Microstructural Modeling of Lithium Battery Electrodes

by

Benjamin Hellweg

B.S. Materials Science and Engineering Massachusetts Institute of Technology, 1997

Submitted to the Department of Materials Science and Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Science in Materials Science and Engineering

at the

Massachusetts Institute of Technology

September 2000

ARCHIVES

©2000 Massachusetts Institute of Technology All rights reserved

Γ	MASSACHUSETTS INSTITUTE OF TECHNOLOGY
	JAN 2 7 2003
	LIBRARIES

Signature of Author	Veya- fre
~- <u>~-</u>	Department of Materials Science and Engineering
	August 4, 2000
Certified by	Mm Ching
	Yet-Ming Chiang Kyocera Professor of Ceramics Thesis Supervisor
Accepted by	Cal U Shapon
•	Carl V. Thompson
Stavros	S. Salapatas Professor of Materials Science and Engineering
	Chairman, Departmental Committee on Graduate Students

MICROSTRUCTURAL MODELING OF LITHIUM BATTERY ELECTRODES

by

BENJAMIN HELLWEG

Submitted to the Department of Materials Science and Engineering on August 4, 2000 in partial fulfillment of the requirements for the Degree of Master of Science in Materials Science and Engineering

ABSTRACT

The transport of charged species in lithium ion batteries was studied from a microstructural point of view. Electron transport was analyzed using percolation theory and comparison with other conductor-insulator composites. An *in situ* filter pressing apparatus was designed and constructed in order to determine the percolation threshold in composite electrode systems. In addition, the effect of inter-particle interactions was qualitatively examined. The percolation threshold was determined to occur between 10 and 13 volume percent conductor loading for liquid electrolyte systems. In dissolved polymer systems, polymer adsorption shifted the percolation threshold to 25 volume percent.

Ion transport was analyzed using a computer model designed by Doyle and Newman. Microstructural solutions to ameliorate the rate limiting steps were proposed and tested. Battery simulations demonstrated that the rate capability of lithium batteries could be improved both by utilizing plate-like particles aligned in parallel with the current flow, and also by producing a porosity gradient in the electrode. Using particles aligned parallel to the current flow allowed the elimination of tortuosity from the ion path. Graded electrodes provided superior ion transport near the electrode surface, where the ionic current is greatest, while additional capacity was available in the depth of the eletrode, where ion transport was not as critical.

Thesis Supervisor: Yet-Ming Chiang

Title: Kyocera Professor of Ceramics

Table of Contents

Abstract	3
Table of Contents	5
List of Illustrations and Figures	7
List of Tables	7
Acknowledgements	9
1. Introduction 1.1 Introduction 1.2 Figures	11 11 13
2. Electron Transport 2.1 Introduction 2.2 Experimental 2.3 Results and Discussion 2.4 Conclusions 2.5 Figures	16 16 22 27 32 34
3. Ion Transport 3.1 Introduction 3.2 Modeling 3.3 Results 3.4 Conclusions 3.5 Figures	45 45 53 60 67 68
4. Conclusions	79
5. Appendices Appendix A Appendix B Appendix C	81 81 124 127
6. Bibliography	200
7. Biographical Note	202

List of Illustrations and Figures

Figure 1.1 Schematic of a lithium ion battery	13
Figure 1.2 Schematic representation of transport in the composite electrode	14
Figure 1.3 Micrograph of a composite cathode	15
Figure 2.1 Schematic of the <i>in situ</i> filter pressing apparatus	34
Figure 2.2 TEM image of a graphite particle	35
Figure 2.3 TEM image of a cluster of graphite particles	36
Figure 2.4 TEM image of a LiMg _{.05} Co _{.95} O ₂ particle	37
Figure 2.5 TEM image of a cluster of LiMg _{.05} Co _{.95} O ₂ particles	38
Figure 2.6 Resistivity vs. V _f graphite in liquid electrolytes	39
Figure 2.7 Resistivity vs. V _f graphite in EC/DMC with changing salt concentration	40
Figure 2.8 Resistivity vs. V _f graphite in liquid electrolyte vs. BCE solution	41
Figure 2.9 Resistivity vs. V _f LiMg _{.05} Co _{.95} O ₂ in various electrolyte media	42
Figure 2.10 Resistivity vs. V _f graphite in PEO/THF	43
Figure 2.11 Resistivity vs. V _f graphite in THF vs. in polymer solution	44
Figure 3.1 Electrolyte volume fraction vs. position	68
Figure 3.2 Ionic resistance vs. position in the electrode	69
Figure 3.3 Ohmic drop vs. position in the electrode	70
Figure 3.4 Schematic representation of the simulated cells	71
Figure 3.5 Specific energy vs. discharge current for linear porosity gradients	72
Figure 3.6 Ragone plot for linear porosity gradients	73
Figure 3.7 Specific energy as a function of electrode grading	74
Figure 3.8 Specific energy vs. discharge current for non-linear porosity gradients	75
Figure 3.9 Stoichiometric utilization vs. charging current	76
Figure 3.10 Specific energy vs. discharge current for tortuosity-free electrodes	77
Figure 3.11 Ragone plot for tortuosity-free electrodes	78
List of Tables	
Table 3.1 Invariant cell simulation parameters	56

Acknowledgements

First and foremost, I would like to express my sincere thanks to Prof. Yet-Ming Chiang for serving as my thesis advisor. It is in no small part due to his patience, encouragement, advice and expertise that this thesis came about.

Many thanks also to my parents for their unconditional love, support and encouragement. Thanks my colleagues in the Chiang research group, especially those working on batteries, Pimpa Limthongkul, Haifeng Wang, Garry Maskaly and Young-Il Jang. Their help and questions were invaluable.

Thanks to Prof. Craig Carter and Catherine Bishop for their help with modeling and numerical methods.

Thanks to Phil Soo for providing precious BCE samples for use in filter-pressing experiments.

Thanks to all of my colleagues and faculty in the Department of Materials Science and Engineering.

Thanks to the Department of Defense for Fellowship support.

The resources of the CMSE shared experimental facilities are gratefully acknowledged.

1. Introduction

1.1 Introduction

Lithium ion batteries are the system of choice for meeting the increasing power demands of today's portable consumer electronics. With continuously increasing need for portable power, a large research effort has been directed at decreasing the cost of manufacturing batteries while increasing their energy and power densities.

The typical lithium battery consists of a lithium foil or a composite carbon anode, a liquid electrolyte containing lithium salt, and a composite cathode. A schematic representation of a lithium ion battery is depicted in Figure 1.1. During battery discharge, lithium ions move through the electrolyte from anode to cathode, and then intercalate into the oxide storage material. To preserve charge neutrality, electrons are driven through the external circuit to complete the electrochemical reaction. For proper battery operation, the electrodes must then provide fast transport for both electrons and lithium ions. Figure 1.2 summarizes the needed transport characteristics for a battery electrode.

As the intrinsic transport properties of most electrochemically active oxides are not sufficient, a three-phase porous electrode is utilized to improve the rate capability. A carbonaceous conducting additive and an electrolyte material are added to the lithium storage material in order to provide sufficient electronic and ionic conductivity, respectively. The micrograph of a composite cathode is shown in Figure 1.3. In order to optimize battery design, a clear understanding of the transport of both electrons and

lithium ions in the composite electrode is necessary. Microstructural features control the critical properties in a wide variety of engineering materials, from transformation-toughened zirconia to lead ruthenate thin film resistors. Therefore, the microstructure in many materials is tailored to optimize the desired properties while reducing undesirable ones. Given that designing microstructure in a common engineer's tool, it is surprising that microstructure issues have not been fully addressed in this burgeoning field. This work considers the transport of charged species in the composite electrodes from a microstructural point of view.

Electron transport was analyzed using percolation theory and by comparison with other conductor-insulator composites. An *in situ* filter pressing apparatus was designed and constructed in order to determine the percolation threshold for electrode composite materials, and to investigate the impact of inter-particle interactions on the electronic conductivity of these composites.

Ion transport was analyzed using a computer model designed by Doyle, Fuller and Newman. Each step in lithium transport from dissolution at the cathode to intercalation and diffusion at the cathode was considered, and microstructure improvements to ameliorate the rate-limiting steps were proposed. The computer model was modified to allow the simulation of graded microstructures to evaluate the effectiveness of these improvements.

1.2 Figures

Figure 1.1 A schematic of a lithium ion battery with a composite cathode. The direction of ion and electron migration indicates that the battery is being charged. During discharge, the charged species move in the opposite direction.

Figure 1.2 A schematic representation of the transport required in the lithium battery electrode. The electrode must provide ion paths from the intercalation oxide particle to the electrolyte separator and electron paths from the oxide particle to the current collector.

Figure 1.3 Micrograph of the composite cathode of a lithium battery. The electrode is porous which allows the liquid electrolyte to provide ion transport to the oxide particles.

2. Electron Transport

2.1 Introduction

In many conductor-insulator composites used in electronic and electrochemical devices, the dependence of electronic conductivity on phase fraction, microstructure and external conditions determine the material's usefulness. Such composites have been extensively used as thick-film resistors, thermistors, current-limiters, fuses and other applications. Similarly, mixed-phase electrode systems used as SOFC cermet anodes, or lithium ion battery electrodes rely an electronically conductive phase to provide sufficient electron transport for the electrochemical reaction to proceed. For each of these applications, controlling the electron transport properties of the composite is critical.

In order to design materials that optimize these properties, an understanding of the processes that determine electron transport is required. In conductor-insulator composites, there are two critical factors that determine the overall electronic conductivity. First, a continuous network of the conducting phase must be present in order to develop an appreciable conductivity. Percolation theory describes the presence and formation of such networks. In addition, the contact between particles must be such that it allows electron tunneling to carry current between connected particles.

Percolation theory states that the conductivity of a conductor-insulator composite will be negligible or zero until the conducting phase forms a continuous network at a volume fraction known as the percolation threshold (p_c). The conductivity of composites

near the percolation threshold is described as a critical phenomenon, and the conductivity is power-law dependent[1].

$$\sigma \propto (p - p_c)^t \tag{2-1}$$

where p is the conductor volume fraction, p_c is the percolation threshold, and t is a non-integer positive exponent. The theoretical percolation threshold of random systems depends on dimensionality. This value has been experimentally confirmed for 3-dimensional random systems of equiaxed particles[2,3] at approximately 16 volume percent, which is in accordance with the theory. For non-equiaxed particles, the percolation threshold is reduced as the particle aspect ratio increases[4].

Percolation also depends strongly on microstructure. The percolation threshold of random dispersions is found to be higher than that of structured or agglomerated particles[5]. For example, Carcia, Ferretti and Suna [6] observed a percolation threshold as low as 2 volume percent for ruthenate-glass composites. Here smaller ruthenate grains surrounded larger glass particles; the group found that as the particle size of the ruthenate decreased, the percolation threshold also decreased. Sample preparation can also have a large effect. For example, Franco et al. showed that carbon particles in poly (ethylene oxide) percolate at 20 weight percent when prepared by a solvent casting method but at 3 weight percent when prepared with a solvent-free dry pressing procedure[7]. Again, this lowered percolation threshold can be attributed to smaller carbon particles surrounding

large polymer particles in the case of the solvent free process, whereas the structure was entirely random after the polymer was cast into solution.

The inter-particle conduction mechanisms in conductor-insulator composites have been extensively studied due to their varied device applications[3,8-10]. The systems that have received the most attention are cermet thick-film resistors[8] and polymer-carbon black composites with a positive temperature coefficient of resistance (PTCR) effect[9]. In both of these materials, the conductivity is limited by tunneling across conductor particle contacts[8]. In cermet thick-film resistors, this tunneling current is controlled by the thickness and composition of a thin intergranular glass film[11]. Impurities within the tunnel barriers act as resonant centers and enhance tunneling[8].

In polymer-carbon black composites, tunneling between carbon particles likewise forms the conduction path. At temperatures approaching room temperature, these composites instead exhibit a PTCR, as the resistance increases with increasing temperatures. As the polymer matrix is heated through the melting point, the material exhibits a PTCR anomaly as the resistivity increases by several orders of magnitude over a temperature range of only a few degrees K. Usually it is assumed that an increase in tunneling length that occurs at the melting point due to volume of the polymer matrix is the cause of this anomaly[9], as the tunneling conductance decreases exponentially with increasing particle separation[11]. Alternately, this effect is attributed to the making and breaking of carbon-carbon contacts as the matrix expands[2]. Heaney has studied critical behavior in these systems, and concluded that percolation effects alone cannot account for the resistivity change with temperature[3].

Lithium battery electrodes are also processed as suspensions of carbon and oxide particles in an electrolyte. As the intrinsic electronic and lithium conductivities of cathode intercalation compounds such as LiCoO₂ and LiMn₂O₄ and carbon-based anode materials are too low for them to function as dense bulk materials, a porous composite electrode has been used in most battery designs. Transport into and out of the oxide particles is dependent upon additives to this composite electrode. A liquid electrolyte provides ion transport through the pore network, while a carbon additive provides electronic conductivity. While continuous conductor and electrolyte networks are necessary for adequate global ionic and electronic transport in the electrode, the highest possible fraction of the lithium storage material is desired in order to maximize energy density.

Clearly, both the percolative aspects of the microstructure, and the local interparticle tunneling properties control the electronic conductivity of all of these multi-phase composites. Both of these factors are strongly affected by the morphology and intrinsic properties of the starting materials as well as the inter-particle interactions. Inter-particle interactions have been extensively studied in colloidal suspensions in order to develop effective means of processing them. In colloidal suspensions, three types of surface forces are commonly observed.

The van der Waals interaction is always attractive for like particles in any medium, and it will dominate the inter-particle interaction at short distances, leading to good inter-particle contacts. For spherical particles at small separations, the van der Waals potential energy is inversely proportional to the distance between particles[12]. This interaction leads to a primary minimum in interaction energy at very close particle approach.

In electrolytic suspensions, a Derjaguin, Landau, Verwey & Overbeek (DLVO) double layer may also form. This occurs when ions in the solution adsorb onto and charge particle surfaces. Formation of such a double layer can lead to electrostatic repulsion that stabilizes the suspension. This effect would hinder close particle approach, and lead to poor inter-particle contacts[13]. Double layer stabilization occurs when the double layer is sufficiently diffuse that it provides an energy barrier to particle approach. Typically, DLVO interactions stabilize suspensions at salt concentrations below 0.1M if the ions are monovalent. At higher concentrations, the double layer is compressed, and van der Waals forces predominate, leading to particle aggregation[13].

Finally, a suspension may be stabilized sterically. In ceramics processing, surfactant molecules are commonly added to particle suspensions in order to control inter-particle interactions. Usually, these surfactants have a polar and non-polar end, or else an ionically charged and a neutral end. Selective adsorption of one end of the molecule to the particles prevents contact formation because the surfactant molecules are interposed between the particles[13]. The steric repulsion is dependent on the thickness of the adsorbed layer and on the chemical nature of the adsorption.

In cermet thick-film resistors, the inter-particle forces have been studied by Chiang et al.[11] They found that van der Waals attractions are sufficient to keep the ruthenate particles flocced, but that a nanometer thick glass film provides steric repulsion between individual grains at equilibrium. The group also demonstrated that titania addition increased the film thickness, and they were able to use this effect to control the resistivity and the TCR for these materials.

In this work, an *in situ* filter pressing apparatus was designed and constructed in order to allow the convenient measurement of electronic conductivity in a solid-liquid composite under changing solid loading. Using this apparatus, it was also possible to qualitatively observe the effect of inter-particle interactions on the conductivity of a conductor-insulator composite.

2.2 Experimental

Apparatus

An in situ filter pressing apparatus (Fig. 2.1) was constructed to study the effect of interparticle forces and percolation on the electronic conductivity of lithium battery cathode composite materials. Quartz tubes, custom etched to an inner diameter of ¼ in. (G. Finkenbeiner, Waltham, MA) were used as the sleeve for the filter-pressing die. Use of a transparent sleeve allowed the direct measurement of the column height of the composite. In addition, it allowed visual inspection of the quality of the seal as well as the uniformity of the composite mixture within the press. The pistons were made of ¼ inch OD steel tubes. A 1/8-inch hole was drilled down the center of each piston in order to allow liquid to expire from the composite mixture. These hollow steel pistons were then fitted with porous metal disks (Mott Corp., Farmington, CT). The disks had an outer diameter of 1/4 in., thickness of 0.062 in. and an average pore size of 0.5 µm. These disks were attached to the pistons using silver-loaded conductive epoxy (E-Solder No. 3012 VonRoll Isola, Liverpool, NY) to ensure both good adhesion as well as electrical contact. The epoxy was cured at 150 °C for 4 hours. Teflon tape was used to ensure a good seal between the pistons and sleeve, and to aid in visual monitoring of the pressing process. Leads were attached to each piston to permit the resistance measurements.

In the experimental measurements, the sample resistances ranged from several ohms for compacted systems to several mega ohms for systems with loading below the

percolation threshold. Because the geometric configuration of the pressing apparatus precluded four-point probe electrical measurements, control measurements were performed in order to ensure the validity of two-point probe measurements. Resistance at contact between the two pistons in the absence of samples was less than 1 Ω . Since graphite was the conductive phase tested in the experiments, the press was then loaded with graphite powder and highly compacted to 63% of theoretical density. The resistance was again less than 1 Ω . These results showed that contact resistance between the metal filters and the test material was insignificant at high compaction. As a result, contact resistances could be neglected, and the two-point probe resistance measurements were considered indicative of the true sample resistance.

Each suspension was prepared for testing by mechanically mixing the solid particles with the chosen liquid medium. After mechanically mixing and stirring for 5 minutes to ensure uniformity, the solid particles were ultrasonically dispersed for 15 minutes. Once ultrasonically dispersed, the suspensions were loaded into the pressing apparatus and compressed. Upon pressing the samples, the liquid discharge from the hollow pistons was clear and free of any particles, indicating a good seal both between the piston and the glass sleeve, as well a sufficiently fine pore size in the metal filters to prevent solid penetration. The height of the suspension column was precisely measured, and the resistance was simultaneously recorded during pressing. From these data, the volume fraction of solids and the resistivity of the cake were calculated. The volume fraction is given by:

$$V_f(C) = V_f^0(C) \frac{h}{h^0}$$
 [2-2]

where h is the column height, h^0 is the initial column height, and $V_f^0(C)$ is the initial volume fraction of graphite. The resistivity is given by:

$$\rho_e = R_{sample} \frac{A}{h} \tag{2-3}$$

where R_{sample} is the measured resistance and A is the cross-sectional area of the pressing die.

Materials Systems

Measurements were performed on suspensions of graphite and doped LiCoO₂ in various liquids representative of lithium ion battery electrolytes. All experiments were conducted in an argon-filled dry box.

Graphitic carbon, 1-2 μm particle size (Aldrich, Milwaukee, WI) was used as the conductive phase in most of the experiments. Mg-doped LiCoO₂ was used in experiments testing the composite conductivity of cathode oxides. This composition was used rather than pure LiCoO₂ due to its improved electronic conductivity[14]. The oxide with stoichiometry LiMg_{0.05}Co_{0.95}O₂ was prepared by mixing of stoichiometric amounts of Co(OH)₂ and Mg(OH)₂ with Li₂CO₃ (Aldrich, Milwaukee, WI), and firing in air at 800°C for 6 hours. This powder was characterized by X-ray diffraction (XRD), and confirmed to have the α-NaFeO₂ structure type. TEM photographs of both graphite and LiMg_{0.05}Co_{0.95}O₂ particles were obtained. The graphite particles appeared to range in size

from 0.5 to 1.5 microns, and exhibited a hexagonal morphology. The TEM Bright Field Image of typical graphite particle is shown in Figure 2.2. Figure 2.3 shows a small cluster of graphite particles. The LiMg_{0.05}Co_{0.95}O₂ particles exhibited a hexagonal morphology similar to the graphite particles. The oxide particles were larger than the graphite particles, with a size range of 1-3 microns for each oxide particle. A TEM image of a typical oxide particle is shown in Figure 2.4. A cluster of oxide particles is shown in Figure 2.5.

Anhydrous ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC) and 1,2,dimethoxyethane (DME) electrolytes (Alfa Aesar, Word Hill, MA) were used. LiPF₆ salt (Alfa Aesar, Word Hill, MA) was added to the pure solvents. A salt concentration of 1M, typical for liquid electrolytes, was used for most tests. Solutions of 1:1 v/v EC/DMC electrolyte with salt concentrations of 0.1M and 0.01M were prepared.

A solution of a novel block co-polymer electrolyte (BCE) in anhydrous THF (Aldrich, Milwaukee, WI) was also used. The BCE used was a tri-block co-polymer consisting of 17% PLMA-66% POEM-17%PLMA, with a molecular weight of 70000, prepared by P. Soo[15]. The solution contained 5 percent polymer by weight. The polymer was doped with LiCF₃SO₃ (Aldrich, Milwaukee, WI) at a ratio of 20:1 [EO:Li⁺]. To compare this BCE to a typical polymer electrolyte, tests were also performed on poly (ethylene oxide) (PEO). PEO (100K Molecular weight, Poly Sciences Warrington, PA) was added to THF at 5 percent by weight. At room temperature, the PEO did not dissolve in the THF. Tests were subsequently performed on suspensions where the PEO was not

dissolved (suspensions of carbon *and* PEO particles in THF) and also on suspensions where the PEO was dissolved in THF by heating to 90 °C for 15 minutes and allowing the PEO to dissolve. Upon subsequent cooling, the PEO remained in solution. A control experiment with carbon suspensions in pure THF was also performed.

2.3 Results and Discussion

Figure 2.6 shows the effect of the liquid electrolyte on the resistivity of graphite suspensions as a function of volume fraction. At a volume fraction of 10% graphite, the resistivity of each suspension drops by two orders of magnitude from $\sim 10^5$ to $\sim 10^3$ Ω cm. It appears that percolation of graphite particles occurs at volume fractions between 10 and 13% rather than the 16% expected for random bond percolation. Agglomeration of graphite particles due to van der Waals forces could explain this effect. However, the TEM images show that both the carbon and oxide particles were readily dispersed. It is therefore more likely that the non-spherical morphology of the particles reduced the percolation threshold from 16% to the observed value. As the volume fraction of carbon increases further, the resistivity slowly decreases to between 10 and 100 Ω cm at 40 volume percent carbon. Graphite has an intrinsic resistivity on the order of $10^{-3} \Omega$ cm. This large difference between the intrinsic resistivity of graphite and the resistivity measured in the tests indicates that it is the inter-particle contacts, rather than the bulk resistivity of the particles that determines the overall electrical properties of the suspension.

The various liquid electrolytes showed similar composite behavior at low volume fractions. At solid volume fractions near 0.3, the sample pressed in DEC has a higher resistivity. Of the liquid electrolytes tested, DEC has the highest molecular weight; it is possible that the polar carbonate group of the DEC selectively adsorbed on the carbon surfaces, and the aliphatic ethyl groups at either end provided some resistance to particle

approach. At low graphite loadings, the DEC also seems to exhibit a percolation threshold closer to the theoretical value than the other liquids, which may mean that the graphite is better dispersed in this medium.

The effect of salt concentration on the resistivity of graphite suspensions in EC/DMC is shown in Figure 2.7. At all measured salt concentrations, the percolation threshold again occurred at 10 volume percent. The resistivity of the suspension decreased from 10^5 to 10^3 Ω cm at this volume fraction. As the graphite loading increased from this level to 30 vol. %, the resistivity again decreased slowly to a level between 10 and 100 Ω cm. It appears that salt concentration has little effect on the resistivity of the suspension, suggesting that DLVO interactions do not have a significant effect on graphite particle aggregation in the present liquid battery electrolytes, as both high- and low-salt solvents show electronic percolation at nearly identical carbon loadings. Typically, DLVO interactions stabilize aqueous suspensions at salt concentrations less than 0.1 M for electrolytes with monovalent salts. In the present case, both the pure medium and also a 0.01M LiPF₆ solution in an EC/DMC electrolyte behave almost identically to the electrolytes with higher salt concentrations.

Figure 2.8 shows that a polymer solution dramatically changes the electrical properties of the graphite-electrolyte suspension. Here, a suspension of carbon in the block copolymer electrolyte solution is compared to carbon powder compacted in air and to a suspension in EC/DMC liquid electrolyte. The resistivity of graphite powder compacted in air shows very similar behavior to that of the carbon-EC/DMC suspensions, indicating that the liquid electrolyte does not interfere with the formation of inter-particle

contacts. However, in the BCE-electrolyte solution, the apparent percolation threshold is shifted to a much higher loading of 25 vol.%. At 10% graphite loading, where suspensions in liquids and air have already percolated, the suspension in polymer solution has a resistivity that is approximately 5 orders of magnitude greater. At the theoretical percolation limit of 16%, the resistivity remains 3 orders of magnitude greater. Thus, it can be concluded that the polymer is acting as a surfactant in this solution, interfering with the formation of electronically conductive carbon-carbon contacts. At 45 percent carbon loading, however, the resistivity converges with that found in graphite-liquid electrolyte suspensions, indicating that even modest pressure is able to force the carbon particles into contact despite the adsorbed polymer.

The resistivity of LiMg_{0.05}Co_{0.95}O₂-electrolyte suspensions is shown in Figure 2.9. Again, it appears that oxide particles in liquid electrolytes are able to form good contacts, indicated by the sudden decrease in resistivity from 10^5 to 10^3 Ω cm as the carbon loading exceeds 10 volume percent. This resistivity remains almost constant as the suspension is further compacted to a solid loading of 50 volume percent. The higher resistivity upon further compaction, compared with the carbon suspensions, may be due to the higher intrinsic resistivity of the doped oxide (~1 Ω cm)[14]. However, the solid polymer electrolyte solution here also appears to impede the formation of electronically conducting contacts between oxide particles, as the resistivity is greater across most of the volume fraction range. Only at very high particle loadings does the resistivity begin to approach that of the oxide suspensions in liquid electrolytes. Even at 50 percent oxide loading, the suspension in the polymer solution has a resistivity that is an order of

magnitude higher than that of the oxide suspension in liquid electrolyte. This result indicates that the solid polymer electrolyte also acts as a surfactant on the oxide particles, interfering with electronic percolation over a broad range of volume fractions.

In Figure 2.10, the resistance is plotted against graphite volume fraction for suspensions in a PEO and THF solution. Two different states of PEO in THF have been tested. The samples in which the PEO had been dissolved by heating to 90 °C showed behavior similar to that of BCE solutions in THF; it appears that the polymer solution interferes with the electrical contact between graphite particles. On the other hand, the samples in which the PEO was suspended in particulate form, but not dissolved showed behavior very similar to that of a control suspension of THF with no polymer. It appears that in particulate form, the polymer does not interfere with inter-particle contacts. This conclusion is consistent with previous studies on polymer-graphite composites, where it was found that solution free mixtures percolated at much lower graphite loadings than samples prepared with polymers in solution[7].

Figure 2.11 compares the behavior of graphite suspensions in PEO solutions to graphite suspensions in BCE solutions. The dissolved PEO has a similar effect on carbon-carbon contacts in a suspension as the dissolved BCE. In both cases, the polymer is found to interfere with the formation of conductive carbon-carbon contacts when compared with the control samples of graphite suspended in pure THF.

The surfactant effect indicates that it may be necessary to increase carbon loading in order to ensure sufficient electronic conductivity in a solid polymer battery.

Furthermore, due to lower ionic conductivity compared with liquid electrolytes, it is to be

expected that a greater fraction of solid electrolyte is necessary to ensure sufficient ion transport.

2.4 Conclusions

An *in situ* measurement apparatus was built in order to probe the electronic conductivity as a function of composition in lithium battery mixed-phase electrodes. This apparatus worked by means of a filter pressing mechanism to allow the measurement of sample resistivity while changing the volume fraction of conducting phase. A broad range of phase fractions, most notably spanning the percolation threshold was characterized. Because the geometric configuration of the apparatus precluded four-point probe measurements, the validity of two-point probe electrical tests was experimentally confirmed.

The percolation limit for graphitic carbon and lithium cobalt oxide dispersed in organic liquid electrolytes occurs between 10 and 13 vol. %. This lowering of the percolation threshold compared to the theoretical 16 vol. % value can be ascribed either to anisotropic particle morphology or to van der Waals interactions that encourage the formation of electronically conducting contacts in a looser packing arrangement. Neither the choice of organic electrolyte nor the salt concentration has a significant effect on electronic conductivity controlled by inter-particle contacts. On the other hand, polymer electrolytes in solution cause an increase in the volume percolation limit to about 25% and a decrease in the electronic conductivity at low solid volume fraction. This phenomenon is attributed to polymer surfactant adsorption.

An advantage of the *in situ* measurement apparatus is that it allows continuous measurements on a single specimen, yielding data that would otherwise have required the

preparation of a series of samples. Due to the low strength of the quartz sleeves used in this instance, the apparatus was not suitable for use under high pressure. Further modifications may allow high-pressure measurements. Nonetheless, this measurement technique has provided valuable information about electronic conduction in mixed phase lithium battery electrodes and has promise as an investigative tool for other conductor-insulator composites.

2.5 Figures

Figure 2.1 Schematic representation of the *in situ* filter pressing apparatus

Figure 2.2 TEM Bright Field Image of a typical graphite particle used to prepare the suspensions at 85K magnification.

Figure 2.3 TEM Micrograph of a cluster of graphite particles at 25K magnification

Figure 2.4 TEM Image of a typical LiMg_{.05}Co_{.95}O₂ particle used to prepare the suspensions at 34K magnification.

Figure 2.5 TEM Bright Field Image of a cluster of LiMg_{.05}Co_{.95}O₂ particles at 17K magnification.

Figure 2.6 Resistivity against volume fraction for graphite in various liquid electrolytes with 1M LiPF₆. The vertical line represents the bond percolation threshold for randomly packed spheres. The suspensions exhibit electronic percolation at ~ 10 vol.% carbon.

Figure 2.7 Resistivity against volume fraction for graphite in EC/DMC electrolyte with varying LiPF₆ salt concentration. The vertical line represents the bond percolation threshold for randomly packed spheres. The suspensions exhibit electronic percolation at \sim 10 vol.%.

Figure 2.8 Resistivity against volume fraction for graphite in liquid electrolyte vs. solid polymer electrolyte solution. The liquid electrolyte is EC/DMC 1M LiPF₆. The polymer solution is a 5 w/o PLMA-POEM-PLMA triblock copolymer in THF doped with $LiCF_3SO_3$. The polymer solution interferes with electronic percolation at low graphite loadings, exhibiting a resistivity that is 5 orders of magnitude greater at 10 vol.% carbon loading.

Figure 2.9 Resistivity against volume fraction of LiMg_{0.05}Co_{0.95}O₂ in various electrolyte media. Again, the polymer solution is observed to interfere with electronic percolation in the suspension. The decrease in resistivity with increasing solid volume fraction is not as dramatic as in carbon suspensions, due to the higher intrinsic resistivity of the doped oxide when compared with carbon.

Figure 2.10 Resistivity against volume fraction of Graphite in PEO/THF. The PEO solution is observed to interfere with electronic percolation in the suspension, whereas the suspension of PEO particles in THF shows behavior similar to the control experiment with carbon suspended in pure THF. The vertical line indicates the 16 vol. Percent theoretical percolation threshold.

Figure 2.11 Resistivity against volume fraction of Graphite in polymer solutions. Both the BCE and the PEO solution are observed to interfere with electronic percolation in the suspension, whereas the control experiment with carbon suspended in pure THF shows percolation behavior similar to that of other liquid electrolytes. The vertical line indicates the 16 vol. Percent theoretical percolation threshold.

3. Ion Transport

3.1 Introduction

During battery operation, lithium ions must pass through several steps in order to complete the electrochemical reaction. These steps consist of:

- 1. Dissolution of lithium at the anode surface, freeing an electron for the external circuit
- 2. Transport of lithium ions across the electrolyte separator
- 3. Transport of lithium ions through the electrolyte phase in the composite cathode
- 4. Intercalation into the active cathode material, consuming electrons from the external circuit
- 5. Solid state diffusion of lithium into the active material, and electron transport from the current collector to the intercalation sites

In considering methods to accelerate lithium transport through microstructure design, it is first necessary to determine which of these steps is rate-limiting. Once the limiting step has been identified, it may be possible to design microstructures that will accelerate it.

Both lithium dissolution at the anode surface and the intercalation reaction at the cathode-electrolyte interface are thermally activated, and are described by Butler-Volmer reaction kinetics, where the reaction transfer current is given by [16]:

$$i_{xfr} = i_o \left[\exp \left[\frac{\alpha_{a1} F \eta_{s1}}{RT} \right] - \exp \left[\frac{\alpha_{c1} F \eta_{s1}}{RT} \right] \right]$$
 [3-1]

where i_0 is the exchange current density, α_{a1} and α_{c1} are symmetry factors for the anodic and cathodic reaction, η_{s1} is the potential difference between the two phases at the reaction site, and F is the Faraday constant. The charge transfer reactions at both

electrodes are thought to be fast at room temperature, and thus are not rate limiting[17]. In situations where this reaction does become rate-limiting, the charge transfer reaction can be accelerated by increasing the surface area of the reaction. This can be done by reducing the particle size of the intercalation material.

Lithium intercalation into the electrode particles is driven by solid-state diffusion, which is governed by Fick's law:

$$\frac{\partial c}{\partial t} = \frac{\partial}{\partial x} \left[D \frac{\partial c}{\partial x} \right]$$
 [3-2]

The time t required for a species to diffuse a distance x is approximated by

$$t = \frac{x^2}{D}$$

For the typical intercalation oxides, D is approximately 10^{-9} cm²/s at room temperature[18,19] and the diffusion distance is on the order of 1 µm, giving approximately 10 seconds as the diffusion time. A battery is usually cycled over a time on the order of hours, indicating that solid-state diffusion does not limit battery operation. Diffusion limitations are also easily removed by reducing the oxide particle size.

Ion transport in the liquid electrolyte phase occurs in two separate regions. In the separator region, no electrochemical reaction takes place, and transport is governed entirely by the intrinsic transport properties of the electrolyte. This region gives rise to ohmic losses which can only be reduced by improving the intrinsic transport properties of the electrolyte, or by reducing the separator thickness.

In the composite electrode, ion transport occurs through electrolyte-filled pore channels. The ion transport still occurs in the electrolyte phase; however, the lithium transport properties must be adjusted for the tortuosity of the ion path through the

composite electrode. In addition, the ionic current changes with depth in the electrode due to the electrochemical reaction. In the liquid phase of the composite electrode, the lithium material balance is expressed by [16]:

$$\varepsilon \frac{\partial c}{\partial t} = \nabla \cdot \varepsilon D_{eff} \nabla c + a j_n (1 - t_+^0)$$
 [3-4]

where ε is the volume fraction of electrolyte, D_{eff} is the effective diffusion coefficient, t_+^0 is the lithium transfer number, a is the particle surface area available for the reaction and j_n represents the local lithium flux density across the electrolyte-particle interface due to the intercalation reaction. The electrical potential gradient in the liquid phase will be[16]:

$$\nabla \eta = \frac{i_{ion}}{\kappa_{eff}} + \frac{RT}{F} \left(1 + t_+^0 \right) \nabla \ln c$$
 [3-5]

where κ_{eff} is the effective ionic conductivity in the solution phase, and i_{ion} is the ionic current in the solution phase. Finally, the ionic conductivity, κ and the diffusivity, D in the solution phase must be adjusted to their effective values given the porosity. For a conducting matrix containing non-conducting spheres, the Bruggeman correction applies [20]. The effective ionic conductivity and diffusivity will be given by

$$\kappa_{eff} = \varepsilon^{\frac{3}{2}} \kappa_0 \tag{3-6}$$

$$D_{eff} = \varepsilon^{\frac{3}{2}} D_0$$
 [3-7]

where ε is the volume fraction of the conducting phase, and κ_0 and D_0 represent the conductivity and diffusivity of the pure electrolyte.

Removing Tortuosity

The Bruggeman correction shows that the conductivity of the composite decreases more rapidly than the volume fraction, which is, of course, an undesirable effect. Considering

equations [3-4] and [3-7] together, it is clear that the effect of volume fraction on diffusive transport is similar to the effect on the conductivity.

The exact form of the porosity correction for ionic conductivity depends strongly on the structure of the composite material. It is desirable to investigate an electrode structure that has a more favorable conductivity correction for volume fraction than the Bruggeman correction. One simple such structure consists of lamellar particles arranged parallel to the direction of current flow, for which the porosity corrections are linear in volume fraction:

$$\kappa_{\text{eff}} = \varepsilon \kappa_0$$

$$D_{eff} = \varepsilon D_0 \tag{3-9}$$

At an electrolyte volume fraction of 30%, the conductivity will be 30% of the liquid-phase conductivity in the case of the lamellar particles, but only 16% of the liquid-phase conductivity for the random porous structure with the Bruggeman correction. With such a lamellar microstructure, then, it should be possible to increase the volume fraction of active material without sacrificing ionic conductivity. Alternately, an electrode with identical particle loading should be able to deliver greater power, due to the improved ionic conductivity in the electrode.

Changing pore distribution

Another means of improving ion transport in the composite electrode is by adjusting the ionic conductivity to best respond to the current distribution in the electrode. When charge transfer current into the electrode particles is limiting, the current carried by the electrolyte phase in the electrode decreases with depth. This decreasing current with electrode depth indicates that the ionic conductivity of the electrolyte phase near the back

of the electrode may not be critical, while a high ionic conductivity near the electrode surface is required to provide rapid ion transport towards the back of the electrode. Based on this need for varying ionic conductivity with electrode depth, it may be possible to improve the electrode rate capability without sacrificing utilization by grading the porosity of the electrode. A high volume fraction of electrolyte near the surface of the electrode would provide a good ionic conductivity in the region where the ion current is high to improve rate capability, while a higher fraction of active material in the depth of the electrode allows for the maintenance of a high energy density.

Feasibility Study

A preliminary analysis was conducted to evaluate whether this proposed microstructure could provide improvements in battery performance. The effect of the graded microstructure on the ohmic loss in the electrolyte phase was approximated by using limiting cases for the ionic current distribution. Only ohmic loss in the liquid phase was considered in order to simplify this investigation. A reduction of ohmic loss in the battery would lead to a lower internal resistance and therefore lower polarization losses in the system. With a lower polarization, the cell should provide a higher specific energy when discharged to a given cutoff voltage.

Three different porosity gradients were considered and compared with a conventional electrode with a constant electrolyte volume fraction of 0.3. Each graded electrode had a spatially varying porosity while keeping total electrolyte volume fraction at 0.3. An electrode with a linear porosity gradient with an electrolyte fraction of 0.4 at the front of the electrode and an electrode fraction of 0.2 at the back of the electrolyte and electrodes with parabolic porosity gradients were investigated. Both a 'concave up' and a

'concave down' parabola were constructed with an average electrolyte fraction of 0.3 and an electrolyte fraction of 0.4 at the front of the electrode. In Figure 3.1, each of these porosity functions is shown. The functional forms of these respective pore gradients are:

For a linear porosity gradient:

$$\varepsilon(d) = 0.4 - 0.2 \left(\frac{d}{X}\right)$$
 [3-10]

For the 'concave up' parabolic porosity gradient:

$$\varepsilon(d) = 0.25 + 0.15 \left(\frac{X - d}{X}\right)^2$$
 [3-11]

For the 'concave down' parabolic porosity gradient:

$$\varepsilon(d) = 0.4 - 0.3 \left(\frac{d}{X}\right)^2$$
 [3-12]

In each case, $\varepsilon(d)$ is the electrolyte volume fraction as a function of position d, and X is the total depth of the composite electrode.

