Algebraic and Combinatorial Properties of
Minimal Border Strip Tableaux
by
Peter Clifford

B.A., Mathematics,
Trinity College Dublin, 1997

Submitted to the Department of Mathematics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2003
(© Peter Clifford, MMIII. All rights reserved.

‘The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document
in whole or in part.

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

SEP 17 2003

Author . .. .“F.f. - ] LIBRARIES .

/ ] Department of Mathematics
. | July 31, 2003
Certified by. .. o e e g 2 e e e

Levingon Professor of Applied Mathematics
Thesis Supervisor

Accepted by ..*
e Rodolfo Ruben Rosales

Chajrman, Applied Mathematics Committee

Accepted by ........
——  Pavel I. Etingof
Chairman, Department Committee on Graduate Students

ARCH|veg







Algebraic and Combinatorial Properties of Minimal Border
Strip Tableaux
by
Peter Clifford

Submitted to the Department of Mathematics
on July 31, 2003, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

Motivated by results and conjectures of Stanley concerning minimal border strip
tableaux of partitions, we present three results.

First we generalize the rank of a partition A to the rank of a shifted partition
S(A). We show that the number of bars required in a minimal bar tableau of S(A)
is max(o, e + (£(A) mod 2)), where o and e are the number of odd and even rows of
A. As a consequence we show that the irreducible negative characters of S, vanish
on certain conjugacy classes. Another corollary is a lower bound on the degree of the
terms in the expansion of Schur’s @, symmetric functions in terms of the power sum
symmetric functions.

The second result gives a basis for the space spanned by the lowest degree terms in
the expansion of the Schur symmetric functions in terms of the power sum symmetric
functions. These lowest degree terms studied by Stanley correspond to minimal border
strip tableaux of . The Hilbert series of these spaces is the generating function giving
the number of partitions of n into parts differing by at least 2. Applying the Rogers-
Ramanujan identity, the generating function also counts the number of partitions of
n into parts 55 + 1 and 5k — 1.

Finally for each A we give a relation between the power sum symmetric functions
and the monomial symmetric functions; the terms are indexed by the types of minimal
border strip tableaux of \.

Thesis Supervisor: Richard P. Stanley
Title: Levinson Professor of Applied Mathematics
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Notation

positive integers

rational numbers

partitions of n

partitions of n into distinct parts

partitions of n into odd parts

the number of parts in the partition A

the number of parts of A equal to i

1™ Qmy (A) 122Ny (A1

the shifted diagram of the partition A

the character indexed by A evaluated at 7
the projective character indexed by A evaluated at g
the number of crossings in the interval set 7

the height of a greedy border strip tableau of A
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Introduction

Let A = (A, Az,...) be a partition of the integer n, ie., Ay > Ay > --- > 0 and
> = n. The length £(\) of a partition A is the number of nonzero parts of \.
Partition theory is of fundamental importance in the representation theory of the
symmetric group; it is a classical result of Frobenius that the irreducible characters
are indexed by partitions A. Murnaghan and Nakayama gave a combinatorial formula
for the irreducible character indexed by A evaluated at a conjugacy class of cycle type

7, the Murnaghen-Nakayama rule:

X)) = (=MD,

T
where the sum is over all border strip tableaux of shape A and type 7.

The (Durfee or Frobenius) rank of A, denoted rank()), is the length of the main
diagonal of the diagram of A, or equivalently, the largest integer 4 for which \; > 7.
‘The rank of A is the least integer r such that ) is a disjoint union of  border strips.
Hence if £(7) < rank()), we must have y*(7) = 0.

The machinery of symmetric functions is very applicable to the representation
theory of the symmetric group. For if x is any character of S,, the problem of de-
composing x into irreducibles is equivalent to expanding the Frobenius characteristic

of x into Schur functions sy. Frobenius showed that
DPr
Sy = Z X/\(W)Z—-
7|' ™

This formula is the symmetric function analogue of the Murnaghan-Nakayama rule.
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Above we saw that x* () = 0 when #(r) < rank()); therefore the only terms x* ()2

arising in the Murnaghan-Nakayama rule must have £(r) > rank (}).

The study of the projective representations of the symmetric group and their asso-
ciated combinatorial and algebraic structure began with Schur, who published degree
and character formulas in 1911 [8]. He showed that the characters of the irreducible
negative representations of S are indexed by partitions A of n with distinct parts
and proved degree and character formulae. He defined the Schur Q-functions which
(analogously to the Schur functions in the linear representation case) algebraically
encode the structure of the negative characters. Later Morris [4] gave a projective

analogue of the Murnaghan-Nakayama rule.

In Chapter 1 we generalize rank to shifted diagrams S(A) of a partition with
distinct parts. This allows us to show that the irreducible negative characters vanish
on certain conjugacy classes. This enables us to give a lower bound on the length of

the 1 which appear in the expansion of the Schur Q-functions in terms of the p,,.

Nazarov and Tarasov [7, Sect. 1], in connection with tensor products of Yangian
modules, defined a generalization of rank to skew partitions (or skew diagrams) A/p.
In [11, Proposition 2.2] Stanley gave several simple equivalent definitions of rank(A/p).
One of the definitions is (as expected) that rank(A/p) is the least integer r such that
Mt is a disjoint union of r border strips. He developed a general theory of minimal
border strip tableaux of skew shapes, introducing the concepts of the snake sequence
of a skew shape and the interval set of a skew shape A\/p. These tools are used to
count the number of minimal border strip decompositions and minimal border strip
tableaux of A\/u. In particular, he gave an explicit combinatorial formula for the

coefficients of the p,, where #() = rank()\/u), which appear in the expansion of sy/,.

Stanley considered a degree operator deg(p,) = £(v) and defined the bottom Schur
functions to be the terms of lowest degree which appear in the expansion of sy, as
a linear combination of the p,. We study the bottom Schur functions in detail when

p = 0. In particular, in Chapter 2 we give a basis for the vector space they span.
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Finally in Chapter 3 we prove relations between the monomial symmetric func-
tions and the power sum symmetric functions. The relations are linear; we get an
independent one for every A such that £(A) = rank(}). The monomials arising are in-
dexed by those v where £(v) = rank(\) and the coefficients occur in the combinatorial

expression for the bottom Schur functions.

13
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Chapter 1

Shifted Shapes

After introducing the necessary background, we formulate a preprocessing operation
on minimal bar tableaux which preserves the number of bars, and prove some Lem-
mas about tableaux resulting from this operation. We apply these results to counting
how many bars are in a minimal bar tableau. We discuss the connection between
minimal bar tableaux and Schur Q-functions, and give some Corollaries of our previ-
ous results about the terms of the Q-functions. Finally we discuss the application of

our machinery to the skew shifted case.

1.1 Definitions

Let D(n) be the set of all partitions of 7 into distinct parts. The shifted diagram,
S{A), of shape ), is obtained by forming ! rows of nodes, with X; nodes in the ith row
such that, for all ¢ > 1, the first node in row 3 is placed underneath the second node

in row (i —1). For instance Figure 1-1 shows the shifted diagram of the shape 97631.

L ]

L

Figure 1-1: The shifted diagram of the shape 97631
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We follow the treatment of Hoffman and Humphreys [1] to define bar tableaux.
These occur in the inductive formula for the projective characters of S,,, first proved
by Morris [4]. Let r be an odd positive integer, and let A\ € D(n) have length . Below

we define:
(a) asubset, I, UlyUI_ = I(\ 1), of integers between 1 and {; and

(b) for each 1 € I(A,r), a strict partition A(i,7) in D(n — r) (despite the notation,

A(i,7) is a function of A, as well as of (i,r)).

Let

Ly ={i: X <A —7r <) for some j <1, taking A\ = 0},

In other words I is the set of all rows of A which we can remove r squares from and
still leave a composition with distinct parts. For example, if r = 5 and A = 97631,
then [, = {1,2}. If i € I}, then A; > 7, and we define A(,7) to be the partition
obtained from A by removing A; and inserting \; —r between A; and A4y, Continuing

our example above, A(2,5) = 96321. Let

In={i:\=r}

which is empty or a singleton. For i € I, remove \; from )\ to obain A4, r). Let

Io={i:r— X =) for some j with i < j < 1}.

Equivalently 7_ is the set of all rows of A for which there is some shorter row of A
such that the total number of squares in both rows is r. For example, if r = 7 and
A = 97631, then I_ = {3}. If ¢ € I_, then ), < r, and A(3,7) is formed by removing
both A; and A; from A.

