios. The z; variables are the monthly T-bill rate (t-bill), the dividend

yield (div_y), the growth rate of industrial production (gr-ip), the term spread (term)

?

the default spread (def). The data are at monthly frequency from 7/1926 to 12/2000.

T-statistics in parentheses.

Decile 1 4 7 10
Panel A: 1926-2000
bo 0.97 0.95 1.12 1.56
-(47.52) -(45.88) -(42.48) -(30.07)
t_bill 0.22 (.08 -0.41 -0.97
-(4.36) -(1.58) (-6.08) (-7.27)
div_y -0.61 0.66 1.52 4.73
(-0.74)  -(0.79) -(142) -(2.23)
grip -1.01 0.39 0 3.36
(-2.68)  -(1.03) (0.00) -(3.49)
term 0.01 0.006 0.11 -0.04
-(1.02) -(0.57) (-0.48)  (-1.58)
def -0.02 0.08 0.09 0.1
(-1.61) -(4.74) -(5.01) -(2.18)

continued on nezt page
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Decile 1 4 7 10
Panel B: 1926-1962
by 0.89 0.93 1.12 1.94
(28.89) (25.87) (21.98) (16.90)
t il 1.01 0.22 -0.46 -4.38
(4.24) (0.81) (-1.19) (-4.93)
div_y 0.02 0.49 0.09 -0.51
(0.03) (0.53) (0.08) (-0.17)
gr_ip -1.01 0.53 -0.14 3.37
(-3.12)  (1.40) (-0.27) (2.78)
term 0.04 0.01 0.08 -0.35
(1.32) (0.45)  (1.64) (-3.11)
def -0.04 0.08 0.07 0.31
(-1.89) (3.15) (1.96) (3.54)
Panel C: 1963-2000
bo 1.01 0.85 1.44 2.09
(8.05) (7.18) (11.27) (il.11)
t_bill 0.15 0.24 -0.83 -1.58
(0.82) (1.32) (-4.20) (-5.43)
div_y -0.54 1.63 10.06 22.31
(-0.22) (0.70)  (3.95) (5.96)
gr-ip 2.76 -4.39 -3.17 -7.22
(1.12)  (-1.89) (-1.26) (-1.95)
term 0.02 0.02 -0.05 -0.07 -
(1.32) (1.54) (-2.84) (-2.42)
def 0.01 -0.03 0.12 0.06
(0.22) (-047) (1.59) (0.57)

62




. g e R e RO —t

Table 1.4: Conditioning information (Size portfolios). The table reports the co-
efficients bg,; and by; from the estimation of Equation (1.7) in the text: Ri;41 = i+
bo i Rem,tv1 + (ba’izt)Rm't.H + U ¢41. The dependendt variables are the excess returns on size
deciles portfolios. The z variables are the monthly T-bill rate (¢_bill), the dividend yield
(div_y), the growth rate of industrial production (gr_ip), the term spread (term), the de-
fault spread (def). The data are at monthly frequency from 7/1926 to 12/2000. T-statistics
in parentheses.

Decile 1 4 7 10
Panel A: 1926-2000
bo 1.53 1.24 1.17 0.94

(21.99) (35.71) (58.29) (101.95)

t_bill -0.80 -0.23 -0.18 0.00
(-4.47)  (-2.62) (-347) (-0.04)

div_y -0.41 -5.07 -3.60 0.43
(-0.14) (-3.55) (-4.35) (1.12)

grap 8.15 3.46 0.75 -0.21
(6.32)  (5.40) (2.03) (-1.20)

term -0.07 -0.01 -0.01 0.00
(-1.83) (-0.34) (-1.07)  (-0.92)

def 0.26 0.17 0.10 -0.01
(4.24) (5.62) (5.40) (-1.80)
continued on nert page
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Decile 1 4 7 10
Panel B: 1926-1962
bo 1.88 1.45 1.33 0.92
(11.93) (20.92) (33.72) (74.10)
t_bill -4.31 -2.57 -1.74 0.29
(-3.54) (-4.80) (-5.68) (3.01)
div_y -4.24 -7.96 -5.70 0.94
(-1.04) (-4.44) (-5.59) (2.96)
gr_ip 8.29 3.59 0.79 -0.22
(6.01)  (4.90) (1.89) (-1.72)
term -(.37 -0.19 -0.13 0.00
(-2.39)  (-2.78) (-3.34) (0.23)
def 0.46 0.30 0.18 -0.02
(3.84)  (5.73) (5.81) (-2.51)
Panel C: 1963-2000
bo 1.77 1.55 1.27 0.89
(6.62)  (9.14) (13.06) (13.77)
t bl -1.07 -0.61 -0.28 0.06
(-2.59) (-2.33) (-1.85) (0.60)
div_y 6.25 5.15 2.20 -1.25
(1.18)  (1.53) (1.14) (-0.97)
gr_ip -4.05 -6.69 -6.62 2.34
(-0.77)  (-2.01) (-3.46) (1.84)
term -0.10 -0.03 -0.02 G.00
(-2.29)  (-1.22) (-1.36) (0.40)
def 0.15 0.00 0.05 0.02
(0.94) (0.02) (0.76) (0.42)
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Table 1.5: Beta decomposition (B/M portfolios). Estimates from the following de-
composition of beta for B/M decile portfolios: G;m = Baim — Brm — Beiym- Bim is the
portfolio beta computed using portfolio and market excess return innovations. Big,y, is the
dividend news component of beta. Bi.m is the expected return news component of beta.
Br.m is the real interest rate news component of beta. T-statistics in parentheses.

e e e e (R Y R ert vt rmerm ve & 3 wr

Decile 1 4 7 10
Panel A: 1926-2000
Bim 1.04 1.06 1.10 1.29
(52.06) (55.72) (40.61) (27.93)
Bidm  0.56 0.17 0.18 -0.10
(21.21)  (4.36)  (4.01)  (-1.27)
Biem = -0.49 -0.89 -0.93 -1.39
(-17.17) (-17.68) (-19.63) (-20.69)
Grm 0.01
(0.39)
Panel B: 1926-1962
Bim 0.95 1.14 1.20 1.44
(46.14)  (51.50) (33.93) (22.65)
Bidm 0.37 0.57 0.43 0.21
(8.00) (15.17) (7.59)  (2.13)
Bieqn ~ -0.64 -0.63 -0.83 -1.28
(-10.61) (-10.38) (-12.33) (-13.89)
Brm 0.06
(1.74)
Panel C: 1963-2000
Bim 1.15 0.98 0.89 0.85
(27.50)  (27.35) (20.29) (14.38)
Bidm 1.15 -0.80 -0.32 -0.92
(12.59)  (-6.98)  (-4.10)  (-7.46)
Bie,m 0.28 -1.50 -0.94 -1.49
(3.47) (-14.81) (-18.15) (-16.81)
Brm -0.28
(-16.68)
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Table 1.6: Beta decomposition (Size portfolios). Estimates from the following de-
composition of beta for Size decile portfolios: Bim = Baim — Orm — Beim- Bim is the
portfolio beta computed using portfolio and market excess return innovations. Bidm is the
dividend news component of beta. B m is the expected return news component of beta.
Brm is the real interest rate news component of beta. T-statistics in parentheses.

Decile 1 4 7 10
Panel A: 1926-2000
Bim 1.50 1.23 1.14 0.94 .
(29.05) (44.07) (64.74) (105.13)
Bid,m 0.26 0.14 0.23 0.40
(3.47)  (259)  (5.94)  (1847)
“Biemn  -1.25 -1.10 -0.92 -0.55
(-20.25) (-20.20) (-20.30) (-17.61)
Brm 0.01
(0.39)
Panel B: 1926-1962
Bism 1.60 1.27 1.14 0.93
(23.69) (39.67) (54.18) (136.41)
Bid,m 0.48 0.45 0.41 0.45
(4.57)  (6.96)  (8.12)  (13.689)
Biem  -1.18 -0.88 -0.80 -0.54
(-12.59) (-12.39) (-12.60) (-10.32)
Brm 006
(1.74)
Panel C: 1963-2000
Bim 1.36 1.23 1.14 0.93
(15.09) (22.58) (34.31)  (44.62)
Bid,m 0.39 -0.33 0.06 0.08
(3.48)  (-2.89)  (0.94)  (2.69)
Bieqmn  -0.69 -1.28 -0.80 -0.57
(-18.44) (-17.22) (-26.07) (-31.46)
Brm -0.28
(-16.68)
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Table 1.7: Linear trends in beta and its components. The table reports OLS es-
timates on the time trend from the model 8, = vy + mtrend; + ;. The series §; comes
from twentyfive-year rolling regressions. [3; is in turn: the overall portfolio beta obtained
from excess return innovations (8;m), the dividend news component of beta (B;qm), the
expected return news component of beta (5. ), the real interest rate news component of
beta (Z;m). The T-statistic (in paretheses) is computed using the Newey-West estimator
with 99 lags of autocorrelation.

Decile 1 4 7 10
Panel A: B/M Portfolios
Bim  0.002  0.000 -0.002 -0.006
(7.40)  (-0.12) (-8.39) (-14.26)
Biam 0000  -0.004 -0.003 -0.007
(-0.22)  (-7.63) (-4.72) (-12.56)
Biem  -0.001  -0.003  0.000  0.000
(-0.85)  (-4.03) (-0.04) (0.34)
Panel B: Size Portfolios
Bim  -0.005  -0.002 -0.001 0.0003
(-14.83) (-10.20) (-4.24) (2.34)
Biam  -0.009  -0.007 -0.004 -0.003
(-6.65)  (-9.39) (-8.29) (-3.55)
Biem  -0.002  -0.004 -0.002 -0.002
(-1.97)  (-4.08) (-2.82) (-1.77)
trend in G, = -.001 (-2.68)
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Chapter 2

Learning About Beta: An
Explanation of the Value Premium

(joint with Tobias Adrian)

2.1 Introduction

Since its invention by Sharpe (1964) and Lintner (1965), the Capital Asset Pricing Model
(CAPM) has experienced varying fortune. While the early tests (Black, Jensen, and Sc-
holes, 1972, Fama and MacBeth, 1973) established its empirical success, the model was still
unknown to large part of the financial industry. However, right when the model started to
become widely used by practitioners, the academic profession discovered its first empirical
failures (Basu, 1977, Banz, 1981) .

Fama and French (1992, 1993) present the most dramatic of these failures. They show
that market risk, as measured by beta, does not explain the cross-section of average returns
for portfolios sorted on size and book-to-market (B/M). In particular small stocks pay a
premium relative to the prediction of the CAPM (‘size anomaly’), and so do value stocks
(‘value puzzle’).

The response to this discovery has produced different strands of literature. Fama and

French (1993, 1995, 1996) propose a risk based explanation, where the size and B/M factors

proxy for some underlying distress risk, to which small and value companies are subject.
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This explanation is backed by the theory of multifactor asset pricing models, such as Mer-

ton’s (1971) Intertemporal CAPM, and Ross’s (1976) Asset Pricing Theory.

On the other hand, authors in the ‘behavioral’ literature suggest that characteristics,
rather than risk, are priced in equilibrium. Daniel and Titman (1997), for example, argue
that investors have an exaggerated perception of the riskiness of these portfolios, and require

a premium to hold them.

More recently, Lettau and Ludvigson (2001) have produced favorable evidence for the
version of the CAPM that is implied by the Consumption CAPM of Breeden {1979). In
particular, they argue that the CAPM holds under conditional probability distributions.
Hence, the correct empirical implementation of the model requires the use of scaléd factors,

i.e. risk factors multiplied by some appropriate state variables.

So much attention around the CAPM is justified on the grounds that the simplicity of
the model makes it theoretically appealing. Moreover, the fact that market participants
have widely adopted the CAPM, makes it more puzzling that empirical studies reject it as

an equilibrium model. So, why does the CAPM not work well empirically?

We propose an explanation that contains elements of the different strands of literature
cited above, but at the same time is innovative, as it draws on new evidence concerning
the behavior of value stocks. Specifically, we refer to the recent paper by Franzoni (2002),
which shows that the loading on the market factor for value and small stocks has decreased
significantly for the i)ast sixty years. More precisely, the beta of these portfolios has dropped
by about 75%, from 2.2 in the early forties to below 0.55 in the nineties.

It may be a coincidence that the portfolios that created the biggest problems for the
CAPM, are also the ones that experiénced a major decline in their riskiness. However, we

believe that there is a relation between the two events, and we support our belief with the
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evidence in Pigure 2-1, which reproduces Figure 11 in Franzoni’s (2002) paper. The graph
shows that the intercepts (alphas) from rolling window regressions for value stocks become
significant in the sixties, right after the estimated beta declines drastically, and they keep
increasing as belta goes down. The correlation between the two series is about -50%. Since
alpha is a measure of mispricing, the figure suggests that the emergence of mispricing is

related to the decline in beta.

The theory that we develop in the paper provides an intuition for this evidence. In
an environment where the loadings on risk factors change dramatically, investors may not
know the exact riskiness of the portfolios that they are going to hold. Consequently, they
need to form beliefs about the betas, and these beliefs are affected by the past levels of
the loading. Moreover, as the riskiness of value stocks has been decreasing over time, it
is likely the case that investors’ expected beta is significantly higher than the actual beta.
The implication is that while investors require an expected return that is proportional to
the riskiness they perceive, the econometrician observes a premium in excess of the realized

riskiness of these stocks, and the CAPM is rejected.

We develop this argument through an equilibrium model of learning, with unobservable
and time-varying factor loadings. In the model the CAPM holds under investors’ subjec-
tive probability distribution. However, an econometrician, who looks at realized returns,
observes positive mispricing relative to the CAPM, whenever the expected beta is above
the actual beta. A further implication is that idiosyncractic risk contributes to determine
the equilibrium expected return through its effect on the expected factor loading. Idiosy-
incratic risk operates as noise, which affects the speed of learning, and the discrepancy

between expected and true factor loadings.

We simulate the model under different assumptions on the procéss of the loading, and
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on investors’ information set. In the best performing simulations we manage to account for
about 80% of the ‘value premium’. We obtain this result with a very plausible choice for

the underlying parameters.