First, a reaction front current distribution was assumed. In this limiting case, all of the electrochemical reaction would first take place at the electrode surface, until all of the oxide there had been completely intercalated with lithium. The reaction would then move into the depth of the electrode, intercalating the cathode material. In this situation, the ionic current would be equal to the cell current behind the reaction front, and zero ahead of the reaction front. This reaction distribution is to be expected in the case where liquid phase ion transport is limiting.

In this case, the ohmic loss in the liquid phase will change with time as the reaction moves from the front to the back of the electrode. The ohmic loss is determined by the total ionic resistance from the front of the electrode to the reaction location. If the

reaction is taking place at a distance d from the front of the electrode, the ohmic loss, $\Delta \phi$, attributed to liquid phase ion transport will be given by:

$$\Delta \varphi = \int_0^d \frac{i}{\varepsilon(x)^{\frac{3}{2}} \kappa_0} dx$$
 [3-13]

where x=0 is the front of the electrode, i is the cell current, κ_0 is the bulk ionic conductivity of the electrolyte, and ε is the volume fraction of the electrolyte phase as a function of position in the electrode.

In Figure 3.2, a figure of potential drop versus electrode depth is shown for this case. Each of the graded electrodes has a lower cumulative potential drop than the conventional electrode at the surface and throughout most of the electrode. However, the conventional electrode has a lower potential drop than all of the graded electrodes at the back end. Thus, the graded porosity electrodes would offer superior rate capability at the beginning of the discharge; after material near the surface is consumed, however, the conventional electrode would begin to exhibit superior performance as the material near the back of the electrode is consumed.

The second limiting case for the current distribution is one in which the ion current density decreases linearly across the electrode. This implies that the electrochemical reaction is evenly distributed throughout the electrode. In this case, the cumulative ohmic loss is calculated by multiplying the local ionic current by the local resistivity. The potential drop at a depth d is given by:

$$\Delta \varphi = \int_0^d \frac{i\left(1 - \frac{x}{X}\right)}{\varepsilon(x)^{\frac{3}{2}}\kappa_0} dx$$
 [3-14]

where x is position, and X is the total electrode thickness.

Figure 3.3 shows the ohmic drop as a function of position in the electrode for this case. The graded porosity electrodes have a lower total potential drop than the uniform electrodes, by 8.5% for the 'concave up' parabolic porosity gradient, by 11.1% for the linear porosity gradient and by 13.7% for the 'concave down' porosity gradient. Near the electrode surface, where the ionic current is highest, the graded porosity electrodes have higher electrolyte volume fractions, and thus higher conductivity. At the rear of the electrode, the ion current is lower, and thus the ionic conductivity is not as critical. From this analysis, the graded porosity electrodes seemed to offer the potential for better rate capability. From these results, a more thorough modeling effort was clearly warranted.

3.2 Modeling

Review

To determine the impact of microstructural changes on real battery systems, the systems were modeled using computer simulations. Doyle, Fuller and Newman[21] have developed the most complete model for lithium batteries to date. Their model treats a full cell sandwich, including a porous cathode, an electrolyte separator, and either a lithium foil or a porous insertion anode. The model also incorporates concentrated solution theory, charge transfer processes and both electronic and ionic conduction[22] in the electrode. The model has been adapted to include a variety of secondary effects, such as temperature effects[23,24], different particle sizes[25], double-layer capacitance[26], as well as side reactions[27]. In addition, the group has provided guidelines for optimizing batteries for porosity and thickness to meet specific applications[28,29].

However, none of these previous electrochemical models considered the battery microstructure in detail. Nagarajan et al.[30] examined the effect of introducing a particle size distribution (PSD) in the electrode. The focus of the study was to assess the change in packing density that was attainable by using a PSD rather than single size particles. They found that by including a PSD, the capacity of cells was increased due to a higher packing fraction of active material in the electrode, resulting in a trade-off between solid-state and liquid phase diffusion limitations as the particle size and packing fraction increased.

Description of the Starting Model

The model of Doyle, Fuller and Newman was adapted and modified. The source code and input files for this model were obtained at the Newman group web site at http://www.cchem.Berkeley.edu/~jsngrp/fortran.html

The original code is also included in this work as Appendix A. A detailed summary of this modeland the computational methods used to solve the set of partial differential equations that govern the battery system can be found in published literature [16,22].

The model uses porous electrode theory developed by Newman and Tobias[31] to simplify the complex cell geometry into a pseudo-one dimensional form. Equations for the lithium material balance [3-15], the potential in the liquid phase [3-16], charge transfer kinetics [3-17], the potential in the solid material [3-18], solid-state diffusion [3-19], and a conservation equation relating the charge transfer flux to the ion current in the liquid phase [3-20] are included[22]:

$$\varepsilon \frac{\partial c}{\partial t} = \frac{\partial}{\partial x} \left[D_{eff} \frac{\partial c}{\partial x} \right] + \left[1 - t_{+}^{0} \right] a j_{n} - \frac{i_{ion}}{F} \frac{\partial t_{+}^{0}}{\partial x}$$
 [3-15]

$$\frac{\partial \Phi_{liq}}{\partial x} = -\frac{i_{lon}}{\kappa_{eff}} + \frac{RT}{F} \left[1 + \frac{\partial \ln f_A}{\partial \ln c} \right] \left(1 - t_+^0 \right) \frac{\partial \ln c}{\partial x}$$
 [3-16]

$$j_{n} = \frac{i_{o}}{F} \left[\exp \left[\frac{\alpha_{a1} F \left(\Phi_{sol} - \Phi_{liq} \right)}{RT} \right] - \exp \left[-\frac{\alpha_{c1} F \left(\Phi_{sol} - \Phi_{liq} \right)}{RT} \right] \right]$$
 [3-17]

$$\frac{\partial \Phi_{sol}}{\partial x} = \frac{I_{cell} - i_{lon}}{\sigma_{eff}}$$
 [3-18]

$$\frac{\partial c_{sol}}{\partial t} = D_{sol} \left[\frac{\partial^2 c_{sol}}{\partial r^2} + \frac{2}{r} \frac{\partial c_{sol}}{\partial r} \right]$$
 [3-19]

$$aj_n = \frac{1}{F} \frac{\partial i_{ion}}{\partial x}$$
 [3-20]

where f_A is the thermodynamic factor used for non-ideal solutions, c_{sol} and Φ_{sol} are the concentration and potential in the solid phase, i_{ion} is the liquid phase ion current, I_{cell} is the total cell current, and F is the Faraday constant. The tortuosity corrections for D and κ are those in equations [3-6] and [3-7]. These equations are linearized and solved using finite differences. The Crank-Nicholson scheme is used for time derivatives. For terms involving the second derivative, a central difference form is used, while either forward or backward differences are used for terms involving first derivatives in space. The equations are cast into matrix form, and solved by the method detailed in the literature[14].

The model calculates the specific energy and power of the cell, using a cell mass M that includes the mass of the anode, cathode, separator and both current collectors. The mass of any external packaging is not included. The specific energy E of the cell is given by [21]

$$E = \frac{1}{M} \int IVdt$$
 [3-21]

where I is the cell current, V is the cell voltage. The specific power P of the cell is given by [21]

$$P = \frac{E}{t}$$
 [3-22]

Of particular interest is the treatment of the geometric parameters in this model, and their effect on the simulations. The intercalation oxide particle size is used, along with the oxide volume fraction to calculate the surface area a available for the electrochemical reaction. The particle size also enters into the solid-state diffusion

calculations. The geometry of the oxide particles does not enter into any direct calculations of the liquid-phase ion transport.

The other geometric parameter, the phase fraction is used to calculate the effective liquid phase diffusion coefficient and conductivity. The volume fraction of solid phase is also used to calculate the particle surface area and the solid phase conductivity. The solid-state diffusion coefficient is not modified for tortuosity, because solid-state diffusion occurs only on a local scale, into and out of the oxide particles.

Other than these microstructural parameters, the model also requires inputs for the dimensions of each battery layer, the density of each of the material components, temperature, electronic conductivity of each electrode material, kinetic constants for the electrochemical reactions, coulombic capacity, and the electrochemical testing conditions. The input parameters that were kept constant for all of the simulations are listed in Table 3.1. A complete sample input file can be found in Appendix B.

Table 3.1 Input parameters consistent through each simulation

Input parameter	Value
Anode thickness	100 μm
Separator thickness	52 μm
Cathode thickness	200 μm
Positive current collector thickness	25 μm
Negative current collector thickness	25 μm
Temperature	298.13 K
Initial salt concentration (in electrolyte)	2.0 [M]
Diffusion coefficient in anode solid (MCMB Carbon)	$3.9e-10 \text{ cm}^2/\text{s}$
Diffusion coefficient in cathode solid (Li _x Mn ₂ O ₄)	1e-9 cm ² /s
Radius of anode particles	12.5 μm
Radius of cathode particles	8.5 μm
Conductivity of anode solid	100 S/m
Conductivity of cathode solid	3.8 S/m
Rate constant for charge transfer reaction at anode	5e-9
Rate constant for charge transfer reaction at cathode	5e-9
Capacity of anode Li storage material	372 mAh/g
Capacity of cathode Li storage material	148 mAh/g

Input Parameter	Value
Volume fraction electrolyte in anode	.357
Volume fraction polymer in anode	.146
Volume fraction filler in anode	.026
Volume fraction electrolyte in separator	.724
Volume fraction polymer in separator	.276
Average volume fraction electrolyte in cathode	.300
Volume fraction polymer in cathode	.000
Volume fraction filler in cathode	.073
Density of electrolyte	1.324 g/cm^3
Density of anode insertion material	1.900 g/cm ³
Density of cathode insertion material	4.140 g/cm ³
Density of inert filler (conductive support)	1.800 g/cm^3
Density of polymer	1.780 g/cm^3
Density of separator material	2.000 g/cm^3
Density of negative current collector	8.930 g/cm ³
Density of positive current collector	2.700 g/cm ³
Initial cathode material stoichiometry (x in Li _x Mn ₂ O ₄)	0.1705
Initial anode material stoichiometry (y in Li _y C ₆)	0.5635

During the simulations, the volume fraction of electrolyte in the cathode as a function of depth was varied. However, in each case, the average volume fraction of electrolyte in the cathode was kept constant at 0.3. In addition to the electrolyte volume fraction, the discharging and charging current were varied between tests. A schematic representation of the simulated cell with relevant cell dimensions is depicted in Figure 3.4.

It should be noted that although this battery model is a powerful tool for battery design and simulation, it has some limitations in accurately depicting microstructural complexity. Because the model casts the battery system into one dimension, it may falter when there is significant transport parallel to the current collectors, as would be expected for instance for an electrode configuration composed of parallel platelet particles, arranged parallel to the superficial current flow.

Modifications to the model of Doyle, Fuller and Newman

Modifying the code to simulate particles with a linear porosity correction for tortuosity required changing the Bruggeman exponent from 1.5 to 1.0 in accordance with equations [3-8] and [3-9]. This change affected the calculation of the effective diffusion coefficient and ionic conductivity, but did not fundamentally change the complexity of the model or the governing equations.

Simulating electrodes with a graded porosity required several changes to the code. First, the volume fraction of each phase was stored as an array in order to represent spatial variance of porosity. Because the value of porosity affects the specific surface area and electronic conductivity, which had been invariant in space in the original model, these parameters also were recast into arrays. The volume fraction also enters the governing equations in differential form in the material balance equation [3-15]. The left hand side of the equation need not be modified, since the time derivative of the volume fraction is zero. However, the electrolyte volume fraction enters the left hand side of the equation through the effective diffusion coefficient, $D_{eff} = \epsilon^{3/2}D_0$. Equation [3-15] then becomes:

$$\varepsilon \frac{\partial c}{\partial t} = \frac{\partial}{\partial x} \left(\varepsilon^{\frac{3}{2}} D \frac{\partial c}{\partial x} \right) + \left(1 - t_{+}^{0} \right) a j_{n} - \frac{i}{F} \frac{\partial t_{+}^{0}}{\partial x}$$
 [3-23]

Using the product rule, the equation can be further expanded

$$\varepsilon \frac{\partial c}{\partial t} = \frac{3}{2} \varepsilon^{\frac{1}{2}} \frac{d\varepsilon}{dx} D \frac{\partial c}{\partial x} + \varepsilon^{\frac{3}{2}} \frac{\partial D}{\partial x} \frac{\partial c}{\partial x} + \varepsilon^{\frac{3}{2}} D \frac{\partial^2 c}{\partial x^2} + (1 - t_+^0) a j_n - \frac{i}{F} \frac{\partial t_+^0}{\partial x}$$
 [3-24]

For an electrode with a constant porosity, the first term on the right hand side is zero, because dɛ/dx is zero. For a graded electrode, this term is nonzero, and was therefore added to the solution scheme for the differential equations. Once the code was

successfully modified, it was compiled and run on Sun Ultra5 and SparcStation5 Unix workstations. Depending on the conditions for the simulation, run time for the simulation of a single cell charge or discharge was between 1 and 30 minutes.

The code was modified to allow the simulation of arbitrary linear gradients in porosity by changing the input file. The electrolyte volume fraction at the front and back of the electrode are new input parameters. Quadratic porosity gradients were hard-coded for simplicity. The Fortran code as modified for the simulation of batteries with linear porosity gradients is given in Appendix C.

3.3 Results

In order to verify the accuracy of the code modifications, the modified code was first run for an electrode of constant porosity, and the results compared with those obtained from the original code for identical simulation parameters. The results before and after modification of the code matched precisely for a variety of simulation conditions. The simulations were run using materials properties for LiMn₂O₄ spinel cathode material, the EC/DEC/LiPF₆ electrolyte system, and either MCMB carbon or lithium anodes. The MCMB carbon anode was used for tests involving graded electrodes. The lithium metal anode was used for the simulations in which the tortuosity had been removed from the electrode. These systems were chosen because the most complete materials data were available.

For all discharge tests, a spinel cathode was assumed with an initial lithium content of Li_{.1705}Mn₂O₄. This material was discharged galvanostatically to a cutoff potential of 3.5 V in all simulations. A variety of current densities and graded electrodes were used. The total electrolyte volume fraction in the cathode was kept constant at 0.3 for all electrodes tested in the model. The layer thicknesses assumed in these simulations were 200 µm for the cathode, 52 µm for the separator, and 100 µm for the anode. Comparisons were made between cells with identical separator and anode configurations in order to isolate the effects of modifying the cathode microstructure.

In the discussion of modeling results, it was frequently necessary to refer to the region of the cathode near the cathode-separator interface, as well as to the region of the

cathode near the current collector. The former will be referred to as the front or surface of the electrode, while the latter will be called the back or bottom of the electrode.

Electrodes with linear porosity gradients

Cathodes with a variety of linear porosity gradients were simulated against an MCMB Carbon anode with constant porosity. Tests were performed on cathodes with high electrolyte volume fractions near the electrode surface, with constant electrolyte fraction, and also on cathodes with a low electrolyte fraction near the front of the electrode. Cells were simulated under conditions of a constant current discharge with a cutoff potential of 3.5V. The cathodes were simulated such that the average electrolyte volume fraction in the electrode remained constant at 0.3. In order to easily refer to electrodes with a particular linear porosity gradient, a graded electrode will be referred to by the electrolyte volume fraction at the front and back of the electrode. For example, a .4/.2 electrode would be an electrode with an electrolyte volume fraction of 0.4 at the front of the electrode and an electrode fraction of 0.2 at the back of the electrode and a linear gradient in electrolyte fraction from the front to the back of the electrode. An electrode with a constant electrolyte volume fraction will be referred to as conventional or homogeneous, and will serve as a benchmark in measuring performance for the graded electrodes.

Figure 3.5 shows the specific energy vs. discharge current for electrodes with linear porosity gradients and an average electrolyte volume fraction of 0.3. At low rates, the performance of the electrodes is virtually identical; here, the electrodes are limited by the intrinsic capacity of the oxide. As the discharge rate is increased, liquid phase ion transport in the electrode becomes limiting, and the graded porosity electrode improves cell performance. At 10 A/m^2 , the .4/.2 electrode offers 30% greater specific energy than

the conventional electrode. This increase in specific energy is achieved without sacrificing specific power. The specific energy decreases with increasing current for all electrodes. However, the electrodes with graded porosity retain a higher specific energy as the current is increased. At 20 A/m², the .4/.2 electrode has a specific energy 60% higher than an electrode with constant porosity. At this current density, a .5/.1 electrode twice the specific energy of a homogeneous electrode. In order to verify that the benefits of grading the electrode occur because of the need for higher liquid phase ion transport near the electrode surface, 0.2/0.4 electrodes were also simulated. These electrodes are expected to have lower specific energies than a conventional electrode, because the low electrolyte fraction near the front of the electrode would decrease the ionic conductivity in this region. As expected, the simulations showed that the 0.2/0.4 electrode had a lower specific energy than the conventional electrode for all discharge current densities.

A Ragone plot of specific power vs. specific energy for the same electrodes is shown in Figure 3.6. Here, the benefits of grading the electrode are made more apparent as the 'knee' of the Ragone plot is moved outward. The graded porosity electrode is able to supply more energy at a given power than the conventional electrode. It should be noted that the 'knee' of the plot represents the ideal operational range for the cell. At this location, the optimum tradeoff between specific energy and specific power occurs. Therefore the figure indicates that the improvement in capacity/rate tradeoff due to electrode grading occurs in a useful performance range.

Figure 3.7 shows the specific energy as a function of linear electrode grading for several different discharge currents. As the discharge current increases, the optimum electrode grading shifts from a slight porosity gradient to more severe porosity gradients

at very high current densities. At 5 A/m², the highest specific energy is obtained with a .375/.225 electrode. At 10 A/m², the .45/.15 electrode has the highest specific energy. The .599/.001 electrode has the highest specific energy at 20 A/m². This shift in the optimum grading can be attributed to the decreasing electrode utilization with increasing current. As the depth of the electrode is less utilized at high currents, the steeply graded electrode, with its superior ion transport near the electrode surface, becomes more effective than more gradually graded electrodes. Conversely, as other electrodes are more fully utilized at lower currents, the poor ion transport properties at the back of the highly graded electrode prevent full utilization at low and moderate discharge rates.

Electrodes with non-linear porosity gradients

Figure 3.8 shows a comparison of specific energy vs. discharge current for conventional electrode of electrolyte volume fraction 0.3 with electrodes of linear and quadratic porosity gradients. Cell simulations were run under constant current with a cutoff potential of 3.5 V. The anode was a composite MCMB carbon electrode. Equations [3-10] through [3-12] describe the electrolyte volume fraction as a function of depth for each electrode. Each of the graded electrodes has an electrolyte volume fraction of 0.4 at the electrode surface, and an average electrolyte volume fraction of 0.3. Both a 'concave up' and a 'concave down' quadratic gradient were simulated. All of the graded electrodes have a higher specific energy than a homogeneous electrode in the intermediate discharge rate regime. At very low discharge rates, the cell is limited by the electrode capacity, and there is little performance difference between any of the electrodes. At very high discharge rates, the performance of the graded electrodes also converges. This can be attributed to the fact that only the oxide near the electrode/separator interface is utilized at

very high discharge rates. As all of the graded electrodes have identical 0.4 electrolyte volume fractions at the electrode surface, it is expected that their performance should be similar if only the electrode surface is utilized. In addition, although the constant porosity electrode has 50% lower specific energy than the graded electrodes at the highest discharge current of 40A/m², the absolute difference is small because none of the electrodes is well utilized. The graded electrodes have specific energies within 5% of one another at this highest value, (between 3.88 and 4.08 Wh/kg), whereas the constant porosity electrode yields 2.15 Wh/kg.

The most important distinctions in terms of performance between the graded electrodes occurs in the intermediate discharge rate regime. This type of behavior is not unexpected, because the electrodes have identical average and surface compositions. Thus, we expect that if all of the electrode is utilized (at low rates), or if only the surface is utilized (at high rates), the performance of the electrodes should be very similar. It is in the intermediate range, where the electrode is partially utilized, that performance differences occur. The electrode with a 'concave down' parabolic gradient should be expected to perform best, as it has the highest volume fraction of electrolyte near the electrode surface. Indeed, this electrode has a 10% higher specific energy than the linear .4/.2 electrode at a discharge rate of 15 A/m².

Simulations of cell charging

Simulations were also performed to test the performance of graded electrodes during battery charging. During charging, the battery is connected to some power source, presumed to be large, and the lithium is deintercalated from the cathode, and redeposited in the anode of the cell. Because the battery is charged by an external power source, the

energy efficiency of the charging process is not as critical as the charge rate and the amount of lithium that is deintercalated from the cathode. Cell charging was simulated using data for a spinel cathode with an initial lithium stoichiometric parameter of 0.75 and an MCMB composite anode. The cell dimensions were identical to those used in the discharge simulations. The cells were charged under constant current to a 4.3 V cutoff potential. In Figure 3.9, the stoichiometric utilization of the electrode is shown as a function of charging current for both a graded and a homogeneous electrode.

The charging curves validate the results of the discharge simulations. It is clear that the graded electrode again performs better than the homogeneous electrode, with a higher utilization at moderate and high discharge rates. During charging, the ionic current will be distributed as it is during discharge, but in the opposite direction. Therefore, it is again imperative to have high ionic conductivity near the electrode surface where the ionic current is the greatest.

Simulation of electrodes with tortuosity removed

Discharge simulations were also performed on electrodes in which the tortuosity was eliminated. With this cell geometry, the Bruggeman correction is substituted with a linear correction for volume fraction, as shown in equations [3-8] and [3-9]. Attempts were made to simulate solid particles with plate-like geometry. However, the code did not function properly with this modification. Instead, the existing code was used with spherical particles. While this situation is not physical, it does provide some insight into the operation of electrodes without tortuosity.

In Figure 3.10, the specific energy is shown as a function of discharge current for a porous electrode and electrodes without tortuosity. In these simulations, a Li foil anode

was used instead of an MCMB Carbon anode because altering the Bruggeman correction in only one of the porous electrodes was not possible. By using a Li foil electrode, the effect of modifying the cathode was isolated. At discharge currents up to 50 A/m², the electrode without tortuosity was utilized at over 90% efficiency. At this current density, the conventional porous electrode has a specific energy 85% lower than that of the electrode without tortuosity.

Because platelet shaped particles of a given thickness have a lower surface area and a larger diffusion distance than spherical particles with a radius of the same dimensions, simulations were also performed on a tortuosity-free electrode with triple the oxide particle size. This particle size was chosen because the surface area for these particles was the same as for platelet-shaped particles of the original particle size. In addition, the diffusion distance for these particles was larger than for platelet-shaped particles of the original particle size. However, despite reducing the particle surface area and increasing the diffusion distance, the tortuosity-free electrode with a large particle size retained much of the improved rate-capability when compared with a porous electrode. At 50 A/m², this electrode with large particles had a specific energy more than six times higher than that of the porous electrode.

The data comparing the porous electrode to a tortuosity-free electrode is also displayed as a Ragone plot in Figure 3.11. The chart shows that by removing tortuosity, liquid-phase ion transport is improved such that the discharge capacity of the intercalation oxide limits the cell up to current densities of 50 A/m².

3.4 Conclusions

Ion transport in the lithium battery was analyzed in order to develop microstructural improvements to battery systems. Solution-phase ion transport in the composite electrode was determined to be the rate-limiting step at high rates. Two methods of ameliorating this transport step were proposed and tested using the battery model developed by Doyle, Fuller and Newman.

Cell modeling on both graded porosity electrodes as well as electrodes with removed tortuosity showed that specific energy at a given discharge rate could be increased by refining the electrode microstructure. Utilizing graded porosity electrodes offered an increase in specific energy of 30% over a homogeneous electrode at a discharge rate of $10A/m^2$. An electrode without tortuosity offered a specific energy more than six times greater than that of a homogeneous porous electrode at a discharge rate of $50 A/m^2$.

Clearly, these modeling results are promising and merit experimental confirmation. Though the intrinsic capacity of the lithium storage material provides an absolute limit on the energy density of the lithium ion battery, these microstructural improvements allow the use of significantly higher discharge rates while obtaining the same energy densities. The improved rate capability of microstructurally enhanced electrodes makes them suitable for high-power battery system. These simulations demonstrate that battery performance can be significantly improved through the optimization of electrode microstructure.

3.5 Figures

Figure 3.1 Electrolyte volume fraction as a function of distance from the front of the electrode for a selected electrodes with graded porosities. The average electrolyte fraction for each electrode was 0.3. Each of the graded electrodes had an electrolyte fraction of 0.4 at the front of the electrode.

Figure 3.2 Normalized cumulative ionic resistance as a function of depth in the electrode for a variety of graded electrodes. Each graded electrode offers lower ionic resistance near the electrode surface; however, the homogeneous has the lowest total resistance at the back of the electrode.

Figure 3.3 Normalized cumulative potential drop versus depth in the electrode for a variety of graded electrodes, assuming an even spatial distribution for the electrochemical reaction in the cell. All of the graded electrodes offer performance benefits (lower potential drop) when compared with the homogeneous electrode, even at the back of the electrode. This benefit accrues because the graded electrodes have higher ionic conductivity near the electrode surface, where the ionic current is greatest.

Figure 3.4 A schematic representation of the simulated cells. The dimensions of each cell component are noted.

Figure 3.5 Specific Energy vs. Discharge Current for electrodes with a variety of linear porosity gradients. The electrode with the greatest volume fraction electrolyte near the electrode surface performed best at high discharge rates. The electrode with a modest porosity gradient allowed full utilization at low discharge rates, but also provided performance benefits over the homogeneous electrode at high discharge rates.

Figure 3.6 Ragone plots for electrodes with a variety of linear porosity gradients. The electrodes with higher electrolyte fractions near the electrode surface show better performance at high discharge rates, as shown by the higher specific energy available under high-power discharges.

Figure 3.7 Specific Energy as a function of the porosity gradient for a variety of discharge current densities. The optimum electrode has from a modest gradient at low discharge rates but more severe gradients at high discharge rates. This result is consistent with the interpretation that at high rates, only the surface of the electrode is utilized.

Figure 3.8 Specific Energy vs. Discharge Current Density for Electrodes with a Non-linear Porosity gradient, compared to a homogeneous and a linearly graded electrode. Each of the graded electrodes had an average electrolyte volume fraction of 0.3 and an electrolyte fraction of 0.4 at the electrode surface. At low rates, the performance of the electrodes is similar, because they are limited by the capacity of the intercalation material. At high rates, the graded electrodes also show very similar behavior because they have similar porosities near the electrode surface. In the intermediate current range, the electrode with a 'concave down' porosity gradient performs best, because near the surface, the electrode volume fraction decreases more slowly than for the other graded electrodes.

Figure 3.9 Stoichiometric Utilization as a function of charging current for an electrode with a linear porosity gradient compared with a homogeneous electrode. Grading the electrode increases specific capacity for both charging and discharging at moderate and high rates.

Figure 3.10 A tortuosity-free electrode is compared to a homogeneous porous electrode with the Bruggeman correction for tortuosity. Use of the linear rather than Bruggeman correction provides enhanced ion transport at moderate and high discharge rates.

Figure 3.11 Ragone plot comparing a homogeneous electrode with an electrode with parallel plate particle configuration. The Ragone plot shows that the electrode with linear porosity correction has a higher rate capability than the porous electrode.

4. Conclusions

Transport of charged species in lithium ion batteries was investigated from a microstructural approach. The rate-limiting step for transport of each species was identified, and microstructural methods to address each limiting step were proposed.

Electron transport in the composite electrode was analyzed using percolation theory, and was compared to other conductor-insulator composite systems. An *in situ* filter pressing apparatus was designed and constructed in order to determine the percolation threshold for electron transport in battery electrode systems and to gain a qualitative understanding of the inter-particle interactions in these composites. The percolation threshold was determined to be between 10 and 13 volume percent solid for liquid electrolyte systems. It was found that systems with dissolved polymers had percolation thresholds at much higher solid loadings of 25 volume percent. This effect is attributed to polymer adsorption on solid conductor particles.

Ion transport was analyzed by considering each step in ion migration from the anode to the intercalation into the cathode oxide. The rate-limiting step was identified as liquid phase ion transport in the composite electrode. Microstructural solutions to alleviate this bottleneck in lithium transport were proposed and evaluated by modifying the simulation model developed by Doyle, Fuller and Newman. Simulation results showed that graded electrodes showed improved rate capability over homogeneous porous electrodes. This improvement is due to the higher ionic conductivity of the graded electrode near the electrode surface, where the ionic current is greatest. Performance

improvements of 30% in terms of specific energy were achieved for .4/.2 graded electrodes at discharge rates of $10~\text{A/m}^2$.

Electrodes with no tortuosity showed higher rate-capabilities than conventional porous electrodes. Such electrodes could be discharged at rates up to five times greater than conventional porous electrodes and without sacrificing capacity. At a discharge rate of 50 A/m², the tortuosity-free electrode had a specific energy more than six times as high as the porous electrode. Shortening the ion migration distance, improves the rate capability in these cells.

These microstructural refinements demonstrably improved the rate-capability of lithium battery electrodes. Experimental confirmation of these modeling results is justified by the increase in rate-capability seen in the simulations.