For each 7 € I(A,r) the associated r-bar is given as follows. If 7 is in I, or [y, the
r-bar consists of the rightmost 7 nodes in the ith row of S()\). We say the r-bar is
of type 1 or type 2 respectively. For example, the squares in Figure 1-2 labelled by 6
are a 7-bar of type 1. The squares labelled by 4 are a 3-bar of type 2. If { is in I_,

16




the r-bar consists of all the nodes in both the 7th and jth rows, a total of r nodes.
We say the r-bar is of type 3. The squares in Figure 1-2 labelled by 3 are a 7-bar of
type 3.

Define a bar tableau of shape XA to be an assignment of positive integers to the

squares of S(A) such that
(a) the set of squares occupied by the biggest integer is an r-bar B, and

(b) if we remove the r-bar B and reorder the rows, the result is a bar tableau.

—
W NN

Blw ([

|L»J-lkLANO\

Figure 1-2: A bar tableau of the shape 97631

Equivalently we can define a bar tableau of shape A to be an assignment of positive

integers to the squares of S(A) such that
(a) the entries are weakly increasing across rows,
(b) each integer i appears an odd number of times,

(¢) i can appear in at most two rows; if it does, it must begin both rows (equivalent

to the bar being of type 3),

(d) the composition remaining if we remove all squares labelled by integers larger

than some 2 has distinct parts.

For example, Figure 1-3 shows the chain of partitions remaining if we remove all
squares labelled by integers larger than some i from the tableau in Figure 1-2. This

demonstrates the legality of that tableau.

17
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Figure 1-3: Checking legality of the bar tableau of the shape 97631

1.2 Minimal Bar Tableau

In this section we introduce a preprocessing operation on minimal bar tableau which
preserves the number of bars, and prove some facts about tableaux resulting from
this operation. A bar tableau of A is minimal if the number of bars is minimized, i.e.

there does not exist a bar tableau with fewer bars.

Lemma 1.2.1. There exists a minimal bar tableau T* such that there is no bar

boundary an even number of squares along any row.

For example Figure 1-4 shows a minimal bar tableau 7' of shape 97631 and a
minimal bar tableau T of the same shape with no bar boundaries an even number

of squares along any row (we will see later why these tableaux are minimal).

444] [444 444|

4|4 4 4 4
3 (3|3 3 (33
1 1
2 2

11 1

4
2
1
2

4
3
1
2

I._N._m.n

4
2
1
2
1]
T T*

Figure 1-4: Two minimal bar tableaux of shape 97631

Proof. Let T be a minimal bar tableau of A. In each row 7 of T, at the last bar
boundary an even number of squares along a row, let b be the bar which begins to

the right of the boundary. Say that b is labelled by j. Relabel the squares to the

18



left of the boundary with j. This preserves the ordering on labels and the parity of
b. The partitions remaining if we remove all squares labelled by integers larger than
i(> j) will be the same as before and have distinct parts. The partitions remaining
if we remove all squares labelled by #(< j) will not contain row 7, but will otherwise

have the same (distinct) parts as before. O

Lemma 1.2.2. Let T* be a minimal bar tableau of A such that there is no bar boundary
an even number of squares along any row. Then if row i is odd, it is labelled entirely
by one label j. If row ry is even, it is labelled entirely by one label j or it has ezactly

two labels each occurring an odd number of times.

Proof. If row 7 is odd and has more than one label, the second bar must be of type
1 and so must be odd, forcing the first bar to be even which is a contradiction.

If row 7 is even and has more than two labels, the final two bars are both of type
1 and so must be odd, forcing there to be a bar boundary an even number of squares

along the row, a contradiction. O

1.3 Number of strips in a Minimal Tableau

In this section we use the results from the previous section to give a count of how
many bars are needed in a minimal bar tableau. Define the shifted rank of a shape
A, denoted srank(A), to be the number of bars in a minimal bar tableau of . Given

an Integer a, define @ mod 2 to be 1 if a is odd and 0 if a is even.

Theorem 1.3.1. Given a shape A, let o be the number of odd rows of A and e be the

number of even rows. Then srank(A) = max(o,e + (£(A) mod 2)).

For example, if A = 97631, we have 0 = 4,£(\) = 5 and e = 1. So srank()\) =
max(4,1 + 1) = 4 which verifies that the tableaux shown in Figure 1-4 are indeed
minimal. Tf A = 432, we have 0 = 1,{(\) = 3 and e = 2. So srank(\) = max(1,3) = 3.

Such a tablean is illustrated below.

Proof. Let T be a minimal bar tableau of A. Preprocess T into T* so that there are

no bar boundaries an even number of squares along any row. This must preserve the

19



number of bars. Bars of type 3 consist of one even initial bar and one odd initial
bar, and so by Lemma 1.2.2 must be an entire even row and an entire odd row, or an
entire even row and the initial odd bar of some other even row.

First assume that o > e. Note that if o = e, then #(A) mod 2 = 0. So when o0 2 ¢,
max(o, e + (£()) mod 2))) = 0. We claim that the bars of type 3 all consist of entire
even row and entire odd row pairs, and that there are exactly e of them.

From the observations above the number of bars of type 3 cannot be larger than e.
Suppose that there is a bar of type 3 consisting of an entire even row and the initial
odd bar of some other even row. Since o > e, there must also be two other odd rows,
not parts of bars of type 3, each labelled entirely by some label (by Lemma 1.2.2).
The total number of bars in these 4 rows is 4. So if we relabel (with new large labels)
these four rows as two bars of type 3, we save two bars, contradicting the minimality
of T*. We illustrate this (impossible} situation below, and show the more economical

version. Thus there are no such bars of type 3.

4 14 |4 (4 |4 8|8 |8 |8 (8
111 81818 |8
1 (2 919
3 9

Now suppose that the number of bars of type 3 is smaller than e; thus there is
some even row r; of the tableau which is not part of a bar of type 3. Also there is
an odd row 75 which is not part of a type 3 bar (since o > e). But we could relabel
both these rows with some new large label saving at least one bar and contradict the
minimality of 7.

So there are exactly e bars of type 3, filling 2e rows of A. The remaining o — e
rows are odd and so must each be completely filled by a unique label. So the total

number of bars is ¢ as required.

20



Now assume that e = o.

Claim. We can relabel so that every odd row is part of a bar of type 3.

Proof of claim. Suppose 73 is an odd row which is not part of a bar of type 3.

Subclaim. There is an even row r4, completely filled by a label, which is part of a
bar of type 3 with the initial part of some other even row rs.

Proof of subclatm. Assume by way of contradiction that there is not, i.e. that the
completely filled even rows are all parts of bars of type 3 with complete odd rows.
But there must be at least one even row r4 (since e > o and r; is not part of a bar of
type 3) which is not part of a bar of type 3 with a complete odd row. So r, must not
be part of a bar of type 3 at all (by our subclaim assumption). But then we could
relabel 4 and r3 entirely with some new large label and save a bar, a contradiction.
This proves our subclaim.

Relabel ry and 73 with some new large label. This leaves an odd number of squares
in the initial part of row r5, and so preserves legality. These two rows are now a valid
bar of type 3, and this process did not cost us any bars. We illustrate one step of this
process below. Simply iterate this process until there are no odd rows which are not

part of bars of type 3. This proves our claim.

212122 9 9
1|1 9
2 14 4

So every odd row is part of a bar of type 3, filling 20 rows of A. All but one of the
even rows remaining must be paired up with another remaining even row, and each
pair must contain one bar of type 3 (filling one entire row and the odd initial part of
the other row) and one bar of type 1 {filling the odd final part of the other row). If
they were not, we would have two even rows costing 4 strips, and could reduce the
number of strips by relabelling as above with large new numbers. The extra row exists
only when £()) is odd, and costs two bars (i.e. one extra). This situation is illustrated
on the right hand side of the above figure. So we have o+ e — o+ (£(\) mod 2) strips

as required. O
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1.4 Projective Representations of the Symmetric

Group

Here we recall some facts about the projective representations of the symmetric group.
We follow the treatment of Stembridge [12].
A projective representation of a group G on a vector space V is a map P : G —
GL(V) such that
P(z)P(y) = ¢zyP(zy) (2,9 € G)

for suitable (nonzero) scalars ¢, ,. For the symmetric group, the associated Coxeter
presentation shows that a representation P amounts to a collection of linear transfor-
mations oy, ...,0,_1 € GL(V) (representing the adjacent transpositions) such that
02,{0;0541)*, and (g;0%)* (for [j — k| 2 2) are all scalars. The possible scalars that
arise in this fashion are limited. Of course, one possibility is that the scalars are
trivial; this occurs in any ordinary linear representation of S,. According to a result

of Schur [8], there is only one other possibility (occurring only when n > 4); namely
032- =—1; (ojo0)? = -1 (for | — k| > 2); (0j0,41)* = —1. (1.4.1)

All other possibilities can be reduced to this case or the trivial case by a change of
scale. See [2], [13] for details.