Our theory has elements of the Lettau and Ludvigson’s (2001) explanation, and more
generally of the conditional CAPM literature, as it stresses the importance of looking at
conditional moments of the return distribution. It is also related to the foundation of the
behavioral theories that argue that characteristics are priced in equlibrium (Daniel and
Titman, 1997), because investors misperceive the riskiness of value stocks, although in our
model this is the outcome of rational learning. Finally, like in Fama and French (1993), value
stocks, and more generally all portfolios for which factor loadings change dramatically over
time, expose investors to an additional source of risk. In our model, however, the additional
risk is not due to a systematic distress factor, but to idiosyncratic estimation risk, and it is

not priced ex-ante, but it appears ex-post in the empirical tests.

Learning in a symmetric information setting was first treated in the seminal paper
by Gennotte (1986). Gennotte (1986) demonstrates that the optimal portfolio problem
under incomplete information can be separated into a learning problem and a maximization
problem under the Bayesian posterior distribution, an approach that we adopt as well. More
recently, Brennan and Xia (2001) employ a learning model to explain the equity premium
puzzle. In their model, the drift of the aggregate dividend process is unobservable. Investors
update their belief about the true drift of the dividend process, which leads to a learning
premium in aggregate asset prices. The calibration of their model accounts for part of
the equity premium. In our model, we focus on cross-sectional asset pricing anomalies, and
calibrate parameters, in particular risk aversion, to reproduce the observed equity premium.

The aggregate equity premium is not the focus of our paper.
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The learning paper trha,t we believe to be most closely related to ours is the one by
Lewellen and Shanken (2002). They assume that the mean of the dividend process is unob-
served. Their paper accounts for both predictability and excess variance of returns (Shiller,
1981). Ex-ante investors use all the available information, so there are no arbitrage op-
portunities. Predictability results as the ex-post effect of Bayesian updating of investors’
beliefs on the unobservable mean of the dividend, and it is detected only by the econome-
trician, who looks back in time. Excess volatility is also the consequence of learning, as new
realizations of the dividend cause investors to constantly revise their beliefs. Lewellen and
Shanken (2002) explain cross-sectional anomalies as the result of learning on fundamen-
tals. Our approach, instead, focuses on learning about riskiness, in an gpvironment with

time-varying factor loadings.

Other papers have focused on the portfolio allocation problem for investors with incom-
plete information. In Barberis (2000), investors are unsure whether returns are predictable
or not. This uncertainty leads to an excessive allocation of wealth to stocks, and this al-
location is larger, the longer the investment horizon. Barberis (2000) does not address
cross-sectional implications of incomplete information, which is the focus of our paper. Fi-
nally, Pastor (2002) examines the Bayesian decision problem of investors who are unsure
whether the CAPM holds. One of the alternatives to the CAPM that Pastor (2002) consid-
ers is the multifactor model proposed by Fama and French (1993). Pastor (2002) finds that
even if an investor strongly believes that the market portfolio is mean variance efficient, he
should invest a substantial amount of her wealth in value stocks. Unlike our paper, Pastor
(2002) does not examine the reasons for the premium generated by the value portfolio, he

takes this premium as given.

This paper is organized as follows. In Section 2.2 we develop a model of learning
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about time-varying factof loadings. We derive the CAPM as the equilibrium in the model,
and compute the population analogs of the moments estimated by the econometrician. In
Section 2.3 we describe our strategy for simulating the model, and present the simulation
results. In Section 2.4 we modify the original model and let investors learn about the long
run level of the factor loading as well. We also present results of the simulations for this
different version of the model. Finally, in Section 2.5 we draw the conclusions of this work,

and propose directions for future research.

2.2 The model

The conditional asset pricing literature has provided extensive evidence that factor loadings
Chang'e over time !. This finding makes it is reasonable to believe that investors may not
have a precise idea of what the true riskiness of an asset is in the moment when they trade
it.

In a world with uncertainty about the relevant parameters, investors have to infer the
factor loadings from the observation of past returns and dividends. Depending on how fast
learning occurs, investors’ beliefs can diverge significantly from the truth, especially if factor
loadings keep changing.

Since investors’ expectations of factor loadings determine the risk premium required
to hold assets, it can be the case that the current value of the riskiness of a portfolio, as
measured by CAPM tests, does not entirely explain expected returns. This rejection of the
CAPM occurs even if the CAPM holds from investors’ ex-ante perspective. In particular,
if a portfolio beta has been decreasing, as in the case of value stocks (Franzoni, 2002),

and investors’ expectations are tied to the past high levels of beta, CAPM tests can detect

'Examples of empirical studies that document time-varying factor loadings are: Shanken (1990), Ferson
-and Harvey (1991), Fersen and Korajczyk (1995), Braun, Nelson, and Sunier, {1995), Lettau and Ludvigson
(2001), and Franzoni (2002). ‘
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a premium relative to the measured level of market risk. We will demonstrate that this
phenomenon can account for a relevant part of the so-called ‘value premium’.

The model that we present below intends to capture the idea that discrepancies between
expected and trﬁe factor loadings cause the econometrician to observe systematic deviations

from the CAPM, for assets whose riskiness is changing over time.

2.2.1 The set-up

We consider an overlapping generations economy. There is only one physical good, which
can be allocated to investment or consumption. We assume that there are N risky assets,

and a riskless agset. The dividend of stock 7 evolves according to a factor structure

dy = D' + z,b 4 &8 (2.1)

where the factor x; has zero mean and variance o2. The idiosyncractic component &
is uncorrelated across stocks. The realized processes of d; and z, are part of investors’
information set, but investors can not observe the factor loading b;.

The factor loading varies according to an auto-regressive process
ip1— B =F (b — B} +up (2.2)

where u},, is a white noise, uncorrelated across stocks, and uncorrelated with el We
assume for now that the long run mean of the loading B is known to investors. Later on
we will remove this assumption, and let the investors learn about B as well.

The investors’ inference problem can be solved by applying the Kalman filter to the
~system of equations (2.1) and (2.2) (see, e.g., Hamilton, 1994). Following Gennotte (1986),
we separate the learning problem from the portiolio optimization. In order to apply the

Kalman filter to this system with time-varying coefficients, we need to assume normality of

89




the disturbances conditional on information up to ¢t — 1 and on z, that is

glze, oy~ N(0,02)

Ut+1|$t)-[t—1 ~ N(O, 03) (2.3)

The representative agent lives for two periods and maximizes consumption in the second

period. The utility function is quadratic

A

u(Cer1) = Co1 — Ect2+1' (2.4)

The assumption of quadratic utility will allow us to obtain a CAPM even if the uncon-

ditional distribution of dividends is not normal.

2.2.2 The pricing function

The problem of the representative consumer is therefore

A
Max Eicip1 — EEt+1C§+1

s.t. Ct+1 = (1 + T)Wt + a(le + dt+1 - (1 + ’l")pt) (25)

where « is the N x 1 vector of quantities of stocks invested in each risky asset, p, and d;

are N x 1 vectors of prices and dividends.

The usual first order conditions apply

Ez(u’(ctﬂ)(}?tﬂ + dt+1)) = Et(ul(ct+1))(l + 7)pr. (2-6)

Replacing for the utility function gives

0

e e e ey s -t M = i e e mger mame  mmre e e e o e r e e - —————————— e e



Ey(pey1 -+ de1) — (L+7)py = AE; (coy1(pre1 + deva — (1 +7)p2) - (2.7)

The equilibrium condition is that total consumption is equal to total dividends

N N N
co=» d=ND+mz» b+) & (2.8)
i=1 i=1 i=1
where D is assumed to be the same across stocks, for simplicity.

We normalize the sum of the loadings to one, and we assume that the Law of Large

Numbers applies to the idiosyncratic components of dividends

b
m =
N
—Z’-’El—gt — 0 as N — oo (2.9)

The assumptions in (2.9) imply the following equilibrium condition

¢i =N (z; + D) (2.10)

which provides the interpretation for z; as the random component of the average dividend

at time ¢.

From now on we drop the superscript 7 for notational convenience, and all variables are
referred to a single asset 4, unless otherwise specified. Replacing (2.10) into the pricing

equation (2.7) we obtain

Eipiy1+ Fy (D + ber1Zeir + €r1) — (L+7)py

= ANE;((zs41+ D) (por1 + D+ byazegy + &4 — (1+7)pe)) (211)
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Let A= AN , and let bf be the time ¢ expectation of b,y; under investors’ information

set. Knowing that z; is i.i.d. with distribution f(0,¢?), the pricing equation becomes

Eipio1 + D — (1+r)py = ADEy(pry1) + AD* — AD(1 + 1)py

+AFE; (ze1p41) + AbSc? (2.12)

where we have used the assumption that ;4 does not contain any information about b1,

so that

By (byy12i41) = b§Eyryq = 0.

We prove in the appendix that under these assumptions the pricing function is (equa-

tion (A-2))

D Ac?

Pt = 7 - mbt (213)

Notice that (1 — AD) has to be positive for marginal utility to be positive at the expected
value of dividends. The asset price in equation (2.13) has the usual interpretation. The first
component is the expected discounted cash flow. The second component is the risk premium,
which depends on investors’ expectation of the risk factor loading, risk aversion, and the

factor’s volatility.

2.2.3 The CAPM

In this model the CAPM holds under the subjective probability distribution, i.e. the dis-

tribution of dividends as perceived by investors. In order to prove this result, we need to

compute returns. We look at absolute excess returns, defined as
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Rip1 = perr + dir — (L4 7)pegar. (2.14)

This definition implies that the return on stock i is

Ac? (1 +r)b§ — b 1)

Riyy = b 2.
t+1 = Te+10 + €141 + (1= AD) (2.15)
So that the expected return under investors’ probability distribution is
Ac?
ERyy = ———1¢. 2.
tilt+1 1_AD"t ( 16)
We define the absolute market return as the average of individual stock returns
T Ry
R™. = i= + . .
Hence, the absolute market return is
m Ac?
Rt+l = Ter1 + m (2.18)
due to the assumptions in (2.9). Moreover, the expected absolute market return is
Ad?
E.R = ————.. 2.

Now, in order to prove that the CAPM holds under the subjective probability distribu-

tion, we just need to show that

ﬁ — CO’Ut (R§+1, R?j—l)
t = ™
Var, (Rt+1)

=8 (2.20)
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In the appendix, we prove that the covariance term is
Cove (Ry,q, R7L,) = 02§ (2.21)

while the variance of the market return is simply o2 (see equations (A-3) and (A-5)).
Hence, the CAPM holds under the subjective probability distribution, and the market

beta is equal to bf, i.e. the expectation of the factor loading, conditional on investors’

information set. While we have derived the CAPM for absolute returns, it is straightforward

to show that it holds for relative returns as well.

2.2.4 Observed Mispricing

So far we have looked at investors’ beliefs, as they are the relevant lﬂ.robability distribution
for pricing. However, the properties of empirical tests depend on the objective probability
distribution. In an efficient market the two distributions should be the same, but this is
not the case when there is parameter uncertainty. As in Lewellen and Shanken (2002), also
in our set-up parameter uncertainty causes the econometrician to observe mispricing, while
from investors’ perspective markets are efficient.

To represent the econometrician’s point of view, we look at the objective probability
distribution, in which the process for b, is treated as observable, unlike under the subjective
distribution, where investors have to form beliefs about ;.

.In the time-series tests of the CAPM, such as the ones in Fama and French (1993), the
excess return on stock ¢ is regressed on the market excess return over some interval of time.
If the intercept in the regression is statistically and economically significant, the CAPM is
rejected. In the case of value stocks (fifth B/M quintile) Fama and French find a premium
of about 0.5% monthly over the 1963-1993 sample. This evidence, along with the finding

of a significant B/M factor in cross-sectional regressions, is referred to as ‘value premium’,
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In terms of population moments, the analog of the regression intercept is

& = E{Ri1— BEJRD,

= E{Ryp1— EiRey + (6 — B)E:R, (2.22)

where J is the population equivalent of the beta estimated by the econometrician, whereas
g is thé subjective beta. The subscript o denotes moments of the objective distribution.
Note that this population moment is the limit in a repeated sampling thought experiment,
where the average of the estimated premia is taken. To obtain this expression, we used the
fact that the market return has the same expectation under the subjective and objective
distributions. We refer to & as to the estimated mispricing.‘

In order to compute the mispricing, we need to provide an expression for the estimated

beta

B, = Covy (R§+1’Rﬁ1).

2
Varg (RE-I) (228)

In the appendix (see equation (A-6)) we prove that if the distribution of z; is symmetric,

then the covariance is simply
Cov} (Riy), RT,) = be1o?, (2.24)

The variance of the market return is ¢, the same as under the subjective probability
distribution. So, the theoretical value of the estimated beta coincides with the true factor

loading

B = by (2.25)

The other component of the estimated mispricing is the difference between objective
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and subjective expected returns

(67 — brt1) A FPi1paiy,
E’Ry 1 — ERiy = E? 2.26
e t r(l-AD) ¢ 22, Pyyy) + 02 (226)

where By ), is the mean squared forecast error from the prediction of by, made at time ¢.
Since P, ) is positive the expectation in equation (2.26) is clearly larger than zero.

To obtain equation (2.26) we have used the fact that the updating formula for b, is
bir1 = B+ F (bf — B) + K(z141) (g1 + bey1sy1 — biTit1) (2.27)

where

FP
K (mu) =

Q31?4-11:’7:+1|1: + o2
By replacing equations (2.20), (2.23), and (2.26) into (2.22) we obtain the final expression

for the estimated mispricing

Ny G
ay = (bt — bt+1) (l -+ Tt) E ?—1&-1 (2.28)

where

Fz2 P,
Gt=E,§’( t+1478+1)¢ )

$t2+1Pt+1|t + o?
and G, is positive.
From equation (2.28), it is evident that whenever investors’ belief of the factor loading

is abave the true level, the population equivalent of the observed mispricing is positive.

In conclusion, the bottom line of this model is that even if the CAPM holds ex-ante, the
empirical tests can still reject CAPM, as a result of the discrepancy between the subjective
and objective probability distributions. In particular, the tests can find a premium, if

investors’ belief of the factor loading is higher than the true value. .Moreover, it is the case
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that idiosyncratic risk contributes to determine equilibrium expected returns, as it affects

the learning process, and contributes to determine the difference between bf and byy1.

