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ABSTRACT

In today's competitive marketplace, companies are under increased pressure to produce products
that have a low cost and high quality. Product cost and quality are influenced by many factors.
One factor that strongly influences both is manufacturing variation. Manufacturing variation is
the range of values that a product's dimensions assume. Variation exists because no production
process is perfect. Often times, controlling this variation is attempted during production when
substantial effort and resources, e.g., time, money, and manpower, are required. The effort and
resources could be reduced if the manufacturing variation could be forecast and managed during
the design of the product.

Traditionally, several barriers have been present that make forecasting and managing variation
during the design process very challenging. The first barrier is the effort required of a design
engineer to know the company's process capability, which makes it difficult to specify tolerances
that can be manufactured reliably. The second barrier is the difficulty associated with
understanding how a single manufacturing process or series of processes affects the variation of a
product. This barrier impedes the analysis of tradeoffs among processes, the quantifying of the
impact incoming stock variation has on final product variation, and the identification of sources
of variation within the production system. The third barrier is understanding how selective
assembly influences the final variation of a product, which results in selective assembly not being
utilized efficiently.

In this thesis, tools and methods to overcome the aforementioned barriers are presented. A
process capability database is developed to connect engineers to manufacturing data to assist with
detailing a design. A theory is introduced that models a production process with two math
functions, which are constructed using process capability data. These two math functions are used
to build closed-form equations that calculate the mean and standard deviation of parts exiting a
process. The equations are used to analyze tradeoffs among processes, to compute the impact
incoming variation has on output, and to identify sources of variation. Finally, closed-form
equations are created that compute the variation of a product resulting from a selective assembly
operation. Using these tools, forecasting and managing manufacturing variation is possible for a
wide variety of products and production systems.

Thesis Committee:
Dr. Anna Thornton (Thesis Supervisor)
Professor David Hardt (Thesis Committee Chairperson)
Professor Sanjay Sarma
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1.1 Overview

The goal of any manufacturing firm is to produce products that meet and exceed customer based

requirements by producing high quality products. Producing quality products is challenging

because they are comprised of one or more components, each having many features that have

measurable dimensions, e.g., length, width, diameter, etc. Producing every dimension to an exact

value is impossible because of variation. Manufacturing variation is the range of values that a

dimension actually spans and directly affects the quality of a product. Companies are motivated

to better understand and manage manufacturing variation to lower costs and improve quality.

Managing manufacturing variation is the act of making design and production decisions so that a

product can be produced with an acceptable level of variation at an acceptable cost.

In an ideal world, engineers could understand and manage manufacturing variation to create

product designs that could be manufactured with a low cost and high level of quality. Design

engineers would have a full appreciation and knowledge of the firm's capability to manufacture

goods. They would be able to see into the future and know the level of quality a product will have

before it is even produced. Decisions regarding large, complex manufacturing systems would be

based on real data.

Unfortunately, this ideal world does not exist because of several major barriers. Design engineers

are often unfamiliar with their firm's capability to manufacture parts (Tata and Thornton 1999).

Data that could help them understand are usually geographically dispersed, difficult to retrieve,

and hard to interpret. Even if they did find the data, design engineers would not know how to

always use it to help design high quality parts. Finally, products are often manufactured by large,

complex manufacturing systems. Understanding how these systems directly affect a product's

quality is very challenging and making decisions as to the types of processes and assembly

operations to use are often done in an ad hoc manner. In other words, designing high quality

products is difficult because forecasting manufacturing variation is very challenging.

1.2 Hypothesis

The work in this dissertation addresses the hypothesis that a design tool can be developed that

uses manufacturing process capability data to construct math models to forecast the quality of a

dimension on a design prior to being manufactured. This design tool will assist engineers in
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understanding and managing variation so that products are designed that can be manufactured

with an acceptable level of quality at the lowest possible cost despite the presence of

manufacturing variation.

Figure 1-1 graphically illustrates the hypothesis using a map of a product development process.

Elements of the picture represent different items in a product development process. The dark

circles represent manufacturing data. The white circles represent artifacts of the product

development process, i.e., general product requirements labeled "functional intent," detailed

drawings and other specifications labeled "the design," and the plans to be used to produce the

parts labeled "production plans." Actions are represented by the rectangles. Each arrow in the

picture represents a flow of information.

The map starts with the functional intent, which drives the design and tolerancing of the product.

The result of these two actions is the design, i.e., detailed drawings, material specifications,

detailed operation specifications, etc. The design helps in the selection of suppliers and processes

to use to manufacture the product. The process selection outputs production plans. The design and

production plans directly influence the production operations used. The lower sequence of

elements demonstrates that a measurable mean and standard deviation of parts enters the first

operation of the production system. These values are known in the sense they can be measured

before any operation takes place and, the company has some control over their values, e.g., the

company can buy higher grade stock to have less variation present in the incoming stock. These

values are affected by the series of operations that make up the production line, and an unknown

mean and standard deviation exit the series of operations. These output values are unknown in the

sense they cannot typically be determined until all operations are complete.

The hypothesis is that these output values, peut and aut, can be managed during the portion of the

product development process that is contained within the gray area, i.e., decisions during the

design, tolerancing, supplier selection, and process selection phases can positively influence of a

product's final mean and standard deviation. To accomplish this, a tool must be developed that

can forecast the mean and standard deviation of a product prior to its production. Using this tool,

engineers can calculate the effects design, tolerancing, supplier selection, and process selection

decisions have on the end quality; thus, the quality can be managed early in the product

development process. The tool must take into account the effects random assembly, selective

18



assembly, manufacturing processes, and serial processes have on the final quality of a product's

dimension.

- - -Supplier
Hypotesis:Manaespotgnd tdrn

functional th rgnspodco
intentT 

o r n c

Figure 1-1: Graphical depiction of hypothesis

1.3 Challenges

Utilizing manufacturing data during the design process to manage variation is very difficult for a

manufacturing organization. One challenge is that the appropriate data are not readily available to

the appropriate engineers. Making manufacturing data easy to retrieve for design engineers is

difficult because it is often dispersed throughout an organization and can be in numerous unique

forms, making it difficult to interpret.

Manufacturing variation is challenging to understand and manage because it is influenced by

many factors. Product dimensions can be affected by multiple processes in a series. This makes

determining where the variation is introduced and how it changes as the part passes through the

manufacturing system difficult. Product variation also depends on whether selective assembly is
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used. When selective assembly is implemented, the variation of a dimension can be reduced.

Unfortunately, selective assembly is often implemented as a "last resort" and in an ad hoc manner

using trial and error, which results in not managing variation effectively.

1.4 Approach

The approach taken in this thesis is to develop a design tool that assists an engineer in designing

products with high levels of quality by forecasting manufacturing variation during the design of

the products. This design tool is comprised of a database and math functions. The database is

designed to store and make readily available manufacturing capability data to design engineers. A

mathematical framework is created that allows design engineers to compute the variation a

dimension has upon exiting a manufacturing process. Math models for selective assembly are

created to help engineers decide when to implement selective assembly into a manufacturing

system.

A schematic of the design tool being developed is shown below in Figure 1-2. The gray cylinder

represents the Process Capability Database. Data from the database are used to construct the math

functions representing manufacturing processes. These functions compute the mean and standard

deviations of parts exiting processes, which feed into the equations for assembly operations. The

mean and standard deviation, p.,i and cout, for the final dimension are then output. The chapters

that discuss each portion of the design tool are listed in Figure 1-2.

Math Functions Math Functions
Input for for Output

Dimension Manufacturing Assembly Dimension
gin and yin Processes Operations pout and cout

(Chapter 3) (Chapter 4)

Figure 1-2: Schematic of approach to forecast manufacturing variation
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The design tool is called Variation Risk Understanding & Management (VRUM, pronounced

"vroom"). The term "risk" is included to represent the uncertain negative effects associated with

neglected manufacturing variation. Therefore, VRUM signifies a proactive approach to

understanding and managing, through design and manufacturing decisions, the risk associated

with manufacturing variation. VRUM is discussed in depth in Chapter 5.

1.5 Related Work

Creating high quality parts with low costs is very challenging. A great amount of research has

been performed to study methods and techniques to accomplish this task. The existing work spans

many fields and includes a diverse body of literature. The research in this thesis results in a

design tool (presented in Chapter 5) that relates to a large portion of the existing research. The

bodies of work that are relevant to the content in this thesis are discussed in this section. Each

body of work is listed followed by a brief description and a discussion of how that body of work

relates to this thesis.

Methodologies to "Design for Quality"

Description: Two popular methodologies exist to provide a framework to design high quality

products. Design for Six Sigma (DFSS) (Harrold 1999; Antony and Coronado

2002) emphasizes the creation of designs that can be manufactured so that there

are only 3.4 defects per million parts produced. Quality Function Deployment

(QFD) is another methodology (http://www.qfdi.org). QFD is concerned with

capturing customer needs and translating these needs into requirements that can

be met through designed products.

Relevance: Both DFSS and QFD are high level methodologies intended to guide the design

and development of a product. Neither has specific design tools associated with

it. The design tool created in this thesis (see Chapter 5) can be used with either

methodology to assist in the detailed design stage of a product development

process. Six Sigma initiatives often include the collection of process capability

data. These data can be used to populate a Process Capability Database (see

Chapter 2).
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Manufacturing Variation Modeling

Description: Manufacturing variation is always present because no process is perfect.

Modeling variation is a good step to understanding it and designing products that

are unaffected by it. Research has been done to investigate managing the effect

variation has on the final cost and quality of a product while it is being designed.

A tool set has been developed to use during the design process to identify where

variation will have significant impact (Thornton 1999). This procedure allows

attention to be focused on the identified product characteristics to improve the

overall quality of the product. Kazmer et al. use finite-element models of

processes to analyze the variation within a single operation (Kazmer, Barkan et

al. 1996). Suri and Otto (Suri and Otto 1999) use variational modeling to select

manufacturing process input parameters that render the process outputs

insensitive to variation. This technique identifies the product characteristics and

process parameters that affect the quality of a manufactured product; however, it

does not provide a method to forecast a product's quality while it is being

designed. Variational modeling has also been used to design a product while

optimizing its quality and the production cycle time (Wei 2001). A physics-based

approach to modeling variation was introduced by Suri that predicts the nominal

values and variation of each output quality characteristic in a manufacturing

system (Suri 1999). This methodology was adopted by Ota who used it to model

the variation present in cold rolled steel manufacturing (Ota 2000). The concept

of a process capability matrix and bias vector to model a manufacturing system

was introduced by Frey (Frey 1997). The model developed can be used to

compute the yield from a manufacturing process.

Relevance: The above mentioned works help identify and manage product variation;

however, each method often requires advanced modeling or expertise. The work

in this thesis is concerned with understanding manufacturing variation while a

product is being designed. A tool is developed that forecasts the variation that

will be present when a product is produced. This tool is unique from the above

approaches because it does not require any physical modeling, uses historical

process capability data, is simple to use, and produces closed-form equations that

are computationally inexpensive.
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Manufacturing Variation Propagation

Description: Research in the field of variation propagation attempts to identify sources of

variation in a manufacturing system, identify how that variation propagates

through the system, and suggest adjustments to minimize the final product

variation. A "Stream of Variation" theory has been developed by Hu to examine

variation propagation in the assembly of flexible components (Hu 1997). A

model of how variation is transmitted through a production system is presented

by Lawless, Mackay, and Robinson (Lawless, MacKay et al. 1999). Their

approach is to measure parts at each process in the manufacturing system and

determine the amount of variation added by each process and carried through the

next process. Other research has been conducted to model dimensional variation

in multistage machining processes (Zhou, Huang et al. 2003). The approach

developed uses differential motion vectors as state vectors to represent geometric

deviations. Several bodies of work exist that use control theory to assist in the

identification of root causes of manufacturing variation in multistage

manufacturing systems (Ding, Shi et al. 2002; Huang, Zhou et al. 2002). Control

theory is also used as the basis for research into modeling and controlling

variation propagation in assemblies (Mantripragada and Whitney 1999). The

concept is to use the models to reduce assembly variation by rearranging the

assembly sequence and by making in-process adjustments. These approaches are

predominantly used after the manufacturing system is operational, not during the

design of a product.

Relevance: The work in this thesis is not specifically focused on variation propagation;

however, the closed-form equations can be "linked" together to calculate how a

product dimension's variation is propagated through a series of manufacturing

operations, including assembly. The work presented here is unique in that it is

easy to use, based on process capability data (does not require detailed

knowledge of any process), and produces closed-form results. The design tool to

accomplish this is presented in Chapter 5.

Robust Design

Description: Robust design is the idea of creating products with functionality that is

insensitive to variation present in manufacturing and the environment in which

the products are used. Robust design methods are based on the work of Taguchi

23



(Clausing 1988; Phadke 1989; Taguchi 1993). The approach is to set design and

process parameters in regions where their response functions are "flat," i.e., small

shifts in the parameters do not cause major effects to the product functionality. A

detailed understanding of how design and process parameters relate to product

performance is required and is often difficult to develop; however, Design of

Experiments is one method often implemented to gain this understanding.

Relevance: Robust design is broadly concerned with creating products that are insensitive to

many types of variation. The design tool created in this thesis helps design

products that are insensitive to manufacturing variation.

Response Surface Methodology (RSM)

Description: Response Surface Methodology is a technique that uses a polynomial surface to

approximate the relationship between multiple input variables and a single output

variable (Montgomery 1984). The polynomial surface is explored to find the

optimal value of the output variable. The concept of RSM has been extended to

include Multiple Response Surfaces (MRS). The Multiple Response Surfaces

approach uses less data to fit multiple low-order surfaces and can be more

accurate than using a single high-order surface (Guo and Sachs 1993). A related

methodology is the Robust Concept Exploration Method (RCEM) (Chen, Allen

et al. 1996; Chen, Allen et al. 1997), which combines aspects from Response

Surface Methodology, robust design techniques, Axiomatic design, and the

Decision Support Problem. RCEM is used to evaluate design alternatives and

develop top-level specifications. Another similar technique for finding input

parameters that produce the desired output is known as Evolutionary Operation

(EVOP) (Box and Draper 1969). EVOP uses a design of experiment to test

different parameter settings and find a good operating point. The technique is

repeated on a continuous basis, and the operating point is updated using the new

information gathered.

Relevance: The above approaches are mostly interested in finding process parameters that

produce a desired output. The design tool developed in this thesis is not

concerned with specific process parameters. Instead, it assists in the design of

products that can be manufactured with a process that has a known set of

parameters.
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Tolerance Allocation

Description: Tolerance allocation is the act of assigning tolerances to different components

that comprise an assembly. Performing tolerance allocation in a thoughtful,

intelligent manner improves product quality while reducing manufacturing costs

because some components are easier and less expensive to manufacture with

tighter tolerances than others. Therefore, an assembly's dimension that is created

by the stacking of several components can be controlled to a tighter tolerance by

assigning tight tolerances to the components that are easier to manufacture. A

great deal of work has been performed to optimize the tolerance allocation of a

product by considering Taguchi quality loss functions and manufacturing costs

(Bloebaum, Mulubagal et al. 1994; Krishnaswami and Mayne 1994; Soderberg

1994); the goal being to minimize the cost of a product by properly assigning

tolerances to the appropriate components.

Relevance: Tolerance allocation is an important aspect of the detailed design stage of

developing a new product. The act of allocating tolerances can be enhanced using

the design tool developed in this thesis (see Chapter 5). The tool forecasts the

manufacturing variation a dimension on a component will have when produced.

This information can be used when assigning tolerances, thus improving the

reliability of the tolerance allocation.

Statistical Process Control (SPC)

Description: Statistical Process Control (SPC) is a technique used in a manufacturing

environment to ensure quality parts are produced. SPC uses control charts to plot

measurements of component dimensions being produced. These charts are used

to alert the operator to shifts in the mean of the measurement. The measurements

are also used to compute process capability indexes such as Cpk and Cp. The

indexes indicate how "good" a process is at producing parts that meet

specification. SPC is not a design tool. It is a quality tool implemented in the

manufacturing plant.

Relevance: SPC requires a great deal of measurements to be taken on many parts.

Traditionally, the gathered data are used only for short-term quality monitoring.

One concept in this thesis is that the data gathered as part of an SPC plan can be a

valuable asset to an engineer designing a new product. The data provide insight

into the available manufacturing capability that would not exist otherwise. A
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method of making process capability available to design engineers is discussed in

Chapter 2, and a technique to use process capability data to construct

mathematical equations describing processes is presented in Chapter 0.

Using Manufacturing Process Capability Data during the Design of a Product

Description: Research has shown that the product development process can be improved

through the use of historical manufacturing process capability data (Hix and

Kittleson 1998). Other work has been done to incorporate historical supplier data

into the design process to improve quality (Lucca, Berti et al. 1995). The goal of

this concept is to design products that have a high level of manufacturability.

Relevance: These are good steps toward designing products while considering manufacturing

variation; however, each method had very specific applications. The design tool

in this thesis can be broadly applied to assist engineers with using process

capability data effectively to improve a product's design.

Selective Assembly

Description: Selective assembly is the act of measuring components, grouping them, and then

selecting mates from the appropriate groups. Research has been performed on

several aspects of selective assembly including grouping techniques and

methods. See Section 0 for a detailed literature review.

Relevance: The selective assembly work in this thesis extends existing research and has

several unique aspects. New selective assembly techniques are defined to use

when component distribution variances are unequal. Closed-form equations to

calculate the standard deviation of an assembly that is created by a selective

assembly operation are created. The robustness of selective assembly to changes

in incoming component variances is also explored.

Each of the above bodies of work provides some advancement in the area of creating high quality

parts while reducing manufacturing costs. Some provide a framework in which to design while

others are used during the production of a product to ensure high levels of quality are maintained.
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1.6 Thesis Structure and Advancements

This section gives a brief description of the topics covered in each chapter. Following the

descriptions are bullet point lists of the major research advancements made in each chapter.

The barriers to successfully implementing a database to store manufacturing

capability data are discussed. Solutions are developed to overcome these barriers.

Research Advancements

" Introduces a new method of representing data

" Creates a systematic approach to transforming existing product

information into a form suitable for database storage

" Designs a new graphical user interface for a database storing process

capability data

" Discusses the required data fields to ensure data is useful

Chapter 3: A new theory is introduced that represents an arbitrary manufacturing process

with two math functions. These functions are used to construct closed-form

equations for the output mean and standard deviation from the process as

functions of the incoming mean and standard deviation.

Research Advancements

" Introduces theory to represent a manufacturing process with two math

functions

" Develops a method to construct closed-form equations for the mean and

standard deviation of parts exiting a manufacturing process

" Validates theory with simulation model and actual data

The effects that assembly operations have on product quality are discussed and

modeled. A detailed discussion of selective assembly is presented including

descriptions of different techniques and the advantages and disadvantages of each

technique. Math models are created to help in the decision process of when to

implement selective assembly and the specific technique to use.

Research Advancements

" Introduces two new selective assembly techniques

" Develops algorithm to simulate selective assembly operations

27

Chapter 2:

Chapter 4:



" Produces closed-form equation for the standard deviation of a dimension

resulting from selective assembly

" Produces closed-form equation for selective assembly scrap

* Validates selective assembly closed-form equations using Monte Carlo

simulation

Chapter 5: The process capability database, equations for manufacturing process variation

developed in Chapter 0, and the equations for assembly operations developed in

Chapter 4 are integrated to create a design tool that is used to forecast the end

quality of a product dimension upon exiting a production system.

Research Advancements

* Integrates research from previous three chapters into one design tool to

forecast the end quality of a product's dimension

" Demonstrates a method to graphically represent a manufacturing system

" Discusses the implementation of the design tool

* Presents an example of the design tool

1.7 Chapter Summary

The overarching theme of this thesis is that process capability data can be used to forecast and

manage the manufacturing variation associated with a product during the design of the product.

The opportunity and motivation exist to explore this theme because of the present difficulty

manufacturing firms face when designing a new product to have a high level of quality. Variation

Risk Understanding & Management (VRUM) is introduced as a design tool that assists with

design and manufacturing decisions that affect the manufacturing variation associated with a

product. VRUM relies on process capability data and math models to describe the effect

manufacturing processes and assembly operations have on manufacturing variation.
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2 Process Capability Database Design

Chapter Highlights

" Provide overview of process capability data

* Introduce new indexing scheme

" Show method to index data

* Develop database user interface

" Present fields in the database record set
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2.1 Introduction

Process capability data are measurements and information related to the variation of dimensions

on products a firm produces. Typically, process capability data include the target mean, the actual

mean, the upper limit, the lower limit, and the standard deviation for critical component

dimensions. A Process Capability Database (PCDB) stores manufacturing data that is recorded

during the production process. A Process Capability Database centrally stores this information,

making it easier to retrieve by engineers regardless of their geographical location, e.g., an

engineer in Michigan is able to retrieve manufacturing data from a plant located in England.

Implementing a PCDB that can be used effectively is challenging. This chapter discusses some of

the challenges and offers solutions to them.

2.1.1 Overview

The main focus of this chapter is to address the barriers that prevent process capability databases

from being used effectively.

Chapter Goals

" Develop a method of representing data so that it is easily retrievable

" Formalize the steps required to transform component data into a form suitable for
database entry and storage

" Design a user interface for process capability databases

* Suggest a list of data that should be included in process capability databases

2.1.2 Background

Producing products that meet and exceed customer based requirements is the goal of any

manufacturing firm. This goal is accomplished by designing quality into manufactured

components. Process capability data can aid a design through ensuring the part tolerances are

achievable with the current manufacturing capability (Hix and Kittleson 1998). Many companies

want to store process capability data and make it available to all engineers. One way to achieve

this is to create a database of process capability data (Tata and Thornton 1999; Thornton and Tata

2000). A database of this type is known as a Process Capability Database (PCDB). A PCDB
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stores manufacturing data that is recorded during the production process such as the target mean,

actual mean, standard deviation, upper limit, and lower limit for important characteristics of

manufactured components or assemblies. These measurements are used to calculate process

capability indexes, e.g., Cp, Cpk, etc. Historically this information has been dispersed throughout

the organization in files at the manufacturing site, at the desk of an engineer, or on the plant floor.

A Process Capability Database centralizes the storage of this information.

Companies realize the importance and value of knowledge management because it helps

propagate lessons learned, avoid repeat mistakes, and capture employee know-how. Even though

knowledge management is regarded as important, the issues of poor application implementation,

limited language development, knowledge base maintenance, and knowledge under utilization

plague companies (Sainter, Oldham et al. 2000). Many opportunities exist for companies to use

knowledge management tools to improve product design and quality. One example of using

knowledge management to aid in the design of a product is suggested by Zhang and Xue (2002)

who present a method of using a database of features for design purposes. However, their work is

limited to the generation of designs and does not analyze if they can be produced effectively.

Kwon et al (2000) propose a different method that creates designs based on stored information.

Their approach is to integrate the design and manufacturing processes using a stored set of

information divided into the categories of tasks, processes, and constraints. Different inputs from

these categories are combined to create a flow diagram to represent a design and one or more

process flow diagrams based on the stored knowledge. This approach is useful in creating

alternative processing diagrams, but it does not take into account process capability data from

manufacturing. Another approach to design with existing knowledge is presented by Xue and

Dong (1997) who suggest a method of using combinations of pre-defined features to generate

new designs to meet a set of functional requirements. They suggest a separate, yet extensive set of

features is needed to integrate the design with manufacturing. The goal of their research is to

create new designs, then generate a process/production plan; however, variation is not a

consideration. While these knowledge management tools have important roles to play, none of

them assess the manufacturability of a product, provide a method for engineers to understand

manufacturing capability, or consider manufacturing variation during the design of a product.

Manufacturing process capability data are a source of knowledge that could be used to improve

product quality by assessing the manufacturability of a product, providing insight into a

company's manufacturing capability, and considering variation when designing a product, but it
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is not immune to the issues that plague knowledge management tools (Sainter, Oldham et al.

2000). A survey and informal interviews conducted with engineers from an American automobile

manufacturer that does not have a PCDB revealed that process capability data are not being used

effectively to improve product designs. The survey results showed that design engineers often do

not know where to obtain accurate, reliable manufacturing process capability data, resulting in the

engineers specifying product tolerances without considering manufacturing variation. The

interviews revealed that any new knowledge management tool, e.g. a database, must be easy to

use and understand, be easily accessible, and be easy to learn. (A detailed discussion about the

survey and interview results, including a listing of the survey questions, is presented in Appendix

B.) A study showed that even companies that have PCDBs are not effectively using process

capability data to improve product designs (Tata and Thornton 1999). The major barriers

preventing process capability data from being used to effectively improve designs are knowing

which product characteristics to measure and store, representing information about the product

characteristics in the database so that it is easy to retrieve, transforming information about the

product characteristics into a form for database storage, and creating a PCDB user interface that is

easy to use.

The barrier of knowing what product characteristics to store is important because not every

dimension can be measured and tracked statistically due to the overwhelming number, even on

the simplest part. To address this problem, the concept of key characteristics is used. A key

characteristic is a physical aspect of a component or assembly that has a significant effect on fit,

performance, or service life when it varies from its nominal value (Thornton 1999). Storing only

the information related to product key characteristics makes the amount of information being

stored in the database much more manageable.

Manufacturing data stored in a database is useless unless it is easily retrievable. To ensure data is

retrievable, the product characteristics must be represented in a manner that is familiar to

engineers. Several attempts have been made to create methods to effectively represent product

characteristics. In some firms, the process capability data associated with a component is

identified by the component's part number, which makes it difficult for a new engineer or an

engineer unfamiliar with the part numbering to locate data. For example an engineer in one

design group would not know the part numbers used by a different design group. This

representation also causes data to be even more difficult to find when a component's part number

changes since all the database is referenced by the old, obsolete part number. A numerical code to
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represent data in a database has been suggested that allows the data to be found quickly and

interpreted (Hanson 2001). Another approach is to use information about a part family and

process family to identify process capability data (Hix and Kittleson 1998). This is an interesting

approach, but it is effective only when engineers have prior knowledge of the product families.

Another approach to representing product characteristics is the use of a Feature Code to describe

the attributes of the characteristic (Thornton and Tata 2000). The Feature Code includes

information about a characteristic's material, the process that made it, and the feature itself. This

representation is sufficient in describing a component aspect, but an improvement can be made to

simplify the PCDB structure and make querying the database easier. This improvement comes in

the form of the Attribute Combination Descriptor (ACD) being introduced in this thesis. The

ACD uses the Feature Code as a foundation and builds upon it by adding a geometry attribute. An

ACD is used to fully represent a product's characteristic by specifying a feature, a geometry, a

material, and a process attribute. The details and advantages of the ACD are discussed in Section

2.2.

No formal approach exists specifically to overcome the barrier of transforming information about

a product characteristic into a form for database storage. Traditionally, this has been done in an ad

hoc manner. Without a formal approach, key characteristic representation is non-uniform, which

leads to confusion when the PCDB is accessed. A related research area is feature recognition

(Han, Pratt et al. 2000), which is the process of analyzing a CAD solid model and extracting

feature information. However, these techniques require a 3D CAD model of the product, may not

be accessible to the engineers concerned with PCDB maintenance, and do not generate sufficient

information for PCDB entry. A simple, formal method is introduced in this chapter that uses a set

of matrices to assist an engineer in systematically transforming information about product

characteristics into a form for entry into a database. A positive aspect of this method is that the

matrices themselves provide insight into the product characteristics that should be tracked and the

manufacturing processes that create them. This new method is discussed in detail in Section 2.2.3.

The final barrier preventing the effective usage of process capability data is the creation of a

PCDB user interface that is easy to use. The user interface must facilitate the retrieval of data.

Engineers do not want to learn a new language or program to be able to use their company's

database; therefore, a command prompt or text based user interface is undesirable. The user

interface must also allow the database to be fully exploited without being complicated. A

graphical user interface is proposed in this chapter that is easy to use without training. The design
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is intentionally simple looking to make engineers comfortable with it; however, the underlying

structure is more complex. A menu system is driven by data in the database to dynamically

update as selections are made. This dynamic behavior helps guide the engineer and prevents

faulty or empty queries. The user interface is presented and discussed in Section 2.3.

2.2 Indexing Scheme

An indexing scheme is simply a means of using one thing to represent another. For example, a

social security number is used to identify a person. In the case of a PCDB, the indexing scheme

defines how process capability data is referenced in the database. For example, a component

dimension that is measured and tracked when it is produced must be identified with an indexing

scheme so that a person looking for the data at a later time can find it.

One of the most important aspects of creating a PCDB is the design and creation of the indexing

scheme since it directly affects the ease with which an engineer can locate and retrieve data of

interest. If the indexing scheme is poorly designed, it presents a barrier to engineers who want to

access data. For example, several companies store process capability information based on part

numbers, making it difficult for a design engineer to find relevant data without a familiarity with

existing engineering documents (Tata and Thornton 1999).

The development of the ideal indexing structure is non-trivial. It must be detailed enough to fully

describe a physical characteristic of a component. However, a too detailed structure will reduce

the usability of the PCDB through increased search times and unnecessary complexities. The

indexing scheme also needs to be understood by design engineers. Typically designers think in

terms of "features" and "component attributes." "Features" describe the geometrical aspects of a

component, e.g., rod of length 50 mm, and "component attributes" describe the overall

characteristics, such as material, how it is manufactured, etc.

In addition, the indexing scheme must be designed so it is expandable and easily maintained.

There are thousands of dimensions and processes that a manufacturing organization may track.

To make any process capability database usable and efficient, the commonalities between these

dimensions should be exploited. This is similar to the concept of Group Technology (Raffish

1985), which sorts components into groups to exploit their similarities to reduce manufacturing

costs. For example, there may be many different cases where faces are ground. This process may
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be used to generate a variety of parts and or features. However, if a designer were able to

understand the general capability of "face grinding," through analyzing a broad set of data, he/she

is more likely to accurately specify the component's tolerances.

The Feature Code mentioned earlier in the background section contains three attributes to

describe a key characteristic. The attributes are feature, material, and process (Thornton and Tata

2000). When planning the implementation of a system for a large scale manufacturing company,

several limitations to this structure were identified. As a result, the indexing scheme is expanded

to include a fourth attribute, geometry, to improve both the implementation and usability of the

PCDB. This new combination of attributes is called the Attribute Combination Descriptor (ACD).

2.2.1 Attribute Combination Descriptor (ACD)

An Attribute Combination Descriptor (ACD) represents a key characteristic's feature, geometry,

material, and the process that created it. Each attribute of the ACD can have several sub-attributes

to provide more detail about a key characteristic. A specific ACD is not unique to a specific key

characteristic. Multiple key characteristics can have all attributes in common; therefore, the same

ACD describes each of them. Figure 2-1 below represents a generic ACD with three levels for

each attribute. The number of levels in an ACD depends on the manufacturing company's needs,

but three levels usually provide sufficient detail to describe a key characteristic.

ATIRIBUHf COABINATION DESCRIPTOR

LFeature (1) 1Geometry (1) LProcess(1) t Material (1)

feature (2) Geometry (2) t Process(2) t aterial (2)

Figure 2-1: General Attribute Combination Descriptor

The database hierarchy is structured based on the ACD. A sample database hierarchy is shown in

Figure 2-2. The graphic shows the top-levels of Feature, Geometry, Material, and Process. Each

of these then has lower level branches extending out of them. For example, thrust is a type of

face, which is a Feature.
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Figure 2-2: Sample database hierarchy

The term feature attribute is used to describe a physical entity or aspect of a component. This is

usually something that is dimensioned or has other measurable properties. An example of a

feature attribute is a FACE with possible sub-attributes of FRONT and REAR. The geometry

attribute describes a property of a feature attribute, e.g., the face could have a geometry attribute

of POSITION. The feature attribute differs from the geometry attribute in that it represents a

three-dimensional entity that is measured while the geometry attribute represents the

measurement itself. The process attribute depicts the manufacturing process used to create the key

characteristic. The material of the component is revealed by the material attribute. For example,

the component could be made of a type of ALUMINUM from a MILLING process. A visual

example of attributes is displayed in Figure 2-3 while an example of the corresponding ACD is

graphically represented in Figure 2-4. The picture in Figure 2-3 would appear on a detailed

drawing of the part.

Position
MERIA:

Aluminum

PROESS:

Milling

fae

Figure 2-3: Visual example of attributes
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ATTRIBUTE COMBINATION DSCRIPTOR

face osiion AillingAluminum

L froni ace '46

L* L* L* L*I

Figure 2-4: Example Attribute Combination Descriptor

Each record in a PCDB contains fields for every attribute in the ACD, i.e., a feature(O) attribute

field, a feature(1) attribute field, etc. These fields allow queries to be made by specifying a partial

or complete ACD. A complete ACD has at least one level specified for each attribute while a

partial attribute has one or more attributes as wildcards. The use of a partial ACD allows for a

broad search of a PCDB, while specifying multiple attributes and sub-attributes generates more

precise query results. As a result of a query, the PCDB outputs records of data from components

that match the query. The records contain process capability data as well as information such as

part name, plant location, production line, collection date, and other pertinent data (See Section

2.4). Based on this descriptive data, it is up to the designer to determine if the query results are

relevant.

2.2.2 Benefits of the Attribute Combination Descriptor

The three attributes of feature, material, and process are obviously required to identify a

characteristic of a component. Although less obvious, the geometry attribute is a powerful

inclusion. Adding geometry as an attribute is a natural extension to represent information about a

feature and is loosely based on Geometric Dimensioning and Tolerancing (GD&T). Some of the

geometry attribute terminology is borrowed from GD&T such as concentricity, parallelism,

runout, etc.

An obvious advantage to using the ACD to index data instead of by part number is that part

number changes have no effect on how the data is stored in the database. Three major benefits

exist for using the ACD instead of just the feature, material, and process attributes where

geometry is nested under the feature attribute. They include simplifying the PCDB structure,

allowing for additional types of queries to be made, and simplifying expansion of the PCDB.
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The inclusion of the geometry attribute in addition to the feature attribute allows for the

hierarchical structure to be substantially flattened and significantly reduces redundancy within the

database by moving branches from the feature tree to the geometry tree. This creates a clearer

perspective for the unfamiliar engineer to perform queries. It also improves an algorithm's speed

when searching the database because the branch depth is decreased, typically in half.

Assume a PCDB contains a hundred feature attributes and fifty geometry attributes. If geometry

is included in the feature attribute tree and half the geometry attributes are applicable to half the

feature attributes, there would be a hierarchy tree with 1,250 branches. Separating the feature and

geometry attributes creates two hierarchy trees, one with 100 branches and one with 50 branches.

This is a simplification of 88%. Figure 2-5 and Figure 2-6 below visually compare two simple

sample hierarchal structures. Figure 2-5 shows what a hierarchy looks like when the geometry

attribute is included as branches of the feature attribute while Figure 2-6 shows the same

information but uses two, simpler hierarchy trees. A schematic showing a side by side

comparison is showed in Figure 2-6.

RAMURE

face Diameter
--- i-

front Rear Concenricityf ish

finish flatness flaness finish Burrs Crass atch

Burrs Cross Notch Burrs Cross Notch

Figure 2-5: Hierarchy tree with Feature only

FGATURE OMETRY

eDia r flaness F A Concentrici y

Figure 2-6: Hierarchy trees of Feature and Geometry
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Geometry under feature ACD

vs.

Attributes
= Feature or Sub-feature

* = Geometry or Sub-geometry

Figure 2-7: Side by side comparison of database hierarchies

The second advantage is that a geometry attribute allows a query of all instances of a specific

geometry. For example, if an engineer wanted to compare the process capability data pertaining

to surface finishes of aluminum parts, all records with the material attribute of aluminum and

geometry attribute of surface finish could be retrieved. If the geometry attribute were nested

under the feature attribute, it would be a tedious process to query all surface finish entries, as an

engineer would have to locate surface finish entries deep in the branches of the feature tree and

perform separate queries on each instance. This concept is graphically illustrated in Figure 2-8

where the black circle represents the geometry attribute of interest in the two data hierarchies.

Clearly, the geometry attribute is shown to appear repeatedly in the left graphic while it only

appears once in the right graphic.

Geometry under feature ACD

vs.

Attributes
= Feature or Sub-feature

* Geometry or Sub-geometry

Figure 2-8: Query a single instance of geometry instead of many
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The third advantage of having a separate geometry attribute is that it simplifies PCDB expansion.

When a new key characteristic is labeled, its attributes may not exist in the PCDB listing. If this

happens for a material or process, the expansion is as simple as adding a new branch or sub-

branch to the appropriate tree. If the geometry attribute is included with the feature attribute, the

new geometry attribute listing may apply to multiple feature branches; therefore, each applicable

feature branch must be modified. Also in this case, if the feature attribute is a new listing, a new

feature branch must be added and should include all applicable geometry attributes as lower level

branches. The number of applicable geometry attributes can make this a difficult task. Expansion

is much simpler if feature and geometry are separate attributes. Adding a single branch or sub-

branch to the appropriate tree completes the task. This concept is illustrated in Figure 2-9 where

the white circles are extensions of an existing hierarchy. The left graphic represents the structure

when geometry is included as a sub-attribute to feature and multiple updates are required as

represented by the three white circles. The hierarchy on the right uses the ACD and only one

update is necessary, regardless of the number of branches already existing.

Figure 2-9: Illustration of extensibility

2.2.3 Method to Index Design Characteristics

Prior to being entered and tracked in a PCDB, a component's key characteristics must be indexed

into ACDs. Indexing is the process of assigning attributes for feature, geometry, material, and

process for each key characteristic. In most cases, sub-attributes will be required to fully represent

a key characteristic. The required indexing is often done in an ad hoc manner. Using the indexing

scheme to construct ACDs is very important. If the indexing does not match the PCDB, the ACDs

will be incomplete and the data will be difficult, if not impossible to retrieve. If the terminology is
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ignored, retrieving the data will be confusing, as entries will appear to be redundant or

nonexistent. In this section, a tool is introduced to assist engineers in the indexing of product data

into Attribute Combination Descriptors. This tool is a set of matrices called an ACD Matrix Set

and is comprised of five individual matrices. The ACD Matrix Set is unique to a company

because it only needs to contain listings of features, geometries, materials, and processes that are

specific to the company.

A difficulty in indexing key characteristics into ACDs is maintaining consistency to avoid

redundant entries or misleading representations. This happens when two different terms are used

to describe the same attribute e.g., SURFACE and FACE. In this example, the person indexing a

"flat surface" into an ACD could rightfully use FACE, SURFACE, FLAT SURFACE, or many

other possible terms to describe the feature attribute. This freedom leads to multiple terms used to

describe the same attribute, which in turn makes querying the PCDB very difficult. If an engineer

querying the PCDB selects SURFACE, the results would definitely be incomplete, unknowingly

ignoring FACE and FLAT SURFACE entries.

There are several reasons the consistency within the PCDB is difficult to maintain. Numerous

sources of information, e.g., engineering drawings, production data, material specifications,

process plans, engineers' input, etc., are used to categorize key characteristics; however, each of

these sources uses a slightly different set of terminology. Also, an engineer unfamiliar with a

PCDB may generate ACDs that are incomplete and use unique terms. These issues account for

two or more unique text descriptions being used to describe the same key characteristic. A simple

example is "-A- to rear flange face" versus "face position relative to -A-."

2.2.3.1 Assistance Tool

A tool to assist with indexing is the ACD Matrix Set. An ACD Matrix Set is comprised of five

individual matrices. There is one matrix for the feature attribute (F-matrix), one for the geometry

attribute (G-matrix), one for the material attribute (M-matrix), and two for the process attribute

(P-matrixl and P-matrix2). The goal of the ACD Matrix Set is to guide an engineer through the

indexing of a component's key characteristics and the creation of ACDs for them. The matrices

allow key characteristic information to be mapped to an attribute for ACD generation. Templates

need to be created for the F-matrix, G-matrix, and M-matrix before the ACD Matrix Set can be

used. (The creation of the P-matrixes differs slightly and is discussed in a later section.)
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A PCDB contains a listing of attributes used to describe the key characteristics. These attributes

are related to each other in a hierarchal fashion as seen in Figure 2-6 so that each attribute has a

"level" associated with it. The "level" identifies where the attribute or sub-attribute lies in the tree

and corresponds to the attribute level within the ACD (see Figure 2-1). For example, FRONT or

REAR, if applicable, would be placed into the feature(l) attribute of an ACD. The listing of

attributes and their levels is used to form the top two rows of the matrix templates. A sample

matrix template is shown in Figure 2-10.

Figure 2-10: Example F-matrix template

Algorithms are built into the template to prevent generating infeasible ACDs. The algorithms are

based on the hierarchal relationships of the PCDB and "shade out" sub-attributes or subsequent

attributes that would not be relevant. For example, if FACE is the feature attribute selected, then

lower level feature attributes FRONT and REAR would be selectable while INNER would not.

The matrix templates can be created by a PCDB administrator or generated automatically from

the PCDB since they rely entirely on the hierarchal attribute listing. They can be implemented

using standard spreadsheet software.

A component with key characteristics has an ACD Matrix Set associated with it. The ACD

Matrix Set for a specific component is constructed by starting with the templates. The key

characteristics of the component are then placed into the leftmost column of the F-matrix, G-

matrix, and M-matrix. Therefore, a particular row contains all the information for a particular key

characteristic while each column represents a particular attribute or sub-attribute.
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Example ACD Matrixes are shown to demonstrate how the sample key characteristics listed in

Figure 2-11 and shown in Figure 2-12 are indexed. The component can be thought of as an overly

simplified crankshaft. The information in Figure 2-11 could be obtained from the product

specification, and the picture in Figure 2-12 could be retrieved from the component's detailed

drawing.

Figure 2-11: Sample key characteristic listing

A- KG3 KCO

Side View fc~e

Figure 2-12: Visual sample key characteristics

The feature attribute is the first matrix to be populated. The engineer fills in the matrix

row/column intersections (cells) with a number between 0 and 1 to represent the probability that

the key characteristic (row) has the listed attribute (column). If there is no chance the attribute in

a certain column describes the attribute of the key characteristic, the cell value is 0 or left blank.

The cell value is 1 if the column attribute definitely describes the key characteristic. A number
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between 0 and 1 is used when an engineer is not absolutely confident of the column attribute of

the key characteristic.

The F-matrix in Figure 2-13 below is partially populated. The feature attributes for KC 1 and KC2

are determined while the level 1 attribute for KC3 has yet to be marked. Notice the infeasible

feature attributes are "shaded out" once a selection has been made.

[evl 0 1 1 10 1 1f-maIrix
Part Name:-. - - -

Two Tier Rod~
KC1I

KC 21 1
KC 3

Figure 2-13: Partially

Once the final selection

shown in Figure 2-14.

populated F-matrix

is made for key characteristic 3, the F-matrix is fully populated and is

Figure 2-14: F-matrix populated
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Notice the engineer populated the type of face for KC3 using "fuzzy" numbers. The engineer is

unsure if a front face is one that points inward or toward datum A. In this case, the engineer is

70% confident that a front face is a face that points inward. The use of the "fuzzy" numbers will

generate multiple ACD sets. It is then the engineer's responsibility to confirm the inward pointing

face is defined to be a front face, at which time the appropriate ACD can be selected with

complete confidence.

The ability to enter "fuzzy" numbers allows an engineer to continue the population of the ACD

Matrices even when uncertainty arises. Since the engineer is not forced to make an absolute

choice, an incorrect selection is less likely.

The geometry attribute is populated after the F-matrix since geometry may depend on feature, i.e.,

some geometry attributes are infeasible with some feature attributes, e.g., a FACE does not have a

DEPTH. Shading out the infeasible geometry selections represents these relationships. The G-

matrix in Figure 2-15 below demonstrates this concept by shading out the infeasible cells.

G-ma ix 0 0 0 0 1 1-matix
PaJ Name:
Two lier Rod

KC 1
KC 2
KC3

*No Seedble

Figure 2-15: Initial G-matrix after F-matrix is populated

The same numerical value scheme used for the F-matrix is used for the G-matrix. The end result

is shown in Figure 2-16 where the G-matrix has been populated.
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Figure 2-16: G-matrix populated

The material attribute is typically the easiest to index. The material information can usually be

obtained from the engineering drawing. When not explicitly stated, the engineering drawing

references a material specification. It may be necessary to review the specification to fully

populate the M-matrix. For a component with uniform material properties, the M-matrix can be

simplified to a single row. Figure 2-17 and Figure 2-18 show an unpopulated simplified M-matrix

and the same matrix populated, respectively.

A-marixL" 0 1 1 .1 0-mtrix Eo, -
Parf Name: 0

KC1,2, & 3

Figure 2-17: Blank M-matrix
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Lew-WT 1 1 1 0A-matrix E
Part Name:
Two Tier Rod E -4.

C 1, 2,& 3

Figure 2-18: M-matrix populated

A firm that has truly integrated the use of its PCDB into its design practices may include the

material index in the material specification once it has been determined. This allows instant

access to the information required to populate the M-matrix during future indexing on

components that reference the same material specification.

When indexing the process attribute, the processes that contribute to a key characteristic's

creation must be identified. This requires two separate matrixes, the P-matrixl and P-matrix2.

The P-matrixl decomposes the production operations into processes a PCDB recognizes. The top

two rows contain the processes listed in the PCDB and their levels while the leftmost column

contains a list of the operations used to produce the component. The matrix is populated in a

manner similar to the previous attribute matrixes to map which processes are used for each

operation. Figure 2-19 shows a partially populated P-matrixl. The fully populated P-matrixl is

shown in Figure 2-20.

P-matrixlLevel. 0 0 1 1 0 0
Part Name: -S
Twot ier Rod ..2

Operation I
Operation 2
Operation 3I~
Operation 4

Figure 2-19: P-matrixl partially populated
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Figure 2-20: P-matrix1 populated

The top row of the P-matrix2 contains the operations. This allows an engineer to quickly select

the operations affecting the key characteristic using the production plan, since it is based on

operations, not processes. Similar to the other attribute matrixes, a value of one is placed in the

cells where an operation contributes to the creation of a key characteristic. Figure 2-21 is an

example of a populated P-matrix2.

P-matrix2 = C
Part Name:
Two Tier Rod

KC I 1 0 1 1
KC 2 1 1 0 0
KC 3L 11 0 0

Figure 2-21: P-matrix2 populated

Now that the P-matrix2 is populated, a relationship is created that reveals the processes used to

create each of the key characteristics.

There are four incentives for using two process attribute matrixes. The first is the fact each

operation only has to be indexed once, regardless of how many key characteristics it affects. If
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there were a sole P-matrix with the key characteristics listed in the leftmost column and the

processes along a top row, the indexing would be repeated for every row. Having two P-matrixes

is very helpful when the number of key characteristics, e.g., two hundred, dwarfs the number of

operations, e.g., ten.

The fact serial processing can be easily represented in the P-matrix2 is the second incentive. If

there were only one P-matrix, the key characteristics affected by multiple processes would need

to be identified beforehand and listed multiple times, one for each operation.

The third incentive for using two P-matrixes is that it eases the extraction of information from the

production plan since it usually lists key characteristics by operation. This information allows the

P-matrix2 to easily be populated. Also, the production plan contains details about each operation

that makes populating the P-matrixl simple.

The task of indexing a newly identified key characteristic is simplified when two P-matrixes are

used. The new key characteristic only requires the operations that make it be known, which is

available in the production plan. Since the operations are already indexed in the P-matrix1, the

most difficult work has been completed and documented.

2.2.3.2 Creation of Indexed Data

Once the ACD Matrix Set is populated, the ACDs are generated. In the case where only zeros and

ones are used, ACDs are generated with a high confidence level, i.e., the engineer indexing the

key characteristics was 100% when selecting every attribute. In the case when an engineer is not

100% confident of the attribute to assign a key characteristic, fuzzy numbers between zero and

one are issued, and multiple sets of ACDs are created for the key characteristic in question. The

ACDs are rank ordered by a confidence level that is proportional to the fuzzy value. The engineer

then performs a manual check to determine and select the proper ACD from those generated. The

ACDs generated from the example ACD Matrix Set are listed in Table 2-1. These are the ACDs

for the sample Key Characteristics listed in Figure 2-11 and shown in Figure 2-12.
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Table 2-1: Generated ACDs for component in Figure 2-12

ACD Feature Geomn etry Material, Process
KC1 Diameter Finish Aluminum Turning

100% outer T6

Set1 2 Diameter Finish Aluminum Grindingouter T6

3 Diameter Finish Aluminum Polishingouter T6
KC2 Face Position Aluminum Turning100% front to datum T6

Seti 2 Face Position Aluminum Milling
front to datum T6 end

KC3 Face Position Aluminum Turning70% front to datum T6

Set1 2 Face Position Aluminum Milling
front to datum T6 end

KC3 Face Position Aluminum Turning
30% rear to datum T6

Set2 2 Face Position Aluminum Milling
I rear to datum T6 end

2.2.3.3 Interpretation of Indexed Data

The ACDs listed in Table 2-1 provide a complete set of information for KC1 and KC2 so that

measured data for these key characteristics can be easily input and retrieved from a process

capability database. The two ACDs for KC3 require follow-up by the engineer to confirm the

correct type classification of the face associated with KC3. Once the definition for the type of

face is fully understood, the engineer selects the appropriate ACD for KC3 and deletes the other.

Now each key characteristic has the appropriate ACDs defined.