5. Appendices

Appendix A – Doyle's code ** c dual.f (version 3.0) January 10, 2000 С Dual lithium ion insertion cell Includes Bellcore physical properties С c Copyright Marc Doyle and John Newman 1998. c You may make a copy of this program which you may c personally and freely use in its unaltered form. c You may distribute this program subject to the c conditions that it be made freely available and c that any duplication of this program must be c essentially unaltered and must include this notice. С c We make no warranties, express or implied, that c this program is free of errors or that it will c meet the requirements of your application. The c author and publisher disclaim all liablility for c direct or consequential damages resulting from c use of this program. С С Revised June, 1998, to include double-layer capacitance in each electrode and to correct a factor of two in Ohm's law. c Note: For Iflag=0, the model works only for initially zero current. С Revised Feb. 12, 1999: c - if n1 = 0, then code treats the negative electrode as metal foil. С - subroutine cellpot does not calculate utilization of foil electrode С - Changed read and print statements. Ç To run, simply type "webdual", then enter С input and output file names when prompted. С - double layer capacitance is not currently calculated at a foil electrode implicit real*8(a-h,o-z) character *30 filin, filout parameter(maxt=900) common /n/ nx,nt,n1,n2,nj,n3,tmmax common /calc/ ai(maxt),ai2(maxt),u(223,maxt),ts(maxt), 1h,h1,h2,h3,hcn,hcp,rr,rrmax

```
common/const/ fc,r,t,frt,cur,ep3,ep2,pi,nneg,nprop,npos,
   1ep1,epf3,epf1,epp1,epp2,epp3,shape3,shape1
   common/power/ ed, Vold, ranode, reathde
   common/ssblock/xp0(6),xx0(6,221),term(221),fj(221)
   common/var/xp(10),xx(6,221),xi(6,221),xt(6,221,maxt)
   common/cprop/ sig3, area3, rka3, ct3, dfs3, Rad3,
   1sig1,area1,rka1,ct1,dfs1,Rad1,tw,cap1,cap3
   common/tprop/df(221),cd(221),tm(221),
   1ddf(221).dcd(221).dtm(221).dfu(221).d2fu(221)
   common/temp/ thk,htc,dudt,Cp,dens,tam,g0,ncell,lht,qq
   dimension terms(221),tt(200),cu(200),mc(200),tot(200)
                    mass = ',f7.4,' kg/m2')
 44 format(/'
 45 format(' specific energy = ',f8.2,' W-h/kg')
 46 format(' specific power = ',f8.2,' W/kg')
С
   open(3,file='halfcells',status='unknown')
                                    positive'
   write (3,*) 'time
                       negative
   print *, 'Enter input file name, press return'
   read *, filin
    open (1, FILE = 'input.in', status = 'old')
   open (1, FILE = filin, status = 'old')
   print *, 'Enter output file name, press return'
   read *, filout
    open (2, file = 'output.out', status = 'unknown')
   open (2, file = filout, status = 'unknown')
С
    n is number of equations
   n=6
   lim2=20
   data fc/96487.0d0/, r/8.314d0/, pi/3.141592653589d0/
   data ed/0/, Vold/0/
    read in parameters and boundary conditions
С
   read (1,*) lim!limit on number of iterations
   read (1,*) h1 !thickness of negative electrode (m)
   read (1,*) h2!thickness of separator (m)
   read (1,*) h3!thickness of positive electrode (m)
   read (1,*) hen !thickness of negative electrode current collector (m)
   read (1,*) hcp!thickness of positive electrode current collector (m)
   thk=h1+h2+h3
   read (1,*) n1 !number of nodes in negative electrode
   If negative electrode is metal foil, let n1 = 0
   read (1,*) n2 !number of nodes in separator
```

```
read (1,*) n3 !number of nodes in positive electrode
    read (1,*) t !temperature (K)
    write (2, 1101) lim,1.d6*h1,1.d6*h2,1.d6*h3,1.d6*hcn,1.d6*hcp
   &,n1,n2,n3,t
   n2=n2+1
   nj=n1+n2+n3
c
   read (1,*) xi(1,n1+2)!initial concentration (mol/m3)
    guess for PHI2
    xi(2,1)=0.05d0
   xi(2,ni)=0.0d0
   read (1,*) csx !initial stochiometric parameter for negative
   read (1,*) csy !initial stochiometric parameter for positive
    read (1,*) tmmax!maximum time step size (s)
   read (1,*) vcut !cutoff potential
   read (1,*) dfs1!diffusion coefficient in negative solid (m2/s)
   read (1,*) dfs3!diffusion coefficient in positive solid (m2/s)
   read (1,*) Rad1 !radius of negative particles (m)
c If negative electrode is metal foil, let Radl = 1.0
   read (1,*) Rad3 !radius of positive particles (m)
   write (2,1102) xi(1,n1+2),csx,csy,tmmax,vcut,dfs1,dfs3.
   &1.d6*Rad1,1.d6*Rad3
c If negative electrode is metal foil, let ep1=epp1=epf1=0.0
   read (1,*) ep1 !volume fraction of electrolyte in negative electrode
   read (1,*) epp1!volume fraction of polymer phase in negative electrode
   read (1,*) epf1!volume fraction of inert filler in negative electrode
   read (1,*) ep2 !volume fraction of electrolyte in separator
   read (1,*) epp2!volume fraction of polymer phase in separator
   read (1,*) ep3! volume fraction of electrolyte in positive electrode
   read (1,*) epp3!volume fraction of polymer phase in positive electrode
   read (1,*) epf3!volume fraction of inert filler in positive electrode
   read (1,*) sig1!conductivity of solid negative matrix (S/m)
   read (1,*) sig3!conductivity of solid positive matrix (S/m)
c read (1,*) cmax!maximum concentration in electrolyte
                                                                   (mol/m3)
   read (1,*) rkal!reaction rate constant for negative reaction
   read (1,*) rka3!reaction rate constant for positive reaction
   read (1,*) ranode !anode film resistance (out of place)
   read (1,*) reathde !cathode film resistance (out of place)
   read (1,*) il4!1 for polymer, 0 for liquid electrolyte
   read (1,*) cot1 !coulombic capacity of negative material (mAh/g)
   read (1,*) cot3 !coulombic capacity of positive material (mAh/g)
   write (2,1103) ep1,epp1,epf1,ep2,epp2,ep3,epp3,epf3,sig1,
   & sig3,cot1, cot3,cmax,rka1,rka3,il4
   read (1,*) re! density of electrolyte (kg/m3)
   read (1,*) rs1! density of negative insertion material (kg/m3)
   read (1,*) rs3! density of positive insertion material (kg/m3)
```

```
read (1,*) rf! density of inert filler (kg/m3)
   read (1,*) rpl! density of polymer phase (kg/m3)
   read (1,*) rc! density of separator material (kg/m3)
   read (1,*) rcn! density of negative current collector (kg/m3)
   read (1,*) rcp! density of positive current collector (kg/m3)
   write (2,1104) re,rs1,rs3,rf,rpl,rc,rcn,rcp
   read (1,*) htc !heat transfer coefficient with external medium (W/m2K)
   read (1,*) dUdT !temperature coefficient of EMF (V/K)
   read (1,*) Cp !heat capacity of cell (J/kgK)
   read (1,*) Tam !ambient temperature (K)
   read (1,*) ncell!number of cells in a cell stack
   read (1,*) lht !0 uses htc, 1 calcs htc, 2 isothermal
   write (2,1105) ranode, reathde, htc, dudt, Cp, tam, ncell, lht
   read (1,*) ill !1 for long print-out 0 for short print-out
   read (1,*) il 2!1/il2 = fraction of nodes in long print-out
   read (1,*) il3 !1/il3 = fraction of time steps in long print-out
   read (1,*) Iflag! 0 for electrolyte in separator only, 1 for uniform
   read (1,*) lpow! 0 for no power peaks, 1 for power peaks
   read (1,*) jsol! calculate solid profiles if 1 < |sol| < |c| < |c| < |c|
С
   in separator
С
   h=h2
С
   b(5,4)=1.0d0
   g(5) = cur - c(4,j)
   b(6,6)=1.0d0
   g(6) = -c(6,j)
С
   do 504 i=3,3
   call band(i)
   go to 10
 130 if (j .ne. (n2+n1)) go to 140
   Boundary between positive and separator(j=n2+n1):
   if(cap3.eq.0.d0) then
   b(5,4)=-1.0d0/h
   a(5,4)=1.0d0/h
   b(5,5) = area3*fc/2.0d0
   g(5)=(c(4,j)-c(4,j-1))/h-area3*fc/2.0d0*c(5,j)! not order h2
   else
   if (rr.eq. 0) then
   g(5)=c(6,j)-c(2,j)-xt(6,j,kk-1)+xt(2,j,kk-1)
   b(5.6)=-1.d0
   b(5,2)=1.d0
```

```
else
   b(5.4)=-1.0d0/h/2.0d0
   a(5,4)=1.0d0/h/2.0d0
   b(5,5) = area3 * fc/4.0d0
   b(5,6) = area3*cap3/rr*0.5d0
   b(5,2) = -area3*cap3/rr*0.5d0
   g(5)=(c(4,j)-c(4,j-1)+xt(4,j,kk-1)-xt(4,j-1,kk-1))/h/2.0d0
       -area3*fc/4.0d0*(c(5,j)+xt(5,j,kk-1))
        -area3*cap3*(c(6,j)-c(2,j)-xt(6,j,kk-1)
       +xt(2,j,kk-1))/rr*0.5d0
   &
   endif
   endif
   d(6,6)=1.0d0/h3
   b(6,6)=-1.0d0/h3
   b(6.4) = -1.0 d0/sig3
   g(6) = -cur/sig3 + c(4,j)/sig3 - (c(6,j+1)-c(6,j))/h3
С
   do 505 i=3.3
   call band(j)
   go to 10
 140 if (j .eq. nj) go to 16
    specify governing equations [n2+n1 < j < nj]
c
    composite cathode
c
c
   h=h3
c
   if(cap3.eq.0.d0) then
   b(5,4)=-1.0d0/h
   a(5,4)=1.0d0/h
   b(5,5)=area3*fc
   g(5)=(c(4,j)-c(4,j-1))/h-area3*fc*c(5,j)
   else
   if (rr .eq. 0) then
   g(5)=c(6,j)-c(2,j)-xt(6,j,kk-1)+xt(2,j,kk-1)
   b(5,6)=-1.d0
   b(5,2)=1.d0
   else
   b(5,4)=-1.0d0/h/2.0d0
   a(5,4)=1.0d0/h/2.0d0
   b(5,5) = area3*fc/2.0d0
   b(5,6) = area3*cap3/rr
   b(5,2) = -area3*cap3/rr
   g(5)=(c(4,j)-c(4,j-1)+xt(4,j,kk-1)-xt(4,j-1,kk-1))/h/2.0d0
```

```
-area3*fc/2.0d0*(c(5,j)+xt(5,j,kk-1))
   &
        -area3*cap3*(c(6,j)-c(2,j)-xt(6,j,kk-1)
   &
   &
        +xt(2,j,kk-1))/rr
   endif
   endif
С
   d(6,6)=1.0d0/h
   b(6,6)=-1.0d0/h
   b(6.4)=-1.0d0/sig3
    g(6) = -cur/sig3 + c(4,j)/sig3 - (c(6,j+1)-c(6,j))/h3
c
    do 506 i=3.3
    call band(j)
    go to 10
c
c
  16 continue
    specify boundary conditions at right interface(j=nj)
С
    if(cap3.eq.0.d0) then
    b(5,4)=-1.0d0/h
    a(5,4)=1.0d0/h
    b(5,5) = area3*fc/2.0d0
    g(5)=(c(4,j)-c(4,j-1))/h-area3*fc/2.0d0*c(5,j)! not order h2
    else
    if (rr.eq. 0) then
    g(5)=c(6,j)-c(2,j)-xt(6,j,kk-1)+xt(2,j,kk-1)
    b(5,6)=-1.d0
    b(5,2)=1.d0
    else
     b(5,4)=-1.0d0/h/2.0d0
     a(5,4)=1.0d0/h/2.0d0
     b(5,5) = area3 * fc/4.0d0
     b(5,6) = area3*cap3/rr*0.5d0
     b(5,2) = -area3*cap3/rr*0.5d0
     g(5)=(c(4,j)-c(4,j-1)+xt(4,j,kk-1)-xt(4,j-1,kk-1))/h/2.0d0
        -area3*fc/4.0d0*(c(5,j)+xt(5,j,kk-1))
         -area3*cap3*(c(6,j)-c(2,j)-xt(6,j,kk-1)
         +xt(2,j,kk-1))/rr*0.5d0
     endif
     endif
     b(6.4)=1.0d0
     g(6)=-c(4,j)! i2 is no longer used at j=nj
 С
```

```
do 507 i=3.3
    call band(j)
    do 607 jj=1,nj
    do 607 i=1.n
 607 c(i,j)=xx(i,j)+c(i,j)
С
С
    check for convergence
С
    do 56 i=1.n
  56 \text{ xp(i)} = (4.0 \text{d}0 \cdot \text{c(i,2)} - 3.0 \text{d}0 \cdot \text{c(i,1)} - \text{c(i,3)})/2.0 \text{d}0/\text{h}1
    nerr=0
    do 25 j=1,nj
%%%%%%%%%%%%%%%%%%
    shoe horns:
    if(c(1,j).lt.xx(1,j)/100.) c(1,j)=xx(1,j)/100.
    if (c(2,j).lt.(xx(2,j)-0.02)) c(2,j)=xx(2,j)-0.02
    if (c(2,j).gt.(xx(2,j)+0.02)) c(2,j)=xx(2,j)+0.02
    if (c(6,j).lt.(xx(6,j)-0.02)) c(6,j)=xx(6,j)-0.02
    if (c(6,j).gt.(xx(6,j)+0.02)) c(6,j)=xx(6,j)+0.02
    if (c(2,j).gt. 9.9) c(2,j) = 9.9
    if (c(2,j).lt.-9.9) c(2,j)=-9.9
    if (c(6,j).gt. 9.9) c(6,j) = 9.9
    if (c(6,j).lt.-9.9) c(6,j)=-9.9
    if (i.ge. n1+n2) then
    if(c(3,j).lt.xx(3,j)/100.) nerr=nerr+1
    if(c(3,j).lt.xx(3,j)/100.) c(3,j)=xx(3,j)/100.! use cs min
    if(ct3-c(3,j).le.(ct3-xx(3,j))/100.) nerr=nerr+1
    if(ct3-c(3,j).le.(ct3-xx(3,j))/100.) c(3,j)=ct3-(ct3-xx(3,j))/100.
    if(c(3,j).ge.ct3) c(3,j)=0.999999*ct3
    if(c(3,j).lt.1.0d-12) c(3,j)=1.0d-12
    else if (j.le. n1+1.and. n1.gt. 0) then
    if(c(3,j).lt.xx(3,j)/100.) nerr=nerr+1
    if(c(3,j).lt.xx(3,j)/100.) c(3,j)=xx(3,j)/100.! use cs min
    if(ct1-c(3,j).le.(ct1-xx(3,j))/100.) nerr=nerr+1
    if(ct1-c(3,j).le.(ct1-xx(3,j))/100.) c(3,j)=ct1-(ct1-xx(3,j))/100.
   if(c(3,j).ge.ct1) c(3,j)=0.999999*ct1
   if(c(3,j).lt.1.0d-99) c(3,j)=1.0d-99
    endif
c to avoid underflow or overflow:
   if(c(1,j).lt.1.0d-12) c(1,j)=1.0d-12
```

```
if(c(1,j).lt.1.0d-10) c(5,j)=0.0
c
%%%%%%%%%%%%%%%%
С
   do 25 i=1,n
 25 xx(i,j)=c(i,j)
   if (jcount .gt. 3*lim .and. rr.eq.0.0d0) then
   write (2, 99)
   stop
   endif
С
С
   Decreasing time steps:
   if (jcount .gt. lim .and. rr.gt.0.0d0) then
   tau=tau/2.0d0
   rr=tau
   ts(kk)=ts(kk-1)+tau
   write (2,*) 'time step reduced to ', tau, ts(kk)
   if (tau.lt.1.0d-4) then
   if (lpow.eq.1) then !peak power activated
   nflag=1
   go to 66
   endif
   nt=nt-1
   tau=(ts(kk-1)-ts(kk-2))/2.d0
   rr=tau
   kback=0
   ed=ed/tw/3.6d03
   pow=3.6d03*ed/ts(nt+1)
   write (2,*) 'mass is ',tw
   write (2,*) 'energy is ',ed
   write (2,*) 'power is ',pow
   write (2,*) kk-1,' this time step did not converge'
   call nucamb(1,5)
   stop
   else
   iflag=0
   call calca(kk)
   go to 666
   end if
   else
С
   if(nerr.ne.0) go to 8
```

```
do 55 ii=1,n
   errlim=1.d-10
   if(ii.eq.5) errlim=1.d-16 !change to -14 if problems with convergence
   dxp=dabs(xp(ii)-xp0(ii))
   if (n1 .lt. 11) then
   n1hold = 1
   else
   n1hold = n1-10
   endif
   dxx=dabs(xx(ii,n1hold) - xx0(ii,n1hold))
   dxx2=dabs(xx(ii,n1+n2+10)-xx0(ii,n1+n2+10))
   if(dxx.gt. 1.d-9*dabs(xx(ii,n1hold)).and.dxx.gt.errlim) go to 8
   if(dxx2.gt.1.d-9*dabs(xx(ii,n1+n2+10)).and.dxx2.gt.errlim)
   & go to 8
c if(dxp.gt.1.d-7*dabs(xp(ii)) .and. dxp.gt.errlim) go to 8
 55 continue
С
С
   if(lpow.ne.1) write (2,*) jcount,' iterations required'
    do 60 ll=1, nj ! save present time results in xt()
    do 60 lk=1,n
 60 \text{ xt(lk,ll,kk)} = \text{xx(lk,ll)}
С
    do 57 j=1,nj
    if(xx(1,j).lt. 1.0d-03) fi(j)=1
c 57 if(xx(1,j).gt. 1.0d-01) f<sub>1</sub>(j)=0
    if(rr.ne.0.0d0) then
    do 58 j=1,nj! fix to calculate here for zero time step
  58 \text{ term}(j) = \text{termn}(j)
    else
    do 65 j=1,nj
    term(i)=0.
    fac=1.
   if(j.eq.n1+2 and n1 .gt. 0)
   & fac=((ep2+epp2)/(ep1+epp1))**exbrug
   if(j.eq.n1+n2+1) fac=((ep3+epp3)/(ep2+epp2))**exbrug
   epn=ep1+epp1
   hn=h1
   if(j.gt.n1+1) then
   epn=ep2+epp2
   hn=h2
   endif
```

```
if (j.gt.n1+n2) then
   epn=ep3+epp3
   hn=h3
   endif
   if(j.gt.1) term(j)=
   \&-(df(j)+fac*df(j-1))*(c(1,j)-c(1,j-1))/hn/2.
   \&-(1.-0.5*(tm(j)+tm(j-1)))*c(4,j-1)/fc
   fac=1.
   if(j.eq.n1+1) then
   if (n1 .gt. 0) fac=((ep2+epp2)/(ep1+epp1))**exbrug
   epn=ep2+epp2
   hn=h2
   else if(j.eq.n1+n2) then
   fac=((ep3+epp3)/(ep2+epp2))**exbrug
   epn=ep3+epp3
   hn=h3
   endif
 65 if(j.lt.nj) term(j)=term(j)
   &-(fac*df(j)+df(j+1))*(c(1,j)-c(1,j+1))/hn/2.
   &+(1.-0.5*(tm(j)+tm(j+1)))*c(4,j)/fc
   endif
С
c
   end if
c
 66 continue
   return
   end
   subroutine calca(kk)
   implicit real*8(a-h,o-z)
   parameter(maxt=900)
   common /n/ nx,nt,n1,n2,nj,n3,tmmax
   common /calc/ ai(maxt),ai2(maxt),u(223,maxt),ts(maxt),
   1h,h1,h2,h3,hcn,hcp,rr,rrmax
   common/const/ fc,r,t,frt,cur,ep3,ep2,pi,nneg,nprop,npos,
   1ep1,epf3,epf1,epp1,epp2,epp3,shape3,shape1
   common/cprop/ sig3,area3,rka3,ct3,dfs3,Rad3,
   1sig1,area1,rka1,ct1,dfs1,Rad1,tw,cap1,cap3
   dimension ar(4,maxt),bz(6)
   do 319 l=1,nt
   ai2(1)=0.0d0
 319 ai(1)=0.0d0
```

```
do 70 i=1,kk-1
   ar(1,i)=dfs3*(ts(kk)-ts(i))/Rad3/Rad3
   ar(2,i)=dfs3*(ts(kk)-ts(i+1))/Rad3/Rad3
   ar(3,i)=dfs1*(ts(kk)-ts(i))/Rad1/Rad1
   ar(4,i)=dfs1*(ts(kk)-ts(i+1))/Rad1/Rad1
   do 69 \text{ m}=1.2
   t1=ar(m,i)
   t2=ar((m+2),i)
c
   a1 = 0.0d0
   a12=0.0d0
С
   s=1.644934066848d0
С
  Bessel's function zeros:
   bz(1)=2.4048255577d0
   bz(2)=5.5200781103d0
   bz(3)=8.6537281103d0
   bz(4)=11.7915344391d0
   bz(5)=14.9309177086d0
   if (shape3.gt.2.0d0) then
c spherical particles:
   if (t1 .gt. 0.06d0) then
С
   do 59 j=1,5
   y1=j*j*pi*pi*t1
  59 if (y1 .le. 1.5d02) a1=a1+(\exp(-y1))/j/j
   a1=2.0d0*(s-a1)/pi/pi
c
   else
С
   if (t1.LE.0.0d0) then
   a1 = 0.0d0
   else
   do 60 j=1,3
   z=j/dsqrt(t1)
   call erfc(z,e)
   y2=j*j/t1
   if(y2 .ge. 1.5d02) then
   da=-j*dsqrt(pi/t1)*e
   else
   da=expf(-y2)-j*dsqrt(pi/t1)*e
   end if
 60 a1 = a1 + da
```

```
a1=-t1 + 2.0d0*dsqrt(t1/pi)*(1.0d0+2.0d0*a1)
   end if
С
    end if
    else
С
    if (shape3.lt.2.0d0) then
    planar particles:
    if(t1 .gt. 0.06d0) then
    do 61 j=1,5
    da=((-1.0d0)**(j))*(1.0d0 - expf(-(2.0d0*j+1.0d0)*
   1(2.0d0*j+1.0d0)*pi*pi*t1))/(2.0d0*j+1.0d0)/(2.0d0*j+1.0d0)
  61 \text{ al} = \text{al} + \text{da}
    a1=4.0d0*a1/pi/pi
С
    else
 С
     do 62 j=1,3
     z=j/2.0d0/dsqrt(t1)
     call erfc(z,e)
     da = ((-1.0d0)**(j))*(expf(-j*j/4.0d0/t1)-j/2.0d0*dsqrt(pi/t1)*e)
   62 a1 = a1 + da
     a1=2.0d0*dsqrt(t1/pi)*(1.0d0+2.0d0*a1)
 С
     end if
     else
     cylindrical particles:
     if (t1.gt.0.06d0) then
 С
     do 63 j=1,5
     da=(1.0d0-expf(-bz(j)*bz(j)*t1))/bz(j)/bz(j)
  63 a1=a1+da
     a1=2.0d0*a1
 С
      else
  С
     a1{=}2.0d0*dsqrt(t1/pi){-}t1/4.0d0{-}5.0d0*(t1**1.5d0)/96.0d0/dsqrt(pi)
     1-31.0d0*t1*t1/2048.0d0
  c
      end if
      end if
      end if
  С
      if (n1 .eq. 0) go to 36
      (skip calculations of Li diffusion in the solid
```

```
if the negative electrode is metal foil)
Ç
c
    if (shape1.gt.2.0d0) then
    spherical particles:
    if(t2 .gt. 0.06d0) then
    do 64 j=1,5
    y2=j*j*pi*pi*t2
64 if(y2 .le. 1.5d02) a12=a12+(expf(-y2))/j/j
    a12=2.0d0*(s-a12)/pi/pi
C
    else
c
    if (t2.eq.0.0d0) then
    a12=0.0d0
    else
    do 65 j=1,3
    z=j/dsqrt(t2)
    call erfc(z,e)
    y2=j*j/t2
    if(y2.gt. 1.5d02) then
    da=-j*dsqrt(pi/t2)*e
    else
   da=expf(-y2)-j*dsqrt(pi/t2)*e
    end if
65 a12=a12+da
   a12=-t2 + 2.0d0*dsqrt(t2/pi)*(1.0d0+2.0d0*a12)
    end if
    end if
c
    else
    if (shape1.lt.2.0d0) then
c planar particles:
   if(t2 .gt. 0.06d0) then
c
   do 66 i=1.5
   da=((-1.0d0)**(j))*(1.0d0 - expf(-(2.0d0*j+1.0d0)*
   1(2.0d0*j+1.0d0)*pi*pi*t2))/(2.0d0*j+1.0d0)/(2.0d0*j+1.0d0)
66 a12=a12+da
   a12=4.0d0*a12/pi/pi
С
   else
   do 67 j=1,3
   z=j/2.0d0/dsqrt(t2)
   call erfc(z,e)
```

```
da=((-1.0d0)**(j))*(expf(-j*j/4.0d0/t2)-j/2.0d0*dsqrt(pi/t2)*e)
67 a12=a12+da
   a12=2.0d0*dsqrt(t2/pi)*(1.0d0+2.0d0*a12)
c
   end if
   else
c cylindrical particles:
   if (t2.gt.0.06d0) then
   do 68 i=1.5
   da=(1.0d0-expf(-bz(j)*bz(j)*t2))/bz(j)/bz(j)
68 a12=a12+da
   a12=2.0d0*a12
c
   else
c
   a12=2.0d0*dsqrt(t2/pi)-t2/4.0d0-5.0d0*(t2**1.5d0)/96.0d0/dsqrt(pi)
   1-31.0d0*t2*t2/2048.0d0
С
   end if
   end if
   end if
С
36 continue
   ar(m,i)=a1
69 ar((m+2),i)=a12
   ai(kk-i)=ar(1,i)-ar(2,i)
70 ai2(kk-i)=ar(3,i)-ar(4,i)
c
   return
   end
   subroutine erfc(z,e)
   implicit real*8(a-h,o-z)
   common/const/ fc,r,t,frt,cur,ep3,ep2,pi,nneg,nprop,npos,
   1ep1,epf3,epf1,epp1,epp2,epp3,shape3,shape1
   a1=0.254829592d0
   a2=-0.284496736d0
   a3=1.421413741d0
   a4=-1.453152027d0
   a5=1.061405429d0
   if(z.lt. 2.747192d0) then
   t3=1.0d0/(1.0d0+0.3275911d0*z)
```

```
e=(a1*t3+a2*t3*t3+a3*(t3**3.0d0)+a4*(t3**4.0d0)
   1+a5*(t3**5.0d0))*expf(-z*z)
   else
С
   if(z.gt. 25.0d0) then
   e = 0.0d0
   else
С
   sum=0.0d0
   max=z*z + 0.5
   fac = -0.5 d0/z/z
   sum=fac
   tl=fac
   n=1
 10 n=n+1
   if(n.gt. max) go to 15
   tn=tl*(2.0d0*n-1.0d0)*fac
   sum=sum + tn
   if(tn .lt. 1.0d-06) go to 15
   tl=tn
   go to 10
  15 e = (\exp(-z^*z))^*(1.0d0 + \sup)/\deg(\pi(pi)/z)
   end if
   end if
c.
   return
   end
   subroutine band(i)
   implicit real*8(a-h,o-z)
   common /n/ nx,nt,n1,n2,nj,n3,tmmax
   common/mat/b,d
   common/bnd/a,c,g,x,y
   dimension b(10,10),d(10,21)
   dimension a(10,10),c(10,221),g(10),x(10,10),y(10,10)
   dimension e(10,11,221)
 101 format (15h determ=0 at j=,i4)
   n=nx
   if (j-2) 1,6,8
  1 \text{ np } 1 = n + 1
   do 2 i=1,n
   d(i,2*n+1) = g(i)
   do 2 l=1,n
   lpn=1+n
  2 d(i,lpn) = x(i,l)
   call matinv(n,2*n+1,determ)
```

```
if (determ) 4,3,4
3 write (2, 101) j
4 \text{ do } 5 \text{ k}=1,n
 e(k,np1,1) = d(k,2*n+1)
 do 5 l=1,n
 e(k,l,1) = -d(k,l)
 lpn = l + n
5 x(k,l) = - d(k,lpn)
 return
6 \text{ do } 7 \text{ i=1,n}
 do 7 k=1,n
 do 7 l=1,n
7 d(i,k) = d(i,k) + a(i,l) * x(l,k)
8 if (j-nj) 11,9,9
9 do 10 i=1,n
 do 10 l=1,n
 g(i) = g(i) - y(i,1)*e(1,np1,j-2)
 do 10 m=1,n
10 a(i,l) = a(i,l) + y(i,m)*e(m,l,j-2)
11 do 12 i=1.n
 d(i,np1) = -g(i)
 do 12 l=1,n
 d(i,np1) = d(i,np1) + a(i,1)*e(1,np1,j-1)
 do 12 k=1,n
12 b(i,k) = b(i,k) + a(i,l) * e(l,k,j-1)
 call matinv(n,np1,determ)
 if (determ) 14,13,14
13 write (2, 101) j
14 do 15 k=1,n
  do 15 m=1,np1
15 e(k,m,j) = -d(k,m)
  if (j-nj) 20,16,16
16 \text{ do } 17 \text{ k}=1,n
17 c(k,j) = e(k,np1,j)
  do 18 jj=2,nj
  m = nj - jj + 1
  do 18 k=1,n
  c(k,m)=e(k,np1,m)
  do 18 l=1,n
18 c(k,m) = c(k,m) + e(k,l,m)*c(l,m+1)
  do 19 l=1,n
  do 19 k=1,n
19 c(k,1) = c(k,1) + x(k,1)*c(1,3)
20 return
  end
```

```
subroutine matinv(n,m,determ)
 implicit real*8(a-h,o-z)
 common/mat/b,d
 dimension b(10,10),d(10,21)
 dimension id(10)
 determ=1.0
 do 1 = 1,n
1 id(i) = 0
 do 18 \text{ nn}=1,n
 bmax=1.1
 do 6 i=1,n
 if(id(i).ne.0) go to 6
 bnext=0.0
 btry=0.0
 do 5 i=1,n
 if(id(j).ne.0) go to 5
 if(dabs(b(i,j)).le.bnext) go to 5
 bnext=dabs(b(i,j))
 if(bnext.le.btry) go to 5
 bnext=btry
 btry=dabs(b(i,j))
 jc=j
5 continue
 if(bnext.ge.bmax*btry) go to 6
 bmax=bnext/btry
 irow=i
 icol=ic
6 continue
 if(id(jc).eq.0) go to 8
 determ=0.0
 return
8 id(jcol)=1
 if(jcol.eq.irow) go to 12
 do 10 j=1,n
 save=b(irow,j)
 b(irow,j)=b(jcol,j)
10 b(jcol,j)=save
 do 11 k=1,m
 save=d(irow,k)
 d(irow,k)=d(jcol,k)
11 d(jcol,k)=save
12 f=1.0/b(jcol,jcol)
 do 13 j=1,n
13 b(jcol,j)=b(jcol,j)*f
 do 14 k=1,m
14 d(icol,k)=d(icol,k)*f
```

```
do 18 i=1,n
  if(i.eq.jcol) go to 18
  f=b(i,jcol)
  do 16 i=1,n
 16 b(i,j) = b(i,j) - f*b(jcol,j)
  do 17 k=1,m
 17 d(i,k)=d(i,k)-f*d(jcol,k)
 18 continue
  return
  end
   subroutine nucamb(il2,il3)
   implicit real*8(a-h,o-z)
  parameter(maxt=900)
   common /n/ nx,nt,n1,n2,nj,n3,tmmax
   common /calc/ ai(maxt),ai2(maxt),u(223,maxt),ts(maxt),
  1h,h1,h2,h3,hcn,hcp,rr,rrmax
   common/const/ fc,r,t,frt,cur,ep3,ep2,pi,nneg,nprop,npos,
  1ep1,epf3,epf1,epp1,epp2,epp3,shape3,shape1
   common/var/ xp(10), xx(6,221), xi(6,221), xt(6,221, maxt)
   common/cprop/ sig3,area3,rka3,ct3,dfs3,Rad3,
  1sig1,area1,rka1,ct1,dfs1,Rad1,tw,cap1,cap3
   common/tprop/df(221),cd(221),tm(221),
  1ddf(221),dcd(221),dtm(221),dfu(221),d2fu(221)
   dimension zz(221)
 109 format(f6.1,', ',f15.5,', ',f7.4,', 'g10.4,', ',f6.2,', ',g10.4
  1,', ',f10.4)
309 format(f8.5,', ',f8.5)
 44 format(' t = ',1pe18.6,' min')
   do 5 i=1,n1+1
   w=i-1
  5 zz(i) = w*h1*1.0d06
   do 71 i=n1+2,n2+n1
   w=i-(n1+1)
 71 zz(i)=zz(n1+1)+w*h2*1.0d06
   do 72 i=n1+n2+1,nj
   w=i-(n1+n2)
 72 zz(i)=zz(n2+n1)+w*h3*1.0d06
С
   do 11 l=1,nt+1
   if(ts(1)-ts(1-1).lt.1.d-6) go to 9
   if (l.lt.nt-5 .and. mod(l-1,il3).ne.0) go to 11
  9 write (2,*)''
   write (2,*) 'distance concen
                                   PHI2 c solid',
  1' current
                      PHI1'
```

```
write (2,*) 'microns (mol/m3) (V) x or y',
   1' (A/m2) (A/m3)
   write (2,44) ts(1)/60.0d0
   do 10 = 1, ni, i12
   if (i.le. n1+1) then
   csol=ct1
   else
   csol=ct3
   end if
   if(j.le.n1+1) then
   curden=area1*fc*xt(5,j,l)
   else if(j.ge.n1+n2) then
   curden=area3*fc*xt(5,j,l)
   else
   curden=0.0
   endif
  10 write(2,109) zz(j), xt(1,j,l), xt(2,j,l), xt(3,j,l)/csol, xt(4,j,l)
   1, \text{curden}, \text{xt}(6, j, l)
  11 continue
   return
   end
   subroutine guess(lflag)
   implicit real*8(a-h,o-z)
   parameter(maxt=900)
   common /n/ nx,nt,n1,n2,nj,n3,tmmax
   common /calc/ ai(maxt),ai2(maxt),u(223,maxt),ts(maxt),
   1h,h1,h2,h3,hcn,hcp,rr,rrmax
   common/const/ fc,r,t,frt,cur,ep3,ep2,pi,nneg,nprop,npos,
   1ep1,epf3,epf1,epp1,epp2,epp3,shape3,shape1
   common/var/ xp(10), xx(6,221), xi(6,221), xt(6,221), maxt
   common/cprop/ sig3,area3,rka3,ct3,dfs3,Rad3,
   1sig1,area1,rka1,ct1,dfs1,Rad1,tw,cap1,cap3
   common/tprop/df(221),cd(221),tm(221),
   1ddf(221),dcd(221),dtm(221),dfu(221),d2fu(221)
   dimension del(6)
С
   del(2)=cur*h/2.5
   if (n1.gt. 1) then
   del(3)=cur/(n1)
   else
   del(3) = cur
   endif
   del(4)=cur/(n3)
```

```
del(5)=(xi(5,nj)-xi(5,1))/(nj-1)
С
   Ua = xi(6,1)
   Uc=xi(6,nj)
    do 73 i=1,(n1+1)
    xi(2,i)=xi(2,1)*(nj-i)/nj
    xi(3,i)=xi(3,1)
    xi(4,i)=xi(4,1)+del(3)*(i-1)
    xi(5,i)=xi(5,1)
  73 xi(6,i)=xi(2,i)+Ua
С
    do 74 i=(n1+2),(n2+n1-1)
    xi(2,i)=xi(2,1)-del(2)*(i-n1-2)
    xi(2,i)=xi(2,1)*(nj-i)/nj
    xi(3,i)=0.0d0
    xi(4,i)=cur
    xi(5,i)=0.0d0
  74 \text{ xi}(6,i)=0.0d0
    do 75 i=(n2+n1),nj
    xi(2,i)=xi(2,1)*(nj-i)/nj
    xi(3,i)=xi(3,nj)
    xi(4,i)=xi(4,n2+n1)-del(4)*(i-n1-n2)
    xi(5,i)=xi(5,n2+n1)
  75 xi(6,i)=xi(2,i)+Uc
С
    do 15 i=1,nj
    xt(6,i,1)=xi(6,i)
    xt(5,i,1)=xi(5,i)
    xt(4,i,1)=xi(4,i)
    xt(3,i,1)=xi(3,i)
  15 xt(2,i,1)=xi(2,i)
    do 16 i=1,ni
    xi(1,i)=xi(1,n1+2)
c Uniform initial concentration if Iflag=1
c Step function initial concentration if lflag=0
    if(lflag.eq.0 .and. (i.le.n1+1 .or. i.ge.n1+n2))
   \xi(1,i)=1.0d-01
  16 xt(1,i,1)=xi(1,i)
    return
    end
    subroutine peak(n,lim,curr)
    implicit real*8(a-h,o-z)
    parameter(maxt=900)
```

```
common /n/ nx,nt,n1,n2,nj,n3,tmmax
   common /calc/ ai(maxt),ai2(maxt),u(223,maxt),ts(maxt),
   1h,h1,h2,h3,hcn,hcp,rr,rrmax
   common/const/ fc,r,t,frt,cur,ep3,ep2,pi,nneg,nprop,npos,
   1ep1,epf3,epf1,epp1,epp2,epp3,shape3,shape1
   common/var/ xp(10), xx(6,221), xi(6,221), xt(6,221), maxt
   common/cprop/ sig3,area3,rka3,ct3,dfs3,Rad3,
   1sig1,area1,rka1,ct1,dfs1,Rad1,tw,cap1,cap3
 311 format(f8.5,',',f7.3,', ',f8.3,',',f8.5)
С
   Peak power current ramp section:
   write (2,*)''
   write (2,*)' PEAK POWER'
   write (2,*)''
   write (2,*) 'cell pot ',' current',' power min pot'
   write (2,*)' (V)',' (A/m2)',' (W/m2)
С
   Duration of current pulse is 30 seconds.
С
   vcut=2.8d0
   curmin=0.d0
   pwrpmax=0.d0
   rrmax=30.0d0
   cur=curr
 127 kcount=0
   fact=20.0d0
   curmax=0.d0
   vfmax=0.d0
   k=nt+2
   do 126 i=1,ni
   do 126 i=1,n
 126 xt(i,j,k)=xt(i,j,k-1)
   ppow=0.0
   ii=0
   Ramp current:
 128 continue
   if (ii.gt.60) return
С
   energ=0.0
 130 ii=ii+1
   cur=cur+fact! start a new current density
     if(curmax.ne.0.d0) then
     cur=0.5d0*(curpmax+curmax)
     if(mod(ii,2).eq.1) cur=0.5d0*(curpmax+curmin)
     if(cur.eq.0.d0) cur=0.5d0*(curmax+curmin)
```

```
if(vfmax.gt.0.d0 .and. vfmax.lt.vcut) then
    curtry=curpmax+(vcut-vvpmax)/(vfmax-vvpmax)*(curmax-curpmax)
 &+0.01d0*(curmax-curpmax)*dble(mod(ii,3)-1)
   if(curtry.lt.curmax .and. curtry.gt.curpmax) cur=curtry
    endif
  if(vfmax.gt.vcut .and. curmin.gt.0.0) then
  v2=pwrmax/curmax
  cur2=curmax
  v1=pwrmin/curmin
  cur1=curmin
  vm=pwrpmax/curpmax
  curm=curpmax
  resis=-((pwrpmax-pwrmin)/(curpmax-curmin)
 &-(pwrpmax-pwrmax)/(curpmax-curmax))/(curmin-curmax)
  Uop=(pwrpmax-pwrmin)/(curpmax-curmin)+resis*(curpmax+curmin)
  curtry=Uop/2.d0/resis+0.1d0*(curmax-curmin)*dble(mod(ii,3)-1)
  write (2,*) 'curtry= ',curtry,resis,Uop
  if(curtry.lt.curmax .and. curtry.gt.curmin) cur=curtry
  endif
   endif
  write (2,*) 'cur=',cur,curmin,curpmax,curmax
  kkflag=0
  iflag=0
  nflag=0
  k=nt+2
  timpk=0.0d0
  n=0.0d0
  ts(k)=ts(k-1)
  call comp(n,lim,k,rr,kkflag,nflag,1,jcount)
  call cellpot(k,vv,0,1,lflag)
  vlast=vv
  rr=0.2d0
129 kkflag=kkflag+1
  k=k+1
  ts(k)=ts(k-1)+rr
  call calca(k)
  call comp(n,lim,k,rr,kkflag,nflag,1,jcount)
  if (nflag.eq.1.and.kcount.lt.20) then
  write (2,*) 'Peak current decreased',kcount,fact
  if(cur.lt.curpmax) then
  write (2,*) 'Convergence on power failed; already converged at a high
 &er current'
  write (2,*) 'Best results obtained are:'
  write (2, 311) pwrpmax/curpmax,curpmax,pwrpmax,vvpmax
```

```
write (2,*) 'finished with vcut=',vcut
   return
   endif
   curmax=cur
   vfmax=0.d0
   go to 128
   endif
   if (kcount.ge.10) return
С
   call cellpot(k,vv,0,1,lflag)
   energ=energ+(vlast+vv)*(ts(k)-ts(k-1))*cur/2.0d0
С
   timpk=timpk+rr
   if (dabs(timpk-30.0d0).gt.0.1) then
   if (timpk.lt.30.0) then
   vlast=vv
c Increasing time steps:
   if(jcount.lt.6 .and. kkflag.gt.5 .and. (2.0d0*rr
   1+timpk).lt.30.0d0 .and. iflag.eq.0) then
     rr=rr*2.0d0
     write (2,*) 'next time step increased to ', rr,'(s)'
С
   end if
   if(timpk+rr.gt.30.0) iflag=1
   if(timpk+rr.gt.30.0) rr=30.0d0-timpk
   go to 129
   end if
С
   end if
   ppow=energ/30.0d0
   write (2, 311) ppow/cur,cur,ppow,vv
     if(ppow.gt.pwrpmax .and. vv.gt.vcut) then
     if(curpmax.lt.cur) then
       curmin=curpmax
       pwrmin=pwrpmax
       vfmin=vvpmax
     else
      curmax=curpmax
      pwrmax=pwrpmax
      vfmax=vvpmax
     endif
     curpmax=cur
    pwrpmax=ppow
    vvpmax=vv
    endif
    if(vv.lt.vcut) then
```

```
if(curmax.eq.0.d0 .or. cur.lt.curmax) then
       curmax=cur
       pwrmax=ppow
       vfmax=vv
     endif
     else
     if(cur.gt.curmin .and. cur.lt.curpmax) then
       curmin=cur
       pwrmin=ppow
       vfmin=vv
     endif
     if(cur.gt.curpmax) then
       curmax=cur
       pwrmax=ppow
       vfmax=vv
     endif
     endif
   if(curmax.eq.0.0d0) go to 128
   if(curmin. lt. 0.999d0*curmax) go to 128
   write (2, 311) pwrpmax/curpmax,curpmax,pwrpmax,vvpmax
   write (2, *) 'finished with vcut= ',vcut
   if(vcut.eq.0.0d0) return
   vcut=0.0d0
   go to 127
С
subroutine cellpot(kk,v,li,lpow,lflag)
   implicit real*8(a-h,o-z)
   parameter(maxt=900)
   common /n/ nx,nt,n1,n2,nj,n3,tmmax
   common /calc/ ai(maxt),ai2(maxt),u(223,maxt),ts(maxt),
   1h,h1,h2,h3,hcn,hcp,rr,rrmax
   common/const/ fc,r,t,frt,cur,ep3,ep2,pi,nneg,nprop,npos,
   1ep1,epf3,epf1,epp1,epp2,epp3,shape3,shape1
   common/power/ ed, Vold, ranode, reathde
   common/var/ xp(10),xx(6,221),xi(6,221),xt(6,221,maxt)
   common/cprop/ sig3,area3,rka3,ct3,dfs3,Rad3,
   1sig1,area1,rka1,ct1,dfs1,Rad1,tw,cap1,cap3
   common/temp/ thk,htc,dudt,Cp,dens,tam,g0,ncell,lht,qq
 309 format(f8.5,', ',f8.5,', ',f8.3,', ',g11.6,',','',f9.5,', ',f7.3,
   & ',',g10.5)
 307 format(f8.5,', ',f8.5,', ',f9.5,', ',g11.6,',', ',f7.3,',',f8.3)
c
   Material balance criteria:
   sum=0.0d0
```

```
if (n1 .gt. 2) then
   do 85 j=2,n1
 85 sum=sum+xt(1,i,kk)*(ep1+epp1)*h1
   endif
   sum = sum + (xt(1,1,kk) + xt(1,n1+1,kk))*(ep1+epp1)*h1/2.0d0
   do 86 j=n1+2,n2+n1-1
  86 sum=sum+xt(1,j,kk)*(ep2+epp2)*h2
   sum = sum + (xt(1,n1+1,kk)+xt(1,n2+n1,kk))*(ep2+epp2)*h2/2.0d0
   do 87 j=n2+n1+1,ni-1
  87 \text{ sum} = \text{sum} + \text{xt}(1,i,kk)*(ep3+epp3)*h3
   sum = sum + (xt(1,n1+n2,kk)+xt(1,nj,kk))*h3*(ep3+epp3)/2.0d0
c calculate total salt in cell from initial profile:
   w=xt(1,n1+2,1)*((n2-1)*(ep2+epp2)*h2+n1*(ep1+epp1)*h1
   1+n3*(ep3+epp3)*h3)
   if(lflag.eq.0) w=w-(xt(1,n1+2,1)-xt(1,1,1))*(n1*(ep1+epp1)*h1
   1+n3*(ep3+epp3)*h3)
   if(lflag.eq.0) w=w-(xt(1,n1+2,1)-xt(1,1,1))*(ep2+epp2)*h2
c material balance parameter should be ca=1.00
   ca=sum/w
   if (kk.eq.1) then
   ut=xt(3,nj,1)/ct3
   ut2=xt(3,1,1)/ct1
   end if
С
    Calculate cell potential from dif of solid phase potentials:
    v=xt(6,nj,kk)-xt(6,1,kk)
С
c Calculate utilization of two electrodes based on coulombs passed:
   if(li.eq.1) then
c Calculate energy density by running sum of currentxvoltage:
    ed=ed+(Vold+v)*(ts(kk)-ts(kk-1))*cur/2.0d0
    Vold=v
    ut=cur*(ts(kk)-ts(kk-1))/fc/(1.0d0-ep3-epf3-epp3)/n3/h3/ct3+ut
   if (n1 .gt. 0) !***Need to fix how utilization is calculated for a foil anode
   \text{&ut2=ut2-cur*rr/fc/(1.0d0-ep1-epf1-epp1)/n1/h1/(ct1)}
    th=ts(kk)/6.0d01
c
   if(lht.ne.2) call temperature(kk,v,Uoc,Soc)
    tprint=t-273.15
   if(lpow.ne.0) then
c! isothermal peak power output:
    write (2,309) v,ca,cur,v*cur
    else
   if (lht.eq.0) then! T varies, uses htc:
    write (2,309) ut,v,tprint,th,Uoc,cur,qq
```

```
else if (lht.eq.1) then! calculated htc:
   write (2,309) ut,v,htc,th,Uoc,cur,qq
   else if (lht.eq.2) then! isothermal output:
   write (2, 307) ut, v, ca, th, cur, kk, ed
   write (2,307) ut,v,ca,th,cur,ed/tw/3.6d3
   endif
   endif
   endif
   iref = (n1+1+n1+n2)/2
 310 format (1p3e20.6)
   write (3,310) th,xt(6,1,kk)-xt(2,jref,kk)
   \%,xt(6,nj,kk)-xt(2,jref,kk)
С
   return
   end
   subroutine sol(nmax,jj)
   implicit real*8(a-h,o-z)
   This subroutine calculates the solid phase concentration profiles.
   parameter(maxt=900)
   common /calc/ ai(maxt),ai2(maxt),u(223,maxt),ts(maxt),
   1h,h1,h2,h3,hcn,hcp,rr,rrmax
   common/var/ xp(10), xx(6,221), xi(6,221), xt(6,221, maxt)
   common/const/ fc,r,t,frt,cur,ep3,ep2,pi,nneg,nprop,npos,
   1ep1,epf3,epf1,epp1,epp2,epp3,shape3,shape1
   common/cprop/ sig3,area3,rka3,ct3,dfs3,Rad3,
   1sig1,area1,rka1,ct1,dfs1,Rad1,tw,cap1,cap3
   dimension cs(50)
С
   set initial value of solid concentration
   do 88 i=1,50
   cs(i)=0.0d0
  88 \text{ cs(i)}=xt(3,jj,1)
   complete calculations for 50 points along radius of particle
   nmax=nmax-1 ! added
   do 10 i=1.50
   y2=0.02d0*dble(i)
С
   sum1 = 0.0d0
   do 20 kk=1.nmax
   k=nmax+1-kk
   t1=(ts(nmax+1)-ts(k))*dfs1/Rad1/Rad1
   sum2=sum1
C
```

```
c calculate c bar (r,t1)
   sum1=0.0d0
   r1=1.0d0
    do 89 i=1,15
    r1 = -r1
    y1=j*j*pi*pi*t1
    y3=j*pi*y2
    if (y1 .gt. 1.50d02) then
    da = 0.0d0
    else
    da = expf(-y1)
    end if
  89 \text{ sum} 1 = \text{sum} 1 - 2.0 \text{d} 0 + \text{r} 1 + \text{d} a + \text{d} \sin(y3) / \text{j/pi/y} 2
    sum1=1.0d0-sum1
С
    perform superposition
С
    cs(i)=cs(i)+(xt(3,jj,k+1)+xt(3,jj,k)-2.0d0*xt(3,jj,1)
    1)*(sum1-sum2)/2.0d0
  20 continue
   10 continue
     nmax=nmax+1 ! added
     write (2,*)''
     write (2,*) 'time is ',ts(nmax)
     write (2,*)''
     do 90 i=1, 50, 1
   90 write (2,*) .02*i,' ',cs(i)
     return
     subroutine mass(re,rs3,rs1,rf,rpl,rc,rcn,rcp)
     implicit real*8(a-h,o-z)
     parameter(maxt=900)
     common /n/ nx,nt,n1,n2,nj,n3,tmmax
     common /calc/ ai(maxt),ai2(maxt),u(223,maxt),ts(maxt),
     1h,h1,h2,h3,hcn,hcp,rr,rrmax
     common/const/ fc,r,t,frt,cur,ep3,ep2,pi,nneg,nprop,npos,
     1ep1,epf3,epf1,epp1,epp2,epp3,shape3,shape1
     common/var/xp(10),xx(6,221),xi(6,221),xt(6,221,maxt)
     common/cprop/ sig3,area3,rka3,ct3,dfs3,Rad3,
     1sig1,area1,rka1,ct1,dfs1,Rad1,tw,cap1,cap3
 С
```

```
mass of positive electrode
   c1=h3*n3*(re*ep3+rpl*epp3+rs3*(1.0d0-ep3-epf3-epp3)+rf*epf3)
С
   mass of separator
   s=(re*ep2+rpl*epp2+rc*(1-ep2-epp2))*h2*(n2-1)
С
   mass of negative electrode
   n1hold = n1
   if (n1.eq. 0) n1hold = 1
   a1=h1*n1hold*(re*ep1+rp1*epp1+rs1*(1.0d0-ep1-epf1-epp1)+rf*epf1)
С
   mass of current collectors
   ccl=rcn*hcn+rcp*hcp
   tw=c1+s+a1+cc1
С
   return
   end
subroutine temperature(kk,v,Uoc, Soc)
   implicit real*8(a-h,o-z)
   parameter(maxt=900)
   common /n/ nx,nt,n1,n2,nj,n3,tmmax
   common /calc/ ai(maxt),ai2(maxt),u(223,maxt),ts(maxt),
   1h,h1,h2,h3,hcn,hcp,rr,rrmax
   common/const/ fc,r,t,frt,cur,ep3,ep2,pi,nneg,nprop,npos,
   1ep1,epf3,epf1,epp1,epp2,epp3,shape3,shape1
   common/var/ xp(10),xx(6,221),xi(6,221),xt(6,221,maxt)
   common/cprop/sig3,area3,rka3,ct3,dfs3,Rad3,
   1sig1,area1,rka1,ct1,dfs1,Rad1,tw,cap1,cap3
   common/temp/ thk,htc,dudt,Cp,dens,tam,g0,ncell,lht,qq
c
c
    Revised by Karen Thomas August 5, 1999 to calculated the
c
    enthalpy potential as an average weighted by the local
С
    reaction rate.
С
С
    The entropy and open circuit potential for each electrode
    should be given in ekin with respect to a Li reference electrode
¢
    at the same local electrolyte concentration.
    Caution in using Uoc: it does not have units of volts
    until the last line of this subroutine.
   If heat from side reactions is to be included, add the term
   reaction rate*enthalpy of reaction inside the summation at
    each electrode.
    Heat generation is negative if exothermic.
    The time stepping used to calculate the new temperature has been
```

```
modified, so that the new temperature changes due to heat
    generated or exchanged at the old temperature.
    If cur = 0, the Uoc = sum(U*local reaction rate)=0 unless the
    cell is relaxing from a previous charge or discharge. If Uoc = 0,
С
    then v is the open circuit potential.
    Negative Electrode
С
    call ekin(1,kk,0,0)
    Ua=-g0*fc*area1*h1*xx(5,1)
    Sa = -dudt * fc * area 1 * h 1 * x x (5,1)
    if (n1 .gt. 1) then
    Ua = 0.0
    Sa = 0.0
    sum = 0.0
    do 868 j = 1, n1+1, 1
    call ekin(j,kk,0,0)
    trap = 1.0 !factor for trapezoidal integration
    if ((j.eq. 1).or. (j.eq. n1+1)) trap = 0.5
    h = h1
    if (j.eq. n1+1) h = h2
    Ua=Ua-trap*fc*area1*h*xx(5,j)*g0 !negative sign needed for reaction rate
    Sa=Sa-trap*fc*area1*h*xx(5,j)*dudt
868 continue
    endif
С
    Positive Electrode
c
   Uc = 0.0
    Sc = 0.0
   do 878 j = n1+n2,nj,1
   call ekin(j,kk,0,0)
   trap = 1.0
   if ((j .eq. n1+n2) .or. (j .eq. nj)) trap = 0.5
   Uc=Uc-trap*fc*area3*h3*xx(5,i)*g0
   Sc=Sc-trap*fc*area3*h3*xx(5,j)*dudt
878 continue
   Uoc = Uc+Ua!add because signs different on reaction rate
   Soc = Sc + Sa
С
    Per cell heat generation
С
   qq=cur*v - Uoc +t*Soc! heat is negative if exothermic
С
    The heat transfer coefficient is for heat transferred out of
```

```
one side of the cell; it is defined based on cell area.
    htcc is a per-cell heat transfer coefficient.
С
   if (lht.eq.0) then !cell temperature changes
   htcc=htc/Ncell
   t=t+(rr/(dens*Cp*thk))*(htcc*(tam-t)-cur*v+Uoc-t*Soc) !note change in time
derivative
   else.
С
    Calculate htc instead of temperature: the heat transfer coefficient
c
    required to keep the temperature constant is
    calculated as a function of time. The heat transfer coef.
С
    is calculated for heat transferred out of one side of the
С
    cell stack. Htcc is defined as a per-cell heat transfer
    coefficient.
С
     if (t.ne.tam) then
      htc=Ncell*(Uoc-v*cur-t*Soc)/(t-tam)
     else
      htc=0.0
     endif
     htcc=htc/Ncell
   endif
   if (dabs(cur) .gt. 0.0) then
     Uoc = Uoc/cur
     Soc = Soc/cur
     endif
   return
    end
   double precision function expf(x)
   implicit real*8 (a-h,o-z)
   expf=0.d0
   if(x.gt.-700.d0) \exp f = dexp(x)
   return
   end
subroutine ekin(j,kk,lag,utz)
   implicit real*8(a-h,o-z)
c This subroutine evaluates the Butler-Volmer equations.
   parameter(maxt=900)
   common /n/ nx,nt,n1,n2,nj,n3,tmmax
   common/const/ fc,r,t,frt,cur,ep3,ep2,pi,nneg,nprop,npos,
   1ep1,epf3,epf1,epp1,epp2,epp3,shape3,shape1
   common/power/ ed, Vold, ranode, rcathde
```

```
common/var/ xp(10), xx(6,221), xi(6,221), xt(6,221), maxt
   common/cprop/ sig3,area3,rka3,ct3,dfs3,Rad3.
   1sig1,area1,rka1,ct1,dfs1,Rad1,tw,cap1,cap3
   common/temp/ thk,htc,dudt,Cp,dens,tam,g0,ncell,lht,qq
   common/mat/b.d
   common/bnd/a,c,g,x,y
   dimension b(10,10),d(10,21)
   dimension a(10,10),c(10,221),g(10),x(10,10),y(10,10)
С
   Calculate average open-circuit potential in either
c
   electrode if lag=1, otherwise lag=0
OPEN-CIRCUIT POTENTIAL FUNCTIONS:
С
С
  g0 is the open-circuit potential in terms of the solid
   concentration, xx(3,j), with respect to a lithium metal
   electrode
   g1 is the derivative of the open-circuit potential wrt
   the solid concentration
С
C
&&&&&&&&&
   FOR THE NEGATIVE ELECTRODE
С
С
  if (i.le. n1+1) then
  if (lag.eq.1) xx(3,j)=utz*ct1
go to (51,52,53,54,55,56),nneg
 51 go to 111 ! Li foil
 52 go to 112! Carbon (petroleum coke)
 53 go to 113 ! MCMB 2510 Carbon (Bellcore)
 54 go to 114 ! TiS2
 55 go to 115! Tungsten oxide (LixWO3 with 0 < x < x=1
  a7=-0.492465d0
  a8=1.901110d0
  a9=0.157123d0
  a10=0.04738d0
  a11=0.810239d0
```

```
a12=40.0d0
            a13=0.133875d0
cccc if(xx(3,j).gt.a6*ct3) write (2,*) '#109 in ekin, j=',j
c g0=a1+a2*dtanh(-a3*xx(3,j)/ct3+a4)-a5*((a6-xx(3,j)/ct3)**a7-
c 1a8)-a9*expf(-a10*((xx(3,j)/ct3)**8.0d0))+a11
c 1*expf(-a12*(xx(3,j)/ct3-a13))
             g0=a1+a2*dtanh(-a3*xx(3,j)/ct3+a4)
           1-a9*expf(-a10*((xx(3,i)/ct3)**8.0d0))+a11
           1*expf(-a12*(xx(3,j)/ct3-a13))+a5*a8
             if(xx(3,j).1t.a6*ct3) g0=g0-a5*((a6-xx(3,j)/ct3)**a7)
c g1=(1.0d0/ct3)*(-a2*a3/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)
c 1*xx(3,j)/ct3+a4)+a5*a7*(a6-xx(3,j)/ct3)**(-1.0d0+a7)+
 c 1a9*a10*8.0d0*((xx(3,j)/ct3)**7.0d0)*expf(-a10*)
 c 1(xx(3,j)/ct3)**8.0d0)-a11*a12/ct3*expf(-a12*(xx(3,j)/ct3-a13))
             g1=(1.0d0/ct3)*(-a2*a3/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/c
            1*xx(3.i)/ct3+a4
            1+a9*a10*8.0d0*((xx(3,j)/ct3)**7.0d0)*expf(-a10*)
            1(xx(3,j)/ct3)**8.0d0))-a11*a12/ct3*expf(-a12*(xx(3,j)/ct3-a13))
             if(xx(3,j).1t.a6*ct3)g1=g1+a5*a7*(a6-xx(3,j)/ct3)**(-1.0d0+a7)/ct3
 cccc if(xx(3,j).gt.a6*ct3) write (2, *) 'did it'
              if (g0.gt.6.0) then
              g0=6.0d0
              g1 = 0.0d0
 c write (2,*) 'U theta overflow - positive'
              else if (g0.lt.3.0) then
              g0 = 3.0d0
              g1 = 0.0d0
 c write (2,*) 'U theta underflow - positive'
              end if
              go to 98
  %%%
  c Nonstoichiometric Vanadium oxide (V6O13)
  c based on data from West, Zachau-Christiansen, and Jacobsen,
  c Electrochim. Acta vol 28, p. 1829, 1983.
  c valid for 0.1 < x < 8.25 in LixV6O13. Enter csx according to
  c LiyVO2.167, where 0.05 < y < 0.95
   211 continue
              a1 = 3.91007
              a2 = 0.04697
              a3 = 9.15495
              a4 = 5.35279
```

```
a5 = 0.06752
   a6 = 1.0179
   a7 = -0.471987
   a8 = 14.7524
   a9 = 0.69465
   a10 = 0.21481
   a11 = 0.0008189
   a12 = 22.759
   a13 = 1.0 - 0.631724
   a14 = 26.558
c
   g0=a1+a2*dtanh(-a3*xx(3,j)/ct3+a4)
   1-a9*expf(-a10*((xx(3,j)/ct3)**a14))+a11
   1*expf(-a12*(xx(3,i)/ct3-a13))+a5*a8
   if(xx(3,j).lt.a6*ct3)
   & g0=g0-a5*((a6-xx(3,j)/ct3)**a7)
   g1=(1.0d0/ct3)*(-a2*a3)/dcosh(-a3*xx(3,j)/ct3+a4)/
   1 \operatorname{dcosh}(-a3*xx(3,j)/ct3+a4)
   1 + a9/ct3*a10*a14*((xx(3,j)/ct3)**(a14-1.0d0))
   1 * \exp(-a10*((xx(3,j)/ct3)**a14))
   1 -a11*a12/ct3*expf(-a12*(xx(3,j)/ct3-a13))
   if(xx(3,j).lt.a6*ct3)
  & g1=g1+a5*a7*(a6-xx(3,j)/ct3)**(-1.0d0+a7)/ct3
   if (g0.gt.6.0) then
   g0=6.0d0
   g1=0.0d0
c write (2,*) 'U theta overflow - positive'
   else if (g0.lt.3.0) then
   g0 = 3.0d0
   g1 = 0.0d0
c write (2,*) 'U theta underflow - positive'
   end if
С
   go to 98
%%%
c
   KINETIC EXPRESSIONS FOR THE POSITIVE ELECTRODE
С
c
  h0 is the exchange current density (A/m2)
c
   h1 is the derivative of io wrt solid concentration, xx(3,i)
С
   h2 is the derivative of io wrt electrolyte concen., xx(1,j)
```

```
С
c
   NONAQUEOUS LIQUIDS
 98 if (lag.eq.1) go to 99
   alpha=0.5d0
  alphc=0.5d0
  h0=rka3*dsqrt(xx(1,j))*dsqrt(ct3-xx(3,j))*dsqrt(xx(3,j))
  h1 = -rka3 * dsgrt(xx(1,j)) * dsgrt(ct3 - xx(3,j)) * dsgrt(xx(3,j)) * (1.0d0/
  1(ct3-xx(3,j))-1.0d0/xx(3,j))/2.0d0
  h2 = rka3 * dsqrt(ct3 - xx(3,j)) * dsqrt(xx(3,j)) / dsqrt(xx(1,j)) / 2.0d0
С
С
   POLYMER
С
C
c
   alpha=0.5d0
   alphc=0.5d0
С
   h0=rka3*dsqrt(xx(1,j))*dsqrt(cmax-xx(1,j))*dsqrt(ct3-xx(3,j))
c 1*dsqrt(xx(3,j))
c h1=-rka3*dsqrt(xx(1,j))*dsqrt(cmax-xx(1,j))*dsqrt(ct3-xx(3,j))
c 1*dsqrt(xx(3,j))*(1.0d0/(ct3-xx(3,j))-1.0d0/xx(3,j))/2.0d0
  h2=-rka3*dsqrt(xx(3,j))*dsqrt(ct3-xx(3,j))*dsqrt(cmax-xx(1,j))
c 1*dsqrt(xx(1,j))*(1.0d0/(cmax-xx(1,j))-1.0d0/xx(1,j))/2.0d0
С
   end if
if (lag.eq.1) go to 99
С
  r1=alpha*frt
  if(i.le.n1+1) then
     an1 = 1.0d0
     an2=0.0d0
    else
     an1 = 0.0d0
     an2=1.0d0
  endif
  r2=r1*(xx(6,j)-xx(2,j)-g0-fc*xx(5,j)*(an1*ranode+an2*rcathde))
  de=-2.d0*r2-r2**3/3.d0
  if(dabs(r2).gt.200.d0) then
  if(r2.gt.200.d0) de=7.d86
  if(r2.lt.-200.d0) de=-7.d86
```

```
pe=7.d86
  else
  if(dabs(r2).gt.1.0d-7) de=expf(-r2)-expf(r2)
  pe=expf(-r2)+expf(r2)
  endif
  b(3,1)=h2*de
  b(3,2)=h0*r1*pe
  b(3,6)=-b(3,2)
   b(3,3)=h1*de+h0*r1*g1*pe
   b(3,5)=1.0d0+fc*b(3,2)*(an1*ranode+an2*rcathde)
   g(3) = -h0*de-xx(5,j)
 99 return
   end
   subroutine prop(nj,n2,n1)
   implicit real*8(a-h,o-z)
   parameter(maxt=900)
   common/const/ fc,r,t,frt,cur,ep3,ep2,pi,nneg,nprop,npos,
   lep1,epf3,epf1,epp1,epp2,epp3,shape3,shape1
   common/var/ xp(10),xx(6,221),xi(6,221),xt(6,221,maxt)
   common/tprop/df(221),cd(221),tm(221),
   1ddf(221),dcd(221),dtm(221),dfu(221),d2fu(221)
   common/temp/thk,htc,dudt,Cp,dens,tam,g0,ncell,lht,qq
¢
   do 99 j=1,nj
   ee=ep2+epp2
   if(i.lt. n1+2 .and. n1 .gt. 0) ee=ep1+epp1
   if(j.gt. n2+n1) ee=ep3+epp3
   go to (1,2,3,4,5,6,7,8,9,10,11),nprop
  1 go to 101! AsF6 in methyl acetate
  2 go to 102! Perchlorate in PEO
  3 go to 103 ! Sodium Triflate in PEO
  4 go to 104 ! LiPF6 in PC (Sony cell simulation)
  5 go to 105! Perchlorate in PC (West's simulation)
  6 go to 106! Triflate in PEO
  7 go to 107! LiPF6 in EC/DMC (Bellcore)
  8 go to 108! LiPF6 in EC/DMC (Bellcore) cell #2
 9 go to 109! Ideal polymer, t+=1.0
 10 go to 110 !LiTFSI in PEMO (from Steve Sloop, 1999)
 11 go to 111! LiPF6 in EC:DMC
AsF6 in methyl acetate
c
С
    diffusion coefficient of the salt (m2/s)
```

```
101 df(i) = (ee^{**}1.5d0)^{*}1.54d-09
   ddf(j)=0.0d0
c conductivity of the salt (S/m)
   cd(j)=2.5d0*(ee**(1.5d0))
   dcd(i)=0.0d0
c transference number of lithium
   tm(j)=0.20d0
   dtm(j)=0.0d0
c activity factor for the salt
   dfu(j)=0.0d0
   d2fu(i)=0.0d0
   go to 99
c Perchlorate in PEO
С
   diffusion coefficient of the salt (m2/s)
 102 df(j) = (ee**1.5d0)*1.78d-12
   ddf(j)=0.0d0
   conductivity of the salt (S/m)
   cd(i)=1.6d-02*ee**(1.5d0)
   dcd(j)=0.0d0
c transference number of lithium
   tm(i)=0.10d0
   dtm(i)=0.0d0
c activity factor for the salt
   dfu(j)=0.0d0
   d2fu(i)=0.0d0
   go to 99
Sodium Triflate in PEO
c
 103 r0=1.3041d-07
   r1=4.4978d-07
   r2=-3.1248d-07
   r3 = -2.2383d - 07
   r4=8.9264d-09
c
  diffusion coefficient of the salt (m2/s)
   df(j)=0.0001d0*(ee**1.5d0)*(r0+r1*xx(1,j)/1000+
  1r2*((xx(1,j)/1000)**0.5d0) + r3*((xx(1,j)/1000)**1.5d0)
  1 + r4*((xx(1,j)/1000)**3.0d0))
   ddf(j)=0.0001d0*(ee**1.5d0)*(r1/1000d0 +
  10.5d0*r2*(xx(1,j)**(-0.5d0))/(1000.0d0**0.5d0)
  1+1.5d0*r3*(xx(1,j)**0.5d0)/1000d0**1.5d0 +
  13.0d0*r4*(xx(1,j)**2.0d0)/1000d0**3.0d0)
   if (xx(1,j).ge.3.0d03) then
```

```
df(i)=(ee**1.5d0)*1.6477d-12
   ddf(i)=0.0d0
   end if
c conductivity of the salt (S/m)
   r7=4.32d-05
   r8=0.00017d0
   r9=0.000153d0
   r10=3.73d-05
c
   cd(j)=100*(ee^{**}(1.5d0))*(r7+r8*xx(1,j)/1000+r9*xx(1,j)*xx(1,j)
   1/1000000+r10*xx(1,j)*xx(1,j)*xx(1,j)/10000000000
   dcd(j)=100*(ee^{**}(1.5d0))*(r8/1000+2.0*r9*xx(1,j)/1000000+3.0*r10)
  1*xx(1,j)*xx(1,j)/10000000000
С
С
   transference number of lithium
   if(xx(1,j).lt.0.3d03) then
   r5=0.32141d0
   r6=2.5768d0
   r11=71.369d0
   r12=643.63d0
   r13=1983.7d0
   r14=2008.d0
   r15=287.46d0
   tm(j)=r5-r6*xx(1,j)/1000.+r11*xx(1,j)*xx(1,j)/1000000.
  1-r12*((xx(1,j)/1000.)**(3.0d0))+r13*((xx(1,j)/1000.)**4.0d0)
  1-r14*((xx(1,j)/1000.)**(5.0d0))+r15*((xx(1,j)/1000.)**6.0d0)
   dtm(j)=-r6/1000.+2.0d0*r11*xx(1,j)/1000000.-
  13.0d0*r12*(xx(1,j)**2.0d0)/(1000.**3.0d0) +
  14.0d0*r13*(xx(1,j)**3.0d0)/(1000.**4.0d0) -
  15.0d0*r14*(xx(1,j)**4.0d0)/(1000.**5.0d0) +
  16.0d0*r15*(xx(1,j)**5.0d0)/(1000.**6.0d0)
   else
   tm(j)=0.0d0
   dtm(j)=0.0d0
   end if
   if(xx(1,j).ge.0.70d03) then
   r5=4.5679d0
   r6=4.506d0
   r11=0.60173d0
   r12=1.0698d0
   tm(j)=-r5+r6*expf(-((xx(1,j)/1000.-r11)/r12)**2.)
   dtm(j)=-r6*(xx(1,j)/1000.-r11)*2.
  1*expf(-((xx(1,j)/1000.-r11)/r12)**2.)/r12/r12/1000.
   end if
```

```
С
   if(xx(1,j).ge.2.58d03) then
   tm(i) = -4.4204d0
   dtm(i)=0.0d0
   end if
С
   activity factor for the salt: (dlnf/dc) and (d2lnf/dc2)
Ç
   if(xx(1,j).gt.0.45d03) then
   r17=0.98249d0
   r18=1.3527d0
   r19=0.71498d0
   r20=0.16715d0
   r21=0.014511d0
   thermf=r17-r18*xx(1,j)/1000.+r19*xx(1,j)*xx(1,j)/1000000.-
  1r20*xx(1,j)*xx(1,j)*xx(1,j)/1000000000.+r21*xx(1,j)*xx(1,j)
  dthermf=-r18/1000.+2.*r19*xx(1,j)/1000000.-
  13.*r20*xx(1,j)*xx(1,j)/10000000000.+4.*r21*xx(1,j)*xx(1,j)
  end if
С
   if(xx(1,j).le.0.45d03) then
   r23=0.99161d0
   r24=0.17804d0
   r25=55.653d0
  r26=303.57d0
   r27=590.97d0
  r28=400.21d0
  thermf=r23-r24*xx(1,j)/1000.-r25*xx(1,j)*xx(1,j)/1000000.+
  1r26*xx(1,j)*xx(1,j)*xx(1,j)/10000000000.-r27*xx(1,j)*xx(1,j)
  1*xx(1,j)*xx(1,j)/10000000000000000.+r28*xx(1,j)*xx(1,j)*xx(1,j)
  dthermf=-r24/1000.-2.*r25*xx(1,j)/1000000.+
  13.*r26*xx(1,j)*xx(1,j)/1000000000.-4.*r27*xx(1,j)
  end if
  dfu(j) = (-1.+2.*thermf)/xx(1,j)
  d2fu(j)=1./xx(1,j)/xx(1,j)-2.*thermf/xx(1,j)/xx(1,j)+
  12.*dthermf/xx(1,j)
  if(xx(1,j).ge.3.00d03) then
  dfu(j)=-0.9520/xx(1,j)
  d2fu(j)=0.9520/xx(1,j)/xx(1,j)
```

```
end if
   go to 99
LiPF6 in PC (Sony cell simulation)
\mathbf{c}
   this is actually the diff coeff for perchlorate
С
   diffusion coefficient of the salt (m2/s)
 104 df(i) = (ee**1.5d0)*2.58d-10
   ddf(j)=0.0d0
   conductivity of the salt (S/m)
   pmax=0.5409
   pmax = 0.035d0
   pu = 0.857d0
   aa = 1.093
   bb = 0.04d0
   rho=1.2041d03
   fun=pmax*((1.0d0/rho/pu)**aa)*expf(bb*((xx(1,j)/rho-pu)**2.0)
   1-(aa/pu)*(xx(1,j)/rho-pu))
   fun2=2.0d0*(bb/rho)*(xx(1,j)/rho-pu)-aa/pu/rho
   cd(i)=0.0001+(ee^{**}1.5d0)*((xx(1,i))**aa)*fun
   dcd(j)=(ee^{**1.5}d0)*fun*(aa*(xx(1,j)**(aa-1.0d0))+(xx(1,j)**aa)
   1*fun2)
c transference number of lithium
   tm(j)=0.20d0
   dtm(j)=0.0d0
    activity factor for the salt (dlnf/dc and d2lnf/dc2)
   dfu(i)=0.0d0
    d2fu(i)=0.0d0
    go to 99
Perchlorate in PC (West's simulation)
    diffusion coefficient of the salt (m2/s)
  105 df(j) = (ee**1.5d0)*2.58d-10
    ddf(i)=0.0d0
   conductivity of the salt (S/m)
    pmax = 0.542d0
    pu=0.6616d0
    aa=0.855d0
    bb = -0.08d0
    rho=1.2041d03
    fun=pmax*((1.0d0/rho/pu)**aa)*expf(bb*((xx(1,j)/rho-pu)**2.0)
   1-(aa/pu)*(xx(1,j)/rho-pu))
    fun2=2.0d0*(bb/rho)*(xx(1,j)/rho-pu)-aa/pu/rho
    cd(j)=0.0001+(ee^{**}1.5d0)*((xx(1,j))**aa)*fun
```

```
dcd(j)=(ee^{**}1.5d0)*fun*(aa*(xx(1,j)**(aa-1.0d0))+(xx(1,j)**aa)
    1*fun2)
 c transference number of lithium
    tm(i) = 0.20d0
    dtm(i)=0.0d0
 c activity factor for the salt
    dfu(i)=0.0d0
    d2fu(i)=0.0d0
    go to 99
 Triflate in PEO
 С
  106 r0=-5.0891863844d-05
    r1=8.38645199394d-07
    r2=-5.19747901855d-10
    r3=8.0832709407d-14
c diffusion coefficient of the salt (m2/s)
    df(j)=(ee**1.5d0)*7.5d-12
    ddf(i)=0.0d0
c conductivity of the salt (S/m)
   cd(j)=(ee^{**}(1.5d0))*100.0d0*(r0+r1*xx(1,j))
   &+r2*xx(1,j)*xx(1,j)+r3*xx(1,j)*xx(1,j)*xx(1,j)
   dcd(j)=(ee**1.5d0)*100.0d0*(r1 + 2.0d0*r2*xx(1,j) +
   &3.0d0*r3*xx(1,j)**2.0d0)
   transference number of lithium
   rough conc. dependence of t+ - highly suspect
   tm(j)=0.0107907d0 + 1.48837d-04*xx(1,j)
   dtm(i)=1.48837d-04
   activity factor for the salt
   dfu(j)=0.0d0
   d2fu(j)=0.0d0
   go to 99
c LiPF6 in EC/DMC and p(VdF-HFP) (Bellcore)
   This is the 1:2 v/v mixture of EC/DMC (eq. 2 of paper)
   D and t+ given below were fit from discharge curves
С
С
c diffusion coefficient of the salt (m2/s)
c 107 df(j) = (ee**1.5d0)*9.00d-11
 107 df(j) = (ee**3.3d0)*7.50d-11
   ddf(j)=0.0d0
С
c conductivity of the salt (S/m)
   This is the conductivity of the liquid + salt only (no polymer)
С
   kappa (c) for EC/DMC 2:1 with LiPF6 at 25 deg C
```

```
cd(i)=(ee^{**1.5}d0)*(0.0911+1.9101*xx(1,i)/1000-1.052*xx(1,i)*
   1xx(1,j)/1000/1000+0.1554*(xx(1,j)/1000)**3.0d0)
   derivative of kappa (c) for EC/DMC 2:1 at 25 deg C
С
   dcd(j)=(ee^{**1.5}d0)^{*}(1.9101/1000-2.0^{*1.052}*xx(1,j)/1000/1000
С
   1+3.0*0.1554/1000*(xx(1,j)/1000)**2.0d0)
С
c
   kappa (c) for EC/DMC 1:2 w/ LiPF6 at 25 deg C
С
   Note Bruggeman exponent should be adjusted to account for
С
   polymer phase - this also affects "fac" parameter in Ohm's
   law equation number 2
   r1=0.00010793d0
   r2=0.0067461d0
   r3=0.0052245d0
   r4=0.0013605d0
   r5=0.00011724d0
   cd(j)=(ee**3.3d0)*(r1+r2*xx(1,j)/1000.d0
c cd(j)=(ee^{**1.5d0})^*(r1+r2*xx(1,j)/1000.d0
   1-r3*xx(1,j)*xx(1,j)/1000000.d0
   1+r4*(xx(1,j)/1000.d0)**3.0d0-r5*(xx(1,j)/1000.d0)**4.0d0)*100.d0
   dcd(j)=(ee**3.3d0)*(r2/10-r3*2.0d0*xx(1,j)/10000.d0
c dcd(j)=(ee^{*1.5}d0)^{*}(r^{2}/10-r^{3}^{2}.0d0^{*}xx(1,j)/10000.d0)
   1+3.0d0*r4*xx(1,j)*xx(1,j)/10000000.d0
   1-0.4d0*r5*(xx(1,j)/1000.d0)**3.0d0)
С
   transference number of lithium
   tm(i)=0.363d0
   dtm(j)=0.0d0
   activity factor for the salt (dlnf/dc and d2lnf/dc2)
   dfu(i)=0.0d0
   d2fu(j)=0.0d0
   go to 99
LiPF6 in EC/DMC and p(VdF-HFP) (Bellcore) cell #2
   This is the 2:1 v/v mixture of EC/DMC (eq. 1 of paper)
С
С
   D and t+ given below were fit from discharge curves
С
   diffusion coefficient of the salt (m2/s)
c 108 df(j)=(ee**1.5d0)*9.00d-11
 108 df(j) = (ee**3.3d0)*7.50d-11
   ddf(i)=0.0d0
С
   conductivity of the salt (S/m)
С
С
   kappa (c) for EC/DMC 2:1 w/ LiPF6 at 25 deg C
С
   Note Bruggeman exponent should be adjusted to account for
```

```
c polymer phase - this also affects "fac" parameter in Ohm's
c law equation number 2
   r1=0.00041253d0
   r2=0.005007d0
   r3=0.0047212d0
   r4=0.0015094d0
c r5=0.0016018d0
   r5=0.00016018d0
   cd(j)=(ee**3.3d0)*(r1+r2*xx(1,j)/1000.d0
c cd(j)=(ee**1.5d0)*(r1+r2*xx(1,j)/1000.d0
  1-r3*xx(1,j)*xx(1,j)/1000000.d0
   1+r4*(xx(1,j)/1000.d0)**3.0d0-r5*(xx(1,j)/1000.d0)**4.0d0)*100.d0
   dcd(j)=(ee**3.3d0)*(r2/10-r3*2.0d0*xx(1,j)/10000.d0
c dcd(j)=(ee^{**1.5d0})*(r2/10-r3*2.0d0*xx(1,j)/10000.d0
   1+3.0d0*r4*xx(1,j)*xx(1,j)/10000000.d0
   1-0.4d0*r5*(xx(1,j)/1000.d0)**3.0d0)
С
   transference number of lithium
   tm(j)=0.363d0
   dtm(i)=0.0d0
С
   activity factor for the salt (dlnf/dc and d2lnf/dc2)
   dfu(j)=0.0d0
   d2fu(i)=0.0d0
   go to 99
c Ion Exchange Membrane, t+=1.0
109 continue
   df(i) = (ee**1.5)*1.0d-11
   ddf(j) = 0.0d0
   cd(i) = (ee^{**}1.5)*0.01d0
   dcd(j) = 0.0
   tm(i) = 1.0d0
   dtm(j) = 0.0d0
   dfu(i) = 0.0d0
   d2fu(j) = 0.0d0
   go to 99
LiTFSI in PEMO from Steve Sloop and John Kerr
110 continue
   df(i) = (ee**1.5)*((-3.0d-17)*xx(1,i) + 6.0d-13)
   ddf(j) = (ee**1.5)*(-3.0d-17)
   cd(i) = (ee^{**}1.5)*expf((-3.0d-07)*xx(1,j)*xx(1,j)
   \& + 6.5d-04*xx(1,j) - 1.12
   dcd(i) = cd(i)*((-6.0d-07)*xx(1,i) + 6.5d-04)
```

```
tm(j) = 1.6*expf(-0.0017*xx(1,j))
   dtm(j) = tm(j)*(-0.0017)
   dfu(i) = 0.0d0
   d2fu(i) = 0.0d0
   go to 99
С
c LiPF6 in EC:DMC. D is for LiAsF6 in methyl formate.
c corrected for viscosity by Walden's Rule, from the
c Organic Electrolyte Handbook (Janz). t+ is for LiClO4
c in various electrolytes. cd is from measurements made at
c Bellcore, as reported in Marc Doyle's dissertation.
111 continue
   df(i) = (ee**1.5)*1.7d-10
   ddf(j) = 0.0d0
   cd(j) = (ee^{**}1.5)*(0.0911+1.9101*xx(1,j)/1000.0 -
  & 1.052*((xx(1,j)/1000.0)**2.0) +
  & 0.1554*((xx(1,j)/1000.0)**3.0))
   dcd(j) = (ee^{**1.5})*(1.9101/1000.0 -
  & 2.0*1.052*xx(1,j)/1000.0/1000.0
  & +0.1554*3.0*((xx(1,j)/1000.0)**2.0)/1000.0)
   tm(j) = 0.3d0
   dtm(j) = 0.0d0
   dfu(i) = 0.0d0
   d2fu(j) = 0.0d0
99 continue
С
   return
   That's All Folks!
```