The next section presents the results of simulations aimed at assessing whether the
theoretical result derived in this model can account for a relevant fraction of the ‘value

premium’.
2.3 Simulations

The first issue that one faces when simulating the model is the choice of the risk factor. If we
took the model literally, the natural choice for the factor would be aggregate consumption.
On the other hand, the ‘equity premium puzzle’ literature started by Mehra aﬁd Prescot
(1985), has pointed out that the correlation between consumption and market returns is
not enough to explain the expected return on the market. In other words, for plausible
levels of risk aversion consumption risk is just too low to explain the realized returns on
risky assets.

In terms of our simulations, using consumption as risk factor would produce returns
that are not volatile enough compared to actual market returns. It would then be difficult

to establish a connection between the simulated variables and the real ones.

A related issue is what interpretation to give to the dividend process in our model.
Dividend news are not volatile enough as to justify the volatility of realized returns (Shiller,
1981, Campbell and Shiller, 1988). Hence, dividends in our model must be interpreted in a
broader sense, as all sort of news that are relevant for investors’ wealth.

Although recent literature (Lettau and Ludvigson, 2001) has provided evidence that
the consumption CAPM can be a valid asset pricing model once scaled factors are taken

into account, we believe there is a more direct way to implement our model, In particular,
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we will assume that x; is the projection on the space of asset returns of some unspecified
meta-factors that are relevant for asset pricing. Consequently, equation (2.18) allows us to
set x; equal to the de-meaned excess market return.

Our choice ‘of the risk factor does not deal with the equity premium and volat»ility
puzzles. On the other hand, this does not interfere with our exercise, as we intend to
explain cross-sectional anomalies.

We ﬁse monthly return data from July 1926 to December 20002. The market return is
computed as the value-weighted portfolio of the universe of stocks in CRSP. The data set
also contains returns on B/M decile portfolios, formed as in Fama and French (1993).

The model allows us to normalize the price of the market portfolio to one. This nor-
malization implies that the relative market return is equal to the absolute market return,
while the relative portfolio returns are equal to the absolute returns times the weight of the
portfolio in the market.

It follows that o can be set equal to the volatility of the excess market return, which in
our data is 5.5% monthly. The parameter A is determined by setting the theoretical equity
premium in equation (2.19) equal to the realized equity premium (0.68% monthly). The
risk free rate r is set to its average realized value of 0.31%. Finally, from the normalization
of the market price we deduce that D has to be equal to the mean excess market return
plus r. Its value is therefore 0.99%.

In our simulations we will focus on the returns of value stocks, defined as the tenth
B/M decile portfolio. This choice drives us in the specification of the variance of e, that
represents the noise in the observational equation in the Kalman system (equation (2.2)).

Its variance is not a free parameter, because &; is also part of the idiosyncratic risk of stock

*The data can be obtained from Ken French’s website.
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returns (equation (2.15)). Hence, we set o2 to the level such that the R? in the CAPM

regressions is about 70%, which is the approximate level for value stocks.

In order to generate a path for the underlying factor loading, one could generate series of
disturbances u;. However, it is very unlikely that we would obtain a series of factor loadings
that is decreasing in a similar fashion to the observed estimates of beta for value stocks.
Hence, given that our goal is to explain the effect on the value premium of a particular

decreasing realization of the factor loading process, we need to adopt a different strategy.

equation (2.25) in the model tells us that the theoretical value of the estimated beta
is equal to the underlying factor loading. This result suggests the simulation strategy of
setting the realized process for b, equal to the estimates of beta. These estimates are
obtained from five-year rolling window regressions with one-month increments (for details,
see Franzoni, 2002). In this way, we let the data tell us what the realizations of Uy are.
Investors learn about a realization of factor loading that is clearly decreasing. Accordingly,
a sensible choice for o2 comes from looking at the residuals of a regression, in which we fit

an AR1 process to the estimated betas.

A separate issue is the choice of F', which is a crucial parameter in the learning process,
and as such deserves more care. The estimate of F' from an AR1 process for the betas
is 0.99, and a Dici«:ey-Fuller test does not reject the hypothesis of a unit root. However,
the estimated F' could be far from the true underlying parameter, as it could be strongly
affected by the overlapping windows that we use in the estimation of beta. Also, it can be
different ﬁoﬁ what investors expect F' to be, which is what matters in the learning process.
Therefore, we carry out our simulations for different values of F. In particular, we will let

F vary between 0.9 and 1. Values of F below 0.9, do not affect the results.

The main updating equation is given in (2.27). Also, the mean squared forecast error
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evolves according to
Pt+1lt = (1 - K (.’L't) .',Et)Z Pt|f.—1 + K(ﬂ:t)z 0'3 + 0'121. (229)

We take as initial condition for Py}, the squared standard error of the estimate of beta
in the first window of the sample. The initial condition for &% is equal to the estimate of

beta in the same window. The choice of the initial conditions turns out not to be crucial.

Hence, equations (2.27) and (2.29) produce investors’ expectation of the factor loading,
which is then used in equation (2.15), along with randomly generated €’s, to create a series
of monthly portfolio returns. The simulated returns are then regressed on the market excess
return to obtain a series of alphas that will be compared with the alphas coming from the

CAPM rolling window regressions on real data.

The first case we consider is when F = 1, 1.e. the factor loading follows a random walk.
Figure 2-2 plots the average series of expected loadings 6§ from 250 repetitions. The graph
also plots the estimates of beta from real data, which coincide with the true underlying
factor b;y1. As a result of learning, the expected loading is above the true loading for most

of the sample, and in particular when b4 is decreasing?.

According to equation (2.28) in our model, this situation should cause the econome-
trician to observe a premium relative to the measured riskiness of the portfolio. However,
when I = 1 investors update their beliefs very quickly, so that the expected loading is not
far enough from the true loading as to generate a premium. Consequently, while the series
of alpha from real data is significantly different from zero starting from the late sixties, over

the same interval of time the alpha from simulated data is significant only at the end of the

3For this parameter choice, as well as for all the others, it is the case that the beta estimated on simulated
‘data is decreasing in a similar fashion to the underlying factor loading, and to the beta estimated on real
data. ‘
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nineties. Figure 2 — 3 graphs this situation.

Table 2.1 provides summary statistics on the ability of the simulated data to explain
the observed mispricing out of 250 repetitions. In particular, we report the percentage of
average simulatéd alphas that are significant in the windows when also the real alphas are
significant (Column 1), the average fraction of mispricing explained in those occurrences
(Column 2), and the explained share of the intercept in the regression on the 1963-2000
sample (Column 3) 4. Consistent with the evidence in Figure 2 — 3, the first row of the table
shows that when F' equals 1 the average alpha estimated on simulated data is significant in
only 5% of the windows in which the alpha from real data is significant (Column 1).

To generate signiﬁcqpt premia we need the expectation of the loading to be sufficiently
distant from the truth.

This is more likely to be the case if F' is smaller than 1. When the process for the
loading is mean reverting, investors’ expectations give weight also to the long run mean
B, which instead does not matter if /° equals 1. Hence, depending on the level of B, the
expected factor loading can be well above the true one over most of the sample.

For now we are assuming that investors know the value of B. This assumption can be
justified by saying that investors have clear in their minds what the long run value should
be, towards which the factor loading has to converge. Later on, we will let them learn
about B as well. It is worth presenting the results with known B, in order to understand
the simple effect of mean reversion on the speed of learning. The choice of B turns out to
be crucial. Therefore, we carry out the simulations for different levels of B.

As one might expect, when F is below 1, the higher is B, the higher are the alphas that

we manage to generate. The intuition is straightforward. When investors believe the factor

*We look at this sample, because also Fama and French's (1993} sample starts in 1963, and we have data
until the year 2000.
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loading is going to mean revert, their expectation of b;;; tends to adhere to the long run
mean. If B is high, then b} tends to be on average higher than the realized factor loading.

Hence, the econometrician observes higher premia.

On the other hand, a decrease in F' moves the b} series away from the b, series, and
closer to B. Therefore, if B lies mostly above the realized factor loading, the econometrician
tends to observe positive and significant alphas. Instead, when B is low, a decrease in F

has the opposite effect.
These results are displayed in Figures 2 — 4 through 2-11, and in Table 2.1.

In Figures 2 — 8 and 2 — 9, for example, we constructed the series assumingl F =097
and setting B = 1.27, which corresponds to the average estimated beta for value stocks.
The series of expected factor loadings appears to track less closely the true loading than in
the case of random walk. Also, since the long run mean is high enough, the alphas tend
to be significant starting from the sixties, although still far from the real ones. In fact,
from Table 2.1 we infer that although the series of simulated alphas is.significant 8§1% of
the times in which the real alphas are significant (Column 1), the average fraction of the

observed mispricing that we can explain is only 21% (Column 2).

In order to obtain levels of mispricing that are closer the ones that are observed, we néed
to assume that investors believe the long run mean to be higher. For example, Figure 2-
11 shows that with B = 1.5 and £ = 0.97 the alphas estimated on simulated data are
much closer to real ones, over the relevant period that starts in the late sixties. Moreover,
Table 2.1 tells us that for this choice of parameters the simulated alphas are significant
100% of the times when the real alphas are significant, and in those occurrences the ratio of

simulated to real alphas is on average 39%. Also, the estimated premium in the 1963-2000

subsample is 0.30% monthly for the simulated data, which represehts 68% of the 0.44%
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monthly premium estimated over the same period on real data (Column 3).

A value of B equal to 1.5, although significantly higher than the average estimated beta,
is not implausible considering that the historical peak of the estimated beta for value stocks
is about 2.2, which was reached in the early forties. Moreover, a level of F' below 1 is totally
justifiable, as it is hard to believe that factor loadings will drift away without ever reverting

to some long run mean.

In the next section, we will let investors learn about the long run mean, and we will
be able to explain sizeable amounts of the observed mispricing, almost irrespective of the

assumed value for B.

2.4 Learning about the long run mean

2.4.1 The model

To work under more realistic assumptions about investors’ in-formation set, we modify the
original model and let them learn about the long run mean of the factor loading as well.
Most of the set-up of the model in Section 2.2.1 still applies here. In particular, the factor
loading still evolves according to equation (2.2), but now B is unknown. So, the state
equation in the Kalman Filter, which describes the evolution of the unobservable variables,

is actually a system of two equations

1= F& + v (2.30)
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where

B
& =
| b
. 1 0
F =
1-F F
0
I =
Ut

and the usual distributional assumption on u applies®.

By taking expectations of the system in (2.30) under the subjective probability distri-

bution, we can state that

By = (1-F)Bf+ F

E.Bf,, = B¢ (2.31)

Using similar arguments to Section 2.2.1, in the appendix we prove that the new pricing

function for asset 7 is

D Ac? (1~F)B§>
pr=— - P

r T U+r=F) (1= AD) (b§+ ;

(2.32)

which is the same as in the previous model except that B is replaced with investors’ expec-

tation.

SNote that if F equals 1, the factor loading follows a random walk and learning about the long run mean
"B becomes irrelevant. In that case the model would coincide with the model in the previous section for the
case where F equals 1.
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Similarly, absolute excess returns are

Ac? (1 +7 . Bf(1-F
Riyn = b + 641 + ( ) (bt + Bi(l=F)

(14+r—F)(1—- AD) T
Ac? e f (1= F)
T (l+r—F)(1-AD) (bﬁ+1+ lr )

So that expected returns are the same as in the previous model

Ac?

EiRi) = A=A4D)

b

(2.33)

(2.34)

Along the lines of Section 2.2.1 we can prove that the CAPM holds in this model as well,

and the market beta computed under the subjective probability distribution &; is equal to

the expected factor loading bf, as in equation (2.20).

We now turn to considering the econometrician’s point of view, i.e. we look at the
P )

moments of the objective probability distribution, where b; and B are treated as known.

Again, we want to provide an expression for the population analog of the estimated mis-

pricing (equation (2.22)). As in the previous section, it can be shown that the population

equivalent of the estimated beta B; coincides with the true factor loading by, ;.

In the appendix we use this result to derive the estimated mispricing, which turns out

to be

rFmao+ (1—F)(1+7)m o
r(l+r—F)

Gt = (b — bev1) (1 + Ht) EyRyY

where

’ y t+1 [

and 7; ; is the element on the i-th row and j-th column of FPiiq)t- In particular
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T2 = E((B - Bf){bs1— b))

Moo = E (b1 — b)%.

So, it is still the case that the mispricing is proportional to the difference between the
expected and the true factor loading. The sign of the factor of proportionality depends
on 7o, which is positive, and m 9, which can take either sign. The simulations that we
present below, will show that, as in the model with known B, the mispricing is clearly an
increasing function of the difference between 5§ and b,,,. This evidence suggests that when
the falctor loading is trending down, it is the case that the error in '_foreca.sting the long run

mean covaries positively with the error in forecasting the level of the factor loading.

2.4.2 Simulations

The simulation strategy for this model is analogous to the one we adopted in Section 2.3.
The only difference now is that we need generate two forecasts, one for b, ;1 and one for B,

using the following updating formula

§iv1 = F& + K(Z41) (ge41 + 341 (G — &) (2.36)
where
0
Iy =
Ti+1

FP 12

K (E:t+1) = .
— —
Ty o1 Py ®ee1 + o2

Also, Py, is a 2 X 2 matrix defined as

Py = E (641 — &) (61— &) (2.37)
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and its updating formula is given in Hamilton (1994).

We need to set initial conditions for both bf and Bf. We choose as initial condition
for b the beta estimated in the first five-year window of the sample, but this choice is not
crucial for our fesults The initial condition for Bf is not influential as long as it is high
enough for the path of expected B to be mostly decreasing. Therefore, we set it to 1.5, but
1.27 would not affect the results. The choice of 1 for B§, instead, would strongly weaken the
signiﬁcénca of our results. The initial conditions for P, turns out not to matter. Hence,
we set every element of P,y equal to the value of o2 in the simulations of the previous
model®.