Notice KC1 has three corresponding ACDs while KC2 and KC3 have two ACDs. This is because

an ACD is generated for each combination of attributes. KC1 has three combinations since three

processes are required to create it. The multiple ACDs for a key characteristic allow data to be

stored and retrieved for each process that affects it.

There are several distinct advantages to using an ACD Matrix Set. The first is the reliability of the

method. Using an ACD Matrix Set ensures the correct ACDs are generated. Robustness is another

advantage. The method allows for a wide range of input sources to be used effectively without

causing a disruption in the ACD generation process.
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The ACD Matrix Set is also an effective knowledge management tool since it encapsulates more

than just a list of key characteristics. It captures and documents the relationships attributes have

among each other, i.e., it is easy to discern what processes create a geometry attribute via a

review of the ACD Matrix Set. This is especially useful when more than one process affects the

creation of a key characteristic.

Detailed information is also revealed about which attributes have variation that requires

management, e.g., a quick glance at a G-matrix reveals the geometry attributes that are in the

majority of key characteristics. This information is helpful in identifying overlooked key

characteristics or specifying key characteristics on new designs, i.e., examine designs for

attributes similar to the ones commonly listed. This same information can be used to leverage

design and manufacturing resources to manage variation more effectively by tackling the "big

hitters," e.g., if flatness appears frequently in the G-matrix, resources can be directed to improve

it.

2.3 User Interface

The user interface of a Process Capability Database is important because it is the interactive

portion of the database an engineer sees and determines the usability of the database (Powell

2000). The Process Capability Database developed for this thesis is accessible via the internet

through a standard web browser. This section describes the various aspects of the user interface

and shows screen captures from the beta prototype version.

Survey results (see Appendix B) revealed that any database developed needs to be easy to learn

and simple to use. This revelation led to the development of a Graphical User Interface (GUI) for

the database. A Graphical User Interface does not require the learning or memorization of text

command lines. One common method for querying a database is to use Structured Query

Language (SQL), which is a standard interactive and programming language for getting

information from and updating a database. The use of a GUI eliminates the need for engineers to

know SQL, which is beneficial since most are unfamiliar with the programming language.

The Graphical User Interface went through several revisions. First, a paper prototype was created

to explore the necessary items and their placement relative to each other. Next, an alpha prototype

was created in Microsoft® Excel. This prototype was run locally on a desktop computer and was
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interactive. It was used to solicit feedback from engineers as to their likes and dislikes. The

feedback was mostly positive. One suggestion was to provide the ability to query data from

specific manufacturing plants. Another suggestion was to allow the engineer to select the query

results displayed. Both suggestions were implemented in the beta prototype through the use of

check boxes. The beta prototype was created using Hypertext Markup Language (HTML) and

Active Server Pages (ASP) for the user interface and a Microsoft® Access database as the

backend. Using these technologies allows the database to be stored on a web server and accessed

via the internet using a standard web browser. The beta prototype was populated with "made up"

data for testing purposes. It was never used to store actual measurements from a manufacturing

plant.

An important concern raised by engineers was the security aspect of the database. Therefore, the

database is password protected. The introduction screen is displayed in Figure 2-22. The

username and password have a hidden security level associated with them. The security level

allows different abilities for different users. For example, a security level of five allows a user to

query the database but not to add new manufacturing plants to the list; a task reserved for

someone with a higher security level. Once logged in, the person's security level is displayed as

seen in Figure 2-23.
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Figure 2-22: Introduction screen to the PCDB

Figure 2-23: Displayed security level once logged on

The query page is the most frequently used. A screen capture of the query page is displayed as

Figure 2-24. The GUI uses drop down menus to allow selection of the feature, geometry,

material, and process attributes. Checkboxes allow for any number of manufacturing plants to be
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included. Clicking the All Plants checkbox places checks in all the checkboxes associated with

the various plants. Subsequently clicking a checkbox associated with any specific plant unchecks

the All Plants checkbox and the specific plant's checkbox. The next section of the query page is

for inputting information related to the dimension of interest. The mean, tolerance limits, and

process capability indexes can be used to limit the query results. The last section is for specifying

what data to return. Checkboxes are again used to allow for the selections to be made. Any

number of checkboxes can be selected. Once the selections are made, the submit query button is

clicked to process the query.

The user interface is flexible. A user can leave as many of the fields unpopulated and drop down

boxes set to "all" to run a query that returns a very general set of data. The user can then return to

the query page and narrow the search by specifying values for more fields.
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Figure 2-24: Screen capture of query page

One aspect of the user interface that makes it easier to use is the real-time updating of subsequent

attribute menus. For example, before a Material_1 attribute is specified, the Material_2 drop

down menu is not populated as seen in Figure 2-25 below. Once aluminum is selected as shown

in Figure 2-26, the second level material attribute menu is updated to show possible types of

aluminum as seen in Figure 2-27. If the Material_1 selection is changed, the Material_2 menu

reverts back to "all," and its contents are updated to reflect possible sub-attributes for the newly
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selected material. The ability for the menu contents to change in real-time makes it easier for

engineers to make lower level attribute selections. Once the highest level attribute is selected, the

engineer does not have to scroll through every possible second level attribute, just those that are

possibly applicable.

Figure 2-25: Material_2 menu items before Material_1 is specified

Figure 2-26: Aluminum being specified for Material_1

Figure 2-27: Material_2 selections once aluminum is specified

The results of the query are displayed in tabular form. The engineer can select what field to use to

sort the results. The final version of the PCDB will also display the query results graphically

based on the work done by Thornton and Tata (Thornton and Tata 2000). Displaying the query

results graphically gives the engineer the ability to make quick comparisons and decisions

regarding feasibility. The beta prototype developed for this thesis did not have the capability to

present graphical results.
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Another important aspect of the user interface is the page used to add a record to the database. A

screen capture of the add record page is shown as Figure 2-28.

Figure 2-28: Add Record Page

The Add Record Page is organized slightly differently than the query page. Information

concerning how the part is manufactured is input in the first section. The next section is where the
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measurement data are input. Finally, the last section is for inputting the indexing scheme to

identify the characteristic. The process capability database also contains a section for database

administration. This portion of the database is discussed in Appendix F.

2.4 Record Set

The Process Capability Database contains records of data stored in tables. The record set is the

group of fields or pieces of information that each record contains. Of course, the record set

contains fields for process capability data. Each record set also contains fields for descriptive

data. These data include information such as part name, plant location, production line, collection

date, and other pertinent data. The descriptive data reveals the origin of the specific set of data.

This descriptive data helps an engineer determine if the query results are relevant. The remaining

fields are for the indexing scheme and are used to relate the data to the product characteristics the

data represent. The specific fields are listed in groups in Table 2-2, Table 2-3, and Table 2-4

below. The structure of the database is not explicitly discussed in this thesis. A good introduction

and reference to general relational database design is Database Design for Mere Mortals

(Hernandez 1997).

Table 2-2: Process capability data fields in record set

Target Mean Specified mean for the characteristic
Upper Limit Specified upper limit for the characteristic
Lower Limit Specified lower limit for the characteristic
Actual Output Mean Mean calculated from measurements
Actual Output Standard Deviation Standard deviation calculated from measurements
Input Mean* Mean of incoming distribution
Input Standard Deviation* Standard deviation of incoming distribution
Measurement Units The measurement units used for capability data

* Required for the variation modeling technique presented in this thesis

Notice the inclusion of the mean and standard deviation of the incoming distribution to the

particular process in the record set. These data are required to construct the equations that are

used to compute the effects a process has on the variation of an incoming distribution. The

technique that uses this type of data to construct these equations is presented in Chapter 3.

59



Traditionally process capability data only include data related to parts as they exit a process of

interest as illustrated by Figure 2-29. Including data about the input distribution to the process

requires a shift in the perception of process capability data and its uses. In the case of this thesis,

the incoming and outgoing distribution parameters are needed to successfully build the models

discussed in Chapter 3. Sometimes including data describing the incoming distribution requires

more effort in the form of measurement or inspection of the incoming parts. In other instances,

the data is known because the components were measured upon exiting the previous

manufacturing operation or a supplier provides the data with the parts. Capturing and storing this

information in the database record set is beneficial. In the case when the data is not "free," the

costs of acquisition has to be weighed against the value of the data. In addition to including data

about the incoming and outgoing distributions, process capability data can also include other

pieces of data. These data could include process parameters and setting used to produce a

population of parts, known disturbances to the process, physical properties of the workpieces, and

a wealth of other information. The information included is highly dependent on the

manufacturing firm's needs and expected uses of the data. An illustration of the proposed mental

model of process capability data is shown below in Figure 2-30, which shows the inclusion of

information about parts that enter a process, information about the process parameters, and

information about parts exiting the process.

Manufacturing Process Information
Process Capability = about Exiting

Data Parts

Figure 2-29: Traditional view of process capability data
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Process
= Parameters

Entering
Parts' =

Information

Process
Capability

Data

Manufacturing
Process

Process
Capability

Data

Exiting
= Parts'
Information

Figure 2-30: Proposed mental model of process capability data

Table 2-3: Descriptive data fields in record set

Date Date the samples were manufactured

Brass Tag Number Unique number for each manufacturing machine
used.

Plant Location Where the part was manufactured
Part Name Descriptive name of part
Part Number Unique identifying number

ClassO Engine, Automatic Transmission, Manual
Transmission

Class1 Type of engine, AT, or Manual Transmission
Data Collection Method Automatic collection vs. manual collection vs. etc.
Last Time Record was Updated When was "Meta Database" updated?
Company Significance Level The significance of the characteristic.

Number of Samples number of measurements used to compute mean,
std dev.

Process Approvement Level Red = Risky, Yellow = Caution, Green = OK
Process Production Volume Low, Medium, or High
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Table 2-4: Indexing scheme fields in record set

Feature 0 Feature index
Feature 1 Feature index, Level 1
Feature 2 Feature index, Level 2
Feature 3 Feature index, Level 3
Geometry 0 Geometry index
Geometry 0 Geometry index, Level 1
Geometry 2 Geometry index, Level 2
Geometry 3 Geometry index, Level 3
Material 0 Material index
Material 1 Material index, Level 1
Material 2 Material index, Level 2
Material 3 Material index, Level 3
Process 0 Process index
Process 1 Process index, Level 1
Process 2 Process index, Level 2
Process 3 Process index, Level 3
Feature Notes Specific Notes about the Feature
Geometry Notes Specific Notes about the Geometry
Process Notes Specific Notes about the Process
Material Notes Specific Notes about the Material

The fields listed in the tables above were determined based on the needs of a specific

manufacturing firm to ensure the data would have meaning to the engineers within the firm.

These fields were decided upon through discussions and surveys. All fields deemed important

were included. This is not a comprehensive, universal list. The exact fields a firm includes in its

database depend on the firm and the needs of its engineers.

2.5 Chapter Summary

The focus of this chapter was addressing the barriers that prevent process capability databases

from being used effectively. The challenges associated with accomplishing this, along with

possible solutions, are summarized in this section. The solutions that are original ideas and

concepts introduced for the first time in this thesis are identified by the *NEW!* symbol. The

thesis section where each solution is discussed is listed to link to more detail. Each solution has

advantages and disadvantages listed to provide a quick comparison.
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Challenge: Representing manufacturing data in a database so that it is easy to retrieve

Use part numbers to
identify data

2.1.2 + Easy to use because part numbers are well defined
- Information is lost when part number changes
- Engineers unfamiliar with product line cannot find data

Identify data with 2.1.2 + Engineers can find data easily
Feature, Process, and + Familiar terminology can be used
Material attributes - Feature attribute not easily extensible

- Some types of queries are cumbersome

Reference: (Thornton and Tata 2000)

Use Group 2.2 + Sorts parts into similar groups to reduce manufacturing
Technology (GT) to costs
organize parts + Familiar terminology can be used

- Relies on a large number of parts to be indexed to be
beneficial, i.e., to take advantage of similarities

Reference: (Raffish 1985)

*NEW!* 2.2.1 + Better defined than Group Technology, i.e., four
Identify data with attributes are identified and populated to fully
Feature, Geometry, characterize a physical aspect of a component
Process, and + Engineers can find data easily
Material attributes + Familiar terminology can be used
(Attribute + Attributes are easily extensible
Combination + New types of queries are possible
Descriptor)
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Challenge: Transforming part data into a form for easy database entry and storage

Ad hoc n/a - Difficult to ensure standard terminology is used
- Results may not be correct

Computer Aided 2.1.2 + Automated
Design (CAD) - Requires the existence of a 3-D CAD model
feature recognition - Resulting information insufficient for database entry,

e.g., process information not available
- Engineers interested in indexing data may not have

access to CAD models

Reference: (Han, Pratt et al. 2000)

*NEW!* 2.2.3 + Well structured
ACD Matrix Set + Mistakes are avoided

+ Serves as a knowledge management tool
+ Helps identify important part characteristics that may

need to be tracked
- Templates must be created and linked to data structure

Challenge: Providing a user interface to a process capability database

Command prompt n/ aytypes of queries possible
-Nt intuitive

- Engineers reluctant to learn new "language"

*NEW!* 2.3 + Intuitive fields guide user
Graphical User + Dynamic menus eliminate infeasible combinations
Interface (GUI) + Accessible via a standard web browser
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Challenge: Knowing the data to include in the process capability database

861 tio- ctn di t-
Statistical Process 1.5 + Allows for Statistical Process Control (SPC)
Capability (SPC) - Does not contain enough information to be effective
Data during the design of new products

*NEW!* 2.4 + Includes the data needed to compute process capability
Proposed record set indexes, e.g., Cpk, Cp

+ Data fields to identify when and where the parts were
produced

+ Contains data needed to construct math functions that
are introduced in Chapter 0

- Additional inputs must be made when data is entered

A PCDB is a valuable tool in designing components that can be manufactured with a high level of

quality. The challenge of creating a PCDB that is easy to query has plagued their usefulness. A

new data indexing scheme, the Attribute Combination Descriptor, was introduced that overcomes

this challenge by using information related to a characteristic's feature, geometry, material, and

process attributes. The usefulness of this indexing scheme is enhanced through the use of the

ACD Matrix Set, a tool to assist an engineer in the systematic indexing of a component's key

characteristics. The PCDB user interface and record set were also discussed.

Design engineers primarily search or query the PCDB to determine a company's manufacturing

process capability to gain insight into the amount of variation a dimension on a product will have

when produced. Querying the PCDB is very helpful when making qualitative comparisons, e.g.,

comparing the Cpk values of a few processes to find the one that produces the highest quality

parts. However, using the data to determine the effects a manufacturing process has on an

incoming distribution of parts is still difficult. This difficulty is compounded when several

processes in a series affect the same dimension. Understanding the sources of the final product's

variation is almost impossible using only the PCDB. To overcome these limitations, a

mathematical framework is developed in the next chapter.

65



66



3 Modeling of Manufacturing Processes

Chapter Highlights

* Introduce and define Desired Dimensional Change

* Introduce and define Process Imparted Dimensional Change and DeltaP

* Introduce and define Process Imparted Variation and SigmaP

* Validate DeltaP & SigmaP using physics-based math models of three processes

* Compare theoretical results to actual measurements

67



68



3.1 Introduction

Manufacturing processes are the building blocks of a production line. Most products go through

more than one process, for example turning, grinding, etc. Process capability analysis usually

focuses on the impact of a single process; however, in reality, the combined impact of many

processes ultimately determines the final quality of a product. This chapter presents the

development of the mathematical equations used to forecast the output mean and variation of a

distribution produced by a manufacturing process as a function of the incoming distribution's

mean and standard deviation. In Chapter 5, the manufacturing process equations are combined

with the math models for assembly operations created in Chapter 4 to allow for the mean and

standard deviation of a product's dimension to be computed when it is affected by multiple

processes and assembly operations.

3.1.1 Overview

The goals of this chapter are to create and validate a general method for constructing closed-form

equations for the mean and standard deviation of a dimension exiting a manufacturing process,

i.e., p out = f(pin, ai, ptarget) and acut = f(pin, Yin, ptarget).

Chapter Goals

* Produce a simple method to model and understand variation propagation through a
manufacturing process, i.e., how does the level of variance of a dimension entering a
process affect the variance of it exiting the process?

" Develop a general method for constructing closed-form equations for the mean and
standard deviation of a dimension exiting a manufacturing process as a function of the
input dimension's mean and standard deviation, i.e., p out = f(p0i, ai, pin) and a0Yo =

f(pin, ai, pin)

" Validate constructed equations

3.1.2 Background

The dimensions of produced parts are represented statistically by probability density functions.

Each probability density function has a mean and a standard deviation. A manufacturing process

receives an input distribution and transforms it into an output distribution. Figure 3-1 displays a
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graphical representation of this transformation. In this thesis, manufacturing process variation is

represented by the standard deviation of the output distribution.

Manufacturing
Process

Input Output
Distribution Distribution

Figure 3-1: Process transforms a distribution

Engineers are very interested in understanding the relationship between the input and output

distributions. Equations to compute the output mean and standard deviation as a function of the

input mean and standard deviation allows a design engineer to specify tolerances that can be

produced with an acceptable level of quality. The same equations assist a manufacturing engineer

in selecting a process that ensures components are manufactured within specification. A project

engineer also uses the equations to select suppliers by using their process capability data as input

to the equations and calculating the resulting quality of the output. For example, a Design for Six

Sigma (Antony and Coronado 2002) approach would greatly benefit from equations to calculate

manufacturing output variation because the quality of a product could be forecast prior to its

production, allowing the design to be created so that it meets the strict quality guidelines set forth

by the Design for Six Sigma methodology.

There has been a wide variety of research in the area of product and manufacturing variation.

Managing the effect variation has on the final cost and quality of a product while it is being

designed is explored by Thornton (Thomton 1999). She developed a tool set to use during the

design process to identify where variation will have significant impact. Suri and Otto (Suri and

Otto 1999) use variational modeling to select manufacturing process input parameters that render

the process outputs insensitive to variation. Their technique uses a designed experiment (Phadke

1989) to generate sensitivity functions for a manufacturing process so that its robustness can be

improved. These techniques are good for identifying the product characteristics and process

parameters that affect the quality of a manufactured product; however, they do not provide a

method to forecast a product's quality while it is being designed.
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A physics-based approach to modeling variation was introduced by Suri (Suri 1999). The

approach creates an Integrated System Model that predicts the nominal values and variation of

each output quality characteristic in a manufacturing system. Frey (Frey 1997) introduced the

concept of a process capability matrix and bias vector to model a manufacturing system. The

model developed can be used to compute the yield from the manufacturing process. A model of

how variation is transmitted through a manufacturing process is presented by Lawless, Mackay,

and Robinson (Lawless, MacKay et al. 1999). Their approach is to measure parts at each process

in the manufacturing system and determine the amount of variation added by each process and

carried through the next process. These approaches are only useful after the manufacturing

system is in operation and do not assist in designing quality into a product.

The above approaches are useful when studying different aspects of product and manufacturing

variation; however, none of them provide a simple method to compute a manufacturing process'

output mean and standard deviation as a function of the mean and standard deviation of the

distribution entering the process, i.e., none of the approaches produce po.ut = f(pin,ain) and acu =

f(pi,,ain). One approach used to generate equations for the output mean and standard deviation of

a distribution exiting a manufacturing process as a function of the incoming distribution's mean

and standard deviation is simply to fit curves to measured data. The major downside to this

approach is the inability to know what terms to include, i.e., combinations of the input mean and

standard deviation and higher order terms, since the true curve is unknown. Also, the math

functions have no real meaning or significance to an engineer, thus using them can be misleading

and testing their validity is difficult.

Developing a method to create equations of the form pt0ut = f(pin,ain) and ao = f(pin,cin) for a

manufacturing process is very challenging. Knowing how the process affects the variation is often

times a mystery because there are an infinite number of combinations of the input mean and

standard deviation. Running a design of experiment varying each parameter independently is very

time consuming and costly since each experiment would require the processing of an entire

distribution with a fixed mean and standard deviation. Adding to the challenge, this experiment

would have to be run for every process, i.e., the results from one process could not be generalized

and used to create equations for other processes.
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In this chapter, a new method to create equations that model the transformation a distribution

goes through when acted upon by a manufacturing process is presented. This new method is

simple and quick to use. The method results in closed-form equations for the output mean and

output standard deviation as a function of input mean and standard deviation. The method also

produces mathematical graphs for a process that can be used to quickly compare two processes

qualitatively. The foundation is the concept of characterizing a manufacturing process with two

math functions called DeltaP and SigmaP. DeltaP and SigmaP represent Process Imparted

Dimensional Change and Process Imparted Variation, which conceptually represent the effects a

manufacturing process has on a dimension. Using these functions, closed-form solutions for the

mean and standard deviation of a distribution exiting a manufacturing process can be constructed.

The background of the theory is presented as well as an overview of the derivation of the closed-

form equations for the output mean and standard deviation for a generic manufacturing process.

The end result of the above derivation is a set of equations for a given process that accept the

mean and standard deviation of an incoming distribution as inputs to calculate the mean and

standard deviation of the output distribution. This is shown conceptually in Figure 3-2.

pin and ain pout and Oout

Figure 3-2: End result

3.2 Theoretical Framework

The derivation of the closed-form equations, pot = f(pi.,oin) and a(,u = f(pin,ain), is founded on the

theory that two functions, DeltaP and SigmaP, can be used to represent the manufacturing process

of interest. This section introduces, describes, and defines DeltaP and SigmaP.
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3.2.1 Theory for Computing Output Mean

Manufacturing processes are the building blocks of a production line. A manufacturing process

transforms the dimensions of a component. The process acts on an incoming dimension and

attempts to transform it to a desired target value.

Desired Dimensional Change, M, is the change a process must make to a part's dimension to

result in the dimension being equal to the desired (target) value.

The desired dimensional change will be referred to as M. An equation for M can be written as

M = [pae - x 3-1

where ptarget is the desired target value for the output dimension and x is a component's incoming

dimension.

A process is setup to produce a distribution with a desired target mean, p-target; however, the output

distribution does not always have a mean equal to the target mean. The difference is often

referred to as the mean shift or the bias, b. The equation for bias is seen below in Equation 3-2.

b = pout - Ptarget 3-2

A process transforms an input dimension into an output dimension, e.g., a lathe reduces an

incoming diameter to a smaller diameter. Process Imparted Dimensional Change is the actual

change a dimension undergoes when operated on by a process when there is no process variation

present. For example, an incoming distribution of rod diameters has a mean of 25mm. The output

target mean for a turning process is 20mm. A particular rod with a diameter of 26mm is operated

on and results in a rod with a diameter of 20.1mm. In this case, the Process Imparted Dimensional

Change is -5.9mm for a desired dimensional change, M, of -6.0mm.
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Process Imparted Dimensional Change is the actual change a dimension undergoes when

operated on by a process when there is no process variation present.

Process Imparted Dimensional Change is different than bias. The bias is the actual difference

between the target mean and the mean of the output distribution. Process Imparted Dimensional

Change is the change a single dimension undergoes when a process operates on the part in the

absence of variation.

Process Imparted Dimensional Change is a function of process parameters. Typical parameters to

consider are the desired dimensional change, work piece material, cutter speed, feed, type of

machine, and type of tool, etc. Most other parameters that affect Process Imparted Dimensional

Change are specific to the process being modeled.

A special case of Process Imparted Dimensional Change is when all process parameters except

M, desired dimensional change, are fixed. This special case is named DeltaP. A graphical

definition is shown below in Figure 3-3 where the distribution on the left has zero variance (no

spread) and is transformed by the process to produce a distribution that has no variance but is

shifted by an amount DeltaP.

DeltaP is a mathematical representation of the actual change a dimension undergoes when

operated on by a process with a given set of parameters when no process variation is present. It

is a function of the desired dimensional change, M.

DeltaP = f(M) 3-3
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Incoming distribution
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Incoming distribution
passes thru a process
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N + deltaP

PN XIN POUT

Figure 3-3: Graphical definition of DeltaP

A method of generating the function DeltaP is discussed later. A sample graph of DeltaP versus

desired dimensional change is shown in Figure 3-4. In the sample shown, the DeltaP function

represents a material removal process since it is valid over negative values of M. The graph

shows that the process will produce oversized parts since it does not remove as much material as

it should, i.e., the process removes less material than the ideal since DeltaP lies above the ideal

line.

Actual Dimensional Change

M

DeltaP .

Figure 3-4: Graph of sample DeltaP

As seen in Figure 3-4, the ideal manufacturing process would have an associated Delta P = M. In

this case, a manufacturing process produces all dimensions exactly equal to the output target

dimension by making the actual dimensional change to a part equal to the desired dimensional

change.
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A DeltaP exists for a manufacturing process with a fixed set of operating parameters. Therefore, a

particular process can have an infinite number of DeltaPs, one for each set of operating

parameters. For example, a lathe has one DeltaP when it is operating on aluminum at 1500 RPM,

and the same lathe operation has another DeltaP when operating at 2000 RPM.

3.2.2 Theory for Computing Output Variation

Process Imparted Variation is the variation an under control process inherently imparts on an

incoming distribution that has zero variance. For example, a lathe is set to machine rods to a

desired output diameter. A hundred rods with identical diameters are machined by this process.

The result is a distribution of rod diameters with a mean and a standard deviation. This standard

deviation is the Process Imparted Variation.

Process Imparted Variation is the standard deviation an under control process inherently

imparts on an incoming distribution that has zero variance.

Similar to Process Imparted Dimensional Change, Process Imparted Variation is a function of

process parameters. Typical parameters to consider are amount of material removed, work piece

material, cutter speed, feed, type of machine, and type of tool. Most other parameters that affect

Process Induced Variation are specific to the process.

A special case of Process Imparted Variation is when all process parameters except M, desired

dimensional change, are fixed. This special case is named SigmaP. A graphical definition is given

below in Figure 3-5 where a distribution with zero variance (no spread) is transformed by a

process into a distribution with a standard deviation equal to SigmaP.

SigmaP is a mathematical representation of the standard deviation an under control process

with a set of given parameters inherently imparts on an incoming distribution that has zero

variance. It is a function of the desired dimensional change, M.

SigmaP = f(M) 3-4
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Figure 3-5: Graphical definition of SigmaP

The exact method of generating the function SigmaP is discussed in a later section. A sample

graph of SigmaP versus Desired Dimensional Change is shown in Figure 3-6. In the sample

shown, the SigmaP function represents a material removal process since it is valid over negative

values of M. The graph shows that the process will produce parts with increasing variance as M

increases in magnitude. SigmaP

SigmaP Output
Standard Deviation

M

Figure 3-6: Graph of sample SigmaP

The theory of a manufacturing process being represented by the two mathematical functions of

DeltaP and SigmaP can be used as a powerful qualitative tool. The DeltaPs for a process at

different operating parameters or for different processes can be reviewed to select a process that

more accurately produces dimensions at the desired value. For example, a process with a DeltaP

that is almost a 450 line would result in dimensions closer to the desired value than a process with
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a DeltaP having a smaller slope. DeltaP can also be used to evaluate how sensitive a process is to

the incoming dimension. For example, a highly non-linear DeltaP may reveal the need to set the

process up to remove less material each pass to ensure output dimensions close to the target

value.

The SigmaPs can also be used to compare how much variation different processes impart to a

distribution. For example, a process with a low, flat SigmaP would be preferred to one with a

steep slope. A SigmaP curve can also reveal a process' "sweet spot" where the variation imparted

could be minimized.

3.3 Method to Compute poutipu and Gou0 tut

The qualitative uses of Delta P and SigmaP can be beneficial to an engineer; however, the main

goal is to develop equations to calculate the mean and variance of a process' output distribution

given the input mean and variance. This goal requires the following derivation.

3.3.1 Distribution Binning and Processing

The first step in deriving the equations for the output mean and output variance is to bin the

incoming distribution. Binning is the procedure of dividing a distribution into discrete divisions,

or bins. Once the width of a bin is fixed, the height is set so that the area of the bin is equal to that

under the probability distribution function over that range. Therefore, the areas in all the bins add

to unity. The area in a bin can be calculated regardless of the type of probability density function

according to Equation 3-5. A picture of a sample binned input distribution is shown in Figure 3-7.

Area= f(pdfjP~1)dx 3-5
X-I
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banX; Xi+1 .i

Figure 3-7: Sample of a binned input distribution

The bin width and the number of bins, N, are arbitrary at this point. The smaller the bin width, the

greater number of bins required to traverse the original distribution. Also, as the bin width

decreases, the discrete representation approaches that of the original distribution.

The next step is to treat each bin as an individual distribution. Each bin will be "processed" using

the theory of DeltaP and SigmaP, resulting in an output sub-distribution. As an approximation,

each bin is considered to contain all equal dimensions. For example, the ith bin from xi.I to xi

contains components that all have the same dimension, equal to (xi-I + xi)/2. (This approximation

becomes mute at a later point.) Using this approximation, the Desired Dimensional Change for

the ith bin is calculated to be

MA = parget
(x,1 + x,)

2
3-6

Each bin is processed to create an output sub-distribution as shown in Figure 3-8 which displays a

bin entering a process and exiting as a probability density function. Using the definitions and

equations for DeltaP and SigmaP, the mean, pi, and standard deviation, a-i of the output sub-

distribution can be approximated as

x. + x.pi- +X' + DeltaP(Mi)
2

o-, ~ SigmaP(M,)
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ith ith Output
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Figure 3-8: Bin transformed into output sub-distribution

After every bin has been "processed," the result is N sub-distributions. Each sub-distribution has

a mean and standard deviation that has been calculated using Equations 3-7 and 3-8.

The main goal is still to derive equations to calculate the mean and standard deviation of a

manufacturing process' output distribution. At this point, the means and standard deviations are

known for the N distributions created by "processing" the N bins of the input distribution. The

manufacturing process output distribution is simply the combination of these N sub-distributions.

The distribution that results from mixing multiple distributions into one is often referred to as a

mixture distribution. The equations for calculating the mean and variance of a mixture

distribution are shown below.

Pmixed PiA1 + P2P2 + .+ PNPN 3-9

ied =A (al2 + P272 +..+PNJN)

+ A, +P22 +..+( 2 2 P2) 3-10

-(PP1 , +P 2p2 +...+PNN )2

The pi's are the means of the distributions being mixed, and the c-i's are the standard deviations of

the distributions being mixed. The pi term is equal to the number of measurements in the ith

distribution divided by the total number of measurements.

Equations 3-9 and 3-10 can be used to generate equations for the approximate values of an output

distribution's mean and standard deviation. The pi terms are replaced with Equation 3-5 and

Equations 3-7 and 3-8 replace the means and standard deviations. These substitutions result in the

following equations.
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N - f x+

output ~ f pdf,, u dx - + DeltaP (Mi 3-11

N X

ou ~ (pd,,Pu)dx[SigmaP(M,)]J

N 2i31

+ (pdf,,) dx L + DeltaP ( M3

-(,p~ )2

Equations 3-11 and 3-12 are approximations because they were derived from a finite number of

bins. (Remember the bin approximation made earlier?)

Manufacturing processes often generate dimensions that are normally distributed (Kalpakjian and

Schmid 2001). With this assumption, the pdf0 pu, terms in Equations 3-11 and 3-12 can be

replaced with the equation for a normal distribution. At this time, it is also advantageous to

standardize the equations above to use the reduced variable z in place of x. This allows for the

standard form of the normal distribution, mean of zero and one standard deviation is at z equal to

1, equation to be used. The main advantage to this substitution is the limits on the integrals can be

generalized. The equation for a normal distribution is

- J exp 3-13pdf,.ormaI

The reduced variable z is related to x according to

z (X-u) 3-14

The standard normal distribution is
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pdf= exp--- 3-15

Equations 3-6 and 3-14 are combined to result in the equation below for the Desired Dimensional

Change as a function of the reduced variable z.

M ,LtAarget - ZjI0}input }i2 " 3-16

Now the appropriate substitutions can be made into Equations 3-11 and 3-12. Equation 3-15 is

substituted in for the pdfipu, terms. Equation 3-16 replaces the Mi terms. Finally, the x's are

translated into z's using Equation 3-14. The results of these changes are the following equations.

N I f exp Z2)d
V2;r 2

put { i 3-17
+{ +. } 0 i-.i( {Z,_ + Z.} o-

+ Pi., + DeltaP p2, -- ' '"'' + p
2 2

2-~ exp - z [ _SigmaP P{,-z+}

+ z'(exp - 'f z (+z )O-"±"+p,,+DeltaP p,- +z +z}-1

3.3.2 Approximate Solution Transformation

Equations 3-17 and 3-18 are one step closer to the goal; however, they are still only approximate

solutions because of the original assumption of a finite number of bins. The solutions are made

exact by taking the limit as the bin width goes to zero.

Several changes occur when the bin width goes to zero. This limit converts a discrete function

into a continuous one. The discrete variable zi becomes the continuous variable z. The integral
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over the normal distribution becomes the value of the integrand at that value of z. The

summations become integrals with limits of negative infinity to positive infinity so that it spans

the entire distribution. Making these modifications and simplifying results in the following

equations.

1-otp.t = p + exp r DeltaP (,,tr, -{ zo + p } 3-19

, = ~ exp- [SigmaP (arget, -zo + nput Z

+a2 +P2
+Onpu + npu

+ ex p - z 2 2zo. DeltaP( p,,, -I zo- +P Z2 )-n-t00gt nu nptIl 3-20

+2 iput { toutput - Iinput I

+ exp {- ) [DeltaP ( 'targe -e{ zo ,inpu, + Pinpu })]2 z

-('"pu )2

The above equations are exact solutions for the mean and variance of an output distribution. The

equations require knowledge of DeltaP and SigmaP to be of practical use. Constructing DeltaP

and SigmaP is the topic of the next section.

3.3.3 Forms of DeltaP and SigmaP

Until this point in the derivation, the functions DeltaP and SigmaP have remained in the equations

for poutput and cO7tput. General forms of DeltaP and Sigma P are presented below in Equations 3-21

and 3-22.

DeltaP= ao + aM a2 M 2 +...+ aMi +...+ aMa 3-21

SigmaP= bo +bjM +b 2 M 2 ...+bkM k +...+bMI 3-22
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The functions DeltaP and SigmaP can be approximated as quadratic equations. This

approximation matches closely with simulation results. Using quadratic equations also reduces

the chance of "over fitting" the curves, i.e., having the curve pass close to all the data points but

not represent the trend of the data. Quadratic forms of DeltaP and SigmaP are used in Section 3.6

to validate the theory with very good results. The simplified forms of DeltaP and SigmaP are

below.

DeltaP = ao +a1M +a 2M
2  3-23

SigmaP = bo +b 1M +b 2M 2  3-24

3.3.4 Closed-form Solution for pto.tput and coutput

Finally, closed form equations for p.,tput and 0Youtput can be generated. Equations 3-23 and 3-24 are

substituted into Equations 3-19 and 3-20, expanded, and then simplified to produce the following.

a + ap, - ,+ 2 , + arget + , 3-25Poutpu = Anut~ao aI {/t arg et - Pinput I +a2 {flnput - 2A~nput Pt arg et + ,g +t aipu
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'u,, = b + b I4p, + o-pu, -
2

ipuparg e, + Apaget I

-2b, b2 [ +inpu -l prge[ p.u, n3pu - 2  
2pup,,a, + 2

+2b I {bi [,u( arget - Iput] +b2  put + [- - 2Pinputtarget + arget

input , +/3inpu- Pi, -4pu, +26 nu/ltpa + p_.g , +6u p +e
2_ 2 2 itrej

± [P4,ip input 3 i i nput treI-1ultarget + / target }] p +P~r;e

0.+b Ii,, 3-,p,, + 1.

2npu, input + 2 p, , - p

- , )2 + a + a|t pr, + apg -
2
lput/,pre + p rt 3-26

+2a0 {a target,,,, - pinput I + a2  + -2
2,,,n+ut/2.,a,-g2tp+ jtprge, + }

2 2 F , 1F2 .. 2 ,, ,,

1 input -p, 
+ 

a2 input - parget] pinpu + nput -i2pu, + e

+4a 2 in, ap [iu +
1

pu, - ptage]

+2a, put put , -input +f,,ge, +6 p-ltp e, + pt +6 input input + p et

a 0 4input {32-[,put, Aarge + P inag t ]

Although Equation 3-26 appears to be complicated, it is merely a function of pinput, Ginput, pLaget,

DeltaP coefficients, and SigmaP coefficients. The above equations can easily be input into a

spreadsheet to compute the mean and standard deviation of a process' output distribution for

different values of input distributions' means and standard deviations if DeltaP and SigmaP are

known for the given process.

3A Coefficients of DeltaP and SigmaP

DeltaP and SigmaP are constructed using manufacturing data related to the process of interest.

Using the second order polynomial forms of DeltaP and SigmaP allows Equations 3-25 and 3-26

to be used to find coefficients by fitting manufacturing data to them.

The first step is to locate values for pinput, 0 input, ptarget, poutput, and acutpu, for the process of interest.

This is a "set" of process capability data. At least three sets of data are required to perform a fit.

As the number of sets increases, the reliability of the fit improves. The number of sets is

represented by n with an individual set identified by the subscript j. Next, guesses are made for

the coefficients. The guesses are used with the sample pinput, ainput, and ptarget to calculate values
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for poutput and c-output. Non-negative error terms are computed by subtracting these calculated

values from the actual values of the sample data and squaring the result. The coefficients are then

adjusted, and the squared error is recalculated. Repeating this until the sum of the squared errors

is minimized identifies the best set of coefficients. These steps are easily implemented using the

solver feature in popular spreadsheet applications, e.g., Microsoft® Excel. Graphical

representations of the procedures for computing coefficients for DeltaP and SigmaP are shown in

Figure 3-9 and Figure 3-10 respectively.
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Figure 3-9: Method for finding coefficients of DeltaP
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2

88

K Assume form of SigmaP.
E.g., SigmalP = bo +b1*M + b2* M2

Set values for
bo, b1, and b2

U
For
j=1 to n

"q

Use Equation 3-26 to calculate a
value for (Tcalc_outji for each set

of process capability data

PPP-

I I

I



Applications of the Modeling Methodology

The methodology presented in this chapter is applicable to model many different manufacturing

processes. The modeling technique produces closed-form equations that accept the mean and

standard deviation of parts entering a process and the target value of the process output to

calculate forecasted values for the mean and standard deviation of parts exiting the process. The

basic requirement for applying this modeling technique is that the process must transform a

dimension. This requirement exists because DeltaP and SigmaP are functions of the Desired

Dimensional Change, M. The modeling methodology is demonstrated in the example presented in

Section 5.4.

Determine the manufacturing process I
Identify the Desired Dimensional

Change, MIRetrieve relevant capability data for
process, i.e., pin, ain, Pout, aout

Do the data represent no
normal distributions?

yes

Construct DeltaP and SigmaP(See Section 3.4)

Construct equations for pout and aoutI(See Section 3.3.4)

mum, IA.ILLLIJI mhuummmi:ummi:i~ 2'e
Figure 3-11: Illustration of modeling a manufacturing process
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The graphical illustration in Figure 3-11 shows an overview of applying the technique to create

closed-form equations to calculate forecasted values for the mean and standard deviation of parts

upon exiting a manufacturing process. The starting point is determining the process of interest.

The process is dependent on the type of part being produced. The process selection may depend

on other non-functional considerations such as what processes are available, which processes are

under utilized, etc.

Once the process has been determined, the Desired Dimensional Change must be identified.

Identifying the Desired Dimensional Change for material removal processes is often very

straightforward. For example, the depth of cut is the Desired Dimensional Change in a turning

operation (see Section 3.6.1). Another example is end milling a block where the depth of cut is

again the Desired Dimensional Change. Drilling is another material removal process that can be

modeled using DeltaP and SigmaP. Modeling drilling is interesting because the incoming hole

diameter distribution has a zero mean and zero variance, i.e., no hole exists. Using either the

definitions of DeltaP and SigmaP or simplifying Equations 3-25 and 3-26 using pinput = 0 and

Ginput = 0, it is shown that putput = DeltaP(M) and aTuput = SigmaP(M) where M, the Desired

Dimensional Change, is equal to the target mean of the drilled hole.

Forming operations can be modeled too. A rolling operation is modeled using the desired change

in thickness as M (see Section 3.6.2). A forging operation could use the change in height of the

workpiece as the Desired Dimensional Change. A forming operation that does not have an

obvious Desired Dimensional Change is sheet bending. Choosing the bend angle as the Desired

Dimensional Change is not appropriate because it cannot be used as the independent variable for

DeltaP and SigmaP, i.e. it cannot be used as M. In this case, springback is considered, and the

thickness of incoming sheets is factored into M along with a desired final dimension. Sheet

bending is one of the operations used to validate the theory. To see specifics on how it is

modeled, please refer to Section 3.6.3.

Net-shape manufacturing operations can also be modeled. Similar to drilling, the incoming mean

and distribution of the dimension are both zero, i.e., non-existent. The output mean once again

reduces to DeltaP(M), and the output standard deviation reduces to SigmaP(M) where M is the

target dimension. A specific example is the injection molding of a wall where the thickness of the

wall is the dimension of interest. The input mean is zero with zero variance since the wall does

not initially exist.
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After M has been identified, process capability data for the process and parameters of interest are

retrieved. These data must be analyzed to determine whether they represent normal distributions

or not. If they do not represent normal distributions, then closed-form solutions for ptout and acut

probably do not exist. Values for pout and acut can still be computed using Equations 3-11 and

3-12 with numerical simulation, if the probability density functions for the retrieved data are

known. If the retrieved data do represent normal distributions (often a safe assumption, at least as

a very good approximation), then DeltaP and SigmaP functions can be generated for the

manufacturing process of interest per the steps in Section 3.4. Finally, the equations for pjiu, and

acut are constructed as described in Section 3.3.4. These equations are then used to compute the

mean and standard deviation of dimensions leaving the process. The equations can also be linked

with equations for other processes to compute the effects of serial processing (several sequential

processes acting on the dimension) or linked with equations for assembly operations to compute

the final quality of a dimension. These ideas are fully explored in Chapter 5.

The major limitation to applying this methodology is that it requires access to process capability

data. The process capability data needed are values for the mean and standard deviation of parts

entering and exiting the process being modeled. This is the reason the concepts related to the

Process Capability Database in Chapter 2 are so important.

3.6 Validation of DeltaP and SigmaP Theory

Validating the theory of DeltaP and SigmaP using several manufacturing processes helps ensure

it is general and broadly applicable. The first step toward validation is to create adequate physics-

based math models of several processes. These math models are then used to simulate

manufacturing process capability data through Monte Carlo simulations. Once the sample process

capability data are generated, the math models representing the processes are "forgotten." The

simulated process capability data from the models are used to compute DeltaP and SigmaP for

each process. Once DeltaP and SigmaP are computed (see Section 3.4), the closed-form solutions

for the output mean and output standard deviation can be constructed using Equations 3-25 and

3-26. These steps are outlined below in Figure 3-12.
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Step 1: Create Math Models
* Formulate physics-based math model for a

manufacturing process, e.g., turning, rolling, etc.
* Math model accepts input dimension and computes the

output dimension

Step 2: Simulate Capability Data
1. Pick values for the mean and standard deviation of an

incoming distribution
2. Use random number generator to create 1,000 normally

distributed values that represent incoming dimensions
3. Input values to math models to calculate outgoing

dimensions
4. Compute mean and standard deviation of outgoing

dimensions, use this as process capability data

Step 3: Construct closed-form equations
1. Use simulated process capability data from Step 2 to

compute DeltaP and SigmaP curves
2. Construct po0ut = f(pin, ain, DeltaP) and

(Tout = f~pin, (Yin, DeltaP, SigmaP)

Figure 3-12: Creation of closed-form equations for theory validation

Different values for an "incoming" mean and standard deviation can be input into the closed-form

equations to compute output means and standard deviations. The same "incoming distribution"

values can be used to generate random variables with probability density functions that have the

appropriate mean and standard deviation. These random numbers are fed into the math models

and a Monte Carlo simulation run, resulting in simulated values for the output mean and output

standard deviation. These values are taken to be the "true" values the process would generate.

The output values from the closed-form solution are then compared to the simulated "true" values

to see how well they match. A close match indicates the closed-form solution created using the

theory of DeltaP and SigmaP works well in forecasting the mean and standard deviation of a

distribution as it exits a manufacturing process. These validation steps are outlined in Figure 3-13

below. The theory is validated using three different processes. The processes are turning, rolling,

and sheet bending.
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At first glance, the validation plan shown in Figure 3-12 and Figure 3-13 may seem to suffer from

circular logic, i.e., isn't the same physics-based math model that created the DeltaP and SigmaP

functions being used to generate the simulated data used for the final comparison? This, however,

is not the case. The DeltaP and SigmaP functions are not created directly from knowledge of the

physics that describe the manufacturing process. They are constructed from data that comes from

Monte Carlo simulations that use the physics-based math models. This is an important distinction.

The math model can be thought of as a "black box" with no specific information known about

how it works. For example, a thousand numbers are put into the "black box" and a thousand

numbers come out just like a thousand pieces go into a real manufacturing process and a thousand

pieces come out. The mean and standard deviation are computed for the thousand numbers going

in and the thousand numbers coming out and are treated as process capability data. This is the

process capability data utilized in the construction of the DeltaP and SigmaP functions. As for the

simulated "true" data used for comparison, the physics-based math model is used to "process" a

set of random numbers that have a known mean and standard deviation, each random number

represents one part. This is again analogous to a real manufacturing operation processing parts

from a known distribution. The mean and standard deviation of the numbers "leaving" the math

model represent the "true" values the real-world manufacturing process would generate. These

are the values to which the closed-form calculated results are compared. Simply put, the physics-

based math models are only used in Monte Carlo simulations to generate numbers whose mean

and standard deviations are treated as process capability data. The models are never used to

directly influence the construction or creation of DeltaP or SigmaP functions.
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Simulation

Use pin & Gin to generate
1,000 normally

distributed "incoming"
dimensions

Choose parameters
for an incoming

distribution, Pin & cin

I
Math model for

manufacturing process
computes "outgoing"

dimensions

Calculate the p & a of
the "outgoing"

dimensions, these are
accepted as the

"True" Values that the
process would create

"True" Values
for Pout & a:out

K-

1!
Calculated Values

for Pout & Gout

I How well do the calculated values for Pout & aout match the "true" values?

V
Figure 3-13: Validating calculated values vs. simulated values

3.6.1 Turning

Turning is a cutting operation that typically produces parts that are round in shape. In a turning

operation, the workpiece is rotating while being machined. A cutting tool moves parallel to the
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rotating workpiece to remove a layer of material. The thickness of the layer of material being

removed is known as the depth of cut.

3.6.1.1 Physics-based Math Model

This section develops a math model for a turning process to calculate the actual depth of cut as a

function of turning parameters. There are three forces acting on the cutting tool and workpiece

during turning. The actual depth of cut is partially determined by the deflections of the cutting

tool and workpiece due to these forces. The math models presented in this thesis are based on

those presented by Kalpakjian (Kalpakjian and Schmid 2001). Figure 3-14 shows a graphic of a

turning operation with dimensions of interest labeled including depth of cut (d), initial workpiece

diameter (Do), final workpiece diameter (Df), cutting tool feed (J), and the angular velocity of the

workpiece (N).

The three forces involved in a turning operation are the thrust force, the radial force, and the

cutting force. The thrust force, F, acts in the feed direction and resists the motion of the cutting

tool. The radial force, F, acts in the radial direction and pushes the cutting tool from the

workpiece. The cutting force, Fe, acts downward on the cutting tool and upward on the

workpiece. These forces are represented graphically in Figure 3-15.

The math model for turning used in this thesis calculates the actual depth of cut at the tip of the

workpiece for a turning operation with given parameters. The force that is most important to

consider when calculating the actual depth of cut is the cutting force. The cutting force dominates

the model because it causes the cutting tool to deflect away from the workpiece in a radial

direction. The cutting force also deflects the workpiece in the radial direction. Both deflections

influence the final diameter of the workpiece. Neglecting the thrust force is justified because it

deflects the cutting tool in the workpiece's axial direction. The radial force can be neglected

because it acts in the cutting tool's stiffest direction.
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Workpiece

d, depth of cut

f, feed

Df

Do

Cutting Tool

Figure 3-14: Dimensions of interest in turning

Workpiece

N

Cutting Tool

Figure 3-15: Cutting forces during turning

Fr

96

PPP---_ -- "q



The equation for cutting force is derived from calculating the power required for the turning

operation. The power required for a turning operation is related to the Material Removal Rate and

the total specific energy of the workpiece material according to the following equation.

Power = MRR * ut 3-27

The equation for Material Removal Rate is shown below.

MRR = (r)(Da)(dd)(f)(N) 3-28

Power is related to the cutting force according to the following equation.

Power = (Torque)(0) = 1(F ) " W
1000 ~2 3-29

The factor of 1000 is required to maintain unit consistency. Now, Equations 3-27, 3-28, and 3-29

can be combined to get the following equation.

3-30. I (F ) }ro = (7r)(Dag)(d)(f)(N)(ut)1000 2

Rearranging the above equation and noting that w = 27rN results in an equation for cutting

force.

3-31

The workpiece and cutting tools can be modeled as beams. The deflection at the end of a beam

can be calculated with the following equation.

3EI
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The workpiece has a circular cross section and the cutting tool has a rectangular cross section.

Using the subscript w for the workpiece and the subscript t for the cutting tool, the deflections of

each can be written as follows.