It is convenient to regard oy,...,0,_1 as elements of an abstract group, and to
take 1.4.1 as a set of defining relations. More precisely, for n > 1 let us define S, to be
the group of order 2 - n! generated by oy,...,0,-1 (and —1), subject to the relations
1.4.1, along with the obvious relations (—1)* = 1,(—1)g; = o;(—1) which force —1
to be a central involution. By Schur’s Lemma, an irreducible linear representation
of S, must represent —1 by either of the scalars +1 or —1. A representation of the
former type is a linear representation of S,, whereas one of the latter type corresponds
to a projective representation of S, as in 1.4.1. We will refer to any representation
of S, in which the group element —1 is represented by the scalar —1 as a negative

representation of S,.
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Next we review the characters of the irreducible negative representations of S,.
Define P(n) to be the set of all partitions of n. We say that a partition A is odd if and
only if the number of even parts in A is odd, and is even if and only if it is not odd.
Thus, the parity of a permutation agrees with the parity of its cycle type. The parity
of A is also the parity of the integer |A| + £(A). Schur showed that the irreducible
negative representations are indexed by partitions A with distinct parts. Recall that
if P is an irreducible negative representation indexed by A that the character (A isa
class function (A) : S, — @ defined by (A)(g) = trace(P(g)).

If g = +0i,04,- -+, let 7 € P(n) be the cycle type (in S,) of 0;,04,---. In the
sequel we will evaluate (X)(7) instead of (A)(g). Define P°(n) to be all partitions of

n such that all parts are odd.
Theorem 1.4.1 (Schur 1911 [8]). Let A € D(n) have length ¢, and let = € P(n).
(a) Suppose that X is odd. If v is neither in P°(n) nor equal to \ then (M (m) = 0.

(b) Suppose that X is odd. If m equals X then

(N() = 2iO=HD2(\ Ay 2 /2) V2,

(¢) Suppose that A is even. If w 4s mot in P°(n) then (\)(n) = 0.

For example we consider the situation when n = 6 and A = 321. Then (\)(r) =0
when 7 is (6), (42), (411), (222), (2211) or (21111), as these partitions all have one
even part. The second fact gives (A\)(7) = v/3 when 7 = (321). If A = 51 then
(A)(m) = 0 when = is (6), (42), (411), (321), (222), (2211) or (21111).

A combinatorial rule for calculating the characters not specified by Schur’s theo-
rem was given by Morris; it is the projective analogue of the Murnaghan-Nakayama

rule.

Theorem 1.4.2 (Morris 1962 [4]). Let A € D(n) have length ¢. Suppose that

7 € P%(n) and that m contains r at least once. Define ' € P%(n —r) by removing o
Y g
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copy of r from . Then

where
(=1)F-i21=M ifi€ I,

ni =4 (—1)"" if i € Iy;
(—1)i—Hhipl==) g e I .
(The integer j s that occurring in the definitions of I, and e(A) s the parity of A;
i.e. Qorl.)

For example if n = 6, A = (51) and r = 1, we have ¢(\) = 0,1 = {1}, 1o = {2}
and I_ = 0. So I(\,r) = {1,2}, and we have

GU1%) = (=1)'7127UL (%) + (1) (5)(1%)
= 2(41)}(1%) + (5)(1°).

We can expand this sum into a sum over all possible bar tableaux. Define the
weight of a tableau wt(7') to be the product of all the powers of —1 and 2 which

appear. Then we have

(AW (m) =Y wi(T),

summed over all bar tableaux of shape A and type m. We know that the shifted rank
of )\ is the minimum number of bars needed in a bar tableau of shape A. So we obtain

the following result as a corollary to Theorem 1.3.1:

Corollary 1.4.3. Given a shape A of shifted rank k and a shape m such that Ur) < k,
we have (A)(7) = 0. O
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1.5 Schur Q-Functions

We begin with Schur’s original inductive definition of the Q, functions. First define

symmetric functions my(z) by
-X
[s]
where the sum ranges over all distinct permutations a = {ay, as, . . .). Define sym-

metric functions ¢; of degree k by

Z ZE()\)

AEP(k)

Now we can state the base cases for the inductive definition. Put () = ¢o and

Quat) = 4@ +2 Y _(—1)"Gatnoon.
n>0

Inductively we define
2k+1

_ -1
Q)\l,---,f\2k+1 - Z( )z o¥ QM, Mg A2k 41

i=1

and
2%
Qnopge = D (1) (0N N
=2
The @x may also be defined as the specialization at t = —1 of one of the two

equivalent defining formulae for Hall-Littlewood polynomials; see [3, III (2.1) (2.2)].
Let S; act on X = {2y,...,2,} by permuting the variables, so that, when ¢ < r, the
Young subgroup Sf x S,_; fixes each of T1,...,%¢ Let A be a strict partition of length
£, If £ <r, then

QA(mlj""l‘T):2£ Z {Al HH «T'L'I‘.Z'J}
[w]€S, /S¢x S, 4 i=1 j=1+1 T

If A has length greater than r, then Q,(zy, ..., z,) = 0. The Q, symmetric functions
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are obtained by taking the limit as the number of variables becomes infinite (for a
mathematically precise definition of this limit see [3]).

Schur [8] defined these Q-functions in order to study the negative representations
of symmetric groups. The fundamental connection is given by the following theorem.
Let mi(\) = #{j : A; = i}, the number of parts of A equal to z. Define 2z, =
17 My (A2 M my(A)! - -+ The py are the power sum symmetric funciions defined

by

p = Y_af, nzl (withp=1)

2
Py = p)\lpz\z e
Theorem 1.5.1 (Schur, 1911).

Z Q[Z(A)+é'(fr)+e(>\)]/2<)\)(W)Pl.

z
reP0(n) "

Again consider the example with n = 6 and A = (51). We have

Qs = 2[2+6+0]/2<51>(16)7£+2[2+4+0]/2<51>( 33)P133+

Z16 <133
2[2+2+°]/2(51>(15)I£ + 2[2‘”*0]/2(51)(32)‘;E
32
= 24 939P1%3 927 P15 g2oP?
6 6' + 313 5 13 18
16 8 4 4
= 5P + gPLes = 5P oPs?

Define deg{p;) = 1, so deg(p,) = £(v). Then Theorem 1.3.1 gives us the following

corollary.
Corollary 1.5.2. The terms of lowest degree in Qx have degree at least srank()). O

In our example srank(51) = 2 and the p, satisfy £(v) > 2. Equivalently we can

examine a specialization of the principal specialization of (), i.e.

pst Q,\ Q/\(]':la )
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Since p,(1*) = ), we can rephrase the above result.
Corollary 1.5.3. Q,(1!) is divisible by ts7=rk(N) O

The following conjecture has been computationally verified (using John Stem-

bridge’s SF Package for Maple [14]) for all partitions AF n for 1 < n < 12.

Conjecture 1.5.4. The terms of lowest degree in Q, have degree at ezactly srank(\).

1.6 Number of strips in a skew shifted tableau

In this section we discuss minimal bar tableaux of skew shifted shapes. First we
introduce shifted strip tableaux, then we define skew bar tableaux. Finally we give
some partial results on the rank of skew shifted tableaux.

In what follows we only consider A and p having distinct parts. The jth diagonal
of a skew diagram D), is the collection of squares (1,37), (2,7 +1),(3,5 +2),... in
Dj,,- The first diagonal (which may be empty) is called the main diagonal.

A skew diagram D) /u 18 said to be a strip if it is rookwise connected and each
diagonal has at most one square. The height h of a strip is the number of rows it
occupies. For example, the squares labelled by 2 in the tableau on the right of Figure
1-5 form a strip of height 3. A double strip is a rookwise connected skew diagram
formed by the union of two strips which both start on the main diagonal. Note that
a double strip can be cut into two nonempty connected pieces-one piece (call it Q)
consisting of the diagonals of length two, the other piece (3} consisting of the strip
formed by the diagonals of length one. The depth of a double strip is defined to be
|a|/2 + h(fB). For example, the squares labelled by 2 in the tableau on the left of
Figure 1-5 form a double strip of depth 2.