The general result from the simulation of the model with unknown B is that the series
of expected factor loadings decreases more slowly relative to the model with known B.
Compare, for example, Figures 2-8 and 2-12, where the choice of parameters is F' = .97
and B = 1.27. In the latter graph, where investors learn about B, the decline in the b¢
is much slower, as this series is attracted towards the B series, which in turn declines
smoothly. This behavior is fairly insensitive to the choice of B and F , 88 one can see from
the comparison of Figure 2-12 (F = .97, B = 1.27) and Figure 2-14 (F = .97, B = 1).

The intﬁition for this result is again simple. In both models, when F is below 1, investors’
expectation of the factor loading tends to adhere to the long run mean. However, if they
do not know B, also the expectation of B is likely to be higher than the true value, and
this contributes to keep the b7 series well above b;+1. Moreover, the fact that investors do
not observe the long run mean B, makes their expectation of by, fairly insensitive to the

true level of B.

As one might expect, the consequence of this behavior is that the econometrician ob-

8Even the choice of negative values for the off-diagonal elements of Fiy1): would not affect the results.
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serves premia that are overall higher than the ones we presented in Section 2.3. This fact
can be inferred, for example, from the comparison of Figures 2-9 and 2-13.

Another way to assess the relative of performance of the model with unknown B, is by
looking at Tablé 2.2, which replicates Table 2.1 in the new set-up. The superiority of the
model with unknown B is overwhelming. For almost any choice of parameters, learning
about the long run mean produces more significant alphas, and explains a higher fraction
of the observed value premium.

Not only does this model perform well in relative terms, but also it has a striking ability
of explaining a large share of the observed mispricing. Look, for example, at the entries
of Table 2.2 for which F" equals 0.90. The average simulated alpha is signiﬁcantly positive
100% of the times when the real alpha is significant, irrespective of the underlying B. Also,
the average ratio of these alphas that the simulated series can explain is always well above
40%. Tinally, the fraction of the value premium in the 1963-2000 sample that we can
account for is between 70% and 80%.

The performance of the model is good also for higher levels of F. In fact the fraction of
the value premium in the 1963-2000 sample explained by the simulated data is never below
36% (Table 2.2, F = .99, B = 1.27).

In summary, the key to the success of our simulations is the combination of two elements:
a mean-reverting process of the factor loading (# smaller than 1), and an unknown long run
mean B. The first element seems to be justified on theoretical grounds by the belief that
factor loadings do not diverge in the long run. The assumption of an unknown long run
mean is totally consistent with an environment, where factor loadings undergo dramatic

changes over time, and investors have to learn about the underlying process”.

It has been remarked that a behavior of the series bt, such as the one described in this section, could
be generated by a model with adaptive expectations. To this purpose we have developed a variation of our
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2.5 Concluding remarks

The assumption that investors know the variance-covariance structure of asset returns is
especially implausible if this structure varies over time. Dramatic changes in factor loadings,
like the ones documented by Franzoni (2002) for value and small stocks, can cause investors
to continuously revise their expectations of the riskiness of an asset. Depending on the
speed of learning, and on the amount of noise in returns, these expectations can diverge
significantly from the true level. When the risk premia required by investors do not reflect
the underlying riskiness, the econometrician can observe mispricing. Hence, parameter

uncertainty may play a role in the explanation of some the CAPM failures.

We develop an equilibrium model with learning about time-varying factor loadings,
which captures this intuition. In our model the CAPM holds from investors’ point of view,
- but the econometrician observes mispricing, when the expected factor loading diverges from
the actual beta. In particular, after a decreasing realization of the loading process, such as
the one that characterized value stocks, the expected loading tends to be above the true
one. Asa consequence, investors require a risk premium that appears excessive through the

econometrician’s glasses, and which can cause the rejection of the CAPM.

set-up, in which the updating formula is simply

BS = Ay + (1 — A) b (2.38)

where XA is the parameter that determines the speed of learning. The details of this model can be provided
upon request. We simulated the model for several values of A. To obtain a series for investors’ beliefs,
which generates value premia comparable to the ones in the above simulations, we need a value of A between
0.99 and 1. The reason why we prefer our models of learning, is that adaptive expectations are difficult
to give a rational foundation in this environment. In fact, adaptive expectations are rationally justified if
the underlying process for the factor loading can be represented as the sum of a random walk and a MA1
process (see, e.g., Hamilton, 1994). Under these assumptions, for A to be positive, it has to be the case that
the first difference of the factor loading is negatively autocorrelated {intuitively, we give positive weight, to
our past beliefs, if the changes in the variable that we learn about tend to revert themselves). However,
this is not the case for the changes in estimated betas, for which the measured autocorrelation tends to be
positive. Hence, the optimal level of A should be smaller than zero, therefore very far from 0.99. For this
reason the adaptive expectation model is deprived of a rational foundation, and our fully rational model is
preferable.
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The simulation of our model points out that in order to produce levels of mispricing that
are close to the ‘value premium’, investors need not to update their beliefs too quickly. We
can achieve this result if the factor loading follows a mean reverting process, and if investors
have to learn about the long run mean of this process as well. The first condition assures
that the expectations of the loading is fairly stable in the face of new information, as it
tends to adhere to the long run mean. The second condition causes the belief of the loading
to decrelase slowly, while investors learn about the long run mean as well. Neither condition
seems implausible: factors loading are not likely to wander around without a hinge, but

investors may not know what value they will revert to, especially after dramatic changes.

So, under these assumptions, our model can generate statistically and economically
significant premia for value stocks. In particular, for some parameter values, we can explain

between 70% and 80% of the value premium in the 1963-2000 sample.

The immediate implication of our results is in line with the conclusions from the con-
ditional CAPM literature (see, e.g., Lettau and Ludvigson, 2001). The tests of the CAPM

that do not account for time-varying factor loadings are misspecified.

However, scaling the factors with state variables is not enough, because it does not
take into account investors’ inference problem. Since the CAPM holds only under the
subjective probability distribution, to correctly test the model the econometrician would

have to replicate the Bayesian-updating process of rational investors, as argued by Lewellen

and Shanken (2002).

This consideration suggests an ambitious direction for future research. Parameter un-
certainty 1s another source of risk to which investors are subject. In particular, estimation
risk is more serious for those portfolios, whose factor loadings tend to vary more dramati-

cally. Hence, the challenge is to build a multifactor pricing model that takes into account
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estimation risk, possibly as a function of how volatile factor loadings have been in the past.

As a preliminary step we will assess whether parameter uncertainty is related to the
good performance of the Fama and French three-factor model. More concretely, we intend
to look for a cor-relation between the B/M factor and the volatility of the factor loading for
value stocks. A significant correlation will provide additional evidence in favor of learning

as an explanation of the ‘value premium’.
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Appendix

Model with known B

In this appendix we derive the pricing function for the model with known B. A guess for

the pricing function is

pr = By + Bibt. (A-1)

Replacing this pricing function into the pricing equation (2.12), we obtain

By + Bibf + D — (1+7) Bo — (1 +7) Bib§ = ADBy + ADByb} + AD?
—AD (147) By — AD (1 +7) B1b¢ + AbSo?.

This equation has to hold for all values of b¢, so the coeflicients are determined by setting

the constant and the coefficient on b; equal to zero

By+D-—(147)By=ADBg+ AD?> — AD (1 +7) B.

The solution to this is

D
By = —.
T

The coeflicients in front of b7 give the following equation

By~ (1+r)By=ADB) — AD(1+71) By + Ao?

with the solution

Ag?

Bi=—"0 4py

So, replacing the coefficients into the pricing function (4 — 1)
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D Ac?

b T T - AD)

be | (A-2)

In order to check that CAPM holds under the investors information set (the “subjective”
probability distribution), the covariance of individual returns with the market return must

be computed

Cou; (Riy 1, R%q)

Ao? ((1+1)b§ — b%,,) Ac?
= C b + —
ot (It+1 t+1 -+ Eer1 + (1= AD) y Te41 + 1_ AD
(4 AU2 e
= 0"-2bt - mCO’Ut (bt+1’$t+1)
2
= o2 — A—UCovt (be + K(IEH_l)JTH_l (bt+1 - be) iL'H_]_)
* r(l1-AD) ' £
2
= O’Qbe - A—UCO'Ut (K(l'tJrl):Z?tJrl :ZIH_1) Et (bt+1 - be)
P r(1- AD) ’ ¢
= O'Qbf.

Therefore, the covariance is simply
Covy (Ryy, RTL)) = 0?85 (A-3)

where the third equality follows from replacing the updating rule for the conditional ex-
pectation of b;41, and the fourth one from the assumption that z;41 does not contain any

information on b. We introduced the following notation

FPt+1|t93t+1

K(z441) =
2711 Py + 02

and Fi,,); is the mean square forecast error for by 4.
The variance of the market return is simply:
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0 — AN?
VCLT‘t (R?—ll—l) = Vﬂ,?‘t (IH—I — m) = 0'2 (A_S)

In order to compute the average mispricing, we need to solve for the CAPM relationship

under the econometricians information set. The econometrician can only observe realized

data, which is, asymptotically, like conditioning on the true evolution of b. The covariance

of individual returns with the market under the econometrician’s “objective” probability

distribution is therefore

Covf (Ri1, B7Y1)

Ac? ((1 4+ 78 — 8¢ Ag?
Covy ($t+1bt+1 + &1+ (5 a —)AtD\ 1) s Tee1 + m)
. )
Ag?
bt-l—]_O'z —_ m(]m}f (bte+1,l't+1>
Ac?
bip10” — T_(l_—AD)COU{J (b + K(xe41)Te41 (begr — 0F) , xe41)
Ac? (byrq — bE
byp10” — . (g t_+AD)t)COUf (K(zt41)Te41, Te41)
Ac? (bg+1 - be) Pt+1|t$§ 1
b 2 _ t O o + .
te r(1—AD) o $?+1Pt+1|t +o? e

Assuming that z,y; is normally distributed, we can apply Stein’s lemma to the above

covariance. If # and 4 are normally distributed, then according to Stein’s lemma

Cov(f(),7) = E(f'(£))Cov(Z, 7).

In particular, we consider the first term in the covariance as a function of z, 1, so that

the the covariance hoils down to the variance of x4 times the expectation of the derivative:

Covf (Ri+1a Rtﬂjrl)

_ Adt (b b)

2
b = 4D)

Cy
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where

2Ty
Gy = Ef( 5 - 2) =0
(xt+lpt+1|t + Us)

because of the symmetry of the distribution of z,.;. Indeed, the assumption of Normality
is not even required. For the covariance term in the expression for Bt to be zero, we just

need the symmetry of the distribution of z441.

The objective covariance term therefore boils down to

Covy (R§+1,Rﬂ1) = byy10°. (A-6)

Model with unknown B
We now derive the pricing function for the model with learning about B. A guess for the

pricing function is

pt = Bo + Blbf + Bng. (A-?)

Replacing this pricing function into the pricing equation (2.12), we obtain

—'I‘Bo-’rBl(l—AD)(BE(].—F)+Fb§)+BZBf+D—(1+7‘)Blb§ﬁ(1+7‘)Bng

= ADBo+ ADByBf + AD? — AD(1+7) By — AD (1 +7) B1b — AD (14 7) ByBE + Abo?
Using the method of undetermined coefficients we now get three equations in three

unknowns. The first equation is

By+D— (1+7)By = ADBy+ AD? — AD(1+r) By
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which has solution

By =

ﬂ.|tj

The second equation is

Bi(1-AD)F — (1+r)By=-AD(1+7)B; + Ac*

and the solution is

The third equation is

Bi(1—AD)(1~F)+ By~ (1+71)By= ADB, — AD(1+1) By

with solution

BQ=(1—F)%.

So, replacing the coefficients into the pricing function (A-T)

bt = —
r

D Ag? .. (1—F)B§
r (l+r=-F)(1- AD) (bt+ ) (A-8)

In order to check that CAPM holds under the investors information set (the “subjective”
probability distribution), the covariance of individual returns with the market return must
be computed

We now want to prove the expression for the mispricing given in equation (2.35). Since
the population equivalent of the estimated beta ; coincides with the true factor loading
be+1, we just need to compute the difference between objective and subjective expected
returns. To this purpose we need to use the expression for returns in equation (2.33),

and the updating formula for the Kalman system given in (2.36). Then, the difference in
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expected returns becormes

E°Ryy1 — ERs

- e (v (5 B5) (i 500

_1iloAQD§
- (HT_‘;C)’ZH_AD) ((1 +7) (b§+w) - ((1—F)Bf+Fb§+ “‘%))

02 _ - . A 2 .
- (L+tr— I;;) (1- AD) ((Lf‘z + (1T—F)b’1) By (K(it+l)$t+1) (o1 - ‘St)) - ﬁbt

At (L7 = F)bf = (i + 95500 BY (K(80a)d) @ - &) 402
(1+r—F)(1 - AD)  1-AD

(1-F) L’l) E7 (K(Ft41)Z4 1) (67 — &41)

b

Ag? ,
T {I+r-F)(1-AD) (LQ’L

where we have introduced the notation

t1 = y 2=
0 1

while Z;41 and K (Z;41) are defined in the text.

Let 7, ; be the element on the i-th row and j-th column of P, ;. Then, given the above

definitions, we can write

Ac? (b8 — bii1) (1-F)(1+7r) 2
E?Ryp1—ERyy: = : F e B s
¢ 1i+1 t+i 1+r—F)(1-AD) M2t T ey 772,2$§+1 + o2

where the expectation is positive because 7 2 is the mean squared error for the forecast

of bt+1 .

Hence, the expression for mispricing becomes
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& = E{Ri1— ERy + (B — B)E:RT,

(b = bra1) Ao? (1-F)(1+7) ) 23
= Frpg 4~ 20T, Vpo(—Te1
(1+r—F)(L—AD) \' ™2 r T2 ) e, L o2

+(b; — bes1) B RT

rFma+ (1= F)(1+r)mg ( Tin ))
= (B — b)) EeRTL, (1 ’ —E
(b5 — be1) By t+1( r(l4+r—F) 228541 + 02

which coincides with equation (2.35) in the text.
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Table 2.1: Summary statistics (known B). The table reports summary statistics on
the average alhpa’s estimated on the simulated data when B is known out of 250 repetitions.
Column 1 reports the percentage of significant simulated alpha’s in the times when the real
alpha is also significantly different from zero. Both series are estimated with 10-year rolling
window regressions of the excess returns of value stocks on the market excess return in the
1926-2000 sample. The significance of the simulated alpha is computed using the standard
deviation across repetitions. Column 2 reports the average ratio between the simulated
and real alpha in the windows when both are significant. Column 3 reports the ratio of the
simulated alpha to the real alpha obtained from a single regression in the 1963-2000 sample.
In that sample the real alpha is 0.44% monthly.