3E1 (_3E _ 3-33

* 64

3E,, M wh 3  3-34

12

The total deflection is simply the sum of the workpiece deflection and the cutting tool deflection.

taI =(5+ 3, 3-35

The total deflection causes the actual final diameter of the workpiece to be larger than the desired

final diameter. Now that the total deflection is known, the actual final diameter of the workpiece,

Da, at the tip can be computed. The equation for the actual final diameter is derived from

geometrical relationships. End views of the cutting tool and workpiece for the case where both

are perfectly rigid and for the case with the total deflection represented are shown below in Figure

3-16. Figure 3-17 shows the important aspects of the geometry used in deriving the equation for

the actual final diameter of the workpiece.
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Workpiece 
Workpiec

Figure 3-16: End views of cutting tool and workpiece for ideal and modeled cases

DW2 Center of

Workpiece

8total

Da/2

Tool Tip

Figure 3-17: Geometry considerations for calculating actual final diameter

Using the geometry drawn in Figure 3-17, the following relation can be written.

+,, 
2 = 

2+R ( f ta)23 
3

This equation can be solved for Da.

Da=2 3-37

Equations 3-31, 3-33, 3-34, and 3-37 are combined to result in the following equation for the

actual final diameter.
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Da=2 Df 2 +1000 (d (f)(Ut)(Lfw) 1000(dd)(f)(ut 3-38
" 2 ( rD: wh3'3E_ 7l : 3E t64 12,

3.6.1.2 Simulation of Process Capability Data

A Monte Carlo simulation is run to generate sample process capability data. Equation 3-38 is

used to calculate the actual final diameter of the workpiece for the simulation. The total specific

energy, u,, is treated as a stochastic variable.

The model is used to generate ten sets of process capability data. Each set contains a value for an

input mean, input standard deviation, output mean, and output standard deviation. These ten sets

of data represent the type of information that would be retrieved from a Process Capability

Database in a manufacturing firm and used to construct DeltaP and SigmaP functions for a

particular process. To be completely unbiased, the ten values for the input means and the ten

values of the standard deviations are randomly generated and paired. Each simulation run

comprises one thousand calculations.

All parameters except for the total specific energy, ut, and the original diameter of the workpiece,

D0 are set. The average value and standard deviation for u, are set. One thousand normally

distributed random numbers are generated to represent values of ut. Next, one thousand normally

distributed numbers are generated that have a mean equal to the first value of input mean and a

standard deviation equal to the value of the first input standard deviation. These values are

generated with a random number generator in Microsoft® Excel. Using the generated numbers,

the fixed parameter values, and Equation 3-38, one thousand D0 's are calculated. The mean and

standard deviation are calculated for these one thousand values. The calculated mean is the output

mean for the given input mean and standard deviation, and the calculated standard deviation is the

output standard deviation for the given input mean and standard deviation. Repeat these steps ten

times to generate the remaining simulated process capability data. This method is presented

graphically in Figure 3-18.
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Set all parameters except ut and D.
Set utavQ and Ut.stdev

Generate 1000 normally distributed
values for ut with mean = ut,avg and

standard deviation = ut,stdev

Generate 1000 normally distributed
values for Do with mean = pinput,; and

standard deviation =oinput

Calculate 1000 values for Da using the
values generated above for ut and D.

9
t J

Compute the average and standard
deviation of the 1000 values of Da

loutputi & o'output,i

J
I-""

For i= 1 to 10

Figure 3-18: Algorithm for Monte Carlo simulation method

The workpiece material is Aluminum. The cutting tool is made of steel. The parameters of the

workpiece and cutting tool are summarized in Table 3-1 and Table 3-2 respectively.

Table 3-1: Workpiece parameters for turning simulation
Length of workpiece, L, 50.0 mm

Mean of Total Specific Energy, u,,,,g 1.0 W*s/mm

Standard Deviation of Total Specific Energy, ut,stde, 0.05 W*s/mm3

Modulus of Elasticity of Workpiece, E, 70,000 MPa
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Desired face diameter, DJ 30.0 mm

Table 3-2: Cutting tool parameters for turning simulation
Length of cutting tool, L, 40.0 mm

Height of cutting tool, h 8.0 mm

Width of cutting tool, w 8.0 mm

Modulus of Elasticity of Cutting Tool, E, 200,000 MPa

Desired face diameter, Df 30.0 mm

Feedf 0.35 mm/rev

Since the desired final diameter of the workpiece is 30.0 mm, the incoming mean should be

around 35.0 mm. Values for input means will be randomly generated to fall close to 35.0 mm.

Values for standard deviations will be randomly generated to fall close to 0.5 mm.

Table 3-3: Simulated process capability data for turning operation

39.860 0.4702 30.080 0.0106

36.490 0.5829 30.036 0.0072

34.719 0.3784 30.019 0.0036

37.606 0.2113 30.048 0.0054

37.265 0.4868 30.044 0.0074

36.408 0.6690 30.035 0.0077

37.264 0.1906 30.044 0.0049

37.593 0.6031 30.048 0.0087

34.625 0.4665 30.018 0.0040

3.6.1.3 Creation ofDeltaP and SigmaP

The DeltaP and SigmaP functions can be created for the turning operation following the

technique outlined in Section 3.4. Remember that DeltaP and SigmaP are functions of M, the

desired dimensional change. In the case of turning, M is equal to the desired depth of cut, so

102



DeltaP = f(dd) and SigmaP = f(dd). The process capability data in Table 3-3 are used with the

Microsoft® Excel solver to result in the following DeltaP and SigmaP.

M = desired depth of cut, dd 3-39

DeltaP(dd) =0. 9 9 9 70 dd + 0.00079d! 3-40

SigmaP(d) =-0.0001dd +0.00007d! 3-41

These equations are plotted in Figure 3-19 and Figure 3-20 below. Notice the curve of DeltaP is

almost a straight line with a forty five degree slope, i.e., it is close to the ideal curve. This implies

the turning operation will actually make a depth of cut very close to the desired depth of cut. The

SigmaP curve in Figure 3-20 is shaped as one would expect in that it is positive everywhere, since

a negative variation cannot be imparted to a dimension.

Desired Depth of Cut, dd [mm]
0

-10 -8 -6 -4 -2

-2

-4

-6

-8 Actual
Depth

of Cut, da
-10 [mm]

Figure 3-19: DeltaP for turning operation used for validation
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0.010 Process
Imparted
Variation [mm]

0.008

0.006

0.004

0.002

-10 -8 -6 -4 -2 0
Desired Depth of Cut, dd [mm]

Figure 3-20: SigmaP for turning operation used for validation

Now that DeltaP and SigmaP are known, Equations 3-25 and 3-26 are used to created closed form

equations for the output mean and standard deviation of diameters produced by the turning

operation with the specified parameters.

3.6.1.4 Closed-form Results versus Simulation Results

The final part of validating the theory is to compare calculated values of the output mean and

standard deviation to "true" values. The math model used to simulate the sample process

capability data is used to simulate output data that is accepted as the true value the turning

operation would produce. Three values for the incoming mean, from 32.0 to 39.0 mm, and three

values for the incoming standard deviation, from 0.2 to 0.6 mm, are used for a total of nine

combinations. The values for the incoming mean and standard deviation are used with a random

number generator to produce a thousand values that are normally distributed. The mean and

standard deviation are computed for these thousand values and are used as inputs to the closed-

form equations. The incoming distribution values are listed in the first two columns of Table 3-4

along with the computed values for the thousand values in parentheses. The simulated and

calculated output values are listed in the third through sixth columns with the percent differences

listed in the last two columns of Table 3-4.
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Table 3-4: Closed-form results versus simulated results
Simulated "True" Values Closed-Form Results

Rnomn Dsrabtindo

nof Diamestrsbt for Output Distribution,, for Output Distribution % E rror
ofuametersu of Diameters

Mean Standard oUt"puf Stsndaro . Mean Standard Mean Standard
Pin Deviation Mean Deiim pcal otl Deviation L(cal-srm) Deviation

Cin Psmou t n ua0calc,out sm (acsm

(Calculated (Calculatedsm
pof 1,000 of 1,000

Generated Generated
Random Random
Numbers) Numbers)

39.0 0.6 .1 30.067 0.0107 0.00% -0.14%
(38.978) 0.5910

390 04 30.067 0 0087 30.067 0.0088 0.00% 0.43%
(39.005) (0.4074)

39.0 0.2 3073 30.067 0.0071 0.00% -3.34%
(38.995) (0.2057)

(34.) 0.913 3 230.021 0.0054 0.00% 1.63%
(34.986)_ (0.5913)

(3. 0.980 30.021 0.0040 0.00% 3.91%

(3_1.973) 0.6034

(32.009) 0.3943

(32.004) (0.2121)

All values in millimeters.

The comparison in Table 3-4 demonstrates the closed-form equations' ability to calculate the

output mean and output standard deviation for any given input mean and input standard deviation.

The closed-form solution for the mean matched the simulated results perfectly. The values for the

output standard deviations were very close to the simulated result. All closed-form calculated

standard deviation values were within 11% of the corresponding simulated value and represent

the "true" values very well on an absolute scale.

3.6.1.5 Validation Using Actual Measurements

The above validation compares results calculated with the closed-form equations with results

from simulation. The closed-form equations were constructed using data generated by Monte

Carlo simulation. This section uses actual measurements from turned parts to construct closed-

form equations. The equations are then used to calculate the expected mean and standard

deviation for a known input mean and standard deviation. The calculated values are then
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compared to the mean and standard deviation of the actual output measurements. Three separate

cases are presented.

The first case consists of process capability data measured at an American engine manufacturing

plant. The mean and standard deviations are based on measurements of diameters made before

and after a turning operation. There are a total of five sets of data. Three sets are used to construct

the closed-form equations. These data are presented in Table 3-5. The two other sets are used as

test sets.

Table 3-5: Case I - measurements used to construct closed-form equations
Measured Measured Measured Measured Outgoing
Incoming Incoming Outgoing Outgoing Target

Mean [mm] Std Dev [mm] Mean [mm] Std Dev [mm] [mm]
50.998 0.0108 49.988 0.0011 49.99
50.995 0.0073 49.988 0.0008 49.99
50.992 0.0097 49.987 0.0008 49.99

Table 3-6: Case I - comparison of measured and calculated means
Measured Measured Measured
Incoming Incoming Outgoing

Mean [mm] Std Dev [mm] Mean [mm]
51.015 0.0069 49.984
51.016 0.0084 49.988

Table 3-7: Case I - comparison of measured and
Measured Measured Measured
Incoming Incoming Outgoing

Mean [mm] Std Dev [mm] Std Dev [mm]
51.015 0.0069 0.00122
51.016 0.0084 0.00127

% Error
0%
0%

calculated standard deviations

' iDe 1 % Error
Q013_ -6.3%

41 -9.6%

The Case 1 calculated values for the output mean shown in Table 3-6 show that they match very

well with the actual measurements. The standard deviation values calculated also matched well

with the actual measured values. The percent error was less than ten percent in both sets. The

values are summarized in Table 3-7.

The second case consists of process capability data measured at the same engine manufacturing

plant. The mean and standard deviations are based on measurements of diameters made before

and after a turning operation. There are a total of four sets of data. Three sets are used to construct
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the closed-form equations. One set is used as a test set. The data sets used to construct the DeltaP

and SigmaP functions are listed in Table 3-8.

Table 3-8: Case 2 - measurements used to construct closed-form equations
Measured Measured Measured Measured
Incoming Incoming Outgoing Outgoing Outgoing

Mean [mm] Std Dev [mm] Mean [mm] Std Dev [mm] Target
63.8190 0.0103 62.9936 0.0010 62.99
63.8017 0.0099 62.9903 0.0012 62.99
63.8187 0.0080 62.9877 0.0012 62.99

Table 3-9: Case 2 - comparison of measured and calculated means
Measured Measured Measured
Incoming Incoming Outgoing

Mean [mm] Std Dev [mm] Mean [mm]
63.8186 0.0083 62.9926

Table 3-10: Case 2 - comparison of measured an
Measured Measured Measured
Incoming Incoming Outgoing

Mean [mm] Std Dev [mm] Std Dev [mm]
63.8186 0.0083 0.0012

% Error
0.2%

d calculated standard deviations
,Calculated

%OuEtgoirgro
Std Dev lmml,_ % Error
0.0009i5118:_, -23.7%

The Case 2 calculated value for the output mean shown in Table 3-9 matches well with the actual

measurement. The standard deviation value is off by about twenty four percent from the actual

measured value as seen in Table 3-10. This larger error is explained by the fact the process

capability data used to construct the equations were tightly clustered with overlap and few in

number. Some spread in the mean and standard deviations allows a better fit for DeltaP and

SigmaP. A better fit for these functions would have produced results closer to the measured

value.

The third case consists of measurements of parts turned in the Edgerton Machine Shop at MIT

specifically for this thesis. The mean and standard deviations are based on measurements of

diameters made before and after a turning operation on a manual lathe. Four "runs" were made.

Each "run" consisted of measuring thirty rods with a hand-held micrometer, turning them to

remove 0.1 mm, and re-measuring them. Each "run" is used as a set of data. Three sets are used

to construct the closed-form equations. One set is used as a test set.
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Table 3-11: Case 3 - measurements used to construct closed-form equations
Measured Measured Measured Measured Outgoing
Incoming Incoming Outgoing Outgoing Target
Mean [in] Std Dev [in] Mean [in] Std Dev [in] [in]

0.498 0.00027 0.398 0.00040 0.4
0.500 0.00016 0.391 0.00049 0.4
0.398 0.00040 0.296 0.00050 0.3

Table 3-12: Case 3 - comparison of
Measured Measured
Incoming Incoming
Mean [in] Std Dev [in]

0.398 0.00168

Table 3-13: Case 3 - comparison of
Measured Measured
Incoming Incoming
Mean [in] Std Dev [in]

0.398 0.00168

measured and calculated means
Measured - C
Outgoing Outgoing
Mean [in] Mean [in] % Error
0.29776 0295 -1.1%

measured and calculated standard deviations
Measured -Calculated'
Outgoing Outgoing

Std Dev [in] Std Dev [in] % Error
0.00273 0.00217 -20.4%

The Case 3 calculated value for the output mean shown in Table 3-12 matches well with the

actual measurement. The standard deviation value is off by about twenty percent from the

standard deviation of the actual measured values as seen in Table 3-13. This error is due to the

fact there were not many sets of data used when fitting DeltaP and SigmaP. Also, measurement

error more than likely plagues these values since they were done with a hand-held micrometer

that probably has low repeatability.

3.6.2 Rolling

Rolling is the process of changing the thickness of a workpiece by applying compressive forces

through a set of rolls. The rolls rotate and pull the workpiece into the gap between the rollers. The

workpiece thickness is reduces and exits with the modified thickness.

3.6.2.1 Physics-based Math Model

This section develops a math model for a rolling operation to calculate the actual change in

thickness a workpiece undergoes as a function of rolling parameters. The compressive forces that

act to reduce the thickness of the workpiece also act to deflect the rolls. Figure 3-21 shows a

schematic of a typical rolling operation. Two rollers are shown operating on a piece of sheet

metal. The equations presented in this thesis are based on those presented by Kalpakjian

(Kalpakjian and Schmid 2001).
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Roll

2K
Figure 3-21: Schematic of rolling operation

The math model for rolling in this thesis calculates the change in thickness of the workpiece at its

center. This calculation is made by modeling the rolls as two beams with a distributed force

applied to each. The distributed force is the roll force per unit length. The applied force causes the

rolls to deflect. This deflection results in a final workpiece thickness greater than the roll gap, the

distance between the rolls in their non-deflected state. A diagram of the force acting on the rolls is

shown below in Figure 3-22.
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q

Figure 3-22: Force acting on rolls

The model assumes the workpiece to have a width equal to the rolls. Also, the model assumes the

rolling operation acts on discrete workpieces (as compared to continuous sheet rolling) so that

distributions of parts can be input into the operation.

The equation for the distributed force acting on a roll (roll force per unit width) depends on the

roll-strip contact length (L), the width of the workpiece (w), and the average true stress of the

workpiece in the roll gap (Yam). The relationship between these values is

F
q = =LY, 3-42

The roll-strip contact length (L) is given by the following equation.

L = R(h hfd,,ji,,d) 3-43

where R is the roll radius, h, is the initial thickness of the workpiece, and hf is the final thickness

of the workpiece.
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The average true stress of the workpiece in the roll gap (Yavg) can be calculated using the

following equation

vg = Ke" 3-44

where K is the strength coefficient for the workpiece material, epsilon is the true strain of the

material in the roll gap, and n is the strain-hardening (or work-hardening) exponent. The true

strain of the material in the roll gap can be computed with the following equation

e =ln - J
hf 3-45

The deflection the rollers undergo when subjected to the distributed load is

5qw4

3 8 4 E,,,I,,
3-46

where Er01 1 is the modulus of elasticity of the roll material, and Irol is the moment of inertia of a

roll and is described by the following equation.

3-47
4

The final thickness, hf0 ctual, of the workpiece is the desired thickness (roll gap) plus the deflection

of both rollers. The equation for the final thickness is

hf actual =hf +desired + 2 ,oll 3-48

Combining Equation 3-42 through Equation 3-48 and simplifying results in the following

equation for the final workpiece thickness.
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5Kw4 R (h -hf desired) hLi
hf actual =hf ,desired + 4 8E,,rllirR4  hf )i

The above equation represents a simple physics-based math model for the thickness of the center

of a workpiece upon exiting a rolling operation and is a sufficient model for the purpose of this

thesis. A more complete treatment of modeling a sheet rolling operation including the variation in

sheet thickness is presented in work by Ota (Ota 2000).

3.6.2.2 Simulation of Process Capability Data

A set of Monte Carlo simulations is run to generate sample process capability data. Equation 3-49

is used to calculate the thickness of the center of a workpiece upon exiting a rolling operation.

The strain-hardening coefficient, n, is treated as a stochastic variable. Treating n as a stochastic

variable is simply a method "introducing" variation into the process model.

The model is used to generate ten sets of process capability data. Each set contains a value for an

input mean thickness, input standard deviation of the thickness, output mean thickness, and

output standard deviation of the thickness. These ten sets of data represent the type of information

that would be retrieved from a Process Capability Database in a manufacturing firm and used to

construct DeltaP and SigmaP functions for a rolling operation. To be completely unbiased, the ten

values for the input means and the ten values of the standard deviations are randomly generated

and paired. Each simulation run comprises one thousand calculations.

All operation parameters except for the strain-hardening coefficient, n, and the original thickness

of the workpiece, h, are set. The average value and standard deviation for the strain-hardening

coefficient are set. One thousand normally distributed random numbers are generated to represent

values of n. Next, one thousand normally distributed numbers are generated that have a mean

equal to the first value of input mean and a standard deviation equal to the value of the first input

standard deviation. These values are generated with a random number generator in Microsoft®

Excel. Using the generated numbers, the fixed parameter values, and Equation 3-49, one thousand

hfactuai's are calculated. The mean and standard deviation are calculated for these one thousand

values. The calculated mean is the output mean for the given input mean and standard deviation,

and the calculated standard deviation is the output standard deviation for the given input mean
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and standard deviation. These steps are repeated ten times to generate the remaining simulated

process capability data. This method is presented graphically in Figure 3-23.

K L

Randomly generate input means, pinput,
and input standard deviations, 0 -;nput.

Generate 1000 normally distributed
values for n with mean = navg and

standard deviation = nstdev

Generate 1000 normally distributed
values for ho with mean = 1 input,, and

standard deviation = aOnputj

Calculate 1000 values for hfactual using the
values generated above for n and ho.

Compute the average and standard
deviation of the 1000 values of hfactual

I
J
) For i= 1 to 10

poutputi o s outputj

Figure 3-23: Algorithm for Monte Carlo simulation method for rolling

The workpiece material is copper. The rolls are made of steel. The parameters of the workpiece

and rolls are summarized in Table 3-14 and Table 3-15 respectively.
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Table 3-14: Workpiece parameters for rolling simulation
Width of workpiece, w 200.0 mm

Mean of strain-hardening coefficient, nVg 0.54

Standard Deviation of strain-hardening coefficient, nsde, 0.05

Strength coefficient, K 315 MPa

Desired thickness, hfdesired 20.0 mm

Table 3-15: Roll parameters for rolling simulation
Width of roll, w 200.0 mm

Radius of roll, R 100.0 mm

Modulus of Elasticity of Roll, Eroii 200,000 MPa

Since the desired final thickness of the workpiece is 20.0 mm, the incoming mean should be

around 25.0 mm. Values for input means will be randomly generated to fall close to 25.0 mm.

Values for standard deviations will be randomly generated to fall close to 0.5 mm.

Table 3-16: Simulated process capability data for rolling operation

22.8 0.7852 20.002 0.0007

27.198 0.3309 20.006 0.0004

24.522 0.8948 20.004 0.0008

29.237 0.6397 20.008 0.0006

28.466 0.0776 20.007 0.0004

27.399 0.3291 20.006 0.0004

27.557 0.7207 20.006 0.0007

25.493 0.1918 20.005 0.0004

22.449 0.2332 20.002 0.0003

24.394 0.5911 20.004 0.0006

3.6.2.3 Creation ofDeltaP and SigmaP

The DeltaP and SigmaP functions can be created for the rolling operation following the technique

outlined in Section 3.4. Remember that DeltaP and SigmaP are functions of M, the desired

114



dimensional change. In the case of rolling, M is equal to the desired change in thickness, so

DeltaP = f(Athickness) and SigmaP f(Athickness). The process capability data in Table 3-3 is used

with the Microsoft® Excel solver to result in the following DeltaP and SigmaP.

M = desired change in thickness, A thicIkness

DeltaP = (0.9991) (Athickness ) + (0.0000045) (Athicness )2

SigmaP = (-0.000093) (Athickness + (0.000006) ( Athickness )2

3-50

3-51

3-52

These equations are plotted in Figure 3-24 and Figure 3-25 below. Notice the curve of DeltaP is

almost a straight line but diverges from the ideal case represented by the dotted line.

Unfortunately, this implies the rolling operation will decrease the thickness of a sheet by an

amount less than desired. The SigmaP curve in Figure 3-25 is shaped as one would expect in that

it is positive everywhere, since a negative variation cannot be imparted to a dimension.

Desired Change in Thickness [mm]

-10 -8 -6 -4 -2
0

-2

-4

-6

-8 Actual Change
in Thickness
[mm]

-10 A

J.a
Figure 3-24: DeltaP for rolling operation used for validation
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Desired Change in Thickness [mm]

Figure 3-25: SigmaP for rolling operation used for validation

Now that DeltaP and SigmaP are known, Equations 3-25 and 3-26 are used to created closed form

equations for the output mean and standard deviation of thicknesses produced by the rolling

operation with the specified parameters.

3.6.2.4 Closed-form Results versus Simulation Results

The final part of validating the theory is to compare calculated values of the output mean and

standard deviation to "true" values. The math model used to simulate the sample process

capability data is used to simulate output data that is accepted as the true value the turning

operation would produce. Three values for the incoming mean, from 22.0 to 27.0 mm, and three

values for the incoming standard deviation, from 0.2 to 0.6 mm, are used for a total of nine

combinations. The values for the incoming mean and standard deviation are used with a random

number generator to produce a thousand values that are normally distributed. The mean and

standard deviation are computed for these thousand values and are used as inputs to the closed-

form equations. The incoming distribution values are listed in the first two columns of Table 3-17

along with the computed values for the thousand values in parentheses. The simulated and

calculated output values are listed in the third through sixth columns with the percent differences

listed in the last two columns of Table 3-17.
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Table 3-17: Closed-form results versus simulated results

Simulated, "True" Valuesa Closed-Form Results
Icming Distribution for (jutput'Distribution. for Output Distribution % Error

of Seet hickess of Sheet Thickness of Sheet Thickness

Mean Standard Output" Standard Mean Standard Mean Standard
An Deviation ,Mean, F t pcaloMl Deiation (asm) Deviation

Sim (calc-sim)

(Calculated (Calculatedcacusm
pof 1,000 c of 1,000
Generated Generated
Random Random
Numbers) Numbers)

2.8 0.6 20.006 0.00061 0.00% 2.60%

(26.988) (0.4108), 2Q.006, ~0.00048 0.00% 1.60%
0 0 20.006" , ;d.0Ob47_ 20.006 1.03,00% 360%

(26.990) (0.2041)
25.0 0.6 4~k'

(25.004) (0.6089) 20.004 0.0006V 20.004 0.00059 0.00% -3.00%

(25.000) (0.4018) 20004 0.00045 0.00% -1.20%

(25.00) 0.254 20.004 0.00036 0.00% -0.30%
__25.000)__ (0.2054)

(2. 97 (0.6 85) 0..005053 2..0% -3.00%
(21.987) (0.5985)

(21992) 0.4032 2 0 00 20.002 0.00038 0.00% -4.10%

(22.001) 0.2001

All values in millimeters.

The comparison in Table 3-17 demonstrates the closed-form equations' ability to calculate the

output mean and output standard deviation for a variety of given input means and input standard

deviations. The closed-form solution for the mean matched the simulated results perfectly. The

values for the output standard deviations were very close to the simulated results. All standard

deviation values were within 7% of the corresponding simulated value.

3.6.3 Sheet Bending

Sheet bending is a sheet-metal forming process. In sheet bending, a force is applied to a metal

sheet to deform it around a die. The force is then removed, and the sheet maintains some of the

imposed deformation.

3.6.3.1 Physics-based Math Model

Sheet bending is different from the two previous operations presented, turning and rolling, in the

sense that it is does not change a dimension of the incoming workpiece; it affects the shape of the

incoming workpiece. For example, in turning, the operation removes material from the workpiece
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to produce the desired diameter. In sheet bending, the workpiece is a sheet of metal that is bent to

produce a desired shape. In order to apply the theory of DeltaP and SigmaP, the actual

dimensional change must be a function of the desired dimensional change, M. To accomplish this

for sheet bending, the design of the component being made will be considered, instead of

focusing on the workpiece. The characteristic of interest will be the distance from the -A- datum

to the outer surface of the part. This characteristic is labeled Xin Figure 3-26.

L R10 mm

900
3 mm

X
Note: -A- is relative to -B-, not to
inside surface of part.

Figure 3-26: Final desired shape of bent component

The deformed shape is held by the metal due to plastic deformation; however, elastic recovery is

present. This elastic recovery is known as springback. To produce the desired shape, over

bending is required to compensate for springback. For example, to produce the desired shape in

Figure 3-26, the part must be initially bent greater than 900. The die is made so that an incoming

workpiece with the nominal thickness and nominal material properties will be over bent and

springback to achieve the final desired shape. Figure 3-27 shows a picture of a workpiece in the

die after it has been release and allowed to springback to the desired shape. Figure 3-28 shows a

graphical representation of springback by representing the part in the fully deflected state with

dotted lines and the part after springback with solid lines.

In reality, the workpiece thickness varies from piece to piece; therefore, the final dimension of the

characteristic of interest, X, also varies. If no springback existed, then the dimension X would be
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equal to the thickness of the workpiece. The existence of springback complicates the

understanding of how the dimension X will vary as the variation of the workpiece thickness

varies. The theory developed in this thesis assists in calculating the mean and variation of X as a

function of the workpiece thickness distribution.

Figure 3-27: Workpiece in the die

Ri
Rf

After springback

Before springback

Figure 3-28: Graphical representation of springback
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This math model for a sheet bending operation developed in this section is based on equations

presented in Kalpakjian (Kalpakjian and Schmid 2001). The final radius of a workpiece after

springback occurs is given by Rf. The equation for springback is a function of the die radius (R1),

the thickness of the workpiece (), the Modulus of Elasticity (E) of the workpiece, and the Yield

Stress (Y) of the workpiece and is shown below.

=4 -y3 3(RLYJ+1 3-53
Rf ET ET

The initial and final angles are related to the radii per the following equation.

Ria, = Rcaf 3-54

Now, the characteristic of interest can be related to the operation parameters.

X = + T 3-55
tan af

where L is the length from the center of the die radius to the end of the bent workpiece.

Combining the above three equations produces an equation for X as a function of die and

workpiece parameters.

L
X = - |T

RY RY 3-56tan ai 4 ( 3 _3(R7J+1j]
ET ET

Equation 3-56 allows for the characteristic of interest to be calculated for any combination of

process and workpiece parameters. This equation will be used in the next section to run Monte

Carlo simulations.
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3.6.3.2 Simulation of Process Capability Data

A set of Monte Carlo simulations is run to generate sample process capability data. Equation 3-56

is used to calculate X (see Figure 3-26) upon exiting the sheet bending operation. The yield stress

of the workpiece material, Y, is treated as a stochastic variable. Treating Y as a stochastic variable

is simply a method "introducing" variation into the process model.

The model is used to generate ten sets of process capability data. Each set contains a value for an

input mean thickness, input standard deviation of the thickness, output mean for X, and output

standard deviation of X. These ten sets of data represent the type of information that would be

retrieved from a Process Capability Database in a manufacturing firm and used to construct

DeltaP and SigmaP functions for a sheet bending operation. To be completely unbiased, the ten

values for the input means and the ten values of the standard deviations are randomly generated

and paired. Each simulation run comprises one thousand calculations.

All operation parameters except for the yield stress of the workpiece material, Y, and the original

thickness of the workpiece, T, are set. The average value and standard deviation for the yield

stress are set. One thousand normally distributed random numbers are generated to represent

values of Y. Next, one thousand normally distributed numbers are generated that have a mean

equal to the first value of input mean and a standard deviation equal to the value of the first input

standard deviation. These values are generated with a random number generator in Microsoft®

Excel. Using the generated numbers, the fixed parameter values, and Equation 3-56, one thousand

X's are calculated. The mean and standard deviation are calculated for these one thousand values.

The calculated mean is the output mean for the given input mean and standard deviation, and the

calculated standard deviation is the output standard deviation for the given input mean and

standard deviation. These steps are repeated ten times to generate the remaining simulated

process capability data. This method is presented graphically in Figure 3-29.
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Randomly generate input means, pinput,
and input standard deviations, O-input.

rib
C
[C

Generate 1000 normally distributed
values for Y with mean = Yavg and

standard deviation = Ystdev

Generate 1000 normally distributed
values for T with mean = plnputj and

standard deviation = o-input

Calculate 1000 values for X using the
values generated above for Y and T.

]
I

Compute the average and standard
deviation of the 1000 values of X

[ /-IoLutpIut'i & 0
coutput'i H-

J

Figure 3-29: Algorithm for Monte Carlo simulation method for sheet bending

The workpiece material is steel. The parameters of the workpiece and die are summarized in

Table 3-18 and Table 3-19 respectively.

Table 3-18: Workpiece parameters for sheet bending simulation
Desired mean of thickness 3.0 mm

Mean of yield stress, Yay,, 500 MPa

Standard Deviation of yield stress, Ystdev 25 MPa

Modulus of elasticity 200,000 MPa
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Table 3-19: Die parameters for sheet bending simulation
Radius of die, R, 10.0 mm

Die angle, ai 92.30

Length from center of die radius to end of piece, L 20.0 mm

The desired final dimension of X is 3.0 mm. The incoming mean of the thickness should be

around 3.0 mm, since the thickness is a major determining factor to the final value of X and the

die in the example is made so that the springback associated with a 3.0 mm thick part would

result in the final desired shape, an angle of ninety degrees. Allowing input dimensions less than

the output target dimension is unique to the sheet bending operation. For turning and rolling, the

input dimension had to be greater than the target dimension because both processes are reduction

operations, whereas sheet bending is simply transforming the shape. The nature of sheet bending

and the design example warrant the use of input material close to 3.0 mm; therefore, generating

inputs far from this value does not make realistic sense. So, values for input means for thickness

are randomly generated to fall close to 3.0 mm. Values for standard deviations are randomly

generated to fall close to 0.05 mm.

Table 3-20: Simulated process capability data for sheet bending operation

2.894 0.064 2.924 0.062

3.108 0.026 3.082 0.044

2.978 0.072 2.986 0.067

2.782 0.031 2.847 0.049

3.174 0.057 3.130 0.058

3.118 0.048 3.088 0.052

3.123 0.061 3.089 0.062

3.023 0.036 3.018 0.048

2.874 0.045 2.909 0.054

2.972 0.080 2.980 0.069
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3.6.3.3 Creation ofDeltaP and SigmaP

The DeltaP and SigmaP functions can be created for the sheet bending operation following the

technique outlined in Section 3.4. Remember that DeltaP and SigmaP are functions of M, the

desired dimensional change. In the case of sheet bending, M is equal to the target value of X

minus the input thickness.

M = X, g, - T 3-57

Notice that M can be either positive or negative depending on the incoming workpiece thickness.

The process capability data in Table 3-20 is used with the Microsoft® Excel solver to result in the

following DeltaP and SigmaP.

DeltaP = -0.00033+0.26669(M)+0.12428(M) 2  3-58

SigmaP(M)= 0.04098+0.01850 *(M)-0.01289*(M) 2  3-59

These equations are plotted in Figure 3-30 and Figure 3-31 below. Notice the curve of DeltaP is

almost flat and diverges from the ideal case represented by the dotted line. This implies the sheet

bending operation will produce parts that are not close to the desired output as the sheet thickness

varies from the desired value, which makes sense because the dimension under consideration is

heavily dependent on the incoming sheet thickness. The SigmaP curve in Figure 3-31 has an

interesting shape. It has a positive slope as it crosses the y-axis. This means that slightly thicker

pieces of sheet metal produce parts with less variation, which makes sense because the

springback is less severe for thicker stock. The SigmaP curve does appear to be approaching the

x-axis to the left of -1. These functions are only valid close to the y-axis due to the nature of sheet

metal bending, i.e., the die was designed to handle sheets with a nominal thickness of 3mm,

varying too much from this invalidates the equations generated with the retrieved manufacturing

data.
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Figure 3-30: DeltaP for sheet bending operation
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Now that DeltaP and SigmaP are known, Equations 3-25 and 3-26 are used to created closed form

equations for the output mean and standard deviation of thicknesses produced by the sheet

bending operation with the specified parameters.

3.6.3.4 Closed-form Results versus Simulation Results

The final part of validating the theory is to compare calculated values of the output mean and

standard deviation to "true" values. The math model used to simulate the sample process

capability data is used to simulate output data that is accepted as the true value the turning

operation would produce. Three values for the incoming mean, from 2.9 to 3.1 mm, and three

values for the incoming standard deviation, from 0.01 to 0.10 mm, are used for a total of nine

combinations. The values for the incoming mean and standard deviation are used with a random

number generator to produce a thousand values that are normally distributed. The mean and

standard deviation are computed for these thousand values and are used as inputs to the closed-

form equations. The incoming distribution values are listed in the first two columns of Table 3-21

along with the computed values for the thousand values in parentheses. The simulated and

calculated output values are listed in the third through sixth columns with the percent differences

listed in the last two columns of Table 3-21.
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Table 3-21: Closed-form results versus simulated results for sheet bending

Incomi. Dsrbto iuaed "True" values, Closed-Form Results
or ~fo Out~i iuto put Distribution, for Output Distribution % E rror
forShet hicnes OX Dimen'sion" of X Dimension

Mean Standard o tut adar Mean Standard Mean Standard

Pi, Deviation M en D eViaiopnp c Deviation (catc-sim) Deviation

(Calculated (Calculated a0cl~u i
p of 1,000 a of 1,000
Generated Generated
Random Random

Numbers) Numbers)

3.1) 0.0087 3.077 0.089 -0.01% 2.35%
(3.102) _ 0.105)

(3.100) 0.09.054 3.075 0.054 -0.01% 0.20%

3.1 0.01 0.039 3.075 0.040 0.00% 0.61%
_Q10Q__ (0.010)

3.0 0.0 0.078 3.003 0.081 -0.07% 3.46%

(3.01) (0.015)-0% 1.4

3.0 0.05 2.20 0.054 0.06% 0.65%
(3. ___)(0.049)

0. 0.11 0040:- 3.000 0.042 -0.03% 3.62%
(30 0 __ .010)

2.930r 0.10 0.".- ".082,", - ' 2.929 0.083 -0.01% 1.74%
__Q90Q__ __(0.101)

2.96,, 0.006.",L;,, 2.927 0.057 0.05% 0.43%
_ (2.899)__ (0.053)

(2900) 0.00 4 2.928 0.043 -0.03% 5.05%

All values in millimeters.

The comparison in Table 3-21 demonstrates the closed-form equations' ability to calculate the

output mean and output standard deviation for a variety of given input means and input standard

deviations. The closed-form solution for the mean matched the simulated results very closely with

the maximum percent error less than 0.1%. The values for the output standard deviations were

very close to the simulated results. All standard deviation values were within 6% of the

corresponding simulated value.

3.7 Guidelines to Equation Construction and

Usage

Several considerations are important when constructing and using closed-form equations for the

mean and standard deviation exiting a process. In this section, several heuristic guidelines are

presented that are helpful when deciding on the data to use to construct the equations, the amount

of data required to construct accurate equations, and the range of possible inputs for which the
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equations are valid. Quantitatively deriving universal rules is impossible because of the infinite

combination of possible processes, parameters, and input values; thus, these guidelines are based

on heuristics. The detailed development of these guidelines is presented in Appendix H.

Guideline #1:

Guideline #2:

Guideline #3:

Using more data to construct the closed-form equations produces more

accurate results

Using as much data as possible to construct the equations eliminates the chance

that a few outlier data points would cause misleading results. Also, using more

data implies the range of data being used would be larger and thus produce better

results. See Guideline #3.

A minimum of n+1 sets of unique data are required to construct the

equations, where n is the highest power appearing in the assumed form of

DeltaP and SigmaP

This requirement exists to ensure the bare minimum of data are used to capture

the shape of DeltaP and SigmaP. The uniqueness requirement is in place to

guarantee that no two sets of data are identical, i.e., same values for the means

and standard deviations. If two sets of data are identical, the second set of data

does not add any new information that can be used to construct the equations.

The minimum number of data sets required is needed because that is the number

of coefficients that are being computed. For example, if DeltaP and SigmaP are

assumed to be second order polynomials (n=2), then a minimum of three unique

sets of data are required to find ao, a,, and a2 .

The more spread present in the data used to construct the closed-form

solutions, the better.

The technique presented in this thesis of modeling the mean and standard

deviation exiting a manufacturing process is very good at "interpolating" values.

In other words, the closed-form equations produce accurate results when the

inputs to them fall within the range of values used to construct the equations. For

example, if values for means spanning from 50 to 60 were used to construct the

equations, then the equations would produce accurate results for an input mean of

55. Using even a few data sets that have a lot of spread to construct the closed-

form equations produces equations that are more accurate over a wider range of
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Guideline #4:

Guideline #4:

input values than using a lot of data sets that are clustered around a single set of

values.

"Extrapolation" is possible with the closed-form equations.

The closed-form equations for the mean and standard deviation exiting a

manufacturing process can accept input values that lie outside the range of values

used to construct them and still compute accurate results. Estimating how far

outside this range is difficult. The wider the spread of data used during

construction, the further outside this range input values can be used, i.e., the use

of highly spread data to construct the equations does a better job of capturing the

true shape of the curves, thus produces better results when inputs are used that

fall outside the original range. A rule of thumb is that the equations are valid for

inputs that fall within the range of "construction data" and for one time the range

of "construction data." For example, if values for means spanning from 50 to 60

were used to construct the equations, the equations would be valid for inputs

ranging from 40 to 70. Of course, physical limitations do exist and should always

be considered, e.g., if the above example were for a turning operation that creates

an output diameter of 49, then it makes no physical sense to use any number less

than 49 as an input. An upper physical limit also exists, e.g., maybe the lathe in

the example physically cannot accept an incoming rod larger than 65, thus using

inputs greater than 65 for the equations is fruitless.

New data sets can be used to verify and "train" the equations.

The purpose of using the closed-form equations is to forecast the mean and

standard deviation that will be produced with a particular process. This implies

that a calculation will more than likely be followed by the making of parts. The

parts can be measured and the data used to verify the equations forecasted

accurate values. The data can also be used to "train" the equations in the sense

that the new data can be combined with the original "construction data," and the

closed-form equations can be re-constructed incorporating the newly measure

data. The new equations will most likely produce more accurate results over a

wider range of input values (see previous Guidelines).
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3.8 Chapter Summary

The goals of this chapter were to create and validate a general method for constructing closed-

form equations for the mean and standard deviation of a dimension exiting a manufacturing

process, i.e., P out = f(pin, Yin, ptarget) and cut = f(pin, Gin, ptarget). The challenges associated with

accomplishing these goals along with possible solutions are summarized in this section. The

solutions that are original and were introduced for the first time in this thesis are identified by the

*NEW!* symbol. The section of the thesis where each solution is mentioned or discussed is

listed in the summary to link to more detail. Each solution has its advantages and disadvantages

listed to provide a quick comparison.
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Challenge: Understanding variation propagation through a manufacturing process

Process specific,
physics-based
modeling

n/a +

+

Can provide insight into a process
Can be used to quantify the effects of changing
operating parameters
Requires great expertise
Time consuming to build
Often done after process is in operation

Curve fit output data 3.1.2 + Simple approach
to input data + Requires no prior knowledge of the process

- No physical significance to justify answers, i.e., data is
blindly curve fit

- Requires trustworthy process capability data
- Difficult to know what terms to include in curve fit

*NEW!* 3.2 + Simple to use
Use equations to + Backed by physical significance, i.e., the foundation is
developed in this 3.5 the theory of a process imparting a dimensional change
thesis, i.e., Equations and variation to components, which are both physical
3-25 and 3-26 concepts (see Section 3.2)

+ Requires no prior knowledge of the process
+ Quickly construct equations for many processes to make

comparisons
+ Generally applicable, i.e., this approach can be used to

develop equations for many different types of
manufacturing processes

+ Computationally inexpensive
+ Can be created early in the design process
+ Link equations together to represent serial processing

(See Section 5.2.3)
- Requires trustworthy process capability data
- Cannot be used to optimize operating parameters
- Closed-form solutions possible only if "incoming"

dimensions are normally distributed
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Challenge: Defining a framework to represent the effects a manufacturing process has

on component dimensions

* NLVV!*

Theory of Desired
Dimensional
Change, Process
Imparted
Dimensional
Change, Process
Imparted Variation

3.2
3.2.2

+ Can be represented with equations or graphically
+ Easy to use to qualitatively compare processes' abilities

to create quality parts
+ Building block for constructing closed-form solutions,

i.e., o- = f(in, ai, gin) and aout = f~pin, (in, pin)
- Requires trustworthy process capability data to be

effective

Challenge: Generating closed-form equations

* NF-WI-
Use the theory of
Process Imparted
Dimensional Change
and Process
Imparted Variation
to generate closed
form equations

3.5 +

+
Straighttorward steps
Easy to implement in a wide variety of computer
applications
Process capability data must be available

Challenge: Calculating coefficients of functions that represent a manufacturing process

Find coefficients that
minimize squared
error

3.4 + Simple to solve
- Relies on trustworthy process capability data
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Challenge: Validating theory and resulting closed-form equations

Compare closed- 3.6 + Simulation models not difficult to construct
form equation results + Multiple simulations can be run with little effort
to simulated data - Simulation model does not perfectly represent actual

manufacturing process

Use actual 3.6.1s + Demonstrates theory works with real data
measurements to + Very easy to perform required steps
construct and test - Limited availability of actual measurements
closed-form - Measurement error could be present
equations

A production line is comprised of manufacturing processes. Understanding how these processes

affect the quality of the parts they produce is very important. This chapter presented the

development of the mathematical equations to forecast the output mean and variation of a

distribution produced by a particular process as a function of the incoming distribution's mean

and standard deviation. As a part of this development, a theory was introduced stating that a

manufacturing process with a specified set of operating parameters can be represented by two

math functions, DeltaP and SigmaP. These functions are used to construct the desired closed-

form equations used to calculate the output mean and standard deviation. Three physics based

math models were used to validate the theory. The three processes used were turning, rolling, and

sheet bending. The theory of DeltaP and SigmaP performed very well in forecasting the quality of

a component or assembly dimension upon exiting the appropriate manufacturing operation.

A pictorial overview of the pou and - closed-form equation derivation is shown in Figure 3-32.

The first step of the derivation is the binning or dividing of the incoming distribution. The bins

are then treated as individual distributions, and each bin is "processed" to compute the mean and

standard deviation it has upon exiting the process. The individual exiting distributions are then

combined to produce the final distribution of all the parts. An overview of the derivation was

presented in this chapter, a complete derivation is presented in Appendix G.
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Incoming istribution

pin with Cain

Break Apart

I + I a

Process represented by DeltaP and SigmaP

ptarget ptarget ptarget ptarget ptarget ptarget ptarget ptarget

Combine +
Output Distribution

ptarget
with pout and cyout

Figure 3-32: Pictorial summary of mathematical derivation
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4 Modeling of Selective Assembly

Chapter Highlights

* Define and describe multiple selective assembly techniques

* Introduce two new techniques

* Develop algorithm to simulate selective assembly operations

* Produce closed-form equation for selective assembly standard deviation

* Produce closed-form equation for selective assembly scrap

* Present example problems of non-normal distributions

* Validate selective assembly closed-form equations using Monte Carlo simulation
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4.1 Introduction

Most products are comprised of more than one component. These products require some type of

assembly during production. Assembly is defined as the putting together of manufactured parts to

make a completed product. An assembly process can be the joining of two or more parts, the

fitting of one part to another, the fastening of two mating parts, or a number of other scenarios.

The purpose of this chapter is to explore how assembly operations, both random assembly and

selective assembly, affect the final mean and variation of a product's dimensions and functional

characteristics such as weight, resistance, etc. Math models are created to be combined with the

math functions for manufacturing processes developed in Chapter 0 to forecast the mean and

standard deviation of a dimension as it exits a production system.

Selective assembly is the act of measuring components and selecting two mating components

based on those measurements to create an assembly. A review of existing popular techniques for

implementing selective assembly is presented in this chapter. Two new approaches that minimize

scrap are introduced and discussed. A very general algorithm is introduced that quantifies the

effect selective assembly has on the cost and quality of an assembly. This algorithm is used to

construct closed-form equations for the variation and scrap produced by selective assembly when

two normal distributions are combined. Engineers can use the algorithm and resulting closed-

form equations to help decide when and what type of selective assembly to implement. For

example, the equations can be used to compare the final variation a dimension will have if the

product is assembled using selective assembly so that an engineer can decide if the reduced

variation is worth the added cost.

4.1.1 Overview

The main focus of this chapter is to demystify selective assembly so that it can be effectively and

intelligently implemented to manage product variation.
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Chapter Goals

" Discuss the advantages and disadvantages of implementing selective assembly

" Define new selective assembly techniques for use when component distribution
variances are unequal

* Develop criteria and analysis approach to use when choosing a selective assembly
technique

* Create closed-form equations to calculate the standard deviation of an assembly that is
created by a selective assembly operation

" Explore the robustness of selective assembly to changes in incoming component
variances

4.1.2 Background

A general case of assembly is the joining of any number of parts. For the discussion in this thesis,

the example used will be the joining of an "A" part with a "B" part to form a "C" assembly. This

simplification does not cause any loss in generality because it could be repeated multiple times to

represent the joining of many parts. A picture of this mental model is shown below in Figure 4-1

where a Part "A" is joined with a Part "B" to create an Assembly "C."

Part A Part B Assembly C

A4- B 0' C

Figure 4-1: Mental model of assembly operation

Random assembly is the most common type of assembly operation. In random assembly, an "A"

part is randomly chosen from a population of "A" parts, and a "B" part is randomly chosen from

a population of "B" parts. These two chosen parts are then assembled together to form a "C"

assembly.
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The idea of random assembly is extended to statistical populations. The equations for the mean

and standard deviation of Assembly "C" are generated very easily based on simple statistical

equations. The mean of Assembly "C," pc, is simply the sum of the means of Part "A" and Part

"B." The standard deviation of Assembly "C," ac, can also be computed easily by recognizing

the variances of Part "A" and Part "B" can be summed to produce the variance of Assembly "C."

The equations for the mean and standard deviation of Assembly "C" are shown below.

PC = PA + pB4-1

2'c = 2i + U- 4-2

Two common methods for setting tolerances exist for assembly dimensions created by a random

assembly operation. The first method is usually referred to as the worst case stack-up method.

With this method, the tolerances for Part "A" and Part "B" are set in such a way that a Part "A" at

its upper tolerance limit mated with a Part "B" at its upper tolerance limit will produce an

Assembly "C" that still falls within its tolerance limit, usually equal to its upper tolerance limit.

This method guarantees that as long as Part "A" and Part "B" fall within their respective tolerance

bands, then Assembly "C" will fall within its tolerance band. Setting tolerances using the worst

case stack-up method is sometimes overly cautious and can lead to higher manufacturing costs to

achieve the tight tolerance for the components. The other common method for setting tolerances

is based on statistical principles and is known as the root sum squared method (RSS) (Liggett

1993). This method assumes the component distributions are normal and uses the idea that it is

unlikely for a very large Part "A" to be randomly mated to a very large Part "B." The tolerance

range of the assembly is set equal to the square root of the sum of the squares of the component

tolerances. This relationship is based on the sum of the variances as seen in Equation 4-2.