Appendix B - A sample input file for running a battery simulation

```
50! lim, limit on number of iterations
100.d-06! h1, thickness of negative electrode (m)
52.d-06! h2, thickness of separator (m)
200.d-06! h3, thickness of positive electrode (m)
25.d-06! hcn, thickness of negative electrode current collector (m)
25.d-06! hcp, thickness of positive electrode current collector (m)
80 ! n1, number of nodes in negative electrode. Set to 0 to flag FOIL mode.
40! n2, number of nodes in separator
80! n3, number of nodes in positive electrode
298.13 ! T, temperature (K)
2000. ! xi(1,1), initial salt concentration (mol/m3)
0.5635! x, initial stoichiometric parameter for negative (ignored if n1=0)
0.1705! y, initial stoichiometric parameter for positive
120.0! tmmax, maximum time step size (s)
.00! vcut, cutoff potential
3.9d-14! dfs1, diffusion coefficient in negative solid (m2/s)
1.0d-13! dfs3, diffusion coefficient in positive solid (m2/s)
1.25d-05! Rad1, radius of negative particles (m) (ignored if n1 = 0)
8.5d-06! Rad3, radius of positive particles (m)
0.357! ep1, volume fraction of electrolyte in negative electrode (set to 0 if n1=0)
0.146! epp1, volume fraction of polymer in negative electrode (set to 0 if n1 = 0)
0.026! epf1, volume fraction of inert filler in negative electrode (set to 0 if n1 = 0)
0.724 ! ep2, volume fraction of electrolyte in separator
0.276! epp2, volume fraction of polymer in separator
0.300! ep3, volume fraction of electrolyte in positive electrode
0.000! epp3, volume fraction of polymer in positive electrode
0.073! epf3, volume fraction of inert filler in positive electrode
100. ! sig1, conductivity of negative matrix (S/m)
3.8d-00! sig3, conductivity of positive matrix (S/m)
5.0d-09! rka1, rate constant for negative reaction
5.0d-09! rka3, rate constant for positive reaction
0.110! ranode, negative electrode film resistance (ohm-m2)
0.000! reathde, positive electrode film resistance (ohm-m2)
372.0d0! cot1, coulombic capacity of negative material (mAh/g)
148.0d0! cot3, coulombic capacity of positive material (mAh/g)
1324. ! re, density of electrolyte (kg/m3)
1900. ! rs1, density of negative insertion material (kg/m3)
4140. ! rs3, density of positive insertion material (kg/m3)
1800. ! rf, density of inert filler (kg/m<sup>3</sup>)
1780. ! rpl, density of polymer material (kg/m3)
2000. ! rc, density of inert separator material (kg/m3)
8930. ! rcn, density of negative current collector (kg/m3)
2700. ! rcp, density of positive current collector (kg/m3)
6.0! htc, heat-transfer coefficient at ends of cell stack (W/m2K)
```

0.0! dUdT, temperature coefficient of open-circuit potential (V/K)

2000.0! Cp, heat capacity of system (J/kg-K)

298.0! Tam, ambient air temperature (K)