A (skew shifted) strip tableau of shape \/y and content v € P°(n) is defined to

be a nested sequence of shifted diagrams

D, =D} C D4 C--- C Dy = D)
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with |A'| — [A71 = (1 < ¢ < [) such that each intermediate diagram DS\.,-/AH is
either a strip or a double strip. We illustrate two strip tableaux in Figure 1-5. Define
the weight of a strip of height A to be (—1)"~!, and define the weight of a double strip
of depth d to be 2(—1)%"!. The weight of a strip tableau S, denoted wt(S), is the
product of the weights of the component strips and double strips. For example the
weight of the tableau on the left in Figure 1-5 is (—1)*"12(—1)*"! = —2. The weight
of the tableau on the right in Figure 1-5 is 2(—1)?"!(-1)*"' = —2.

1|1

[

|I\JN>—~
—_

|t\JNN

Figure 1-5: Two strip tableaux of the shape 321

In order to define the skew Q-functions @y, first define an inner product on the

algebra of symmetric functions by

[Py P = 227596,

Define integers f), by
o = (@2, 27W71Q,Q,].

Now we can define

Q/\/ﬂ - Z _L/l,\VQU-

This theory parallels that of the Schur functions s, and the Littlewood Richardson
coefficents ¢},. Both the @/, and the f), can be defined combinatorially, but this
involves another family of tableaux which we do not consider here. See [12] for more
details.

Now we have enough background to introduce the skew shifted version of the

Murnaghan-Nakayama rule, first proved by Morris [4]:

p
Qr/p = E :QE(W)wt(S)Zl’
g i
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summed over all strip tableaux S of shape A/u and content 4. To illustrate this
rule, we compute the coefficient of psz in Qa1 (of course Q0 = @»). Figure 1-
5 in fact shows all strip tableaux of shape 321 with content 32. We have already
computed that the weight of each tableaux is —2. Thus the coefficient of P32 in QQay;

is 2 [2%(~2) g1 = ~5-

In order to apply our knowledge of bar tableaux, we need to generalise the def-
inition to apply to the skew case. Define a skew bar tableau of shape A/ to be an

assignment of nonnegative integers to the squares of $(\) such that:
(a) the entries are weakly increasing across rows,
(b) each positive integer 4 appears an odd number of times,

(c) a positive integer ¢ can appear in at most two rows, and if it does, it must begin

both rows (equivalent to the bar being of type 3),

(d) the partition remaining if we remove all squares labelled by integers larger than

some ¢ then reorder has distinct parts,

(e) the partition remaining if we remove all squares labelled by positive integers

and reorder is .

We illustrate for example a skew bar tableau of the shape 86541 /821, and the

various partitions remaining if we remove all squares labelled by integers larger than

some i
loJoJofoofoJo]o]  [o]o[o o]0 o]o]o] loJoJoJoJoJo o o]
SNNEERE olo2]2]2 TNE
ofofz]2]2 - BDEE - IR
1111 |1 111 0|0
o o] o]
loJoJofoToJoo]a]
= o [o
0

Figure 1-6: Checking legality of the skew bar tableau of the shape 86541
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We give a bijection between skew bar tableaux and skew shifted strip tableaux.
Begin with a skew bar tableau. For every bar of type 3, mark the labels of the
longer sub bar with an apostrophe. In the sequel, we use the ordering on labels

1'<1<2 «<2---. We describe an algorithm ¢.

let ¢ be the biggest label in the bar tableau.
repeat
let (m,n + 1) be the rightmost square labelled by <.
repeat
if there is a square (m + 1,7 + 1) and it is labelled smaller than 7 then
switch the initial n —m -+ 1 labels in row m with the initial n —m+1 labels
in row m + 1.

m:=m+1
else

n:=n—1
end if

until the label in square (m,n) is not 4
let ¢z be the next smallest label

until 2 = 0

remove all squares labelled by 0

This algorithm terminates because after every step of the inner loop there is one
fewer square labelled by i to the left of square (m,n). It is also clear that ¢ preserves
the content of the tableau. We will refer to the part of the algorithm where we are
examining boxes with label i as step 4. For example we illustrate ¢ applied to the
skew bar tableau from Figure 1-6.

After step i of ¢, denote the tableau remaining if we remove all squares with labels
< i by ST;. Denote the tableau remaining if we remove all boxes with labels > ¢ by
BT,. Denote the tableau remaining when we remove all squares with labels > ¢ from

the original bar tableau and reorder by RT;. We illustrate with our running example:
Lemima 1.6.1. For every label j, BT; = RT;.

Proof. Assume by way of induction that BT;4, = RTjy1. It suffices to show that
removing the bar labelled ¢ from BTy, and reordering is the same operation as
applying step i of ¢ to BT;;; and then removing the squares labelled 7. Say that the

squares labelled by i are in row p before the ith step begins, and say that there are g
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lo [o[oToTo]o[o]o] loloJoJoJoJo o]0 0 0 [o[o]o]o
SIBEENE a5 ]s 2 ]2 (23
olaf2]2]2 0lol2]2]2 11 1[5 ]3
rrvfr]r vlrvfe]r vr]r]r
o] 0| o]
0o o |oofoo]o] loJofefofoJoo]o] lo[oJoJoToToJoTo
ol2[2]21s o l2]2]215 vlelr[r]z]s
vr{v]r]s rir{r|r]s olofz]2]3
NEERE 1NNE 1[1[3
0] [0 ] [ ]
0fofofoJo]o]o]o ojojojofofofofo] [oJoJofo[o]o]o]o
tlr]rvlr{z]s rlvfr[2]s v vfrr{2]s
L1 i]2 3 Lifi]2]s oloi[2]3
0fo]z2]3 ofo]2]3 11 {23
o] o] 0
[0 [o]oofofo[o]o] Lo JoJoJofoJo]o o] lo JoJoJo o oo o]
rlv|r|r]z]s vr]e]r]2]s rlvfr|r]2]s
BINEE olo]i[2]s olof1]2]s
NHEE ol1]2]3 12 [3
L N !
l-—ﬁ__l__j——l--ﬂ--r__'\_'-l
oloofofofo]o]o 0 0 Jo]oo]o RN
or[r[2]s rir(z]3 N EREAE
rjrii|2 |3 I'[1]2]3 b 23
o1]z2]3 rli2]s rlifz]s

1] n ]

squares not labelled by 7 in row p. Let r be maximal such that ), > g. We show by
induction that for p < j < 7, ¢ moves the labels of row j up one row and labels the

remaining A; — A;_; squares with i. We show that ¢ leaves the first ¢ labels of row P

Figure 1-7: Applying ¢ to a bar tableau

in row 7, and that ¢ does not affect any other rows.

It is clear that the ith step of ¢ does not affect any rows higher than row p. Let
J be such that p < j < r. Say we have just reset m := m + 1 = 7 in ¢. Assume
inductively that row j now contains the first ¢ labels of row p and ends with Aj—gq

squares labelled i. Also assume inductively that every row k such that psk <y
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contains the first A\z;q labels from row &k +1 and ends with Ay — Axp; squares labelled
1.

First suppose that 7 < r, i.e. that A;1; > ¢. ¢ is now examining square (m,n) =
(j,5 + A; — 1). ¢ does nothing until it examines square (m,n) = (4,7 + Aj1 — 1).
Then it will switch the labels as required.

Now suppose j = r. If A;41 = ¢ then BT;;; would have two equal parts when
the squares labelled by 4 were removed, which is impossible. So Aj41 < ¢ ¢ is
now examining square (m,n) = (j,7 + A; — 1). ¢ does nothing until it examines
square (m,n) = (j,7 + ¢ — 1) because before then for each (m,n) there is no square
(m + 1,n + 1). But square (j,j + ¢ — 1) is not labelled by , so ¢ will stop, leaving

the first g labels of row p in row r as required. O

Since by definition RTj is a skew bar tableau, it follows that BT is a skew bar

tableau.

Theorem 1.6.2. Let T be a skew bar tableau. Then ¢(T) is o skew shifted strip

tableau.