A company's ability to manufacture quality products determines its success. Manufacturing

products that have a high level of quality can be costly and difficult. The use of selective

assembly may be a valuable addition to a manufacturing system to improve the quality of a

product in a cost effective manner. Selective assembly is the process of measuring parts in each

distribution and then purposefully selecting a Part "A" and a Part "B" that when mated together

will produce an Assembly "C" that is close to the desired assembly dimension. There are several

specific techniques for implementing selective assembly. Each approach has specific advantages
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and disadvantages associate with it. Selective assembly is often implemented when the cost of

part precision is greater than the cost of implementing selective assembly. For example, low

precision parts that are inexpensive to produce can be combined using selective assembly to

produce high precision assemblies instead of spending large amounts of money on making high

precision parts to assemble with random assembly.

The general steps for performing a selective assembly operation are as follows. First, each Part

"A" is measured. Depending on the measured value, the part is placed in a bin with other parts

that have similar measured values. A bin can mean a figurative grouping or a literal bin or bucket

that contains parts with close dimensions. Secondly, each Part "B" is measured and placed in an

appropriate bin. Finally, a Part "A" is randomly selected from any bin and a random Part "B" is

selected from the corresponding bin. These two parts are then assembled together.

A graphical representation of selective assembly is shown below in Figure 4-2 where a slightly

oversized Part "A" is picked and mated with a slightly undersized Part "B" to produce an overall

assembly dimension close to the desired value. The distributions are numbered so that

corresponding bins have the same identification number. Notice the bin numbers for Part "A"

increase from left to right while the bin numbers decrease for Part "B." This is true when the

desired assembly dimension is an additive dimension, e.g., an overall length. In this case,

combining a small part from one distribution with a large part from the other distribution

produces an assembly that will be close to the target value. If the dimension of interest on the

assembly were a clearance, both distributions would be binned with increasing identification

numbers from left to right, i.e., a small rod would be mated with a small bore to produce a

clearance close to the desired value.
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Figure 4-2: Graphical representation of selective assembly

Selective shimming is a subset of selective assembly. Selective shimming, or just shimming, is

the process of using a very inexpensive part to mate with a more expensive part or sub-assembly

to result in an assembly that is close to the desired value. Shimming is different from selective

assembly because one of the two mating parts or sub-assemblies is much less expensive than the

other. This situation gives rise to some unique decision making opportunities and is discussed

later.

Selective assembly has several advantages over random assembly. The primary advantage is the

assembly variation is reduced and can be controlled to a tighter tolerance. Another advantage is

the fact the assembly scrap rate can be lowered substantially. The higher quality, lower variation,

also reduces the rework required to get assemblies to meet specification. Another advantage of

selective assembly is the fact the production line can implement statistical process control for

almost free since selective assembly requires every part to be measured.

Along with the advantages, selective assembly also introduces several disadvantages. The

obvious disadvantage is the requirement to measure every part. These measurements more than

likely add cost and can increase production time. Inventory costs may also increase when

selective assembly is implemented since more inventory of one part may be required to ensure a

match is available. Part scrap cost can also rise when selective assembly is used to mate two parts

with very dissimilar variances because a large number of the parts with the larger variance may

have to be scrapped.
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Another disadvantage to using selective assembly is a loss in serviceability of the product. This

occurs when a part that was originally assembled into the product using selective assembly needs

to be replaced in the field. Not just any service part will fit. A part from the appropriate range or

bin is required. To address this issue, multiple service parts may have to be made and stocked,

each from a different bin or range. The downside to this is increased service part inventory and

additional unique part numbers are required and must be tracked. Another way to address the

serviceability issue is to replace the entire assembly when failure in the field occurs. Again, this

may increase the service cost since some parts that did not fail are being replaced (along with the

failed part). In the case of selective shimming, a service kit may be made available containing

multiple inexpensive shim parts, one form each bin. This kit allows the appropriate part to be

selected and used in the repair while the remaining parts in the kit are discarded. If the shim part

is inexpensive enough, this may be the most cost effective solution to the serviceability issue.

Research in the area of selective assembly has been focused on several key aspects of the

problem. Pugh (Pugh 1986) discusses the use of equal width binning and introduces a computer

program that computes the output mean and standard deviation of an assembly of two parts that

are each normally distributed. The queuing method was introduced by Boyer and Nazemetz

(Boyer and Nazemetz 1985) to measure a small number of parts and queue them, then measure a

mating part and match it with the best fit from the queue. A strategy for optimally binning two

distributions was introduced by Mease and Sudjianto (Mease, Nair et al. 2002). They presented

the statistical framework for calculating the bin sizes that will minimize several loss functions.

Their work also showed that optimal results from selective assembly can come from combining

two distributions that have unequal variances, an idea that was previously thought to be untrue.

A limited amount of literature does exist on the subject of implementing selective assembly when

the two distributions being combined have unequal variances. Pugh (Pugh 1992) establishes the

concept of truncating the wider distribution to make the variance match more closely with the

tight distribution. His analysis only looks at the number of assemblies that meet the specification

without regard to the level of variation present. Chann and Linn (Chan and Linn 1998) propose a

grouping method based on the cumulative distribution functions of the mating parts. Their goal

was to ensure mated parts meet the assembly specification while minimizing the number of scrap.

This was accomplished by using bins that have equal probability. From a quality perspective,

both of these approaches were concerned only with meeting specification and did not consider the

effect on the assembly's variation. Some selective assembly research deals with the availability of
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mating parts in the two distributions and are concerned with making sure a match exists for every

part (Fang and Zhang 1996; Zhang and Fang 1999). There is limited literature on making

selective assembly decisions based on economic considerations (Kwon, Kim et al. 1999). The

existing literature assumes the distributions to be normal and have equal variance. These two

assumptions limit the effective application of selective assembly.

Each of the above approaches focuses on one aspect of the selective assembly problem. None of

the work takes a general approach to selective assembly that is applicable when the distributions'

variations are different. Also, the existing research usually focuses on "goal post" analysis, i.e.,

they are only concerned if the assembly meets its specification or not. This focus can cause

possible quality improvements to be overlooked. Another lacking item in the literature are closed-

form equations describing the variation of an assembly created with selective assembly.

Historically, selective assembly has been used and implemented in an ad hoc manner. One goal of

this chapter is to develop quantitative models that can assist in the decision to implement

selective assembly into a manufacturing system. These quantitative models focus on the quality

and cost impact selective assembly can have on a product. The models are created to be as

general as possible so that they can be applied to a variety of situations, e.g., the assumption of

distributions with equal variances is not made.

4.2 Selective Assembly Techniques

There are several techniques to performing selective assembly. Each technique has its own subset

of advantages and disadvantages. The most common techniques for selective assembly are

discussed in this section.

Since the discussion has been limited to the assembly of two parts, Part "A" and Part "B," there

are two distributions under consideration. Often, in selective assembly work, the assumption is

made that the two distributions have equal variances. That assumption is not made in this thesis

because a general approach to selecting and implementing a selective assembly technique is the

goal. The distribution that has the larger variance will be referred to as the "wide" distribution

while the distribution with the smaller variance will be referred to as the "tight" distribution. For

mathematical reasons, the distributions are truncated at plus or minus three standard deviations to
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give them finite widths. Also, as in previous chapters, the A symbol represents the width of a bin

and N represents the number of bins by which a distribution is divided.

4.2.1 Equal Width Binning to Minimize Variation

The Equal Width Binning to Minimize Variation technique relies on both distributions being

separated into bins that have equal widths. This technique is historically referred to as simply the

Equal Width Binning technique. The new title for this technique is being introduced to

differentiate it from a new technique, Equal Width Binning to Minimize Scrap, which is

presented later. The Equal Width Binning to Minimize Variation and the Equal Width Binning to

Minimize Scrap are the same technique when the two distributions being combined are normally

distributed with equal variances.

In this technique, the bin width is the same for both distributions. This is expressed

mathematically in Equation 4-3 below and shown below in Figure 4-3 where the width of every

bin is identical and the areas of parts scrapped from the wide distribution are shown in black.

A = Awide = Atight 43

The width of the bin is determined by the tight distribution. The tight distribution is truncated at

plus or minus three standard deviations. The range, equal to six standard deviations, is then

divided by the desired number of bins, N, to produce the bin width.

6r-tight 
_A = g 4-4

N
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Scrap <

Figure 4-3: Equal Width Binning to Minimize Variation

Several advantages are associated with this technique. The resulting assembly variance is greatly

reduced. Also, the tolerance limit on the assembly can be clearly set and meeting this

specification can be guaranteed for combinations from any set of corresponding bins. For

example, Part "A" has a mean of 100 mm and a standard deviation of 3 mm, and Part "B" has a

mean of 50 mm and a standard deviation of 6 mm. If the number of bins is six, then the bin width

is 1 mm. This creates a bin for Part "A" from 100 mm to 101 mm, and a mating bin for Part "B"

from 49 mm to 50 mm. Any assembly generated by combining parts from these two bins, or any

two corresponding bins, is guaranteed to fall between 149 mm and 151 mm. This fact is

independent of the variance of Part "B." If the bin width for Part "B" was influenced by the

variance of Part "B," the guarantee of a tolerance could not be made. Another advantage to this

technique is its simplicity. The bin width calculations are very straightforward. This simplicity

adds to the flexibility of this technique. For example, if the characteristics of an incoming

distribution change, the bin widths can be quickly and easily adjusted.

There are also disadvantages associated with this technique. The biggest disadvantage is the

amount of scrap that can result from truncating the wide distribution. This becomes worse when

the variances of the two distributions are very different. The other major disadvantage is the

improvement in quality may not be as great as competing techniques. Later sections quantify the

improvements for each technique.

This technique lends itself to the selective shinmming type of operation mentioned earlier. This is

due to the fact the wider distribution parts would have to be very inexpensive to make this a

feasible technique. Again, the models presented later quantify these concerns.
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4.2.2 Equal Width Binning to Minimize Scrap

The Equal Width Binning to Minimize Scrap technique relies on a distribution being separated

into bins that have equal widths. This is a new selective assembly technique and is being

presented for the first time in this thesis. In the past, selective assembly has been mostly reserved

for cases where the two distributions being combined have equal variance. This assumption is not

being made in this thesis; therefore, introducing this new technique is necessary.

The bin width for this technique is unique to each distribution, i.e., the bin width for Part "A" is

different than the bin width for Part "B" when the variances are unequal. The bin widths can be

computed using the following equations assuming each distribution is truncated at its respective

plus and minus three standard deviations. A sample of two binned distributions with the number

of bins, N, equal to 4 is shown in Figure 4-4.

6o-
Atight = tight 4-5

N

Awide = 6 cywide 4-6
N

Figure 4-4: Equal Width Binning to Minimize Scrap

The biggest advantage to this technique is that more of the parts from the wider distribution can

be used since it is not truncated to match the tighter distribution. The other advantage is its

simplicity. The bin widths for the two distributions are independent and can be easily recalculated

when the variance of one distribution changes.
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The biggest disadvantage to implementing this technique is the range of assembly dimensions is

dependent on which set of corresponding bins is used. For example, Part "A" has a mean of 100

mm and a standard deviation of 3 mm, and Part "B" has a mean of 50 mm and a standard

deviation of 6 mm. If the number of bins is six, then the bin width for Part "A" is 1 mm and is 2

mm for Part "B." This leads to bins for Part "A" from 100 mm to 101 mm and from 101 mm to

102mm. The Part "B" corresponding bins range from 48 mm to 50 mm and from 46 mm to 48

mm respectively. Therefore, the first set of corresponding bins can produce assemblies from 148

mm to 151 mm, and the second set of bins can produce assemblies from 147 mm to 150 mm.

Therefore, the entire range of possible assembly values is determined by bins at the extremities.

The range of possible values is also larger than for the previous technique of Equal Width

Binning to Minimize Variation.

This technique may be viable when the overall dimension of the assembly is not as critical as the

variation of the assemblies. This is true because this technique does not limit the values the

assembly can have as much as other techniques, but this technique does reduce the variation of

the assembly dimension.

4.2.3 Equal Area Binning to Minimize Variation

The Equal Area Binning to Minimize Variation technique relies on both distributions being

separated into bins that contain equal numbers of parts. This technique is historically referred to

as simply the Equal Area Binning technique. The new title for this technique is being introduced

to differentiate it from a new technique, Equal Area Binning to Minimize Scrap, which is

presented later.

For this technique, the width of each bin is set so that a certain percentage of area under the

probability density function is contained within each bin. The bins that are closer to the mean are

narrower than those at the tails because the distribution is denser in the middle.

The tight distribution determines the limits of the bins in this technique. The wide distribution is

truncated and then divided into bins according to the widths specified by dividing the tight

distribution. The bin widths are the same for both distributions, i.e., the ith bin of Part "A" is the

same width as the corresponding bin for Part "B." A picture of two distributions binned using this

technique is shown below in Figure 4-5. The areas that represent scrapped parts are shown in

147



black. Each bin width is labeled to make it easier in identifying the bins that have the same width.

This is expressed mathematically in Equation 4-7 below.

Equal Areas

a b b a

Scrap AK
a b b a

Figure 4-5: Equal Area Binning to Minimize Variation

Ai =A wide,i Atight,i 4-7

The widths of the bins are determined by the tight distribution. The tight distribution is truncated

at plus or minus three standard deviations. The area under the remaining truncated curve is then

divided by the desired number of bins, N, according to the following equation where x is a

measurement within the tight distribution.

1 xi

N f(pdfight dX 4-8

For a normal distribution, Equation 4-8 can be rewritten as

2

-= exp - - igt dx
N Xi-I (tight N22 tight

4-9

The integral limits are the variables in the above equation and are set in a manner to produce

symmetrical bins that contain the appropriate amount of area, which is fixed by the number of

bins. The bin widths are then computed for each set of integral limits per the following equation.
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Ai = x, - x, 1  4-10

The bin limits are then set for the wide distribution to produce bins that have the same widths as

their corresponding bins in the tight distribution. In the case of distributions with unequal

variances, the part with the wider distribution does not have the same area in a bin as the

corresponding bin of the tight distribution because of heavier truncation. If the more expensive

part comprises the tight distribution, then the wide distribution may be overproduced to ensure a

match. This would be the case for a shimming operation.

The main advantage associated with this technique is the resulting assembly variance is greatly

reduced when compared to random assembly; however, there are disadvantages associated with

this technique. The biggest disadvantage is the amount of scrap that can result from truncating the

wide distribution. This becomes worse when the variances of the two distributions are very

different. Another disadvantage is that the possible range of assembly dimensions is greater than

the Equal Width Binning methods. This is due to the fact the bins near the tails are much wider

than those near the middle. When parts are combined from two corresponding bins near the tails,

the range of possible values of the assembled dimension can be large.

This technique lends itself to the selective shimming type of operation mentioned earlier. This is

due to the fact the wider distribution parts would have to be very inexpensive to make this a

feasible technique. The models presented later quantify the effect this technique has on assembly

variance and part scrap.

4.2.4 Equal Area Binning to Minimize Scrap

The Equal Area Binning to Minimize Scrap technique relies on both distributions being separated

into bins that contain equal numbers of parts. This is a new selective assembly technique and is

being presented for the first time in this thesis. It is being introduced to allow engineers to have

the option to keep scrap low while reducing the standard deviation of an assembly.

In this technique, the width of each bin is set so that a certain percentage of area under the

probability density function is contained within the bin. In the case of a normal distribution, the

bins closer to the mean are narrower than those at the tails because the distribution is denser in the

middle.
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The two distributions are binned independently. The bins span the entire range of the

distributions; therefore, the wider distribution is not as truncated as in the Equal Area Binning to

Minimize Variation technique. This implies that the wide distribution part does not need to be

overproduced and the scrap rate is not as severe.

The widths of the bins are determined by each distribution. The distributions are truncated at plus

or minus three standard deviations. The areas under the remaining truncated curves are then

divided by the desired number of bins, N, according to the following equations where x is a

measurement within the tight distribution and y is a measurement within the wide distribution.

For normal distributions, the equations are shown below.

2

= r exp - X - Aht dx 4-11
N atight12 Jtight

1* exp{ Y - Pid )2J) 4-12
Ni 2 Uide

The integral limits are the variables in the above equations and are set in a manner to produce

symmetrical bins that contain the appropriate amount of area, which is fixed by the number of

bins. The bin widths are then computed for each set of integral limits per the following equations.

Figure 4-6 shows two sample distributions binned using this technique. The bins with equal area

are labeled in the picture. The bins identified as "Not Necessarily Equal Areas" are only equal

when the two distributions have the same variance.

Atight,i ~ i - Xi _ 4-13

Awidei =i - -4-14
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Equal Areas

Equal Areas
Not Necessarily
Equal Areas

Figure 4-6: Equal Area Binning to Minimize Scrap

The main advantage associated with this technique is the wide distribution is not heavily

truncated; making the scrap rate lower.

There are disadvantages associated with this technique. The biggest disadvantage is that the

possible range of assembly dimensions is greater than most of the other techniques. This is due to

the fact the bins near the tails are much wider than those near the middle, especially in the wide

distribution. When parts are combined from two corresponding bins near the tails, the range of

possible values of the assembled dimension can be large.

4.2.5 Optimal Width Binning

Optimal width binning is the concept of determining the bin widths of the two distributions so

that the assembly of them will minimize some objective function. The optimal width binning

technique used in this thesis is based on the work of Mease and Sudjianto (Mease, Nair et al.

2002) where the objective function being minimized by the selection of the bin widths is the

squared error loss function.

4.2.6 Selective Machining

Selective machining is the act of measuring a component and then machining it or its mate to

produce the overall desired assembly dimension. This technique has the advantage of producing

assemblies with very low variance and little to no scrap. However, there are several

disadvantages. This technique can add cost to the process by requiring high precision machining

to achieve the desired level of variation. This negates the major positive effect of selective

assembly, i.e., obtaining high precision assemblies with low precision machining processes. The

other major drawback to this technique is that it may add time to the assembly process because of
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the measure and machining loop. The selective machining is usually only employed in low

volume production operations such as a job shop or an aircraft assembly line.

4.2.7 Queuing Method

The queuing technique for selective assembly involves measuring a certain number of Part "A"

and a certain number of Part "B," placing the measured parts into queues, and then selecting the

parts from the queues that would create an assembly with a dimension closest to the desired

value. This technique to selective assembly was introduced by Boyer and Nazametz (Boyer and

Nazemetz 1985).

The main advantage of this technique is that it does not require the binning of parts. This

technique can be implemented in-line as part of production flow. The other advantage is that there

is no scrap as long as components meet their respective specifications.

There are a few disadvantages to this technique. The first is the fact the assembly variation is

highly dependent on the ordering of the components. For example, if there is low part to part

variation for both assemblies and the components are not from "corresponding tails," this

technique may produce assembly dimensions that are consistent but not close to the desired value.

This is related to another disadvantage; that is the inability to take advantage of the entire

component distributions simultaneously. For example, in the binning techniques, when a small

Part "A" is selected, a large Part "B" can be selected. Because of the limited, and usually low,

number of parts in the queue, this technique can not achieve the same flexibility. Another

downside to this technique is the need for special equipment to keep track of the parts in the

queues. This equipment can add cost that the binning techniques do not have.

The queuing method could be successfully implemented in assembly operations that are

automated. Pick-and-place machines or other types of robotic assembly lend themselves to this

type of assembly because the computer controller could also keep track of the queued location of

the parts.

4.3 Selective Assembly Considerations

Two major factors to consider when deciding whether or not to use selective assembly are quality

and cost. This section covers details about both considerations.
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4.3.1 Quality Considerations

The main reason for implementing selective assembly in a manufacturing system is to produce

high precision assemblies from low precision parts. Ironically, a "goal post" mentality is often

taken when selective assembly is utilized. A "goal post" mentality is one that only considers

whether an assembly is within its specified tolerance limits. If the assembly dimension is within

the limits, it is good; otherwise it is rejected. This type of characterization is binary, and the

quality of the assembly is measured strictly as a percentage of assemblies that fall within the

tolerance limits.

A better quality metric to use is the amount of variation present in the assembly dimension. This

variation is quantified as the standard deviation of the assembly dimension's distribution. Using

variation as a measure for quality allows selective assembly to be chosen based on reducing

variation and the quality loss associated with that variation (Phadke 1989), instead of a means to

just improve the yield of a production system.

Considering the variation of an assembly has several positive implications on a design. The

impact of design changes can be easily quantified, thus leading to better designs. Tolerance

allocation can be understood better when selective assembly's impact is known, leading to the

opening of more expensive tolerances to reduce machining costs. The quality loss associated with

varying from the desired value can be easily computed and used to make design or manufacturing

modifications.

The models and algorithms presented later in this chapter quantify the variation an assembly will

have based on the components' distributions. The binning techniques described earlier in the

chapter are used. The result is the ability to calculate the variation of an assembly as a function of

the specific technique, the number of bins utilized, and the part distributions. These results assist

an engineer in making decisions regarding when to implement selective assembly and what

technique to use in a given circumstance.

4.3.2 Economic Considerations

Along with the impact on quality, implementing selective assembly may have economic

consequences. The decision to implement selective assembly is usually a result of not being

capable of meeting an assembly specification with low precision components. Choosing to use
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selective assembly comes naturally when the cost of improving the components' precision is

deemed too high compared to the costs associated with selective assembly. The difficulty arises

when the true costs of selective are elusive, making it challenging to justify the use of selective

assembly.

Selective assembly does have an advantageous effect on assembly costs. With selective assembly,

the assembly yield should increase, thus decreasing the number of assembly rejects. This

improvement also alleviates some, if not all, of the rework costs associated with fixing assemblies

that do not meet spec.

Selective assembly can have a negative impact on the economics of a manufacturing system. The

most obvious is the added cost of measuring every component. This cost is independent of the

technique chosen and is a per piece cost. Selective assembly can increase the amount of

component scrap. This can especially be severe when combining two distributions of dissimilar

variance to minimize the assembly variation. The scrap cost is dependent on the selective

assembly technique used, the components' distributions, and the number of bins used in the

selective assembly operation. Another cost related to the scrap is the cost of inventory. This cost

accumulates as a result of having to have more components from the wide distribution on hand to

ensure a mating part exists at all times. The cost of selective assembly is given by Equation 4-15

and illustrated in Figure 4-7 where the part costs are identified as increasing the total cost and the

assembly costs (savings) are shown as reducing the total cost.

CoItal - CAsmScrap - CsRework - CAsmRepair + CComponentInspection + CInventory + CPartScrap 4-1 5
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Part Costs (+) Assembly Costs (-)

Figure 4-7: Graphical illustration of the cost of selective assembly

The costs associated with the assembly in Equation 4-15 are proportional to the assembly

variation expected when random assembly is used and the tolerance range of the assembly

dimension. This is expressed mathematically as

CAsmScrap +CAsm Re work +Cm Re pair ParA + (PartB 4-16

The inspection cost of the components, CComponentlnspection, is simply the fixed, per piece cost to

make the required measurement. The inventory cost, CInventory, is the cost of having to keep extra

inventory on hand to ensure a part match, e.g., in the case of selective shimming. The inventory

cost is affected by a company's policy for internal charges and holding costs.

The cost in Equation 4-15 that is most affected by the choice of a particular selective assembly

technique and number of bins is the part scrap cost, Cpartscrap. The models and algorithms

presented in the next section quantify the effect a selective assembly operation has on the fraction

of parts scrapped. The binning techniques described earlier in the chapter are used. The models

calculate the scrap associated with using selective assembly as a function of the specific

technique used, the number of bins utilized, and the part distributions. These results assist an

engineer in making decisions regarding when to implement selective assembly and what

technique to use in a given circumstance.
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4.4 Selective Assembly Calculations

A selective assembly algorithm is presented here to compute the variation of an assembly

dimension when two component distributions are combined. The algorithm is general and can be

applied to any of the binning techniques outlined in this chapter. The purpose of the algorithm is

to compute the resulting assembly standard deviation and percent scrap when any two component

distributions are entered. This allows comparisons to be made and the best technique for a

particular case to be selected. The best selective assembly technique is the one that produces an

acceptable level of variation at the lowest cost.

The algorithm is implemented using numerical methods and Monte Carlo simulation because no

analytically derived closed-form solutions exist. The first step is to generate a large number of

random variables for Part A and Part B. In the case of the work presented here, one thousand

random variables were generated for each part. The random variables are then binned according

to a specific selective assembly technique for a given number of bins, ranging from one to the

specified maximum number of bins allowed. Next, a value from a Part "A" bin is randomly

chosen and combined with a Part "B" value randomly chosen from the corresponding bin to

create a value for Assembly "C." A value left in a bin that has no corresponding match is added to

the scrap count. Finally, the mean and standard deviation are calculated for Assembly "C." This

algorithm is depicted graphically below in Figure 4-8.
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from Corresponding Bins
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max #

Assembly "C" of bins
Compute the Mean, Standard Deviation,

and Scrap Produced

Repeat for each approach.

Figure 4-8: Graphical depiction of the selective assembly algorithm

A

Since the algorithm relies only on numerical Monte Carlo simulations, any type of distribution or

combination of distributions can be evaluated; however, there are practical considerations to be

made before blindly applying the selective assembly techniques discussed above to any pair of

general distributions. This is the topic of discussion in Sections 4.6.2 and 4.6.3. In the next

section, the algorithm is used to simulate data for the creation of closed-form equations to

describe the impact selective assembly has on an assembly's variation and the amount of part

scrap produced.
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4.4.1 Closed-form Equations

Practical closed-form equations for computing an assembly dimension's variance when it is

created using selective assembly and the percent of scrapped parts would alleviate the need to run

computationally intensive Monte Carlo simulations. The desired closed-form equations would

accept the standard deviations of the parts being combined and compute the standard deviation of

the resulting assembly and the percent scrap. General forms of the desired equations are seen

below in Equations 4-17 and 4-22 for the assembly's standard deviation and percent scrap

respectively.

assembly Pf (0j'artA I PartB) 4-17

Deriving useful forms of these equations, so that they can be used when two normal distributions

are being combined, from statistical principles is not possible because the integrals involved

cannot be solved analytically. Therefore, numerical integration would be required. This approach

is no better than using Monte Carlo simulation.

Another approach to creating these equations would be to run Monte Carlo simulation data and

curve fit math functions to the data. The major drawback to this is the infinite number of

combinations of the part distributions' standard deviations. The simulation would be required of

every possible combination; thus making this approach infeasible.

A feasible approach to deriving a form of Equation 4-17 is to create an equation for a normalized

assembly standard deviation. The normalized standard deviation is simply the selective assembly

created standard deviation divided by the standard deviation that would be expected if random

assembly were used. This normalized assembly standard deviation is then treated as a function of

the ratio of the two part distributions' standard deviations. Taking this approach and using the

notation introduced in Figure 4-1 the dimensionless relationship shown below in Equation 4-18

can be created where N is the number of bins used.

C,SelAsm(N) = 74

UC,RandomAsm B

Using Equation 4-2, the above equation can be rewritten as
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0C,SeAsm(N) f1(7 4-19

2 +U2 07~B

A function in the form of Equation 4-19 must be created for each combination of selective

assembly technique and number of bins, e.g., a function exists for the Equal Width Binning to

Minimize Scrap approach with five bins and another unique function exists for the Equal Area

Binning to Minimize Variation approach with seven bins. Equations for the five approaches

discussed in Sections 4.2.1 to 4.2.5 and for one to ten bins are created for a total of fifty unique

equations.

The Monte Carlo based simulation model presented earlier is used to generate data that can be

normalized and used to curve fit functions for each of the fifty scenarios. The part distributions

are created so that they are normal and are truncated at plus and minus three standard deviations

so that a finite number of bins can span the range. Values for the left hand side of Equation 4-19

are generated for values of 0J/0-B ranging from one to two. Running simulations for values

outside of this range is not necessary because the validity of the desired equation is over the same

range. The justification for using only this range is that combining distributions with standard

deviations that vary by a factor of more than two is rarely done with selective assembly.

Designating one distribution as Part "A" and the other as Part "B" is arbitrary. Therefore, if our

function is good over the range of one to two for oq/o-B, it can be used for any combination of

standard deviations as long as one is not more than a factor of two larger. The Part "A" and Part

"B" designations are made so that the ratio c/c-B falls between one and two, i.e., Part "A" will be

the wide distribution and Part "B" will be the tight distribution.

The model (see Figure 4-8) is run approximately fifty times for each input aA/-B ranging from

one to two with a step size of 0.2. Multiple runs were executed for each point to "smooth" the

randomness associated with the Monte Carlo simulation and so that confidence intervals could be

generated for each function, i.e., a ±95% probability band for each function. The data resulting

from the Mote Carlo simulations are listed in tabular form in Appendix E.

Polynomial functions are fit to the simulated data. A third order term is the highest order term

required for a good fit of the data, i.e., a third order polynomial does a good job of representing
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the shape of the data points for each case and results in a goodness of fit, R2 , close to one. The

data could be fit to higher order terms, but the fit does not improve much with terms higher than

cubic. Knowing that terms higher than cubic are not necessary, Equation 4-19 can be written in

the general form below.

(3 2(TC,SelAsm(N) U)I+(2 ) (_T A)+C
2 +2 B B B4CA 4-20

for 1 2
UB

The C,'s in the above equation are simply coefficients calculated from the curve fit. The

coefficients for all of the techniques and numbers of bins are listed in Appendix C. For example,

the Ci's for a Equal Width Binning to Minimize Scrap approach using four bins are C3 = -0.1726,

C2 = 0.8266, C, = -1.1071, and Co = 0.8529.

Three cases exist where the normalized assembly standard deviation is better represented by a

constant than a third order polynomial, i.e., C3 = 0, C2 = 0, and C, = 0 in the above equation.

These cases are for the selective assembly techniques that bin the two distributions independently

using one bin, i.e. Equal Width Binning to Minimize Scrap using one bin, Equal Area Binning to

Minimize Scrap using one bin, and Optimal Width Binning using one bin. The reason the

normalized assembly standard deviation is a constant in these three cases is because each case is

simply truncating the part distributions and then combining them regardless of the distributions'

standard deviations. This results in a value that is independent of the ratio of the standard

deviations and is slightly less than the assembly standard deviation resulting from random

assembly, i.e., the square root of sum of the variances. Aside from these three cases, the

normalized assembly standard deviation is very well represented by a third order polynomial.

More information about the goodness of fit of the curves is presented in Section 4.5.

The real goal is to have a closed-form equation for the standard deviation resulting from a

selective assembly operation. This equation is easily derived from the normalized equation above.

For a given number of bins, the standard deviation of the assembly is written as

160



( C 3 + ( \ 2
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4-21

for 1< -- 2
07B

Again, the Ci's are listed in Appendix C.

Because a selective assembly operation is a stochastic process, the standard deviation calculated

using Equation 4-21 is actually the expected value of the assembly's standard deviation when

selective assembly is used. Because of this, understanding the possible range of values the

standard deviation can have is very important. To gain this understanding, confidence intervals

can be calculated. A 95% confidence interval is calculated for the assembly standard deviation.

The equations for the upper and lower bands of the confidence interval are of the same form as

Equation 4-21 with different coefficients. Appendix C contains the values for the coefficients for

the upper and lower 95% confidence interval bands.

The goal is to use these equations to help forecast quality when a selective assembly operation is

being considered. The first step is to determine which selective assembly technique is being used

and the number of bins to use. If these are unknown, results for each technique and each number

of bins can be computed. So, for the first approach and number of bins, the coefficients for c are

looked up in the tables in Appendix C. These coefficients are used with Equation 4-21 to compute

the expected value of the assembly standard deviation. The coefficients for the 95% confidence

upper and lower bands are looked up and used with Equation 4-21 to calculate the confidence

interval of the assembly standard deviation. For the given set of two part distributions, the true

value of the assembly standard deviation has a 95% probability of being in this interval.

Now that a closed-form equation for the standard deviation resulting from selective assembly has

been created, focus can be turned to creating a closed-form equation for the fraction of parts that

do not have a corresponding match. These unmatched parts are known as scrap. Here the term

scrap fraction is used to imply a fraction of the total parts that do not have a match.

Scrap is generated because of distribution truncation and when corresponding bins have an

unequal number of parts in them. The equations developed in this section assume that the mating
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parts are produced in equal quantities, i.e., one distribution is not overproduced to ensure a match.

This assumption implies that the scrap is equally divided among the two mating part distributions.

For example, twenty unmatched parts from the "A" distribution means there are twenty

unmatched parts from the "B" distribution. The goal of this section is to generate a closed-form

equation for scrap fraction of the form seen below.

Scrap = f ( B PartB) 4-22

The scrap is calculated as a fraction of parts that are not used in an assembly. The desired

equation is the fraction of parts not used and is already a normalized quantity. The simulation

data used above to generate the equations for an assembly's standard deviation are also used with

curve fitting to produce equations for scrap. The highest power term required to accurately fit any

of the data, but not overfit, is a third order term, i.e., all the data could be well represented with

equations that contain terms no higher than cubic. The resulting equation for the scrap, as a

fraction of total parts, is shown below as Equation 4-23.

3 2

Scrap(N) = ) +(D2)C +(D) D 4-23

for 1 <A-< 2
UB

The Di's in the above equation are simply coefficients calculated from the curve fit. The

coefficients for all of the techniques and numbers of bins are listed in Appendix D. For example,

the Di's for a Equal Width Binning to Minimize Variation technique using six bins are D3 = -

0.0993, D 2 =0.3686, D, = -0.1379, and Do = -0.1044.

The selective assembly techniques that bin the part distributions independently, Equal Width

Binning to Minimize Scrap, Equal Area Binning to Minimize Scrap, and Optimal Width Binning,

have scrap equations that are better represented by a constant value than a polynomial, i.e.,

Scrap(N) = Do. This representation is due to the fact that the distributions are binned from minus to

plus three sigma; therefore, approximately the same number of parts are being scrapped

regardless of the distributions variances. The techniques that bin the wide distribution according

to the tight distribution's variance, Equal Width Binning to Minimize Variation and Equal Area
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Binning to Minimize Variation, truncate more of the wide distribution, especially as its variance

increases relative to the tight distribution. For these techniques, the third order polynomial is an

excellent fit with goodness of fit values close to one. More information about the goodness of fit

of the curves is presented in Section 4.5.

Due to the stochastic nature of a selective assembly operation, the scrap fraction calculated using

Equation 4-23 is actually the expected value of the fraction of scrap generated when selective

assembly is used. Because of this, understanding the possible range of scrap is very important. To

gain this understanding, a 95% confidence interval is calculated. The equations for the upper and

lower bands of the confidence interval are of the same form as Equation 4-23 with different

coefficients. Appendix D contains values for coefficients for the upper and lower 95% confidence

interval bands.

The goal is to use these equations to help forecast the scrap fraction when a selective assembly

operation is being considered. The first step is to determine which selective assembly technique is

being used and the number of bins to use. If these are unknown, results for each technique and

each number of bins can be computed. So, for the first technique and number of bins, the

coefficients for Equation 4-23 are looked up in the tables in Appendix D. These coefficients are

used with Equation 4-23 to compute the expected value of the scrap fraction. The coefficients for

the 95% confidence upper and lower bands are looked up and used with Equation 4-23 to

calculate the confidence interval of the scrap fraction. For the given set of two part distributions,

the true amount of scrap has a 95% probability of being in this interval.

The closed-form equations do have two limitations worth noting. First, the equations are valid

only over the range of one to two for the ratio of component standard deviations, i.e., 1 < o/caB

2. This limitation is by design since this was the range considered when the simulations were run

to produce the data for curve fitting. The second limitation is the equations are valid only when

two normal distributions are being assembled. Again, this limitation is by design and is a result of

the choice to run simulations with normal distributions, since they are the most common. If the

need arose for closed-form equations to combine other types of distributions, the development

used in this section could be repeated with the different types of distributions to create another set

of closed-form equations, with no guarantee of existence.
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4.4.2 Sensitivity Analysis

Sensitivity analysis is performed to determine how small changes of input values affect the output

value. An output value that does not change much when the inputs are perturbed is considered to

be insensitive and is known as a robust design. Considering the sensitivity of a selective assembly

operation is important when choosing the technique to use.

The sensitivity around a specific point is calculated by taking the first derivative of the output

with respect to the input variables. For the standard deviation resulting from selective assembly,

this can be written as follows.

(CSeIAsm(N) a7C,SelAsm(n) A07A + L 7C,SelAsm(n) AoB

CSeAsma)4-2B 4

for I A 2
07B

where uA*, oB* is the point about which the analysis is being performed. Substituting Equation

4-21 into the above equation yields the following equation.

AOC,SeAsm(N)

CA C 3 OA\ /

3 +±2C2 -T- + C- I cA +c-B) + 2 A-c- cB c-B) c-A +c-B

aB(~ UA + )C

3{ ~ 2' -2 'g B

UcB c-B c-B / cA +c-Bj

4-25
B

for 1< A 2- 2
UB

A similar analysis can be performed to calculate the scrap fraction sensitivity. The basic equation

is as follows.
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As before, oA*, qB* is the point about which the analysis is being performed. Substituting

Equation 4-23 into the above equation yields the following equation.

AScrap(N) = 3D3 - +2D 2 --y+DjJ Ao
B o-B B

+[(-3D3 o-! -2D 2  -- D j Ao-B 4-27
L 'B B B

for 1 -A< 2
o7B

Equations 4-25 and 4-27 are used to calculate the effect small changes in the part distributions

have on the assembly distribution and scrap fraction respectively. However, it is more interesting

to use the values of the partial derivative terms to indicate how sensitive a selective assembly

technique is to changes in the part distributions' standard deviations. These sensitivities reveal

where batch to batch variation is most crucial. For example, if the standard deviation of Part "A"

changes from batch to batch, choosing a selective assembly operation that is less sensitive to

changes in aA would be beneficial to creating more consistent assemblies. The sensitivities also

aid in choosing a selective assembly approach when multiple machining lines feed into the

selective assembly operation. For example, if multiple machining lines are used to create Part

"B," the standard deviations may be different for each of the distributions coming from the

multiple lines. In this case, picking a selective assembly approach that is insensitive to the

variance of Part "B" would be beneficial.

4.5 Selective Assembly Equation Validation

The closed-form equations for the assembly standard deviation and scrap fraction developed in

Section 4.4.1 can be validated by quantifying the goodness of fit for the third order polynomial

165



equations to the simulated data and checking to see if the equations accurately represent the data.

The goodness of fit that a curve has to a group of data is represented by R2 . R2 can have a value

between zero and one. A value of zero indicates that a horizontal line passing through the average

values of Y fits the data as well as the "best-fit" line. A value of one indicates all the data points

lie exactly on the line. A value close to one is preferred but should not be the only test as to how

well the fit curve represents the data. A simple visual test provides insight into the accuracy of the

fit curve (1999).

The best fit normalized assembly standard deviation curves to the data (Equation 4-20), i.e.,

where the R2 values for each technique were the closest to one, is when five bins are used. When

five bins are used, the R2 values range from 0.993 to 1. The points representing the simulated data

along with the best-fit curves are shown below in Figure 4-9. Each point represents the average of

thirty Monte Carlo simulations, e.g., averaging the results from thirty simulations of combining

one thousand variables using the Equal Width Binning to Minimize Scrap technique produced a

normalized assembly standard deviation of 0.4 for a aA/oa ratio of 1.4.

Number of Bins = 5
0.6

0.5 R2 Values
m BN:MV 1.000

E o BN:MS 1.000
0.4 * EA:MV 0.993

o EA:MS 1.000

N OWB 0.999
0.3

E
0

0.2. .. ..

1.0 1.2 1.4 1.6 1.8 2.0
Sigma AISigmaB

Figure 4-9: R2 values closest to one for assembly standard deviation

For the case of five bins, the curves appear to represent the data very accurately capturing the

trends of the data. The lowest value for R 2 occurs when fitting normalized assembly standard
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deviation curves to the data for the case of using seven bins. The curve for Equal Area Binning to

Minimize Scrap has an R2 value of 0.974, which is still very close to the desired value of one.

Looking at the curves and the simulated data points in Figure 4-10 shows that the curves do fit the

data extremely well.

Number of Bins =7

1.8 2.0
Sigma A/Sigma

R2 Values

m EW:MV 1.000

o EW:Ms 0.999

* EA:MV 0.974

o EA:MS 0.999

x OWB 0.999

B 
.0

Figure 4-10: Lowest R2 for assembly standard deviation

Investigating the curve fit for the ±95% confidence interval reveals similar results. One case

where the curves for expected value, -95% confidence interval band, and +95% confidence

interval band fit the data almost perfectly is Equal Width Binning to Minimize Variation using

four bins. For this case, the R2 values are 1, 0.999, and 1 respectively. The data points and curves

fit to them are shown below in Figure 4-11. The curves fit the data very accurately. The worst fit

of confidence intervals occurs for the Equal Area Binning to Minimize Variation technique using

ten bins. For this case, the lower band has an R2 value of 0.654 and the upper band has an R2

value of 0.799. Looking at the plots of the data points and curves shown in Figure 4-12 reveals

that even with these R2 values the curves still accurately reflect the nature of the data. Note that

the scale of the vertical axis is set in each of the graphs to show as much detail as possible.
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Figure 4-11: Example of confidence intervals with high R2 values
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Figure 4-12: Confidence intervals with the lowest R2 values
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The scrap equations created also need to be checked for accuracy. As discussed earlier, the

selective assembly techniques where the wide distribution is binned relative to the tight

distribution, Equal Width Binning to Minimize Variation and Equal Area Binning to Minimize

Variation, have scrap equations that are well represented by third order polynomials. The case

with the highest R2 values for the scrap equations is when three bins are used. The fit curves and

the data are graphed in Figure 4-13 below. A worst case for the scrap curve fit for Equal Width

Binning to Minimize Variation or Equal Area Binning to Minimize Variation does not exist

because all the R2 values are above 0.997, and all the equations fit the data very closely.

Number of Bins = 3

R2 Values

* EW:W 0.999

* EA:M 0.999

C '

1.0 1.2 1.4 1.6 1.8 2.0
Sigma A/SigmaB 2

Figure 4-13: R2 values closest to one for scrap

The selective assembly techniques where the part distributions are binned independently, Equal

Width Binning to Minimize Scrap, Equal Area Binning to Minimize Scrap, and Optimal Width

Binning, have scrap equations that are well represented by a constant as explained in Section

4.4.1. A typical example of how well a constant value represents the data is shown below in

Figure 4-14.
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Figure 4-14: Typical case for a constant value best representing a scrap equation

The selective assembly simulation data used to curve fit the equations are listed in tabular format

in Appendix E along with the R2 values for all the third order polynomial fit curves.

4.6 Example Problems

Three examples are presented in this section to demonstrate the models presented above. One

example is combining two normal distributions and takes advantage of the closed-form solutions

derived earlier. The other two examples are combining non-normal distributions and use

numerical simulation to do so.

4.6.1 Selective Assembly of Two Normal Distributions

An example problem is presented here to demonstrate how the methods and equations introduced

in the previous few sections are used to choose an appropriate selective assembly approach.

Problem Statement

Two parts are joined together to form an assembly (see Figure 4-1). The length of Part "A" is

normally distributed and has a standard deviation of 2.4. The length of Part "B" is also normally

distributed and has a standard deviation of 2.0. Due to functional constraints, the overall length of
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the assembly, Assembly "C," must have a standard deviation less than 1.5. (Note that the

numbers are kept dimensionless since the units would be arbitrary and not affect any

calculations.) What selective assembly technique results in an assembly length distribution that

will have a standard deviation less than 1.5 and minimize the expected amount of scrap?

Table 4-1: Nomenclature for example problem
Abbreviation What it means...

Part A Std Dev, qA Standard deviation of the length of Part "A"

Part B Std Dev, 0 B Standard deviation of the length of Part "B"

Asm C Std Dev, 0c Standard deviation of the length of Assembly "C"

EW:MV Equal Width Binning to Minimize Variation

EW:MS Equal Width Binning to Minimize Scrap

EA:MV Equal Area Binning to Minimize Variation

EA:MS Equal Area Binning to Minimize Scrap

OWB Optimal Width Binning

Scrap Fraction (Number of unmatched parts)/(Total number of parts)

N Number of bins used for a distribution in selective assembly

The value for the Asm C Std Dev if random assembly were used is used as the baseline. This

value is calculated using Equation 4-2. For the given values for the part distributions' standard

deviations, the Asm C Std Dev is 3.1.

Plotting the Asm C Std Dev versus the number of bins used for each selective assembly approach

allows for a determination to be made as to how many bins are required to produce an assembly

with a standard deviation below the desired level. Equation 4-21 and the coefficients in Appendix

C are used to generate the necessary values. These values are plotted in Figure 4-15 below.
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Figure 4-15: Assembly
approaches

standard deviation versus number of bins for multiple

To ensure the assembly has a standard deviation less than 1.5, the number of bins required is four.

From Figure 4-15, determining exactly which selective assembly approach to use is difficult

because all the points for each technique are so tightly grouped. Regardless of this tight grouping,

Figure 4-15 does not provide any insight into the amount of scrap that is generated with each

approach and number of bins. Therefore, Equation 4-23 is used to compute the expected amount

of scrap, as a fraction, for each selective assembly approach and number of bins. These values are

plotted in the graph shown below in Figure 4-16.
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Part A Std Dev = 2.4, Part B Std Dev = 2.0
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Figure 4-16: Scrap fraction versus the number of bins used for multiple
approaches

Figure 4-16 reveals that for four bins, the Equal Width Binning to Minimize Scrap (EW:MS)

approach generates the least amount of scrap of the five approaches studied. This implies that the

Equal Width Binning to Minimize Scrap approach is the best to use for the given information and

requirements since it generates the least amount of scrap and results in an assembly length that

has a standard deviation less than the specified limit of 1.5.

This conclusion makes sense based on the definition of the Equal Width Binning to Minimize

Scrap approach. Remember that this approach utilizes almost the entire range of both part

distributions, thus leaving very few parts unmatched and not producing much scrap from

distribution tail truncation. Knowing that this approach produces a desirable level of assembly

length variation, choosing it is natural due to its given ability to not waste parts.

The same conclusion could have been reached more quickly through the use of a single graph.

The graph plots Asm C Std Dev versus Scrap Fraction. These values are computed using

Equations 4-21 and 4-23 respectively for each selective assembly technique and number of bins.

The graph is shown below in Figure 4-17. Using this graph, a line representing the specification
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limit is drawn horizontally across from the appropriate value (1.5 in this case). All points above

this line are unacceptable, while all points below this line are acceptable. The point that falls

below the spec limit and is furthest to the left is selected as the best point since it meets the

specification and produces the least amount of scrap. Figure 4-18 shows the spec limit and the

chosen point. The chosen point represents the Equal Width Binning to Minimize Scrap approach

with four bins. Notice this is the same conclusion derived before but in a quicker manner.

Part A Std Dev = 2.4, Part B Std Dev = 2.0
3.5

3.0 g

> 2.5 W

S2.0 0 EWMS
01.5 1EAMV
E1.5 

0 X 0 EAMS

0 X Optimal

0.0
0.0% 2.;% 4.0% 6.0% 8.0% 10.0%

Figure 4-17: Assembly standard deviation versus scrap fraction
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Figure 4-18: Solution point to example problem

Once the technique and number of bins have been chosen, it is important to consider the ±95%

confidence interval for the oc and Scrap Fraction. Remember, due to the stochastic nature of

selective assembly the values calculated by Equations 4-21 and 4-23 are the expected values of

the assembly standard deviation and scrap fraction. To ensure the assembly standard deviation is

below the specification limit of 1.5 with the given part distributions, the ±95% confidence

interval for the o-c is plotted using Equation 4-21 and values from Appendix C. This plot is seen

below in Figure 4-19. The plot reveals that there is at least a 95% probability that with the given

input distributions (ou = 2.4 and oa = 2.0), the assembly standard deviation will be less than 1.5.
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Figure 4-19: Assembly standard deviation with ±95% confidence interval

Figure 4-19 may also be used for sensitivity analysis. First, the sensitivities with respect to the

input variables, oA and oB, are computed. From the results in Table 4-2, the value for the

assembly standard deviation is much more sensitive to changes in the value of a than to changes

in the value of oB.

Table 4-2: Sensitivities for assembly standard deviation

C,SeIAsm(N) C,SelAsm(N)

auA (a ,B=. 
(rA=2.4,aB

0.525 0.021

With this conclusion, Figure 4-12 is used for sensitivity analysis, and the sensitivity to -B is

safely neglected. From Figure 4-12, it is shown that oA can vary to a value as high as

approximately 2.5 while maintaining a 95% probability that the assembly standard deviation

remains below the specified limit of 1.5.
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The scrap fraction is also a stochastic value; therefore, investigating its confidence interval is

important. The ±95% confidence interval for the scrap fraction is plotted below in Figure 4-20.