- 1! ncell, number of cells in a cell stack
- 2! lht, 0 uses htc, 1 calcs htc, 2 isothermal
- 0! il1, 1 for long print-out 0 for short print-out
- 2! il2, prints every il2 th node in long print-out
- 5! il3, prints every il3 th time step in long print-out
- 1! Iflag, 0 for electrolyte in separator only, 1 for uniform
- 0! lpow 0 for no power peaks, 1 for power peaks
- 0! jsol calculate solid profiles if 1 < jsol < nj
- 3! nneg see below
- 7! nprop see below
- 9! npos see below
- 1! lcurs, number of current changes
- 0.875d1 12.d0 1! test run for new programs

DUAL LITHIUM ION CELL SIMULATION

lines 34 and 35: cot1,cot3

cot1 coulombic capacity of negative electrode (mAh/g) when x=1 in LixC6 cot3 coulombic capacity of positive electrode (mAh/g) when y=1 in LiyCoO2 (332.8), Li1+yMn2O4(144.50)

line 50: il1

ill 0 gives short print-out no matter if a run converges or not 1 gives long print-out no matter if a run converges or not The long print-out stops at t(noncovergence). 2 gives short print-out if a run converges but a long print-out if the run does not converge.

line 59: lcurs, number of current changes

line 60 onward: cu(i), tt(i), mc(i)

cu(i) The ith value of the current (A/m2) or potential (V) of the discharge tt(i) The ith value of the time (min) or cutoff potential (V) of the discharge mc(i) The mode of discharge; 0 for potentiostatic, 1 for galvanostatic for a given time, 2 for galvanostatic to a cutoff potential

nneg:

- 1! Li foil (use with n1 = 0)
- 2! Carbon (petroleum coke)
- 3! MCMB 2510 carbon (Bellcore)
- 4! TiS2
- 5! Tungsten oxide (LixWO3 with 0<x<0.67)
- 6! Lonza KS6 graphite (Bellcore)

nprop:

- 1! AsF6 in methyl acetate
- 2! Perchlorate in PEO
- 3! Sodium Triflate in PEO
- 4! LiPF6 in PC (Sony cell simulation)
- 5! Perchlorate in PC (West simulation)
- 6! Triflate in PEO
- 7! LiPF6 in EC/DMC and p(VdF-HFP) (Bellcore)
- 8! LiPF6 in EC/DMC and p(VdF-HFP) (Bellcore) cell #2
- 9! Ion exchange membrane, t+=1.0
- 10! LiTFSI in PEMO
- 11! Li PF6 in EC:DMC

npos:

- 1! TiS2
- 2! Spinel Mn2O4 (lower plateau)
- 3! NaCoO2: Sodium cobalt oxide
- 4! Spinel Mn2O4 (upper plateau)
- 5! Tungsten oxide (LixWO3 with 0<x<0.67)
- 6! CoO2 (Cobalt dioxide)
- 7! V2O5 (Vanadium oxide)
- 8! NiO2 (Nickel dioxide)
- 9! Spinel Mn2O4 (Bellcore)
- 10! V6O13 (Vanadium oxide)
- 11! LiAl0.2Mn1.8O4F0.2 spinel from Bellcore