Proof. We prove by induction that STj is a skew shifted strip tableau. First we show
that after step i the squares labelled by 7 form a border strip. The squares labelled
by i initially form a horizontal bar which is a border strip. During ¢ when we are
examining the square (m,n), the square (m + 1,n) is also labelled by 2. So when we
switch the initial n — m + 1 labels in row m with the initial n — m + 1 labels in row
m + 1, the strip remains rookwise connected. Clearly no 2 x 2 squares are introduced
by this operation. So inductively after step i the squares labelled by 4 form a border

strip.
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After step 7 the union of this new border strip with ST}, is just A/m, where 7
is the shape occupied by BT;. Hence the shape ST; occupies is a legal skew shifted
shape, and ST; is a legal skew shifted strip tablean. O

Given an ST; and a BT, which occur during ¢, it is trivial to invert step 7 of ¢
and recover uniquely ST;,, and BT;,;. So ¢ is an injection. We describe the exact
algorithm to invert ¢ below.

create p; squares at the start of row 5 and label them 0
let ¢ be the smallest label in the skew shifted strip tableaux.
repeat
let (m, n) be the bottom leftmost square labelled by .
repeat
if there is a square (m,n + 1) and it is labelled  then
ni=n++1
else if the label in square (m — 1,n) is equal to i then
switch the initial n — m 4+ 1 labels in row m with the initial n — m + 1 labels
in row m — 1.
m:=m-—1
end if
until Neither condition was satisfied
let 7 be the next biggest label
until ¢ is bigger than the biggest label present in the tableau

To show that ¢ is surjective, we must show that given an arbitrary skew shifted
strip tableau ST of shape A/7 and an arbitrary skew bar tableau BT of shape 7,
we can move the squares containing the smallest label of the strip tableau to the bar
tableau, and get a legal bar tableau. The only property that needs to be checked is
that removing all parts bigger than some j from the bar tableau leaves distinct parts.
However if j < i the parts remaining are the same as they were before in BT and so
must be distinct.

So suppose j > 4, that the lowest square labelled 7 in ST is in row 7, and that the
top rightmost square labelled i is in position (m,n). Thus row m of = has length at
most 7 — m. The label in square (m — 1,n) is smaller than ¢, and so row m — 1 of
has length at least n —m+ 2. The bottom leftmost square labelled by 2 is in position
(r,m, +7)so thereareq=r—m+n—m, —r+1 =n—m — 7, + 1 squares labelled

by 2.
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Remove all parts bigger than j from the updated bar tableau. The remaining
parts are the rows of 7 (without row r) which are distinct because they were before,
and also a new row 7, + ¢ =n — m + 1. But row m and necessarily any lower rows
of 7 have length at most n — m, and row m — 1 and necessarily any higher rows of
7 have length at least n —m + 2, so this new row is distinct from all the others as

required. So we have shown that ¢ is a bijection.

Lemma 1.6.3. Given a skew bar tableay of A, let o, (and e,) be the number of odd
(cven respectively) rows of X which do not have any square labelled 0. Let o, (and
es) be the number of rows of A which do have a square labelled 0 but end with an odd
(even respectively) number of squares not labelled 0. Then the minimal number of

(nonzero) bars in the tableau is

o5 + 2e; + max(o,, e, + (e, + 0, mod 2))).

Proof. Rows which are counted by none of oy, e,,0, or e, are entirely labelled with
zeroes and so have no nonzero bars. The rows counted by o, and e, contain only bars
of type 1 because the first square is labelled zero. If a row counted by o, contained
more than one (nonzero) label, we could relabel with some new large integer and
save a strip. So these rows contribute exactly o, bars to the total minimum. Rows
counted by e, cost at least 2 nonzero labels (since each label occurs an odd number
of times), and if they contained more we could relabel the first square with some new
large label, and the remainder with some other new large integer, saving a bar. So
these rows contribute 2e, to the total minimum.

Finally, rows counted by o, and e, can be thought of as a non skewed shape,
independent of the other rows. From Theorem 1.3.1 we know that we need at least
max(o,, e, + (e, + o, mod 2))) bars to fill these rows. So the total minimum is

05 + 2¢, -+ max(o;, e, + (e, + 0, mod 2))) as required. O

Thus we can count the minimal number of bars required in a skew bar tableau

when the squares labelled 0 are fixed. However varying the locations of the zeros
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will vary the minimal number of bars required in the remainder; finding the overall

minimum (or rank) is an open problem.
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Chapter 2

Straight Shapes

After recalling some necessary background, we analyse the bottom Schur functions
and derive an expression for them as a minor of the Jacobi-Trudi matrix. Finally we
show that this minor is itself the Jacobi-Trudi matrix for some skew shape, and that
this skew shape has useful properties. Then we apply these results to give a basis
for the space spanned by the bottom Schur functions. This gives us the dimensions
of the spaces spanned by the bottom Schur functions, which turns out to be a well

known classical sequence.

2.1 Definitions

In this section we define the bottom Schur functions and give some other related defi-
nitions. First we express the Schur functions s, in terms of the power sum symmetric
functions p,.

Let A be a partition of n with Frobenius rank k. Recall that k is the length of
the main diagonal of the diagram of A, or equivalently, the largest integer ¢ for which
A 2 4. As before let m;(A) = #{j : A\; = i}, the number of parts of A equal to
i. Define z, = 1™®m (M\)12m2Xmy (W) - A border strip (or rim hook or ribbon)
is a connected skew shape with no 2 x 2 square. An example is 75443/4332 whose
diagram is illustrated in Figure 2-1. Define the height ht(B) of a border strip B to

be one less than its number of rows.
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Figure 2-1: The border strip 75443/4332

Let o = (v, g, . ..) be a weak composition of n. Define a border strip tableau of
shape X and type o to be an assignment of positive integers to the squares of A such

that:
(a) every row and column is weakly increasing,
(b) the integer ¢ appears o; times, and
(c) the set of squares occupied by ¢ forms a border strip.

Equivalently, one may think of a border-strip tableau as a sequence §) = A C A\! C
-+ A" C X of partitions such that each skew shape A'/A*! is a border-strip of size ;.

For instance, Figure 2-2 shows a border strip tableau of 53321 of type (7,0, 3,1, 3). It

Figure 2-2: A border strip tableau of 53321 of type (7,0,3,1,3)

is easy to see (in this nonskew case) that the smallest number of strips in a border-strip

tableau is rank()). Define the height ht(7) of a border-strip tableau T to be

ht(T) = ht(B;) + ht(By) + - - - + ht(By)
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where By, ..., By are the (nonempty) border strips appearing in 7. In the example

we have ht(T) =1+ 0+ 2+ 3 = 6. Now we can define

W) = 3 (=1,

T

summed over all border-strip tableaux of shape A and type v. Since there are at least
rank(A) strips in every tableau, we have that x*(v) = 0 if £(v) < rank()\).

Finally we can express the Schur function sy in terms of power sums Dy
Dv
Sx = Z XA(V)Z_-

As we saw in Chapter 1 the coefficients x*(v) for A, v  n have a fundamental
algebraic interpretation: They are the values of the irreducible (ordinary) characters
of the symmetric group S,. More precisely, the irreducible characters y* are indexed
in a natural way by partitions A F n, and x*(v) is the value of x* at an element
w € S, of cycle type v.

Define deg(p;) = 1, so deg(p,) = £(v). The bottom Schur function &, is defined

to be the lowest degree part of sy, so

S = Z XA(V)&-

v:f(v)=rank(A) v
Also write p; = . For instance,
Lo 1 5 1 1,
S30; = —P° — — - — 22
321 45P1 9P3P1 5P1P5 9P3
Hence
R 1 1,
8321 = 3101105 - §P3
= pPs — Py

Let e be an edge of the lower envelope of A, i.e. no square of A has e as its upper
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or left-hand edge. We will define a certain subset S, of squares of A, called a snake.

If e is horizontal and (i, ) is the square of A having e as its lower edge, define

SE = ()\)ﬂ{(i,j),(i—1,]'),(’&'—1,].—1),
(i—2,7—1),(i=2,7—2),...}. (2.1.1)

If e is vertical and (i, j) is the square of A having e as its right-hand edge, define

Sg = (/\)n{(i7j)7(iuj_l)’(i_17j—1)a
(i—1,j—2),(i—2,j—2),...}. (2.1.2)

In Figure 2-3 the nonempty snakes of the shape 533322 are shown with dashed paths
through their squares, with a single bullet in the two snakes with just one square.
The length £(S) of a snake S is one fewer than its number of squares; a snake of length
i — 1 (so with i squares) is call an i-snake. Call a snake of even length a right snake
if it has form 2.1.1 and a left snake if it has form 2.1.2. It is clear that the snakes are
linearly ordered from lower left to upper right. In this linear ordering, replace a left
snake with the symbol L, a right snake with R, and a snake of odd length with O.
The resulting sequence (which does not determine A) is called the snake sequence of

A, denoted SS()A). For instance, from Figure 2-3 we see that

SS(533322) = LLOOLORROOR.