Note that the function and the confidence intervals are straight horizontal lines. This shape makes

sense knowing that the approach is one that minimizes scrap. Therefore, regardless of the shape

of the two part distributions, a similar number of scrap parts is generated. This intuition is proven

mathematically using Figure 4-20 for sensitivity analysis, which shows the scrap fraction is

insensitive to the value of the standard deviations of the part distributions.
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Figure 4-20: Scrap fraction with ±95% confidence interval

Even though the technique and number of bins that result in an acceptable level of assembly

variation and minimizes the scrap has been identified, investigating the sensitivities of the other

approaches for the same number of bins may provide insight into the strengths and weaknesses of

each approach for the given problem. The assembly standard deviation versus UA is plotted below

in Figure 4-21 for the case when oB is equal to 2.0 and four bins are used. The range of o- values

represents a "shift" away from the case of two distributions with equal variance being combined

(at A = 2.0) to a case where the standard deviation of one distribution is twice that of the other

(at o-A 4.0).
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In previous selective assembly work, assuming the two distributions being combined have equal

variance is common. Knowing that this equality is not always true, an engineer should make

intelligent comparisons among the techniques for a particular case. For example, if the overall

goal of an engineer is to minimize the variance regardless of the cost, then the Optimal Width

Binning would be the proper choice when the standard deviation of Part "A" falls between 2.0

and 2.4. The proper choice would be Equal Width Binning to Minimize Variance for values of oA

greater than 2.4. These conclusions are made based on examination of the plot in Figure 4-21

below. This choice matches intuition because of the nature of the approach. The EW:MV

approach heavily truncates the wider distribution (in this case the distribution of Part "A") to

maintain a "width" that is close to that of the mating part's distribution (Part "B"). This truncation

keeps the assembly variation low and very consistent.

n =4,Part B Std Dev =2.0
2.5

> 2.0
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1.5 3 EA:W
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1.0

0.5. . ...

2.0 2.4 2.8 3.2 3.6 4.0
Part AStd Dev

Figure 4-21: Comparing the assembly standard deviation for multiple approaches
using four bins

As emphasized throughout this chapter, the variance of the assembly is only one consideration;

the amount of scrap generated should not be ignored. The scrap fraction versus oA is plotted

below in Figure 4-22 for the case when oB is equal to 2.0 and four bins are used. Again, the range

of oA values represents a "shift" away from the case of two distributions with equal variance
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being combined (at oa = 2.0) to a case where the standard deviation of one distribution is twice

that of the other (at oA = 4.0). Just as with the assembly's standard deviation, an engineer should

make intelligent comparisons among the techniques for a particular case, e.g. 07 = 2.0 and N= 4.

For example, if the overall goal of an engineer is to minimize the scrap generated and gain

whatever reduction in assembly standard deviation comes naturally, then the Equal Width

Binning to Minimize Scrap would be the proper choice for all values of the standard deviation of

Part "A." This conclusion is based on examination of the plot in Figure 4-22 below.

n 4, Part B Std Dev = 2.0
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Figure 4-22: Comparing the scrap fraction for multiple approaches using four bins

Figure 4-21 and Figure 4-22 are also used to compare the robustness of the various selective

assembly approaches. For a-c, the selective assembly techniques that try minimizing variation,

EW:MV and EA:MV, are both fairly insensitive to changes in the value of oa. The other three

techniques are much more sensitive to changes in oa. This higher level of sensitivity is due to the

fact these techniques use the entire range of the wide distribution; therefore, as its width

increases, the standard deviation of the resulting assembly also increases.
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The robustness of the various techniques to the amount of scrap generated is just the opposite.

The techniques that use the majority of both distributions by binning the entire range of values,

EW:MS, EA:MS, and OWB, are extremely robust to changes in ou. This robustness is due to the

fact that these techniques use most of the parts in both distributions the best that they can. The

scrap fraction generated by the two techniques that attempt to minimize variation are highly

sensitive to the value of GA since these techniques truncate the wide distribution to maintain a low

assembly standard deviation.

The example presented in this section demonstrates the considerations that need to be made when

choosing to use selective assembly and making choices related to the technique and number of

bins to implement. The same procedure can be used to analyze any situation where two normal

distributions are being combined.

4.6.2 Selective Assembly of Two Skewed Distributions

Sometimes manufactured parts are not normally distributed. In reality, the parts that require

assembly could form an infinite number of general, irregular distributions. Up until this point, the

focus has been on parts that are normally distributed. The symmetry of normal distributions

allows for any of the binning techniques in Section 4.2 to be used with some success; however,

most of the techniques result in unacceptable levels of scrap when the distributions being

combined are not normal.

There are logical reasons why most of the techniques do not produce positive results when

applied to any two general distributions. The Equal Width techniques bin the distributions

regardless of their shapes. Imagine an irregular distribution with several "humps" of dense

regions. These regions could be split in such a way that an enormous amount of scrap would

result. The Equal Area to Minimize Variation approach could result in the same failure mode if

the tight distribution was symmetric and the wide distribution was highly irregular. The optimal

binning technique would be possible if the distributions were known in advance and did not vary

much over time; however, considerable computation is required to compute the optimal bin limits

for any two general distributions.

The one technique that does not suffer from extremely high scrap rates and is easy to implement

for any two general distributions is the Equal Area to Minimize Scrap approach. This technique,

as described earlier, bins each distribution independently and in a manner that puts an equal
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amount of area under the probability density function in each bin. When applying this approach to

two general distributions, the requirement to have an equal number of parts is forced upon the

binning, whereas, in the case of two normal distributions being binned, the equation for the

normal probability density function was used to set the bin limits. The forcing of an exact, equal

number of parts in each bin results in zero scrap. Since the distributions being discussed here are

not normal, using the standard deviation as a parameter of the spread may be misleading;

therefore, in the following examples, histograms are shown to represent the distributions being

combined and the resulting combination.

When the component distributions are non-normal, the successful reduction of an assembly's

variance is highly dependent on the exact shapes of the two distributions. Also, the number of

bins to use is a factor of the exact distribution shapes. The two examples below demonstrate how

the simulation of a selective assembly process can help determine how many bins to use and the

effects on the assembly's distribution when selective assembly is implemented on parts with

arbitrary distributions.

An example is presented here to demonstrate the effect selective assembly has when combining

parts that come from two non-normal distributions. Part "A" has a distribution that is skewed to

the high side. The distribution of Part "B" is skewed to the low side. The histograms for these two

distributions are seen below in Figure 4-23. Each histogram represents one thousand simulated

values.
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Figure 4-23: Two skewed distributions to be combined

The two distributions shown above in Figure 4-23 are combined using selective assembly via the

Equal Area for Minimizing Scrap approach discussed above. The resulting assembly dimension

histograms for the different numbers of bins are shown below in Figure 4-24.
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Figure 4-24: Histograms of assembly dimensions for different numbers of bins

Selective assembly does help reduce the spread and variation present in the assembly dimensions.

An interesting observation is the fact the distribution of the assembly dimension does resemble a

normal distribution regardless of the fact the two component distributions are non-normal. The

reason this is true is because the two component distributions are skewed in opposite directions,

and the components are added (see Figure 4-1) together to create the assembled dimension, i.e.,

components from the long left tail of the Part "A" distribution are added to components from the

long right tail of the Part "B" distribution.

The increase in the number of bins does reduce the variation of the assembly dimension's

distribution. Since the assembly dimension does form normal distributions, using the standard

deviation is a valid parameter of the spread of the resulting assembly dimension. A plot of the

assembly standard deviation versus the number of bins used is shown below in Figure 4-25.
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Figure 4-25: Assembly standard deviation versus number of bins

The plot in Figure 4-25 shows that the standard deviation for the assembly in this example can be

greatly reduced through the use of selective assembly with an increased number of bins. In

practice, if the component distributions resembled the ones in this example, the tradeoff between

the number of bins (reduced variation) would have to be made against the costs of scrap,

inventory, etc.

4.6.3 Selective Assembly of a Skewed and an Irregular

Distribution

An example is presented here to demonstrate the effect selective assembly has when combining

parts that come from two non-normal distributions. Part "A" has a distribution that is skewed to

the high side. The distribution of Part "B" is non-symmetrical and has two regions of higher

density. The histograms for these two distributions are seen below in Figure 4-26. Each histogram

represents one thousand simulated values.

183



Part A Part B
300 300

200 200

100 100 --

90 95 100 105 110 40 45 50 55 60

Figure 4-26: Skewed distribution and irregular distribution

The two distributions shown above in Figure 4-26 were combined using selective assembly via

the Equal Area for Minimizing Scrap approach mentioned above. The resulting assembly

dimension histograms for the different numbers of bins are shown below in Figure 4-27.
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Selective assembly does help reduce the spread and variation present in the assembly dimensions.

The range of the assembly dimension when random assembly is used is 132 mm to 161 mm.

When selective assembly is used with four bins, this range is reduced to 141 mm to 158 mm. This

is a 41% reduction in the spread. The histograms also show a tighter, more centrally located

distribution for the assembly dimension when selective assembly is used. The benefit of using

more than four bins seems to be minimal. This is a result of the specific shapes of the parts'

distributions.

4.7 Chapter Summary

The main focus of this chapter was to demystify selective assembly so that it can be effectively

and intelligently implemented to manage product variation. The challenges associated with

accomplishing this, along with possible solutions, are summarized below. The solutions that are

original and introduced for the first time in this thesis are identified by the *NEWI* symbol.

The section of the thesis where each solution is mentioned or discussed is listed in the summary

to link to more detail. Each solution has its advantages and disadvantages listed to provide a

quick summary.

Traditional selective
assembly techniques

4.2.1
4.2.3
4.2.5
4.2.6
4.2.7

+ Each technique has its own set of advantages (See the
corresponding section)

- Each technique has its own set of disadvantages (See
the corresponding section)

*NEW!* 4.2.2 + Provides a reduction in assembly variation while
Selective assembly 4.2.4 minimizing the cost impact of using selective assembly
techniques to - May not provide the same reduction in assembly
minimize scrap variation as other traditional methods
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Traditional "goal
post" analysis, i.e.,
parts are good if they
meet the tolerance
specified

4.1.2
4.3.1

+ Simple because bin limits can guarantee specified
tolerances are met

- Does not consider quality loss as variation increases

*NEW! * 4.3 + Provides a method to make tradeoffs between cost and
Quality vs. Costs quality
considerations - Used to make best choice for the selective assembly

technique to implement

Challenge: Calculating the standard deviation of a dimension resulting from a selective
assembly operation

Numerical 4.4 + Can be used to compute the standard deviation of the
simulation assembly dimension regardless of the component

distributions, e.g., th thewo component distributions do
not necessarily need to be normally distributed

- Computationally expensive
- Time consuming to perform tradeoff analysis

* NEW!* 4.4.1 + Easy to use
Closed-form + Can be implemented in a wide variety of computer
equations applications, e.g., spreadsheets, math programs, etc.

-Only applicable to a certain type of component
distribution, e.g., in this thesis, the distributions being
combined must be normal
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Challenge: Developing closed-form equations for calculating the standard deviation of a

Analytical cenvation 4.4 + 1'rocuces exact solutions
- Not possible to analytically derive useful form of

equations, e.g., integrals appear that cannot be solved
without numerical methods

*NEW!* 4.4.1 + Straightforward approach
Use numerical + Curve fit equations match simulated data very closely
simulation to (See Section 4.5)
generate results, then - Equations only valid over specified range
curve fit results to Initially seems like an infinite number of possible
produce closed-form combinations exist for the two distributions' variances
equations being combined, i.e., an infinite number of equations

would have to be created so that there would be one for
each combination. However, this is overcome by
normalizing the equations (See 4.4.1)

Challenge: Performing sensitivit analysis on selective assembly operations

Use numerical n/a + Can be used to compute the standard deviation of the
simulation assembly dimension regardless of the component

distributions, e.g., the two component distributions do
not necessarily need to be normally distributed

- Computationally expensive
- Time consuming to perform tradeoff analysis

*NEW!* 4.4.2 + Directly compute sensitivities by taking partial
Use closed-form derivatives
equations - Only applicable to a certain type of component

distribution, e.g., in this thesis, the distributions being
combined must be normal

Random assembly and selective assembly affect the variation of a product's dimensions. This

chapter contained a brief review of random assembly followed by a detailed discussion of

different selective assembly techniques. Two new techniques were introduced, Equal Width

Binning to Minimize Scrap and Equal Area Binning to Minimize Scrap. An algorithm was

presented to calculate the standard deviation and scrap generated as a result of a selective

assembly operation. This algorithm was used to develop closed-form solutions for these two

187



quantities. Several examples were shown to demonstrate the steps taken to make decisions

regarding implementing a selective assembly operation.
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5 System Approach: VRUM

Chapter Highlights

" Introduce Variation Risk Management & Understanding (VRUM) system model

" Define icons for system model diagrams

" Describe system model composition

* Formulate system model equations

" Discuss implementation of VRUM

* Present an example to demonstrate technique
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5.1 Introduction

Variation Risk Understanding and Management (VRUM) is a design tool that uses process

capability data to create mathematical equations that can calculate the expected mean and

variance of a dimension on a manufactured part or assembly before being produced. The

groundwork for VRUM has been created in the previous three chapters. Chapter 2 discussed the

design of an efficient and effective Process Capability Database. The database is used to store and

retrieve manufacturing data. The construction of the equations developed in Chapter 0 relies on

these data. Once constructed, these equations calculate the effects a manufacturing process has on

an incoming distribution. They accept an incoming distribution's mean and standard deviation as

inputs to compute the expected mean and standard deviation of the outgoing distribution. Chapter

4 reviewed the formulation for computing how part variances add when random assembly is used

to combine them. A closed-form equation for selective assembly was also developed that

calculates the expected variance of an assembly's dimension when selective assembly is used to

create it.

Math Functions Math Functions
Input for for Output

Dimension Manufacturing Assembly Dimension
min and Gin Processes Operations gout and ac0 u

(Chapter 3) (Chapter 4)

Figure 5-1: How the "pieces" fit

These developments are combined as shown schematically in Figure 5-1 to create a system level

approach to forecast the mean and standard deviation of an assembly characteristic. The

schematic shows how the previous developments fit together. The process capability data is used
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to construct math functions for manufacturing processes. These functions accept incoming

dimensions' means and standard deviations and calculate the dimensions' means and standard

deviations exiting the process. These values are then fed into the math functions representing

assembly operations to compute the assembly dimension's mean and standard deviation. The

large gray rectangle represents VRUM, i.e., the integration of the process capability database,

math functions representing manufacturing processes, and math functions describing assembly

operations. The schematic shows that VRUM accepts dimensions' pi" and ci to compute pout and

aut, thus, manufacturing variation can be forecast.

In this chapter, the method of how to compose a VRUM system level model and construct closed-

form equations to compute output variation is described. Then, the role of VRUM in a product

development process and the implementation of VRUM are discussed. Finally, an example is

presented to demonstrate how VRUM can assist with design decisions.

5.2 System Model Composition

A VRUM system model is created to forecast the final mean and standard deviation of a

characteristic on a part or assembly. The system model is comprised of manufacturing processes,

assembly operations, process capability data, and part or assembly dimension distributions. A

method for graphically and mathematically representing a VRUM system model is presented in

this section.

5.2.1 Icons

Icons are used to graphically represent the elements in a VRUM system model. The icons are

designed to be simple and easy to recognize. A small number of icons is used to keep the

diagramming simple. A cylinder icon represents a Process Capability Database of the data stored

within it. Different square icons denote different manufacturing operations. Manufacturing

processes are symbolized with a square with an "X" in it since a process can act as a multiplier to

an incoming distribution's variance. A square with a "+" sign signifies a random assembly

operation since the variances of the parts being combined add. Selective assembly operations are

designated by a square with a "-" because it works to reduce the assembly variance when

compared to random assembly. A solid arrow represents a material flow while a dotted line

represents information flow. These icons are shown below in Figure 5-2.
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C

Figure 5-2:

*000* Information Flow

Icons used for VRUM system model diagrams

Individual processes do not have a corresponding unique icon because the number of existing

processes is so large that remembering and identifying all the icons would become cumbersome.

Instead the generic icons shown above are used and are simply labeled in the diagram. This

approach keeps the diagram simple and effective for quick review.

5.2.2 System Diagram

A system diagram graphically represents a VRUM system model. The icons presented earlier are

used to construct the system diagram. The diagram allows an engineer to quickly see the

manufacturing processes and assembly operations that affect the characteristic of interest.
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Constructing a diagram is simple. Circles are used as the starting point and ending point since

they represent the part and assembly dimensions. Process and assembly icons are then placed into

position. The Process Capability Database icon is then dropped into place. Finally, the solid

arrows designating the part or assembly flow paths are used to connect the circles and squares,

and the dotted lines are placed connecting the database to the processes for which data is used to

build the corresponding equations.

Part A Operation I Operation 2

O eration 4

or

Asm C

Part B Operation 3

2
Figure 5-3: Example of a VRUM system model diagram

Figure 5-3 displays an example VRUM system model diagram used to forecast the mean and

standard deviation of a characteristic of Assembly C. The assembly is made up of two

components, Part A and Part B. The characteristic of Part A that affects Assembly C is operated

on by two manufacturing processes. Only one manufacturing process affects Part B's

characteristic of interest. Operation 4 is the operation that assembles Part A and Part B. At this

point, the type of assembly operation, random or selective, has not been chosen so the diagram

shows both.

5.2.3 Output Equations

The main advantage of VRUM is the ability to construct closed-form solutions for the mean and

standard deviation of a dimension as it exits a manufacturing system. This is accomplished by

associating equations with the operation icons in the VRUM system diagram. The equations used
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are those developed in Chapter 0, specifically Equation 3-25 for the mean and Equation 3-26 for

the standard deviation of parts exiting a manufacturing process. The system does not have a

single equation to represent it. Actually, each process has two associated equations, one for the

output mean and one for the output standard deviation. The output from one process' equations or

assembly operation is fed as an input to the equations for the next process downstream as

illustrated in Figure 5-4. This cascading of information allows the final mean and standard

deviation of a dimension as it exits a manufacturing system regardless of the number of processes

or assembly operations in the production system. The example presented in Section 5.4

demonstrates this methodology.

pn & Equations kout &

Operation 1

ptn & Equations out &

Operation 2

pin & Equations tout &

Operation i *

Etc.

Figure 5-4: Cascading of information from one process to the next

The inputs and outputs for the individual operations can be examined to determine how variation

propagates through the system. Once the operations that affect variation the most are identified,

they can be modified or replaced to improve the system output. Examining the individual
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processes can also reveal if a downstream process "removes" variation from the parts going

through it. This insight could allow the justification of using a less expensive operation with

lower capability to be utilized upstream since the variance is removed by a later operation

anyway.

5.3 Role of VRUM

Manufacturing companies are motivated to better understand and manage manufacturing

variation to lower costs and improve quality. Managing manufacturing variation is the act of

making design and manufacturing decisions so that a product can be manufactured with an

acceptable level of variation at an acceptable cost. Managing variation does not always imply

minimizing it. Sometimes the cost to minimize variation is not justified because there is no gain

in functionality with the lower variation. Managing variation is finding a proper balance between

manufacturing cost and variation in an intelligent manner.

VRUM assists in the management of variation. Variation can be managed through several

decision making aspects of product development, which can be enhanced using VRUM. Supplier

selection is enhanced using VRUM by comparing the quality of the products that different

suppliers can produce. Process selection is enhanced because capable processes can be found and

implemented using the process capability database and closed-form equations. The selective

assembly closed-form equations are helpful in making tradeoffs between using more expensive

manufacturing processes compared to using less expensive processes with selective assembly.

VRUM helps during the design of a product by reassuring the design engineer that the product

can be manufactured with an acceptable level of quality. Specifying tolerances on a product is

assisted with VRUM by revealing how adjusting the tolerances affects the product quality. These

decisions are further enhanced using VRUM in a feedback loop. The decisions are set and the

output mean and standard deviation are computed. If these values do not meet specification, the

decisions are re-evaluated, and the mean and standard deviation are re-computed. These steps are

repeated until an acceptable mean and standard deviation are found. A schematic of these steps is

shown in Figure 5-5 where the decisions are listed on the left and the large gray rectangle

represents the VRUM system. The information flows are represented by solid black lines with

arrow heads indicating the directions. Costs can also be considered to find the group of decisions

that produce a product that meets specifications for the lowest cost.
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Figure 5-5: Decisions enhanced with VRUM

The exact role of VRUM depends on the product development phase when it is used. Figure 5-6

shows a generic four phase product development process consisting of planning, concept

generation, detailed design, and production phases. (Details regarding product development

processes can be found in Product Design and Development (Ulrich and Eppinger 2000).) The

uses of VRUM are labeled along the timeline. During the early stages, VRUM is used to provide

a general insight into the company's process capability. For example, an engineer could use

VRUM to review capability data to get a sense as to the features and geometries that have been

produced on previous products, the processes often used, and the materials that are commonly

used. The engineer can then use this information to eliminate infeasible concepts. During the

detailed design stage, VRUM guides an engineer in the design of a product that can be produced

with an acceptable level of quality, e.g., using VRUM in a Design for Six Sigma environment. An

example is when an engineer uses VRUM to forecast the final mean and standard deviation of a

dimension and then makes decisions such as changing the overall magnitude of the dimension to

make it easier to produce. VRUM also helps with tolerance allocation since it can be used to

quantify the effect changing a tolerance has on the end quality. Selecting the best supplier is made

easier using VRUM by forecasting the end product quality as a function of the supplier's process

capability. For example, two suppliers can be quantitatively compared by using their capability
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data as inputs to VRUM equations. Process selection can be enhanced with VRUM by using the

DeltaP and SigmaP functions to qualitatively compare processes and using the resulting closed-

form equations to make quantitative comparisons. Finally, during production, VRUM helps

identify where in the production system variation is introduced by examining intermediate values

of the mean and standard deviation as it propagates through the system.

VRUM guides VRUM VRUM
in designing a compares the identifies
product with an effects supplier where
acceptable level quality has on variation is
of quality product quality introduced

I I I

Concept [ Detailed
Planning Geniertn DCg Prodution

I I I
VRUM provides VRUM helps VRUM assists
insight into what with realistic in selecting
a company can tolerance appropriate
produce allocation manufacturing

processes

Figure 5-6: Generic four phase product development process

VRUM is solely focused on dimensional concerns and is not a process parameter optimizer.

VRUM is not intended to be used to find the operating parameters of a particular process that

produce high quality parts. VRUM is also unable to determine the sensitivity of a part's output

quality to small deviations in an operating parameter, e.g., feed, rotational speed, etc. Instead,

VRUM is used to compare different processes at different operating points, i.e., a fixed set of

operating parameters. The main reason for this is that VRUM does not accept process parameters

as inputs and none of the equations are functions of anything other than dimensional quantities.

For example, VRUM does not help determine if a turning process will produce better parts if the

angular velocity of the workpiece is changed slightly.

5.4 Implementation

Variation Risk Understanding and Management (VRUM) is a design tool that can be

implemented in a wide variety of design and manufacturing environments ranging from small
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machine shops to international corporations. The foundation of VRUM is comprised of the three

major components of a process capability database (Chapter 2), closed-form equations to

compute the mean and standard deviation of a product dimension exiting a manufacturing process

(Chapter 0), and closed-form equations to compute the variation of a product dimension upon

exiting an assembly operation (Chapter 4). Each component could be implemented independently

of the others; however, the usefulness is diminished. A process capability database implemented

using the concepts presented in Chapter 2 allows for engineers to gain insight into a company's

manufacturing capability and thus make better design decisions. The database also serves as a

source for the data that is used to construct the closed-form equations for p,, and o, exiting a

manufacturing process. Once these equations are constructed, they can be used in series or as

standalone equations. The closed-form equations for the variation produced by selective assembly

can also be used alone. They are beneficial if a company is simply concerned with improving its

product quality without changing any component production processes. The selective assembly

equations are discussed and presented in Chapter 4.

The situation may arise where a company wants to use the closed-form equations for pu,, and a,,,,

exiting a manufacturing process without going through the effort of constructing, populating, and

maintaining a process capability database. For example, a company purchases a few new pieces

of equipment and wants to construct closed-form equations for how the new equipment affects

the variation of parts they produce. In a situation like this, the equations can be produced by

producing parts and using the measurements as process capability data to construct the equations

per the instructions in Chapter 0. No hard-and-fast rules exist for how much data are required.

Some guidelines are presented in Section 3.7 as to how much and what kind of data should be

used to efficiently build equations that are accurate in forecasting quality. For example, using

these guidelines, three groups of oversized stock could be processed followed by three groups of

undersized stock to produce six sets of capability data with a reasonable amount of dispersion.

These six groups of data are then used to construct the closed-form equations. Each group should

contain enough parts to be statistically significant, e.g., thirty parts or more. Once the new

equipment is used in production, parts produced on it can be measure and the data used to verify

the accuracy of the equations.

Once VRUM is implemented, it is easy and quick to use. VRUM results in closed-form equations

that can be solved using a simple spreadsheet. An engineer would follow the first few steps

shown in Figure 5-7 through the step of constructing the DeltaP and SigmaP curves. At that point,
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the engineer would input the DeltaP and SigmaP coefficients into the spreadsheet and use the

closed-form equations for the output mean and output standard deviations from a manufacturing

process, Equations 3-25 and 3-26, along with the closed-form equation for selective assembly,

Equation 4-21. Solutions are then calculated almost instantly for as many different cases as the

engineer inputs. Finally, the engineer performs the last step of selecting and analyzing the best

solution. Once the engineer has a spreadsheet setup, the entire cycle of computing new solutions

only takes a matter of a few minutes.

5.5 Example Problem

A simple example problem is presented here to demonstrate how VRUM can assist with design

decisions. The example problem is told through the eyes of a fictional engineer. The data used in

the example problem were created using the physics-based math models introduced in Section

3.6.1. An outline of the steps used in the example problem is displayed in Figure 5-7.
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Figure 5-7: Schematic of steps used in example problem

Cyler is a design engineer working for a company that manufactures widgets. One type of widget

is comprised of an aluminum cylindrical shaft mating with an aluminum plate that has a round

bore. Figure 5-8 shows an illustration of the widget being designed. The gap between the two

components is used for a cooling channel. Having the appropriate cooling fluid path requires a

diametrical clearance of 1.00mm. Variation of the clearance between the mating parts can cause

too little or too much fluid to pass by the parts, which causes early failure or degraded

performance of the widget; therefore, the clearance is determined to be a critical dimension and

must be held to tight tolerances, see Figure 5-9. Based on functional requirements, the tolerance

range for the diametrical clearance is set to 0.99mm to 1.01mm. The target diameter of the shaft

is 20.0mm, and the target hole diameter is 21.0mm. Cyler's company is striving toward a high

level of quality. The company uses the process capability index of Cpk to measure the level of
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quality of a dimension. Cyler would like to produce widgets that have a clearance with a Cpk

greater than two. Cyler assumes that the parts' dimensions are normally distributed and that the

processes he has available to him produce normally distributed parts.

r -q,

Figure 5-8: Illustration of widget being designed

Figure 5-9: Top view of widget showing the critical dimension

Cyler is going to use aluminum bar stock that is cut to the correct length. He has three different

potential suppliers. The suppliers' bar stock is specified by a mean and standard deviation. The

summary of the supplier capability data is seen in Table 5-1. Cyler uses aluminum blocks

machined to the proper dimension for the plate component of the widget. The aluminum blocks to

be used for the plate component can be procured for $0.20 per piece.
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Table 5-1: Supplier data for bar stock
Diameter Mean Standard Deviation Piece Cost

Supplier [mm] [mm] [$1
A 23.0 0.30 0.19
B 24.0 0.12 0.24
C 25.4 0.70 0.14

The bar stock obviously needs to be machined to the proper dimension. Cyler has three lathes at

his disposal for the task. Cyler knows that to even get close to the required tolerance and level of

quality, a roughing cut followed by a finishing cut is required. His plan is to use a roughing

operation to reduce the bar stock to a diameter of approximately 20.5mm. The finishing operation

then removes material to produce diameters equal to the final desired diameter of 20.0mm. He

also has three drill presses available. He hopes to simply drill the hole with one pass. Cyler takes

this information and constructs the VRUM system diagram shown in Figure 5-10. The VRUM

diagram shows the bar stock is sent into a rough turning operation that is followed by a finish

turning operation. The output from the finishing operation meets the drilled plate stock at the

assembly operation where the components are mated together to create the clearance.

(P

Bar Rough Finish
Stock Turning Turning

Plate Drilling

Clearance

2
Figure 5-10: VRUM system diagram for example problem

Cyler queries his company's process capability database to retrieve data for the roughing,

finishing, and drilling operations when the workpiece material is aluminum. The retrieved data

are listed in tabular form in Appendix J. Cyler knows that these data represent normal

distributions. The retrieved data also list the cost associated with each process. The costs are
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summarized below in Table 5-2. These costs are used to calculate the total cost of each assembly

and help in determining the lowest cost combination of raw stock and processes that result in

assemblies that meet the quality specification.

Table 5-2: Cost for each available processes

Roughing 1 0.21
Roughing 2 0.15
Roughing 3 0.11
Finishing 1 0.45
Finishing 2 0.27
Finishing 3 0.20
Drilling 1 0.47
Drilling 2 0.13
Drilling 3 0.33

The retrieved process capability data are used to calculate the coefficients for the DeltaP and

SigmaP functions for each of the roughing and finishing operations. The DeltaP and SigmaP

functions are assumed to be second order polynomials as expressed in Equations 5-1 and 5-2. The

technique used to calculate the coefficients is outlined in Section 3.4. The coefficients are listed

below in Table 5-3.

DeltaP = ao +a1M+a 2M 2

SigmaP = bo +bjM+b2M2

5-1

5-2

where the coefficients are listed below for the different available processes.

Table 5-3: Coefficients for DeltaP and SigmaP functions

Kougning 1 U 0.988121 0.004126 0 -0.004485 0.002819
Roughing 2 0 0.981478 0.007011 0 -0.011743 0.003757
Roughing 3 0 0.985607 0.004973 0 -0.008009 0.002910
Finishing 1 0 0.998914 0.010450 0 -0.000468 0.006219
Finishing 2 0 0.998508 0.015554 0 -0.000247 0.009706
Finishing 3 0 0.998890 0.012274 0 -0.000454 0.007306
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The coefficients listed in Table 5-3 are used to plot the DeltaP and SigmaP functions for the

roughing and finishing processes. These graphs are shown in Figure 5-11 through Figure 5-14.

The graphs allow for a quick qualitative comparison of the different processes. The graph in

Figure 5-11 shows that the three roughing processes are close to the ideal case of the actual depth

of cut being equal to the desired depth of cut, which would be represented by a line with a forty

five degree slope. The graphs do reveal that the Roughing 2 operation produces parts that are not

as close to the desired output value since it diverges from a forty five degree line more than the

other two curves.

Desired Depth of Cut [mm]

-10 -8 -6

DeltaP Curves

-4 -2 0

.U ..

--- Roughing 1

0 -0n-- Roughing 2

- -A- -Roughing 3

-2

-4

-6

0

-8 0

-10

Figure 5-11: DeltaP curves for the available roughing operations

The SigmaP curves shown in Figure 5-12 are used to qualitatively compare the expected variation

upon exiting the roughing process. The Roughing 2 curve lies above the other two curves;

therefore, the Roughing 2 operation produces output parts that have higher variation than the

other two processes. The roughing process that produces parts with the smallest amount of

variation is the Roughing I operations since it lies below the other two curves.
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Figure 5-12: SigmaP curves for the available roughing operations

The DeltaP curves for the finishing operations are plotted in Figure 5-13 over the range of

interest. The plots reveal that the three processes are almost identical in their abilities to remove a

certain amount of material as a function of the desired amount of material removal. The SigmaP

curves are plotted in Figure 5-14. These plots show that Finishing 1 produces the parts with the

lowest amount of variation since it is below the other two curves. The parts produced with

Finishing 2 have a higher level of variance than parts produced with the other two processes.
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Figure 5-13: DeltaP curves for the available finishing

6
operations

SigmaP Curves
0

I~ %

K,

0.01

0.009

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0
0-1 -0.5

Desired Depth of Cut [mm]

--- Finishing 1

-m-- Finishing 2

- -A- - Finishing 3

9)

I

Q

0.

9
207

6

Figure 5-14: SigmaP curves for the available finishing operations
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The plots of the DeltaP and SigmaP functions are a valuable resource for qualitative analysis. If

all other aspects of the processes were equal, e.g., costs, cycle times, up time, etc., then the curves

would be enough to make the decisions as to the best processes to use. However, other factors are

different for the different processes. For this example, the only process aspect other than quality

considered is the cost of producing one part. The values for the associated costs are given in

Table 5-2.

Cyler must now select a supplier (see Table 5-1), a particular roughing operation, a particular

finishing operation, a particular drilling operation, and an assembly operation to successfully

produce the widgets with an acceptable level of quality. The roughing, finishing, and drilling

operations he has available to him are listed in Table 5-2. For the assembly operation, he can

choose to use random assembly or any of the five selective assembly binning techniques with any

number of bins from one to ten. Cyler realizes a finite number of possible combinations of

supplier, roughing operation, finishing operation, drilling, and assembly operations exist. The

exact number can be computed using combinatorial math by multiplying the number of

possibilities of each choice. Three possible suppliers are available. Three choices for the roughing

operation, three choices for the finishing operation, and three choices for the drilling operation

exist. Five selective assembly techniques can be used. Each technique can utilize between one

and ten bins. Random assembly is also an option. Therefore, fifty one possibilities exist for the

assembly operation. These numbers multiplied results in 4,131 possible combinations.

Determining the best combination of choices is the responsibility of Cyler. A few sample

combinations are listed below in Table 5-4.

Table 5-4: Samples of possible combinations Cyler can choose

A 1 3 1 Random
A 2 2 1 EW:MV, N = 2
A 3 1 1 EW:MS, N = 7
B 1 3 2 OWB, N = 3
B 2 2 2 EA:MV, N = 6
B 3 1 2 EA:S, N = 3
C 1 3 3 EW:MV, N = 3

The metric Cyler is using to represent the quality of the clearance is the process capability index

known as Cpk. The equation below is used to compute Cpk.
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CPk = Min K3 ,U37 5-3

The symbol LL is used to represent the lower limit of the dimension of interest, and UL

represents the upper limit of the dimension of interest. The mean and standard deviation of the

dimension are represented by p and ca respectively. The detailed design of the widget fixes the

lower limit, LL, at 0.99mm and the upper limit, UL, at 1.01mm.

The mean and standard deviation of the clearance must be calculated to compute the Cpk values.

To calculate these values for the clearance, these same values must be determined for the

components. The mean and standard deviation for the hole diameter are determined by the

drilling operation selected and are read from Table 5-5. The equation for the mean of the rod

diameters exiting the roughing or finishing process is constructed using Equation 5-4, and the

standard deviation of the rod diameters exiting the roughing or finishing process is constructed

using Equation 5-5. The ao, a,, a2, bo, b1, and b2 coefficients are read from Table 5-3 for the

specific process.

Table 5-5: Quality produced by available drilling operations

standard deviation for the diameters as they exit each process. Not only do the values of the at's

and b1's depend on the particular process (see Table 5-3), the values used for the p'-inu,, p-4 age,, and

oi,, also depend on the process the equation is representing, i.e., the roughing operation accepts

the bar stock as input while the finishing operation accepts the roughing operation's output. These

differences are summarized in Table 5-6 and are demonstrated graphically in Figure 5-15 where

the arrows represent the information that is being passed to and from operations and the

rectangles represent the equations for each operation.
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Table 5-6: Different inputs used for roughing and finishing equations

Raw bar stock mean diameter Mean ot diameters exiting
the roughing operation

[target 20.5 mm 20.0 mm

C-input Standard deviation of raw bar stock Standard deviation of diameters
"p Sexiting the roughing operation

Bar stock Roughing Roughing Finishing Final output
values for Operation output Operation values for
i and a Equations values for Equations rod diam.

for Output and a for Output and a
panda panda a

Figure 5-15: Illustration of different inputs for roughing and finishing

Pouut = pinput +a + a { p,1 ,,g, -/inpu, }+ { pu, -
2 pinputtarget + 2 ,t + 2fut t
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Cyler now has the closed-form equations for the mean and standard deviation of parts exiting the

roughing and finishing operations. The equations are functions different variables as listed in

Table 5-6 and are written below for clarification.

['RoughingOutput = f ([PBaStock I [RoughingT arget UBarStock 5-6

['FinishingOutput Rf oughingOutput, flFinishingT arg et 1 URoughingOutput 5-7

C hou ngutt f (-- BarStock i RoughingTarget 0BarStock ) 5-8

072 n , ( /RoughingOutput PFinishingT arg et CRoughingOutput 5-9
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This calculation demonstrates the capability of VRUM to quantify the effects serial processes

have on a dimension. For example, the final mean and standard deviation of the rod diameter are

easily computed even though two processes act on the bar stock. The capability arises from the

fact that each process is represented independently by its own set of equations for its output mean

and standard deviation. These output values are then cascaded as inputs into the next downstream

process.

Now that Cyler can determine the components' means and standard deviations, he needs to be

able to calculate the mean and standard deviation of the clearance. He uses Equation 5-10 to

calculate the mean of the clearance where pFinaRodDiameter is the mean of the diameters exiting the

Finishing operation and uHoleDiameter is the mean of the hole diameters resulting from the drilling

operation. If he chooses to use random assembly, the equation for the clearance's variation level

is shown as Equation 5-11. If Cyler opts to use selective assembly for the assembly operation, he

uses Equation 5-12 to compute the standard deviation of the clearance. The values for the Ci

coefficients are listed in Appendix C. The subscripts A and B are arbitrarily assigned to the hole

diameter and rod diameter to produce a ratio of 1 A/-B 2. The subscript assignment can be

swapped accordingly to cover the range of 0.5 O-HoleDiametetlFinalRodDiameter 2. The three

equations below were introduced and discussed in detail in Chapter 4.

Clearance = YHoleDiameter - PFinalRodDiameter 51 0

Clearance,RandomAsm HoleDiameter aFinalRodDiameter 5-11

j o A I ( r A C 2r ( 1 -) 
2E2

Clearance,SelAsm (N ) ( 3 ) (TB A B 9 A + U B 5 -1 2

for I _ - 2
UB

Cyler now combines Equations 5-3 through 5-12 to calculate the Cpk for each combination of raw

stock, roughing operation, finishing operation, drilling operation, and assembly operation. He still

needs to compute the associated piece cost for each combination. The per piece cost is computed

using Equation 5-13. The values for CBarStock are given in Table 5-1. The plate stock cost $0.20 per
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piece. The cost for each operation is provided in Table 5-2. The inspection cost is zero if random

assembly is used and is $0.10 per piece if selective assembly is used. The part scrap cost is also

zero if random assembly is used, i.e., all the parts will be used. The part scrap cost may be

nonzero if selective assembly is used. The value of the part scrap cost is computed by computing

the costs of the unmatched parts. This can be done as a percentage of the total number of parts.

The percentage of scrap is given by Equation 5-14. This equation is used to construct the equation

for the part scrap cost given by Equation 5-15. Again, the subscripts A and B are arbitrarily

assigned to the hole diameter and rod diameter to produce a ratio of 1 5 o-/o-B 2.

PerPiece CBarStock + Plate Roughing 5-1 3
+CFinishing + Drilling inspection PartScrap

A 3 
2 D

Scrap(N) =(D) r7 +(D2)L _ +(D1)r^+D2
B UB UB

5-14

for 1 <-A- 5 2
UB

A 3 2(2 E

CPartScrap = (D3) +(D2 ) "J +( D + DO ( CBarStock + CPIate
UB U B UB 5-1

for 1 <- -<2
CB

Cyler now has all the equations needed to calculate the quality as measured by Cpk and cost of

each combination. He plots the Cpk values versus the per piece cost as seen below in Figure 5-16.

Each point on the graph represents a particular combination of raw stock, roughing operation,

finishing operation, drilling operation, and assembly operation. The combinations that produced

part distributions whose standard deviations were off by more than a factor of two are omitted

from the graph. The squares on the graph represent combinations that use random assembly while

the circles on the graph represent combinations that use selective assembly.

A Pareto Front can be created by connecting the best points on the graph with lines. The Pareto

Front represents the best possible solutions, i.e., selecting a point below the Pareto Front would
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be sacrificing quality by reducing the Cpk while not reducing the cost. The points on the Pareto

Front are labeled to identify them for further analysis. The Pareto Front is drawn and the points

are labeled on the graph shown in Figure 5-17.
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Figure 5-16: Possible solutions
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Figure 5-17: Possible solutions with Pareto Front drawn

The dotted horizontal line on the graph in Figure 5-17 represents the quality specification limit of

a Cpk value of two. The points above the spec limit meet the quality requirement while those

below do not. Points A and B clearly do not meet the required Cpk; therefore, they are eliminated

from consideration. Points C through I are possible contenders for the combination that meets the

quality specification. The combinations and numerical values associated with these points are

listed below in Table 5-7.

Table 5-7: Feasible solution combinations

C 3 3 2 N=3~m 0.92 1.96

C 2 3 2 EWMV 0.93 2.01

A 2 3 2 1.09 2.24N=10 ___

C 2 1 2 EWMV 1.19 2.42

GW:MV11.38 2.69

B 2 3 1V 1.41 2.86

W A 1 3 1 1.49 2.93

Based on these results, Cyler probably chooses Point D, that is, he decides to use Supplier C,

Roughing 2, Finishing 3, Drilling 2, and Equal Width Binning to Minimize Variation with three

bins. This combination produces a clearance with a Cpk greater than two for the lowest cost.

Cyler realizes making this choice may be premature without investigating the worst case values

this combination could produce. The numbers plotted in Figure 5-17 and listed in Table 5-7 are

based on the expected values of the standard deviation and scrap percentage leaving the selective

assembly operation. As stated in the development of the closed-form equations for the selective

assembly techniques in Chapter 4, selective assembly is a stochastic process. The probabilistic

nature of selective assembly operations allowed for the development of 95% confidence intervals.

These confidence intervals are now used to compute a 95% worst case scenario for each of the

Pareto points identified above. These worst case scenarios represent the highest cost and lowest

Cpk values expected for the given combinations with a 95% confidence; i.e., for a given

combination, there is a 95% probability that the value of Cpk is greater and the cost is less than the
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worst case values. The worst case values for the Pareto Front points are plotted in Figure 5-18 and

are listed in Table 5-8.

95% Worst Case

H .

1.55
.

1.75 Piece
Cost

Figure 5-18: 95% worst case scenario for Pareto Front feasible points

Table 5-8: Values for 95% worst case scenario

0.93 1.21
0.94 1.10
1.11 2.11
1.20 1.37
1.40 2.49
1.43 1.79
1.51 2.74

Reviewing the worst case values, Cyler realizes that combination E is the least expensive

combination that is most likely to produce assemblies with the desired quality, i.e, Point E has a

95% probability of producing parts with a Cpk greater than two.

The final choice Cyler has to make between combination C and combination E depends on how

sensitive the widget is to cost and how sensitive Cyler is with risk. If the product is cost sensitive,

then combination C is probably the best choice with the risk that sometimes the parts will not

have a Cpk of two. If Cyler is not willing to take the risk that the quality level will dip below a Cpk
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value of two, his company should probably pay the higher price associated with combination E

and rest assured that the quality will be better than the desired Cpk value of two.

5.6 Chapter Summary

In this chapter, the developments in the areas of process capability databases, manufacturing

process modeling, and assembly operation modeling were combined to form Variation Risk

Understanding and Management (VRUM). VRUM is a design tool that is used to forecast the

quality of a product's dimension before it is produced. The method of how to compose a VRUM

system level model and equations was described. The role of VRUM in the product development

process was discussed. Finally, an example was presented to demonstrate how VRUM can assist

with design decisions.
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6 Conclusion
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6.1 Introduction

In this thesis, a design tool has been developed that uses process capability data to construct

closed-form equations to forecast the mean and variation of a product's dimension upon exiting a

manufacturing system. The design tool is comprised of a process capability database, math

models of manufacturing processes, and math models of assembly operations as discussed in

Chapter 2, 3, and 4 respectively. The research advancements in each of these areas are re-stated in

the next section to summarize the overall impact of this thesis. Possible areas of future work that

could further enhance this body of research are discussed in Section 6.3.

6.2 Research Advancements

Many challenges were solved during the development of the design tool presented in this thesis.

The goals for each thesis topic are listed below. Each major, specific challenge is then listed

followed by the solution to it. Each solution is followed by a bulleted list summarizing the

advantages it provides. The goals, challenges, and solutions are grouped into the categories of

process capability databases, the modeling of manufacturing processes, the modeling of assembly

operations, and the system approach to correspond with the structure of the thesis, i.e., each group

corresponds to a specific chapter.

6.2.1 Process Capability Database

Topic Goals

* Develop a method of representing data so that it is easily retrievable

* Formalize the steps required to transform component data into a form suitable for
database entry and storage

* Design a user interface for process capability databases

* Suggest a list of data that should be included in process capability databases
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Challenge:

Solution:

Challenge:

Solution:

Challenge:

Solution:

Challenge:

Solution:

Representing manufacturing data in a database so that it is easy to retrieve

Created the Attribute Combination Descriptor (ACD) (Section 2.2.1)

+ Four attributes are identified and populated to fully characterize a physical

aspect of a component

+ Engineers can find data easily

+ Familiar terminology can be used

+ Attributes are easily extensible

Transforming part data into a form for easy database entry and storage

Created the ACD Matrix Set to assist in the transforming of part data

(Section 2.2.3.1)

+ Well structured

+ Mistakes are avoided

+ Serves as a knowledge management tool

+ Helps identify important part characteristics that may need to be tracked

Providing a user interface to a process capability database

Designed Graphical User Interface (Section 2.3)

+ Intuitive fields guide user

+ Dynamic menus eliminate infeasible combinations

+ Accessible via a standard web browser

Knowing the data to include in the process capability database

Devised a record set for process capability data (Section 2.4)

+ Includes the data needed to compute process capability indexes, e.g., Cpk,

Cp

+ Data fields to identify when and where the parts were produced

+ Contains data needed to construct math functions that are introduced in

Chapter 0
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6.2.2 Modeling of Manufacturing Processes

Topic Goals

* Produce a simple method to model and understand variation propagation through a
manufacturing process, i.e., how does the level of variance of a dimension entering a
process affect the variance of it exiting the process?

* Develop a general method for constructing closed-form equations for the mean and
standard deviation of a dimension exiting a manufacturing process as a function of the
input dimension's mean and standard deviation, i.e., p i = f(pin, Yin, Pin) and cw =

f(pin, cin, pin)

" Validate constructed equations

Challenge:

Solution:

Understanding variation propagation through a manufacturing process

Developed closed-form equations (Section 3.2 to 3.5)

+ Simple to use

+ Backed by physical significance, i.e., the foundation is the theory of a

process imparting a dimensional change and variation to components, which

are both physical concepts (see Section 3.2)

+ Requires no prior knowledge of the process

+ Quickly construct equations for many processes to make comparisons

+ Generally applicable, i.e., this approach can be used to develop equations for

many different types of manufacturing processes

+ Computationally inexpensive

+ Can be created early in the design process

+ Link equations together to represent serial processing (See Section 5.2.3)
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Challenge: Defining a framework to represent the effects a manufacturing process has

on component dimensions

Solution: Developed Theory of Desired Dimensional Change, Process Imparted

Dimensional Change, Process Imparted Variation (Section 3.2)

+ Can be represented with equations or graphically

+ Easy to use to qualitatively compare processes' abilities to create quality

parts

+ Building block for constructing closed-form solutions, i.e., p out= f(pin, ain,

Pin) and acut = f(pin, ain, pin)

Challenge: Validating theory and resulting closed-form equations

Solution: Compare closed-form equation results to simulated data and to actual data

(Section 3.2)

+ Validated theory works well to forecast the mean and standard deviation of a

dimension exiting a manufacturing process

+ Demonstrated theory works with real data

6.2.3 Modeling of Assembly Operations

Topic Goals
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* Define new selective assembly techniques for use when component distribution
variances are unequal

* Develop criteria and analysis approach to use when choosing a selective assembly
technique

* Create closed-form equations to calculate the standard deviation of an assembly that is
created by a selective assembly operation

* Explore the robustness of selective assembly to changes in incoming component
variances



Challenge:

Solution:

Understanding different selective assembly techniques

Created new selective assembly techniques to minimize scrap (Section 4.2.2

and 4.2.4)

+ Provides a reduction in assembly variation while minimizing the cost impact

of using selective assembly

+ Easy to implement

Challenge: Calculating the standard deviation of a dimension resulting from a selective

assembly operation

Solution: Developed closed-form equations for selective assembly techniques (Section

4.4.1)

+ Easy to use

+ Used to determine the best selective assembly technique to implement

+ Can be implemented in a wide variety of computer applications, e.g.,

spreadsheets, math programs, etc.

Challenge:

Solution:

Performing sensitivity analysis on selective assembly operations

Used closed-form equations for selective assembly to perform sensitivity

analysis (Section 4.4.2)

+ Directly compute sensitivities by taking partial derivatives

+ Computationally inexpensive

6.2.4 System Approach

The main goal of the system approach was to integrate the previous topics into a single design

tool know as Variation Risk Management and Understanding (VRUM). Icons were created so

that a graphical representation of a system could be easily constructed. The system diagram was

then shown to help formulate the closed-form equations that describe the manufacturing system.

The role of VRUM in a product development process was discussed followed by guidelines to

help implement the tool. Finally, an example problem was presented to demonstrate how VRUM

can assist with complex design decisions.
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6.3 Future Research

The work presented in this thesis developed a complete and functional design tool; however,

additional work could further enhance the usefulness of the tool. Topics for possible future work

are discussed here. The topics are sorted into the categories of process capability databases, the

modeling of manufacturing processes, the modeling of assembly operations, and the system

approach.

6.3.1 Process Capability Database Future Work

Automate the Indexing Process

The implementation and maintenance of a process capability database would be enhanced if the

creation of Attribute Combination Descriptor were automated. Algorithms consisting of possible

attributes could be combined with advanced feature recognition software to accomplish this

automation.