0 ) &)
% signif. avg. ratio of @ ratio of o (‘63-°00)
=1 5 23 09
=9 B=1 3 24 05
=99 B=127 64 15 27
F=99 B=15 92 23 45
=97 B= 1 .51 0
=97 B=127 81 21 37
=97 B=15 100 .39 .68
=9 B= 1 .56 0
=.95 B=127 34 23 .39
=95 B=15 100 A1 .68
=90 B=1 1 .66 0
F=90 B=127 92 23 44

F=90 B=15 100 46 .80
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Table 2.2: Summary statistics (unknown B). The table reports summary statistics
on the average alhpa’s estimated on the simulated data when B is unknown out of 250
repetitions. Column (1) reports the percentage of significant simulated alpha’s in the times
when the real alpha is also significantly different from zero. Both series are estimated with
10-year rolling window regressions of the excess returns of value stocks on the market excess
return in the 1926-2000 sample. The significance of the simulated alpha is computed using
the standard deviation across repetitions. Column 2 reports the average ratio between
the simulated and real alpha in the windows when both are significant. Column 3 reports
the ratio of the simulated alpha to the real alpha obtained from a single regression in the
1963-2000 sample. In that sample the real alpha is 0.44% monthly.

(1) (2) (3)

% signif. avg. ratio of @ ratio of o (‘63-00)

F=9 B= 67 24 .39
=199 B=127 74 19 36
F=99 B=15 73 .23 41
F=97 B=1 160 38 .60
=.97 B=127 100 33 61
F=97 B=15 100 .35 65
=.95 B= 100 36 70
=95 B=127 100 33 .62
F=95 B=15 100 .44 73
=90 B=1 100 45 78
F=9 B=127 100 46 73
F=9 B=15 100 45 79
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Figure 2-2: True and expected factor loadings, F' = 1{known B}. The figure plots the series
of average expected betas (solid line) over 250 repetitions of the model with known B. The series
of the true underlying factor loadings is also reported (dashed line).

simulated alpha 0 e —— real alpha
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Figure 2-3: Simulated and real alpha, F =1 (known B). The figure plots the series of the
average alpha (solid line) over 250 repetitions of the model with known B. This series is the average
of the estimated alpha series from 10-year rolling window regressions on simulated data. The alpha
series estimated on real data for value stocks is also reported (dashed line). The 95% confidence
interval is plotted around the alpha from real data.
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Figure 2-4: True and expected factor loadings, F = .99 B =1.27 (known B). The figure
plots the series of average expected betas {solid line) over 250 repetitions of the model with known
B. The series of the true underlying factor loadings is also reported (dashed line).
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Figure 2-5: Simulated and real alpha, F = .99 B = 1.27 (known B). The figure plots the
series of the average alpha {solid line) over 250 repetitions of the model with known B. This series
is the average of the estimated alpha series from 10-year rolling window regressions on simulated
data. The alpha series estimated on real data for value stocks is also reported (dashed line). The

95% confidence interval is plotted around the alpha from real data.
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Figure 2-6: True and expected factor loadings, F' = .99 B'= 1.5 (known B). The figure
plots the series of average expected betas (solid line) over 250 repetitions of the model with known
B. The series of the true underlying factor loadings is also reported (dashed line).
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Figure 2-7: Simulated and real alpha, F = .99 B = 1.5 (known B). The figure plots the
series of the average alpha (solid line) over 250 repetitions of the model with known B. This series
is the average of the estimated alpha- series from 10-year rolling window regressions on simulated
data. The alpha series estimated on real data for value stocks is also reported (dashed line). The
95% confidence interval is plotted around the alpha from real data.

124




expectedy ———— true b

22— B
I
|

»
WA
vt oy n

11t it Tt T I Tt I T T 1T 1T 1 T 1 I i T 71 T
27 30 33 386 39 42 45 4B 51 54 57 80 63 66 62 72 75 7B B1 84 87 90 93 95 99

Figure 2-8: True'and expected factor loadings, F = .97 B = 1.27 (known B). The figure
plots the series of average expected betas (solid line) over 250 repetitions of the model with known
B. The series of the true underlying factor loadings is also reported (dashed line).
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Figure 2-9: Simulated and real alpha, F = .97 B = 1.27 (known B). The figure plots the
series of the average alpha (solid line) over 250 repetitions of the model with known B. This series
is the average of the estimated alpha series from 10-year rolling window regressions on simulated
data. The alpha series estimated on rea) data for value stocks is also reported (dashed line). The
95% confidence interval is plotted around the alpha from rea! data. ‘
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Figure 2-10: True and expected factor loadings, F = .97 B = 1.5 (known B). The figure
plots the series of average expected betas (solid line) over 250 repetitions of the model with known
B. The series of the true underlying factor loadings is also reported (dashed line).
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Figure 2-11: Simulated and real alpha, F = .97 B = 1.5 (known B). The figure plots the
series of the average alpha (solid line) over 250 repetitions of the model with known B. This series
is the average of the estimated alpha series from 10-year rolling window regressions on simulated
data. The alpha series estimated on real data for value stocks is also reported (dashed line). The
95% confidernce interval is plotted around the alpha from real data.
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Figure 2-12: True and expected factor loadings, ¥ = .97 B = 1.27 (unknown B). The
figure plots the series of average expected betas (solid line) and B (thin dashed line) over 250
repetitions of the model with unknown B. The true factor loadings are also reported (thick dashed
line).
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Figure 2-13: Simulated and real alpha, F = .97 B = 1.27 (unknown B). The figure plots the
series of the average alpha (solid line) over 250 repetitions of the model with unknown B. This series
is the average of the estimated alpha series from 10-year rolling window regressions on simulated
data. The alpha series estimated on real data for value stocks is also reported (dashed line). The
95% confidence interval is plotted around the alpha from real date.
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Figure 2-14: True and expected factor loadings, F = .97 B =1 (unknown B). The figure
plots the series of average expected betas (solid line) and B (thin dashed line) over 250 repetitions
of the model with unknown B. The true factor loadings are also reported (thick dashed line).
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Figure 2-15: Simulated and real alpha, F = .97 B = 1 (unknown B). The figure plots the
series of the average alpha (solid line) over 250 repetitions of the model with unknown B. This series
is the average of the estimated alpha series from 10-year rolling window regressions on simulated
data. The alpha series estimated on real data for value stocks is also reported (dashed line). The
95% confidence interval is plotted around the alpha from real data.
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Chapter 3

Do Stock Prices Neglect the
Implications of Current Earnings
for Future Earnings?

3.1 Introduction

The modern view of an efficient market can be summarized by Fama's [1970] definition that
a market is efficient if prices "fully reflect’ all the available information. As few other pieces of
information are more informative about a stock’s ability to generate payoffs than accounting
earnings, it is not surprisig that a great deal of research in the field of market efficiency has
been dedicated to the response of prices to earnings news. Since the early study by Ball and
Brown [1968)], this literature has provided evidence that cumulative abnormal stock returns
continue to drift up after good earnings news, and down after bad news, for a period of time
that can last up to three quarters. If one believes that prices in efficient markets should
react immediately to news, this fact is a challenge to the efficient markets hypothesis, and
for this reason it has been labelled the “post earnings announcement drift anomaly” .

The early studies of post-earnings announcement drift suffered from a variety of method-
ological limitations that could have biased the results (see Ball [1978], Foster, Olsen and
Shevlin [1984], and Bernard and Thomas [1989)], for a discussion). In particular, the sup-

porters of market efficiency argued that these studies did not pfoperly account for the
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change in the underlying risk factors, following an earnings announcement. These criticism
has been rebutted in Bernard and Thomas’s [1989] paper, where they show that the drift is
present, even when the change in risk is accounted for. Lately, even strenuous supporters
of market eﬁicierncy like Fama [1997], admit that the post-earnings announcement drift is

the most resistent of the financial anomalies.

Given that good (bad) earnings news appear to predict future positive (negative) ab-
normal returns over short horizons (up to three quarters), the post-earnings announcement
drift has been considered as evidence that prices underreact to news. At the same time,
the evidence that good (bad) news firms earn negative (positive) abnormal returns after
four quarters, has led researchers to talk about long-run overreaction of prices. A great
deal of theoretical work in behavioral finance has been intended to provide explanations of
why prices do not incorporate immediately all the available information (see, e.g., Barberis,
Shleifer and Vishny [1997]), and to develop settings where the drift is not eliminated by

arbitrage (see, e.g., Hong and Stein [1997]).

This paper has been inspired by Bernard and Thomas’s [1990] conjecture that market
expectations are formed naively. That is, investors expect that earnings in a quarter will
be the same as earnings in the same quarter of the prior year, plus a drift. From this
hypothesis, I derive the implication that abnormal returns depend only on the seasonal

difference of earnings. The paper tests this implication.

Subsequently, I consider the problem from the point of view of efficient markets. If
prices fully impounded all the available information, then the abnormal return should nof
depend on any predictable component of earnings. This implication is also tested in the
paper.

The results of the tests produce a picture where stock prices of large firms appear to
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behave efficiently. Whereas, for small firms, neither the efficient markets hypothesis, nor
Bernard and Thomas’s conjecture seem appropriate. This finding suggests the consideration
that some intermediate view could explain the behavior of small firms’ stocks. The paper
provides evidenée that supports this conjecture.

The paper is organized as follows. In Section 3.2 a formal model for abnormal returns
is described in some detail. This model can encompass different hypothesis on market
expectations of earnings. The two tests mentioned above are then developed. Section 3.3
describes the sample used for the analysis. The time-series properties of the earnings process
are then described, and variance ratio tests are performed to devjde the sample between
ﬁrms whose earnings process appears to be a random walk and firms for which it does
not. The two tests are implemented in Sections 3.4 and 3.5. A possible explanation of the
behavior of small firms’ stock prices is considered in Section 3.6, and evidence is provided

in favor of this hypothesis. Finally, Section 3.7 draws the conclusions of the analysis.

3.2 Theoretical framework

3.2.1 Development of the testable implications

In order to give an explanation of the post-earnings announcement drift anomaly, some
researchers have moved away from the assumption of informational efficiency of the stock
market.

A seminal paper in this line of research is Bernard and Thomas’s 1990 article. On the
basis of previous evidence (e.g., Bernard and Thomas [1989]), they provide an interpretation
of the post-earnings announcement drift centered on the failure of investor expectations to
fully incorporate the implications of current earnings for future earnings. Their hypothesis
is motivated by the finding that the 3-day stock price reaction around the time of quar-

terly earnings reports is predictable, conditional upon knowledge of the past four quarterly
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earnings.

Since their explanation of this evidence is the basis of the tests in this paper, it will be

examined in some detail.

In Box-Jenkins [1976] ARIMA notation, a discrete stochastic process with a seasonal

pattern (over S periods) is represented as
H(L)YP(L) X, = 6(L)O(L)uy + (A-1)

where X is a stationary process; L is the lag operator; ¢(L) and 6(L) are polynomials in

L, namely ¢(L) =1 — 1L — - - ¢pLP and §(L) = 1 — ;L — --- — §,L%; &(L) and O(I)),
the seasonal parts of the model have the form ®(L%) = 1 — &y9L — .. — ®psLPS and
LY =1-O65L— - — @QSLQS; u; is a white noise process; and § is a constant. The

model 1s of order (p,d,q) x (P, D,Q), where the capital letters refer to the seasonal part.
Autoregressive parameters are denoted by p and P; moving average parameters by ¢ and
@; and d and D are the degrees of ordinary and seasonal differencing required to achieve

stationarity.

In the accounting literature there is consensus that a random firm’s earnings can be

represented by the Brown and Rozeff [1979] ARIMA (1,0,0) x (0,1,1) model
Qe =0+ Qg+ ¢(Qr-1 — Qs—s) + e — ez 4 (A-2)

where ; are quarterly earnings in quarter ¢, ¢; is a white noise shock, 0 < ¢ < 1, and @ is
sufficiently positive to ensure that the fourth order autocorrelation in seasonally differenced

earnings is negative.

Bernard and Thomas [1990] consider the Brown-Rozeff model as a good description of

their sample of firms, where seasonally differenced earnings tend to exhibit an autocorrela-
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tion of about 0.34 at a lag of one quarter, of 0.19 at two quarters, of 0.06 at three quarters,
and —0.24 after four quarters. That is, the change of earnings with respect to the same
quarter of the previous year, displays momentum at one, two and three quarter horizons,
and reversal aftér a year.

Previous research (e.g. Bernard and Thomas [1989]) had shown that a disproportion-
ately large part of the post-announcement drift was concentrated in the three day window
around the next quarterly announcement. In other words, given that a firm announces
positive (negative) unexpected earnings for quarter ¢, the market tends to be positively
(negatively) surprised in the days sorrounding the announcement for quarter t+ 1. Bernard
and Thomas [1990] investigate the possibility that stock prices fail to reflect fully the impli-
cations of current éarnings for future earnings. Specifically, they entertain the hypothesis
that the market forms expectations in a naive way: i.e. investors believe that earnings

follow a seasonal random walk with drift (ARIMA (0,0,0) x (0, 1,0))
Qi=0+Q11+e (A-3)

Accordingly, the market’s expectation of next quarter’s earnings is simply equal to the

earnings of the corresponding quarter of the previous year plus a drift

BY(Q)) =6+ Qis (A4)

where the superscript M indicates market expectations.

On the other hand, if the true process is the one in Equation A-2, as it is assumed, the

conditional expected value of earnings is

EM Q1) =6+ Qeea + H(Q11 — Qr_s) — Beg_yg (A-5)

At this point, it is necessary to specify how the abnormal returns are generated. The

135




assumption is that the reduced form of abnormal returns (AR) can be expressed as
AR, = MQ: — EM,(Qy) (A-6)

The abnormal return is the excess return over what the security would earn in the absence
of the event (in this case the earnings announcement), which in turn depends on the model
that one believes is underlying the stock market (e.g. CAPM, APT, etc.). Equation A-6
assumes that the residual return is entirely generated by company specific information about
earnings. This assumption, common in the event study research, is convenient because it

relates the abnormal return to the extent of earnings surprise, with no need of fully specifying

the generating model. Its cost is that it postulates a linear relation, disregarding possible

interactions of earnings with other variables that belong to the investor’s information set.