Appendix C – Battery simulation code modified for electrodes with linear porosity gradients

```
**
    POREGRAD.f
С
С
    Linear porosity matches dualfoil.f
    NO extra fac correction throughout electrode
c
    **** dedx term successfully added! ****
С
    POROSITY GRADIENT IN EFFECT
\mathbf{c}
С
Ç
    dual.f (version 3.0) January 10, 2000
    Dual lithium ion insertion cell
    Includes Bellcore physical properties
c Copyright Marc Doyle and John Newman 1998.
c You may make a copy of this program which you may
c personally and freely use in its unaltered form.
c You may distribute this program subject to the
c conditions that it be made freely available and
c that any duplication of this program must be
c essentially unaltered and must include this notice.
c We make no warranties, express or implied, that
c this program is free of errors or that it will
c meet the requirements of your application. The
c author and publisher disclaim all liablility for
c direct or consequential damages resulting from
c use of this program.
С
С
    Revised June, 1998, to include double-layer capacitance in
    each electrode and to correct a factor of two in Ohm's law.
c
С
c Note: For lflag=0, the model works only for initially zero current.
c
С
    Revised Feb. 12, 1999:
С
    - if n1 = 0, then code treats the negative electrode as metal foil.
    - subroutine cellpot does not calculate utilization of foil electrode
С
    - Changed read and print statements.
C
С
     To run, simply type "webdual", then enter
     input and output file names when prompted.
С
    - double layer capacitance is not currently calculated at
    a foil electrode
```

```
implicit real*8(a-h,o-z)
   character *30 filin, filout
   parameter(maxt=900)
common /n/ nx,nt,n1,n2,nj,n3,tmmax
   common /calc/ ai(maxt),ai2(maxt),u(223,maxt),ts(maxt),
       h,h1,h2,h3,hcn,hcp,rr,rrmax
   common/const/ fc,r,t,frt,cur,ep3,ep2,pi,nneg,nprop,npos,
       ep1,epf3,epf1,epp1,epp2,epp3,shape3,shape1,ep(221),
   &
       epp(221), epf(221)
   &
   common/power/ ed, Vold, ranode, rcathde
   common/ssblock/ xp0(6), xx0(6,221), term(221), fi(221)
   common/var/ xp(10),xx(6,221),xi(6,221),xt(6,221,maxt)
   common/cprop/sig3,area3,rka3,ct3,dfs3,Rad3,sig(221),area(221),
        sig1,area1,rka1,ct1,dfs1,Rad1,tw,cap1,cap3
   common/tprop/df(221),cd(221),tm(221),
       ddf(221),dcd(221),dtm(221),dfu(221),d2fu(221)
   common/temp/ thk,htc,dudt,Cp,dens,tam,g0,ncell,lht,qq
   dimension terms(221),tt(200),cu(200),mc(200),tot(200)
                    mass = ',f7.4,' kg/m2')
 44 format(/'
 45 format(' specific energy = ',f8.2,' W-h/kg')
 46 format(' specific power = ',f8.2,' W/kg')
С
   open(3,file='halfcells',status='unknown')
   write (3,*) 'time
                      negative
                                   positive'
   print *, 'Enter input file name, press return'
read *, filin
   open (1, FILE = 'input.in', status = 'old')
   open (1, FILE = filin, status = 'old')
   print *, 'Enter output file name, press return'
   read *, filout
   open (2, file = 'output.out', status = 'unknown')
   open (2, file = filout, status = 'unknown')
   n is number of equations
   n=6
   lim2=20
   data fc/96487.0d0/, r/8.314d0/, pi/3.141592653589d0/
   data ed/0/, Vold/0/
read in parameters and boundary conditions
С
                        !limit on number of iterations
   read (1,*) lim
   read (1,*) h1
                       !thickness of negative electrode (m)
   read (1,*) h2
                       !thickness of separator (m)
```

```
read (1,*) h3
                         !thickness of positive electrode (m)
read (1,*) hcn
                      !thickness of negative electrode current collect
or (m)
   read (1,*) hcp
                          !thickness of positive electrode current collect
or (m)
   thk=h1+h2+h3
   read (1,*) n1
                         !number of nodes in negative electrode
c If negative electrode is metal foil, let n1 = 0
    read (1,*) n2
                         !number of nodes in separator
   read (1,*) n3
                         !number of nodes in positive electrode
   read (1,*) t
                        !temperature (K)
    write (2, 1101) lim, 1.d6*h1, 1.d6*h2, 1.d6*h3, 1.d6*hcn, 1.d6*hcp
        ,n1,n2,n3,t
   n2=n2+1
   n_{j}=n_{1}+n_{2}+n_{3}
c
   read (1,*) xi(1,n1+2)
                            !initial concentration (mol/m3)
c guess for PHI2
    xi(2,1)=0.05d0
    xi(2,nj)=0.0d0
    read (1,*) csx
                         !initial stochiometric parameter for negative
    read (1,*) csy
                         !initial stochiometric parameter for positive
    read (1,*) tmmax
                            !maximum time step size (s)
read (1,*) vcut
                      !cutoff potential
                          !diffusion coefficient in negative solid (m2/s)
    read (1,*) dfs1
    read (1,*) dfs3
                          !diffusion coefficient in positive solid (m2/s)
   read (1,*) Rad1
                           !radius of negative particles (m)
c If negative electrode is metal foil, let Rad1 = 1.0
   read (1,*) Rad3
                           !radius of positive particles (m)
    write (2,1102) xi(1,n1+2),csx,csy,tmmax,vcut,dfs1,dfs3,
       1.d6*Rad1,1.d6*Rad3
   If negative electrode is metal foil, let ep1=epp1=epf1=0.0
   read (1,*) ep1
                          !volume fraction of electrolyte in negative elec
trode
    read (1,*) epp1
                          !volume fraction of polymer phase in negative el
ectrode
   read (1,*) epf1
                          !volume fraction of inert filler in negative ele
ctrode
   read (1,*) ep2
                          !volume fraction of electrolyte in separator
    read (1,*) epp2
                          !volume fraction of polymer phase in separator
   read (1,*) ep3
                          laverage volume fraction of electrolyte in posit
ive electrode
   read (1,*) epp3
                          !volume fraction of polymer phase in positive el
ectrode
   read (1,*) epf3
                          !volume fraction of inert filler in positive ele
ctrode
```

```
read (1,*) amaxep
                            !volume fraction of electrolyte at electrode/ele
ctrolyte interface
    read (1,*) aminep
                            !volume fraction of electrolyte at electrode/cur
rent collector interface
    read (1,*) sig1
                          !conductivity of solid negative matrix (S/m)
    read (1,*) sig3
                          !conductivity of solid positive matrix (S/m)
    read (1,*) cmax!maximum concentration in electrolyte
                                                                (mol/m3)
    read (1,*) rka1
                          !reaction rate constant for negative reaction
    read (1,*) rka3
                          !reaction rate constant for positive reaction
    read (1,*) ranode
                           !anode film resistance (out of place)
    read (1,*) reathde
                           !cathode film resistance (out of place)
    read (1,*) il4!1 for polymer, 0 for liquid electrolyte
    read (1,*) cot1
                          !coulombic capacity of negative material (mAh/g)
    read (1,*) cot3
                          !coulombic capacity of positive material (mAh/g)
    write (2,1103) ep1,epp1,epf1,ep2,epp2,ep3,epp3,epf3,sig1,
        sig3,cot1, cot3,cmax,rka1,rka3,il4
    read (1,*) re
                         ! density of electrolyte (kg/m3)
    read (1,*) rs1
                         ! density of negative insertion material (kg/m3)
    read (1,*) rs3
                         ! density of positive insertion material (kg/m3)
    read (1,*) rf
                         ! density of inert filler (kg/m3)
    read (1,*) rpl
                         ! density of polymer phase (kg/m3)
read (1,*) rc
                     ! density of separator material (kg/m3)
    read (1,*) rcn
                          ! density of negative current collector (kg/m3)
    read (1,*) rcp
                          ! density of positive current collector (kg/m3)
    write (2,1104) re.rs1,rs3,rf,rp1,rc,rcn,rcp
    read (1,*) htc
                         !heat transfer coefficient with external medium
(W/m2K)
    read (1,*) dUdT
                           !temperature coefficient of EMF (V/K)
    read (1,*) Cp
                          !heat capacity of cell (J/kgK)
    read (1,*) Tam
                           !ambient temperature (K)
    read (1,*) ncell
                          !number of cells in a cell stack
    read (1,*) lht
                         10 uses htc, 1 calcs htc, 2 isothermal
    write (2,1105) ranode, rcathde, htc, dudt, Cp, tam, ncell, lht
    read (1,*) il1
                         !1 for long print-out 0 for short print-out
    read (1,*) il2
                         !1/i12 = fraction of nodes in long print-out
   read (1,*) il3
                         !1/il3 = fraction of time steps in long print-ou
t
   read (1,*) Iflag
                         ! 0 for electrolyte in separator only, 1 for uni
form
    read (1,*) lpow
                           ! 0 for no power peaks, 1 for power peaks
   read (1,*) isol
                         ! calculate solid profiles if 1<isol<ni
   read (1,*) nneg
                          ! designates negative electrode system
   read (1,*) nprop
                           ! designates electrolyte system
read (1,*) npos
                      ! designates positive electrode system
   read (1,*) lcurs
                          ! number of current changes
   write (2,1106) il1,il2,il3,lflag,lcurs
```

```
\mathbf{c}
   read (1,*) (cu(i),tt(i),mc(i),i=1,lcurs)
            operating current density (A/m2)
С
С
    tt(i)
           time (min)
   print *, 'Now running DUAL...'
1101 format (i7,' lim, limit on number of iterations'
        /1x,f6.2,' h1, thickness of negative electrode (microns)'
   & /1x,f6.2,' h2, thickness of separator (microns)'
   & /1x,f6.2,' h3, thickness of positive electrode (microns)'
   &
       /1x,f6.2,' hcn,',
   &
        'thickness of negative electrode current collector (microns)'
   &
        /1x,f6.2,' hcp, thickness of positive electrode current'
   &
        ,' collector (microns)'
   & /i7,' n1, number of nodes in negative electrode'
   &
       /i7,' n2, number of nodes in separator'
   &
       /i7,' n3, number of nodes in positive electrode'
        /1x,f6.2,'T, temperature (K)')
1102 format (/1x, f6.1, xi(1, n1+2), initial concentration (mol/m3))
&/1x,f6.4,' csx, initial stoichiometric parameter for negative'
   &/1x,f6.4,' csy, initial stoichiometric parameter for positive'
   &/1x,f6.1,' tmmax, maximum time step size (s)'
   &/1x,f6.2,' vcut, cutoff potential'
   &/1x,e6.1,' dfs1, diffusion coefficient in negative solid (m2/s)'
   &/1x,e6.1,' dfs3, diffusion coefficient in positive solid (m2/s)'
   &/1x,f10.2,' Rad1, radius of negative particles (microns)'
   &/1x,f6.2, Rad3, radius of positive particles (microns))
1103 format (/1x,f6.3,' ep1,'
   &
        ,' volume fraction of electrolyte in negative electrode'
   &
      /1x,f6.3,'epp1,'
   & ,' volume fraction of polymer phase in negative electrode'
   &
       /1x,f6.3,' epf1,'
   & ,' volume fraction of inert filler in negative electrode'
   &/1x,f6.3,' ep2, volume fraction of electrolyte in separator'
   &/1x,f6.3,' epp2, volume fraction of polymer phase in separator'
   & /1x, 66.3, ep3,
   &,' volume fraction of electrolyte in positive electrode'
   \&/1x,f6.3,' epp3,'
   &,' volume fraction of polymer phase in positive electrode'
   \&/1x,f6.3,' epf3,'
   &,' volume fraction of inert filler in positive electrode'
&/1x,f7.2,' sig1, conductivity of negative matrix (S/m)'
   &/1x,f7.2,' sig3, conductivity of positive matrix (S/m)'
   &/1x,f6.2,' cot1, coulombic capacity of negative material'
   &,' (mAh/g)'
   &/1x,f10.2,' cot3, coulombic capacity of positive material'
```

```
&,' (mAh/g)'
   &/1x,f6.0,' cmax, maximum concentration in electrolyte (mol/m3)'
   &/1x,e6.1,' rka1, reaction rate constant for negative reaction'
   &/1x,e6.1,' rka3, reaction rate constant for positive reaction'
   &/i7,' il4, 1 for polymer, 0 for liquid electrolyte')
1104 format (/1x,f6.1,' re, density of electrolyte (kg/m3)'
   &/1x,f6.1,' rs1, density of negative insertion material (kg/m3)'
   &/1x,f6.1,' rs3, density of positive insertion material (kg/m3)'
   &/1x,f6.1,' rf, density of inert filler (kg/m3)'
   &/1x,f6.1,' rpl, density of polymer phase (kg/m3)'
   &/1x,f6.1,' rc, density of separator material (kg/m3)'
   &/1x,f6.1,' rcn, density of negative current collector (kg/m3)'
   &/1x,f6.1,' rcp, density of positive current collector (kg/m3)')
1105 format (/1x,f6.3,' ranode, anode film resistance (ohm-m2)'
   &/1x,f6.3,' reathde, cathode film resistance (ohm-m2)'
   &/1x,f6.2,' htc, heat transfer coefficient with'
   &,' external medium (W/m2K)'
&/1x,f6.2,' dUdT, temperature coefficient of EMF (V/K)'
   &/1x,f6.1,' Cp, heat capacity of cell (J/kg-K)'
   &/1x,f6.2,' Tam, ambient temperature (K)'
   &/i7,' ncell, number of cells in a cell stack'
   &/i7,' lht, 0 uses htc, 1 calcs htc, 2 isothermal')
1106 format (/i7,' ill, 1 for long print-out 0 for short print-out'
   &/i7,' il2, prints every il2 th node in long print-out'
   &/i7,' il3, prints every il3 th time step in long print-out'
   &/i7,' Iflag, 0 for electrolyte in separator only, 1 for uniform'
   &/i7,' lcurs, number of current changes')
   write (2,*)''
   go to (131,132,133,134,135,136),nneg
 131 write (2,*) 'Li foil'
   go to 137
 132 write (2,*) 'Carbon (petroleum coke)'
   go to 137
 133 write (2,*) 'MCMB 2510 Carbon (Bellcore)'
   go to 137
 134 write (2,*) 'TiS2'
   go to 137
 135 write (2,*) 'Tungsten oxide (LixWO3 with 0 < x < 0.67)'
   go to 137
136 write (2,*) 'Lonza KS6 graphite (Bellcore)'
 137 go to (101,102,103,104,105,106,107,108,109,110,111),nprop
 101 write (2,*) 'AsF6 in methyl acetate'
   go to 200
 102 write (2,*) 'Perchlorate in PEO'
   go to 200
 103 write (2,*) 'Sodium Triflate in PEO'
```

```
go to 200
 104 write (2,*) 'LiPF6 in PC (Sony cell simulation)'
   go to 200
 105 write (2,*) 'Perchlorate in PC (West simulation)'
   go to 200
 106 write (2,*) 'Triflate in PEO'
   go to 200
 107 write (2,*) 'LiPF6 in EC/DMC and p(VdF-HFP)'
   go to 200
 108 write (2,*) 'LiPF6 in EC/DMC and p(VdF-HFP) (Bellcore) cell #2'
   go to 200
 109 write (2,*) 'Ion exchange membrane, t+=1.0'
   go to 200
 110 write (2,*) 'LiTFSI in PEMO'
   go to 200
111 write (2,*) 'LiPF6 in EC:DMC'
   go to 200
 200 go to (201,202,203,204,205,206,207,208,209,210,211),npos
 201 write (2,*) 'TiS2'
   go to 300
 202 write (2,*) 'Spinel Mn2O4 (lower plateau)'
   go to 300
 203 write (2,*) 'NaCoO2: Sodium Cobalt Oxide'
   go to 300
 204 write (2,*) 'Spinel Mn2O4 (upper plateau)'
   go to 300
 205 write (2,*) 'Tungsten oxide (LixWO3 with 0 < x < 0.67)'
   go to 300
 206 write (2,*) 'CoO2 (Cobalt dioxide)'
   go to 300
 207 write (2,*) 'V2O5 (Vanadium oxide)'
   go to 300
 208 write (2,*) 'NiO2 (Nickel dioxide)'
   go to 300
 209 write (2,*) 'Spinel Mn2O4 (Bellcore)'
   go to 300
 210 write (2,*) 'V6O13 (Vanadium oxide)'
go to 300
 211 write (2,*) 'LiAl0.2Mn1.8O4F0.2 spinel from Bellcore'
   go to 300
300 continue
   Fill out porosity gradient array
   do 30 i=1,nj
     if (n1 .eq. 0) then
```

```
ep(1)=ep2
        epp(1)=epp2
       epf(1)=epf2
       goto 486
      endif
     if (i.lt. n1+2) then
       ep(i)=ep1
       epp(i)=epp1
       epf(i)=epf1
     endif
 486
       if (i .le. n1+n2 .and. i .ge. n1+2) then
       ep(i)=ep2
       epp(i)=epp2
epf(i)=epf2
     endif
     if (i.gt. n1+n2) then
       ep(i)=amaxep-(amaxep-aminep)*((REAL(i)-(REAL(n1)+
   &
           REAL(n2))/REAL(n3))
       epp(i)=epp3
       epf(i)=epf3
     endif
  30 continue
   Convert coulombic capacity to total concentrations:
С
   ct1=3.6d03*cot1*rs1/fc
   ct3=3.6d03*cot3*rs3/fc
   xi(3,1)=ct1*csx
   xi(3,n1+1)=xi(3,1)
   xi(3,n2+n1)=ct3*csy
   xi(3,nj)=xi(3,n2+n1)
\mathbf{c}
   shape1 = 3.0d0
   shape3 = 3.0d0
   cap1=0.0d0
                        ! F/m2, capacitance for negative
cap3=0.0d0! F/m2, capacitance for positive
    assume current density linear in electrodes
   cur=cu(1)
   xi(4,1)=0.0d0
   xi(4,n1+1)=cur
   xi(4,n2+n1)=cur
   xi(4,nj)=0.0d0
   Convert times to seconds and sum up times of mode changes
   if (mc(1).lt.2) then
     tot(1)=6.0d01*tt(1)
```

```
else
     tot(1)=0.0d0
   end if
   do 51 i=2, lcurs
     if (mc(i).lt.2) then
       tot(i) = tot(i-1) + 6.0d01 *tt(i)
       tot(i)=tot(i-1)
     end if
 51 continue
С
    specific area calculated from geometry
c
С
    LOOP TO DO AREA AND CONDUCTIVITY AS FUNCTION OF POSITION
С
С
С
    do 31 ia=1,ni
     if (n1 .eq. 0) then
       area(1)=1.0d0/h1
       sig(1)=sig1
     else
       if (ia .lt. n1+2) then
         area(ia)=shape1*(1.0d0-ep(ia)-epp(ia)-epf(ia))/Rad1
         sig(ia)=sig1*((1.0d0-ep(ia)-epp(ia))**(1.5d0))
       endif
      endif
     if (ia .gt. n1+n2) then
       area(ia)=shape3*(1.0d0-ep(ia)-epp(ia)-epf(ia))/Rad3
       sig(ia) = sig3*((1.0d0-ep(ia)-epp(ia))**(1.5d0))
      endif
      if (ia .eq. n1+n2) then
area(ia) = shape3*(1.0d0-ep(ia+1)-epp(ia+1)-epf(ia+1))
   &
       sig(ia)=sig3*((1.0d0-ep(ia+1)-epp(ia+1))**(1.5d0))
      endif
      if (ia .ge. n1+2 .and. ia .lt.n1+n2) then
       area(ia)=1.1/h1
      endif
c
    Check to make sure areas are ok
      write (2,*) area(ia)
  31 continue
```

```
c
    DID LOOP TO CALCULATE AREA AND SIGMA(e) AS FUNCTION OF
c
    POSITION
С
c
c
С
    assume uniform rate of insertion in electrodes
c
   xi(5,1)=cur/fc/h1/area(1)
xi(5,n1+1)=cur/fc/h1/area(n1+1)
   xi(5,n2+n1) = -cur/fc/h3/area(n2+n1)
   xi(5,nj)=-cur/fc/h3/area(nj)
c
С
    ****OLD DOYLE CONDUCTIVITY FORMULAE****
c
c
   sig3=sig3*((1.0d0-ep3-epp3)**(1.5d0))
c
    sig1=sig1*((1.0d0-ep1-epp1)**(1.5d0))
c
c
   h2=h2/(n2-1)
   h3=h3/n3
   if (n1 .gt. 1) h1=h1/n1
   h=h2
   frt=fc/(r*t)
   Find initial solid phase potential guesses
   from initial solid concentrations:
   call ekin(1,kk,1,csx)
   write (2,*) 'open-circuit potential, negative ',g0
   xi(6,1)=g0
xi(6,n1+1)=xi(6,1)
   call ekin(nj,kk,1,csy)
   write (2,*) 'open-circuit potential, positive ',g0
   xi(6,nj)=g0
   xi(6,n2+n1)=xi(6,nj)
   fj is flag to cut off parts of the electrode when c=0
   Not currently active (10/1/94-CMD)
   do 52 j=1,nj
c 52 fj(j)=0
   write (2,*)''
   write (2,*)' DUAL INSERTION CELL VERSION 3.0'
   write (2,*)''
   if (lht.eq.2) then
```

```
write (2,*)' util cell pot material
                                      time
                                               cur'
   & ,' spec energy'
   write (2,*)' y
                           balance
                                      (min)
                                              A/m2'
                    (V)
            W-h/kg'
   else if (lht.eq.0) then
     write (2,*) 'util ',' cell pot ',' temp ',' time ',
       ' U ocp cur'
write (2,*)' y',' (V)
                        ',' (C) ','
                                   (min) ',
       (V) '
   else if (lht.eq.1) then
     write (2,*) 'util ',' cell pot ',' htcoeff ',' time ',
   & ' U ocp cur Heat Generation'
     write (2,*)' y ',' (V) ',' (W/m2K)',' (min)',
       ' (V) A/m2
                             W/m2
   end if
   write (2,*)''
initialize time counting variables
   k=1
   time=0.0d0
   time2=0.0d0
   rr=0.0d0
   ts(1)=0.0d0
C
c Must activate lpow=1 in data file if you want peak powers:
   kkflag=0
   nflag=0
call guess(lflag)
   calculate mass (kg/m2) of the cell
   call mass(re,rs3,rs1,rf,rp1,rc,rcn,rcp)
   dens=tw/thk
С
   call comp(n,lim,k,rr,0,nflag,0,jcount)
   call cellpot(k,vv,1,0,lflag)
c
c rr is the size of a time step.
   if(cap1.eq.0.d0 .and. cap3.eq.0.d0) then
    r=1.0d0
                    ! initial time step is 1 second
   else
    rr=1.5d-13
                     ! initial time step is 1.5d-13 second
   endif
С
   iflag=0
   L=0
```

```
53 L=L+1
   do 53 l=1,lcurs
  123 k=k+1
    nt=k-1
 С
    adjust time step to match time of change in current
    time=ts(k-1)+rr
    if(time .ge. tot(1) .and. mc(1).lt.2) then
      rr=tot(1)-ts(k-1)
      time=tot(1)
      iflag=1
    end if
  129 \text{ ts(k)=ts(k-1)+rr}
    call calca(k)
c
    if(mc(l) .gt. 0) then
    mc is 1 or 2 so run galvanostatically
      dtnow=rr
      call comp(n,lim,k,rr,0,nflag,0,jcount)
      if(rr.lt.0.9999*dtnow) iflag=0
      if(mc(1).lt.2) call cellpot(k,vv,1,0,lflag)
      if(mc(1).eq.2) call cellpot(k,vv,0,0,lflag)
      frt=fc/r/t
c
    else
    mc is 0 so run potentiostatically
ic2=0
      curlow=0.d0
      curhigh=0.d0
      do 610 j=1,nj
 610 terms(j)=term(j)
     jsig=0
С
 609 \text{ jc2}=\text{jc2}+1
     if(jsig.eq.1) then
        cur=cur+20.d0
      elseif(jsig.eq.2) then
       cur=cur-20.d0
     elseif(jsig.eq.3) then
       cur=0.5d0*(curhigh+curlow)
       curtry=curlow+(curhigh-curlow)/(vhigh-vlow)*(cu(l)-vlow)
       if(curtry.gt.curhigh .and. curtry.lt.curlow) cur=curtry
c write (2,*) 'curtry ',curtry
     endif
     ts(k)=ts(k-1)+rr
```

```
do 611 j=1,nj
  611 term(j)=terms(j)
       call calca(k)
 call comp(n,lim,k,rr,0,nflag,0,jcount)
       call cellpot(k,vv,0,0,1flag)
       frt=fc/r/t
      if (jsig.ne.4 .and. dabs(vv-cu(l)) .gt. dabs(1.0d-05)) then
        if (jc2 .gt. lim2) then
          write (2,*) 'this run did not converge'
          stop
        else
          if(vv.gt.cu(l)) then
            vhigh=vv
            curhigh=cur
            if(jsig.le.1) then
              isig=1
            else
              jsig=3
              if(curhigh.gt.curlow) jsig=4
            endif
          else
            vlow=vv
            curlow=cur
            if(jsig.eq.0 .or. jsig.eq.2) then
              jsig=2
else
              jsig=3
              if(curhigh.gt.curlow) jsig=4
            endif
          endif
 312
            format (2i4,f10.5,f10.7,2f10.5)
    write (2, 312) jc2, jsig, cur, vv, curhigh, curlow
          go to 609
        end if
c
      else
       call cellpot(k,vv,1,0,lflag)
       frt=fc/r/t
      end if
c
   end if
c
    sign=1.d0
c
   if(cu(1).lt.0.d0) sign=-1.d0
c
    IF(sign*VV.LT.sign*VCUT) GO TO 100
c
    check to see if cutoff potential is exceeded if mc is 2
```

```
if (mc(1).eq.2) then
IF ((VV.LT.TT(L) .AND. CU(L).GT.0.0) .OR.
          (VV.GT.TT(L) .AND. CU(L).LT.0.0)) THEN
       if (dabs(vv-tt(l)) .gt. 1.0d-04) then
    write (2,*) 'not quite right yet ',vv,rr
         rr=rr/2.0d0
         iflag=1
         go to 129
       else
         time2=time2+rr
         call cellpot(k,vv,1,0,lflag)
         frt=fc/r/t
          iflag=1
        end if
      else
        iflag=0
        time2=time2+rr
        call cellpot(k,vv,1,0,lflag)
        frt=fc/r/t
      end if
    end if
С
     Increasing time steps:
 С
  rrmax=tmmax
    if(k.le.20) rrmax=10.0d0
    if(jcount.lt.5 .and. k.gt.2 .and. rr.lt.rrmax .and.
    & iflag.eq.0) then
      rr=rr*2.0d0
      write (2,*) 'next time step increased to ', rr,' (s)'
     end if
 С
     if(k.GE.maxt-1) then
      write (2,*) 'kmax=',k,' a larger matrix needed for xt'
       go to 100
     endif
                            ! trim stored solid concentrations
     if (k.GE.501) then
     should we have been printing long output as we go along?
       do 92 kk=3,401,2
         kput=(KK+1)/2
         ts(kput)=ts(kk)
       do 92 j=1,nj
       do 92 i=1,n
   92 xt(i,j,kput)=xt(i,j,kk)
       do 93 kk=402,K
         ts(kk-200)=ts(kk)
   do 93 j=1,nj
```

```
do 93 i=1,n
  93 xt(i,j,kk-200)=xt(i,j,kk)
     k = k - 200
    endif
С
    if (iflag .eq. 0) go to 123
    iflag=0
   if (mc(l).eq.2) then
     do 124 m=l,lcurs
  124 \quad tot(m)=tot(m)+time2
     time2=0.0d0
   end if
   IF(L.EQ.LCURS .AND. LCURS.GE.10) THEN
     L=0
     tot(1)=TOT(LCURS)
     if (mc(1).lt.2) TOT(1)=TOT(1)+60.0D0*TT(1)
     do 403 i=2, lcurs
       if (mc(i).lt.2) then
        tot(i)=tot(i-1)+6.0d01*tt(i)
        tot(i)=tot(i-1)
end if
 403 continue
   ENDIF
   if(mc(1+1) .gt. 0) cur=cu(1+1)
   calculate zero time solution for change in current
   if(mc(l+1).gt. 0) then
     k=k+1
     ts(k)=ts(k-1)
     rr=0.0
     call comp(n,lim,k,rr,0,nflag,0,jcount)
     call cellpot(k,vv,1,0,lflag)
   endif
   if(cap1.eq.0.d0 .and. cap3.eq.0.d0) then
                    ! initial time step is 2 seconds
   else
     rr=1.5d-13
                     ! initial time step is 1.5d-13 second
   endif
   IF(L.LT.LCURS) GO TO 53
%%%%%%%%%%%%%%%%%%
   Additional features section:
   peak-power subroutine:
   if(lpow.eq.1) then
```

```
il1=0
     call peak(n,lim,cu(1))
    endif
С
    Solid-phase concentration profiles at given time and position
    if(jsol.gt.0 .and. jsol.lt.nj) call sol(k,jsol)
С
    print detailed information if requested
 100 if(il1 .eq. 1) call nucamb(il2,il3)
    calculate average energy and power:
    ed=ed/tw/3.6d03
    pow=3.6d03*ed/ts(nt+1)
    write (2,44) tw
    write (2,45) ed
    write (2,46) pow
c
    end
subroutine comp(n,lim,kk,tau,kkflag,nflag,lpow,jcount)
    implicit real*8(a-h,o-z)
    parameter(maxt=900)
    common /n/ nx,nt,n1,n2,nj,n3,tmmax
   common /calc/ ai(maxt),ai2(maxt),u(223,maxt),ts(maxt),
        h,h1,h2,h3,hcn,hcp,rr,rrmax
    common/const/ fc,r,t,frt,cur,ep3,ep2,pi,nneg,nprop,npos,
   &
        ep1,epf3,epf1,epp1,epp2,epp3,shape3,shape1,ep(221),
        epp(221), epf(221)
    common/power/ ed, Vold, ranode, reathde
   common/ssblock/ xp0(6),xx0(6,221),term(221),fj(221)
    common/var/ xp(10), xx(6,221), xi(6,221), xt(6,221, maxt)
   common/cprop/sig3,area3,rka3,ct3,dfs3,Rad3,sig(221),area(221),
        sig1,area1,rka1,ct1,dfs1,Rad1,tw,cap1,cap3
   common/tprop/df(221),cd(221),tm(221),
        ddf(221),dcd(221),dtm(221),dfu(221),d2fu(221)
   common/temp/ thk,htc,dudt,Cp,dens,tam,g0,ncell,lht,qq
   common/mat/b,d
   common/bnd/ a,c,g,x,y
   dimension b(10,10),d(10,21),termn(221)
   dimension a(10,10),c(10,221),g(10),x(10,10),y(10,10)
 99 format (1h,//5x,'this run just did not converge'//)
   exbrug=1.5d0
   if(nprop.eq.7 .or. nprop.eq.8) exbrug=3.3d0
c
```

```
666 kadd=0
   if(rr.eq.0 .and. lpow.eq.1) kadd=1
   do 1 = 1,ni
   do 1 i=1,n
     c(i,j)=xt(i,j,kk-1+kadd)
  1 xx(i,j)=xt(i,j,kk-1+kadd)
  sets first guess to last time-step values
c initialize variables to begin each iteration (jcount is iteration #)
   jcount=0
   do 4 i=1,n
  4 xp(i)=0.0d0
c
  8 j = 0
   jcount=jcount+1
c calculate physical properties
   call prop(nj,n2,n1)
c initialize x and y for iteration
   do 9 i=1,n
   do 9 k=1,n
     x(i,k)=0.0d0
  9 \text{ y(i,k)} = 0.0 \text{d}0
c
    store previous iteration of (xp in xp0) & (xx in xx0)
    do 6 i=1,n
     xp0(i)=xp(i)
     if (n1.lt. 11) then !foil electrode has 0 node
       xx0(i,1) = xx(i,1)
     else
       xx0(i,n1-10)=xx(i,n1-10)
     endif
  6 xx0(i,n1+n2+10)=xx(i,n1+n2+10)
С
    for a given iteration, set up governing equations and bc's
С
   start at the left interface and move across polymer
   initialize a,b,d,g arrays for each node
С
  10 \ j=j+1
Ç
 do 11 i=1,n
     g(i)=0.0d0
     xx(i,j)=c(i,j)
    do 11 k=1,n
     a(i,k)=0.0d0
     b(i,k)=0.0d0
```

```
11 d(i,k)=0.0d0
   if(rr.le.0.0) then
                        ! treat as a zero time step
     b(1,1)=1.0d0
     g(1)=xt(1,j,kk-1)-c(1,j)! fix electrolyte concentration
     b(4,3)=1.0d0
     g(4)=xt(3,j,kk-1)-c(3,j)! fix solid concentration
     go to 112
   endif
С
    Equation 1, mass balance.
С
   termn(j)=0.
   fac=1.
   dedx=0.0
   zeff1=0.0
zeff2=0.0
   if (i.gt. n1+n2+1) then
     dedx = ((epp(n1+n2+1)+ep(n1+n2+1))-(epp(nj)+ep(nj)))/dble(n3)/h3
     zeff1=0.75*dedx*(df(j-1)/(ep(j-1)+epp(j-1))+df(j)/(ep(j))
   &
          +epp(j))/4.
     if (j.lt. nj) then
       zeff2=0.75*dedx*(df(j+1)/(ep(j+1)+epp(j+1))+df(j)/(ep(j))
   &
            +epp(i))/4.
     endif
   endif
   if(j.eq.n1+2 and n1 .gt. 0)
   & fac=((ep(j)+epp(j))/(ep(j-1)+epp(j-1)))**exbrug
   if(j.eq.n1+n2+1) fac=((ep(j)+epp(j))/(ep(j-1)+epp(j-1)))**exbrug
   if (n1.gt.0 \cdot or. j \cdot gt. 1) epn=ep(j)+epp(j)
   hn=h1
   if(j.gt.n1+1) then
     hn=h2
   endif
   if (j.gt.n1+n2) then
     hn=h3
   endif
   if(j.gt.1) then
                       ! deal with box to left of point.
termn(j)=-(df(j)+fac*df(j-1))*(c(1,j)-c(1,j-1))/hn/2.
          -(1.-0.5*(tm(j)+tm(j-1)))*c(4,j-1)/fc
     a(1,1)=epn*hn*0.125/rr-zeff1
          -(df(j)+fac*df(j-1))/hn/4.+fac*ddf(j-1)*
   &
   &
          (c(1,j)-c(1,j-1))/hn/4.-dtm(j-1)*c(4,j-1)/4./fc
     b(1,1) = epn*hn*0.375/rr+zeff2
          +(df(j)+fac*df(j-1))/hn/4.+ddf(j)*(c(1,j)-c(1,j-1))/hn/4.
   &
   &
          -dtm(j)*c(4,j-1)/4./fc
```

```
a(1,4)=(1.-0.5*(tm(j)+tm(j-1)))/2./fc
       g(1) = -epn*hn*(0.375*(c(1,j)-xt(1,j,kk-1))
            +0.125*(c(1,j-1)-xt(1,j-1,kk-1)))/rr
     &
      endif
      fac=1.
     if(j.eq.n1+1) then
       if (n1 .gt. 0) fac=((ep(j+1)+epp(j+1))/(ep(j)+epp(j)))**exbrug
       epn=ep(j+1)+epp(j+1)
       hn=h2
     else if(j.eq.n1+n2) then
       fac=((ep(j+1)+epp(j+1))/(ep(j)+epp(j)))**exbrug
       epn=ep(j+1)+epp(j+1)
       hn=h3
     endif
 if(j.ne.nj) then
                      ! deal with box to right of point.
     At the foil anode, only the box to the right should be used
      termn(j)=termn(j)-(fac*df(j)+df(j+1))*(c(1,j)-c(1,j+1))/hn/2.
           +(1.-0.5*(tm(j)+tm(j+1)))*c(4,j)/fc
    &
      d(1,1)=epn*hn*0.125/rr
           -(fac*df(j)+df(j+1))/hn/4.+ddf(j+1)*(c(1,j)-c(1,j+1))/hn/4.
    &
           +dtm(j+1)*c(4,j)/4./fc
      b(1,1)=b(1,1)+epn*hn*0.375/rr
           +(fac*df(j)+df(j+1))/hn/4.+fac*ddf(j)*(c(1,j)-c(1,j+1))/hn/4.
    &
          +dtm(j)*c(4,j)/4./fc
      b(1,4)=b(1,4)-(1.-0.5*(tm(j)+tm(j+1)))/2./fc
      g(1)=g(1)-epn*hn*(0.375*(c(1,j)-xt(1,j,kk-1))
          +0.125*(c(1,j+1)-xt(1,j+1,kk-1)))/rr
   &
    endif
    g(1)=g(1)+(termn(j)+term(j))/2.
    Equation 4, material balance in solid insertion material.
    sum=0.0d0
   if (j.le.n1+1) then
     if (n1 .eq. 0) then
       g(4) = xt(3,j,1) - c(3,j)
b(4,3) = 1.0d0
     else
       if (kk .gt. 2) then
         do 54 i=1, kk-2
 54
          if(ts(i+1)-ts(i).ne.0.0)
  &sum=sum + (xt(3,j,i+1) - xt(3,j,i))*ai2(kk-i)/(ts(i+1)-ts(i))
       end if
      b(4,3)=ai2(1)/rr
      b(4,5)=1.0d0/Rad1
      g(4)=ai2(1)*xt(3,j,kk-1)/rr - sum -ai2(1)/rr*c(3,j)-c(5,j)/Rad1
```

```
endif
    else if(j.ge.n1+n2) then
     if (kk .gt. 2) then
       do 95 i=1, kk-2
  95
        if(ts(i+1)-ts(i).ne.0.0)
   &sum=sum + (xt(3,j,i+1) - xt(3,j,i))*ai(kk-i)/(ts(i+1)-ts(i))
     end if
     b(4,3)=ai(1)/rr
     b(4,5)=1.0d0/Rad3
     g(4)=ai(1)*xt(3,j,kk-1)/rr - sum -c(3,j)*ai(1)/rr-c(5,j)/Rad3
    else
   In separator
 b(4,3)=1.0d0
     g(4) = -c(3,j)
    endif
    Equation 2, Ohm's law.
С
 112 if(j.le.n1) then
     h=h1
   else if(j.lt.n1+n2) then
     h=h2
   else
     h=h3
   endif
   fac=1.0
   if (j.eq.n1+1.and.n1.gt.0) then
     fac=((ep(j+1)+epp(j+1))/(ep(j)+epp(j)))**exbrug
   endif
   if(j.eq.n1+n2)
       fac=((ep(j+1)+epp(j+1))/(ep(j)+epp(j)))**exbrug
   if(j.eq.nj .or. fj(j).ne.0.0) then
     b(2,2)=1.0d0
g(2) = -c(2,j)
     go to 12
   dcf = (xx(1,j+1)-xx(1,j))/h *2.0d0 !factor of 2 added
   r1=(xx(1,j+1)+xx(1,j))/2.0d0
   r4 = xx(4,i)
   p1=(tm(j)+tm(j+1))/2.0d0
   p2=(fac*cd(j)+cd(j+1))/2.0d0
   p4=(dfu(j)+dfu(j+1))/2.0d0
   d(2,1)=(1.0d0-p1)*(1.0d0/r1+p4)/h*2.0d0!factor of 2 added
   b(2,1)=-d(2,1)+((1.0d0-p1)*(d2fu(j)-1.0d0/r1/r1)*dcf
  & -(1.0d0/r1+p4)*dcf*dtm(j)+frt*r4*fac*dcd(j)/p2/p2)/2.0d0
```

```
d(2,1)=d(2,1)+((1.0d0-p1)*(d2fu(j+1)-1.0d0/r1/r1)*dcf
   & -(1.0d0/r1+p4)*dcf*dtm(j+1)+frt*r4*dcd(j+1)/p2/p2)/2.0d0
    d(2,2) = -frt/h
    b(2,2)=frt/h
    b(2,4) = -frt/p2
   g(2)=-(1.0d0-p1)*(1.0d0/r1+p4)*dcf+frt*(c(2,j+1)-c(2,j))/h
        +frt/p2*c(4,i)
С
    Equation 3, Butler-Volmer kinetics
c
12 if((j.gt.n1+1 .and. j.lt.n1+n2) .or. fj(j).ne.0.0) then
     b(3,5)=1.0d0
     g(3) = -c(5,i)
    else
     call ekin(j,kk,0,0)
     if(j.eq.n1+n2) Uc=g0
     if(j.eq.1) Ua=g0
    endif
c
С
c
   if(j.ne.1) go to 13
c
c
С
    specify boundary conditions at left interface (j=1)
    anode/current collector
c
С
   h=h1
c
   if (n1 .eq. 0) then
     g(5) = cur - c(4,j)
     b(5,4) = 1.0d0
g(6) = fc*c(5,j) - cur
     b(6,5) = -fc
   else
     if(cap1.eq.0.d0) then
       b(5,4)=-1.0d0/h
       b(5,5)=area(j)*fc/2.0d0
       g(5)=c(4,j)/h-area(j)*fc/2.0d0*c(5,j)! not order h2
     else
       if (rr.eq. 0) then
         g(5)=c(6,j)-c(2,j)-xt(6,j,kk-1)+xt(2,j,kk-1)
         b(5,6)=-1.d0
         b(5,2)=1.d0
       else
         b(5,4)=-1.0d0/h
```

```
b(5,5)=area(j)*fc/2.0d0
         b(5,6)=area(j)*cap1/rr
         b(5,2) = -area(j) * cap1/rr
         g(5)=(c(4,j)+xt(4,j,kk-1))/h
   &
              -area(j)*fc/2.0d0*(c(5,j)+xt(5,j,kk-1))
   &
              -area(j)*cap1*(c(6,j)-c(2,j)-xt(6,j,kk-1)
   &
              +xt(2,j,kk-1))/rr
       endif
 endif
c
     b(6,6)=-1.0d0/h
     d(6,6)=1.0d0/h
     b(6,4)=-1.0d0/sig(j)
     g(6) = -cur/sig(j) + c(4,j)/sig(j) - (c(6,j+1)-c(6,j))/h
¢
   endif
С
   call band(j)
   go to 10
С
    specify governing equations in composite anode [1<j<n1+1]
  13 if (j.ge. (n1+1)) go to 110
С
   if(cap1.eq.0.d0) then
     b(5,4)=-1.0d0/h
     a(5,4)=1.0d0/h
     b(5,5)=area(j)*fc
     g(5)=(c(4,j)-c(4,j-1))/h-area(j)*fc*c(5,j)
   else
if (rr.eq. 0) then
       g(5)=c(6,j)-c(2,j)-xt(6,j,kk-1)+xt(2,j,kk-1)
       b(5,6)=-1.d0
       b(5,2)=1.d0
     else
       b(5,4)=-1.0d0/h/2.0d0
       a(5,4)=1.0d0/h/2.0d0
       b(5,5)=area(j)*fc/2.0d0
       b(5,6)=area(j)*cap1/rr
       b(5,2)=-area(j)*cap1/rr
       g(5)=(c(4,j)-c(4,j-1)+xt(4,j,kk-1)-xt(4,j-1,kk-1))/h/2.0d0
   &
            -area(j)*fc/2.0d0*(c(5,j)+xt(5,j,kk-1))
   &
            -area(j)*cap1*(c(6,j)-c(2,j)-xt(6,j,kk-1)
   &
            +xt(2,j,kk-1))/rr
     endif
   endif
```

```
c
    b(6,6)=-1.0d0/h
    d(6,6)=1.0d0/h
    b(6,4)=-1.0d0/sig(j)
    g(6) = -cur/sig(j) + c(4,j)/sig(j) - (c(6,j+1)-c(6,j))/h
С
    do 502 i=3.3
    call band(j)
    go to 10
 110 if (j.ne. (n1+1)) go to 120
    if (n1 .eq. 0) go to 120
c
c
    Now for the boundary between anode and separator(j=n1+1)
С
    if(cap1.eq.0.d0) then
     b(5,4)=-1.0d0/h
     a(5,4)=1.0d0/h
     b(5,5) = area(j)*fc/2.0d0
     g(5)=(c(4,j)-c(4,j-1))/h-area(j)*fc/2.0d0*c(5,j)! not order h2
    else
     if (rr .eq. 0) then
       g(5)=c(6,j)-c(2,j)-xt(6,j,kk-1)+xt(2,j,kk-1)
       b(5,6)=-1.d0
       b(5,2)=1.d0
     else
       b(5,4)=-1.0d0/h/2.0d0
       a(5,4)=1.0d0/h/2.0d0
b(5,5) = area(j) * fc/4.0d0
       b(5,6) = area(j) * cap1/rr*0.5d0
       b(5,2) = -area(j) * cap1/rr*0.5d0
       g(5)=(c(4,j)-c(4,j-1)+xt(4,j,kk-1)-xt(4,j-1,kk-1))/h/2.0d0
   &
            -area(j)*fc/4.0d0*(c(5,j)+xt(5,j,kk-1))
   &
            -area(j)*cap1*(c(6,j)-c(2,j)-xt(6,j,kk-1)
   &
            +xt(2,j,kk-1))/rr*0.5d0
     endif
   endif
С
   b(6,4)=1.0d0
   g(6) = cur - c(4,j)
   do 503 i=3,3
   call band(i)
   go to 10
120 if(j .ge. (n1+n2)) go to 130
```

```
specify governing equations [ n1 < j < n2+n1 ]
С
¢
    in separator
    h=h2
С
    b(5,4)=1.0d0
    g(5)=cur-c(4,j)
    b(6,6)=1.0d0
    g(6) = -c(6,j)
С
    do 504 i=3,3
    call band(j)
    go to 10
c
 130 if (j .ne. (n2+n1)) go to 140
    Boundary between positive and separator(j=n2+n1):
С
    if(cap3.eq.0.d0) then
     b(5,4)=-1.0d0/h
     a(5,4)=1.0d0/h
     b(5,5)=area(j)*fc/2.0d0
     g(5)=(c(4,j)-c(4,j-1))/h-area(j)*fc/2.0d0*c(5,j)! not order h2
    else
     if (rr.eq. 0) then
       g(5)=c(6,j)-c(2,j)-xt(6,j,kk-1)+xt(2,j,kk-1)
b(5,6)=-1.d0
       b(5,2)=1.d0
     else
       b(5,4)=-1.0d0/h/2.0d0
        a(5,4)=1.0d0/h/2.0d0
       b(5,5) = area(j) * fc/4.0d0
       b(5,6) = area(j) * cap3/rr*0.5d0
       b(5,2) = -area(j) * cap3/rr*0.5d0
       g(5)=(c(4,j)-c(4,j-1)+xt(4,j,kk-1)-xt(4,j-1,kk-1))/h/2.0d0
   &
            -area(j)*fc/4.0d0*(c(5,j)+xt(5,j,kk-1))
            -area(j)*cap3*(c(6,j)-c(2,j)-xt(6,j,kk-1)
   &
   &
            +xt(2,j,kk-1))/rr*0.5d0
     endif
    endif
С
    d(6,6)=1.0d0/h3
    b(6,6)=-1.0d0/h3
    b(6,4)=-1.0d0/sig(j)
    g(6) = -cur/sig(j) + c(4,j)/sig(j) - (c(6,j+1)-c(6,j))/h3
C
```

```
do 505 i=3,3
   call band(j)
go to 10
 140 if (j .eq. nj) go to 16
    specify governing equations [n2+n1 < j < nj]
C
    composite cathode
c
С
   h=h3
c
   if(cap3.eq.0.d0) then
     b(5,4)=-1.0d0/h
     a(5,4)=1.0d0/h
     b(5,5)=area(j)*fc
     g(5)=(c(4,j)-c(4,j-1))/h-area(j)*fc*c(5,j)
    else
     if (rr .eq. 0) then
       g(5)=c(6,j)-c(2,j)-xt(6,j,kk-1)+xt(2,j,kk-1)
       b(5,6)=-1.d0
       b(5,2)=1.d0
     else
        b(5,4)=-1.0d0/h/2.0d0
        a(5,4)=1.0d0/h/2.0d0
b(5,5)=area(j)*fc/2.0d0
        b(5,6)=area(j)*cap3/rr
        b(5,2)=-area(j)*cap3/rr
       g(5)=(c(4,j)-c(4,j-1)+xt(4,j,kk-1)-xt(4,j-1,kk-1))/h/2.0d0
            -area(j)*fc/2.0d0*(c(5,j)+xt(5,j,kk-1))
   &
   &
            -area(j)*cap3*(c(6,j)-c(2,j)-xt(6,j,kk-1)
            +xt(2,j,kk-1))/rr
   &
      endif
    endif
c
    d(6,6)=1.0d0/h
    b(6,6)=-1.0d0/h
    b(6,4)=-1.0d0/sig(j)
    g(6) = -cur/sig(j) + c(4,j)/sig(j) - (c(6,j+1)-c(6,j))/h3
    do 506 i=3,3
    call band(j)
    go to 10
\mathbf{c}
С
  16 continue
```

```
c
    specify boundary conditions at right interface(j=nj)
   if(cap3.eq.0.d0) then
     b(5,4)=-1.0d0/h
     a(5,4)=1.0d0/h
     b(5,5) = area(j) * fc/2.0d0
     g(5)=(c(4,j)-c(4,j-1))/h-area(j)*fc/2.0d0*c(5,j)! not order h2
   else
     if (rr.eq. 0) then
       g(5)=c(6,j)-c(2,j)-xt(6,j,kk-1)+xt(2,j,kk-1)
       b(5,6)=-1.d0
       b(5,2)=1.d0
     else
       b(5,4)=-1.0d0/h/2.0d0
       a(5,4)=1.0d0/h/2.0d0
       b(5,5)=area(j)*fc/4.0d0
       b(5,6) = area(j) * cap3/rr*0.5d0
       b(5,2) = -area(j) * cap3/rr*0.5d0
       g(5)=(c(4,j)-c(4,j-1)+xt(4,j,kk-1)-xt(4,j-1,kk-1))/h/2.0d0
   &
           -area(j)*fc/4.0d0*(c(5,j)+xt(5,j,kk-1))
   &
           -area(j)*cap3*(c(6,j)-c(2,j)-xt(6,j,kk-1)
   &
           +xt(2,j,kk-1))/rr*0.5d0
endif
   endif
С
   b(6,4)=1.0d0
   g(6) = -c(4,j)
                      ! i2 is no longer used at j=nj
С
   do 507 i=3,3
   call band(j)
   do 607 jj=1,nj
   do 607 i=1,n
 607 c(i,jj)=xx(i,jj)+c(i,jj)
С
С
    check for convergence
С
   do 56 i=1,n
  56 \text{ xp}(i) = (4.0\text{d}0 \cdot c(i,2) - 3.0\text{d}0 \cdot c(i,1) - c(i,3))/2.0\text{d}0/\text{h}1
   nerr=0
   do 25 j=1,nj
shoe horns:
```

```
if(c(1,j).lt.xx(1,j)/100.) c(1,j)=xx(1,j)/100.
      if (c(2,j).lt.(xx(2,j)-0.02)) c(2,j)=xx(2,j)-0.02
      if (c(2,j).gt.(xx(2,j)+0.02)) c(2,j)=xx(2,j)+0.02
      if (c(6,j).lt.(xx(6,j)-0.02)) c(6,j)=xx(6,j)-0.02
      if (c(6,j).gt.(xx(6,j)+0.02)) c(6,j)=xx(6,j)+0.02
      if (c(2,j).gt. 9.9) c(2,j) = 9.9
      if (c(2,j).lt.-9.9) c(2,j)=-9.9
      if (c(6,j).gt. 9.9) c(6,j) = 9.9
      if (c(6,j).lt.-9.9) c(6,j)=-9.9
c
      if (j.ge. n1+n2) then
       if(c(3,j).lt.xx(3,j)/100.) nerr=nerr+1
       if(c(3,j).lt.xx(3,j)/100.) c(3,j)=xx(3,j)/100.! use cs min
       if(ct3-c(3,j).le.(ct3-xx(3,j))/100.) nerr=nerr+1
    if(ct3-c(3,j).le.(ct3-xx(3,j))/100.) c(3,j)=ct3-(ct3-xx(3,j))/100.
       if(c(3,j).ge.ct3) c(3,j)=0.999999*ct3
       if(c(3,j).lt.1.0d-12) c(3,j)=1.0d-12
c
      else if (j.le. n1+1 .and. n1 .gt. 0) then
       if(c(3,j).lt.xx(3,j)/100.) nerr=nerr+1
       if(c(3,j).lt.xx(3,j)/100.) c(3,j)=xx(3,j)/100.! use cs min
if(ct1-c(3,j).le.(ct1-xx(3,j))/100.) nerr=nerr+1
    if(ct1-c(3,j).le.(ct1-xx(3,j))/100.) c(3,j)=ct1-(ct1-xx(3,j))/100.
       if(c(3,j).ge.ct1) c(3,j)=0.999999*ct1
       if(c(3,j).lt.1.0d-99) c(3,j)=1.0d-99
     endif
    to avoid underflow or overflow:
     if(c(1,j).lt.1.0d-12) c(1,j)=1.0d-12
     if(c(1,j).lt.1.0d-10) c(5,j)=0.0
%%%%%%%%%%%%%%%%%
   do 25 i=1,n
  25 xx(i,j)=c(i,j)
   if (jcount .gt. 3*lim .and, rr.eq.0.0d0) then
     write (2, 99)
     stop
   endif
С
   Decreasing time steps:
   if (jcount .gt. lim .and. rr.gt.0.0d0) then
tau=tau/2.0d0
     rr=tau
```

```
ts(kk)=ts(kk-1)+tau
      write (2,*) 'time step reduced to ', tau, ts(kk)
      if (tau.lt.1.0d-4) then
        if (lpow.eq.1) then !peak power activated
         nflag=1
         go to 66
        endif
        nt=nt-1
        tau = (ts(kk-1)-ts(kk-2))/2.d0
        rr=tau
        kback=0
        ed=ed/tw/3.6d03
        pow=3.6d03*ed/ts(nt+1)
        write (2,*) 'mass is ',tw
        write (2,*) 'energy is ',ed
        write (2,*) 'power is ',pow
        write (2,*) kk-1,' this time step did not converge'
       call nucamb(1,5)
       stop
     else
iflag=0
       call calca(kk)
       go to 666
     end if
С
    else
С
     if(nerr.ne.0) go to 8
     do 55 ii=1,n
       errlim=1.d-10
       if(ii.eq.5) errlim=1.d-16 !change to -14 if problems with convergenc
е
       dxp=dabs(xp(ii)-xp0(ii))
       if (n1.lt. 11) then
         n1hold = 1
       else
         n1hold = n1-10
       endif
       dxx=dabs(xx(ii,n1hold) - xx0(ii,n1hold))
       dxx2=dabs(xx(ii,n1+n2+10)-xx0(ii,n1+n2+10))
   if(dxx.gt. 1.d-9*dabs(xx(ii,n1hold)).and.dxx.gt.errlim) go to 8
       if(dxx2.gt.1.d-9*dabs(xx(ii,n1+n2+10)).and.dxx2.gt.errlim)
&
        go to 8
   if(dxp.gt.1.d-7*dabs(xp(ii)) .and. dxp.gt.errlim) go to 8
 55 continue
С
```

```
С
     if(lpow.ne.1) write (2,*) jcount,' iterations required'
c
     do 60 ll=1, nj
                         ! save present time results in xt()
     do 60 lk=1,n
 60 xt(lk,ll,kk)=xx(lk,ll)
\mathbf{c}
   do 57 j=1,nj
c
   if(xx(1,j).lt. 1.0d-03) f_j(j)=1
С
    57 if(xx(1,j).gt. 1.0d-01) f<sub>j</sub>(j)=0
С
С
     if(rr.ne.0.0d0) then
       do 58 j=1,nj
                         ! fix to calculate here for zero time step
  58
         term(j)=termn(j)
     else
       do 65 j=1,nj
term(j)=0.
         fac=1.
         if(j.eq.n1+2 and n1 .gt. 0)
   &
              fac=((ep(j)+epp(j))/(ep(j-1)+epp(j-1)))**exbrug
         if(j.eq.n1+n2+1)
   &
              fac = ((ep(j)+epp(j))/(ep(j-1)+epp(j-1)))**exbrug
         if (n1 .gt.0 .or. j.gt.1) epn=ep(j)+epp(j)
         hn=h1
         if(j.gt.n1+1) then
           hn=h2
         endif
         if (j.gt.n1+n2) then
           hn=h3
         endif
         if(j.gt.1) term(j)=
   &
              -(df(j)+fac*df(j-1))*(c(1,j)-c(1,j-1))/hn/2.
   &
              -(1.-0.5*(tm(j)+tm(j-1)))*c(4,j-1)/fc
         fac=1.
         if(j.eq.n1+1) then
           if (n1 .gt. 0) fac=((ep(j+1)+epp(j+1))/
   &
                (ep(j)+epp(j)))**exbrug
           epn=ep(j+1)+epp(j+1)
hn=h2
         else if(j.eq.n1+n2) then
           fac = ((ep(j+1) + epp(j+1))/(ep(j) + epp(j))) **exbrug
           epn=ep(j+1)+epp(j+1)
           hn=h3
         endif
```

```
65
        if(j.lt.nj) term(j)=term(j)
             -(fac*df(j)+df(j+1))*(c(1,j)-c(1,j+1))/hn/2.
   &
   &
             +(1.-0.5*(tm(j)+tm(j+1)))*c(4,j)/fc
     endif
c
   end if
С
  66 continue
   return
   end
С
   subroutine calca(kk)
   implicit real*8(a-h,o-z)
   parameter(maxt=900)
common /n/ nx,nt,n1,n2,nj,n3,tmmax
   common /calc/ ai(maxt),ai2(maxt),u(223,maxt),ts(maxt),
       h,h1,h2,h3,hcn,hcp,rr,rrmax
   common/const/ fc,r,t,frt,cur,ep3,ep2,pi,nneg,nprop,npos,
        ep1,epf3,epf1,epp1,epp2,epp3,shape3,shape1,ep(221),
   &
        epp(221), epf(221)
   common/cprop/sig3,area3,rka3,ct3,dfs3,Rad3,sig(221),area(221),
        sig1,area1,rka1,ct1,dfs1,Rad1,tw,cap1,cap3
   dimension ar(4,maxt),bz(6)
   do 319 l=1,nt
     ai2(1)=0.0d0
 319 \text{ ai}(1)=0.0\text{d}0
   do 70 i=1,kk-1
     ar(1,i)=dfs3*(ts(kk)-ts(i))/Rad3/Rad3
     ar(2,i)=dfs3*(ts(kk)-ts(i+1))/Rad3/Rad3
     ar(3,i)=dfs1*(ts(kk)-ts(i))/Rad1/Rad1
     ar(4,i)=dfs1*(ts(kk)-ts(i+1))/Rad1/Rad1
С
     do 69 \text{ m}=1.2
       t1=ar(m,i)
t2=ar((m+2),i)
       a1 = 0.0d0
       a12=0.0d0
c
       s=1.644934066848d0
    Bessel's function zeros:
```

```
bz(1)=2.4048255577d0
               bz(2)=5.5200781103d0
               bz(3)=8.6537281103d0
              bz(4)=11.7915344391d0
              bz(5)=14.9309177086d0
       c
              if (shape3.gt.2.0d0) then
          spherical particles:
      \mathbf{c}
               if (t1 .gt. 0.06d0) then
      c
                 do 59 j=1,5
                  y1=j*j*pi*pi*t1
       59
                  if (y1 .le. 1.5d02) a1=a1+(\exp f(-y1))/j/j
                  a1=2.0d0*(s-a1)/pi/pi
     c
                else
     С
                 if (t1.LE.0.0d0) then
                   a1=0.0d0
                 else
                   do 60 j=1,3
                    z=j/dsqrt(t1)
                    call erfc(z,e)
                    y2=j*j/t1
                    if(y2 .ge. 1.5d02) then
                      da=-j*dsqrt(pi/t1)*e
                    else
                      da=expf(-y2)-j*dsqrt(pi/t1)*e
                   end if
    60
                   a1=a1+da
                 a1=-t1 + 2.0d0*dsqrt(t1/pi)*(1.0d0+2.0d0*a1)
               end if
  c
             end if
           else
  c
     if (shape3.lt.2.0d0) then
     planar particles:
              if(t1 .gt. 0.06d0) then
 \mathbf{c}
               do 61 j=1,5
      da=((-1.0d0)**(j))*(1.0d0 - expf(-(2.0d0*j+1.0d0)*
   & (2.0d0*j+1.0d0)*pi*pi*t1))/(2.0d0*j+1.0d0)/(2.0d0*j+1.0d0)
  61
               a1=4.0d0*a1/pi/pi
c
```

```
else
С
                 do 62 j=1,3
                   z=j/2.0d0/dsqrt(t1)
                   call erfc(z,e)
    da = ((-1.0d0)**(j))*(expf(-j*j/4.0d0/t1)-j/2.0d0*dsqrt(pi/t1)*e)
  62
                   a1=a1+da
                 a1=2.0d0*dsqrt(t1/pi)*(1.0d0+2.0d0*a1)
С
               end if
             else
     cylindrical particles:
  if (t1.gt.0.06d0) then
                 do 63 j=1,5
                   da \hspace{-0.05cm}=\hspace{-0.05cm} (1.0d0 \hspace{-0.05cm}-\hspace{-0.05cm} \exp f(-bz(j)*bz(j)*bz(j)*t1))/bz(j)/bz(j)
  63
                  a1=a1+da
                 a1=2.0d0*a1
С
               else
С
                 a1=2.0d0*dsqrt(t1/pi)-t1/4.0d0-5.0d0*(t1**1.5d0)/96.0d0/
dsqrt(pi)
    &
                      -31.0d0*t1*t1/2048.0d0
С
               end if
            end if
          end if
c
          if (n1 .eq. 0) go to 36
    (skip calculations of Li diffusion in the solid
С
c
    if the negative electrode is metal foil)
С
          if (shape1.gt.2.0d0) then
\mathbf{c}
    spherical particles:
            if(t2 .gt. 0.06d0) then
c
              do 64 j=1,5
                y2=j*j*pi*pi*t2
               if(y2 .le. 1.5d02) a12=a12+(expf(-y2))/j/j
  64
              a12=2.0d0*(s-a12)/pi/pi
С
            else
С
              if (t2.eq.0.0d0) then
                a12=0.0d0
```

```
else
               do 65 j=1,3
                 z=j/dsqrt(t2)
                 call erfc(z,e)
                y2=j*j/t2
                if(y2 .gt. 1.5d02) then
                   da=-j*dsqrt(pi/t2)*e
                 else
                   da=expf(-y2)-j*dsqrt(pi/t2)*e
                 end if
65
              a12=a12+da
               a12=-t2 + 2.0d0*dsqrt(t2/pi)*(1.0d0+2.0d0*a12)
             end if
           end if
С
         else
           if (shape1.lt.2.0d0) then
    planar particles:
             if(t2 .gt. 0.06d0) then
c
             do 66 j=1,5
        da=((-1.0d0)**(j))*(1.0d0 - expf(-(2.0d0*j+1.0d0))
   &*(2.0d0*j+1.0d0)*pi*pi*t2))/(2.0d0*j+1.0d0)/(2.0d0*j+1.0)
  66
              a12=a12+da
             a12=4.0d0*a12/pi/pi
c
             else
С
             do 67 j=1,3
               z=j/2.0d0/dsqrt(t2)
               call erfc(z,e)
     da=((-1.0d0)**(j))*(expf(-j*j/4.0d0/t2)-j/2.0d0*dsqrt(pi/t2)*e)
67
            a12=a12+da
              a12=2.0d0*dsqrt(t2/pi)*(1.0d0+2.0d0*a12)
С
             end if
           else
    cylindrical particles:
             if (t2.gt.0.06d0) then
c
               do 68 j=1,5
                da=(1.0d0-expf(-bz(j)*bz(j)*t2))/bz(j)/bz(j)
  68
                a12=a12+da
              a12=2.0d0*a12
C
             else
```

```
С
       a12=2.0d0*dsqrt(t2/pi)-t2/4.0d0-5.0d0*(t2**1.5d0)/96.0d0/dsqrt(pi)
            -31.0d0*t2*t2/2048.0
   &
\mathbf{c}
            end if
          end if
         end if
С
36
      continue
С
       ar(m,i)=a1
      ar((m+2),i)=a12
 69
     ai(kk-i)=ar(1,i)-ar(2,i)
 70 ai2(kk-i)=ar(3,i)-ar(4,i)
   return
   end
   subroutine erfc(z,e)
   implicit real*8(a-h,o-z)
   common/const/ fc,r,t,frt,cur,ep3,ep2,pi,nneg,nprop,npos,
       ep1,epf3,epf1,epp1,epp2,epp3,shape3,shape1,ep(221),
   &
       epp(221), epf(221)
   a1=0.254829592d0
   a2=-0.284496736d0
   a3=1.421413741d0
   a4=-1.453152027d0
   a5=1.061405429d0
if(z.lt. 2.747192d0) then
     t3=1.0d0/(1.0d0+0.3275911d0*z)
     e=(a1*t3+a2*t3*t3+a3*(t3**3.0d0)+a4*(t3**4.0d0)
   &
         +a5*(t3**5.0d0))*expf(-z*z)
   else
c
     if(z.gt. 25.0d0) then
       e=0.0d0
     else
c
       sum=0.0d0
       max=z*z+0.5
       fac = -0.5 d0/z/z
       sum=fac
      tl=fac
      n=1
```

```
10
        n=n+1
       if(n.gt. max) go to 15
       tn=tl*(2.0d0*n-1.0d0)*fac
       sum=sum + tn
       if(tn.lt. 1.0d-06) go to 15
       tl=tn
go to 10
 15
         e=(expf(-z*z))*(1.0d0+sum)/dsqrt(pi)/z
     end if
   end if
c
   return
   end
   subroutine band(j)
   implicit real*8(a-h,o-z)
   common /n/ nx,nt,n1,n2,nj,n3,tmmax
   common/mat/b.d
   common/bnd/ a,c,g,x,y
   dimension b(10,10),d(10,21)
   dimension a(10,10),c(10,221),g(10),x(10,10),y(10,10)
   dimension e(10,11,221)
 101 format (15h determ=0 at j=,i4)
   n=nx
   if (j-2) 1,6,8
  1 \text{ np1} = n + 1
   do 2 i=1,n
     d(i,2*n+1)=g(i)
do 2 l=1,n
     lpn = 1 + n
  2 d(i,lpn) = x(i,l)
   call matinv(n,2*n+1,determ)
   if (determ) 4,3,4
  3 write (2, 101) j
  4 \text{ do } 5 \text{ k} = 1, \text{n}
     e(k,np1,1) = d(k,2*n+1)
   do 5 l=1,n
     e(k,1,1) = -d(k,1)
     lpn = 1 + n
  5 x(k,l) = -d(k,lpn)
   return
  6 \text{ do } 7 \text{ i=1,n}
   do 7 k=1,n
   do 7 l=1,n
  7 d(i,k) = d(i,k) + a(i,l) *x(l,k)
  8 if (j-nj) 11,9,9
```

```
9 do 10 i=1,n
    do 10 l=1,n
     g(i)=g(i) - y(i,l)*e(l,np1,j-2)
    do 10 \text{ m} = 1, \text{n}
10 a(i,l)=a(i,l) + y(i,m)*e(m,l,j-2)
  11 do 12 i=1,n
     d(i,np1) = -g(i)
    do 12 l=1,n
     d(i,np1) = d(i,np1) + a(i,l)*e(l,np1,j-1)
    do 12 k=1,n
  12 b(i,k) = b(i,k) + a(i,l) * e(i,k,j-1)
   call matinv(n,np1,determ)
   if (determ) 14,13,14
  13 write (2, 101) j
  14 \text{ do } 15 \text{ k=1,n}
   do 15 m=1,np1
  15 e(k,m,j) = -d(k,m)
   if (j-nj) 20,16,16
  16 \text{ do } 17 \text{ k}=1,n
  17 c(k,j) = e(k,np1,j)
   do 18 jj=2,nj
     m = nj - jj + 1
   do 18 k=1,n
     c(k,m)=e(k,np1,m)
   do 18 l=1,n
  18 c(k,m)=c(k,m)+e(k,l,m)*c(l,m+1)
do 19 l=1,n
   do 19 k=1,n
 19 c(k,1)=c(k,1)+x(k,1)*c(1,3)
  20 return
                                           end
subroutine matinv(n,m,determ)
   implicit real*8(a-h,o-z)
   common/mat/b,d
   dimension b(10,10),d(10,21)
   dimension id(10)
   determ=1.0
   do 1 i=1,n
  1 id(i) = 0
   do 18 \, \text{nn} = 1, \text{n}
     bmax=1.1
     do 6 i=1,n
       if(id(i).ne.0) go to 6
       bnext=0.0
       btry=0.0
```

```
do 5 j=1,n
         if(id(j).ne.0) go to 5
if(dabs(b(i,j)).le.bnext) go to 5
         bnext=dabs(b(i,j))
         if(bnext.le.btry) go to 5
         bnext=btry
         btry=dabs(b(i,j))
         ic=i
  5
        continue
       if(bnext.ge.bmax*btry) go to 6
       bmax=bnext/btry
       irow=i
       jcol=jc
  6 continue
     if(id(jc).eq.0) go to 8
     determ=0.0
     return
  8 \quad id(jcol)=1
     if(jcol.eq.irow) go to 12
     do 10 j=1,n
       save=b(irow,j)
       b(irow,j)=b(jcol,j)
  10 b(jcol,j)=save
     do 11 k=1,m
save=d(irow,k)
       d(irow,k)=d(jcol,k)
  11 d(jcol,k)=save
  f=1.0/b(jcol,jcol)
     do 13 j=1,n
 13 b(jcol,j)=b(jcol,j)*f
     do 14 k=1,m
 14 d(jcol,k)=d(jcol,k)*f
     do 18 i=1,n
       if(i.eq.jcol) go to 18
       f=b(i,icol)
       do 16 j=1,n
 16
        b(i,j)=b(i,j)-f*b(jcol,j)
       do 17 k=1,m
 17
        d(i,k)=d(i,k)-f*d(jcol,k)
 18 continue
     return
   subroutine nucamb(il2,il3)
   implicit real*8(a-h,o-z)
   parameter(maxt=900)
```

```
common /n/ nx,nt,n1,n2,nj,n3,tmmax
    common /calc/ ai(maxt),ai2(maxt),u(223,maxt),ts(maxt),
        h,h1,h2,h3,hen,hep,rr,rrmax
    common/const/ fc,r,t,frt,cur,ep3,ep2,pi,nneg,nprop,npos,
        ep1,epf3,epf1,epp1,epp2,epp3,shape3,shape1,ep(221),
        epp(221), epf(221)
    common/var/ xp(10),xx(6,221),xi(6,221),xt(6,221,maxt)
    common/cprop/sig3,area3,rka3,ct3,dfs3,Rad3,sig(221),area(221),