Lemma 2.1.1. The L’s in the snake sequence correspond exactly to horizontal edges
of the lower envelope of A which are below the line x +y = 0. The R’s correspond
ezactly to vertical edges of the lower envelope of A which are above the linexz +y = 0.

All other edges of the lower envelope of A are labelled by O's.

Clearly we could have defined the snake sequence this way, however the definitions

above apply to skew shapes also. This Lemma only holds when A is a straight shape.
Proof. Let e be an edge of the lower envelope of A below the line z +y = 0. Let (4, 7)
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Figure 2-3: Snakes for the shape 533322

be the square of A having e as its lower edge. The last square in the snake is some
square in the first column of A. So if e is horizontal the last square is (¢ — 7 + 1, 1),
the snake has an odd number of squares, so has even length, and is labelled by L. If
e is vertical the last square is (¢ — 7, 1), the snake has an even number of squares, so
has odd length, and is labelled by K. The case when ¢ is above z + y = 0 is proved

similarly. O

Corollary 2.1.2. In the snake sequence of A, the L’s occur strictly to the left of the
R’s. O

The number of horizontal edges of the lower envelope of A which are below the
line z + y = 0 equals the length of the main diagonal of the diagram of A, which is
the rank of A. Similarly the number of vertical edges of the lower envelope of A which
are above the line z +y = 0 also equals the rank of A\. Henceforth we fix & = rank(\).

Let SS(A) = q142 - - - gm, and define an interval set of A to be a collection T of k

ordered pairs,

T={(u, )., (ur, ve)},
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satisfying the following conditions:

(a) the u,;’s and v;’s are all distinct integers,
(b) 1 <u <v; €m,
(¢) gy, = L and ¢,, = R.

Figure 2-4 illustrates the interval set {(1,11),(2,7), (5,8)} of the shape 533322.

//7?\\
LLOOLORROOR

Figure 2-4: An interval set of the shape 533322

Define the crossing number ¢(T) of an interval set Z = {(u1,v1),. .-, (ur, vi)} to
be the number of crossings of I, i.e. the number of pairs (4, ) for which u; < u; <
v < Vj.

Let T be a border strip tableau of shape A. Recall that
ht(T) = ) _ht(B),
B

where B ranges over all border strips in T' and ht(B) is one less than the number of
rows of B. Define z(\) to be the height ht(T") of a “greedy border strip tableau” T
of shape A obtained by starting with A and successively removing the largest possible
border strip. (Although T may not be unique, the set of border strips appearing in
T is unique, so ht(T') is well-defined.)

The connection between bottom Schur functions and interval sets was given by

Stanley [11, Theorem 5.2}:
k
5, = (—1)*¥) Z (=1)<D Hﬁw—uw
I:{(ulzvl):"'a(ukvvk)} 1=l

where T ranges over all interval sets of v.
For example the shape 321 has snake sequence LOLROR. There are two interval
sets, {(1,4), (3,6)} with crossing number 1, and {(1,6), (3,4)} with crossing number
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0. So as we saw before

3321 = P1Ps — De.

2.2 Bottom Schur Functions of straight shapes

In this section we first give a lemma about the reverse lexicographical order on snake
sequences which will be used later. Then we analyse the bottom Schur functions and
derive an expression for them as a minor of the Jacobi-Trudi matrix. Finally we show
that this minor is itself the Jacobi-Trudi matrix for some skew shape, and that this

skew shape has useful properties.

Lemma 2.2.1. The lezicographic order on shapes v whose length £(v) equals their

rank k 1s equal to the reverse lezicographical order on their snoke sequences.

Proof. Since £(v) = k, the snake sequence begins with k L’s. If the length of the ith
row of v is k + j, then there are j O’s to the left of the (k — i + 1)st R. 0

Define the complete homogeneous symmetric functions hy for A € P by the formula

hn = Z Ty Ty, n=1 (with hg = 1)

h,\ = h)‘lhAz"‘ lfA:()\l,)\g,)

We will use the fact that

hn:Z%

Abn

The hy give us a determinantal expression for the sy, the Jacobi-Trudi identity:

sy = det(ha;—iy ;)

ki
Li=D
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where we define h; = 0 for ¢ < 0. For example

hs he hr hs hg hio
hy hs he hr hg he
he hs ha hs he he
hi he hy hy hs he

554421 = det

0 0 0 0 1 m

Since hy, =Y 10, %, the term of lowest degree {in p) in the expansion of a given

hp, in terms of the p; is just ”7" = pn. For a product A, hy, - - - by, the term of lowest
degree in the expansion in terms of the p; is just pn,Pn, - - Pn;. So we have that 55 =
terms of lowest order in det(fx,—i14)f;—; (since the py are algebraically independent,

and since det(hy, ;1;) = sx # 0, this determinant will not vanish). For example

Ds De D7 Ds Dg Pro

Ps Ps De D1 DPs Do

. ) P2 D3 Ds Ds De Dr
3554401 = terms of lowest order in det P bo P

P1 D2 Ps D+ Ds De
0 0 1 p P2 p3
00 0 0 1 #

L .

Since py = 1, the terms of lowest order are those which contain the most number of

1’s.

Row i of the matrix will have a 1 in position (4, 7) if \;—i+7 = 0, Le. if A; < ¢ (this
shows that the number of rows of JT which do not contain a 1 is another definition

of rank())).

Let JT; be the matrix obtained from the original Jacobi-Trudi matrix by removing

every row and column which contains a 1 and replacing the h; with p;. We show below
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that this matrix is not singular and so we have

§,\ = det JT;

For example

S554421 = det

Any minor of the Jacobi-Trudi matrix for a shape )\ is the Jacobi-Trudi matrix
for some skew shape u/o. For let JT* be some minor of size m of some Jacobi-Trudi

matrix JT. If the entry in position (z, j) is h, put Jt;; = . Now we can set

and

pi = jii; + 05

Again note that since the p, are algebraically independent and det JT* = Suje F 0,
we have det J17 # 0.

In our running example, we have 01 = 10-5-44+1=20, =10—-6—4 +2 =
2,03 =10—-8—-44+3=1landoy;, =10—10—4+4 = 0. Hence ¢ = (2210). Also
P =5+2,4p=5+2,u3=5+1and pg =6+ 0. Thus u = (7766). Therefore we
have that 3354421 equals the determinant of the Jacobi-Trudi matrix of (7766/2210)
with the h’s replaced by p’s.

Lemma 2.2.2. If the skew shape /o has the Jacobi-Trudi matriz JT* obtained by
removing all rows and columns with o 1 from a Jacobi- Trudi matriz JT of o shape A

with rank k, then u/o contains a square of size k.

The rank of 554421 is 4, and the diagram of (7766/2210) does indeed contain a

square of size 4:
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Proof. We show that py > k+0y. JT* is a matrix of size &, so from the observations
above py = jti ;. The rows of JT™ are the first &k rows of JT, so jt} = jtx,; for some
i. Any columns of JT past the £(A\)th will have a 1 in them and be removed. The

£(A)th column will not have a 1 and so must be the last column of JT™. So we have
P = jt}t,k = jtk,g(A) =M —k+ f()\).

Also oy = ji7, —jti, —k+ 1. The first column of JT does not contain a 1, so it
must also be the first column of JT*. We know the kth column of JT* is the £(A)th
column of JT. So

op = Jiip—Jtip—k+1
= Jtaeoy — Jtay —k+1
= M—14+LA) A k1
= {(\) -k

It remains to show that
M —k+EN) =2 €00 —k+ k.

This is true because A has rank k. d

2.3 The space spanned by the bottom Schur func-
tions

In this section we use the previous results to give a basis for the space spanned by

the bottom Schur functions. First we recall some classical tableaux theory.
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If AF n, a stendard Young tableau (SYT) is a labelling of the squares of \ with
the numbers 1,2,...,7n, each number appearing once, so that every row and column
is increasing. A semistandard Young tableau (SSYT) is a labelling of the squares of
A with positive integers that is weakly increasing in every row and strictly increasing
in every column. We say that T has type o = (ay, ag,...) if T has o; parts equal to

T.