Whenever the market expectations of earnings are unbiased, Equation A-6 implies that
the abnormal return associated with the earnings announcement is equal to the innovation
in time { earnings

ARt = )\Et (A-T)

Instead, if expectations are biased, the abnormal return depends on the unpredictable com-

ponent, Q; — F;—1(Q:), and on its complement, E;_1(Q;) — EM,(Q:), that is predictable on

the basis of information available at time ¢t — 1

ARy = MQs — E_1(Qh)) + MEe1(Qr) — EM1(Qy)) (A-8)

Relying on the Brown-Rozeff model, and on the naive market expectations of Equation A-
4, Bernard and Thomas replace Q; — E;_1(Q;) with the difference between Equations A-2

and A-5, and E;_1(Q:) — BEM,(Q,) with the difference between Equations A-5 and A-4

AR, = Xes + ApDi—q — Mer_y ' (A-9)
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where Dy = Q41 — Q5. Since Dy ; can be expressed in terms of previous shocks,

Equation A-9 can be rewritten as
A,Rz = )\Et + >‘¢€t—1 4+ A¢26t_2 + >‘¢3€t—3 + )\(454 - Q)Et_4 + )\‘U (A—lO)

where v is a linear combination of shocks from periods prior to ¢ — 4, and it is therefore
uncorrelated with the other shocks in the equation. The coefficients on €t 1O €43 are positive
and declining in magnitude, while (¢* — 8) is negative by the assumption of negative fourth

order autocorrelation.

- Bernard and Thomas [1990] estimate a Brown-Rozeff model for each company’s earnings,
and use 4he fitted residuals as a proxy for the earnings innovations in a regression based
on Equation A-10. The main lﬁnding of their paper is that the estimates, based on a

_sample of 2,626 firms over the 1974-1986 period, have the sign and magnitude predicted by
Equation A-10. Besides, they show that the knowledge of past earnings allows to construct
a portfolio that earns an abnormal return of about 2.6% over the three-day window around
the announcement, which can get to 3.35% when the portfolio is restricted to small firms.
They take these results as evidence of the fact that the market expectation is formed on
the basis of a seasonal random walk model, causing the failure of prices to incorporate the

implications of current earnings for future earnings.

In a later paper, Bernard [1992] conéiders some explanations for why the market partic-
ipants’ expectations would be so heavily anchored to the comparable earnings figure of the
prior year. One category of explanations resorts to the psychological literature documenting
a tendency for individuals in certain prediction contexts to anchor on some value and place
little weight on recent changes in a series, unless these changes are considered salient and are

attributed to a stable underlying cause (Andreassen [1987], Andreassen and Kraus [1996]).

137




Alternatively (or in addition), the reasons for a sluggish updating of expectations can be
searched in the incentive structure at work for a key group of players, financial analysts.
Bernard argues that there may be little to gain and much to lose by adjusting a forecas_t to
a level far from éurrent consensus, if the analyst believes that his or her forecast is already
likely to be the most accurate.

Much theoretical work in behavioral finance has been devoted to develop models that
incorporated the findings of the empirical literature concerning the earnings anomaly. In
particular, Barberis, Shleifer and Vishny [1997] share Bernard and Thomas’s view that
“ ..investors typycally (not always) believe that earnings are more stationary than thgy
really are.” 1In other words, they believe that market expectations fail to recognize the
autocorrelation in the seasonal differences of quarterly earnings. On this assumption, they
build a model where stock prices can underreact to news, and future returns can be predicted
using past information.

In this paper I develop two empirical tests that address the question of whether market
expectations of earnings are based on a seasonal random walk or they are based on the
correct autoregressive process. Moving from the results of these tests, further analysis
is conducted to evaluate the extent of informational efficiency for stocks in different size

groups.

3:2.2 The testable implications

When Bernard and Thomas’s hypothesis is taken literarily, namely in the way it is expressed
in Equation A-4, it implies that what counts in the generation of abnormal returns, is only
the difference between current earnings and the earnings in the corresponding quarter of
the prior year.

Replacing the market expectation of earnings, as given by'Equa"cic-)n A-4, into the model
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for abnormal returns, as expressed by Equation A-6, yields

where Dy = @y — Q¢—4 i3 the seasonal difference in earnings. Equation A-11 indicates that
one implication of Bernard and Thomas’s hypothesis is that no other piece of information
about earnings, besides Dy, is a significant determinant of the abnormal return. I label
the empirical test of this implication Test 1. Note that Equation A-11 has been obtained
without any assumption on the true process of earnings. Therefore, Test 1 controls the
validity of Bernard and Thomas’s assumption in a way that is more direct than Bernard
and Thomas’s test based on Equation A-10, since the latter involves the joint hypothesis

that earnings follow the Brown-Rozeff model.

The second test takes a different perspective !. From Equation A-8 it is evident that, if
expectations are formed rationally, the abnormal return depends only on the innovation in

quarterly earnings, as in Equation A-7, reported below
AR; = )\Et (A~12)

On the other hand, if expectations are formed according to a seasonal random walk, the

correct specification is the one in Equation A-9, redisplayed below
ARt = )\ﬁt + /\¢Dt_1 - )\Qét_z; (A—13)

Therefore, once that the response of abnormal returns to the innovation in earnings is
appropriately controlled for, the failure of D;_; and ;4 to be significant determinants of

the abnormal return would depose against Bernard and Thomas’s hypothesis that market

“Under many respects this test resembles the tests for excess sensitivity of consumption to income, present
in the consumption literature (see, e.g., Flavin [1981}).
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expectations are biased. In other words, if there is underreaction of prices to earnings
news, then the abnormal return should display sensitivity to the predictable component
of earnings. I label the test of this implication Test 2. Note that the assumption that
earnings follow 5 Brown-Rozefl modél constrains the signs of D;_; and e,_4 to be positive
and negative, respectively. Besides, this assumption rules out the significance of other prior
earnings terms as determinants of the abnormal return. More generally, if one assumes the
efficiency of expectations as the null hypothesis (Equation A-7), the absence of significance
of earnings information, controlling for the earnings surprise, would cause the rejection of
any alternative; including Bernard and Thomas’s hypothesis, no matter what the process
of earnings is. Further, note that if the process of earnings is actually a seasonal random
walk, the distinction between Bernard and Thomas’s hypothesis and market efficiency would
cc;llapse, the two being observationally equivalent. Allowing for this possibility, the sample
will be partitioned into firms whose earnings process appears to be a seasonal random walk,

and firms for which it does not.

Finally, Test 1 allows one to draw some more inference on the issue of market efficiency.

At the other extreme with respect to Bernard and Thomas’s hypothesis that the market

disregards the autocorrelation of earnings, lies the assumption that the market treats ef-

ficiently the available information about earnings. In this case, the determinants of the

abnormal return are obtained replacing the true expectation of earnings from Equation A-5
into Equation A-6

ARy = AN(Dy — 6) — ApDy_1 + Mey_y (A-14)

Hence, the efficient market hypothesis constrains the coefficient on (D; — §) to be equal in

absolute value to the coefficient on ¢);_;. However, the test involves the joint hypothesis

that earnings follow a Brown-Rozeff model, therefore the failure to find such equality would
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not establish the inefficiency of expectations.

3.3 The sample and the time-series of earnings

3.3.1 Sample selection and variable construction

Earnings data have been extracted from Compustat Industrial and Full Coverage 1999
quarterly files, and include companies traded in the NYSE/AMEX and NASDAQ), over the
period from 1988 to 1999. To be included in the sample, a firm must have at least thirtytwo
consecutive quarterly reports of earnings before extraordinary items (DATAS in Compustat
file). Information about returns and capitalization has been extracted from the CRSP
daily dataset, and merged with the earnings sample. Th? available CRSP data covers the
period up to 1998, therefore the analysis that does not concern returns information, such as
the estimation of the time series process of earnings, has been conducted using the longer
Compustat sample. The merged sample includes 61,632 firm-quarters of data, for 1,665
companies, from 1988 to 1999. This sample is more recent than the 1974-1986 sample used
by Bernard and Thomas [1990].

A variable that will be used in the analysis is the abnormal stock return (AR) associated
with the quarterly earnings announcement. After finding that a disproportionate part of
the post-earnings announcement drift is concentrated in the period including the two days
before and the day of the announcement , the literature has focused on this short time span
to evaluate the impact of information on prices (see, e.g., Bernard and Thomas [1990], Brown
and Han [forthcoming]) 2. This approach has the advantage of limiting the importance of

the choice of the model for normal returns. Given that daily normal returns are close to

2The assumption underlying the inclusion of the days before the announcement in the time window is
that the news about the quarterly earnings begin to materialize before the announcement itsself. This is

confirmed by the fact that stock returns of good news firms display a drift before the news is released (see,

e.g., Bernard and Thomas [1989]).
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zero, the model for normal returns does not have a big effect on inferences about abnormal
returns. Hence, I use the CRSP equally-weighted index as a measure of the normal return.
The AR is obtained subtracting the index from the daily refurns and summing the residuals
over the 3-day \;vindow. If the return is not available on the day of the announcement, it
is replaced with the first available return in the seven days following the announcement (in
the absence of that, the quarter-firm observation is dropped from the sample). Similarly,
the returns of the two days before the announcement can be replaced with data from the

previous seven days.

3.3.2 The time-series properties of earnings

As mentioned before, the cumulative evidence of the studies concerned with the time-
series behavior of earnings (e.g., Foster [1977], Brown and Rozeff [1979], Brown, Griffin,
Hagerman, and Zmijewski [1987]) indicates a precise pattern in the autocorrelations of
seasonal differences: positive up to lag three, and negative for higher lags.

Although the sample studied here does not temporally overlap with the ones ﬁsed in
the other studies, the time series properties of earnings appear to respect this pattern,
as testiﬁed. by Table 3.1. Panel A presents the firm-specific sample autocorrelations of
seasonally differenced earnings, up to lag eight. The sample means of the autocorrelations
estimated separately for each firm are 0.23, 0.12, 0.03 for lags 1, 2 and 3 respectively. In
line with prior research, the autocorrelation turns negative at lag 4 (mean = -0.25). This
pattern is consisteni across the 26 industries (two-digit SIC codes) for which the sample
includes at least twenty companies.

To make it comparable across firms in the regression analysis, the seasonal difference
variable is scaled down by its firm-specific standard deviation. This new variable is often

referred to as standardized unexpected earnings (SUE) in the literature on the post-earnings
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announcement drift. I will continue to name it seasonal difference, to avoid the a priori
implication that market expectations are formed on the basis of a seasonal random walk.
In Panel B the means of the sample autocorrelations for this standardized variable are
reported. They‘are quite consistent with the ones in Panel A, indicating that the process

of scaling does not have any influence on the degree of autocorrelation.
3.3.3 Variance ratio tests

The distinction between the hyptothesis that market expectations are unbiased and the
hypothesis that they are formed on the basis of a seasonal random walk, collapses when the
actual earnings generating process is a seasonal random walk, as in Equation A-3. Therefore,
the tw;) tests developed in Section 3.2.2 would gain power if they could be conducted on a
sample of firms, whose earnings process is not a seasonal random walk. To this purpose,
the sample is partitioned on the basis of the results of variance ratio (VR) tests, performed
on each firm’s earnings series separately.

In this case, the VR test is preferred over the other tests for two reasons. First, given
the seasonal nature of the non-stationarity, the unit root tests in their standard version
could not be applied. Instead, the VR test are applied to the differenced data: it does not
matter whether the non stationarity is at lag 1, or whether it is seasonal, because the test
checks whether the differenced ® data follow a white noise process. Second, one particular
version of VR test can accomodate for general heteroskedasticity in the innovations of the
earnings process. In fact, it is very Weli possible that the shocks affecting earnings in the
different seasons are not identically distributed, even if these shocks are uncorrelated across

periods.

3In this case, the data is seasonally differenced and it is subtracted an estimate of the drift term. The
estimate of the drift is obtained as the mean of the seasonal differences over time.
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For the construction of the heteroskedasticity-consistent VR test, as well as for the
derivation of its asymptotic distribution, I refer to Lo and MacKinlay [1988], or to the bock
by Campbell, Lo and MacKinlay [1997] 4.

The VR testr requires the specification of the number of periods to include in the com-
putation of the cumulative variance. The choice has fallen on four periods, since the focus
of the paper is on the failure of agents to recognize the existence of autocorrelations of
earningé within the year 5.

A firm is included in the non-random-walk (NRW) group if the VR test at a size of
5% rejects the null hypothesis. Otherwise it belongs to the random-walk (RW) group. The
results of the VR tests are reported in Table 3.2. Almost 55% of the firms in the sample
belong to the NRW group (Panel A).

Another dimension along which the sample can be partitioned is firm size. The size
of a firm is generally considered to be a proxy for information availability. In fact, larger
companies have more analyst coverage and, in general, are followed with more attention.
Therefore, one would expect mistakes in expectations to be more likely for small stocks. This
conjecture will be further investigated in the next sections. One quarter-firm observation is
assigned to size deciles on the basis of the average market value of equity over the year of
interest. Small, medium and large firms are in size deciles 1 to 4, 5 to 7, 8 to 10, respectively.
Around 40% of the observations pertain to small firms, while the remaining 60% is equally
split between medium and large firms.

The results of the VR tests by size group are reported in Panel B of Table 3.2. Small

quarter-firm observations are more concentrated in the NRW group, whereas large compa-

“To be precise, the statistic that I use in these tests is the one denoted as Equation (2.4.44), on page 55
of that book. ‘

30Other VR tests have been performed, using different numbers of periods, and the results were not
affected substantially.
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nies are evenly split between the RW and the NRW groups.