Use Process Math Models During Indexing

The ACD Matrix Set population process may be further improved by using the process models

created in Chapter 0 to create mathematical relationships that could forecast the final product

variation during the indexing process and offer alternative design options to improve the end

capability. This is similar to the possible future work of integrating the elements of VRUM more

tightly as stated below.

6.3.2 Modeling of Manufacturing Processes Future Work

Use Physics-based Models for Data Generation

The usefulness of the math models in Chapter 3 are highly dependent on the availability of

process capability data or the ability to "run" sample parts to generate process capability data,

e.g., the machinery does not exist yet. The idea of using physics-based models to generate

capability data, and then use the generated data to construct closed form-equations is an

interesting one that could extend the applicability of the math models. This idea is partially

explored by Kern, Du, and Sudjianto (Kern, Du et al. 2003).

Extend Concept to Parameter Optimization

The concept in Chapter 0 represents a manufacturing process by two math functions. One related

to mean shift, and one related to variation. The functions are then used to construct closed-form
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equations for these quantities. The equations accept dimensions as inputs and produce dimensions

as outputs. It would be interesting to attempt to apply this concept to non-dimensional quantities.

For example, develop a series of math functions to represent a particular process. Each math

function would accept a different parameter as an input and produce a contribution to the output.

6.3.3 Modeling of Assembly Operations Future Work

Use Selective Assembly Closed-form Equations as Real Time In-line Tool

The closed-form equations developed for selective assembly were intended to help design a

product or choose what type of selective assembly operation to implement. It would be interesting

to use these equations to program a system that would continuously re-calculate the best

technique and number of bins to use in an active manufacturing environment. For example, in a

production system using selective assembly, this concept could be added so that shifts in

distribution means or variances would be detected and the best selective assembly technique

defined or the number of bins being used could be modified to produce better output at little to no

extra cost. The new technique or number of bins would be implemented, and the steps repeated.

Include Assembly Adjustments

Presently, only part-defined assemblies are modeled, i.e., assemblies that are created by mating

parts together. The other type of assembly that was not modeled in this thesis is the type that

requires adjustments during the actual assembly operation. Examples of this type of assembly are

automobile body panels, aircraft wings, etc. Including models for this type of assembly would

broaden the usefulness of the design tool.

6.3.4 System Approach Future Work

Improve Design Tool Integration

Presently, the VRUM design tool spans several computer applications. The prototype process

capability database was accessible via a web browser, but the other modeling was accomplished

in desktop computer applications such as Mathematica® and Microsoft® Excel. A goal of future

work is to integrate all of the math modeling into one, seamless web application or software

package.
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Create Interactive Graphical User Interface

Other than the process capability database graphical user interface, no other portion of the

research is "user-friendly." Creating an interactive graphical user interface (GUI) would make the

VRUM tool much easier to use. The GUI could have icons that could be "dragged and dropped"

to construct VRUM system diagrams.

Automate the Design Tool

In the future, the aforementioned integration and GUI could be combined with algorithms to

automate the construction of the closed-form equations. Just click a button and the equations are

generated automatically.

Include Considerations for Inventory, Scheduling, and Capacity Issues

The design tool developed in this thesis was mainly concerned with dimensional variation and

costs. Including considerations for inventory, scheduling, and capacity issues would greatly

enhance its functionality. Then, not only could a product be designed that could be manufactured

with a high level of quality, but a product could be designed so that it could be produced in a

timely manner with no inventory shortfall or surplus.

Combine Design Tool with Optimization Techniques

The design tool could be combined with optimization techniques to broadly explore design spaces

to find the design that could be manufactured with the highest level of quality.

Apply Concept to Other Semi-structured Data

The basic concept of this thesis is to take existing data (process capability data) and use it to

create models that assist in the design of other products. This concept could be applied to other

bodies of data that exist and are underutilized. For example, warranty data is collected and

tracked but is rarely leveraged to improve the design of other future products.

6.4 Conclusion

A design tool that forecasts the mean and standard deviation of a product's dimension upon

exiting a manufacturing system has been developed and presented. The tool is comprised of a

process capability database, math models of manufacturing processes, and math models of

assembly operations. The process capability database was created to connect engineers to
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manufacturing data to assist with detailing a design and to make the needed data available for

model construction. The theory developed models a production process with two math functions,

which are constructed using the process capability data. These two math functions make it

possible to build closed-form equations that calculate the mean and standard deviation of parts

exiting a process. These equations are used to analyze tradeoffs among processes, to compute the

impact incoming variation has on output, and to identify sources of variation. Finally, closed-

form equations were created that compute the variation of a product resulting from a selective

assembly operation. Using these tools, forecasting and managing manufacturing variation is

possible for a wide variety of products and production systems.
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A. General Nomenclature

The symbols and acronyms used throughout the thesis are listed here for easy reference. The

definitions to most terms listed here are included in the Glossary at the end of the thesis. The

nomenclature used specifically in the simulation models in Section 3.6 is listed in Appendix H.

Symbol or Acronym

CP

Cpk

A

KC

N

PCDB

PDP

a-

Meaning

Process capability index, see the Glossary for a definition

Process capability index, see the Glossary for a definition

Bin width for selective assembly operation

Key Characteristic

Mean

Number of bins used for a selective assembly operation

Process Capability Database

Product Development Process

Standard deviation
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B. Survey Results

Identifying user needs is essential to developing a successful Process Capability Database. A

survey and interviews were conducted to gather insight into the methods engineers use to retrieve

manufacturing capability data and the tools design and manufacturing engineers use when

specifying dimensions and tolerances on detailed drawings. The survey was administered to

engineers working at an American automobile manufacturer to gain insight into the present

practices of how manufacturing variation is considered while a new component is being designed.

The survey focused on the information utilized during the design phase. The respondents

categorized themselves into the categories of design engineers, manufacturing engineers, and

quality engineers.

The term design engineer refers to a person responsible for the creation of detailed drawings of a

component or an assembly. Detailed drawings are also known as engineering prints, blueprints, or

engineering drawings. A detailed drawing usually contains different views of a component with

dimensions specified. Each dimension has an associated tolerance range. During the creation of

detailed drawings, a design engineer relies on physical laws, empirical data, experience, and other

sources of input to dimension and tolerance a component in such a way that it will perform its

intended function.

The term manufacturing engineer identifies the people responsible for aspects of the

manufacturing process. These aspects include the design, creation, and supervision of a

manufacturing process. A manufacturing process can have a few or many individual operations;

therefore, multiple manufacturing engineers could be working together on a single production

line. Since the variation of a key characteristic significantly affects the functionality of a

component, key characteristics are often measured and monitored during manufacturing. This

monitoring can take the form of Statistical Process Control and is usually overseen by a specific

type of manufacturing engineer, typically known as a quality engineer. This manufacturing

engineer makes adjustments to the manufacturing process if the monitoring indicates a shift in the

component's dimension is taking place. A manufacturing engineer would like to be able to easily

retrieve manufacturing capability information. The retrieved information could be used to assist

in a new production layout, with the purchase of a new piece of equipment, quality control, and

for numerous other reasons.
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An overwhelming majority of respondents (95%) said that they would talk to a manufacturing

engineer when they wanted data about production capability. This was the preferred method over

locating the data in a local file at the manufacturing plant or locating the data in a centralized file

system. This strongly implies an easily and readily available source from which manufacturing

data can be retrieved does not exist. One engineer commented that the data would have to be

generated (new measurements taken), because if any data that was stored could be found, it

would not be reliable.

Most engineers (75%) responded that manufacturing process capability data is presently difficult

to retrieve. A few (10%) responded that the data did not exist. A few comments focused on the

fact engineers must rely on a personal contact at a manufacturing plant in order to be able to

retrieve the data. These responses and comments reinforce the notion that any existing

manufacturing capability data is difficult to access.

A majority (60%) of engineers said that the feature being dimensioned (e.g., hole diameter, plate

thickness, etc.) is the first consideration for specifying a tolerance on a new component drawing.

A minority of 15% stated they primarily consider what method is going to be used to manufacture

the component when specifying tolerances (66% of these respondents had categorized themselves

as manufacturing engineers). The remaining 25% listed their own individual considerations that

mostly focused on the functional requirements of the component. Only one respondent mentioned

manufacturing variation as a consideration. These responses indicate that variation in

manufacturing is not a top concern for engineers.

Half the engineers surveyed stated they initially use an existing detailed drawing of a component

similar to the new one being created when specifying a tolerance. The next largest percentage of

respondents (15%) stated they reference process capability data as the first step in specifying

tolerances on a new detailed drawing (100% of these engineers classified themselves as

manufacturing engineers). Smaller percentages said they would consult a manufacturing engineer

(10%), reference company standards (10%), reference an industry handbook (5%), review the

proposed dimension with a group of design engineers (5%), or base the tolerance on the function

of the feature being dimensioned (5%). These percentages reflect the dependence an engineer has

on prior knowledge of an existing detailed drawing or a close contact with an appropriate

manufacturing engineer to retrieve the process capability data when the engineer is creating
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tolerances for a new detailed drawing. This implies that without a familiarity with existing

designs or a manufacturing contact person, an engineer may not be able to properly assign

tolerances for a new drawing. This can be especially true for an engineer new to a company or

product group.

When the above question was expanded to ask the engineers to check all the sources they use

when detailing a new drawing the results were similar. The majority of respondents (75%) said

they refer to existing detailed drawings of similar components and consult with a manufacturing

engineer. A smaller majority (55%) stated they refer to a set of company standards. An industry

standards handbook was listed and came in a distant fourth with only 20% of the people listing it

as a source of information.

The survey included a question asking how often the engineer would use an easily accessible

process capability database when specifying detailed drawing tolerances. The response could be

always, frequently, sometimes, rarely, or never. A large majority (72%) would either always or

frequently make use of an easily accessible process capability database. A smaller percent (17%)

said they would sometimes use it. Only 11% said they would rarely or never make use of such a

resource. It is interesting to note that these respondents were the only manufacturing engineers to

respond. The design engineers who responded comprised the 89% that said they would at least

use the database sometimes. This indicates design engineers are the primary target users for a

process capability database while the manufacturing engineers are the secondary user group.

A question was included to solicit feedback on what an engineer would like to use as an input

when utilizing manufacturing process capability data during the detailing of a new drawing. One

option was to specify a Cpk value and use the capability data to calculate the minimum tolerance

range. The other option was to specify a tolerance and calculate the corresponding Cpk. The first

option was selected by 35%, and the second option was chosen by 55%. A few respondents

(10%) listed "other" as there choice. This demonstrates that any methodology that is created

needs to be flexible to be attractive to engineers with varying preferences.

Another interesting observation the survey made clear is the fact that material selection for a new

component is almost solely based on the functional requirement of the component. An

overwhelming 85% selected functional requirements as the material selection criterion. This may

be expected, but as stated earlier, a large number of engineers use information from sources other
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than functional requirements (product specifications) to create tolerances, which may be counter-

intuitive. This revelation implies that the impact the selected material has on manufacturing

variation does not need to be heavily considered because it would not factor into the design

process, i.e., the material is selected based on the component's functional requirements regardless

of the impact it has on manufacturing variation.

Interviews were conducted with engineers to gain additional insight into their needs. The

overarching theme of the discussions was to make the PCDB simple to use. The thought was that

engineers are very busy and do not have time to learn a complicated system, no matter how

useful. Another common theme was that design engineers do not understand manufacturing

engineers and vice versa. Manufacturing engineers were quick to point out how some tolerances

are specified that cannot be produced realistically. Design engineers shared their belief that

manufacturing engineers do not have a grasp of tolerances being required to meet functional

requirements. One example was that a manufacturing engineer could not understand why a

tolerance that was difficult to maintain in production could not be loosened. Engineers wanted the

PCDB to be easily accessible. They were not interested in specialized software or having to go to

a computer other than the one on their desktops. This was mostly due to convenience and the

amount of time required to learn how to use the PCDB and the time needed to use it in practice.

The interviews revealed a few concerns regarding the usage of a PCDB. The largest concern is

that design engineers would use the data to specify tolerances that could not be met with an

acceptable capability index. This situation could occur when a design engineer retrieves data from

the PCDB regarding a very specialized or low volume production line, and then use this data to

justify a tight tolerance on a part produced in high volume. A strategy to minimize this concern is

to include information in each dataset that indicated the volume of production associated with the

capability indexes. The production volume information enlightens design engineers using the

PCDB as to the reality of achieving similar capability on a new design. Another concern is that

upper management would use the PCDB as a means of monitoring the manufacturing engineering

department's performance. This concern could be realized in the event a process went out of

control and the data was recorded into the PCDB. This out of control data would not reflect the

true, in control capability of the production line and could be misconstrued by management. A

system of filtering the data prior to input is implemented to eliminate this concern. A person at

each site is responsible for manually filtering the data prior to inputting it into the database. The

filtering process eliminates any production measurements that came from parts manufactured
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during a time when the process is not in control. Finally, managers and engineers are concerned

the data could be used in litigation against the company if it is intercepted and misinterpreted by

outside parties. The real threat would be in the misrepresentation or skewing of the information

contained in the database. In addition to the filtering mentioned above, security is implemented to

minimize the risk of this concern. The security protocol includes limiting access to only those

employees who require it.

The information gathered from the survey and interviews clearly reinforce the need for an easy to

use Process Capability Database. The survey results show that design engineers often do not

know where to obtain accurate, reliable manufacturing process capability data. This results in the

engineers specifying tolerances without considering the impact of manufacturing variation. The

interviews reveal that the database developed must be easy to use and understand, be easily

accessible, and be easy to learn.

Table B-1: Respondents by department

Department Number of Respondents

Design Engineering 10
Manufacturing Engineering 9
Quality Engineering 2

Table B-2: Respondents by powertrain system

Powertrain System Number of Respondents
Engine 16
Transmission 3
Quality Engineering 2
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Table B-3: Survey questions and responses

(D 0 )

1) Typically, the first consideration for specifying a tolerance on a
new component drawing is . -0 3

A. what method will be used to manufacture the component 3 1 2 0
B. the feature being dimensioned (e.g., hole diameter, plate 12 6 4 2
thickness, etc.)
C. the material which will be used to manufacture the component 0 0 0 0

D. other (please list) 5 3 2 0

Component durability requirements
Function of feature, as well as material properties are considered
initially. The mfg. method is next considered, and design/tol.
modified if req'd.
Product engineering are typically the first to specify tolerances
To best suit the application of that component, the tolerance is to
match the design intent, especially to accommodate manufacturing
variations.

2) The first step in specifying a tolerance on a new component is to

A. look at an existing detailed drawing of a similar component 10 6 2 2

B. consult a manufacturing engineer 2 1 1 0
C. review the proposed dimension with a group of design 1 0 1 0
engineers
D. reference company standards 2 1 1 0

E. reference company process capability data 3 0 3 0

F. reference an industry handbook 1 0 1 0

G. other (please list) 1 0 0 0

the function of the feature being dimensioned

3) consult before specifying tolerances on a new engine component
detailed drawing.

[Check all that apply]
A. a manufacturing engineer 15 8 5 2

B. existing detailed drawings of similar components 15 9 4 2

C. handbooks 3 1 1 1

D. company standards 11 7 3 1

E. industry standards 4 r e2 2 0
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F. other (please list) 3 3 10 10

Guide file drawing

Full service suppliers usually create the detail drawings for cam
drive and VCT system components.

4) A material is selected for a new engine component based on .

A. the material of a similar component 1 0 0 1

B. cost 1 0 0 1

C. the functional requirements of the component 17 9 8 0

D. how it will be manufactured 0 0 0 0

E. the component's features 0 0 0 0

F. other (please list) 1 1 0 0

all of the above
Cost, rough part and process requirements for ease of
manufacture
"Function", with qualification that cost is part of "function".

5) I when I want data about my company's production
capability.

A. talk to a manufacturing engineer 18 10 7 1

B. reference a local file at a particular plant 0 0 0 0
C. reference a central file which contains information from several 0 0 0 0
plants

D. other (please list)5 2 0 1 1

find it out myself I am the manufacturing person
The best match comparison is made which may mean one or more
accessed
Generate it myself - Measurement systems too unreliable for
believing file data.

6)Process capability data (i.e., Cpk, Cp, Ppk, Pp) is presently

A. non-existent 2 1 1 0

B. difficult to retrieve 15 8 6 1

C. easy to retrieve 1 0 1 0

D. other (please list)6 2 1 0 1

Unless asked departments do not readily calculate this item
Can be difficult at times
Depends, easy when you know who to contact, at a plant that
keeps a DCP on-line. Progressively more difficult as plant
information system, and ability to make a correct personal contact
get stretched.
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7) I would use an easily accessible process capability database when
specifying detailed drawing tolerances.

A. always 7 3 2 2

B. frequently 6 3 3 0

C. sometimes 3 3 0 0

D. rarely 1 0 1 0

E. never 1 0 1 0

8) When I am dimensioning a new component, I would prefer for
a Significant Characteristic based on process capability data.

A. specifying a Cpk and deriving the corresponding tolerance 7 4 3 0

B. specifying a tolerance and deriving the corresponding Cpk 11 5 5 1

C. other (please list) 2 1 0 1
I would tend to specify a Cpk depending on the type of in process
operation.

Basing tolerance of the SC on DoE, regression, tolerance
parallelograms, optimization,etc.

Table B-4: Additional comments submitted with survey responses
Short term data from machine capability runoffs would probably be accessible if
extracted shortly after runoff. Long term data is normally not available unless the
particular dimension is deemed a critical characteristic.

The crankshaft community is somewhat unique in that our guide file drawing has been
extensively deveolped based on manufacturing, product and gaugeing requirements.

Don't forget Casting in any database. Also, discussions of capability without strong
knowledge of the measurement systems used to generate the data is dangerous to
the point of invalidating your data base.

In most cases several things are considered simultaneously in the design process.
The component function is obviously the driver for the design, but existing practice,
cost, material and manufacturing process and capability all are considered. This
proposed database would be a big enabler for engineers to bring robustness practices
into their designs, rather than to rely on conversations with their various manufacturing
engineers.

Please rewrite survey to be generic ... the engine is not the only part of the powertrain.
Make sure any capability database includes capability for processes that are unique to
transmission (valve body grinding, valve body boring,

Will the database include supplier information?.. .or can it be made flexible to include
suppliers, or links to suppliers in the future.
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The goal should be to maitain this database with some integrity. We should first walk
before we try to start running. Current correlation of design intent to the production
capability is absolutely essential to meet the standards of good product design, let
alone design for six sigma. It would be better to gather data based on application than
any general machining process, because application reference will be more specific
than being generic. This database will be of value if the information it contains can be
trusted. Confidence of design Engineers is based on their knowledge of real life
process- not from any book. This communication between manufacturing and design
is what we should strive for before even we start maintaining a database. So may be
we should first start walking....Suggestion: Create a database of component
characteristics that are critical (prioritize) and get the current data. Expand this
database with more authentic information from global facilities to compare or
benchmark... .Use it to design a component for reliability.
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C. Selective Assembly Variation

Coefficients

The following equation is a restatement of Equation 4-20. It is the closed-form equation for the

standard deviation of a dimension, CSeAsm(N), created as a result of using selective assembly to

combine two normal distributions of parts, a Part A having a standard deviation of UA with a Part

B having a standard deviation of -B. The coefficients, Co, C1, C2, and C3, are retrieved from the

tables below for the specific technique and number of bins of interest.

{ 3 2
0C,SelAsm(N) 3jr \14 21 (r\I0A

2 2= (32

for +1<2BC-1

forl I A _2
UB

Table C-I: Equal Width Binning to Minimize Variation

1 0.1321 -0.6752 0.9126 0.6207

2 0.0498 -0.2868 0.4174 0.4070

3 0.0418 -0.1627 0.0431 0.5799 j :O

4 0.0551 -0.2235 0.1 574 0.4062

5 0.0309 -0.1083 -0.0012 0.4060

6 0.0014 0.0192 -0.1626 0.4185

7 0.0172 -0.0537 -0.0422 0.3188

8 0.0139 -0.0447 -0.0365 0.2772

9 -0.0010 0.0249 -0.1348 0.3004

10 0.0094 -0.0230 -0.0567 0.2411
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Table C-2: Equal Width Binning to Minimize Scrap
0 C,SelAsm Upper 95% Bar

N C3  C2  C1  CO C3  C2 C1

1 0 0 0 0.9889 0 0 0

2 -0.0954 0.4623 -0.6213 0.8428 -0.1157 .484 -0.7240

3 -0.1266 0.6141 -0.8310 0.8488 -0.1259 0.59 -0.7638

4 -0.1726 0.8266 -1.1071 0.8529 -0.1678 .3 2 -0.9905

5 -0.2036 0.9626 -1.2656 0.8358 -0.2087 -0.9647 1.2074

6 -0.2259 1.0563 -1.3652 0.8143 -0.2264 10304 -1.2511

7 -0.2442 1.1335 -1.4505 0.8029 -0.2155 0.9635 -1.105

8 -0.2591 1.1885 -1.4901 0.7723 -. 2122 0.-335 1.0189

9 -0.2655 1.2080 -1.4900 0.7377 -0.2198 0.9564 -1.0207

10 -0.2757 1.2447 -1.5170 0.7185 4.2162 .9278 -0.9408

Table C-3: Equal Area Binning to Minimize Variation

aC,SelAsm Upper 95% Band

N C3  C2  C1  CO C, C2 C1

1 0.1351 -0.7054 0.9930 0.s7 0 1 -1.0249 1,4735 C

2 0.0491 -0.2768 0.4031 0.4152 0 -0.6103 .9343 C

3 0.0204 -0.1518 0.2688 0.3062 .066 4.3734 06091 t

4 0.0331 -0.2029 0.3509 0.1820 045 .2643 0.441

5 0.0417 -0.2388 0.4078 0.0981 05 4 -. 285 .4721

6 0.0311 -0.1880 0.3337 0.0924 -0 .. 3 0.0814 C

7 0.0389 -0.2165 0.3664 0.0529 -4.01s9 0.0431 C

8 0.0485 -0.2564 0.4211 0.0053 4 .13s8 0.2239 C

9 0.0313 -0.1755 0.2963 0.0493 -. 0331 0.0747 '

10 0.0362 -0.1962 0.3259 0.0200 4 .1821 ,0.2931 ,
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Table C-4: Equal Area Binning to Minimize Scrap

GC,SelAsm Upper 95% Bz

N C3  C2  C, Co  C3  C2 C1

1 0 0 0 0.9916 0 0

2 -0.0938 0.4579 -0.6213 0.8496 0.0952 0.4s46 -0.588

3 -0.1457 0.7026 -0.9395 0.8255 -0.1488 0.7087 -0.916

4 -0.1878 0.8917 -1.1765 0.8344 -. 1915 0.9024 1.102.

5 -0.2024 0.9528 -1.2290 0.7865 -0.2129 0.9935 -1.261E

6 -0.2277 1.0581 -1.3468 0.7863 -. 2139 0.03 -1.1927

7 -0.2396 1.1081 -1.3983 0.7732 -0.2145 0.9814 1.1782

8 -0.2455 1.1283 -1.4034 0.7410 -0.2309 1.0490 -1.251E

9 -0.2542 1.1596 -1.4251 0.7215 .2197 0.961 -1.129

10 -0.2583 1.1721 -1.4249 0.6982 -2392 1.0734 -1.250C

Table C-5: Optimal Width Binning

ac,selAsm

N C3  C2  C, Co C

1 0 0 0 0.9883

2 -0.1153 0.5572 -0.7654 0.9127

3 -0.1242 0.6098 -0.7993 0.7358 -

4 -0.1805 0.8592 -1.1100 0.7616 -. 1

5 -0.1968 0.9264 -1.1673 0.7074 02

6 -0.2304 1.0646 -1.3216 0.7145 02

7 -0.2381 1.0864 -1.3133 0.6617

8 -0.2404 1.0855 -1.2796 0.6081

9 -0.2538 1.1334 -1.3168 0.5922

10 -0.2509 1.1098 -1.2557 0.5362
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D. Selective Assembly Scrap Coefficients

The following equation is a restatement of Equation 4-23. It is the closed-form equation for the

percentage of scrap generated when using selective assembly to combine two normal distributions

of parts, a Part A having a standard deviation of oA with a Part B having a standard deviation of

o-B. The coefficients, Do, DI, D2, and D3, are retrieved from the tables below for the specific

technique and number of bins of interest.

A 3 +( 2( 7 2 + ( C D
Scrap(N) (D) 7 +(D2 +D +

'B B \B D-1

for 1 < 2
07B

Table D-1: Equal Width Binning to Minimize Variation

N D3  D2  D, D j0 j

1 -0.0614 0.3671 -0.5440 0.2404

2 -0.0635 0.3942 -0.6207 0.3025

3 40.0181 -0.0206 0.4766 -0.4223

4 -0.1729 0.7261 -0.6678 0.1344

5 0 0 0.2764 -0.2502

64 .0993 0.3686 -0.1379 -0.10"4

74 .1622 0.6715 -0.5919 0.1148

84 .1322 0.5601 -0.4745 0.0826

94 .1136 0.4591 40.3075 40.0006

-0 .1494 0.6163 40.5264 0.1002
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Equal Width Binning to Minimize Scrap

Scrap,SelAsm

N D3 D2  D1  Do

1 0 0 0 0.0021

2 0 0 0 0.0118

3 0 0 0 0.0167

4 0 0 0 0.0212

5 0 0 0 0.0248

6 0 0 0 0.0312

7 0 0 0 0.0349

8 0 0 0 0.0382

9 0 0 0 0.0420

10 0 0 0 o.o444

Table D-3: Equal Area Binning to Minimize Variation

Scrap,selAsm

N D3 D2 D1 D o

1 -0.0578 0.3532 -. 5322 0.2389

2 -0.0061 0.1277 -0.2384 0.1407

3 -0.0234 0.0677 0.1093 0.1239

4 -0.1901 0.7645 -0.7443 0.2028

5 -0.2304 0.9511 -0.9896 0.3064

6 -0.1691 0.7159 -0.6998 0.1927

7 4.1582 0.6639 -0.6108 0.1464

8 -0.1840 0.7616 -0.7202 0.1862

9 -0.2113 0.9275 -1.0393 0.384W

10 -0.1831 0.7994 -0.8530 0.3009

250
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Table D-4: Equal Area Binning to Minimize Scrap

Scrap,SelAsm Upper 951 Bz

N D3 D2  D1  Do D3  D2  D,

1 0 0 0 0.0021 0 0 0

2 0 0 0 0.0219 0 0

3 0 0 0 0.0300 0 0 0

4 0 0 0 0.0335 0 0 0

5 0 0 0 0.0391 0 0 0

6 0 0 0 0.0438 0 0 0

7 0 0 0 0.0458 0 0 0

8 0 0 0 0.0504 0 0 0

9 0 0 0 0.0533 0 0 0

10 0 0 0 0.0583 0 0 0

Table D-5: Optimal Width Binning

ScrapseAsm

N D3 D2 D1 Do D

1 0 0 0 0.0024 c

2 0 0 0 0.0214 c

3 0 0 0 0.0262 c

4 0 0 0 0.0321 c

5 0 0 0 0.0388 c

6 0 0 0 0.0409 c

7 0 0 0 0.0448 c

8 0 0 0 0.0476 c

9 0 0 0 0.0528 C

10 0 0 0 0.0534 C4
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E. Selective Assembly Simulation Data

The selective assembly simulation data used to curve fit the third order polynomial equations are

listed in this appendix. The data used to fit the curves for the standard deviation of an assembly

created using selective assembly are listed in Table E-i through Table E-5, and the data used to

fit the curves for the percentage of scrap are listed in Table E- 11 through Table E-15. Also, listed

are the R2 values representing the equations' goodness of fit in Table E-6 through Table E-10,

Table E-16, and Table E-17.

Each value for the assembly standard deviation in the tables below is the average from fifty

Monte Carlo simulation runs. A thousand numbers were used for each simulation run. The output

from one simulation run was a value for the normalized assembly standard deviation. For

example, fifty Monte Carlo simulation runs were conducted for the Equal Width Binning to

Minimize Variation technique where two bins are used and the ratio CYA/cB is 1.4 to produce fifty

values for the normalized assembly standard deviation. The resulting normalized assembly

standard deviations from the fifty runs were averaged to produce a value of 0.56604. The

standard deviation of the fifty runs was also calculated and used with the average value to

compute the values used to curve fit the ±95% Confidence Interval at a level of plus and minus

two standard deviations from the average value, i.e., for the case mentioned above, the

normalized assembly standard deviation has a 95% probability of falling between 0.59953 and

0.53255.

Table E-1: Data for curve fitting ac (Equal Width Binning to Minimize Variation)
Normalized
Assembly +95% -95%

Number of Bins ax/aB Standard Confidence Confidence
Deviation Interval Band Interval Band

_C_
1 1.0 0.98974 1.03497 0.94451

1.1 0.98427 1.02714 0.94140
1.2 0.96986 1.01375 0.92596
1.3 0.95875 1.00600 0.91150
1.4 0.93599 0.98517 0.88681
1.5 0.91612 0.96319 0.86905
1.6 0.89354 0.93232 0.85475
1.7 0.86743 0.90624 0.82863
1.8 0.84740 0.89093 0.80386
1.9 0.82416 0.87118 0.77714
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2 1.0 0.58747 0.61255 0.56239
1.1 0.58487 0.61560 0.55414
1.2 0.58154 0.61390 0.54918
1.3 0.57430 0.61163 0.53698
1.4 0.56604 0.59953 0.53255
1.5 0.55378 0.58245 0.52510
1.6 0.54662 0.57536 0.51789
1.7 0.53253 0.56120 0.50387
1.8 0.51849 0.54633 0.49065
1.9 0.50638 0.53509 0.47766
2.0 0.49299 0.51931 0.46668

3 1.0 0.50008 0.52534 0.47483
1.1 0.48871 0.51097 0.46645
1.2 0.47046 0.49740 0.44352
1.3 0.45231 0.47474 0.42987
1.4 0.43432 0.45717 0.41146
1.5 0.41828 0.44130 0.39526
1.6 0.40332 0.42457 0.38207
1.7 0.38865 0.41109 0.36620
1.8 0.37455 0.40044 0.34865
1.9 0.36186 0.38569 0.33803
2.0 0.34827 0.36653 0.33001

4 1.0 0.39415 0.41539 0.37291
1.1 0.38403 0.40432 0.36375
1.2 0.36907 0.38659 0.35156
1.3 0.35366 0.36937 0.33796
1.4 0.33950 0.35666 0.32234
1.5 0.32498 0.34115 0.30882
1.6 0.31183 0.33109 0.29257
1.7 0.29874 0.31824 0.27923
1.8 0.28751 0.30505 0.26997
1.9 0.27760 0.29536 0.25984
2.0 0.26748 0.28379 0.25118

5 1.0 0.32693 0.34476 0.30909
1.1 0.31538 0.33250 0.29826
1.2 0.30230 0.31843 0.28617
1.3 0.28951 0.30645 0.27256
1.4 0.27641 0.29320 0.25962
1.5 0.26386 0.27937 0.24836
1.6 0.25354 0.26851 0.23856
1.7 0.24321 0.25737 0.22905
1.8 0.23389 0.24866 0.21911
1.9 0.22395 0.23658 0.21132
2.0 0.21760 0.23039 0.20482

6 1.0 0.27548 0.29234 0.25862
1.1 0.26659 0.28105 0.25214
1.2 0.25372 0.26852 0.23891
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1.3 0.24222 0.25480 0.22964
1.4 0.23194 0.24407 0.21981
1.5 0.22229 0.23363 0.21095
1.6 0.21343 0.22606 0.20081
1.7 0.20465 0.21731 0.19198
1.8 0.19705 0.20771 0.18639
1.9 0.18894 0.19921 0.17866
2.0 0.18119 0.19245 0.16994

7 1.0 0.24000 0.25816 0.22183
1.1 0.23046 0.24402 0.21690
1.2 0.22066 0.23581 0.20552
1.3 0.21135 0.22483 0.19786
1.4 0.20094 0.21224 0.18963
1.5 0.19338 0.20645 0.18031
1.6 0.18414 0.19572 0.17257
1.7 0.17626 0.18693 0.16558
1.8 0.16945 0.18148 0.15742
1.9 0.16315 0.17410 0.15221
2.0 0.15720 0.16792 0.14648

8 1.0 0.20916 0.22499 0.19333
1.1 0.20252 0.21097 0.19406
1.2 0.19337 0.20290 0.18383
1.3 0.18447 0.19475 0.17419
1.4 0.17597 0.18624 0.16570
1.5 0.16854 0.17828 0.15880
1.6 0.16063 0.16975 0.15151
1.7 0.15479 0.16579 0.14378
1.8 0.14803 0.15817 0.13789
1.9 0.14143 0.15108 0.13178
2.0 0.13616 0.14525 0.12707

9 1.0 0.18919 0.20590 0.17249
1.1 0.18153 0.19153 0.17154
1.2 0.17315 0.18274 0.16356
1.3 0.16531 0.17551 0.15510
1.4 0.15795 0.16645 0.14946
1.5 0.15051 0.15944 0.14158
1.6 0.14446 0.15369 0.13522
1.7 0.13807 0.14706 0.12909
1.8 0.13380 0.14334 0.12426
1.9 0.12809 0.13580 0.12038
2.0 0.12230 0.13119 0.11341

10 1.0 0.17019 0.18744 0.15293
1.1 0.16385 0.17296 0.15474
1.2 0.15684 0.16577 0.14791
1.3 0.14933 0.15671 0.14195
1.4 0.14174 0.15032 0.13316
1.5 0.13530 0.14426 0.12634
1.6 0.12959 0.13806 0.12111
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1.7 0.12460 0.13400 0.11520
1.8 0.11968 0.12940 0.10996
1.9 0.11523 0.12296 0.10751
2.0 0.11019 0.11714 0.10325

Table E-2: Data for curve fitting ac (Equal Width Binning to Minimize Scrap)
Normalized
Assembly +95% -95%

Number of Bins a/laB Standard Confidence Confidence
Deviation Interval Band Interval Band

Cc
1 1.0 0.99107 1.03789 0.94426

1.1 0.98576 1.03171 0.93982
1.2 0.99110 1.03647 0.94573
1.3 0.98690 1.03392 0.93988
1.4 0.99092 1.03797 0.94386
1.5 0.98733 1.03532 0.93933
1.6 0.98939 1.03834 0.94043
1.7 0.98906 1.03691 0.94122
1.8 0.98841 1.03668 0.94013
1.9 0.99125 1.03884 0.94366
2.0 0.98651 1.03555 0.93747

2 1.0 0.58921 0.62026 0.55816
1.1 0.59051 0.62131 0.55972
1.2 0.59808 0.63155 0.56462
1.3 0.60646 0.64060 0.57232
1.4 0.61948 0.65723 0.58172
1.5 0.62784 0.66662 0.58906
1.6 0.64270 0.68291 0.60248
1.7 0.65324 0.69441 0.61208
1.8 0.66533 0.70873 0.62193
1.9 0.67792 0.72165 0.63419
2.0 0.68634 0.73031 0.64237

3 1.0 0.50605 0.53060 0.48151
1.1 0.50785 0.53517 0.48052
1.2 0.51693 0.54771 0.48616
1.3 0.52683 0.56035 0.49332
1.4 0.54352 0.58211 0.50494
1.5 0.55619 0.59533 0.51705
1.6 0.57308 0.61582 0.53034
1.7 0.58816 0.63165 0.54466
1.8 0.60227 0.64870 0.55584
1.9 0.61881 0.66532 0.57230
2.0 0.62990 0.67948 0.58032

4 1.0 0.40139 0.42525 0.37754
1.1 0.40300 0.42958 0.37642
1.2 0.41710 0.44973 0.38448
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1.3 0.43017 0.46413 0.39620
1.4 0.45240 0.49252 0.41227
1.5 0.46924 0.51005 0.42844
1.6 0.49156 0.53549 0.44763
1.7 0.51190 0.55714 0.46666
1.8 0.52901 0.57518 0.48284
1.9 0.55154 0.59998 0.50311
2.0 0.56448 0.61389 0.51508

5 1.0 0.33065 0.34884 0.31246
1.1 0.33535 0.35525 0.31545
1.2 0.35072 0.37806 0.32337
1.3 0.36897 0.39831 0.33963
1.4 0.39452 0.43001 0.35904
1.5 0.41579 0.45200 0.37958
1.6 0.44200 0.48159 0.40242
1.7 0.46503 0.50717 0.42290
1.8 0.48683 0.53053 0.44312
1.9 0.50985 0.55559 0.46411
2.0 0.52622 0.57244 0.48001

6 1.0 0.28141 0.29873 0.26410
1.1 0.28741 0.30702 0.26780
1.2 0.30559 0.33360 0.27758
1.3 0.32747 0.35883 0.29610
1.4 0.35667 0.39417 0.31916
1.5 0.38032 0.41930 0.34133
1.6 0.41040 0.45332 0.36748
1.7 0.43525 0.48013 0.39036
1.8 0.45968 0.50603 0.41334
1.9 0.48392 0.53175 0.43608
2.0 0.50266 0.55186 0.45346

7 1.0 0.24410 0.26010 0.22811
1.1 0.25085 0.27143 0.23027
1.2 0.27132 0.30157 0.24107
1.3 0.29541 0.33104 0.25978
1.4 0.32755 0.36795 0.28716
1.5 0.35368 0.39635 0.31101
1.6 0.38539 0.42983 0.34096
1.7 0.41265 0.45984 0.36546
1.8 0.43749 0.48430 0.39068
1.9 0.46451 0.51476 0.41425
2.0 0.48368 0.53341 0.43394

8 1.0 0.21440 0.23257 0.19624
1.1 0.22276 0.24636 0.19917
1.2 0.24621 0.28146 0.21095
1.3 0.27358 0.31148 0.23567
1.4 0.30873 0.35298 0.26448
1.5 0.33742 0.38181 0.29304
1.6 0.37065 0.41845 0.32286
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9 1.0 0.19321 0.21052 0.17590
1.1 0.20291 0.22560 0.18022
1.2 0.22819 0.26253 0.19385
1.3 0.25812 0.29529 0.22095
1.4 0.29491 0.33873 0.25109
1.5 0.32499 0.36865 0.28132
1.6 0.36005 0.40775 0.31236
1.7 0.39019 0.43784 0.34255
1.8 0.41758 0.46692 0.36824
1.9 0.44582 0.49507 0.39658
2.0 0.46677 0.51807 0.41546

10 1.0 0.17401 0.19088 0.15715
1.1 0.18413 0.20774 0.16053
1.2 0.21184 0.24805 0.17564
1.3 0.24328 0.28256 0.20399
1.4 0.28267 0.32692 0.23843
1.5 0.31339 0.35885 0.26793
1.6 0.35010 0.39798 0.30222
1.7 0.38079 0.42977 0.33181
1.8 0.40916 0.45897 0.35934
1.9 0.43785 0.48906 0.38663

1_ 2.0 0.45903 0.51074 0.40732

Table E-3: Data for curve fitting ac (Equal Area Binning to Minimize Variation)
Normalized
Assembly +95% -95%

Number of Bins aACaB Standard Confidence Confidence
Deviation Interval Band Interval Band

_aC
1 1.0 0.99095 1.03049 0.95140

1.1 0.98582 1.03242 0.93922
1.2 0.97527 1.02077 0.92976
1.3 0.96569 1.01088 0.92050
1.4 0.94662 0.99385 0.89939
1.5 0.92454 0.95683 0.89225
1.6 0.90384 0.94302 0.86465
1.7 0.88069 0.91836 0.84302
1.8 0.85745 0.89050 0.82440
1.9 0.83469 0.86766 0.80172
2.0 0.81236 0.84199 0.78274

2 0.57031
1.1 0.58714 0.61312 0.56116
1.2 0.58147 0.60629 0.55664

258
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1.7 0.40043 0.44866 0.35220
1.8 0.42621 0.47571 0.37670
1.9 0.45485 0.50603 0.40367
2.0 0.47451 0.52626 0.42277

1.0 0.61496



1.3 0.58062 0.61376 0.54748
1.4 0.57455 0.60761 0.54148
1.5 0.56382 0.59613 0.53150
1.6 0.55200 0.58031 0.52368
1.7 0.54087 0.56540 0.51633
1.8 0.52886 0.55397 0.50375
1.9 0.51814 0.54342 0.49285
2.0 0.50767 0.53285 0.48249

3 1.0 0.44446 0.46717 0.42176
1.1 0.44378 0.46795 0.41961
1.2 0.44562 0.47307 0.41818
1.3 0.44454 0.46961 0.41947
1.4 0.44095 0.46656 0.41533
1.5 0.43664 0.46622 0.40706
1.6 0.43224 0.45468 0.40981
1.7 0.42356 0.44562 0.40150
1.8 0.41698 0.43840 0.39557
1.9 0.40896 0.43081 0.38710
2.0 0.39985 0.42182 0.37788

4 1.0 0.36314 0.38685 0.33942
1.1 0.36599 0.38745 0.34452
1.2 0.36895 0.39189 0.34600
1.3 0.36690 0.39198 0.34182
1.4 0.36618 0.39103 0.34133
1.5 0.36324 0.38396 0.34251
1.6 0.35919 0.38349 0.33489
1.7 0.35630 0.37922 0.33339
1.8 0.34774 0.36723 0.32825
1.9 0.34211 0.36207 0.32216
2.0 0.33709 0.35813 0.31605

5 1.0 0.30908 0.32917 0.28898
1.1 0.31274 0.33312 0.29235
1.2 0.31603 0.33602 0.29605
1.3 0.31639 0.33688 0.29590
1.4 0.31465 0.33372 0.29558
1.5 0.31425 0.33470 0.29381
1.6 0.31059 0.33086 0.29031
1.7 0.30560 0.32499 0.28621
1.8 0.30075 0.32150 0.28000
1.9 0.29803 0.31589 0.28018

1_ 2.0 0.29192 0.31363 0.27020
6 1.0 0.26837 0.30253 0.23420

1.1 0.27495 0.29950 0.25039
1.2 0.27592 0.30267 0.24917
1.3 0.27612 0.30001 0.25223
1.4 0.27588 0.30640 0.24536
1.5 0.27570 0.29952 0.25189
1.6 0.27167 0.29908 0.24427

259



1.7 0.27012 0.29764 0.24261
1.8 0.26483 0.28839 0.24127
1.9 0.26179 0.28688 0.23670
2.0 0.25638 0.28413 0.22863

7 1.0 0.24116 0.27570 0.20662
1.1 0.24755 0.27469 0.22041
1.2 0.24696 0.27261 0.22132
1.3 0.24775 0.27085 0.22465
1.4 0.24877 0.27709 0.22045
1.5 0.24716 0.27437 0.21995
1.6 0.24497 0.27123 0.21871
1.7 0.24088 0.26637 0.21539
1.8 0.23645 0.26239 0.21050
1.9 0.23527 0.26079 0.20974
2.0 0.23062 0.25896 0.20227

8 1.0 0.21772 0.24998 0.18547
1.1 0.22436 0.25128 0.19744
1.2 0.22451 0.25180 0.19723
1.3 0.22605 0.25082 0.20128
1.4 0.22529 0.25457 0.19601
1.5 0.22359 0.24853 0.19865
1.6 0.22121 0.24800 0.19442
1.7 0.21786 0.24603 0.18968
1.8 0.21560 0.24209 0.18911
1.9 0.21358 0.23950 0.18766
2.0 0.20917 0.23796 0.18038

9 1.0 0.20153 0.23519 0.16787
1.1 0.20435 0.22958 0.17913
1.2 0.20553 0.23235 0.17871
1.3 0.20720 0.23556 0.17883
1.4 0.20645 0.23626 0.17664
1.5 0.20482 0.22975 0.17990
1.6 0.20125 0.22995 0.17255
1.7 0.19937 0.22754 0.17120
1.8 0.19691 0.22331 0.17051
1.9 0.19381 0.22012 0.16749
2.0 0.19006 0.21780 0.16231

10 1.0 0.18522 0.21835 0.15210
1.1 0.19030 0.21344 0.16717
1.2 0.19109 0.21757 0.16461
1.3 0.19171 0.21948 0.16395
1.4 0.19044 0.22334 0.15754
1.5 0.19003 0.21458 0.16548
1.6 0.18629 0.21358 0.15901
1.7 0.18485 0.21262 0.15707
1.8 0.18276 0.20787 0.15764
1.9 0.17972 0.20471 0.15473
2.0 0.17601 0.20561 0.14641
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Table E-4: Data for curve fitting ac (Equal Area Binning to Minimize Scrap)
Normalized
Assembly +95% -95%

Number of Bins OA/aB Standard Confidence Confidence
Deviation Interval Band Interval BandaC_

1 1.0 0.99330 1.04126 0.94534
1.1 0.99058 1.03574 0.94542
1.2 0.99224 1.03781 0.94668
1.3 0.99115 1.03819 0.94410
1.4 0.99298 1.04043 0.94552
1.5 0.99094 1.04007 0.94181
1.6 0.99207 1.03904 0.94511
1.7 0.99132 1.04195 0.94069
1.8 0.99073 1.03742 0.94405
1.9 0.99297 1.04384 0.94210
2.0 0.98899 1.03612 0.94187

2 1.0 0.59324 0.62097 0.56550
1.1 0.59399 0.62314 0.56485
1.2 0.60103 0.63296 0.56910
1.3 0.60890 0.64122 0.57659
1.4 0.62186 0.65880 0.58493
1.5 0.63096 0.66640 0.59552
1.6 0.64384 0.68200 0.60568
1.7 0.65543 0.69393 0.61693
1.8 0.66635 0.70640 0.62630
1.9 0.67963 0.71957 0.63970
2.0 0.68810 0.72901 0.64719

3 1.0 0.44368 0.46644 0.42093
1.1 0.44733 0.47029 0.42436
1.2 0.45731 0.48445 0.43016
1.3 0.47027 0.49890 0.44163
1.4 0.48952 0.52279 0.45625
1.5 0.50509 0.53795 0.47224
1.6 0.52525 0.56106 0.48945
1.7 0.54186 0.57807 0.50564
1.8 0.55946 0.59802 0.52090
1.9 0.57782 0.61817 0.53747
2.0 0.59125 0.63232 0.55018

4 1.0 0.36363 0.38512 0.34213
1.1 0.36663 0.38990 0.34335
1.2 0.38187 0.40647 0.35726
1.3 0.39811 0.42531 0.37092
1.4 0.42252 0.45439 0.39065
1.5 0.44259 0.47496 0.41022
1.6 0.46676 0.50306 0.43045
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1.7 0.48773 0.52173 0.45374
1.8 0.50885 0.54811 0.46959
1.9 0.53033 0.56820 0.49246
2.0 0.54662 0.58842 0.50481

5 1.0 0.30971 0.32802 0.29141
1.1 0.31623 0.33666 0.29581
1.2 0.33230 0.35339 0.31121
1.3 0.35457 0.37728 0.33186
1.4 0.37976 0.40745 0.35207
1.5 0.40485 0.43189 0.37781
1.6 0.43154 0.46203 0.40105
1.7 0.45586 0.48615 0.42557
1.8 0.47957 0.51243 0.44671
1.9 0.50223 0.53428 0.47019
2.0 0.52201 0.55657 0.48745

6 1.0 0.27228 0.29438 0.25017
1.1 0.27906 0.30374 0.25439
1.2 0.29812 0.32526 0.27098
1.3 0.32341 0.35404 0.29278
1.4 0.35211 0.38528 0.31894
1.5 0.37994 0.41465 0.34524
1.6 0.40824 0.44317 0.37330
1.7 0.43536 0.47202 0.39871
1.8 0.45962 0.49608 0.42316
1.9 0.48494 0.52202 0.44786
2.0 0.50484 0.54407 0.46562

7 1.0 0.24597 0.26599 0.22595
1.1 0.25429 0.27688 0.23170
1.2 0.27448 0.29987 0.24908
1.3 0.30172 0.32928 0.27416
1.4 0.33278 0.36362 0.30194
1.5 0.36198 0.39235 0.33161
1.6 0.39286 0.42486 0.36087
1.7 0.42047 0.45212 0.38882
1.8 0.44671 0.47895 0.41447
1.9 0.47287 0.50605 0.43970
2.0 0.49396 0.52910 0.45882

8 1.0 0.22325 0.24228 0.20422
1.1 0.23211 0.25401 0.21022
1.2 0.25468 0.27787 0.23149
1.3 0.28401 0.31152 0.25650
1.4 0.31688 0.34539 0.28836
1.5 0.34776 0.37865 0.31687
1.6 0.37914 0.41054 0.34773
1.7 0.40852 0.44022 0.37682
1.8 0.43566 0.46853 0.40279
1.9 0.46312 0.49579 0.43046
2.0 0.48455 0.51989 0.44920
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9 1.0 0.20499 0.22058 0.18940
1.1 0.21462 0.23520 0.19404
1.2 0.23889 0.26085 0.21694
1.3 0.27019 0.29641 0.24396
1.4 0.30471 0.33176 0.27766
1.5 0.33665 0.36575 0.30755
1.6 0.36975 0.39871 0.34079
1.7 0.39980 0.42918 0.37042
1.8 0.42751 0.45771 0.39731
1.9 0.45515 0.48491 0.42538
2.0 0.47751 0.51023 0.44479

10 1.0 0.19061 0.20808 0.17314
1.1 0.20091 0.22137 0.18044
1.2 0.22691 0.24833 0.20549
1.3 0.25959 0.28409 0.23509
1.4 0.29478 0.32095 0.26861
1.5 0.32881 0.35584 0.30178
1.6 0.36187 0.38967 0.33407
1.7 0.39336 0.42109 0.36563
1.8 0.42136 0.45007 0.39266
1.9 0.44938 0.47691 0.42185
2.0 0.47245 0.50320 0.44171

Table E-5: Data for curve fitting Oc (Optimal Width Binning)
Normalized
Assembly +95% -95%

Number of Bins A/OB Standard Confidence Confidence
Deviation Interval Band Interval Band

C_
1 1.0 0.98737 1.02634 0.94840

1.1 0.98759 1.02999 0.94520
1.2 0.98857 1.02725 0.94989
1.3 0.98740 1.02523 0.94956
1.4 0.98815 1.03041 0.94589
1.5 0.98839 1.03322 0.94356
1.6 0.98774 1.02848 0.94700
1.7 0.98890 1.03456 0.94324
1.8 0.98916 1.03517 0.94315
1.9 0.98919 1.03423 0.94416
2.0 0.98857 1.02879 0.94835

2 0.558621.0 0.58851 0.61841
1.1 0.59284 0.62223 0.56346
1.2 0.59735 0.63138 0.56333
1.3 0.60485 0.63980 0.56990
1.4 0.61610 0.65314 0.57906
1.5 0.63117 0.66618 0.59616
1.6 0.64051 0.67811 0.60291
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1.7 0.65586 0.69353 0.61820
1.8 0.66809 0.70690 0.62928
1.9 0.67849 0.72116 0.63581
2.0 0.68822 0.73008 0.64637

3 1.0 0.42352 0.44363 0.40342
1.1 0.42696 0.44859 0.40533
1.2 0.44013 0.46000 0.42026
1.3 0.45486 0.47730 0.43242
1.4 0.47157 0.49491 0.44824
1.5 0.49022 0.51940 0.46104
1.6 0.51053 0.53653 0.48453
1.7 0.52901 0.56146 0.49656
1.8 0.54773 0.58151 0.51395
1.9 0.56598 0.59944 0.53252
2.0 0.58396 0.61710 0.55082

4 1.0 0.33156 0.35132 0.31179
1.1 0.33849 0.36038 0.31660
1.2 0.35399 0.37793 0.33006
1.3 0.37415 0.40118 0.34711
1.4 0.39628 0.42331 0.36924
1.5 0.42270 0.45395 0.39144
1.6 0.44584 0.47641 0.41527
1.7 0.47108 0.50525 0.43691
1.8 0.49389 0.52915 0.45863
1.9 0.51446 0.54943 0.47949
2.0 0.53581 0.57074 0.50089

5 1.0 0.27207 0.28979 0.25436
1.1 0.27917 0.30033 0.25800
1.2 0.29936 0.31912 0.27960
1.3 0.32316 0.34649 0.29982
1.4 0.35036 0.37184 0.32889
1.5 0.37813 0.40699 0.34926
1.6 0.40604 0.43320 0.37887
1.7 0.43285 0.46403 0.40166
1.8 0.45825 0.49032 0.42618
1.9 0.48216 0.51274 0.45158
2.0 0.50549 0.53605 0.47493

6 1.0 0.22952 0.24837 0.21067
1.1 0.23938 0.26182 0.21695
1.2 0.26147 0.28340 0.23954
1.3 0.28952 0.31376 0.26528
1.4 0.31975 0.34013 0.29936
1.5 0.35240 0.38071 0.32410
1.6 0.38246 0.40935 0.35558
1.7 0.41195 0.44208 0.38182
1.8 0.43919 0.47006 0.40833
1.9 0.46430 0.49541 0.43319
2.0 0.48842 0.51894 0.45791
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7 1.0 0.20001 0.21837 0.18164
1.1 0.21102 0.23232 0.18973
1.2 0.23617 0.25730 0.21504
1.3 0.26833 0.29110 0.24555
1.4 0.30071 0.31752 0.28389
1.5 0.33559 0.36152 0.30966
1.6 0.36811 0.39352 0.34271
1.7 0.39844 0.42597 0.37092
1.8 0.42692 0.45511 0.39873
1.9 0.45355 0.48126 0.42585
2.0 0.47875 0.50633 0.45118

8 1.0 0.17729 0.19763 0.15694
1.1 0.18935 0.21221 0.16650
1.2 0.21774 0.23832 0.19716
1.3 0.25167 0.27249 0.23085
1.4 0.28632 0.30342 0.26923
1.5 0.32263 0.34619 0.29907
1.6 0.35649 0.37930 0.33367
1.7 0.38781 0.41251 0.36310
1.8 0.41712 0.44237 0.39187
1.9 0.44414 0.46907 0.41921
2.0 0.47032 0.49387 0.44676

9 1.0 0.15880 0.17974 0.13786
1.1 0.17246 0.19611 0.14881
1.2 0.20231 0.22323 0.18138
1.3 0.23882 0.25938 0.21825
1.4 0.27565 0.29031 0.26099
1.5 0.31379 0.33699 0.29059
1.6 0.34813 0.36948 0.32679
1.7 0.38091 0.40510 0.35672
1.8 0.41091 0.43562 0.38621
1.9 0.43813 0.46163 0.41464
2.0 0.46411 0.48723 0.44100

10 1.0 0.14363 0.16642 0.12083
1.1 0.15851 0.18329 0.13374
1.2 0.19062 0.21217 0.16908
1.3 0.22888 0.24973 0.20803
1.4 0.26744 0.28036 0.25453
1.5 0.30626 0.32849 0.28404
1.6 0.34165 0.36275 0.32056
1.7 0.37479 0.39791 0.35168
1.8 0.40529 0.42894 0.38164
1.9 0.43323 0.45618 0.41028
2.0 0.45943 0.48270 0.43616

The closed-form equations for the assembly standard deviation and percentage of scrap developed

in Section 4.4.1 can be tested by quantifying the goodness of fit for the third order polynomial
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equations to the simulated data and checking to see if the equations accurately represent the data.