1|3 ]5 [6 NE
27138 |9 2 |4 |4 |4
4] 5]

SYT SSYT

Now we define an operation on standard Young tableaux called a jeu de taguin
shde. This was invented by M. P. Schiitzenberger. Given a skew shape A/u, consider
the squares b that can be added to A/u, so that b shares at least one edge with A,
and {b} UA/p is a valid skew shape. Suppose that by shares a lower or right edge with
A/p (the other situation is completely analogous). There is at least one square b, in
A p that is adjacent to by; if there are two such squares, then let b; be the one with
a smaller entry. Move the entry occupying b; into by. Then repeat this procedure,
starting at b;. The resulting tableau will be a standard Young tableau. Analogously
if by shares an upper or left edge, the operation is the same except we let by be the
square with the bigger entry from two possibilities. For example we illustrate both
situations; the tableau on the right results from playing jeu de taquin beginning at

the square marked by a bullet on the tableau on the left (and vice versa).

®1 |5 13 |5
2 (3819 2|7
4 |7 4 | @

Figure 2-5: Jeu de taquin slides

Two tableaux T and 1" are called jeu de taquin equivalent if one can be obtained

from another by a sequence of jeu de taquin slides.
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The reading word of a (semi)standard Young tableau is the sequence of entries of
T obtained by concatenating the rows of T bottom to top. For example, the tableau
on the left in Figure 2-5 has the reading word 472389156. The reverse reading word
of a tableau is simply the reading word read backwards; so the tableau on the left in
Figure 2-5 has the reverse reading word 651983274

A lattice permutation is a sequence ajaz---a, such that in any initial factor
a1ay - - - a;, the number of ¢’s is at least as great as the number of ¢ + I’s (for all
7). For example 123112213 is a lattice permutation.

The Littlewood-Richardson coefficients c;,, are the coefficients in the expansion of

a skew Schur function in the basis of Schur functions:

_ A
Sxju = E Cpu Sur-
k24

The Littlewood-Richardson rule is a combinatorial description of the coefficients ¢}, .

We will use two different versions of the rule.

Theorem 2.3.1. Fiz an SYT P of shape v. The Littlewood-Richardson coeffictent

cfw is equal to the number of SYT of shape A/u that are jeu de taquin equivalent to

P.

For example, let A = (5,3,3,1), 0= (3,1), and v = (3,3, 2). Consider the tableau
P of shape v. There are exactly two SYTs T of shape A/u such that jdi(1) = P,

namely,

4|5 |8 and 117
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Theorem 2.3.2. The Littlewood-Richardson coefficient c;),, is equal to the number of
semistandard Young tableauz of shape \/i and type v whose reverse reading word is

o lattice permutation.

For example, with A = (5,3,3,1), # = (3,1), and v = (3, 3, 2) as above, there are
exactly two SSYTs T of shape A/u and type v whose reverse reading word is a lattice

permutation:

Now we have enough machinery to state and prove this chapter’s main theorem.

Theorem 2.3.3. Fizn and k. The set {5, : v F n, rank(v) = k and (v) = k} is a
basis for the space spang{5, : A n and rank(}) = k}.

For example if n = 12 and k& = 3, we have that {833, 5543, 5444} is a basis for

SP&HQ{Sﬁas, 5543, 55331, Sa44, 84431, 54332, 843311, S3333, 833301, 8333111}

Proof. First we prove that the §, are linearly independent. We show that given
any such v, there is some term in the expansion of §, which does not occur in the
expansion of any 8+ for v/ lexicographically less than v.

From Stanley [11, Theorem 5.2] we have that

k
=0 Y () [

T={(u1,01),,(uk, 05 )} i=1
where 7 ranges over all interval sets of v. Let ¢ = p;,5. 5, be the term corresponding
to the non crossing interval set Z of the snake sequence of v. We claim that # does
not occur in the expansion of any 3,/ for v/ lexicographically less than v. Assume by
way of contradiction that it does occur for some such v/ with corresponding interval

set 7',
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Assume inductively that the first 4 — 1 L’s are matched with the last 4 — 1 R’s
without crossings in Z'. Let r; (and r} respectively) be the position of the jth R in
the snake sequence of v(v' respectively). By lemma 2.2.1 r; 2 r}. But the length of
the interval matching the ith R from the right in Z is r4_;41 — ¢. So for there to be
an interval of this length in Z' we must match the ith R from the right with the ¢th
L; this interval has no crossing. Proceeding by induction we see that 7' is also non
crossing, and so must equal Z. This shows that the snake sequences corresponding to
v and /' are equal, and so ¥ = v/, a contradiction.

Now we prove that the §, span the space of all 35. We have shown that §\ = §,/,-
Expand s/, in terms of (straight) Schur functions using the Littlewood Richardson

rule
_ § "
Suje = CopSu
v

We need to show that ¢, = 0 unless v is of rank k and length k.

Fix an SYT P of shape v. The Littlewood-Richardson coefficient ¢4, is equal to
the number of SYT of shape p/c that are jeu de taquin equivalent to P. Playing jeu
de taquin on a straight-shape tableau of shape v can only increase the length of the
shape. Hence if ¢, # 0,4(v) < k.

The Littlewood-Richardson coefficient ¥, is also equal to the number of semis-
tandard Young tableaux of shape u/o and type v whose reverse reading word is a
lattice permutation. But we know that p/o contains a square of size k (by Lemma
2.2.2). Therefore the bottom row of this square must be filled with & '&’s, and so
v 2 k, i.e. rank(v) 2 k. Since £(v) < k, we must have rank(v) = .

Taking terms of lowest degree on both sides of

we have that

where the sum is over v of length k and rank £ as required. |
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2.4 Dimension of the space spanned by the bottom

Schur functions

In this section we derive the dimension of the space spanned by the bottom Schur
functions, and show that the sequence of dimensions is a well known classical sequence.

Let pgx(n) be the number of partitions of n with length at most %, and define

pgk (0) =1.

Corollary 2.4.1. The dimension of the space of bottom Schur functions

spang{éx : A n} is
Lvn]
p<k(n — %)

>
Il
—

For example, the first 27 terms in this sequence are
1,1,1,2,2,3,3,4,5,6,7,9,10,12,14,17, 19, 23, 26, 31, 35, 41, 46, 54, 61, 70, 79.

There is a nice bijection between the above partitions and the set of partitions {AF
n A — Aiy1 = 2}, For, given a k and a partition \* F n — k% with fewer than k
parts, we can set A; = A} + 2k — 24 4+ 1. This gives a partition of n with k rows with
Ai — Aip1 2 2 as required. This is clearly a bijection.

This classical sequence also gives the number of partitions of n into parts bk + 1
or 5k — 1; equivalently these numbers are the coefficients in the expansion of the

Rogers-Ramanujan identity

2

" 1
! +Z (1—t)(1—¢2)- - (1 —tn) - H (1 — ¢5mn=1)(1 — ¢5n—4)

nzxl nzl

2.5 2 bottom Schur functions

We have shown that a basis for the space spanned by the bottom Schurs consists
of the 8§y where £()\) < rank()\). Thus is it natural to consider those A for which

£(A) < rank(}) + 1. The number of such partitions of n coincides with the dimension
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of the space of double bottom Schurs for n < 15 (using John Stembridge’s S Package
for Maple [14]). In particular, this sequence is 1,2,2,3,4,6,7,9,11,14,17,22,26, . . .

This suggests:

Conjecture 2.5.1 (Stanley). A basis for the space spanned by the bottom 2 degree
terms of all Schur functions consists of all 2 bottomn Schurs §>‘, where A is a partition

of n satisfying £(A) < rank(X) + 1.

The clear generalisation is to look at the k bottom Schurs. However in the
k = 3 case, the dimensions of the spaces spanned by the 3 bottom Schurs are
1,2,3,4,6,9,11,15,19, 24,30, .... The numbers of partitions A of n satisfying £(\) <
rank()) +2 are 1,2,3,4,5,8,10,14,17,22,27,.... Unfortunately these are two differ-

ent sequences.
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Chapter 3

A Symmetric Function Identity

Having introduced some definitions related to interval sets, we prove several lemmas
about the properties of labelled interval sets. We use these results to give for each
shape A a relation between the power sum symmetric functions and the monomial
symmetric functions. The functions which occur are those indexed by the type u of

any minimal bar tableau of A,

3.1 Definitions

In this section we introduce some definitions related to interval sets.