Finally, Panel C of Table 3.1 gives the pattern of autocorrelations of seasonal differences
of earnings by VR test result groups. As expected, the pattern is more pronounced for
NRW firms thaﬁ the whole sample, and the numbers are almost identical to the ones in
Table 1 of Bernard and Thomas [1990], where they have the autocorrelations of earnings
with no distinction between RW and NRW firms. For RW firms, the only autocorrelation
that is still far from zero is the one at lag 4. This is the consequence of restricting the focus

of the VR tests to the autocorrelations up to lag 3.

3.4 Implementation of Test 1

3.4.1 Econometric issues

Test 1 has been developed in Section 3.2.2 on the basis of the null hypothesis that ﬁarket
expectations of earnings are formed assuming a seasonal random walk process. In that case,
the seasonal difference of earnings at time ¢ should be the only significant determinant of
time t abnormal return, as in Equation A-11. A possible alternative hypothesis is that
expectations correctly reflect the underlying process of earnings. If this process is described
by a Brown-Rozeff model (Equation A-2), then fche specification of the abnormal return is
given by Equation A-14. However, more general alternative hypotheses are possible, where
the agents understand that earnings are correlated from period to period, but do not react in
the correct measure to this correlation. In this case, lagged seasonal differences of earnings

are also significant determinants of the abnormal return.

Since a choice has to be made in terms of what seasonal differences to include in the
model, the most natural candidate, which is also suggested by the alternative hypothesis of

efficient markets, is the seasonal difference at lag 1.
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The problem of a test based on a regression like
ARj = by + lejt + szj,tAl + uj¢ (A—15)

(where 7 stands for company , and ¢ for the quarter), is that both D; and D;_, are endoge-
nous variables in the regression. For example, if expectations are rational and the earnings
process is a Brown-Rozeff model, then the correct specification for AR is Equation A-14.
In that case, error u; in the above regression contains the shock €:—4, Which is correlated
with both D; and D,_;. This suggests that the endogeneity problem has to be taken into

account in the implementation of Test 1.

One possibility is trying to understand in what direction the bias affects the .coeﬂicient
on Dy¢_;, which is the variable of interest. If the correct model for earnings is the Brown-
Rozeff, then D; ; is positively correlated with ;4. Hence, if ¢_4 is the only omitted
variable in the regression, as it is the case when expectations are unbiased (Equation A-14),
then the negative coefficient on D,_; would be biased toward zero, in a way that is favorable
to the null hypothesis of Test 1. Therefore, tolcope with the endogeneity problem one could
estimate a regression like Equation A-15, and reject safely the null hypothesis whenever

D;_; turns out significant. This is one solution that will be pursued in the analysis.

Alternatively, one could estimate a Brown-Rozeff model for each company’s earnings,
obtaining the fitted residuals. These residuals can then be included in the regression of

interest to control for the omitted variable €;,_4. The estimated model becomes
ARjy = by + b1(Dj; — &;) + bol)je 1 +bzeji g+ v (A-16)

where e;+4 are the fitted residuals from the estimation of the Brown-Rozeff earnings model,

and §; is the drift term in the same model (and it is included for coherence with Equation A-
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14). As in the case of the previous solution, the validity of this approach relies on the
assumptions that earnings are described by a Brown-Rozeff model and that the omission
of ¢;_4 is the only cause of endogeneity. The results in Panel C of Table 3.1, indicate that
the Brown—Rozéff model is not a strong assumptions for NRW companies. A further issue
concerns the estimate of the Brown-Rozeff model. In a time-series as short as that used here,
the iterative techniques necessary to estimate the Brown-Rozeff model are often unreliable.
To deal ‘With this problem, the error e;—4 is obtained from the estimation of a Foster [1970]
model, which differs from the Brown-Rozeff model for the omission of the moving-average
term. This should not create further problems in the implementation of Test 1, in so far as

the correlation of the innovation at lag 8 with the other regressors is negligible.

Both of the above described solutions to the endogeneity problem introduce a joint hy-
potheses problem, which detracts from the appeal of Test 1. A more convenient alternative
would be using instrumental variables estimation. The regressors I); and D;_; in Equa-
tion A-15 can be instrumented by other seasonal differences of earnings at lags prior to lag
4. The validity of such instruments is testified by the results in Table 3.1. Their exogeneity
relies on the assumption that the omitted variables, included in the error term u;, do not
involve lags higher than 4. The exploratory analysis conducted using this approach did
not yield significant estimates for either D; or D;_;. In the light of the results obtained
using the other two approaches, I am incliﬁed to impute this lack of significance entirely to
the weakness of the instruments. Therefore the estimates obtained using IV have not been

reported. The appeal of this approach, however, suggests that future research should look

for better instruments.
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3.4.2 Regression results

The regression results based on Equations A-15 and A-16 are reported in Table 3.3. The
construction of the variables used in the analysis has been described in the previous sec-
tions. Note that, in order to make them homogeneous cross-sectionally, the variables used
for the seasonal differences have been standardized by their firm-specific standard error.
The estimations have been performed partioning the sample along two dimensions. The
distinction by firm size is intended to separate the effect of large firms, characterized by
better information, from that of small firms, for which mistakes in expectations are a pri-
ori more likely. The separation between random-walk (RW) and non-random-walk (NRW)
firms serves to create a control sample (the RW fifms), with which to confront the results
obtained on the NRW firms, given that the theory imposes different restrictions on the two

groups of companies.

The estimates based on the whole sample are in Panel A of Table 3.3. The signifi-
cant coefficients for D;_; in both Equation A-15 and Equation A-16 indicate that the first
response of Test 1 is a rejection of the null hypothesis. The contemporaneous seasonal
difference _Dt is not the only determinant of the abnormal return. This means that the
earnings surprise is not entirely captured by D, and a correction for Dy_; is required. In
fact, the sign of the coefficient on D;_; is negative, as it should be if agents incorporate the
positive autocorrelation of earnings into their expectations (see, e.g., Equation A-14).

Note that the coefficient on D;_; in Equation A-15 is smaller in absolute value than the
corresponding estimate in Equation A-16, suggesting that the omitted variable bias operates
in favor of the null hypothesis, as envisaged. Further, the coefficient on e;_4 is positive,

consistently with Equation A-14, namely with rational expectations and a Brown-Rozeff

model for earnings. The fact that in Panel A the coefficient on D; is significant also for RW
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firms, however, is as much in contrast with the efficient market hypothesis as it is with the

‘Bernard and Thomas’s hypothesis. When the earnings process is a random walk, rational

agents should realize that the parameter ¢ in Equation A-14 is zero, and this would yield
an insignificant estimate of 82. A possible explanation of why 82 is significant for RW firms

is discussed in Section 3.6.

The analysis by firm size helps to define more clearly the picture. The large firms’ sample
in Panel B confirms the rejection of the null hypothesis, according to both regression models.
Moreover, the fact that D;_; is not a significant determinant of the abnormal return of RW
firms, indicates that the unbiased expectations hypothesis is a plausible alternative in the

case of large firms. Further investigations conducted in Section 3.4.3 confirm this impression.

The results for small firms (Panel C) are in line with the previous rejections of the
null hypothesis. However, the significance of D,_; for RW firms excludes the possibility of
explaining the behavior of small stocks on the basis of unbiased expectations. This is not

surprising since small stocks are characterized by coarser information.

Other regressions have been run in which higher lags (lag 2 and lag 3) of the seasonal
difference were included. The estimates (not reported) are significant for small firms, and
insignificant for large firms and for RW firms in any size group. These results strengthen
the rejection of the null, and sustain the idea that the behavior of large stocks, unlike that

of small stocks, can be described by a model of nnbiased expectations.

Note, finally, that the R? coefficients of the regressions in Table 3.3 are in general low,
not exceeding 3%. This suggests that earnings information is far from being the main
determinant of the abnormal stock return.

To summarize, the results of Test 1 reject the null hypothesis of earnings expectations
formed on the basis of a seasonal random walk. In the case of small firms, however, this
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rejection does not imply that expectations are unbiased. For large firms rational expecta-
tions cannot be ruled out so far, and further evidence sustaining this hypothesis is provided

in the next section.
3.4.3 Large firms and efficiency

The evidence presented until now (Panel B of Table 3.3), suggests that the hypothesis of
unbiasedness of expectations in the case of large firms deserves some credit, for two reasons.
First, the null hypothesis that expectations are biased in the direction predicted by Bernard
and Thomas is rejected. Second, for RW firms the abnormal return depends only on the
contemporaneous seasonal difference, that corresponds exactly to the earnings innovation
W'kilen earnings follow a seasonal random walk.

If expectations correctly incorporate the fact that earnings follow a Brown-Rozeff model,
then the reduced form of the abnormal return is given in Equation A-14. In that equation,
both Dy and ¢;_; are multiplied by A. Hence, this hypothesis constrains the coefficients

b1 and bg, in the following regression
ARj =bo+ by (Dt — 8;) + ba(@dDj 1) + bzej s+ vje (A-17)

to be equal in absolute value. Of course, ¢ and ¢ are not known. So, for estimation purposes,
they have to be replaced by their estimates obtained from a Foster [1970] model. As said
before, this model is more reliably estimated than the Brown-Rozeff model, and it has been

shown to perform similarly.

The regression
ARjt =bo + b](Djt - 5}) -+ bg(qﬁDj,t_l) + bgej,t—:l + wjt (A—]B)

has been estimated for NRW firms in all size groups. The estimates are reported in Panel
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A of Table 3.4, and the résults of the Wald test of the hypothesis that b; and by add to zero
are in Panel B.

The estimates of b; and by are very close in absolute value in all the samples that have
been considered. However, it is only for large firms that the Wald test does not reject the
null hypothesis. Hence, the conjecture that earnings expectations are unbiased in the case
of large firms, finds a further confirmation in the results of this test. Again, this conclusion

is consistent with the consideration that large stock are characterized by better information.

3.5 Implementation of Test 2

3.5.1 Econometric Issues

As discussed in Section 3.2.2, Test 2 can be interpreted as a test of the null hypothesis that
expectations are unbiased, jointly with the assumption of a Brown-Rozeff model for earnings.
The alternative hypothesis is that expectations fail to understand fully the implications of
current earnings for future earnings, so that the abnormal return responds to predictable
components of earnings. Included in this alternative is the possibility that expectations are
incorrectly based on a seascnal random walk, as conjectured by Bernard and Thomas. In
this event, the abnormal return is generated according to Equation A-9.

Bernard and Thomas [1990] proposed the regression
ARy = (o + B1Dji—1 + +0sej -4 + V5 (A-19)

as a test of their hypothesis, where e;;_4 are the fitted residuals from a firm-specific Foster
model. They interpreted the positive coefficient on D, ; and the negative coefficient on
€4 as evidence in favor of their hypothesis (Equation A-9).

T will also adopt this model, but I will restrict my interpretion of any significant estimate

to the rejection of the joint null hypotheses of unbiased expectations and Brown-Rozeff
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earnings process.
Alternatively, one could recognize that the omission of €;_4 in a regression of AR; on
D;_1 causes an endogeneity problem, since ¢;_4 and D;_; are positively correlated. Hence,

one could apply instrumental variable estimation to the following model
AR = Bo+ BiDyj1 + wje (A-20)

using D;_5 as an instrument for D;_;. This yields a consistent estimate, and there is no
need to use the fitted residuals e;—4. Since only four lags separate D;_q from D;_s, the
variable D;_s is a strong enough instrument (the first-stage R? is around 2.5%), and the TV

estimates will be reported.
3.5.2 Regression results

The results from the OLS and IV estimations of models A-19 and A-20, respectively, are
reported in Table 3.5. When both models are estimated on the whole sample {Panel A), the
response is a rejection of the null hypothesis. In fact, the coefficient on D;_; is significant
and positive indicating that prices at time ¢ — 1 do not fully incorpeorate the implications
of current earnings for future earnings. In other words, it appears that agents fail to
understand the degree to which a change in earnings at time ¢ is likely to be followed by a
change in earnings of the same sign at time ¢ + 1. Consequently, the abnormal return, that
depends on the extent to which the market is surprised by the earnings announcement, can
be predicted using past earnings information.

Although the negative coefficient on e;_4 in the OLS estimation is also consistent with
the implication of Bernard and Thomas’s hypothesis in Equation A-9, the results do not
allow to establish more than a general failure of expectations. In fact, as it will be discussed

later, it can be that the market anticipates that seasonal differences are autocorrelated,
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though it does not appreciate the whole extent of this autocorrelation. The partion by NRW
and RW firms of the sample, confirms that when autocorrelation in seasonal differences is
present (NRW firms), the abnormal return is senmsitive to the predictable component of

earnings.

The situation of large firms (Panel B) is different, as neither estimation method gives
significant estimates of 3;. In addition, the impact of e;_4 is barely significant at the 5%
level. The results in Parel B are consistent with the response of Test 1, indicating that, in

the case of large firms, market expectations of earnings are close to be unbiased.

The evidence for small firms in Panel C suggests that this group of firms is responsible
of the rejection of the null hypothesis in the whole sample. Both estimation procedures
indicate that the lagged seasonal difference is a significant predictor of the abnormal return.
However, this rejection of the null hypothesis does not imply the acceptance of Bernard and
Thomas’s conjecture. In fact, the possibility that expectations are based on a seasonal

random walk, has been ruled out by Test 1, which is a direct test of this hypothesis.

The R? in all the regressions in Table 3.5 is by far smaller than the R?’s in Table 3.3,
where the estimate for the earnings innovation is included in the regression. This sug-
gests that, although the expectations are biased, still the extent to which past earnings ‘

information can help to predict the abnormal return is limited.

In summary, the compound null hypothesis of unbiased expectations formulated on the
basis of a Brown-Rozeff model for earnings has been rejected in this sample of stocks. The
responsibility of the rejection lies on small firms. Instead, for large firms the unbiasedness

of market expectations seems plausible, as it was found by Test 1.
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3.6 The case of small firms

Under several respects, the evidence presented in the previous sections indicates that neither
the unbiased expectations model, nor the naive expectation hypothesis is appropriate for
small firms. First, the Bernard and Thomas’s view of naive expetations based on a seasonal
random walk is rejected by Test 1. Second, the joint hypoteses of unbiased expectations
and Brown-Rozeff earnings process has been rejected by Test 2. Third, for small firms the
coefficient on the regressor D;_; in Table 3.3 is significant also in the case of random-walk

firms.