The goodness of fit that a curve has to a group of data is represented by R2. R 2 can have a value

between zero and one. A value of zero indicates that a horizontal line passing through the average

values of Y fits the data as well as the "best-fit" line. A value of one indicates all the data points

lie exactly on the line. A value close to one is preferred but should not be the only test as to how

well the fit curve represents the data. A simple visual test provides insight into the accuracy of the

fit curve (1999). The generated curves do accurately reflect the shape and trends of the data. The

R2 values for the normalized assembly standard deviation curves are all very close to the desired

value of one and are listed in Table E-6 through Table E-10. The R 2 values for the percentage of

scrap curves that were fit using third order polynomials are also very close to the desired value of

one and are listed in Table E-16 and Table E-17.

Table E-6: Goodness of fit for ac (Equal Width Binning to Minimize Variation)

R2 for R2 for
Number of Bins R2 for Normalized ac +95% Confidence -95% Confidence

Interval Band Interval Band
1 0.999 0.996 0.998
2 0.999 0.996 0.996
3 0.999 0.997 0.998
4 1.000 0.999 1.000
5 1.000 1.000 1.000
6 0.999 0.999 0.998
7 1.000 0.998 0.999
8 0.999 0.998 0.995
9 0.999 0.999 0.996

10 0.999 0.999 0.994

Table E-7: Goodness of fit for ac (Equal Width Binning to Minimize Scrap)

R2 for R2 for
Number of Bins R2 for Normalized ac +95% Confidence -95% Confidence

Interval Band Interval Band
1 n/a n/a n/a
2 0.999 0.999 0.999
3 0.999 0.999 0.999
4 0.999 0.999 1.000
5 1.000 0.999 1.000
6 0.999 0.999 1.000
7 0.999 0.999 0.999
8 0.999 0.999 0.999
9 0.999 0.999 0.999
10 0.999 0.999 0.999
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Table E-8: Goodness of fit for oc (Equal Area Binning to Minimize Variation)

R2 for R2 for
Number of Bins R2 for Normalized ac +95% Confidence -95% Confidence

Interval Band Interval Band
1 1.000 0.997 0.997
2 0.996 0.984 0.999
3 0.998 0.990 0.984
4 0.993 0.974 0.975
5 0.993 0.985 0.975
6 0.985 0.888 0.824
7 0.974 0.879 0.918
8 0.981 0.944 0.887
9 0.991 0.882 0.870
10 0.983 0.799 0.654

Table E-9: Goodness of fit for ac (Equal Area Binning to Minimize Scrap)

R2 for R2 for
Number of Bins R2 for Normalized ac +95% Confidence -95% Confidence

Interval Band Interval Band
I n/a n/a n/a
2 0.999 0.998 0.999
3 0.999 0.999 1.000
4 0.999 0.999 0.999
5 1.000 0.999 1.000
6 0.999 0.999 1.000
7 0.999 0.999 1.000
8 0.999 0.999 0.999
9 0.999 0.999 0.999

10 0.999 0.999 0.999

Table E-10: Goodness of fit for ac (Optimal Width Binning)

R2 for R2 for
Number of Bins R2 for Normalized ac +95% Confidence -95% Confidence

Interval Band Interval Band
1 n/a n/a n/a
2 0.999 0.999 0.996
3 1.000 0.999 0.998
4 1.000 1.000 1.000
5 0.999 0.999 0.999
6 0.999 0.999 0.999
7 0.999 0.999 0.998
8 0.999 0.999 0.998
9 0.999 0.999 0.998
10 0.999 0.999 0.998
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Each value for the percentage of scrap in the tables below is the average from fifty Monte Carlo

simulation runs. A thousand numbers were used for each simulation run. The output from one

simulation run was a value for the percentage of scrap. For example, fifty Monte Carlo simulation

runs were conducted for the Equal Width Binning to Minimize Variation technique where two

bins are used and the ratio GA/B is 1.4 to produce fifty values for the percentage of scrap. The

resulting values for the percentage of scrap from the fifty runs were averaged to produce a value

of 0.03202. The standard deviation of the fifty runs was also calculated and used with the average

value to compute the values used to curve fit the ±95% Confidence Interval at a level of plus and

minus two standard deviations from the average value, i.e., for the case mentioned above, the

percentage of scrap has a 95% probability of falling between 0.04906 and 0.01498.

Table E-11: Data
Variation)

for curve fitting Scrap (Equal Width Binning to Minimize

+95% -95%
Number of Bins axlA/ Percentage Confidence Confidence

of Scrap Interval Band Interval Band

1 1.0 0.00272 0.00552 -0.00008
1.1 0.00402 0.00817 -0.00013
1.2 0.00964 0.01820 0.00108
1.3 0.01840 0.02880 0.00800
1.4 0.03104 0.04409 0.01799
1.5 0.04374 0.05938 0.02810
1.6 0.05818 0.07600 0.04036
1.7 0.07560 0.09718 0.05402
1.8 0.09158 0.11517 0.06799
1.9 0.11124 0.13355 0.08893
2.0 0.13024 0.15475 0.10573

2 1.0 0.01236 0.02790 -0.00318
1.1 0.01260 0.02980 -0.00460
1.2 0.01572 0.03215 -0.00071
1.3 0.02172 0.03890 0.00454
1.4 0.03202 0.04906 0.01498
1.5 0.04440 0.06098 0.02782
1.6 0.05838 0.07640 0.04036
1.7 0.07558 0.09721 0.05395
1.8 0.09158 0.11512 0.06804
1.9 0.11074 0.13382 0.08766
2.0 0.13032 0.15468 0.10596

3 -0.002811.0 0.01868
1.1 0.04766 0.08403 0.01129
1.2 0.08838 0.12959 0.04717
1.3 0.12400 0.16716 0.08084
1.4 0.15500 0.19741 0.11259

268

0.04017



1.5 0.18714 0.22925 0.14503
1.6 0.21430 0.25169 0.17691
1.7 0.23802 0.27600 0.20004
1.8 0.26158 0.29958 0.22358
1.9 0.28360 0.31936 0.24784
2.0 0.30486 0.34155 0.26817

4 1.0 0.02388 0.04644 0.00132
1.1 0.04212 0.07213 0.01211
1.2 0.07856 0.11439 0.04273
1.3 0.11522 0.15021 0.08023
1.4 0.14976 0.18800 0.11152
1.5 0.18422 0.22021 0.14823
1.6 0.21818 0.25654 0.17982
1.7 0.24802 0.28717 0.20887
1.8 0.27392 0.31231 0.23553
1.9 0.29854 0.33660 0.26048
2.0 0.32250 0.36039 0.28461

5 1.0 0.02688 0.04995 0.00381
1.1 0.04864 0.07917 0.01811
1.2 0.08032 0.11550 0.04514
1.3 0.11014 0.14186 0.07842
1.4 0.13664 0.16784 0.10544
1.5 0.16706 0.20270 0.13142
1.6 0.19678 0.22911 0.16445
1.7 0.22328 0.25768 0.18888
1.8 0.24780 0.28084 0.21476
1.9 0.27210 0.31068 0.23352
2.0 0.29834 0.34030 0.25638

6 1.0 0.03220 0.05439 0.01001
1.1 0.04971 0.08151 0.01792
1.2 0.08764 0.12793 0.04734
1.3 0.12169 0.16257 0.08080
1.4 0.15570 0.19697 0.11443
1.5 0.18727 0.22791 0.14663
1.6 0.21043 0.25036 0.17050
1.7 0.23864 0.27689 0.20039
1.8 0.25848 0.29762 0.21934
1.9 0.28204 0.32182 0.24226
2.0 0.30212 0.34058 0.26366

7 1.0 0.03643 0.06575 0.00711
1.1 0.05491 0.08752 0.02231
1.2 0.08757 0.12452 0.05063
1.3 0.12458 0.15978 0.08939
1.4 0.16077 0.20259 0.11894
1.5 0.19440 0.23585 0.15294
1.6 0.21989 0.26116 0.17862
1.7 0.25434 0.29580 0.21288
1.8 0.27474 0.31656 0.23292
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1.9 1 0.29998 1 0.34502 0.25494

8 1.0 0.04027 0.06537 0.01517
1.1 0.05589 0.08645 0.02534
1.2 0.08940 0.12292 0.05589
1.3 0.12188 0.15870 0.08505
1.4 0.15662 0.19504 0.11820
1.5 0.18762 0.22519 0.15005
1.6 0.21456 0.25539 0.17373
1.7 0.24564 0.28846 0.20282
1.8 0.26776 0.31045 0.22507
1.9 0.29470 0.33860 0.25080
2.0 0.31806 0.36194 0.27418

9 1.0 0.04232 0.06716 0.01748
1.1 0.05912 0.08557 0.03267
1.2 0.09238 0.12555 0.05921
1.3 0.12638 0.16290 0.08986
1.4 0.16070 0.19694 0.12446
1.5 0.19167 0.22922 0.15411
1.6 0.21732 0.25420 0.18044
1.7 0.24646 0.28226 0.21066
1.8 0.26640 0.30446 0.22834
1.9 0.29146 0.33219 0.25073
2.0 0.31540 0.35679 0.27401

10 1.0 0.04540 0.07248 0.01832
1.1 0.06152 0.09501 0.02803
1.2 0.09572 0.13222 0.05922
1.3 0.12884 0.16546 0.09222
1.4 0.16476 0.20504 0.12448
1.5 0.19700 0.23760 0.15640
1.6 0.22322 0.26506 0.18138
1.7 0.25352 0.29136 0.21568
1.8 0.27328 0.31483 0.23173
1.9 0.29850 0.34070 0.25630

_2.0 0.32024 0.36154 0.27894

Table E-12: Data for curve fitting Scrap (Equal Width Binning to Minimize Scrap)

n +95% -95%
Number of Bins aA aB Perag Confidence Confidence

of Scrap Interval Band Interval Band

1
1.1 0.00209 0.00433 -0.00016
1.2 0.00211 0.00414 0.00009
1.3 0.00213 0.00439 -0.00014
1.4 0.00206 0.00416 -0.00003
1.5 0.00210 0.00423 -0.00003
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1.6 0.00201 0.00416 -0.00014
1.7 0.00205 0.00406 0.00004
1.8 0.00205 0.00421 -0.00011
1.9 0.00215 0.00427 0.00004
2.0 0.00209 0.00437 -0.00019

2 1.0 0.01214 0.02773 -0.00345
1.1 0.01154 0.02597 -0.00288
1.2 0.01182 0.02686 -0.00321
1.3 0.01108 0.02481 -0.00266
1.4 0.01186 0.02709 -0.00337
1.5 0.01236 0.02764 -0.00292
1.6 0.01158 0.02676 -0.00360
1.7 0.01223 0.02763 -0.00317
1.8 0.01178 0.02706 -0.00350
1.9 0.01201 0.02753 -0.00351
2.0 0.01174 0.02674 -0.00326

3 1.0 0.01629 0.03141 0.00117
1.1 0.01629 0.03235 0.00023
1.2 0.01624 0.03054 0.00194
1.3 0.01644 0.03249 0.00038
1.4 0.01712 0.03207 0.00216
1.5 0.01674 0.03268 0.00081
1.6 0.01714 0.03298 0.00131
1.7 0.01629 0.03249 0.00010
1.8 0.01732 0.03364 0.00100
1.9 0.01654 0.03245 0.00062
2.0 0.01732 0.03343 0.00121

4 1.0 0.02111 0.04324 -0.00102
1.1 0.02080 0.04279 -0.00120
1.2 0.02110 0.04317 -0.00097
1.3 0.02041 0.04302 -0.00220
1.4 0.02088 0.04298 -0.00122
1.5 0.02174 0.04591 -0.00243
1.6 0.02065 0.04240 -0.00110
1.7 0.02247 0.04692 -0.00197
1.8 0.02137 0.04306 -0.00031
1.9 0.02137 0.04476 -0.00202
2.0 0.02076 0.04218 -0.00067

5 1.0 0.02420 0.04837 0.00003
1.1 0.02541 0.05030 0.00051
1.2 0.02351 0.04776 -0.00075
1.3 0.02453 0.04840 0.00065
1.4 0.02394 0.05034 -0.00247
1.5 0.02410 0.04728 0.00093
1.6 0.02614 0.05311 -0.00083
1.7 0.02441 0.04822 0.00060
1.8 0.02568 0.05301 -0.00165
1.9 0.02404 0.04743 0.00064
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6 1.0 0.03101 0.05211 0.00991
1.1 0.03075 0.05253 0.00897
1.2 0.03066 0.05073 0.01059
1.3 0.03065 0.05106 0.01024
1.4 0.03164 0.05209 0.01120
1.5 0.03223 0.05428 0.01018
1.6 0.03128 0.05348 0.00909
1.7 0.03140 0.05381 0.00899
1.8 0.03132 0.05321 0.00943
1.9 0.03094 0.05270 0.00917
2.0 0.03158 0.05346 0.00970

7 1.0 0.03480 0.05940 0.01020
1.1 0.03475 0.06156 0.00794
1.2 0.03414 0.05844 0.00983
1.3 0.03447 0.06034 0.00861
1.4 0.03471 0.05916 0.01025
1.5 0.03415 0.05794 0.01037
1.6 0.03613 0.06208 0.01018
1.7 0.03549 0.06017 0.01080
1.8 0.03588 0.06243 0.00934
1.9 0.03459 0.05968 0.00950
2.0 0.03474 0.06159 0.00790

8 1.0 0.03824 0.06224 0.01424
1.1 0.03837 0.06495 0.01178
1.2 0.03810 0.06244 0.01376
1.3 0.03783 0.06411 0.01155
1.4 0.03788 0.06190 0.01387
1.5 0.03842 0.06441 0.01243
1.6 0.03863 0.06355 0.01371
1.7 0.03858 0.06373 0.01342
1.8 0.03878 0.06309 0.01447
1.9 0.03731 0.06040 0.01421
2.0 0.03847 0.06474 0.01221

9 1.0 0.04200 0.06747 0.01653
1.1 0.04205 0.06615 0.01795
1.2 0.04115 0.06621 0.01609
1.3 0.04174 0.06573 0.01776
1.4 0.04223 0.06551 0.01895
1.5 0.04210 0.06593 0.01828
1.6 0.04263 0.06635 0.01890
1.7 0.04210 0.06611 0.01810
1.8 0.04199 0.06554 0.01844
1.9 0.04204 0.06641 0.01767
2.0 0.04236 0.06651 0.01821

10 1.0 0.04382 0.07033 0.01732
1.1 0.04425 0.07152 0.01699
1.2 0.04339 0.06894 0.01785

272

0.02635 0.05288 -0.000192.0



2.0 0.04523 0.07262 0.01784

Table E-13: Data for curve fitting Scrap (Equal Area Binning to Minimize Variation)

Percentage +95% -95%
Number of Bins aA/aB of Scrap Confidence Confidence

of___rap Interval Band Interval Band
1 1.0 0.00261 0.00524 -0.00002

1.1 0.00349 0.00679 0.00019
1.2 0.00855 0.01544 0.00166
1.3 0.01660 0.02495 0.00825
1.4 0.02816 0.03914 0.01718
1.5 0.04058 0.05223 0.02893
1.6 0.05471 0.06891 0.04051
1.7 0.07173 0.08965 0.05381
1.8 0.08723 0.10736 0.06710
1.9 0.10558 0.12601 0.08515
2.0 0.12546 0.14713 0.10379

2 1.0 0.02360 0.05620 -0.00900
1.1 0.02484 0.06126 -0.01158
1.2 0.02893 0.06589 -0.00803
1.3 0.03339 0.06688 -0.00010
1.4 0.04007 0.06911 0.01103
1.5 0.04906 0.07634 0.02178
1.6 0.06032 0.08419 0.03645
1.7 0.07593 0.09914 0.05272
1.8 0.09007 0.11149 0.06865
1.9 0.10656 0.12611 0.08701
2.0 0.12580 0.14675 0.10485

3 1.0 0.03113 0.05963 0.00263
1.1 0.04512 0.07716 0.01308
1.2 0.06319 0.09970 0.02668
1.3 0.08249 0.11852 0.04646
1.4 0.09849 0.13053 0.06645
1.5 0.11393 0.14798 0.07988
1.6 0.12912 0.16244 0.09580
1.7 0.14175 0.17826 0.10524
1.8 0.15506 0.18834 0.12178
1.9 0.16829 0.20196 0.13462
2.0 0.17885 0.21022 0.14748
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1.3 0.04336 0.06960 0.01712
1.4 0.04379 0.06954 0.01805
1.5 0.04450 0.07079 0.01821
1.6 0.04558 0.07198 0.01917
1.7 0.04492 0.07084 0.01901
1.8 0.04522 0.07259 0.01785
1.9 0.04394 0.06966 0.01822



4 1.0 0.03622 0.06359 0.00885
1.1 0.05120 0.07716 0.02524
1.2 0.08088 0.10941 0.05235
1.3 0.11216 0.14249 0.08183
1.4 0.13885 0.16804 0.10966
1.5 0.16209 0.19615 0.12803
1.6 0.19494 0.28062 0.10926
1.7 0.21536 0.30530 0.12542
1.8 0.22859 0.30848 0.14870
1.9 0.24060 0.30992 0.17128
2.0 0.25510 0.33113 0.17907

5 1.0 0.04117 0.06778 0.01456
1.1 0.05757 0.08593 0.02921
1.2 0.08841 0.11966 0.05716
1.3 0.12114 0.15604 0.08624
1.4 0.15104 0.18677 0.11531
1.5 0.19065 0.27270 0.10860
1.6 0.21665 0.29382 0.13948
1.7 0.24141 0.32035 0.16247
1.8 0.25861 0.32973 0.18749
1.9 0.27493 0.33781 0.21205
2.0 0.29275 0.35889 0.22661

6 1.0 0.04345 0.07251 0.01440
1.1 0.05911 0.09228 0.02594
1.2 0.08918 0.12888 0.04948
1.3 0.12146 0.16012 0.08280
1.4 0.15613 0.19998 0.11227
1.5 0.18626 0.22838 0.14415
1.6 0.20909 0.25380 0.16437
1.7 0.24461 0.32109 0.16813
1.8 0.26315 0.33050 0.19580
1.9 0.28500 0.34689 0.22311
2.0 0.30632 0.37615 0.23649

7 1.0 0.04541 0.07541 0.01541
1.1 0.06139 0.09489 0.02790
1.2 0.09503 0.13604 0.05403
1.3 0.12683 0.16727 0.08639
1.4 0.16170 0.20653 0.11688
1.5 0.19326 0.23517 0.15135
1.6 0.21734 0.26435 0.17033
1.7 0.25474 0.32727 0.18221
1.8 0.27123 0.33751 0.20495
1.9 0.29453 0.35640 0.23266
2.0 0.31813 0.38545 0.25081

8 1.0 0.04886 0.07626 0.02147
1.1 0.06454 0.09426 0.03483
1.2 0.09631 0.13377 0.05885
1.3 0.13015 0.16954 0.09075
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9 1.0 0.06613 0.13642 -0.00416
1.1 0.07669 0.14326 0.01012
1.2 0.10557 0.17349 0.03765
1.3 0.13715 0.19802 0.07628
1.4 0.17378 0.24379 0.10377
1.5 0.19836 0.24123 0.15549
1.6 0.23216 0.30193 0.16239
1.7 0.26365 0.32917 0.19813
1.8 0.28156 0.34283 0.22029
1.9 0.30676 0.36748 0.24604
2.0 0.32918 0.39549 0.26287

10 1.0 0.06930 0.13453 0.00407
1.1 0.07942 0.14229 0.01655
1.2 0.10948 0.17366 0.04530
1.3 0.13961 0.19898 0.08024
1.4 0.17591 0.24082 0.11100
1.5 0.20492 0.26597 0.14387
1.6 0.23231 0.29768 0.16694
1.7 0.26492 0.32682 0.20302
1.8 0.28276 0.34156 0.22396
1.9 0.30502 0.35285 0.25719
2.0 0.33247 0.39552 0.26942

Table E-14: Data for curve fitting Scrap (Equal Area Binning to Minimize Scrap)

Percentage95% -95%
Number of Bins aA aB of Scrap Confidence Confidence

of__ _ rap Interval Band Interval Band
1 1.0 0.00210 0.00430 -0.00010

1.1 0.00215 0.00449 -0.00020
1.2 0.00205 0.00427 -0.00017
1.3 0.00219 0.00449 -0.00011
1.4 0.00199 0.00425 -0.00027
1.5 0.00208 0.00436 -0.00021
1.6 0.00199 0.00421 -0.00022
1.7 0.00199 0.00418 -0.00020
1.8 0.00201 0.00428 -0.00026
1.9 0.00203 0.00425 -0.00020

2.0 0.32413 0.38931 -0.25895

12.0 0.00208 1 0.00450 1 -0.00033
1.0 0.02176 0.05477 -0.01125
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1.4 0.17317 0.24486 0.10148
1.5 0.20148 0.26511 0.13785
1.6 0.23039 0.30416 0.15662
1.7 0.26020 0.32943 0.19097
1.8 0.27766 0.33986 0.21546
1.9 0.30174 0.36213 0.24135
2.0 0.32413 0.38931 0.25895



2 1.0 0.02176 0.05477 -0.01125
1.1 0.02160 0.05635 -0.01314
1.2 0.02214 0.05511 -0.01083
1.3 0.02054 0.05452 -0.01345
1.4 0.02213 0.05654 -0.01227
1.5 0.02249 0.05782 -0.01284
1.6 0.02224 0.05629 -0.01182
1.7 0.02265 0.05653 -0.01123
1.8 0.02149 0.05547 -0.01248
1.9 0.02181 0.05497 -0.01135
2.0 0.02161 0.05607 -0.01285

3 1.0 0.02951 0.05670 0.00231
1.1 0.02983 0.05917 0.00049
1.2 0.02987 0.05964 0.00011
1.3 0.02994 0.05765 0.00222
1.4 0.02990 0.06056 -0.00075
1.5 0.03023 0.05832 0.00214
1.6 0.03070 0.06189 -0.00049
1.7 0.03053 0.05851 0.00254
1.8 0.02998 0.06142 -0.00146
1.9 0.03001 0.05780 0.00223
2.0 0.02981 0.06159 -0.00196

4 1.0 0.03294 0.06237 0.00351
1.1 0.03365 0.06339 0.00392
1.2 0.03363 0.06355 0.00372
1.3 0.03304 0.06266 0.00342
1.4 0.03370 0.06451 0.00289
1.5 0.03429 0.06475 0.00384
1.6 0.03433 0.06431 0.00434
1.7 0.03291 0.06349 0.00233
1.8 0.03404 0.06402 0.00407
1.9 0.03247 0.06237 0.00258
2.0 0.03401 0.06437 0.00365

5 1.0 0.03894 0.06907 0.00880
1.1 0.03917 0.06785 0.01049
1.2 0.04009 0.06944 0.01073
1.3 0.03872 0.06754 0.00989
1.4 0.03917 0.07013 0.00822
1.5 0.03942 0.06945 0.00940
1.6 0.03871 0.06935 0.00807
1.7 0.03926 0.06921 0.00930
1.8 0.03849 0.06847 0.00852
1.9 0.03906 0.06877 0.00935
2.0 0.03867 0.06872 0.00862

6 1.0 0.04366 0.07176 0.01556
1.1 0.04347 0.07001 0.01694
1.2 0.04384 0.07234 0.01533
1.3 0.04340 0.06952 0.01727
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1.4 0.04403 0.07153 0.01653
1.5 0.04413 0.07085 0.01740
1.6 0.04402 0.07263 0.01541
1.7 0.04376 0.07090 0.01662
1.8 0.04417 0.07165 0.01670
1.9 0.04365 0.07040 0.01691
2.0 0.04402 0.07122 0.01681

7 1.0 0.04448 0.07210 0.01686
1.1 0.04574 0.07318 0.01830
1.2 0.04562 0.07409 0.01715
1.3 0.04526 0.07118 0.01933
1.4 0.04610 0.07439 0.01780
1.5 0.04596 0.07147 0.02045
1.6 0.04693 0.07506 0.01880
1.7 0.04564 0.07177 0.01951
1.8 0.04656 0.07518 0.01793
1.9 0.04508 0.07198 0.01818
2.0 0.04662 0.07507 0.01817

8 1.0 0.04965 0.07512 0.02417
1.1 0.05012 0.07665 0.02359
1.2 0.05009 0.07517 0.02501
1.3 0.05012 0.07672 0.02351
1.4 0.05010 0.07563 0.02456
1.5 0.05040 0.07636 0.02444
1.6 0.05079 0.07707 0.02451
1.7 0.05087 0.07648 0.02527
1.8 0.05106 0.07680 0.02531
1.9 0.05060 0.07565 0.02555
2.0 0.05034 0.07802 0.02266

9 1.0 0.05337 0.07937 0.02736
1.1 0.05337 0.08040 0.02635
1.2 0.05344 0.08024 0.02665
1.3 0.05278 0.07874 0.02683
1.4 0.05308 0.08054 0.02562
1.5 0.05276 0.07757 0.02794
1.6 0.05438 0.08386 0.02490
1.7 0.05313 0.07866 0.02760
1.8 0.05385 0.08308 0.02463
1.9 0.05299 0.07871 0.02727
2.0 0.05358 0.08234 0.02483

10 1.0 0.05757 0.08742 0.02772
1.1 0.05874 0.08815 0.02933
1.2 0.05880 0.08870 0.02891
1.3 0.05759 0.08746 0.02772
1.4 0.05880 0.08892 0.02868
1.5 0.05741 0.08538 0.02944
1.6 0.05899 0.08942 0.02856
1.7 0.05794 0.08733 0.02854
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1.8 0.05937 0.09031 0.02842
1.9 0.05753 0.08712 0.02793
2.0 0.05902 0.08918 0.02886

Table E-15: Data for curve fitting Scrap (Optimal Width Binning)

Percentage +95% -95%
Number of Bins aACoB Confidence Confidence

of Scrap Interval Band Interval Band

1 1.0 0.00237 0.00549 -0.00075
1.1 0.00228 0.00544 -0.00088
1.2 0.00240 0.00542 -0.00062
1.3 0.00246 0.00557 -0.00065
1.4 0.00234 0.00546 -0.00078
1.5 0.00228 0.00544 -0.00088
1.6 0.00242 0.00534 -0.00050
1.7 0.00228 0.00544 -0.00088
1.8 0.00228 0.00544 -0.00088
1.9 0.00230 0.00536 -0.00076
2.0 0.00246 0.00557 -0.00065

2 1.0 0.02109 0.05398 -0.01180
1.1 0.02090 0.05524 -0.01344
1.2 0.02088 0.05384 -0.01208
1.3 0.02128 0.05300 -0.01044
1.4 0.02230 0.05583 -0.01123
1.5 0.02090 0.05524 -0.01344
1.6 0.02270 0.05791 -0.01251
1.7 0.02090 0.05524 -0.01344
1.8 0.02090 0.05524 -0.01344
1.9 0.02266 0.05793 -0.01261
2.0 0.02128 0.05300 -0.01044

3 1.0 0.02607 0.05444 -0.00230
1.1 0.02542 0.05350 -0.00266
1.2 0.02632 0.05619 -0.00355
1.3 0.02672 0.05560 -0.00216
1.4 0.02756 0.05676 -0.00164
1.5 0.02542 0.05350 -0.00266
1.6 0.02608 0.05545 -0.00329
1.7 0.02542 0.05350 -0.00266
1.8 0.02542 0.05350 -0.00266
1.9 0.02714 0.05586 -0.00158
2.0 0.02672 0.05560 -0.00216

4 1.0 0.03173 0.05972 0.00374
1.1 0.03078 0.05937 0.00219
1.2 0.03286 0.06114 0.00458
1.3 0.03268 0.06021 0.00515
1.4 0.03306 0.06124 0.00488
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1.5 0.03078 0.05937 0.00219
1.6 0.03376 0.06274 0.00478
1.7 0.03078 0.05937 0.00219
1.8 0.03078 0.05937 0.00219
1.9 0.03296 0.06093 0.00499
2.0 0.03268 0.06021 0.00515

5 1.0 0.03856 0.06946 0.00766
1.1 0.03944 0.07088 0.00800
1.2 0.03834 0.07166 0.00502
1.3 0.03768 0.06824 0.00712
1.4 0.03914 0.07257 0.00571
1.5 0.03944 0.07088 0.00800
1.6 0.03862 0.07173 0.00551
1.7 0.03944 0.07088 0.00800
1.8 0.03944 0.07088 0.00800
1.9 0.03932 0.07054 0.00810
2.0 0.03768 0.06824 0.00712

6 1.0 0.04058 0.06984 0.01132
1.1 0.03964 0.06894 0.01034
1.2 0.04106 0.06979 0.01233
1.3 0.04152 0.07091 0.01213
1.4 0.04222 0.07133 0.01311
1.5 0.03964 0.06894 0.01034
1.6 0.04252 0.07184 0.01320
1.7 0.03964 0.06894 0.01034
1.8 0.03964 0.06894 0.01034
1.9 0.04184 0.07174 0.01194
2.0 0.04152 0.07091 0.01213

7 1.0 0.04433 0.07030 0.01836
1.1 0.04490 0.07265 0.01715
1.2 0.04526 0.07065 0.01987
1.3 0.04376 0.06805 0.01947
1.4 0.04522 0.06946 0.02098
1.5 0.04490 0.07265 0.01715
1.6 0.04564 0.07181 0.01947
1.7 0.04490 0.07265 0.01715
1.8 0.04490 0.07265 0.01715
1.9 0.04576 0.07236 0.01916
2.0 0.04376 0.06805 0.01947

8 1.0 0.04764 0.07231 0.02297
1.1 0.04768 0.07292 0.02244
1.2 0.04742 0.07280 0.02204
1.3 0.04760 0.07194 0.02326
1.4 0.04790 0.07225 0.02355
1.5 0.04768 0.07292 0.02244
1.6 0.04744 0.07194 0.02294
1.7 0.04768 0.07292 0.02244
1.8 0.04768 0.07292 0.02244
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1.9 0.04756 0.07319 0.02193

9 1.0 0.05254 0.07945 0.02563
1.1 0.05288 0.08020 0.02556
1.2 0.05172 0.07890 0.02454
1.3 0.05220 0.07896 0.02544
1.4 0.05316 0.07786 0.02846
1.5 0.05288 0.08020 0.02556
1.6 0.05308 0.08088 0.02528
1.7 0.05288 0.08020 0.02556
1.8 0.05288 0.08020 0.02556
1.9 0.05450 0.07959 0.02941
2.0 0.05220 0.07896 0.02544

10 1.0 0.05302 0.08099 0.02505
1.1 0.05236 0.07960 0.02512
1.2 0.05426 0.08395 0.02457
1.3 0.05368 0.08259 0.02477
1.4 0.05342 0.08184 0.02500
1.5 0.05236 0.07960 0.02512
1.6 0.05488 0.08342 0.02634
1.7 0.05236 0.07960 0.02512
1.8 0.05236 0.07960 0.02512
1.9 0.05510 0.08377 0.02643
2.0 0.05368 0.08259 0.02477

The goodness of fit values, R2, are presented for the curves that were fit for the Equal Width

Binning to Minimize Variation and the Equal Area Binning to Minimize Variation selective

assembly techniques in Table E-16 and Table E-17 respectively. The data representing the

percentage of scrap for the selective assembly techniques that bin the two part distributions

independently, Equal Width Binning to Minimize Scrap, the Equal Area Binning to Minimize

Scrap, and Optimal Width Binning, are best represented by a constant value, i.e., a straight

horizontal line passing through the average. For this type of curve fit, the R2 value has no

meaning, thus tables for the goodness of fit for these techniques do not exist.

Table E-16: Goodness of fit for Scrap (Equal Width Binning to Minimize Variation)

R2 for R2 for
Number of Bins R2 for Scrap Curve +95% Confidence -95% Confidence

Interval Band Interval Band

1 1.000 1.000 0.999
2 1.000 0.999 0.999
3 0.999 1.000 0.998
4 0.999 0.999 0.999
5 1.000 0.999 0.999
6 0.998 0.999 0.997
7 0.999 0.998 0.998
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8 0.999 0.999 0.998
9 0.998 0.998 0.998

10 0.998 0.999 0.998

Table E-17: Goodness of fit for Scrap (Equal Area Binning to Minimize Variation)

R2 for R2 for
Number of Bins R2 for Scrap Curve +95% Confidence -95% Confidence

Interval Band Interval Band
1 1.000 1.000 0.999
2 1.000 0.997 1.000
3 0.999 0.999 0.998
4 0.998 0.983 0.969
5 0.998 0.986 0.990
6 0.999 0.994 0.992
7 0.998 0.995 0.994
8 0.998 0.989 0.997
9 0.998 0.989 0.995
10 0.998 0.992 0.998
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F. Additional PCDB User Interface

Information

The discussion regarding the process capability database graphical user interface from Section 2.3

is continued here. The user interface also included an administration section to manage the

database. The administration section contains pages to add manufacturing plants to the database

so they can be selected when running a query, attribute management pages to update the

selectable attributes, and a user management page to create new users and control security levels.

The main administration page is shown in Figure F-1.

u

Figure F-I: Administration main page

The Manufacturing Plants page is used to manage what plants are stored in the database. From

this page, a list of plants presently in the database can be displayed. Plant information is also

added from this page. A screen capture of this page is shown as Figure F-2.
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Figure F-2: Manufacturing Plant Management Page

Each attribute, feature, geometry, material, and process, has an associated management page.

These pages allow the administrator to review the existing lists of attributes in the database and

define new attributes at any level and define relationships among them. A screen capture of the

Material Management Page is shown below as Figure F-3. Similar pages exist for each of the

other attributes.
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Figure F-3: Page to manage material attribute listings in the PCDB

The last part of the administration section is the user management page. This page is used by the

administrator to add new users, display current users, and to adjust the security level of users. A

screen capture of the User Management Page is shown below as Figure F-4.
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Figure F-4: Page used to manage user accounts
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G. Detailed Derivation for Chapter 3

The methodology developed in this thesis requires a substantial amount of mathematical

background to be implemented. A great deal of this framework is rooted in statistics and calculus.

Engineers commonly think deterministically; yet, considering the stochastic nature of

manufacturing a product is extremely important for engineers because it is impossible for any

manufacturing process to make every component exactly the same.

A product is typically an assembly composed of many sub-assemblies and components. Even a

product as simple in appearance as a VHS tape is often composed of more than thirty individual

components. Each component has to be manufactured by some single process or series of

processes. These processes create the values of the dimensions of the component's features. The

dimensions have target values and tolerance ranges. The distribution of the actual values of these

dimensions is what interests the engineer since these values ultimately determine how well the

product will meet its functional requirements.

Another reason to use statistics when dealing with manufacturing a product is that often a large

number of the same component is created by the same process. This lends itself very well to a

statistical approach since powerful design decisions can be made based on properties of the

distribution of a measurable quantity of a component, e.g. feature sizes can be set with confidence

that they can be manufactured with a high level of repeatability. In this thesis, the concern is

designing components that have features that can be produced with an acceptable level of quality.

The design tool being developed is not intended to help design a unique one-of-a-kind assembly;

a task for simple tolerance stack-up.

The equations developed in this thesis are not valid for predicting a measured quantity on the next

part produced; the equations estimate the properties of the distribution of the next large batch of

parts produced. What is large? Usually sample sizes of more than thirty parts begin to achieve

statistical significance. The large batch requirement is rarely an issue because the design

decisions made by engineers are typically long term and span many batches. Engineers want to

design long term manufacturability into the product, not the manufacturability of one batch of

components.
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Data from manufactured components are often normally distributed (Kalpakjian and Schmid

2001). Working with normal distributions allows for closed-form equations to be derived. All the

closed-form equations developed in this thesis are valid when working with normal distributions.

A subset of these equations is valid for the more general case of any type of distribution.

A basic understanding of probability and statistics is assumed. To gain a better understanding of

the fundamentals of probability and statistics, the reader should refer to a text on the subject

matter. Two such texts are by Drake (Drake 1967) and by DeGroot (DeGroot 1986). Calculus is

also heavily used as part of this derivation. Many texts exist covering the fundamentals of

calculus. One text used for reference during the following derivations is by Grossman (Grossman

1992).

A probability distribution function is a mathematical description of how likely a variable is to

take on a particular value. A normal distribution is a special type of distribution that is

symmetrical and bell-shaped and is described by a mean, pt, and a standard deviation, c-. The

standard deviation squared is equal to the variance of a distribution. Both terms are used in this

thesis to refer to manufacturing variation. The probability density function (pdf) for a normal

distribution is

1 F x-p_ 2
PdfNormal = eXp - )G-1

The variable x can be converted to what is known as the reduced variable z. The equation for z is

given by

Z = (x-) G-2
0-

Using z, any normal distribution can be re-written so that its mean is at zero and it has a standard

deviation of one. This version of a normal distribution is known as a standard normal distribution

and is given by the following equation.
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pdf = exp --- G-3

A mixture distribution is formed by combining measurements from multiple distributions into

one distribution. The equation for the probability density function of a mixture distribution

comprised of any type of distributions is

Pdfmixewd (p(l)(pdf)+(p 2 )(pdf2 )+..+(p{)(pdfi)+...(pN)(pdfN) G-4

The mean and the variance of the mixture distribution can be computed if the means and standard

deviations of the original distributions are known.

,/,,,d = PIp + P242 + ± PN 1 N G-5

2 12 2 2
amixed =PICF2 +P2U2 +-.+PNCN)

+(P,2 2)G-6
+I,, + P2,"2 +..+ PNIU

-(P 1 1 + P2p 2 +..+ PN/ N2

where

N = Number of original distributions

c = standard deviation of the distribution

p = mean of the distribution

pi = number of measurements in ith distribution divided by the total number of measurements

The next step in laying the mathematical framework is to bin the incoming distribution. Binning

is the procedure of dividing a distribution into discrete divisions, or bins. Once the width of a bin

is fixed, the height is set so that the area of the bin is equal to that under the probability

distribution function over that range. Therefore, the area in all the bins adds to unity. The area in

a bin can be calculated regardless of the type of probability density function according to the

following equation
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Areai = (pdf,,, ) dx G-7

xi -xiI =A G-8

where A is the bin width and x is the variable of interest. The bin width and the number of bins

are arbitrary at this point. The smaller the width, the greater number of bins required to traverse

the original distribution. Also, as the bin width decreases, the discrete representation approaches

that of the original distribution.

Binning allows attention to be easily focused on a specific region of the distribution. As a

mathematical approximation, each bin can be considered as an individual uniform distribution.

This approximation allows the calculations presented in the next few sections to be simplified for

example purposes. Once the methodology is developed, the approximation becomes mute as the

bin width is driven to zero, resulting in an exact solution as will be seen in a later section.

Consider the original input distribution that has a mean of p,,,,. The desired output dimension

value is p arge . Now assume the ith bin from x1_1 to xi contains components that all have the

(xi_, +x Xisame dimension, equal to . The desired dimensional change for components in the ith
2

bin to get them to the target value is

M = P'targe - (X+X) G-9
1 2

The bins of the input distribution are now treated as individual input sub-distributions. The parts

from the ith bin are transformed by the process to create an output sub-distribution with a

probability density function of pdfi.

Using the definitions of DeltaP and SigmaP, formulations for the mean and variance of the sub-

distributions can be formulated. The mean of the ith sub-distribution can be written as
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p~ 'i + DeltaP (Mi) G-10
2

The standard deviation of the ith sub-distribution can be computed using the definition of SigmaP.

The standard deviation of the ith output sub-distribution is

-, ~_ Sigm aP(M,) G-1 1

These are approximations because they are based on finite bin widths.

The individual output sub-distributions, as well as information about those distributions, are of

little use to an engineer. The engineer is concerned with the entire output distribution and its

properties; therefore, the output distribution needs to be generated by combining the pdfi's of the

individual output sub-distributions using Equation G-4. The resulting equation for the combined

pdfutput is

pdf = Area )(pdf)+(Area 2 )(pdf2 )+-

+(Areaj )(pdf )+...+(AreaN)(pdf) G-12

where Areaj is the area in the ith Bin. Combining the above equation with Equation G-7 results in

pdf,,P, = ( pdf,,,,, ) dx ( pdf, ++
xo

x xN G-13
f (pdf,,,, ) dx (pdfi)+...+ f (pdf,,,P )dx (pdfN)

Xi XNA

These equations would be exact solutions except that the original distribution was binned.

Equation G-13 above is of little practical use because of the difficulty in knowing the actual

equations for the pdfi's. It is much more useful to the engineer to have the ability to calculate the

mean and variance of the output distribution.
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The output distribution's mean can now be approximated by combining information about the

sub-distributions with the equation for the mean of a mixture distribution. This approximation for

the output distribution's mean is

1 outpu~ Pi4 + P2P2 + -P + + PNN G-14

Note pi is equivalent to the area in the it' bin; therefore, Equation G-14 can be combined with

Equations G-7 and G-10 to produce

Poutput ~ (pdfd,,,L dx o 2 +DeltaP(M,)
xo

+ (pdf,,P )dx * X +X 2 + DeltaP(M2 )]
~, G-15

+...+ f(pdf,,Pt)dx* 1 i +DeltaP(M1 )j+...

+ f (pdf,,u, )dx* [N1+ xN + DeltaP(MN)]
XN-1

Using a summation, the equation above can be simply written as

N Xi

JPoutpu f ~ {(pdfi,,,) dx * + DeltaP(M, ) G-16

In a similar manner to calculating the equation for approximating the output distribution's mean,

an equation for the approximate output distribution's variation can be derived. Using Equation

G-6 the approximate output distribution's variation is

S , pi2+P 2 72 +...+ 0 1+...+ pNo )

+(ppu + P2M +...+ pi, +...PN
2

-( PIP, + P2P2 +...-+ PAp +...-PNNN2

292



The above equation is an approximation because it is based on finite bin widths.

Note the last term in the above equation in parentheses is equal to p thus the equation can be

simplified to

G-18

_(-PG'0 , )2

Now the p's can be replaced using Equation G-10 to obtain

t ,, ( pg|+p2-+...+ pi...+ pN )

/ - 2 -2

p + X ±DeltaP(M)+ p 2 XI X 2 + DeltaP(M2 )J
+ - - -et a ( ,)

+...+ p xI + x +DeltaP(M .2.+ P XNA + XN + DeltaP(MN
2 2

-( tP , )2

The oi's terms can now be replaced using Equation G- 11 to obtain

(p [SigmaP(M p SigmaP(M )]2 + p, (SgmaP M1 j + ...+ PN SigmaP(MN )2)

G-19

2

2p + +DeltaP (M,)]

+...+ e-i + DeltaP
2

+XI + X2 +DeltaP(M2 )
L 2]2

M l+±FPNXI + XNV +IJ] . 1P 2

Note pi is equivalent to the area in the it" Bin; therefore, the equation above can be combined with

Equation G-7 to produce
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G-20
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f(pdf,,,)dx[SigmaP(M)]2+ (pdf0 ,,P)dx[SigmaP(M2)]

oututl Xi XN

+--+ pd.',)dx(SgMap (Mi +... + J (pdf,,,p)dx[SigmaP(MN)]]
x xN-1

XX +X 2 x2  [-2
(pd,,,,)dx 2_+x+DeltaP(M,) + (pdfj,,,)dx XI+X2+DeltaP(M 2 ) G-21

Xi Xi-I + X-2 xN X -
++ (pdf,,,)dx - +DeltaP(M1 )] +...+ f (pdfn,,)dxxN-1xN +DeltaP(MN)

Using summations, the above equation can be written in a shortened version such as

N X

o ~tput f (pdfit dx[SigmaP(Mj]2

N xX- ii-2' G-22
+ f ( pdf dx t ) -x 2 iDeltaP M

The equation above is an approximation for &-u,,, because of the use of N discrete bins. The

larger the number of bins, the better the approximation is to the true value. The exact solution is

presented later.