Fix a shape A of rank k. Given an interval set T = {(uj,w1), ..., (ug, v)}, of A

and a labelling of the intervals (,..., o) such that o; € P, define

Recall that ¢(Z) is the number of crossings of the interval set Z. For instance
Figure 3-1 shows a labelled interval set of the shape 533322 with the snake se-
quence LLOOLORROOR. For this interval set ¢(Z) = 1 and for this labelling

z 10,.5,.3 5,13

TT =3y T5T = 1oL,




m
LLLOOLORROOR

Figure 3-1: A labelled interval set of the shape 533322

3.2 Labelled Interval Sets

In this section we prove several lemmas about the properties of labelled interval sets.

Example 3.2.1. For the shape A = (4,4,4) with snake sequence LLLORRR, Fig-

ure 3-2 shows some labelled interval sets. In the top left we have (—1)*Dz? =

1324zt = —282%. In the top right we have (—1)Pz? = (—1)%z323z; = 23x;.
a“ah ab a*a“h ab

In fact in every row the term (—1)*®)z% in the left column is exactly the negative of

the corresponding term (—1)“®Pz7 in the right column.

a

LLLORRR LLLORRR
LLLORRR LLLORRR
LLLORRR LLLORRR

Figure 3-2: Some labelled interval sets of the shape 444

Lemma 3.2.1. Fiz a shape X\. Then S.(—=1)*Dzl = 0, where the sum is over all

labelled interval sets of X such that the labels are not distinct.

Proof. We give a sign reversing involution on these labelled interval sets. Examine a
specific labelled interval set Z. Since we are dealing with straight (non-skew) shapes,

we know by Corollary 2.1.2 that the snake sequence has all the ’L’s before any of the
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'R’s, or ux < v;. So any two intervals 7 and 7(> @ say) either intersect (Ui < uy <
v; < ;) or are nested (u; < u; < vj < v;).

Let o be some label which is repeated. The intervals in 7 are ordered by where
they start, so identifying the first two intervals i and J(> ) labelled by a is well
defined.

Simply change the interval (ui,v;) to (uy,v;) and (uj,v5) to (uj,v;), while pre-
serving the label a. Where the intervals start remaijns unchanged, so these intervals
remain the first two intervals labelled by a. So this operation is an involution. Note
that if the intervals initially nested, they now intersect, and if they initially inter-
sected, they now nest. In other words the number of crossings has changed by one,
and so this involution is sign reversing. The rows of Figure 3-2 are some examples of
this involution (if @ # c).

Thus given any labelled interval set with repeated labels, there is a unique labelled
interval set with one more (or fewer) crossings, and so the sum of all such terms

(=1)@ 27 is zero. O

Fix a shape A. Let T be a border strip tableau of shape A. Recall that
ht(T) = > ht(B),
B

where B ranges over all border strips in T and ht(B) is one less than the number of
rows of B. Define z()) to be the height ht(T') of a “greedy border strip tableaun” T
of shape A obtained by starting with A and successively removing the largest possible
border strip. (Although T may not be unique, the set of border strips appearing in
T is unique, so ht(T) is well-defined.)

From Stanley [11, Theorem 5.2] we have that
k
S = (-1 > COR | P
I:{(ul,vl),...,(uk,vk)} 1=1
where 7 ranges over all interval sets of A For another shape 4, define ¢, to be the
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coefficient of g, in the above sum , i.e.

6 = (=1 3 (1),

I

where the sum is over all interval sets of type .

Lemma 3.2.2. ¢,p, = (—1)*V Y (—=1)*DzT, where the sum is over all labelled in-

terval sets of type L.

Example 3.2.2. Examine the shape A = (4,4, 4) with snake sequence LLLORRR
as before. In particular, consider the interval set {(1,7), (2,5),(3,6)} of type (6,3, 3)
labelled by (a,b,c). This interval set is illustrated in Figure 3-3. If a = b = ¢ then
27 = z!? and the sum over all such labellings will give z}? + z3* + --- = m(a). If

a = b # ¢ the sum over all such labellings will give z8z}z3 + a8z3z3 + 2§23z + - =

oz +2izi +z023 4+ - - = myg3. Similarly if a = ¢ # b we will get mg3, and ifb=c # a
we will get 282323 + z8zdxd + - - = 22825+ - = 2mge. Finally if the three labels are
distinct, the sum will give 287323 + §x3z3 + -+ = 2mg33. So the sum over all such

labellings is m12) + 2meg + 2Me3 + 2Mga3 = Pe3s.

ST TSN

i LLORRR

Figure 3-3: A labelled interval set of the shape 444

Proof. We need to show that for every interval set Z of type u, > 27 = p,,, where the
sum is over all labellings of Z. First note that the intervals can be ordered largest
first and left to right among intervals of the same length. So the ith interval is well
defined, and has length p,.

By definition p, = pu,pu, - - Puyy = (zy" + 2yt + ) (2" + 1.1212 +-- ) T (I?E(p) +

e ()

ity each

zh'™ + ...). But if we expand this product into monomials zf'z? - - -z
monomial corresponds uniquely to the labelling of Z where the jth interval is labelled

by i;, and so occurs exactly once in ) z* as required. O
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Given a partition p, let m,(p) = #{7 : p; = i}, the number of parts of p equal to

Lemma 3.2.3. c,mq (u)!ma(p)! - --m, = (—1)"N 32 (=1)*Dz?, where the sum is over

all interval sets of type p with labellings unth no label repeated.

Note that we have already demonstrated this result in Example 3.2.2. Indeed for

that interval set when the labels were all distinct we saw that Y 27 = 2mgas.

Proof. Fix an interval set Z. We need to show mi(p)!ma(p)!---m, = 5z where
the sum is over all labellings with no label repeated. As before we can order the

intervals and say that the ith interval is labelled by ;. Note that if yu; = p;41, the

two labellings (@, @g, . . ., @, @ji1, . . .) and (a1, g, ..., @41, @), .. .) both produce the
same term % = xhigh? .- Sowehave Y, vzt =30, o my(p)ima(p)! -2t

where we impose the condition that if p; = pjpa, then 8; < G541

But by the definition of the m,, we have m, = E(ﬁ] B z? as required. O

3.3 A symmetric function identity

In this section we use the preceding results to give for each shape A a relation between

the power sum symmetric functions and the monomial symmetric functions.

Theorem 3.3.1. For each shape A, write the bottom Schur function §, = E” CuDy-

Then 3, cupy = 3, cumma ()!ma(p)! - - - my,.

Example 3.3.1. For A = (4,4,4) we have
5x = —Pe4a2 + Pe33 + D552 — 2P543 + Daad.
So our result states that

—Ds42 + Po3z + Pss2 — 2Psa3 + Pasa = —Meaz + 2migas + 2Mmssy — 2Miges + 6Myay.
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Proof. From Lemma 3.2.2 we have ¢,p, = (—1)*™M 32(=1)%z?, where the sum is
over all labelled interval sets of type p. But by Lemma 3.2.1 (—1)*?) Y3(—1)¢@)¢f = ¢
if we sum over all labelled interval sets with a repeated label, and by Lemma 3.2.3
(—1)2N (=1 B2 = ¢ ymy (u)mg(1)! - - - my, if we sum over all labelled interval sets

with no label repeated. So ), c.p, = 3, cuma(p)!ma ()l - my,. O

Suppose that symmetric functions f = _ d,p, and g = >, €uPy are such that
Do Guby = X2, duma(p)tma(p)! - -my and 37 eup, = > euma(w)lma ()t - - my,.
Then clearly we have }° (d, + eu)py = 32, (dy + eu)ma(u)tma(u)! - - -m,. We have
shown in Chapter 2 that the space of Bottom Schur functions is spanned by {5, : v -

n, rank(v) = k and 4(v) = k} and has dimension

(v
d(n) =Y per(n — k).
k=1

Therefore Theorem 3.3.1 gives d(n) “linearly independent” identities for each n. How-

ever, there are more such identities. For example,

D511 — 3P421 + P33y + Pagz = 2Mis11 — 3Mygor + 2misa; + 2mgge

is not generated by our results (when n = 7 the rank of A is at most 2). Let R,,
be the transition matrix from the power sum symmetric functions to the monomial

symmetric functions, ie
Dr = E R)\pmu-

ukn
Let R’Au be the same matrix except with R}, = 0. It is easy to see that the nullspace of
% corresponds to all identities of this form. We have given a combinatorial interpre-
tation for certain basis vectors of this nullspace; finding a combinatorial interpretation

for the remainder is an open problem.
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