This combined evidence suggests a possible explanation of the behavior of small firms’
prices. I conjecture that investors form their expectati;ns assuming an intermediate position
between the two extreme hypotheses mentioned at the beginning of this section. Specifically,
according to this new hypothesis the market assumes that the seasonal differences of earnings
are positively autocorrelated for all firms in the small class (both RW and NRW), but it
understates the level of this autocorrelation. This may be due to the fact that, in the absence
of further information, investors assume that earnings follow a process intermediate between
the seasonal random walk and the true Brown-Rozeff model, disregarding what the actual
process is. Therefore, no matter whether the earnings process is random walk or Brown-

Rozeff, the market expectations of earnings for small firms are given by

BY1(Q) =6+ Quog + ¢m(Qim1 — Qus) + €& — Ber_4 (A-21)

where ¢m is smaller than the ¢ that characterizes the true process of earnings. From the
comparison of Equation A-21 with Equations A-5 and A-4, it is evident that the parameter
of autoregression ¢, is intermediate between the true autoregression parameter ¢, and the

zero value of autoregression assumed in the naive expectations case, and typical of RW
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firms.

Replacing Equation A-21 into Equation A-6, one gets the abnormal returns under this
new hypothesis

AR = MQt — Q14 — 6 — Dy 1 + s 4) (A-22)

For the purposes of Test 1, this equation can be rewritten as follows

ARt - )\(Dt - (5) - /\(ﬁth_l + }\961_4 (A—Q-?))

or, evidentiating the parameter ¢ of the correct process,

ARt = A(Dt — 6) - A(Eibﬂ)ﬁf)Dt—l + /‘\9€t_4 (A-24)

Given the assumption ¢, < ¢, it follows that ¢,,/¢ < 1. Consequently, the estimation of

the model that was given in Equation A-18 (reported here)
ARjt = b + bl(Djt - 5‘.7) + bg(g&ng,tﬁl) + bgej,t_4 + wyy (A-25)

should yield an estimate of & smaller than the estimate of b2 tn absolute value, since these
two coefficients correspond to the coefficients multiplying (D, — ) and ¢D;_,, respectively,
in Equation A-24. This prediction is confirmed by the data. Tn Table 3.4, the point estimate
of b; for small firms is smaller than the estimate of by in absolute value. Moreover, the test

of the null hypothesis that this two coefficients are equal, rejects in the case of small firms.

Further, since Equation A-21 gives the market expectations no matter whether the
actual process is a random walk or not, Equation A-23 should hold also for small firms
in the RW class. Consequently, the estimate of the parameter premultiplying D;_; should

turn out significant also for RW firms. This is exactly what was found in the review of

Table 3.3, when it was noted that neither the naive expectations model, nor the unbiased
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expectations assurnption were appropriate for small firms.

In terms of the regressions for Test 2, using the assumption of a Brown-Rozeff model

for earnings (Equation A-2}, Equation A-23 can be rewritten as
ARt = )\ét + /\((}5 - ¢m)Dt—1 — )\Get_4 (A—26)

where € is again the innovation in the earnings process. This equation implies that when
the earnings process is not a random walk (¢ > 0) the coefficient on D;_; is positive. This
implication is confirmed by the evidence in Panel C of Table 3.5, in the case of NRW firms.

Alternatively, if the actual process is a seasonal random walk, then the correct expression

« for the abnormal return is

ARt = }\61 + A — ¢th_1 - Agﬁt_4 (A-Z?)

which implies that the estimate of the coefficient on D;_; should turn out negative, as if
prices overreacted to earnings information. Though not significant, this coefficient results
negative , for RW firms using both OLS and IV estimation, as testified by Panel C of

Table 3.5.

Therefore, several pieces of evidence concerning small firms depose in favor of the hypthe-
sis developed in this section. From what presented in the paper, it appears that prices do
underreact to earnings news, but in a form less extreme than the one envisaged by Bernard
and Thomas. Possible explanations of why this is the case, can appeal to the scarcity of
information characterizing small firms. In fact, investors may have not enough information
to decide whether a firms’ earnings process follow a random walk or not. Hence, they may
decide to take an intermediate position between the earnings process of NRW and RW

firms. This causes underreaction for NRW firms and ovverreaction for RW firms. Similar
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arguments have been proi)osed by Barberis, Shleifer and Vishny [1997], with the difference
that they base their explanafions on psychological factors driving investors’ expectations,
rather than informational arguments. Whether my explanation can be sustained in a model
where informed and uninformed investors coexist (e.g., Grossman and Stiglitz [1980]) is to
be established on theoretical grounds. Instead, whether the informational argument is to be
preferred to the psychological explanation, is the scope of further empirical work. Though,
the fact that this finding characterizes only small firms, deposes in favor of the informational

explanation.

3.7 Coclusions

This paper develops and implements two tests concerned with the reaction of stock prices

to earnings information.

The first test assumes as null hypothesis Bernard and Thomas' [1990] conjecture that
expectations are formed assuming a seasonal random walk process for earnings, while the
actual process is autoregressive in seasonal differences. This hypothesis predicts that the
market completely neglects the fact that a change in earnings with respect to the previous
year, is likely to be followed by a change in earnings of the same sign in the next quarter. If
this is the case, the abnormal return is a function of the contemporaneous seasonal difference

only. This implication is the scope of the first test.

The re‘sults depose against this naive expectations hypothesis. In fact, the evidence
indicates that prices incorporate (at least some of) the positive correlation of seasonal
differences. Moreover, in the case of large firms, the coefficients appear to satisfly the
restrictions imposed by the hypothesis bf unbiased expectations. | This is ﬁot the case for

small firms, suggesting that different structures of expectations underlie the two groups of
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firms.

The second test assumes unbiased expectations as the null hypothesis. The testable pre-
diction is that the abnormal return should depend only on the innovation in the earnings
process. The reéults of the test are articulated by firm size. For large firms, past earnings
information does not seem to be a relevant predictor of the abnormal return, reestablishing
the conclusion of efficiency. This finding is confirmed by instrumental variable estimation
that corrects for a possible attenuation bias. In the case of small firms, instead, the hypoth-
esis of unbiased expectations is rejected by the fact that abnormal returns can be predicted
using past earnings information.

The conbined evidence of the first and the second test has suggested the hypothesis
that investors form their expectations about small firms’ earnings, by taking an interme-
diate view between the naive seasonal random walk model and the correct autoregressive
model. This behavior may cause underreaction for firms whose earnings process is posi-
tively autocorrelated in seasonal differences, and ovverreaction for firms, whose earnings
process is actually a random walk. Some of the evidence in the paper supports this conjec-
ture. Whether findings depend on the scarcity of information surrounding small stocks, or
on some psychological bias, is an open question on both theoretical and empirical grounds.
However, the fact that the behavior of small firms is not mirrored in the large firms’ sample,

deposes in favor of the first explanation.
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Table 3.1: Time-series behavior of quarterly earnings

Panel A: Autocorrelations in seasonally differenced earnings

Lag 1 2 3 4 5 6 7 8
Firm-specific autocorrelations in seasonally differenced earnings

Mean 0.23 012 0.03 -0.25 -0.03 -0.03 -0.02 -0.02

Number of positive mean autocorrelations for 26 industries®

26 25 25 0 3 1 4 2
Panel B: Autocorrelations in in standardized seasonally differenced earnings
Lag 1 2 3 4 5 6 7 8
Mean 0.23 0.12 0.03 -0.25 -0.03 -0.03 -0.02 -0.02
Panel C: Autocorrelations in seasonally differenced earnings by VR outcome®
Lag 1 2 3 4 5 6 7 8
NRW 036 020 0.06 -0.22 -0.07 -006 -0.05 -0.04
RW 008 003 0.00 -0.29 000 0.00 000 0.00

* Only the 26 industries with at least 20 members are included. Industries are defined on the basis
of the 2-digit SIC.

> Firms are grouped in random-walk (RW) companies and non-random-walk (NRW) companies on
the basis of the results of variance ratio (VR) tests.

Table 3.2: Distribution of firms according to the outcome of variance ratio tests

Panel A: Percentage of companies in each group®
NRW RwW
54.95% 45.05%
Panel B: Distribution of VR test outcome by size group®
VR test outcome Small Medium Large Total

RwW 10321 7944 9323 27588
41.81% 43.01% 50.46%  44.76%

NRW 14360 10524 9154 34044
58.19%  56.89%  49.54%  55.24%

Total 24687 18408 18477 61632

100.00% 100.00% 100.00% 100.00%

* Firms are grouped in random-walk (RW) companies and non-random-walk (NRW) companies on
the basis of the results of variance ratio (VR) tests. ® Small, medium and large firms are in size
deciles 1 to 4, 5 to 7, and 8 to 10 respectively, based on the average value of equity in each year.
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Table 3.3: Test 1

(A-15) AR = bo + le}‘t + bzﬂ\Dj‘t,—l + uj e
(A-16) ARjp = bo + b1(Dyp — 6;) + b2D;:01 + baej s + vjy

b1 b2 bs R2 ## obs.

Panel A: all size groups

All firms

Equation A-15 0.010 -0.002 2.05 41260
(29.188)  (-7.501)

Equation A-16 0.010 -0.003 0.001 2.10 36296
(27.076)  (-8.297)  (3.446)

NRW firms

Equation A-15 0.011 -0.003 2.61 26795
(26.385)  (-7.197)

Equation A-16 0.011 -0.003 0.001 2.64 23579
(24.145)  (-7.534)  (2.437)

RW firms

Equation A-15 0.008 -0.002 1.26 14465
(13.586)  (-3.681)

Equation A-16 0.008 -0.002 0.001 1.34 12713

(12,910) (-4.291) (2.540)
Panel B: large firms .
All large firms

Equation A-15 0.004 -0.001 1.00 12317
(11.219)  (-4.510)
Equation A-16 0.004 -0.001 0.000 0.83 10907

(9.467)  (-3.857)  (0.965)
NRW large firms

Equation A-15 0.005  -0.002 112 7675
(9.320)  (-3.765)
Equation A-16 0.004  -0.002  0.000 101 6807

(8.004) (-3.695) (0.346)
RW large firms

Equation A-15 0.003 -0.001 0.85 4642
(6.200) (-2.751)
Equation A-16 0.003 -0.000 0.001 0.68 4100

(5.270) (-1.617) (1.481)
Panel C: small firms
All small firms

Equation A-15 0015  -0.002 3.09 16547
(22.556)  (-3.377)
Equation A-16 0016  -0.003 0002 3.31 14493

(21.432) (-4.618) (3.352)
NRW small firms

Equation A-15 0.017 -0.003 4.07 10957
(20.958)  (-3.820)
Equation A-16 0.018 -0.004 0.002 4.22 9593

(19.442)  (-4.384)  (2.777)
RW small firms

Equation A-15 0.012 -0.001 1.75 3590
(9.959)  (-1.188)
Equation A-16 0.013 -0.002 ¢.002 2.03 4900

(9.842)  (-2.225)  (1.846)

T-statistics in parentheses. R? is expressed in percentage points. Firms are grouped in random-walk
(RW) companies and non-random-walk (NRW) companies on the basis of the results of variance

ratio (VRB tests. Small, medium and large firms are in size deciles 1 to 4, 5 to 7, and & to 10
respectively, based on the average value of equity in each year.
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Table 3.4: Test of restrictions imposed by unbiased expectations (NRW firms)

(A-18) ARjy = bo + b1(Dj — 65) + ba(@Djp-1) + baeji—a + Wit
Panel A: estimation results

by b R2  # obs.

All NRW firms 0.012 ~0.009 279 23579
(24.956) (-9.906)

Large NRW firms 0.005 -0.005 1.09 6807
(8.293) (-4.333)

Small NRW firms 0.019 -0.011 433 9593
(19.614) (-5.584)

Panel B: Wald Test of Hg: b1 + b5 =0
All NRW firms Large NRW firms Small NRW firms
P-value 0.001 0.854 0.000

T-statistics in parentheses. R2 is expressed in percentage points. Firms are grouped in random-walk
(RW) companies and non-random-walk (NRW) companies on the basis of the results of variance
ratio (VR) tests. Small, medium and large firms are in size deciles 1 to 4, 5 to 7, and 8 to 10
respectively, based on the average value of equity in each year.
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Table 3.5: Test 2

(A-19) ARjc = Bo + B1Dj 41 + +Baej_a + vy
(A-20) ARjy =00+ B1Dje—1 +wj¢, where Dy_5 is IV for D,_;

81 Je R? # obs.

Panel A: all size groups

All firms

Equation A-19  0.001 -0.002 0.12 36292
(3.402) (-5.964)

Equation A-20 0.004 36292
(2.117)

NRW firms

Equation A-19 0.002 -.002 0.22 23579
(5.003)  (-6.097)

Equation A-20 0.010 23579
(3.284)

RW firms

Equation A-19 -0.000 -0.001 0.04 12713
(-0.838)  (-2.162)

Equation A-20 -0.002 12713
{-0.986)

Panel B: large firms

All large firms

Equation A-19  0.000 -0.001 0.04 10907
(0.279) (-2.127)

Equation A-20 -0.004 10907
{-0.3786)

NRW large firms

Equation A-19  0.000 -.001 0.08 6807
{0.475) (-2.370)

Equation A-20  -0.025 6807
{(-0.544)

RW large firms

Equation A-18  -0.000 -0.000 0.00 4100
(-0.121)  ({-0.263)

Equation A-20  -0.007 4100
{-1.715)

Panel C: small firms

All small firms

Equation A-19  0.002 -0.003 0.24 14493
{4.020) (-4.759)

Equation A-20 -0.002 14493
{(-1.196)

NRW small firms

Equation A-19  0.004 -.004 0.44 9593
(5.235) (-4.616)

Equation A-20 0.005 9593
(1.853)

RW small firms

Equation A-19  -0.000 -0.003 0.09 4900
(-0.038) (-2.154)

Equation A-20 -0.001 4900
(-0.451)

T-statistics in parentheses. R? is expressed in percentage points. Firms are grouped in random-walk
(RW) companies and non-random-walk {NRW) companies on the basis of the results of variance

ratio (VRB tests. Small, medium and large firms are in size deciles 1 to 4, 5 to 7, and & to 10
respectively, based on the average value of equity in each year.
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