Processes often produce normal distribution outputs (Kalpakjian and Schmid 2001). Working

with distributions that are normal allows closed-form solutions to be derived.

Consider the original input distribution to be a normal distribution with a mean equal to tput

and standard deviation equal to o-,, Also assume the process generates a normal output sub-

distributions with means pti.

For the above equation and all equations below for calculating the output standard deviation, it is

assumed the input distribution does not overlap the target mean. The physical reasoning for this

assumption is that if overlap exists, the overlapping components in the input distribution would
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not be processed as they would already be equal to or less than the target mean. Not processing

some components would invalidate the equations below. Equations could be derived to handle the

situation of overlap; however, they are not derived here because in a manufacturing situation that

is considered to be in statistical control, the case of this type of overlap will not arise.

Standardizing the preceding equations eases calculations and allows for integration limits to be

general for any case, versus being set uniquely for each case. Standardizing the equations

involves transforming the probability density functions to standard normal density functions and

x values to z values. A standard normal density function is a bell shaped probability density

function with a mean of zero and a standard deviation of one. Values of z represent the number of

standard deviations away from zero a particular value is.

Using Equation G-2 for standardization results in

X, = input ± + Pinput G-23

With the normal distribution assumption, the integral, f (pdfj,, )x, becomes

X-I

ZL exp { 2}Z G-24

The standardized desired dimensional change, M,, becomes

Mi = Ptarget - "", + input + i } G-25

Now, the equations for the approximate mean and standard deviation of the output distribution

can be transformed into standardized forms. The approximate output distribution's mean,

Equation G- 16, can be written as a function of z to obtain
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N Zi Z r Zi +~\ F{ +j -". , + Z. v I0iip
P,,u j,~ exp - z {z+z}[ "+"' + pj, +DeltaP par,- { 2+ }0"n' + nput G-26

The approximate output distribution's standard deviation, Equation G-22, can be written as a

function of z to obtain

"Utput ~ 72 exP ttz [ SigmaP paret {z 2 + ijnput

N r 1i Z.X _ Z2 Z{ Z~ i) iptIZ + Zi } 0input ~ ]2 j G-27
+ exp-}z Lz+ n"" + ,DeltaP Aparget - { G-27j

The above is an approximation. The exact solution is about to be presented.

An engineer is ultimately interested in the exact solution of the output distribution's mean, poutput,

and standard deviation,-utput. The exact solutions are obtained by taking the limits of Equations

G-26 and G-27 as the bin width goes to zero.

Mathematically speaking, the limits of the portions of the two equations of interest are

lim[z_ + z,]= 2z G-28

lim [1 exp = r Z I exp _21) G-29
A-40 [2,; f 2J V2 2

Assuming the bins were selected to span the entire original input distribution, as they should have

been, the following is true.

lim becomes f[ ]dz G-30

296



Equations G-28, G-29, and G-30 are combined with Equations G-26 and G-27 to obtain exact

solutions for the output distribution's mean, poutput, and standard deviation,Youtput. These exact

solutions are presented next.

As the bin width goes to zero, the desired dimensional change becomes

lin [M =M = pt,,t, - {lz,u,,+ }pI G-31

All the pieces are in place to formulate the equation for the exact output distribution's mean.

Equations G-28, G-29, and G-30 are used in taking the limit of Equation G-26 to produce

p'Utput = { exp - [- + pPinu, +DeltaPZ( , -{ , + , G-32

Expanding this equation results in

pI,,,= t {exp - Z -,,,Put,}z

+ { exp - [nput]}z G-33

+{ exp -) [DeltaP arget {zo + inpu } z

The first term in the above equation has a form that appears repeatedly in the derivations of pttpu,

and acutpu. It is beneficial to realize a term of this form can be simplified according to the

equation below.

1 fork= 0 G-34

0 for odd k's
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+F k F, 21
+ z0

f> Z k exp (_ 2 z

__.V2ffY2)J z

k

J[k -{2j -1}]
j=1

+0 0 k F Z2

The physical reason why exp - z equals zero for
Ine o i2

Zk Z2

Integration is the summation of the integrand, Z lexp 2 .

all odd i's is simple.

Note the integrand is

1 F Kz2l
composed of the zk and the exp terms. The first term is simply z raised to a

exp' 2

power, and the second term is the standardized normal distribution, which is symmetric about

zero. The symmetry of this term combined with the fact ? takes the sign of z when i is odd leads

to a cancellation effect when the integral is computed. For example, when z takes on any value,

K, and i is odd, there exists a value of -K that produces the canceling effect. The two canceling

terms in this case are [A exp and [ exp .

The integral in the second term of Equation G-33 equals unity. With these two simplifications,

Equation G-33 can be written as

Poutput ~ Pinput + f{ 17 exp 7- [DetaP(p,-t Z-input + pt input G-35

Updating Equation G-27with Equations G-28 through G-30 generates the exact solution of the

output standard deviation squared,
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oUtput = r - exp - [SigmaP (itarget - { ZOipu + UW, I)]}dz

+ ex pf Iza-,,, +

-0 )2

Iipuvt + DeltaP ( it arge -I zo-{,,pt+ p,, })]2 }Z

Expanding this equation results in

+. 1 exp 2}JSiP( )

1[ , z 2 a-, + zo-,,,p, + 2,, +2zo t DetaP(ptge, ,{Z-i p
+ exp -2dz

Y1 2J) +2puDeltaP(p,,age,, zo-,, +p +[DeltaP(p,ge, z +,Uip)

Expanding even further produces
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,= exP{ SigmaP(p,,tt 2- ,,, } z

+jot L f exp { Zfyijz2o-pu t]}z

++j vI~exP {- jJ2z 0;p-/ pu }z

S exp {- } G-38

+rr exp 2 2zo- DeltaP (,,, -{ 1z0-, + p~ z~")

+ (exp {-L} [2iputDeltaP ( [parg, -{ zo-i, 4 + [ipt }

+ IL.~exp {-}[[DeltaP( p,,,ge, - { zo-inpt ~ipu})] ]}z

inputd

-f 2p 2x

+0

+00 
2 [ i

+1f i"PpuI

+e2 - tDelta ( tret - { input + p G-39

+2/p exp - f {-J[DeltaP(ip,,, -{ ZO-, + [p t})]}z

+ exp - [[DeltaP (Ptart -{ z-iput + Pinput } 2 dz

-(t'upu )2
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The integral in the sixth term of the above equation appears in Equation G-35. Using this fact,

Equation G-39 can be further simplified to

a2 = exp - +SigmaP
output J1 ~2J a t arget 0input + input )I)Z

+10

+0

+ exP- }[2zcripuDeltaP (t t,,ge, - { zu pdz

+ 2
IP { , -"Pp

+ exp - 2} jDeltaP ( Ptarge - nput +0/inut p ]z

-(P p. )2

The above equation can be rewritten in a more compact form to result in

O-e,,0, =2 exP-J SigmaP(ptarget - + put

+O*pu +anu 
+/

1
inpu1t2

+rri ex pL- 2zo- ,DeltaP (up,,,- zo- + p V'dz

G~yutpu2J) inu \It00e 2 nu nu)]

+ 2 
CiPut p ip

+ j (exp { [2L}1J [[DeltaP( t }),]-2z],,},+p dz -( p, )2

targetpu inu rinput-Pipu

G-40

G-41

The mean of the output distribution can be calculated using Equation G-35 once the equation for

DeltaP is known. At this point, the exact form of DeltaP is not known; therefore, a general form is

presented so that a closed-form solution for pttp. can be derived.

301



A general form for DeltaP is

DeltaP = ao + aiM + a 2M
2 +...+ aiM'+...+ a.Ma G-42

where the ai's are numerical coefficients and M is the desired dimensional change and is equal to

Ptarget - {zo,, +p I }. A method for finding DeltaP for a particular process is given in

Section 3.4.

Combining Equations G-35 and G-42 results in

Poutput = Pinput + f exp - Lo + aM + a 2 M +..+ ak + .+aaM" dz G-4

Expanding this equation and remembering that M is equal to p arge, -{zo7,,,, + Pinput results in

Poutput = Pinput

+A { exp - z + A{ f exp - }dz

+A2 _exp- z+...+ xp - Z G44

+...+ Aaf j{ exp - zII}}z

The coefficients, Ai's, are the result of the DeltaP coefficients being multiplied with the terms of

M. They are simply combinations of the coefficients of the DeltaP function (aO, al,...,aa), the

standard deviation of the original input distribution, the mean of the original input distribution,

and the target mean.

For simplicity, Equation G-34 is being restated below as Equation G-45.
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+~ o

+ o k [e p z20
.z 0

k

j[k -{2j-1}]
j=1

for k =0

for odd k's
G-45

for even k's

Using the above equation to simplify Equation G-44 results in the compact form of

Poutput = Pinput+ A+ A2  [2-{ 2 1j-1}] + A4 4 -{2 -1}1
j=1 j=1

k a

+...+ A k -{2j-1}]+...+ A [a -{2j-1}]
j=1 j=1

G-46

which can be further reduced to

youtput = Pinput +A+ A2+3A4 +...

G-472 2

+Ak [k -{2j-1}]+...+ AaH[a -{2j-1}]
j=1 j=1

for all even k's. Remember A, = f (ptarget, input, oinput a, a1 ,.., ak, ., aa).

The above equation is very powerful in that it is a closed-form solution for the output

distribution's mean.

The variance of the output distribution can be calculated using Equation G-41 once the equation

for SigmaP is known. At this point, the exact form of SigmaP is not known; therefore, a general

form is presented so that a closed-form solution for aoutput can be derived.

A general form for SigmaP is
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G-48

where the bi's are numerical coefficients and M is the desired dimensional change and is equal to

Iarget -{ Z-,,np,, + Pinpu }

Combining Equations G-41, G-42, and G-48 results in

2-,, = z [b +bM +b2M 2 +...+bkMk +...+bIM yZ

+Oipu + p

+<00 exp - Z)2zo-input ao+a 1M+a 2M2 +... + akMk +... + aa M"

+2 nput {output - nput

+4- exp -2 {ao +aM+a2M
2 +...+akM +...+aaM" y z-(putput)2

G-49

where M equals ag,,, -I z * input + p .

The length and complexity of the above equation lends itself to being reduced term by term. Term

1, Term 4, and Term 6 will be discussed individually in detail.

Term 1 is

Term 1 of

O,= exp _z I{bo}+bM+b2M2 +...+b Mk +]...}+b
, 12

G-50

which can be expanded to
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Term 1 =Bo +0 - exp (- J}}dz +B, f {exp - 2} z

+B2 f exp - z+...+B kfj exp - z G-51

2Z Z 2) ZZi

+... + B2;0 , exp - z2 Z

The coefficients, Bi's, are the result of the SigmaP term being squared and multiplied with the

terms of M. They are simply combinations of the coefficients of the SigmaP function (bO,

b 1,. .,b), the standard deviation of the original input distribution, the mean of the original input

distribution, and the target mean.

Using Equation G-45, the equation above can be rewritten as

Tenn I= BO + B2  2-{2j-1}1+ B 4  [4-{2j-1}]
j=1 =

k 2pl G-52

+...+BkfJ [k -{2j -1}]+...+ B2jf[2pg-{2j-1}]
j=1 =

which can be further reduced to

k

Term 1= BO + B2 ± 3B 4 +... + B, [k -{2j-1}]+ ...+ B2'fH[2p6-{2j-1}] G-53
j=1 j=1

Now, attention is turned to Term 4, which is

Term 4 of

o,= exp [2zo-{,,,, a+aM+a2 M 2 +...+aM k +...+aMa}}z G-54

The equation above can be expanded to produce
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Term 4=2 - A { exp yj z +

FZ2 F (2\ 1
2 F A exp - Jtz

+2cr- ~utA2 { {exp - 2 dz G-55

+...+2 t AkJ l exp -V Z

t+ a1 F~ 2

The above equation can be combined with Equation G-45to result in

1 2

Term 4= 2q-,,, 1PAH[2 - {2j - 1}] + 2o-,,,A, H[4 - {2j -1
j=1 j=1

k+1 a+1 G-56

+.+ 2o7-inpt, (k-{12j- 1}]+2o-ipu Aa f[a-{f2j- 1}]
j=1 j=1

for all odd k's. The above equation simplifies to

k+1

Term 4 = 2o-,,,, Aj +6crA3 +...+ 2o-,nu A ([k - 2j -1}]

j+1 MG-57
2

+...+ 2-nputAa [a -{ 2j -1}]

Now, Term 6 is discussed.
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Term 6 of

,= exp Lao + aM + a2 M2 +...+ aMk +...+ a Ma 2] z G-5

Term 6 can be expanded to

Term 6 = CO 0 1 exp (- Z2j} z+ C1 iF { exp 2J}}z

+C2 {exp dz+ ... Ck exp -jj} z G-59

+...+ C2a2 exp - 2 Z

The coefficients, Cj's, are the result of the DeltaP term being squared and multiplied with the

terms of M. They are simply combinations of the coefficients of the DeltaP function (aO,

al,...,aa), the standard deviation of the original input distribution, the mean of the original input

distribution, and the target mean.

Using Equation G-45, Equation G-51 can be rewritten as

Term 6 = CO + C (2-{2j-1}]+ C 4 -12j-1}]
j=1 j=1

k 2a G-60

+...+ CkJ[k-{2j-l1+...+ C2aJf[2a -{2j-1}]
w=1 j=1

which can be further reduced to
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k

Term 6 = CO + C2 +3C 4 +...+ Ck L[k-{2j-1}]
=1 G-61

a
+...+ C2aH[2a-{2j-1}]

j=1

Recombining all the terms results in the following closed form solution for ooutput

k

2 2
-,,,=BO + B2 + 3B4 +.+ B, 1( k -{H 1).. ~pg(Q-2j-}

j=1 j=1

0
*nput ± input

k+1 a+1

+ 2a 1A +6o-,, A3 +...+ 2a-,,,, Ak [k -{ 2j - 1}]+...+ 2ainp,,Aa H(a-{2j-1}] G-62
j=1 j=1

+2pinput I POUtput - Pinput I

k

+{C +C 2 +3C 4 +...+C, k-{2j-1}]+...+ C2aI2a-{2j -1}] -('pu, )2

j=1 j=I

where

f =f( parget,,input,,inputao, al,..., a ,..., aa)

B,= f (pwt,,, Pnput, i,-bo, bi',...,bk ,..., ba)

Ci f ( Ap,,g e,, Pi,,-Put ,inu,,al'a..., ak , .. ,laa

The equation for the output mean can be greatly simplified for special cases of DeltaP. This

section presents three such simple cases.

The simplest case is when DeltaP is equal to a constant, ao. Substituting this constant into

Equation G-35 results in

Poutput = input + -expLzJ[a0]tdz G-63
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which reduces to

G-64Poutput Jinput + 0

The equation above makes physical sense because a constant DeltaP implies that every piece in

the incoming distribution undergoes the exact same change in dimension, ao.

The next simplest case is when DeltaP is a linear function with a y-intercept at zero. This results

in

Poutput input +jf - Xp {e<zJ[aO +aM]} z

where M equals ptarge, - fZ* a + p Making this substitution results in

Poutput = finPut + f exp (- 2 [aO+a, jptaget -{ Input +Iinput Z

which reduces to

/output = Pi+ J { exP (- Z2} [aO + alptarget - aup,,,, 1}z

+ {exP - z }z

The above equation can be simplified using Equation G-45 to produce

/output = input + a0 + alUtaget - a, iput

G-65

G-66

G-67

G-68
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The equation above is an equation for the output distribution's mean when the process has a

DeltaP that is linear with a y-intercept of ao and a slope of a1 .

Another special case of interest is when DeltaP is a quadratic function with a y-intercept at zero,

i.e., DeltaP(M) = ao + ai*M + a2 *M 2.

Poutput = Pinput + {exp(- ao + a1M + a2 M 2 ]}dz

where M equals parget - { Z0-npu + Pinput

Expanding the above equation results in

Poutput = inpul + a

+a, < exp - p -zage, Z -inpu- + fp , Z

+a ex p - p -
2

U,2pzIp,,,, + p,2.ge, + 
2

/p,,,t Z ,z -
2

A arge,,inpu, z + c-utz2]+a2 Lx }dz2npagt 8

Grouping terms in z produces

Poutput ~ mnput + a0

+J { ~-. {ex P -J} a[p,, - ,+ a 2 ,i - 2 atinptget + a2/lrget z

+J { exp- ao-in, + 2a2[nnpaina, - 2
autarg et input ] Z

+ { - exp }- [ a2oPnu ]}z

Simplify this equation using Equation G-45 produces
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=output n a0 ±1t arguet -1Nnput

2 2a 2 G-72
2 -input 

2a2 tinput targ et 2 targ et + a2oput

The like terms of this equation can be grouped together to result in

Youtput = input+ a + a { ,,ge, - put}
Poutpt ' G-73

+a2  nput ~ 
2 inputIStarget + Yarget + input

The equation for the output standard deviation can be greatly simplified for special cases of

SigmaP. This section presents three such simple cases. For each special case of SigmaP, DeltaP

will be represented by a quadratic equation.

The most simple equation for the output standard deviation is when SigmaP is equal to a constant

regardless of the desired dimensional change, i.e., SigmaP(M) = bo. DeltaP will be represented by

ao + a]M + a2M 2 . Focusing on this simple form of SigmaP allows the development of the terms

containing DeltaP. The next two sections will use these developments and expand the complexity

of SigmaP.

The formulae for SigmaP and DeltaP are inserted into Equation G-41 to produce

output = exp - [b0 ]2 n + - + t

+00 2

+ I exp {-Z j[2zoqinut {aoaM+a 2M2}]}a2 d2 z
f 2-; 2 G-74

+2 pinput { output - Pinput

+ j exp {- 9 j{ao + ajM + a2 M2 ]}Iz - )2

Replacing M in Equation G-74 with paget -za-,, + pin,, I results in
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Z2 2  = 1 Jdz+ o-2 + p2
+2 exp P -PGt

+ exp - 2zui,,i ao + a+ I , ,-t-, - p.,- pu+ a2  I ge - p - dzinput f2

-(fpu,,)2

Expanding this equation, combining terms, and eliminating odd powered terms in z per Equation

G-45 results in

a-2  
=b|+ o12,+ pf2 + 

2
/ fp,{pt , Untpt,,} -t(Lp, )2

2ulp in, lput iput - pjpuI -7

+2a 0 (a, ( p, , - uput , + a2 [ p t,+ a rt -
2
/input - p,,g I+ ,2 ]} G-1

-2a {t+i +a2  ombipni - pere d e+imnt - 2 powpered, + pn 6
+4a 2o ,,, + it[, -iu p,,, 2

+a2 [ j pi[ + 3a - - 4 Piput ap, + 6a2 t ,, + p ,nput, -4Ppt,{arget a + } i { i , , + pG -7,,}]

A very similar case to the one above is when SigmaP is a linear function with a slope equal to b

a, and a y-intercept equal to bo, i.e., SigmaP(M) = bo + bl*M. The formulae for SigmaP and

DeltaP are inserted into Equation G-41 to produce

2,, = { } j[b" +bM]2}z +-, +

cl 2
/tp inpu2 { /oup - 'nu }nu nu+ f I exp 2 j2zo-[{o + ,,ao+aM+a2 (1)z

, 2- 2 G-77

+2 pin Ppu ,- $pu

+ f exp -z2 jaO +a,M +a2 M2 2 dz(P".,P,,)2
,V2; 2
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Replacing M in this equation with ta,,ge, - {zo-i, 1 , + p, } and using the simplified results for

the terms not containing SigmaP derived earlier produces

,= f exp - §-Hbo +b{jftarget - zu, - Au,, z

+C2u +P2 {intutpu Cuupt)
+ "+ t + 2,- , inpu -( p )2

+a +a{A puto +put 2 pinputptget + P,2get

+2a {a [ utagetTh~inut]a2 j~i~iut+ Oi2put 2 pinputIptarget +iltarget]}G7
+2aO a Pt arg et,,, - pu + a2 [Ppu V,+ ut 2p,,,,,,+p2~e G-78

-2a, {"1Put + a2 [ Pinpu - pi,,g et] [inpu, + 30 ,at - 2 nputptarget + arget

+4a2 iQnp, [ pinput - t arget

+a2 [ip-4t, + 3Apu, - 4piputPtarget + 6UinputY,,arget + ,arg, +6 np, n- + Ptarget

-4 pin,a{ 0,,,, + Pt24ynpta {3 anpu t/Atarg et +Parget}

Expanding the above equation, combining terms, and eliminating odd powered terms in z per

Equation G-45 results in

'yU,ut = b +b{pp, +0 -
pinputpu 

t arget + arget

+2bo (b [utarget -input

+0-nput + pi2pu, + 2p, I output - pinput put )2

22 2 ~ 2
+al +a{ pUy +0 , - 2 p,,,p,, + pge0ama 1 input input inut Aitarg et ~~ re

+2aO {a , [ ptget - input] + a2 [ put input 2pinputp,,, + pfit, G-79

-2a { inp, + a2[inut- ptarge [ inp, + 30-qp, - 2 plnput,arget + A2rget

+4a2nput [ input - ptarget]

+al 2 [ 4g + 3q|,, -4 3p .,,,,+ 6U%,p 2, + 4,,,,+ Anpu , input jinput arget + put/ , +g et]

+a 2 [6 2 ~ut {0-2pt + 2 aret }- 4Ainput { 3 2pt~tre + 3~ret}
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A very similar case to the one above is when SigmaP is a quadratic function with a general y-

intercept equal to ao, i.e., SigmaP(M) = ao + ai*M + a2 *M 2 . The formulae for SigmaP and DeltaP

are inserted into Equation G-41 to produce

2k, = exp z b. + bjM +b2M2 2dz + 07 +2

}+ao 2

+ z a2 M2 dz
ex2  2  2 G-80

+ 2 ,uput {output - Pinput

+W 2 .2+jj f exp{ f})[ao + ajM + a2m2} j~Z _-P~~')

Replacing M in Equation the above equation with ptarget - {z *O-i,, + pin,, and using the

simplified results for the terms not containing SigmaP derived earlier produces

0,= 2exp - bo +bI { pg,, - -input -rinput+b2 tA get- zo-,,t -Put 2Z

O 2 2 ,, -

+a + a|{y~u p ±0,+7 put -
2
/,plta,,t+ Pare}

+2a0 {a arge p, li-pu,]+a2 ( p,+ 0 -
znpu- 

2
Yiput/,,pge,+/tparge,] G-81

-2a, {o., + a Lu pn,u p, 2 p,,+30, -2 p,,,,

.u+ input +2 ptnput IdtargtJ Pinput inu11iptP r t tre]

+
4

a20ru -kiput, - p,+e t
C2 Ui ~ -2 2 4 

2  
2 K

+al kip ut + a2[nput 4 pt trg +
60np ,+ tgt +6 +i int 0 

, -,+ p t j

-4fpputa2 {3o-,put,target + Ptarget I

Expanding this equation, combining terms, and eliminating odd powered terms in z per Equation

G-45 results in
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2 b 2 b [p a t - Pinput + b2  + o;7p e P,wt~ gt~ r

+i2 P ~ = bo + 3oi -np +np 6A;pt 4. , 1 ~~{-,+Pg' P,, 3~~~~~ l~ ~ G8
+~~~ ~~ +~~p2 + a * - + pu~a0 +Plael~p 

2 ~~Wt~d ~~~

-2a1 {c2~ +a2p~ - ]*[,,2l + [Apu Input ~ ~ +p~Pirg
+2, ,[u a -4nput~ + +a + b2 {at + o4u~npu -4p {3u A +
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H. Heuristic Guideline Development

The development of the heuristic guidelines presented in Section 3.7 is shown in this appendix.

The amount of process capability data required to construct accurate DeltaP and SigmaP

functions is discussed. Also, the range of possible input values the closed-form equations are

valid over is investigated. In other words, this appendix attempts to answer the following two

questions:

" Over what range are the constructed equations valid?

* How much process capability data are required to construct accurate, useful closed-form

equations?

The validation in Section 3.6 demonstrated the ability of the closed-form equations to calculate

the output mean and standard deviation of a diameter leaving a turning process. The DeltaP and

SigmaP coefficients were computed using the ten sets (a set is comprised of pin, ain, pout and cy0ut)

of simulated process capability data shown in Table 3-3, which has values for the input mean

spanning the range from 34.6 to 39.9 and values for the input standard deviation spanning from

0.19 to 0.60. Notice that these values encompass the entire range of values in Table 3-4 used to

validate the equations. This implies that the closed-form equations are at least valid for input

values, pi, and a 0i, that fall inside the range of values originally used to construct DeltaP and

SigmaP, i.e., the closed-form equations do a good job of interpolation.

Using the closed-form equations with input values that fall outside the range of process capability

data would often times be very beneficial. For example, if a larger diameter bar stock than any

that had been previously used becomes available for a cheaper price, understanding the effect on

the output mean and standard deviation would be helpful in determining whether this new bar

stock would be acceptable. Therefore, an important question to ask is how valid are the closed-

form equations outside of the range of values used to construct them, e.g., can the equations be

used with an input of 39 if the process capability data used to construct them only spans input

values from 32 to 36? In other words, how good are the equations when extrapolation is

necessary? In addition to this question, the amount of process capability data required to construct

accurate, useful closed-form equations is an important consideration, i.e., how much data is

enough to build "good" equations?
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Quantitatively deriving universal answers to these questions is impossible because of the infinite

number of combinations of variables; however, qualitative answers can be developed. The turning

physics model is used in this section to explore answers to these questions. The goal is to

determine heuristic rules that can be applied to the construction of closed-form equations for any

process.

The steps used to answer these questions are similar to the steps used to validate the method in

Section 3.6. Step one is to simulate process capability data that can be used to construct DeltaP

and SigmaP functions. The data are generated in a very structured manner. The input mean values

range from 32.0 to 40.0, and the standard deviation values are 0.15, 0.30, and 0.45. This produces

the twenty seven sets of process capability data shown below in Table H-1. The first column

identifies the set of data with a number. The second and third columns are the values of the input

mean and standard deviation used to generate one thousand normally distributed random

numbers. The mean and standard deviation of the thousand random numbers are listed in columns

four and five. The last two columns list the simulated output values.

Table H-1: Simulated capability data sets used to construct DeltaP & SigmaP

1 32.00 0.15 32.0007 0.1538 30.0035 0.0006
2 32.00 0.30 31.9953 0.3016 30.0035 0.0011
3 32.00 0.45 32.0219 0.4581 30.0037 0.0016
4 33.00 0.15 33.0009 0.1528 30.0077 0.0011
5 33.00 0.30 33.0042 0.2972 30.0078 0.0017
6 33.00 0.45 33.0028 0.4553 30.0079 0.0025
7 34.00 0.15 33.9967 0.1489 30.0135 0.0017
8 34.00 0.30 33.9929 0.3047 30.0135 0.0024
9 34.00 0.45 34.0073 0.4636 30.0137 0.0034
10 35.00 0.15 34.992 0.1526 30.0209 0.0025
11 35.00 0.30 35.0038 0.3067 30.0211 0.0033
12 35.00 0.45 34.9984 0.4311 30.0211 0.0042
13 36.00 0.15 36.0034 0.1495 30.0301 0.0034
14 36.00 0.30 36.0033 0.3072 30.0301 0.0042
15 36.00 0.45 35.9693 0.4555 30.0299 0.0055
16 37.00 0.15 36.9962 0.1502 30.0407 0.0044
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17 37.00 0.30 36.9987 0.3158 30.0408 0.0055
18 37.00 0.45 36.9744 0.437 30.0406 0.0067
19 38.00 0.15 37.9977 0.1559 30.0529 0.0059
20 38.00 0.30 38.0017 0.3064 30.0531 0.0069
21 38.00 0.45 37.9705 0.4458 30.0527 0.0078
22 39.00 0.15 39.0035 0.1545 30.0668 0.0072
23 39.00 0.30 39.0053 0.2978 30.0669 0.008
24 39.00 0.45 39.0121 0.4496 30.0671 0.0094
25 40.00 0.15 39.9971 0.1485 30.0821 0.0088
26 40.00 0.30 40.0052 0.3081 30.0823 0.0098
27 40.00 0.45 40.0118 0.4293 30.0825 0.0112

All values in millimeters.

The second step is to generate test cases of simulated data. These data are generated with the

same model that produced the values in Table H-1. These data are taken to be the "true values"

that the manufacturing process would produce, i.e., the turning process math model is used to

"operate" on a thousand random numbers to produce a thousand values of output diameters. The

test case input values were picked to span a similar range as the process capability data in Table

H-1, but not to have an identical set of data, i.e., no input mean and standard deviation

combination that is exactly the same. The test cases of data are listed below in Table H-2.

Table H-2: Simulated capability data sets used for test cases

1 32.50 0.10 32.4972 0.0986 30.0053 0.0007
2 32.50 0.29 32.4880 0.2857 30.0054 0.0013
3 32.50 0.50 32.4632 0.4992 30.0054 0.0022
4 33.50 0.10 33.5006 0.1015 30.0104 0.0012
5 33.50 0.31 33.4919 0.3056 30.0104 0.0021
6 33.50 0.52 33.5027 0.5236 30.0106 0.0033
7 34.50 0.10 34.4990 0.1008 30.0171 0.0019
8 34.50 0.29 34.5061 0.2948 30.0172 0.0027
9 34.50 0.50 34.5114 0.4971 30.0173 0.0041
10 35.50 0.10 35.5006 0.0994 30.0253 0.0027
11 35.50 0.30 35.5013 0.3034 30.0254 0.0037
12 35.50 0.51 35.5052 0.5135 30.0256 0.0054
13 36.50 0.10 36.5018 0.0996 30.0352 0.0037
14 36.50 0.30 36.5041 0.2991 30.0353 0.0047
15 36.50 0.50 36.5052 0.5043 30.0354 0.0065
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16 37.50 0.10 37.4989 0.1021 30.0466 0.0050
17 37.50 0.29 37.5139 0.2911 30.0469 0.0061
18 37.50 0.48 37.4957 0.4848 30.0468 0.0076
19 38.50 0.10 38.4970 0.1023 30.0596 0.0062
20 38.50 0.31 38.5020 0.3099 30.0597 0.0074
21 38.50 0.51 38.5336 0.5139 30.0603 0.0095
22 39.50 0.10 39.4894 0.0977 30.0741 0.0077
23 39.50 0.30 39.5045 0.3045 30.0744 0.0090
24 39.50 0.48 39.4942 0.4840 30.0744 0.0108
25 40.50 0.11 40.4986 0.1055 30.0904 0.0095
26 40.50 0.30 40.5023 0.3018 30.0905 0.0107
27 40.50 0.49 40.5054 0.4914 30.0907 0.0127

All values in millimeters.

The third step is to use various sets of data listed in Table H-1 to construct DeltaP and SigmaP

functions. These functions are used to construct the closed form equations for po,, and ucut. Then,

the values for pi, and ain in Table H-2 are input into these closed-form equations to compute pout

and aut. Finally, the calculated values of pout and au, are compared to the "true values" of the

output from Table H-2. The percentage differences are listed in the tables below. The percent

differences show how well the closed-form equations computed the values of po,, and aout.

Table H-3: Percent difference of output means

Test
Case #

4 -0.0004% 0.0002% 0.0001% -0.0000% 0.0001% 0.0000%
2 -0.0004% 0.0002% 0.0001% 0.0000% 0.0000% 0.0002%
3 -0.0004% 0.0002% 0.0001% 0.0001% 0.0000% 0.0002%
4 -0.0018% -0.0006% 0.0000% -0.0001% -0.0001% 0.0000%
5 -0.0018% -0.0007% 0.0000% -0.0001% -0.0001% 0.0000%
6 -0.0019% -0.0007% 0.0000% 0.0000% -0.0001% 0.0000%
7 -0.0038% -0.0019% 0.0000% 0.0000% -0.0001% -0.0001%
8 -0.0038% -0.0019% 0.0000% 0.0000% -0.0001% -0.0001%
9 -0.0038% -0.0019% 0.0000% 0.0000% -0.0001% -0.0001%

10 -0.0062% -0.0034% 0.0002% 0.0001% 0.0000% -0.0001%
11 -0.0062% -0.0034% 0.0002% 0.0001% 0.0000% -0.0001%
12 -0.0063% -0.0035% 0.0002% 0.0001% 0.0000% -0.0001%
13 -0.0091% -0.0053% 0.0005% 0.0004% 0.0003% 0.0000%
14 -0.0091% -0.0053% 0.0006% 0.0005% 0.0003% 0.0000%
15 -0.0092% -0.0054% 0.0005% 0.0004% 0.0003% -0.0001%
16 -0.0125% -0.0075% 0.0011% 0.0009% 0.0007% 0.0002%
17 -0.0126% -0.0075% 0.0011% 0.0009% 0.0007% 0.0002%
18 -0.0125% -0.0075% 0.0011% 0.0010% 10.0008% 0.0002%
19 -0.0162%1 -0.0098% 0.0019% 0.0018%1 0.0015%1 0.0007%
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20 -0.0162% -0.0098% 0.0020% 0.0018% 0.0015% 0.0007%
21 -0.0164% -0.0099% 0.0020% 0.0018% 0.0015% 0.0006%
22 -0.0203% -0.0124% 0.0030% 0.0027% 0.0024% 0.0012%
23 -0.0204% -0.0125% 0.0030% 0.0027% 0.0024% 0.0012%
24 -0.0204% -0.0125% 0.0029% 0.0027% 0.0023% 0.0012%
25 -0.0248% -0.0152% 0.0043% 0.0040% 0.0036% 0.0021%
26 -0.0249% -0.0152% 0.0043% 0.0040% 0.0036% 0.0021%
27 -0.0250% -0.0153% 0.0043% 0.0040% 0.0036% 0.0020%

Table H-4: Percent difference of output standard deviations

Test
Case # 

1 01 47.60% 7.97% 3.77% 3.61% 3.99% 3.62%
2 13.93% 0.36% 1.73% 1.65% 1.64% 1.50%
3 3.89% -2.22% 0.50% 0.43% 0.33% 0.24%
4 108.34% 9.03% -1.65% -0.82% -0.86% -0.72%
5 45.44% -0.18% -0.93% -0.68% -0.79% -0.93%
6 21.51% -2.15% 0.34% 0.42% 0.28% 0.05%
7 155.96% 13.97% -1.77% -0.22% -0.56% 0.00%
8 92.87% 6.94% 2.26% 2.95% 2.71% 2.74%
9 47.55% -0.73% -0.02% 0.28% 0.08% -0.13%
10 186.98% 16.52% -2.75% -0.67% -1.23% -0.35%
11 122.38% 8.61% 0.78% 1.86% 1.48% 1.70%
12 69.54% 0.64% -0.35% 0.15% -0.11% -0.26%
13 209.06% 18.41% -3.36% -0.89% -1.63% -0.51%
14 151.56% 11.15% -0.17% 1.31% 0.80% 1.25%
15 95.57% 3.07% -0.42% 0.36% 0.01% 0.00%
16 218.35% 17.30% -5.77% -3.07% -3.92% -2.65%
17 168.76% 10.19% -3.99% -2.18% -2.81% -2.15%
18 122.22% 5.74% -0.70% 0.38% -0.06% 0.10%
19 239.67% 21.53% -3.60% -0.59% -1.57% -0.13%
20 190.52% 14.73% -1.42% 0.65% -0.08% 0.73%
21 134.25% 5.90% -1.95% -0.69% -1.20% -0.94%
22 244.46% 20.42% -5.54% -2.39% -3.43% -1.89%
23 200.47% 13.73% -4.34% -2.04% -2.86% -1.89%
24 156.30% 7.75% -3.12% -1.54% -2.15% -1.69%
25 250.64% 20.61% -6.01% -2.74% -3.84% -2.23%
26 214.48% 15.34% -4.62% -2.08% -2.98% -1.87%
27 170.84% 9.39% -3.28% -1.50% -2.18% -1.59%

The percent differences in the output means in Table H-3 show that the closed-form equations do

an adequate job of computing the output mean, even when only three sets of data are used to

construct the equations. The percent differences do decrease as the number of sets used to
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construct the equations increase. The percent differences in the output standard deviations in

Table H-4 tell a slightly different story. The second column shows the percent differences

between the "true values" and the calculated values from equations constructed using only three

sets of data. The closed-form equations are not adequate and produce values very different from

the "true values," i.e., the percent differences are very large. When nine sets of data are used

(column four), the closed-form equations do a better job and produce acceptable results over the

entire range of inputs, i.e., the input values outside of the range of values used to construct the

equation still produce acceptable results. For example, column four represents equations

constructed with process capability data spanning values from 32 to 34, and yet these equations

can compute the output standard deviation when the input mean is 40 within six percent (test

cases #25, #26, and #27). This implies that if enough data are used to construct the equations,

then values outside the original range of values can still be used as inputs to the closed-form

equations. Table H-4 does show that using more data sets to construct the equations does produce

equations that produce better results, i.e., the columns toward the right in Table H4 have smaller

percent differences. However, the benefit of using more and more data to construct the equations

does diminish. For example the difference between using three sets and nine sets (column 2 vs.

column 4) is great; the improvement when using eighteen sets instead of fifteen sets is small.

Another question is "Can the equations be improved with fewer sets of data that are selected to

encompass a broad range of possible inputs?," i.e., what happens if sets 1 - 3 and 25 - 27 in

Table H-1 are used to construct the closed-form equations? The results are surprisingly good and

are summarized in Table H-5, which shows the percentage differences between mean and

standard deviation values computed using the closed-form equations versus the "true values" in

Table H-2. Selecting data sets that span a larger range to use in the construction of the closed-

form equations is beneficial. The equations based on data sets 1 - 3 and 25 - 27 produce excellent

results even though only six data sets are used (see columns four and five in Table H-5).

Table H-5: Percent difference of output values

Test Mean % St Dev %
Case # Difference Difference

1 0.0001% 2.78%
2 0.0002% 1.02%
3 0.0002% -0.15%
4 -0.0001% -0.51%
5 -0.0001% -1.15%
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6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
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-0.0001% -0.31%
-0.0003% 1.00%
-0.0003% 2.91%
-0.0003% -0.32%
-0.0005% 1.22%
-0.0005% 2.27%
-0.0005% -0.25%
-0.0006% 1.49%
-0.0006% 2.23%
-0.0006% 0.27%
-0.0006% -0.38%
-0.0006% -0.79%
-0.0006% 0.70%
-0.0004% 2.46%
-0.0004% 2.35%
-0.0005% -0.16%
-0.0002% 0.86%
-0.0002% 0.00%
-0.0003% -0.56%
0.0003% 0.67%
0.0003% 0.28%
0.0002% -0.24%
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I. Nomenclature Used in Validation Models

The nomenclature used in the physics-based math models in Section 3.6 to validate the theory of

DeltaP and SigmaP is presented in this Appendix.

Table I-1: Nomenclature used in the turning operation equation derivation.
Power = Power [W]

MRR = Material Removal Rate [mm 3 / min]

ut = Total Specific Energy of Workpiece [W * s/mm 3]

Torque = F * Davg/2, [N *m]

Davg = Average Diameter of Workpiece [mm]

dd = Desired Depth of Cut [mm]

f = Feed [mm/rev]

N = Rotational speed of the workpiece [rpm]

o = Angular Velocity [radians/min]

F, = Cutting Force [N]

I = Moment of Inertia [mm 4 ]

E = Modulus of Elasticity [MPa]

8= Deflection of Workpiece Tip [mm]

t= Deflection of Cutting Tool Tip [mm]
D= Original Outer Diameter of Workpiece [mm]

L= Length of Workpiece [mm]

L= Length of Cutting Tool [mm]

w = Width of Cutting Tool [mm]

h = Height of Cutting Tool [mm]

Df= Desired Final Outer Diameter of Workpiece [mm]

Da= Actual Final Outer Diameter of Workpiece [mm]

da = Actual Depth of Cut [mm]
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Table 1-2: Nomenclature used in the rolling operation equation derivation.
q = Distribute force on rolls [N/mm]

w = Width of the workpiece [mm]

L = Roll-strip contact length [mm]

Yg= Average true stress of the workpiece in the roll gap [MPa]

R = Roll radius [mm]

ho = Initial thickness of the workpiece [mm]

hf = Final thickness of the workpiece [mm]

K = Strength coefficient of the workpiece material [MPa]

E = True strain of the workpiece material in the roll gap

6roll = Deflection of a roll [mm]

E = Modulus of elasticity [MPa]

I = Moment of inertia [mm4 ]

Table 1-3: Nomenclature used in the rolling operation equation derivation.

R1 = Die radius [mm]

Rf= Radius of workpiece bend after springback [mm]

a = Angle of bend

T = Thickness of the workpiece [mm]

Y = Yield stress of the workpiece [MPa]

E = Modulus of elasticity of the workpiece [MPa]

L = Length from center of die to end of workpiece [mm]

X = Dimension of interest on bent sheet [mm]
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J. Data for example problem

This appendix list the sample process capability data used to construct the DeltaP and SigmaP

functions for the example problem presented in Chapter 5. These data were generated using

Monte Carlo simulation and the physics-based equations presented in Section 3.6.1.

Table J-1: Process capability data used in example problem
Incoming Incoming Outgoing Outgoing Outgoing Cost per

Process Mean Std Dev Mean Std Dev Target Piece
[mm] [ [mm] [mm] [mm] [$]

Roughing 1 24.995 0.349 20.640 0.084 20.5 0.21
Roughing 1 22.003 0.139 20.522 0.013 20.5 0.21
Roughing 1 26.995 0.665 20.752 0.152 20.5 0.21

Roughing 1 23.989 0.226 20.593 0.054 20.5 0.21
Roughing 1 26.512 0.439 20.721 0.129 20.5 0.21
Roughing 2 24.996 0.251 20.726 0.131 20.5 0.15
Roughing 2 24.992 0.386 20.726 0.135 20.5 0.15
Roughing 2 27.016 0.721 20.921 0.252 20.5 0.15
Roughing 2 24.295 0.364 20.671 0.103 20.5 0.15
Roughing 2 26.488 0.460 20.865 0.215 20.5 0.15
Roughing 3 24.952 0.213 20.665 0.096 20.5 0.11
Roughing 3 25.003 0.133 20.668 0.097 20.5 0.11
Roughing 3 26.994 0.695 20.804 0.183 20.5 0.11
Roughing 3 23.010 0.407 20.564 0.042 20.5 0.11
Roughing 3 23.995 0.404 20.612 0.069 20.5 0.11
Finishing 1 20.481 0.044 20.003 0.002 20.0 0.45
Finishing 1 20.599 0.077 20.005 0.003 20.0 0.45
Finishing 1 20.299 0.040 20.001 0.001 20.0 0.45
Finishing 1 21.003 0.110 20.012 0.007 20.0 0.45
Finishing 1 20.497 0.051 20.003 0.002 20.0 0.45
Finishing 2 20.201 0.052 20.001 0.001 20.0 0.27
Finishing 2 20.699 0.094 20.009 0.006 20.0 0.27
Finishing 2 20.799 0.050 20.011 0.007 20.0 0.27
Finishing 2 21.003 0.120 20.017 0.011 20.0 0.27
Finishing 2 20.496 0.081 20.005 0.003 20.0 0.27
Finishing 3 20.451 0.061 20.003 0.002 20.0 0.20
Finishing 3 20.698 0.090 20.007 0.004 20.0 0.20
Finishing 3 20.301 0.043 20.001 0.001 20.0 0.20
Finishing 3 20.499 0.050 20.004 0.002 20.0 0.20
Finishing 3 20.998 0.119 20.013 0.008 20.0 0.20
Drilling 1 0.000 0.000 21.000 0.005 21.0 0.47
Drilling 2 0.000 0.000 21.000 0.006 21.0 0.13
Drilling 3 0.000 0.000 21.000 0.007 21.0 0.33
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K. Derivation of Mixture Distribution

Equations

The equations for the mean and standard deviation of a mixture distribution presented in Chapter

0 are derived here.

The derivation begins with three groups of numbers.

X1,X 2 ,X3 ... XN.

K-IY1,Y2IY3***YN,

ZI, Z 2 , Z 3 ,..., ZN.

The mixture distribution will be denoted by W.

w =x x2, X3 --- IxN. I Y I Y2 Y3 . I NY I Z1 2 1 v3v Z Z IZNZ

The means for the original three groups are

1 N.

X = N XNi=1

1 Ny
Y =- y, i

1 N.

7= , i1

K-2

K-3

Now, the mean of the w's is calculated.

XI +X 2 +...+XN, +)1 + 2 +'+YN +Z 1 +Z 2 +'+ZN

N,+N,+ Nz
K-4
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_ X+X 2 +...+XN Y1 Y2 + +YN ZI +Z+2 + +ZNK5
W = + _ + K-5

N,+ N,+N N,+N,+N, Nx+N,+N

NX XI+x2+...+XN1
w=_

N, +NY + NZL Nx

+ NY y1 + Y2 +..+ yN K-+ 'v K-6
N,+ N + N, NY

+ _ N + ZI + Z2 +...+ ZNj

N, + N,+ N N

Recognizing the terms in parentheses are equal to the means of the individual groups, the

equation above can be simplified to

N N N~ -
~V = _ X + 'Y y+_ N K-7

N+ N,+NN, N+ + N, N+N, +Nz

The three initial groups make up the w population. The percent contribution is represented by the

letter p and a subscript.

P Nx

N
P = -NY K-8

Nx + N, + N

~N +N~ +N

PNx +NY + N ,

The above two equations are combined to result in the equation for a mixture distribution.

ii = p 7+ P, + P~Z K-9

Equation K-9 can be generalized to a combination of any number of individual distributions.
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Now, the equation to calculate the variance of a mixture distribution is derived. The equations for

the variances for the original three groups are shown below.

=[ {I Nx2]_-2K-0

a"- ~ X-2
N

N1

__~,2____ N 2 L - K-1I

2-= 2 -2

xY +Y+...+YNxrN2

)z i= +]-+..-

Terms can be grouped to simplify the equation.

2 1 x 2+x.+...+x + +

N +N +N N2+N
K-I12

+Z + z2 +z. +..+ -i2

N, +N, +N,

S N

(TW2. - X1 2x + x +...+x+..+ 2

W N +N +NN Y+2

N y

+ ' Z + y2 4 +...+y} K-13
N, +N+N, N, N

+ N+z 2 - z +Z2 +...+Z2 -i2
N, +N+NN N, 1 2

Equation K-8 is substituted into Equation K-13 and summations are used to result in a simplified

form.
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)= P I x
N , i=1

Yi
{ }Nz

Nz i=1
K-14

Now, a term is added and subtracted for each group to allow for simplification using Equation

K- 10.

2 Fx I~f
W xNxJL

+py

+p

-;2

Simply regrouping terms results in

x? }

NY

i=1

N-

}

72 = P{ 9 x2I 1N2

+{p,72 _PjY2}

+ pzz 2

-2 }+ P 2

+p I N Y
K-1 6

-2 }+pz2+Pz I z z
N i

-2-W

The above equation can be simplified by making substitutions using Equation K-10.

U2 = pU2 + pX-2 + pYa2+ py2 + pz -+ P -2 -2 K-17

The desired form is obtained by substituting Equation K-9 in for the mean of w and regrouping.

332

K-1 5

_ PE2I

+ Ny

NY, i=,



2p =( + P,-2 + p,2 -2 2 + p -( p- + py-+ pz 2 K-1 8Ea7K +b t c iaPx x f any Kfa b

Equation K- 18 can be generalized to a combination of any number of individual distributions.
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Glossary

An Attribute Combination Descriptor (ACD) represents a key characteristic's feature,

geometry, material, and the process that created it.

ACD Matrix Set is comprised of four matrices that assist in the transformation of product

information into Attribute Combination Descriptors for entry into a process capability database.

C, and Cpk are process capability indexes that are commonly used to compare process variation

and engineering specifications (tolerances). The equations for C, and Cpk are given below where

UL is the upper tolerance limit, LL is the lower tolerance limit, a is the standard deviation, and p

is the mean.

C =UL-LL
6-

CpPk = Mi LL UL -p

DeltaP is a mathematical representation of the actual change a dimension undergoes when

operated on by a process with a given set of parameters when no process variation is present. It is

a function of the desired dimensional change, M. DeltaP is a special case of Process Imparted

Dimensional Change.

Desired Dimensional Change, M, is the change a process must make to a part's dimension to

result in the dimension being equal to the desired (target) value.

A key characteristic is a physical aspect of a component or assembly that has a significant effect

on fit, performance, or service life when it varies from its nominal value (Thornton 1999)

A Process Capability Database (PCDB) stores manufacturing data that is recorded during the

production process.
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Process Imparted Dimensional Change is the actual change a dimension undergoes when

operated on by a process when there is no process variation present.

Process Imparted Variation is the standard deviation an under control process inherently

imparts on an incoming distribution that has zero variance.

SigmaP is a mathematical representation of the standard deviation an under control process with

a set of given parameters inherently imparts on an incoming distribution that has zero variance. It

is a function of the desired dimensional change, M.
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