        sig1,area1,rka1,ct1,dfs1,Rad1,tw,cap1,cap3
    common/tprop/df(221),cd(221),tm(221),
        ddf(221),dcd(221),dtm(221),dfu(221),d2fu(221)
    dimension zz(221)
  109 format(f6.1,', ',f15.5,', ',f7.4,', 'g10.4,', ',f6.2,', ',g10.4
   & ,',',f10.4)
 309 format(f8.5,', ',f8.5)
  44 format(' t = ',1pe18.6,' min')
    do 5 i=1,n1+1
      w=i-1
   5 zz(i) = w*h1*1.0d06
    do 71 i=n1+2,n2+n1
     w=i-(n1+1)
71 zz(i)=zz(n1+1)+w*h2*1.0d06
    do 72 i=n1+n2+1,ni
      w=i-(n1+n2)
  72 zz(i)=zz(n2+n1)+w*h3*1.0d06
   do 11 l=1,nt+1
     if(ts(l)-ts(l-1).lt.1.d-6) go to 9
     if (l.lt.nt-5 .and. mod(l-1,il3).ne.0) go to 11
  9 write (2,*)''
     write (2,*) 'distance concen
                                    PHI2 c solid',
         ' current
                     i
                            PHI1'
     write (2,*) 'microns (mol/m3) (V) x or y',
        ' (A/m2) (A/m3)
     write (2,44) ts(1)/60.0d0
     do 10 j=1,nj,i12
       if (i.le. n1+1) then
         csol=ct1
       else
         csol=ct3
       end if
       if(j.le.n1+1) then
curden=area(j)*fc*xt(5,j,1)
       else if(j.ge.n1+n2) then
```

```
curden=area(j)*fc*xt(5,j,l)
       else
         curden=0.0
       endif
  10 write(2,109) zz(j), xt(1,j,l), xt(2,j,l), xt(3,j,l)/csol, xt(4,j,l)
            , curden, xt(6,j,1)
11 continue
   return
   end
   subroutine guess(lflag)
   implicit real*8(a-h,o-z)
   parameter(maxt=900)
   common /n/ nx,nt,n1,n2,nj,n3,tmmax
   common /calc/ ai(maxt),ai2(maxt),u(223,maxt),ts(maxt),
        h,h1,h2,h3,hcn,hcp,rr,rrmax
   common/const/ fc,r,t,frt,cur,ep3,ep2,pi,nneg,nprop,npos.
   &
        ep1,epf3,epf1,epp1,epp2,epp3,shape3,shape1,ep(221),
        epp(221), epf(221)
common/var/ xp(10), xx(6,221), xi(6,221), xt(6,221), maxt
   common/cprop/sig3,area3,rka3,ct3,dfs3,Rad3,sig(221),area(221),
        sig1,area1,rka1,ct1,dfs1,Rad1,tw,cap1,cap3
   common/tprop/df(221),cd(221),tm(221),
        ddf(221),dcd(221),dtm(221),dfu(221),d2fu(221)
   dimension del(6)
С
   del(2) = cur * h/2.5
   if (n1 .gt. 1) then
     del(3)=cur/(n1)
     del(3) = cur
   endif
   del(4)=cur/(n3)
   del(5)=(xi(5,nj)-xi(5,1))/(nj-1)
   Ua=xi(6,1)
   Uc=xi(6,nj)
   do 73 i=1,(n1+1)
     xi(2,i)=xi(2,1)*(nj-i)/nj
     xi(3,i)=xi(3,1)
     xi(4,i)=xi(4,1)+del(3)*(i-1)
xi(5,i)=xi(5,1)*area(1)/area(i)
 73 \times i(6,i) = \times i(2,i) + Ua
   do 74 i=(n1+2),(n2+n1-1)
```

```
xi(2,i)=xi(2,1)-del(2)*(i-n1-2)
      xi(2,i)=xi(2,1)*(nj-i)/nj
      xi(3,i)=0.0d0
      xi(4,i)=cur
      xi(5,i)=0.0d0
  74 \text{ xi}(6,i)=0.0d0
    do 75 i=(n2+n1),nj
      xi(2,i)=xi(2,1)*(nj-i)/nj
      xi(3,i)=xi(3,nj)
      xi(4,i)=xi(4,n2+n1)-del(4)*(i-n1-n2)
      xi(5,i)=xi(5,n2+n1)*area(n2+n1)/area(i)
  75 \times i(6,i) = \times i(2,i) + Uc
c
    do 15 i=1,nj
      xt(6,i,1)=xi(6,i)
      xt(5,i,1)=xi(5,i)
      xt(4,i,1)=xi(4,i)
xt(3,i,1)=xi(3,i)
  15 xt(2,i,1)=xi(2,i)
С
    do 16 i=1,ni
     xi(1,i)=xi(1,n1+2)
    Uniform initial concentration if lflag=1
    Step function initial concentration if Iflag=0
     if(lflag.eq.0.and.(i.le.n1+1.or.i.ge.n1+n2))
          xi(1,i)=1.0d-01
  16 xt(1,i,1)=xi(1,i)
    return
    end
    subroutine peak(n,lim,curr)
    implicit real*8(a-h,o-z)
   parameter(maxt=900)
   common /n/ nx,nt,n1,n2,nj,n3,tmmax
   common /calc/ ai(maxt),ai2(maxt),u(223,maxt),ts(maxt),
        h,h1,h2,h3,hen,hep,rr,rrmax
   common/const/ fc,r,t,frt,cur,ep3,ep2,pi,nneg,nprop,npos,
        ep1,epf3,epf1,epp1,epp2,epp3,shape3,shape1,ep(221),
   &
        epp(221), epf(221)
common/var/ xp(10),xx(6,221),xi(6,221),xt(6,221,maxt)
   common/cprop/sig3,area3,rka3,ct3,dfs3,Rad3,sig(221),area(221),
        sig1,area1,rka1,ct1,dfs1,Rad1,tw,cap1,cap3
 311 format(f8.5,', ',f7.3,', ',f8.3,', ',f8.5)
С
    Peak power current ramp section:
```

```
write (2,*)''
   write (2,*)' PEAK POWER'
   write (2,*)''
   write (2,*) 'cell pot ',' current',' power min pot'
   write (2,*)' (V) ',' (A/m2)',' (W/m2)
С
   Duration of current pulse is 30 seconds.
c
   vcut=2.8d0
   curmin=0.d0
   pwrpmax=0.d0
   rrmax=30.0d0
   cur=curr
 127 kcount=0
   fact=20.0d0
   curmax=0.d0
vfmax=0.d0
   k=nt+2
   do 126 j=1,nj
   do 126 i=1,n
 126 xt(i,j,k)=xt(i,j,k-1)
   ppow=0.0
   0=ii
   Ramp current:
128 continue
   if (ii.gt.60) return
   energ=0.0
130 ii=ii+1
   cur=cur+fact
                       ! start a new current density
   if(curmax.ne.0.d0) then
     cur=0.5d0*(curpmax+curmax)
    if(mod(ii,2).eq.1) cur=0.5d0*(curpmax+curmin)
    if(cur.eq.0.d0) cur=0.5d0*(curmax+curmin)
    if(vfmax.gt.0.d0 .and. vfmax.lt.vcut) then
      curtry=curpmax+(vcut-vvpmax)/(vfmax-vvpmax)*(curmax-curpmax)
           +0.01d0*(curmax-curpmax)*dble(mod(ii,3)-1)
 if(curtry.lt.curmax .and. curtry.gt.curpmax) cur=curtry
    endif
     if(vfmax.gt.vcut .and. curmin.gt.0.0) then
      v2=pwrmax/curmax
      cur2=curmax
      v1=pwrmin/curmin
      cur1=curmin
      vm=pwrpmax/curpmax
```

```
curm=curpmax
      resis=-((pwrpmax-pwrmin)/(curpmax-curmin)
   & -(pwrpmax-pwrmax)/(curpmax-curmax))/(curmin-curmax)
      Uop=(pwrpmax-pwrmin)/(curpmax-curmin)+resis*(curpmax+curmin)
      curtry=Uop/2.d0/resis+0.1d0*(curmax-curmin)*dble(mod(ii,3)-1)
      write (2,*) 'curtry=',curtry.resis,Uop
      if(curtry.lt.curmax .and. curtry.gt.curmin) cur=curtry
     endif
   endif
   write (2,*) 'cur=',cur,curmin,curpmax,curmax
   kkflag=0
   iflag=0
   nflag=0
   k=nt+2
timpk=0.0d0
   r=0.0d0
   ts(k)=ts(k-1)
   call comp(n,lim,k,rr,kkflag,nflag,1,jcount)
   call cellpot(k,vv,0,1,lflag)
   vlast=vv
   rr=0.2d0
 129 kkflag=kkflag+1
   k=k+1
   ts(k)=ts(k-1)+rr
   call calca(k)
С
   call comp(n,lim,k,rr,kkflag,nflag,1,jcount)
   if (nflag.eq.1.and.kcount.lt.20) then
     write (2,*) 'Peak current decreased',kcount,fact
     if(cur.lt.curpmax) then
       write (2,*) 'Convergence on power failed; already converged at a hig
h
   &
           er current'
       write (2,*) 'Best results obtained are:'
       write (2, 311) pwrpmax/curpmax,curpmax,pwrpmax,vvpmax
write (2,*)' finished with vcut=',vcut
       return
     endif
     curmax=cur
     vfmax=0.d0
     go to 128
   endif
   if (kcount.ge.10) return
   call cellpot(k,vv,0,1,lflag)
```

```
energ=energ+(vlast+vv)*(ts(k)-ts(k-1))*cur/2.0d0
С
   timpk=timpk+rr
   if (dabs(timpk-30.0d0).gt.0.1) then
     if (timpk.lt.30.0) then
       vlast=vv
    Increasing time steps:
       if(jcount.lt.6 .and. kkflag.gt.5 .and. (2.0d0*rr
           +timpk).lt.30.0d0 .and. iflag.eq.0) then
         rr=rr*2.0d0
    write (2,*) 'next time step increased to ', rr, '(s)'
end if
       if(timpk+rr.gt.30.0) iflag=1
       if(timpk+rr.gt.30.0) rr=30.0d0-timpk
       go to 129
     end if
c
   end if
   ppow=energ/30.0d0
   write (2, 311) ppow/cur,cur,ppow,vv
   if(ppow.gt.pwrpmax .and. vv.gt.vcut) then
     if(curpmax.lt.cur) then
       curmin=curpmax
       pwrmin=pwrpmax
       vfmin=vvpmax
     else
       curmax=curpmax
       pwrmax=pwrpmax
       vfmax=vvpmax
     endif
     curpmax=cur
     pwrpmax=ppow
     vvpmax=vv
endif
   if(vv.lt.vcut) then
     if(curmax.eq.0.d0 .or. cur.lt.curmax) then
       curmax=cur
       pwrmax=ppow
       vfmax=vv
     endif
   else
     if(cur.gt.curmin .and. cur.lt.curpmax) then
       curmin=cur
       pwrmin=ppow
       vfmin=vv
```

```
endif
      if(cur.gt.curpmax) then
       curmax=cur
       pwrmax=ppow
        vfmax=vv
      endif
    endif
    if(curmax.eq.0.0d0) go to 128
    if(curmin. lt. 0.999d0*curmax) go to 128
    write (2, 311) pwrpmax/curpmax,curpmax,pwrpmax,vvpmax
write (2, *) ' finished with vcut=',vcut
    if(vcut.eq.0.0d0) return
    vcut=0.0d0
    go to 127
С
    end
    subroutine cellpot(kk,v,li,lpow,lflag)
    implicit real*8(a-h,o-z)
    parameter(maxt=900)
    common /n/ nx,nt,n1,n2,nj,n3,tmmax
    common /calc/ ai(maxt),ai2(maxt),u(223,maxt),ts(maxt),
        h,h1,h2,h3,hen,hep,rr,rrmax
    common/const/ fc,r,t,frt,cur,ep3,ep2,pi,nneg,nprop,npos,
        ep1,epf3,epf1,epp1,epp2,epp3,shape3,shape1,ep(221),
   &
   &
        epp(221), epf(221)
   common/power/ ed, Vold, ranode, rcathde
    common/var/ xp(10), xx(6,221), xi(6,221), xt(6,221), maxt
   common/cprop/sig3,area3,rka3,ct3,dfs3,Rad3,sig(221),area(221).
        sig1,area1,rka1,ct1,dfs1,Rad1,tw,cap1,cap3
    common/temp/ thk,htc,dudt,Cp,dens,tam,g0,ncell,lht,qq
 309 format(f8.5,', ',f8.5,', ',f8.3,', ',g11.6,',',' ',f9.5,', ',f7.3,
     ',',g10.5)
 307 format(f8.5,', ',f8.5,', ',f9.5,', ',g11.6,',', ',f7.3,',',f8.3)
    Material balance criteria:
   sum=0.0d0
   w=0.0d0
С
С
    if (n1 .gt. 2) then
С
      do 85 j=2,n1
С
c 85 sum=sum+xt(1,j,kk)*(ep(j)+epp(j))*h1
    endif
С
    sum = sum + (xt(1,1,kk) + xt(1,n1+1,kk))*(ep(j) + epp(j))*h1/2.0d0
С
    do 86 j=n1+2,n2+n1-1
```

```
c 86 sum=sum+xt(1,j,kk)*(ep(j)+epp(j))*h2
    sum = sum + (xt(1,n1+1,kk)+xt(1,n2+n1,kk))*(ep(j)+epp(j))*h2/2.0d0
    do 87 j=n2+n1+1,nj-1
c 87 sum=sum+xt(1,j,kk)*(ep(j)+epp(j))*h3
    sum = sum + (xt(1,n1+n2,kk)+xt(1,nj,kk))*h3*(ep(nj)+epp(nj))/2.0d0
    calculate total salt in cell from initial profile:
С
    w=xt(1,n1+2,1)*((n2-1)*(ep2+epp2)*h2+n1*(ep1+epp1)*h1
    & +n3*(ep3+epp3)*h3)
if(lflag.eq.0) w=w-(xt(1,n1+2,1)-xt(1,1,1))*(n1*(ep1+epp1)*h1
         +n3*(ep3+epp3)*h3)
    if(1flag.eq.0) w=w-(xt(1,n1+2,1)-xt(1,1,1))*(ep2+epp2)*h2
С
    material balance parameter should be ca=1.00
С
С
С
    NEW MATERIAL BALANCE
С
С
С
    if (n1 .gt. 2) then
     sum = sum + xt(1,1,kk)*(ep(1)+epp(1))*h1/2.0d0
С
     do 85 i=2,n1
       sum=sum+xt(1,j,kk)*(ep(j)+epp(j))*h1
  85 continue
     sum = sum + xt(1,n1+1,kk)*(ep(n1+1)+epp(n1+1))*h1/2.0d0
    endif
     sum = sum + xt(1,n1+1,kk)*(ep(n1+2)+epp(n1+2))*h2/2.0d0
    do 86 j=n1+2,n1+n2-1
   sum=sum+xt(1,j,kk)*(ep(j)+epp(j))*h2
86 continue
С
   sum = sum + xt(1, n1 + n2, kk)*(ep(n1+n2) + epp(n1+n2))*h2/2.0d0
   sum = sum + xt(1, n1 + n2, kk) * (ep(n1+n2+1) + epp(n1+n2+1)) * h3/2.0d0
c
   do 87 j=n1+n2+1,nj-1
     sum=sum+xt(1,j,kk)*(ep(j)+epp(j))*h3
  87 continue
С
   sum = sum + xt(1,nj,kk)*(ep(nj) + epp(nj))*h3/2.0d0
С
    Calculate total amount of salt in cell
   if (n1 .gt.2) then
     w=w+xt(1,1,1)*(ep(1)+epp(1))*h1/2.0d0
c
```

```
do 88 j=2,n1
                     w=w+xt(1,j,1)*(ep(j)+epp(j))*h1
     88 continue
С
                w=w+xt(1,n1+1,1)*(ep(n1+1)+epp(n1+1))*h1/2.0d0
                endif
w=w+xt(1,n1+1,1)*(ep(n1+2)+epp(n1+2))*h2/2.0d0
           do 89 j=n1+2,n1+n2-1
                w=w+xt(1,j,1)*(ep(j)+epp(j))*h2
      89 continue
С
           w=w+xt(1,n1+n2,1)*(ep(n1+n2)+epp(n1+n2))*h2/2.0d0
           w=w+xt(1,n1+n2,1)*(ep(n1+n2+1)+epp(n1+n2+1))*h3/2.0d0
С
           do 90 j=n1+n2+1,nj-1
                w=w+xt(1,j,1)*(ep(j)+epp(j))*h3
      90 continue
           w=w+xt(1,nj,1)*(ep(nj)+epp(nj))*h3/2.0d0
\mathbf{c}
c
С
           ca=sum/w
¢
С
           if (kk.eq.1) then
                ut=xt(3,nj,1)/ct3
ut2=xt(3,1,1)/ct1
           end if
c
            Calculate cell potential from dif of solid phase potentials:
           v = xt(6,nj,kk) - xt(6,1,kk)
c
            CALCULATE CAPACITY OF ANODE AND CATHODE
С
           cathcap=0.0d0
           cathcap=cathcap+(1.0d0-ep(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+n2+1)-epp(n1+
                        epf(n1+n2+1))*h3*ct3/2.0d0
           do 105 jc=n1+n2+1,nj-1
           cathcap=cathcap+(1.0d0-ep(jc)-epp(jc)-epf(jc))*h3*ct3
    105 continue
           cathcap=cathcap+(1.0d0-ep(nj)-epp(nj)-epf(nj))*h3*ct3/2.0d0
           ancap=0.0d0
           ancap=ancap+(1.0d0-ep(1)-epp(1)-epf(1))*
```

```
h1*ct1/2.0d0
   &
    do 106 \text{ jc}=2,n1
    ancap = ancap + (1.0d0 - ep(jc) - epp(jc) - epf(jc))*h1*ct1
  106 continue
ancap=ancap+(1.0d0-ep(n1+1)-epp(n1+1)-epf(n1+1))*h1*
        ct1/2.0d0
c Calculate utilization of two electrodes based on coulombs passed:
    if(li.eq.1) then
    Calculate energy density by running sum of currentxvoltage:
      ed=ed+(Vold+v)*(ts(kk)-ts(kk-1))*cur/2.0d0
      Vold=v
      ut=cur*(ts(kk)-ts(kk-1))/fc/cathcap+ut
                       !***Need to fix how utilization is calculated fo
      if (n1 .gt. 0)
r a foil anode
   &
          ut2=ut2-cur*rr/fc/ancap
      th=ts(kk)/6.0d01
c
      if(lht.ne.2) call temperature(kk,v,Uoc,Soc)
      tprint=t-273.15
     if(lpow.ne.0) then
  ! isothermal peak power output:
        write (2,309) v,ca,cur,v*cur
     else
       if (lht.eq.0) then ! T varies, uses htc:
         write (2,309) ut,v,tprint,th,Uoc,cur,qq
else if (lht.eq.1) then! calculated htc:
         write (2,309) ut,v,htc,th,Uoc,cur,qq
        else if (lht.eq.2) then! isothermal output:
  write (2, 307) ut, v, ca, th, cur, kk, ed
         write (2,307) ut,v,ca,th,cur,ed/tw/3.6d3
       endif
     endif
    endif
   jref = (n1+1+n1+n2)/2
 310 format (1p3e20.6)
   write (3,310) th,xt(6,1,kk)-xt(2,jref,kk)
   %
        xt(6,nj,kk)-xt(2,jref,kk)
С
   return
   subroutine sol(nmax.ii)
   implicit real*8(a-h,o-z)
  This subroutine calculates the solid phase concentration profiles.
   parameter(maxt=900)
```

```
common /calc/ ai(maxt),ai2(maxt),u(223,maxt),ts(maxt),
        h,h1,h2,h3,hcn,hcp,rr,rrmax
common/var/ xp(10),xx(6,221),xi(6,221),xt(6,221,maxt)
    common/const/ fc,r,t,frt,cur,ep3,ep2,pi,nneg,nprop,npos,
        ep1,epf3,epf1,epp1,epp2,epp3,shape3,shape1,ep(221),
        epp(221),epf(221)
    common/cprop/sig3,area3,rka3,ct3,dfs3,Rad3,sig(221),area(221),
        sigl,areal,rkal,ctl,dfs1,Rad1,tw,cap1,cap3
    dimension cs(50)
С
    set initial value of solid concentration
    do 88 i=1,50
    cs(i)=0.0d0
  88 \text{ cs(i)}=xt(3,ii,1)
С
    complete calculations for 50 points along radius of particle
    nmax=nmax-1
                           ! added
    do 10 i=1.50
     y2=0.02d0*dble(i)
С
     sum1 = 0.0d0
     do 20 kk=1,nmax
       k=nmax+1-kk
t1=(ts(nmax+1)-ts(k))*dfs1/Rad1/Rad1
       sum2=sum1
С
    calculate c bar (r,t1)
       sum1 = 0.0d0
       r1=1.0d0
c
       do 89 i=1.15
         r1 = -r1
         y1=j*j*pi*pi*t1
         y3=j*pi*y2
         if (y1 .gt. 1.50d02) then
           da = 0.0d0
         else
           da=expf(-y1)
         end if
        sum1 = sum1 - 2.0d0*r1*da*dsin(y3)/j/pi/y2
 89
       sum1=1.0d0-sum1
c
c
    perform superposition
       cs(i)=cs(i)+(xt(3,jj,k+1)+xt(3,jj,k)-2.0d0*xt(3,jj,1)
```

```
&
        )*(sum1-sum2)/2.0d0
 20 continue
С
  10 continue
   nmax=nmax+1
                          ! added
c
   write (2,*)''
   write (2,*) 'time is ',ts(nmax)
   write (2,*)''
   do 90 i=1, 50, 1
 90 write (2,*) .02*i,' ',cs(i)
   return
   end
                           **************
   subroutine mass(re,rs3,rs1,rf,rp1,rc,rcn,rcp)
   implicit real*8(a-h.o-z)
   parameter(maxt=900)
   common /n/ nx,nt,n1,n2,nj,n3,tmmax
   common /calc/ ai(maxt),ai2(maxt),u(223,maxt),ts(maxt),
       h,h1,h2,h3,hcn,hcp,rr,rrmax
   common/const/ fc,r,t,frt,cur,ep3,ep2,pi,nneg,nprop,npos,
    ep1,epf3,epf1,epp1,epp2,epp3,shape3,shape1,ep(221),
       epp(221),epf(221)
   common/var/ xp(10), xx(6,221), xi(6,221), xt(6,221), maxt
   common/cprop/sig3,area3,rka3,ct3,dfs3,Rad3,sig(221),area(221),
        sig1,area1,rka1,ct1,dfs1,Rad1,tw,cap1,cap3
С
   DOYLE MASS CALCULATION
c
С
    mass of positive electrode
С
    c1=h3*n3*(re*ep3+rp1*epp3+rs3*(1.0d0-ep3-epf3-epp3)+rf*epf3)
С
С
С
    mass of separator
    s=(re*ep2+rpl*epp2+rc*(1-ep2-epp2))*h2*(n2-1)
c
С
    mass of negative electrode
    n1hold = n1
С
    if (n1.eq. 0) n1hold = 1
    a1=h1*n1hold*(re*ep1+rp1*epp1+rs1*(1.0d0-ep1-epf1-epp1)+rf*epf1)
c
С
    mass of current collectors
   ccl=rcn*hcn+rcp*hcp
С
С
    New Mass Calculations
```

```
**********
Ç
С
                             c1 = 0.0d0
                             s=0.0d0
                             a1 = 0.0d0
С
С
                             if (n1 .eq. 0) then
                                          a1=h1*(re*ep1+rp1*epp1+rs1*(1.0d0-ep1-epf1-epp1)+rf*epf1)
                            else
                                           a1=a1+h1*(re*ep(1)+rp1*epp(1)+rs1*
                       &
                                                                            (1.0d0-ep(1)-epf(1)-epp(1))+rf*epf(1))/2.0d0
                                          do 50 j=2,n1
                                                         a1=a1+h1*(re*ep(j)+rp1*epp(j)+rs1*
                       &
                                                                                           (1.0d0-ep(j)-epf(j)-epp(j))+rf*epf(j))
               50 continue
                                          a1=a1+h1*(re*ep(n1+1)+rpl*epp(n1+1)+rs1*(1.0d0-ep(n1+1)-rpl*epp(n1+1)+rs1*(1.0d0-ep(n1+1)-rpl*epp(n1+1)+rs1*(1.0d0-ep(n1+1)-rpl*epp(n1+1)+rs1*(1.0d0-ep(n1+1)-rpl*epp(n1+1)+rs1*(1.0d0-ep(n1+1)-rpl*epp(n1+1)+rs1*(1.0d0-ep(n1+1)-rpl*epp(n1+1)+rs1*(1.0d0-ep(n1+1)-rpl*epp(n1+1)+rs1*(1.0d0-ep(n1+1)-rpl*epp(n1+1)+rs1*(1.0d0-ep(n1+1)-rpl*epp(n1+1)+rs1*(1.0d0-ep(n1+1)-rpl*epp(n1+1)+rs1*(1.0d0-ep(n1+1)-rpl*epp(n1+1)+rs1*(1.0d0-ep(n1+1)-rpl*epp(n1+1)+rs1*(1.0d0-ep(n1+1)-rpl*epp(n1+1)+rs1*(1.0d0-ep(n1+1)-rpl*epp(n1+1)+rs1*(1.0d0-ep(n1+1)-rpl*epp(n1+1)+rs1*(1.0d0-ep(n1+1)-rpl*epp(n1+1)+rs1*(1.0d0-ep(n1+1)-rpl*epp(n1+1)+rs1*(1.0d0-ep(n1+1)-rpl*epp(n1+1)+rs1*(1.0d0-ep(n1+1)-rpl*epp(n1+1)+rs1*(1.0d0-ep(n1+1)-rpl*epp(n1+1)+rs1*(1.0d0-ep(n1+1)-rpl*epp(n1+1)+rs1*(1.0d0-ep(n1+1)-rpl*epp(n1+1)+rs1*(1.0d0-ep(n1+1)-rpl*epp(n1+1)+rs1*(1.0d0-ep(n1+1)-rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rpl*epp(n1+1)+rp
                        &
                                                                             epf(n1+1)-epp(n1+1))+rf*epf(n1+1))/2.0d0
                             endif
s=s+h2*(re*ep(n1+2)+rpl*epp(n1+2)+rc*(1.0d0-ep(n1+2)-
                        & epp(n1+2))/2.0d0
                             do 51 j=n1+2,n1+n2-1
                                          s=s+h2*(re*ep(j)+rp1*epp(j)+rc*(1.0d0-ep(j)
                        &
                                                                               -epp(j)))
               51 continue
                             s=s+h2*(re*ep(n1+n2)+rp1*epp(n1+n2)+rc*(1.0d0-n2)+rp1*epp(n1+n2)+rc*(1.0d0-n2)+rp1*epp(n1+n2)+rc*(1.0d0-n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+rp1*epp(n1+n2)+r
                                                               ep(n1+n2)-epp(n1+n2))/2.0d0
                            c1=c1+h3*(re*ep(n1+n2+1)+rp1*epp(n1+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+n2+1)+rs3*(1.0d0-n2+1)+rs3*(1.0d0-n2+1)+rs3*(1.0d0-n2+1)+rs3*(1.0d0-n2+1)+rs3*(1.0d0-n2+1)+rs3*(1.0d0-n2+1)+rs3*(1.0d0-n2+1)+rs3*(1.0d0-n2+1)+rs3*(1.0d0-n2+1)+rs3*(1.0d0-n2+1)+rs3*(1.0d0-n2+1)+rs3*(1.0d0-n2+1)+rs3*(1.0d0-n2+1)+rs3*(1.0d0-n2+1)+rs3*(1.0d0-n2+1)+rs3*(1.0d0
                                                              ep(n1+n2+1)-epf(n1+n2+1)-epp(n1+n2+1))+rf*
                        & epf(n1+n2+1))/2.0d0
                          do 52 j=n1+n2+1,nj-1
                                          c1=c1+h3*(re*ep(j)+rp1*epp(j)+rs3*(1.0d0-ep(j)
                       &
                                                                               -epf(j)-epp(j))+rf*epf(j)
             52 continue
                             c1=c1+h3*(re*ep(nj)+rp1*epp(nj)+rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(nj)-rs3*(1.0d0-ep(
                                                              epf(nj)-epp(nj))+rf*epf(nj))/2.0d0
C
                                *****
                            New Mass Calculations done
С
                                *****
        tw=c1+s+a1+cc1
                          return
                            end
```

```
subroutine temperature(kk,v,Uoc, Soc)
   implicit real*8(a-h,o-z)
   parameter(maxt=900)
   common /n/ nx,nt,n1,n2,nj,n3,tmmax
   common /calc/ ai(maxt),ai2(maxt),u(223,maxt),ts(maxt),
       h,h1,h2,h3,hcn,hcp,rr,rrmax
   common/const/ fc,r,t,frt,cur,ep3,ep2,pi,nneg,nprop,npos,
       ep1.epf3.epf1.epp1.epp2.epp3,shape3,shape1,ep(221),
       epp(221), epf(221)
   common/var/ xp(10), xx(6,221), xi(6,221), xt(6,221), maxt
   common/cprop/sig3.area3,rka3,ct3,dfs3,Rad3,sig(221),area(221),
       sig1,area1,rka1,ct1,dfs1,Rad1,tw,cap1,cap3
   common/temp/ thk,htc,dudt,Cp,dens,tam,g0,ncell,lht,qq
С
С
    Revised by Karen Thomas August 5, 1999 to calculated the
С
    enthalpy potential as an average weighted by the local
c
    reaction rate.
С
    The entropy and open circuit potential for each electrode
С
    should be given in ekin with respect to a Li reference electrode
c
    at the same local electrolyte concentration.
С
    Caution in using Uoc: it does not have units of volts
С
    until the last line of this subroutine.
С
    If heat from side reactions is to be included, add the term
c
    reaction rate*enthalpy of reaction inside the summation at
С
    each electrode.
С
    Heat generation is negative if exothermic.
С
    The time stepping used to calculate the new temperature has been
С
    modified, so that the new temperature changes due to heat
С
    generated or exchanged at the old temperature.
С
    If cur = 0, the Uoc = sum(U*local reaction rate)=0 unless the
С
    cell is relaxing from a previous charge or discharge. If Uoc = 0,
С
    then v is the open circuit potential.
С
С
    Negative Electrode
c
c
    call ekin(1,kk,0,0)
    Ua=-g0*fc*area(1)*h1*xx(5,1)
    Sa = -dudt * fc * area(1) * h1 * xx(5,1)
if (n1.gt. 1) then
     Ua = 0.0
      Sa = 0.0
      sum = 0.0
      do 868 i = 1, n1+1, 1
       call ekin(j,kk,0,0)
```

```
trap = 1.0
                       !factor for trapezoidal integration
       if ((i.eq. 1).or. (i.eq. n1+1)) trap = 0.5
       h = h1
       if (j.eq. n1+1) h = h2
       Ua=Ua-trap*fc*area(j)*h*xx(5,j)*g0!negative sign needed for reactio
n rate
       Sa=Sa-trap*fc*area(j)*h*xx(5,j)*dudt
 868
       continue
   endif
c
   Positive Electrode
С
   Uc = 0.0
   Sc = 0.0
   do 878 j = n1+n2,nj,1
     call ekin(j,kk,0,0)
trap = 1.0
     if ((j.eq. n1+n2).or. (j.eq. nj)) trap = 0.5
     Uc=Uc-trap*fc*area(j)*h3*xx(5,j)*g0
     Sc=Sc-trap*fc*area(j)*h3*xx(5,j)*dudt
 878 continue
С
   Uoc = Uc+Ua
                           !add because signs different on reaction rate
   Soc = Sc + Sa
c
С
   Per cell heat generation
С
   qq=cur*v - Uoc +t*Soc
                              ! heat is negative if exothermic
c
    The heat transfer coefficient is for heat transferred out of
С
    one side of the cell; it is defined based on cell area.
С
    htcc is a per-cell heat transfer coefficient.
С
   if (lht.eq.0) then
                         !cell temperature changes
     htcc=htc/Ncell
     t=t+(rr/(dens*Cp*thk))*(htcc*(tam-t)-cur*v+Uoc-t*Soc) !note change in t
ime derivative
   else
С
c
    Calculate htc instead of temperature: the heat transfer coefficient
    required to keep the temperature constant is
С
    calculated as a function of time. The heat transfer coef.
    is calculated for heat transferred out of one side of the
    cell stack. Htcc is defined as a per-cell heat transfer
c
    coefficient.
c
```

```
if (t.ne.tam) then
      htc=Ncell*(Uoc-v*cur-t*Soc)/(t-tam)
    else
      htc=0.0
    endif
    htcc=htc/Ncell
   endif
С
   if (dabs(cur) .gt. 0.0) then
    Uoc = Uoc/cur
    Soc = Soc/cur
   endif
   return
   end
double precision function expf(x)
   implicit real*8 (a-h,o-z)
   expf=0.d0
   if(x.gt.-700.d0) \exp f = dexp(x)
   return
   end
C****************
   subroutine ekin(j,kk,lag,utz)
   implicit real*8(a-h,o-z)
c This subroutine evaluates the Butler-Volmer equations.
   parameter(maxt=900)
   common /n/ nx,nt,n1,n2,nj,n3,tmmax
   common/const/ fc,r,t,frt,cur,ep3,ep2,pi,nneg,nprop,npos,
  &
      ep1,epf3,epf1,epp1,epp2,epp3,shape3,shape1,ep(221),
      epp(221), epf(221)
   common/power/ ed, Vold, ranode, rcathde
   common/var/ xp(10),xx(6,221),xi(6,221),xt(6,221,maxt)
   common/cprop/sig3,area3,rka3,ct3,dfs3,Rad3,sig(221),area(221).
      sigl, areal, rkal, ctl, dfsl, Radl, tw, capl, cap3
   common/temp/ thk,htc,dudt,Cp,dens,tam,g0,ncell,lht,qq
   common/mat/b,d
common/bnd/a,c,g,x,v
   dimension b(10,10),d(10,21)
   dimension a(10,10),c(10,221),g(10),x(10,10),y(10,10)
С
   Calculate average open-circuit potential in either
   electrode if lag=1, otherwise lag=0
c
```

```
OPEN-CIRCUIT POTENTIAL FUNCTIONS:
С
С
   g0 is the open-circuit potential in terms of the solid
   concentration, xx(3,j), with respect to a lithium metal
   electrode
С
   g1 is the derivative of the open-circuit potential wrt
  the solid concentration
&&&&&&&&&
  FOR THE NEGATIVE ELECTRODE
С
  if (i].le. n1+1) then
С
   if (lag.eq.1) xx(3,j)=utz*ct1
С
   С
С
   go to (51,52,53,54,55,56),nneg
 51 go to 111
                ! Li foil
 52 go to 112
                ! Carbon (petroleum coke)
 53 go to 113
                ! MCMB 2510 Carbon (Bellcore)
 54 go to 114
                ! TiS2
                ! Tungsten oxide (LixWO3 with 0<x<0.67)
 55 go to 115
 56 go to 116
                ! Lonza KS6 graphite (Bellcore)
  С
  Li Foil (works only if n1 = 0)
 111 g0 = 0.0
   g1 = 0.0
С
   go to 97
  Carbon (petroleum coke):
112 c1 = -0.132056d0
   c2=1.40854d0
   c3 = -3.52312d0
   g0=c1+c2*expf(c3*xx(3,j)/ct1)
   g1=c2*c3*expf(c3*xx(3,j)/ct1)/ct1
   go to 97
MCMB 2510 carbon (Bellcore)
```

```
113 c1 = -0.160d0
   c2=1.32d0
   c3 = -3.0d0
   g0=c1+c2*expf(c3*xx(3,j)/ct1)
   g0=g0+10.d0*expf(-2000.d0*xx(3,j)/ct1)
   g1=c2*c3*expf(c3*xx(3,j)/ct1)/ct1
   g1=g1-10.d0*2000.d0/ct1*expf(-2000.d0*xx(3,j)/ct1)
   go to 97
  TiS2
114 delt=-5.58d-04
zeta=8.1d0
  ct1=2.9d04
    g0=2.17+(d\log((ct1-xx(3,j))/xx(3,j))+delt*xx(3,j)+zeta)/frt
    g1=(delt-ct1/xx(3,j)/(ct1-xx(3,j)))/frt
    go to 97
   Tungsten oxide (LixWO3 with 0 \le x \le 0.67):
   literature data from Whittingham
C
С
 115 c1=2.8767d0
    c2 = -0.9046d0
    c3=0.76679d0
    c4 = -0.15975d0
    c5=0.671d0
    g0=c1+c2*xx(3,j)/ct1+c3*xx(3,j)*xx(3,j)/ct1/ct1+
        c4*expf(100.0d0*(xx(3,j)/ct1-0.671))
    g1=c2/ct1+2.0d0*c3*xx(3,j)/ct1/ct1+
        c4*100.0d0*expf(100.0d0*(xx(3,j)/ct1-0.671))/ct1
    go to 97
   Bellcore graphite (Lonza KS6)
116 c1=0.7222d0
    c2=0.13868d0
    c3=0.028952d0
    c4 = 0.017189d0
    c5=0.0019144d0
    c6=0.28082d0
    c7 = 0.79844d0
    c8=0.44649d0
    xtem=xx(3,j)/ct1
    g0=c1+c2*xtem+c3*(xtem**0.5d0)-c4*(xtem**-1.0d0)
       +c5*(xtem**-1.5d0)+c6*expf(15.0d0*(0.06d0-xtem))-c7
```

```
*\exp f(c8*(xtem-0.92d0))
  &
    g1=c2/ct1+c3*0.5d0*(ct1**-0.5d0)*(xx(3,j)**-0.5d0)
  &+c4*ct1*(xx(3,j)**-2.0d0)-c5*1.5d0*(ct1**1.5d0)*(xx(3,j)**-2.5d0)
  \&-c6*15.0d0/ct1*expf(15.0d0*(0.06d0-xtem))
  \&-c7*c8/ct1*expf(c8*(xtem-0.92d0))
    go to 97
&&&&&&&&&&
   KINETIC EXPRESSIONS FOR NEGATIVE ELECTRODE
c
С
  h0 is the exchange current density (A/m2)
С
   h1 is the derivative of io wrt solid concentration, xx(3,j)
   h2 is the derivative of io wrt electrolyte concen., xx(1,j)
   С
С
   NONAQUEOUS LIQUIDS
С
 97 if (lag.eq.1) go to 99
    alpha=0.5d0
    alphc=0.5d0
    if (n1 \cdot eq. 0 \cdot and \cdot j \cdot lt \cdot n1+2) then
   alpha = 0.67 for Li. But for now, sticking with .5.
   h0=rka1*(xx(1,j)**0.67)
      h0=rka1*dsqrt(xx(1,j))
      h1 = 0.0d0
      h2 = rka1/dsqrt(xx(1,j))/2.0d0
  h2 = rka1*(xx(1,j)**(-.33))*0.67
    else
      h0=rka1*dsqrt(xx(1,j))*dsqrt(ct1-xx(3,j))*dsqrt(xx(3,j))
      h1 = -rka1 * dsqrt(xx(1,j)) * dsqrt(ct1 - xx(3,j)) * dsqrt(xx(3,j)) * (1.0d0)
     /(ct1-xx(3,j))-1.0d0/xx(3,j))/2.0d0
      h2=rka1*dsqrt(ct1-xx(3,j))*dsqrt(xx(3,j))/dsqrt(xx(1,j))/2.0d0
endif
С
   С
  POLYMER
c
С
c cmax=3.92d03
c alpha=0.5d0
c alphc=0.5d0
   h0=rka1*dsqrt(xx(1,j))*dsqrt(cmax-xx(1,j))*dsqrt(ct1-xx(3,j))
   1*dsqrt(xx(3,j))
```

```
h1=-rka1*dsqrt(xx(1,j))*dsqrt(cmax-xx(1,j))*dsqrt(ct1-xx(3,j))
  1*dsqrt(xx(3,j))*(1.0d0/(ct1-xx(3,j))-1.0d0/xx(3,j))/2.0d0
   h2=-rka1*dsqrt(xx(3,j))*dsqrt(ct1-xx(3,j))*dsqrt(cmax-xx(1,j))
  1*dsqrt(xx(1,j))*(1.0d0/(cmax-xx(1,j))-1.0d0/xx(1,j))/2.0d0
С
С
   c
  end if
С
c
&&&&&&&&&
С
  FOR THE POSITIVE ELECTRODE
С
  if (j.ge. n1+n2) then
c
   С
С
    if (lag.eq.1) xx(3,j)=utz*ct3
    go to (1,2,3,4,5,6,7,8,9,10,11),npos
  1 go to 201
                 ! TiS2
 2 go to 202
                 ! Spinel Mn2O4 (lower plateau)
 3 go to 203
                 ! NaCoO2: Sodium cobalt oxide
 4 go to 204
                 ! Spinel Mn2O4 (upper plateau)
                 ! Tungsten oxide (LixWO3 with 0<x<0.67)
    go to 205
 6 go to 206
                 ! CoO2 (Cobalt dioxide)
 7 go to 207
                 ! V2O5 (Vanadium oxide)
 8 go to 208
                 ! NiO2 (Nickel dioxide)
 9 go to 209
                 ! Spinel Mn2O4 (Bellcore)
 10 go to 210
                 ! V6O13 (Vanadium oxide)
 11 go to 211
                 ! LiAl0.2Mn1.8O4F0.2 spinel (Bellcore)
С
  С
  TiS2
201 delt=-5.58d-04
   zeta=8.1d0
   g0=2.17+(dlog((ct3-xx(3,j))/xx(3,j))+delt*xx(3,j)+zeta)/frt
   g1=(delt-ct3/xx(3,j)/(ct3-xx(3,j)))/frt
   go to 98
  Spinel Mn2O4 (lower plateau)
202 c1=2.06307d0
   c2 = -0.869705d0
```

```
c3=8.65375d0
    c4=0.981258d0
    a1=c3*(xx(3,j)/ct3-c4)
    g0=c1+c2*(dtanh(a1))
    g1=c2*c3/ct3/(d\cosh(a1))/(d\cosh(a1))
    go to 98
   NaCoO2: Sodium Cobalt Oxide (P2 phase, 0.3<y<0.92)
203 c1=4.4108d0
    c2=-2.086d0
c3=0.10465d0
    c4=133.42d0
    c5 = 89.825d0
    c6=0.16284d0
    c7 = 145.01d0
    c8=71.92d0
    c9 = 0.01d0
    c10=200.0d0
    c11=0.3d0
    c12=0.885d0
    a1 = xx(3,i)/ct3
    g0=c1+c2*a1+c3*dtanh(-c4*a1+c5)+c6*dtanh(-c7*a1+c8)+c9*
  & \exp(-c10*(a1-c11))-c9*\exp(c10*(a1-c12))
    g1=c2/ct3-c3*c4/dcosh(-c4*a1+c5)/dcosh(-c4*a1+c5)/ct3-c6*c7
  \&/d\cosh(-c7*a1+c8)/d\cosh(-c7*a1+c8)/ct3-c9*c10*expf(-c10*(a1-c11))/ct3
  \&-c9*c10*expf(c10*(a1-c12))/ct3
    go to 98
   Spinel Mn2O4 (upper plateau 0.2<y<1.0)
   Literature version
С
 204 a1=4.06279d0
 a2=0.0677504d0
     a3=21.8502d0
     a4=12.8268d0
     a5=0.105734d0
     a6=1.00167d0
     a7 = -0.379571d0
     a8=1.575994d0
     a9=0.045d0
     a10=71.69d0
     a11=0.01d0
     a12=200.0d0
     a13=0.19d0
     if(xx(3,j).gt.a6*ct3) write (2, *) 'xx(3,j)>a6 at j=',j
```

```
g0=a1+a2*dtanh(-a3*xx(3,j)/ct3+a4)-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3
                                                    a8)-a9*expf(-a10*((xx(3,j)/ct3)**8.0d0))+a11
                &
                                                     *expf(-a12*(xx(3,j)/ct3-a13))
                              g1=(1.0d0/ct3)*(-a2*a3/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/c
                x = xx(3,j)/ct3+a4)+a5*a7*(a6-xx(3,j)/ct3)**(-1.0d0+a7)+
                & a9*a10*8.0d0*((xx(3,j)/ct3)**7.0d0)*expf(-a10*)
                & (xx(3,j)/ct3)**8.0d0)-a11*a12/ct3*expf(-a12*(xx(3,j)/ct3-a13))
 С
                             if (g0.gt.4.5) then
          g0 = 4.5d0
                                       g1 = 0.0d0
                write (2,*) 'U theta overflow - positive'
                              else if (g0.lt.3.0) then
                                       g0=3.0d0
                                       g1 = 0.0d0
                     write (2,*)'U theta underflow - positive'
                             end if
                            go to 98
                    c Tungsten oxide (LixWO3 with 0 < x < 0.67)
С
               literature data from Whittingham
 С
      205 c1=2.8767d0
                            c2 = -0.9046d0
                             c3=0.76679d0
                             c4 = -0.15975d0
                             c5 = 0.671d0
                             g0=c1+c2*xx(3,j)/ct3+c3*xx(3,j)*xx(3,j)/ct3/ct3+
                                                    c4*expf(100.0d0*(xx(3,j)/ct3-0.671))
                             g1=c2/ct3+2.0d0*c3*xx(3,i)/ct3/ct3+
                                                    c4*100.0d0*expf(100.0d0*(xx(3,j)/ct3-0.671))/ct3
            go to 98
                    CoO2 (Cobalt dioxide)
С
      206 r1=4.825510
                            r2=0.950237
                            r3=0.913511
                            r4=0.600492
                            g0=r1-r2*expf(-((xx(3,j)/ct3-r3)/r4)**2.0d0)
                            g1=2.0d0*r2*(xx(3,j)/ct3-r3)*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)/ct3-r3))*expf(-((xx(3,j)
                                                  -r3)/r4)**2.0d0)/r4/r4/ct3
                           go to 98
            V2O5 (Vanadium oxide 0<y<0.95)
c
```

```
207 r1=3.3059d0
    r2=0.092769d0
    r3=14.362d0
    r4=6.6874d0
    r5=0.034252d0
    r6=100.0d0
    r7 = 0.96d0
r8=0.00724d0
    r9 = 80.0d0
    r10=0.01d0
    a2=xx(3,j)/ct3
    g0=r1+r2*dtanh(-r3*a2+r4)-r5*expf(r6*(a2-r7))+r8*expf(r9*
        (r10-a2)
    g1=-r2*r3/dcosh(-r3*a2+r4)/dcosh(-r3*a2-r4)/ct3-r5*r6*expf(r6*
        (a2-r7)/ct3-r8*r9*expf(r9*(r10-a2))/ct3
    go to 98
   NiO2 (Nickel dioxide 0.45<y<1.0)
208 r1=6.515d0
   r2=2.3192d0
   r3=5.3342d0
   r4=0.41082d0
   r5=200.0d0
   r6 = 0.44d0
   r7 = 0.24247d0
    r8=60.0d0
   r9 = 0.99d0
   a3=xx(3,j)/ct3
g0=r1+r2*a3-r3*a3**0.5d0+r4*expf(r5*(r6-a3))-r7*expf(r8*(a3-r9))
    g1=r2/ct3-0.5d0*r3*(xx(3,j)**-0.5d0)/ct3**0.5d0
        -r4*r5*expf(r5*(r6-a3))/ct3-r7*r8*expf(r8*(a3-r9))/ct3
  &
    go to 98
c
   Spinel Mn2O4 (Bellcore 0.17<y<1.0)
 209 a1=4.19829d0
    a2=0.0565661d0
    a3=14.5546d0
    a4=8.60942d0
    a5=0.0275479d0
    a6=0.998432d0
                      ! would prefer this to be >=1
    a7 = -0.492465d0
    a8=1.901110d0
    a9=0.157123d0
    a10=0.04738d0
```

```
a11=0.810239d0
                       a12=40.0d0
                       a13=0.133875d0
cccc if(xx(3,j).gt.a6*ct3) write (2,*) '#109 in ekin, j=',j
                 g0=a1+a2*dtanh(-a3*xx(3,j)/ct3+a4)-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3)**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**((a6-xx(3,j)/ct3))**a7-a5*((a6-xx(3,j)/ct3))**((a6-xx(3,j
                 1a8)-a9*expf(-a10*((xx(3,j)/ct3)**8.0d0))+a11
                  1*expf(-a12*(xx(3,j)/ct3-a13))
                       g0=a1+a2*dtanh(-a3*xx(3,j)/ct3+a4)
             &
                                          -a9*expf(-a10*((xx(3,i)/ct3)**8.0d0))+a11
                                           *expf(-a12*(xx(3,j)/ct3-a13))+a5*a8
                        if(xx(3,j).lt.a6*ct3) g0=g0-a5*((a6-xx(3,j)/ct3)**a7)
                 g1=(1.0d0/ct3)*(-a2*a3/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/c
               1*xx(3,j)/ct3+a4)+a5*a7*(a6-xx(3,j)/ct3)**(-1.0d0+a7)+
              1a9*a10*8.0d0*((xx(3,j)/ct3)**7.0d0)*expf(-a10*
                 1(xx(3,j)/ct3)**8.0d0)-a11*a12/ct3*expf(-a12*(xx(3,j)/ct3-a13))
                        g1=(1.0d0/ct3)*(-a2*a3/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/ct3+a4)/dcosh(-a3*xx(3,j)/c
             & *xx(3,j)/ct3+a4)
             49*a10*8.0d0*((xx(3,j)/ct3)**7.0d0)*expf(-a10*)
             & (xx(3,j)/ct3)**8.0d0)-a11*a12/ct3*expf(-a12*(xx(3,j)/ct3-a13))
                if(xx(3,j).lt.a6*ct3)g1=g1+a5*a7*(a6-xx(3,j)/ct3)**(-1.0d0+a7)/ct3
 cccc if(xx(3,j).gt.a6*ct3) write (2, *) 'did it'
                        if (g0.gt.6.0) then
                                g0=6.0d0
                                g1 = 0.0d0
                  write (2,*) 'U theta overflow - positive'
                        else if (g0.lt.3.0) then
                                g0 = 3.0d0
                                g1 = 0.0d0
                  write (2,*) 'U theta underflow - positive'
                        end if
                        go to 98
%%%%
                 Nonstoichiometric Vanadium oxide (V6O13)
                 based on data from West, Zachau-Christiansen, and Jacobsen,
                 Electrochim. Acta vol 28, p. 1829, 1983.
                 valid for 0.1 < x < 8.25 in LixV6O13. Enter csx according to
С
                 LiyVO2.167, where 0.05 <y <1, and cot3 is based on 8 Li inserted.
                 Fit for electrical conductivity based on data from same
                 paper, corrected for porosity. Electrical conductivity
                 of V6O13- carbon filler composite based on model of Meredith and
                 Tobias in Advances in Electrochemistry and Electrochemical Engineering
                 vol. 2, 1962.
```

```
210 continue
   convert solid concentration in mol/m3 to x in mol/mol V6O13
    sto = xx(3,j)*8.0/ct3
a1 = -10.0/6.0
     a2 = 8.0/6.0/ct3
    g0 = 1.9 + 0.13*dtanh(a1*sto + 1.7)
        +0.2*dtanh(sto*a1 + 6.2)
         +0.56*dtanh(2.0*a1*sto + 29.5)
    g1=-(1.3*a2)/(dcosh(a1*sto+1.7)*dcosh(a1*sto+1.7))
        -(2.0*a2)/(d\cosh(a1*sto+6.2)*d\cosh(a1*sto+6.2))
  &
         -(11.2*a2)/(d\cosh(2.0*a1*sto+29.5))
  &
         *dcosh(2.0*a1*sto+29.5))
   conductivity varies with state of charge for this material
     vanox=120.0*expf(-1.5*sto)-9.0*dtanh(1.5*sto-6.5)+9.0
     sigcarb = 100.0/0.0038 ! S/m
     boo = sigcarb/vanox
     sig(j)=vanox*(2.0d0*(boo+2.0d0)+2.0d0*(boo-1.0)*epf3)
         ((2.0-epf3)*(boo + 2.0)+2.0*(boo-1.0)*epf3)
  &
  &
         (2.0*(boo+2.0)-(boo-1.0)*epf3)/
         ((2.0-epf3)*(boo+2.0)-(boo-1.0)*epf3)
     sig(j) = sig(j)*(1.0d0 - ep3 - epp3)**1.5
     go to 98
C
LiyAl0.2Mn1.8O4F0.2 spinel from Bellcore. Open circuit potential
   as function of y measured by Karen Thomas, 1999.
   for 0.2 < y < 0.95
 211 continue
c
     a1 = 3.91007
     a2 = 0.04697
     a3 = 9.15495
     a4 = 5.35279
     a5 = 0.06752
     a6 = 1.0179
     a7 = -0.471987
     a8 = 14.7524
     a9 = 0.69465
     a10 = 0.21481
     a11 = 0.0008189
     a12 = 22.759
     a13 = 1.0 - 0.631724
     a14 = 26.558
\mathbf{c}
```

```
g0=a1+a2*dtanh(-a3*xx(3,j)/ct3+a4)
  &
        -a9*expf(-a10*((xx(3,j)/ct3)**a14))+a11
  &
         *expf(-a12*(xx(3,i)/ct3-a13))+a5*a8
   if(xx(3,j).lt.a6*ct3)
  &
        g0=g0-a5*((a6-xx(3,j)/ct3)**a7)
С
     g1=(1.0d0/ct3)*(-a2*a3)/dcosh(-a3*xx(3,j)/ct3+a4)/
  &
        d\cosh(-a3*xx(3.i)/ct3+a4)
  &
        +a9/ct3*a10*a14*((xx(3,i)/ct3)**(a14-1.0d0))
  &
        *expf(-a10*((xx(3,j)/ct3)**a14))
        -a11*a12/ct3*expf(-a12*(xx(3,j)/ct3-a13))
  &
     if(xx(3,i).lt.a6*ct3)
  &
        g1=g1+a5*a7*(a6-xx(3,j)/ct3)**(-1.0d0+a7)/ct3
c
     if (g0.gt.6.0) then
      g0 = 6.0d0
      g1 = 0.0d0
   write (2,*) 'U theta overflow - positive'
     else if (g0.lt.3.0) then
      g0 = 3.0d0
      g1 = 0.0d0
   write (2,*) 'U theta underflow - positive'
     end if
c
     go to 98
%%%%
c
   KINETIC EXPRESSIONS FOR THE POSITIVE ELECTRODE
С
С
   h0 is the exchange current density (A/m2)
С
   h1 is the derivative of io wrt solid concentration, xx(3,i)
С
   h2 is the derivative of io wrt electrolyte concen., xx(1,j)
c
С
   С
c
   NONAQUEOUS LIQUIDS
c
 98 if (lag.eq. 1) go to 99
     alpha=0.5d0
     alphc=0.5d0
    h0=rka3*dsqrt(xx(1,j))*dsqrt(ct3-xx(3,j))*dsqrt(xx(3,j))
    h1=-rka3*dsqrt(xx(1,j))*dsqrt(ct3-xx(3,j))*dsqrt(xx(3,j))*(1.0)
  & /(ct3-xx(3,j))-1.0d0/xx(3,j)/2.0d0
    h2 = rka3 * dsqrt(ct3 - xx(3,j)) * dsqrt(xx(3,j)) / dsqrt(xx(1,j)) / 2.0d0
c
```

```
С
С
         POLYMER
c
Ç
          alpha=0.5d0
С
         alphc=0.5d0
         h0=rka3*dsqrt(xx(1,j))*dsqrt(cmax-xx(1,j))*dsqrt(ct3-xx(3,j))
С
         1*dsqrt(xx(3,j))
         h1=-rka3*dsqrt(xx(1,j))*dsqrt(cmax-xx(1,j))*dsqrt(ct3-xx(3,j))
С
         1*dsqrt(xx(3,j))*(1.0d0/(ct3-xx(3,j))-1.0d0/xx(3,j))/2.0d0
          h2=-rka3*dsqrt(xx(3,j))*dsqrt(ct3-xx(3,j))*dsqrt(cmax-xx(1,j))
          1*dsqrt(xx(1,j))*(1.0d0/(cmax-xx(1,j))-1.0d0/xx(1,j))/2.0d0
С
С
С
          С
         end if
\(\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gamma_0\gam
         if (lag.eq.1) go to 99
С
         r1=alpha*frt
         if(j.le.n1+1) then
              an1=1.0d0
              an2 = 0.0d0
         else
an1 = 0.0d0
              an2=1.0d0
         endif
         r2=r1*(xx(6,j)-xx(2,j)-g0-fc*xx(5,j)*(an1*ranode+an2*rcathde))
         de=-2.d0*r2-r2**3/3.d0
         if(dabs(r2).gt.200.d0) then
             if(r2.gt.200.d0) de=7.d86
             if(r2.lt.-200.d0) de=-7.d86
             pe=7.d86
         else
             if(dabs(r2).gt.1.0d-7) de=expf(-r2)-expf(r2)
             pe=expf(-r2)+expf(r2)
         endif
         b(3,1)=h2*de
         b(3,2)=h0*r1*pe
         b(3,6)=-b(3,2)
         b(3,3)=h1*de+h0*r1*g1*pe
         b(3,5)=1.0d0+fc*b(3,2)*(an1*ranode+an2*rcathde)
         g(3)=-h0*de-xx(5,j)
```

```
99 return
   end
   subroutine prop(nj,n2,n1)
   implicit real*8(a-h,o-z)
   parameter(maxt=900)
   common/const/ fc,r,t,frt,cur,ep3,ep2,pi,nneg,nprop,npos,
       ep1,epf3,epf1,epp1,epp2,epp3,shape3,shape1,ep(221),
       epp(221), epf(221)
   common/var/ xp(10), xx(6,221), xi(6,221), xt(6,221), maxt
   common/tprop/df(221),cd(221),tm(221),
       ddf(221),dcd(221),dtm(221),dfu(221),d2fu(221)
   common/temp/ thk,htc,dudt,Cp,dens,tam,g0,ncell,lht,qq
С
   do 99 j=1,nj
     ee=ep(i)+epp(i)
     go to (1,2,3,4,5,6,7,8,9,10,11),nprop
  1 go to 101
                      ! AsF6 in methyl acetate
  2 go to 102
                      ! Perchlorate in PEO
  3 go to 103
                      ! Sodium Triflate in PEO
  4 go to 104
                      ! LiPF6 in PC (Sony cell simulation)
  5 go to 105
                      ! Perchlorate in PC (West's simulation)
6 go to 106
                    ! Triflate in PEO
     go to 107
                      ! LiPF6 in EC/DMC (Bellcore)
     go to 108
                      ! LiPF6 in EC/DMC (Bellcore) cell #2
  9 go to 109
                      !Ideal polymer, t+=1.0
  10 go to 110
                       !LiTFSI in PEMO (from Steve Sloop, 1999)
  11
     go to 111
                       ! LiPF6 in EC:DMC
c
    С
    AsF6 in methyl acetate
c
С
    diffusion coefficient of the salt (m2/s)
С
 101
      df(j)=(ee**1.5d0)*1.54d-09
     ddf(j)=0.0d0
    conductivity of the salt (S/m)
     cd(j)=2.5d0*(ee**(1.5d0))
     dcd(j) = 0.0d0
    transference number of lithium
     tm(i)=0.20d0
     dtm(j) = 0.0d0
   activity factor for the salt
     dfu(i)=0.0d0
     d2fu(i)=0.0d0
go to 99
```

```
Perchlorate in PEO
   diffusion coefficient of the salt (m2/s)
 102 df(j)=(ee**1.5d0)*1.78d-12
    ddf(j)=0.0d0
   conductivity of the salt (S/m)
    cd(i)=1.6d-02*ee**(1.5d0)
    dcd(i)=0.0d0
  transference number of lithium
    tm(j)=0.10d0
    dtm(j)=0.0d0
   activity factor for the salt
    dfu(j)=0.0d0
    d2fu(j)=0.0d0
    go to 99
   Sodium Triflate in PEO
С
 103 r0=1.3041d-07
    r1=4.4978d-07
r2=-3.1248d-07
    r3 = -2.2383d - 07
    r4=8.9264d-09
С
   diffusion coefficient of the salt (m2/s)
    df(j)=0.0001d0*(ee**1.5d0)*(r0+r1*xx(1,j)/1000+
        r2*((xx(1,i)/1000)**0.5d0) + r3*((xx(1,i)/1000)**1.5d0)
  &
        + r4*((xx(1,j)/1000)**3.0d0))
  &
    ddf(j)=0.0001d0*(ee**1.5d0)*(r1/1000d0 +
        0.5d0*r2*(xx(1,j)**(-0.5d0))/(1000.0d0**0.5d0)
  &
        + 1.5d0*r3*(xx(1,j)**0.5d0)/1000d0**1.5d0 +
  &
        3.0d0*r4*(xx(1,j)**2.0d0)/1000d0**3.0d0)
    if (xx(1,j).ge.3.0d03) then
      df(j)=(ee**1.5d0)*1.6477d-12
      ddf(j)=0.0d0
    end if
  conductivity of the salt (S/m)
    r7=4.32d-05
    r8=0.00017d0
    r9=0.000153d0
    r10=3.73d-05
cd(j)=100*(ee^{**}(1.5d0))*(r7+r8*xx(1,j)/1000+r9*xx(1,j)*xx(1,j)
        /1000000+r10*xx(1,j)*xx(1,j)*xx(1,j)/1000000000)
    dcd(j)=100*(ee^{**}(1.5d0))*(r8/1000+2.0*r9*xx(1,j)/1000000+3.0*r10)
```

```
&
          *xx(1,j)*xx(1,j)/1000000000
c
    transference number of lithium
С
С
     if(xx(1,j).lt.0.3d03) then
       r5=0.32141d0
       r6=2.5768d0
       r11=71.369d0
       r12=643.63d0
       r13=1983.7d0
       r14=2008.d0
       r15=287.46d0
       tm(j)=r5-r6*xx(1,j)/1000.+r11*xx(1,j)*xx(1,j)/1000000.
   &
        -r12*((xx(1,j)/1000.)**(3.0d0))+r13*((xx(1,j)/1000.)**4.0d0)
   &
        -r14*((xx(1,j)/1000.)**(5.0d0))+r15*((xx(1,j)/1000.)**6.0d0)
       dtm(j)=-r6/1000.+2.0d0*r11*xx(1,j)/1000000.-
   &
           3.0d0*r12*(xx(1,j)**2.0d0)/(1000.**3.0d0) +
   &
           4.0d0*r13*(xx(1,j)**3.0d0)/(1000.**4.0d0)
   &
           5.0d0*r14*(xx(1,j)**4.0d0)/(1000.**5.0d0) +
&
        6.0d0*r15*(xx(1,j)**5.0d0)/(1000.**6.0d0)
     else
       tm(i)=0.0d0
       dtm(j)=0.0d0
     end if
С
     if(xx(1,j).ge.0.70d03) then
       r5=4.5679d0
       r6=4.506d0
       r11=0.60173d0
       r12=1.0698d0
       tm(j)=-r5+r6*expf(-((xx(1,j)/1000.-r11)/r12)**2.)
       dtm(j)=-r6*(xx(1,j)/1000.-r11)*2.
   &
           *\exp f(-((xx(1,j)/1000.-r11)/r12)**2.)/r12/r12/1000.
     end if
\mathbf{c}
     if(xx(1,j).ge.2.58d03) then
       tm(j)=-4.4204d0
       dtm(i)=0.0d0
     end if
c
    activity factor for the salt: (dlnf/dc) and (d2lnf/dc2)
c
С
     if(xx(1,j).gt.0.45d03) then
       r17=0.98249d0
       r18=1.3527d0
       r19=0.71498d0
```

```
r20=0.16715d0
      r21=0.014511d0
      thermf=r17-r18*xx(1,j)/1000.+r19*xx(1,j)*xx(1,j)/1000000.-
       r20*xx(1,j)*xx(1,j)*xx(1,j)/1000000000.+r21*xx(1,j)*xx(1,j)
   &
   &
        *xx(1,j)*xx(1,j)/10000000000000.
      dthermf=-r18/1000.+2.*r19*xx(1,i)/1000000.
       3.*r20*xx(1,j)*xx(1,j)/1000000000.+4.*r21*xx(1,j)*xx(1,j)
   &
       end if
С
     if(xx(1,j).le.0.45d03) then
      r23=0.99161d0
      r24=0.17804d0
      r25=55.653d0
      r26=303.57d0
      r27=590.97d0
      r28=400.21d0
thermf=r23-r24*xx(1,j)/1000.-r25*xx(1,j)*xx(1,j)/1000000.+
       r26*xx(1,j)*xx(1,j)*xx(1,j)/1000000000.-r27*xx(1,j)*xx(1,j)
  &
       *xx(1,j)*xx(1,j)/100000000000000.+r28*xx(1,j)*xx(1,j)*xx(1,j)
       dthermf=-r24/1000.-2.*r25*xx(1,j)/1000000.+
          3.*r26*xx(1,j)*xx(1,j)/1000000000.-4.*r27*xx(1,j)
  &
  &
          *xx(1,j)*xx(1,j)/10000000000000.+5.*r28*xx(1,j)*xx(1,j)
  &
          end if
С
     dfu(j)=(-1.+2.*thermf)/xx(1,j)
     d2fu(j)=1./xx(1,j)/xx(1,j)-2.*thermf/xx(1,j)/xx(1,j)+
  &
        2.*dthermf/xx(1,j)
c
    if(xx(1,j).ge.3.00d03) then
      dfu(i) = -0.9520/xx(1.i)
      d2fu(j)=0.9520/xx(1,j)/xx(1,j)
    end if
    go to 99
  LiPF6 in PC (Sony cell simulation)
С
  this is actually the diff coeff for perchlorate
  diffusion coefficient of the salt (m2/s)
 104 df(j)=(ee**1.5d0)*2.58d-10
    ddf(j)=0.0d0
   conductivity of the salt (S/m)
   pmax = 0.5409
    pmax=0.035d0
```

```
pu=0.857d0
     aa = 1.093
     bb=0.04d0
     rho=1.2041d03
     fun=pmax*((1.0d0/rho/pu)**aa)*expf(bb*((xx(1,j)/rho-pu)**2.0)
         -(aa/pu)*(xx(1,j)/rho-pu))
   &
     fun2=2.0d0*(bb/rho)*(xx(1,j)/rho-pu)-aa/pu/rho
     cd(j)=0.0001+(ee^{**}1.5d0)*((xx(1,j))**aa)*fun
     dcd(j)=(ee^{**1.5}d0)*fun*(aa*(xx(1,j))**(aa-1.0d0))+(xx(1,j))**aa)
   &
         *fun2)
   transference number of lithium
     tm(i)=0.20d0
     dtm(i)=0.0d0
С
    activity factor for the salt (dlnf/dc and d2lnf/dc2)
С
     dfu(i)=0.0d0
     d2fu(j)=0.0d0
     go to 99
    Perchlorate in PC (West's simulation)
   diffusion coefficient of the salt (m2/s)
 105 df(j)=(ee**1.5d0)*2.58d-10
     ddf(i)=0.0d0
   conductivity of the salt (S/m)
     pmax=0.542d0
     pu=0.6616d0
     aa = 0.855d0
     bb = -0.08d0
     rho=1.2041d03
     fun=pmax*((1.0d0/rho/pu)**aa)*expf(bb*((xx(1,j)/rho-pu)**2.0)
  &
         -(aa/pu)*(xx(1,j)/rho-pu))
     fun2=2.0d0*(bb/rho)*(xx(1,j)/rho-pu)-aa/pu/rho
     cd(j)=0.0001+(ee^{**}1.5d0)*((xx(1,j))**aa)*fun
     dcd(j)=(ee^{**1.5}d0)*fun*(aa*(xx(1,j)**(aa-1.0d0))+(xx(1,j)**aa)
  &
         *fun2)
   transference number of lithium
  tm(j)=0.20d0
     dtm(i) = 0.0d0
   activity factor for the salt
     dfu(j)=0.0d0
     d2fu(i)=0.0d0
     go to 99
   С
   Triflate in PEO
С
```

```
106 r0=-5.0891863844d-05
     r1=8.38645199394d-07
     r2=-5.19747901855d-10
     r3=8.0832709407d-14
   diffusion coefficient of the salt (m2/s)
     df(j)=(ee**1.5d0)*7.5d-12
     ddf(i)=0.0d0
   conductivity of the salt (S/m)
     cd(i)=(ee^{**}(1.5d0))*100.0d0*(r0 + r1*xx(1,i))
         +r2*xx(1,j)*xx(1,j)+r3*xx(1,j)*xx(1,j)*xx(1,j)
  &
     dcd(j)=(ee^{*1.5}d0)^{*100.0}d0^{*(r1+2.0}d0^{*r2}xx(1,j)+
         3.0d0*r3*xx(1,i)**2.0d0
  &
   transference number of lithium
   rough conc. dependence of t+ - highly suspect
     tm(j)=0.0107907d0 + 1.48837d-04*xx(1,j)
     dtm(j)=1.48837d-04
   activity factor for the salt
     dfu(j)=0.0d0
     d2fu(i)=0.0d0
     go to 99
   LiPF6 in EC/DMC and p(VdF-HFP) (Bellcore)
   This is the 1:2 v/v mixture of EC/DMC (eq. 2 of paper)
\mathbf{c}
   D and t+ given below were fit from discharge curves
С
   diffusion coefficient of the salt (m2/s)
c
   107 df(j) = (ee**1.5d0)*9.00d-11
 107 	ext{ df(i)=(ee**3.3d0)*7.50d-11}
     ddf(j)=0.0d0
c
   conductivity of the salt (S/m)
С
   This is the conductivity of the liquid + salt only (no polymer)
С
c
С
   kappa (c) for EC/DMC 2:1 with LiPF6 at 25 deg C
   cd(j)=(ee^{**1.5}d0)*(0.0911+1.9101*xx(1,j)/1000-1.052*xx(1,j)*
С
   1xx(1,j)/1000/1000+0.1554*(xx(1,j)/1000)**3.0d0)
С
   derivative of kappa (c) for EC/DMC 2:1 at 25 deg C
   dcd(j)=(ee^{**}1.5d0)^{*}(1.9101/1000-2.0^{*}1.052^{*}xx(1,j)/1000/1000
С
    1+3.0*0.1554/1000*(xx(1,j)/1000)**2.0d0)
c
c
   kappa (c) for EC/DMC 1:2 w/ LiPF6 at 25 deg C
С
   Note Bruggeman exponent should be adjusted to account for
c
   polymer phase - this also affects "fac" parameter in Ohm's
   law equation number 2
     r1=0.00010793d0
     r2=0.0067461d0
```

```
r3=0.0052245d0
     r4=0.0013605d0
    r5=0.00011724d0
     cd(j)=(ee**3.3d0)*(r1+r2*xx(1,j)/1000.d0
c cd(j)=(ee^{**}1.5d0)*(r1+r2*xx(1,j)/1000.d0
  & -r3*xx(1,j)*xx(1,j)/1000000.d0
  -r4*(xx(1,j)/1000.d0)**3.0d0-r5*(xx(1,j)/1000.d0)**4.0d0)*100.d0
     dcd(j)=(ee^{**3.3}d0)*(r2/10-r3*2.0d0*xx(1,j)/10000.d0
   dcd(j)=(ee**1.5d0)*(r2/10-r3*2.0d0*xx(1,j)/10000.d0
         +3.0d0*r4*xx(1,j)*xx(1,j)/10000000.d0
  &
  &
         -0.4d0*r5*(xx(1,j)/1000.d0)**3.0d0)
С
   transference number of lithium
     tm(j)=0.363d0
     dtm(j)=0.0d0
c
   activity factor for the salt (dlnf/dc and d2lnf/dc2)
     dfu(i)=0.0d0
     d2fu(i)=0.0d0
     go to 99
   С
   LiPF6 in EC/DMC and p(VdF-HFP) (Bellcore) cell #2
   This is the 2:1 v/v mixture of EC/DMC (eq. 1 of paper)
   D and t+ given below were fit from discharge curves
С
   diffusion coefficient of the salt (m2/s)
   108 df(j) = (ee**1.5d0)*9.00d-11
 108 df(j)=(ee**3.3d0)*7.50d-11
     ddf(i) = 0.0d0
\mathbf{c}
c
   conductivity of the salt (S/m)
С
   kappa (c) for EC/DMC 2:1 w/ LiPF6 at 25 deg C
   Note Bruggeman exponent should be adjusted to account for
   polymer phase - this also affects "fac" parameter in Ohm's
   law equation number 2
     r1=0.00041253d0
     r2=0.005007d0
     r3=0.0047212d0
     r4=0.0015094d0
c r5=0.0016018d0
     r5=0.00016018d0
     cd(i)=(ee**3.3d0)*(r1+r2*xx(1,j)/1000.d0
  cd(j)=(ee^{**}1.5d0)*(r1+r2*xx(1,j)/1000.d0
         -r3*xx(1,j)*xx(1,j)/1000000.d0
   & +r4*(xx(1,j)/1000.d0)**3.0d0-r5*(xx(1,j)/1000.d0)**4.0d0)*100.d0
```

```
dcd(j)=(ee^{**}3.3d0)*(r2/10-r3*2.0d0*xx(1,j)/10000.d0
   dcd(j)=(ee^{**}1.5d0)*(r2/10-r3*2.0d0*xx(1,j)/10000.d0
        +3.0d0*r4*xx(1,j)*xx(1,j)/10000000.d0
  &
        -0.4d0*r5*(xx(1,i)/1000.d0)**3.0d0)
С
   transference number of lithium
    tm(i)=0.363d0
    dtm(j)=0.0d0
   activity factor for the salt (dlnf/dc and d2lnf/dc2)
    dfu(i)=0.0d0
    d2fu(j)=0.0d0
    go to 99
c Ion Exchange Membrane, t+=1.0
 109 continue
    df(j) = (ee**1.5)*1.0d-11
    ddf(j) = 0.0d0
    cd(j) = (ee**1.5)*0.01d0
    dcd(i) = 0.0
    tm(j) = 1.0d0
    dtm(j) = 0.0d0
    dfu(j) = 0.0d0
    d2fu(i) = 0.0d0
    go to 99
С
   LiTFSI in PEMO from Steve Sloop and John Kerr
 110 continue
    df(j) = (ee^{**1.5})*((-3.0d-17)*xx(1,j) + 6.0d-13)
    ddf(i) = (ee**1.5)*(-3.0d-17)
cd(j) = (ee**1.5)*expf((-3.0d-07)*xx(1,j)*xx(1,j)
        +6.5d-04*xx(1,j)-1.12
    dcd(j) = cd(j)*((-6.0d-07)*xx(1,j) + 6.5d-04)
    tm(j) = 1.6*expf(-0.0017*xx(1,j))
    dtm(j) = tm(j)*(-0.0017)
    dfu(j) = 0.0d0
    d2fu(i) = 0.0d0
    go to 99
c
   LiPF6 in EC:DMC. D is for LiAsF6 in methyl formate,
  corrected for viscosity by Walden's Rule, from the
С
  Organic Electrolyte Handbook (Janz). t+ is for LiClO4
   in various electrolytes. cd is from measurements made at
   Bellcore, as reported in Marc Doyle's dissertation.
```

```
111 continue
   df(j) = (ee**1.5)*1.7d-10
   ddf(j) = 0.0d0
   cd(j) = (ee^{*1.5})*(0.0911+1.9101*xx(1,j)/1000.0 -
       1.052*((xx(1,j)/1000.0)**2.0) +
 &
       0.1554*((xx(1,j)/1000.0)**3.0))
   dcd(j) = (ee**1.5)*(1.9101/1000.0 -
       2.0*1.052*xx(1,j)/1000.0/1000.0
 &
       +0.1554*3.0*((xx(1,j)/1000.0)**2.0)/1000.0)
  &
    tm(j) = 0.3d0
    dtm(j) = 0.0d0
    dfu(j) = 0.0d0
    d2fu(j) = 0.0d0
99 continue
   return
   end
   That's All Folks!
```

6. Bibliography

- 1. R. Zallen, *The Physics of Amorphous Solids*, p 135, John Wiley & Sons, New York, (1983)
- 2. C. Rajagopal and M. Satyam, J. Appl. Phys., 49, 5536 (1978)
- 3. M. B. Heaney, *Physica A*, **241**, 296 (1997)
- 4. F. Carmona, P. Prudhon and F. Barreu, Solid State Communications, 51, 255 (1984)
- 5. Z. Rubin, A. Sunshine, M.B. Heaney, I. Bloom and I. Balberg, *Phys. Rev. B*, **59**, 196 (1999)
- 6. P. F. Carcia, A. Ferretti and A. Suna, J Appl Phys., 53, 5282 (1982)
- 7. R. W. A. Franco, J. P. Donoso, C. J. Magon, A. O. Florentino, M. J. Saeki, J. M. Pernaut and A. L. de Oliveira, *Solid State Ionics*, 113-115, 149 (1998)
- 8. G. E. Pike and C. H. Seager, J Appl Phys., 48, 5152 (1977)
- 9. F. A. Modine, A. R. Duggal, D. N. Robinson, E. L. Churnetski, M. Bartkowiak, G. D.Mahan and L. M. Levinson, *J Mater Res.*, 11, 2889 (1996)
- 10. E. K. Sichel, J. I. Gittleman and P. Sheng, *Phys Rev B*, **18** 5712, (1978)
- 11. Y.-M. Chiang, L. A. Silverman, R. H. French and R. M. Cannon, *J Am Ceram Soc.*, 77 1143 (1994)
- 12. J. Israelachvili, *Intermolecular & Surface Forces*, Academic Press, London (1992).
- 13. J. S. Reed, *Principles of Ceramics Processing*, John Wiley & Sons, New York (1995)
- 14. H. Tukamoto and A. R. West, "Electronic Conductivity of LiCoO₂ and Its Enhancement by Magnesium Doping" *J. Electrochem. Soc.*, **144** 3164 (1997)
- 15. P.P. Soo, B Huang, D. R. Sadoway and A. M. Mayes, "Rubbery Block Copolymer Electrolytes for Solid-State Rechargeable Lithium Batteries" *J. Electrochem. Soc.*, **146** 32 (1999)
- 16. J. Newman, *Electrochemical Systems*, Prentice Hall, NJ, 1991
- 17. A.J. Vaccaro, T. Palanisamy, R.L. Kerr and J.T. Maloy, *J. Electrochem. Soc.*, **129**, 682 (1982)
- 18. D. Guyomard and J.M. Tarascon, "Li Metal-Free Rechargeable LiMn₂O₄/Carbon Cells: Their Understanding and Optimization" *J. Electrochem. Soc.*, **139**, 937 (1992)
- 19. Y-M. Choi and S-I. Pyun, "Determination of electrochemical active area of porous Li₁₋₈CoO₂ electrode using the GITT technique" *Solid State Ionics*, **109**, 159 (1998)
- R.E. Meredith and C.W. Tobias in P. Delahay and C.W. Tobias, ed. Advances in Electrochemistry and Electrochemical Engineering, p. 26. John Wiley & Sons, NY, 1962
- M. Doyle, T.F. Fuller and J. Newman, "Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell", J. Electrochem. Soc., 140, 1526-1533 (1993)
- 22. M. Doyle, "Design and Simulation of Lithium Rechargeable Batteries", *Ph.D. Thesis*, **University of California, Berkeley**, (1995)

- 23. C.R. Pals and J. Newman, "Thermal Modeling of the Lithium/Polymer Battery I.", J. Electrochem. Soc., 142, 3274-3281 (1995)
- 24. C.R. Pals and J. Newman, "Thermal Modeling of the Lithium Polymer Battert II.", J. Electrochem Soc., 142, 3282-3288 (1995)
- 25. R. Darling and J. Newman, "Modeling a Porous Intercalation Electrode with Two Characteristic Particle Sizes", *J. Electrochem. Soc.*, **144**, 4201-4208 (1997)
- 26. I.J. Ong and J. Newman, "Double-Layer Capapcitance in a Dual Lithium Ion Insertion Cell", *J. Electrochem. Soc.*, **146**, 4360-4365 (1999)
- 27. R. Darling and J. Newman, "Modeling Side Reactions in Composite Li_yMn₂O₄ Electrodes", J. Electrochem. Soc., **145**, 990-998 (1998)
- 28. T. F. Fuller, M. Doyle and J. Newman, "Simulation and Optimization of the Dual Lithium Ion Insertion Cell", J. Electrochem. Soc., 141, 1-10 (1994)
- 29. M. Doyle, J. Newman, "Analysis of capacity-rate data for lithium batteries using simplified models of the discharge process", *J. Appl. Electrochem.*, **27**, 846-856, (1997)
- 30. G.S. Nagarajan, J. W. Van Zee and R.M. Spotnitz, "A Mathematical Model for Intercalation Electrode Behavior I.", J. Electrochem. Soc., 145, 771-779 (1998)
- 31. J. Newman and C.W. Tobias, "Theoretical Analysis of Current Distribution in Porous Electrodes", *J. Electrochem. Soc.*, **109**, 1183 (1962)

7. Biographical Note

The author was born in Goettingen, Germany in 1974. He attended Miramonte High School in Orinda, CA after moving there in 1986. After graduating in 1993, he came to MIT to pursue a Bachelor's and later a Master's degree in Materials Science and Engineering. After completing the degree, he is moving to New York City to take an analyst position with Goldman Sachs.