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Abstract

We study the interaction between settling particles and a stratified ambient in a va-
riety of contexts. We first study the generation of large scale fluid motions by the
localised release of a finite mass of particles in the form of plumes or gravity currents.
We present the results of a combined theoretical and experimental study describ-
ing the evolution of particle clouds formed by the release of heavy particles. In the
early stages of motion, particle clouds behave as turbulent fluid thermals; however,
their radial expansion eventually stops and particles settle from the base of the cloud
at their individual settling speed. We focus on deducing a criterion for the various
modes of particle deposition from particle clouds in a stratified ambient. We proceed
to study the deposition patterns resulting from particle-laden gravity currents that
spread horizontally when released in a particle-free ambient. Using a box-model, we
focus on bidisperse gravity currents and examine the resulting particle distribution
and maximal deposit length. We then turn to suspensions where particles are ini-
tially present throughout the fluid. The simultaneous presence of particles and of a
stratified ambient may lead to behaviour analogous to double-diffusive systems, with
particles playing the role of a diffusing component. We examine the linear stability
of the settling of a particle concentration gradient in a stratified fluid. Numerical
simulations allow us to determine the stability of the system for a broad range of
particle settling speeds and diffusion coefficients. We then report on layering arising
from sedimentation in a density stratified ambient beneath an inclined wall. From
our experimental study, we describe the series of horizontal intrusions formed by
particle-free fluid intruding at its level of neutral buoyancy. We present numerical
models describing the time evolution of the concentration of particles and the layer
formation. Finally, we present an experimental and theoretical study of the combined
influence of hindered settling and settling speed variations due to an ambient stratifi-
cation. We develop a criterion for the stability of a suspension settling in a stratified
ambient and experimental observations allow us to qualify the main features of this
instability.
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Title: Associate Professor of Applied Mathematics
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A schematic illustration indicating the stability of a uniform particle
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in (d). Scale bars in figures (ab,c) are lcm long. The formation
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Chapter 1

Introduction

Sedimentation in stratified fluids is a problem of primary environmental importance.
The interaction of particulate matter and density gradients arises in a number of geo-
physical contexts. In the oceans, the settling of particles is important in the dynamics
of coastal currents (Drake 1971), fluvial plumes in estuaries (Wright 1977) and tur-
bidites (Parker et al. 1987). Large numbers of microorganisms in the oceans may also
be described as suspensions (Pedley & Kessler 1992). Examples of sedimentation in
the atmosphere include flows forced by volcanic ejecta (Sparks, Carey & Sigurdsson
1991, Woods, Holasek & Self 1995), dust storms (Simpson 1987) and urban pollu-
tion (Fernando et al 2001). Solid Earth also provides examples of sedimentation: the
interaction of settling particles with stratified fluids has been considered in the chem-
ical differentiation of the early Earth (Solomatov, Olsen & Stevenson 1993) and in
the context of magma chambers where crystals and bubbles of low viscosity fluids are
present (Huppert & Sparks 1984, Greenough, Lee & Fryer 1999). Particle-laden flows
also arise in industry, for example in a variety of centrifugation processes (Ungarish
1993) and in the disposal of waste in the oceans and atmosphere (Fischer 1971).
Suspended particles may behave in two qualitatively different ways. If particles do
not generate fluid motions on a scale much larger than that of an individual particle,
they are said to be dynamically passive. The transition between dynamically active
and passive suspended particles typically occurs when the velocity of the fluid motions
due to the presence of particles exceeds the individual particle settling speed (Ungarish
1993). When particles are dynamically passive, the motion of the fluid is dictated
by factors independent of the presence of particles (density differences, boundary
conditions etc) and the particles are transported by the fluid and settle under the
action of gravity (Ungarish 1993). Examples where particles are dynamically passive
include particle-laden gravity currents driven by large temperature or compositional
differences (Simpson 1987) and crystals in suspension in magma undergoing thermal
convection (Martin & Nokes 1988). If however the particle concentration is sufficiently
non—uniform, particles may be dynamically active and drive large scale fluid motion.
For example, particle-laden fluid may drive turbidites (Parker et ol. 1987), volcanic
ash can generate large atmospheric flows (Sparks, Carey & Sigurdsson 1991) and a
localised release of particles may gencrate particle clouds moving much faster than
individual particles (Slack 1963). Random particle concentration fluctuations may
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also occur in a suspension, leading to convective motions on the scale of the container
(Hinch 1977).

The initial distribution of particles may also be divided into two categories. If
particles are everywhere present in the fluid, the suspension is treated as a single
fluid of varying particle concentration and whose properties (density, viscosity) are
determined by both the fluid and solid phases. Such a description of the fluid is
appropriate for a variety of industrial separation processes (Kinosita 1949), crystals
settling in magma chambers (Sparks et al. 1993) and microorganisms in the oceans
(Pedley & Kessler 1992). However, if initially particles are only present in a confined
area, the particle-laden fluid may behave as a second phase of fluid. Particle-laden
and particle—free fluid then behave as two miscible fluids of different densities, with the
additional feature that particles may settle out of suspension. The release of particles
in a localised region arises in a number of geophysical and industrial settings; for
example when fluvial plumes enter into the ocean (Wright 1977) and industrial waste
is discharged into rivers and oceans (Biihler & Papantoniou 1999) or the atmosphere
(Fischer 1971).

In many physical settings, the suspending fluid through which particles settle is
not homogeneous. For example, stable stratifications are ubiquitous in lakes, which
are often thermally stratified (Monismith 1985) and in the oceans, where both heat
and salt variations typically contribute to density gradients (Schmitt 1994). Over
scales relevant to the dynamics of volcanoes, the atmosphere is stably stratified due
to pressure variations (Sparks et al. 1991). Magma chambers may also contain
large density variations, due to gradients in temperature and chemical concentrations
(Hodson 1998). These stratifying agents (temperature, salt, chemicals) are advected
by the fluid and subject to diffusion owing to Brownian motion (Einstein 1956). An
ambient density stratification may have a significant influence on the evolution of
a suspension and elucidating this influence in a variety of physical settings will be
the focus of this thesis. We will examine the influence of particles on a number of
classical fluid dynamics problems: fluid thermals, gravity currents and boundary-
driven flows. We also study the influence of an ambient stratification on classical
suspension problems: the Boycott effect, settling of a particle concentration gradient
and the effects of hindered settling.

We begin by studying the release of a finite mass of negatively buoyant fluid, a
so-—called fluid thermal (Scorer 1957), within a homogeneous or stably stratified envi-
ronment. The dynamics of fluid thermals have been studied extensively (Woodward
1959, Turner 1973). If a sufficiently large mass of negatively buoyant fluid is released,
that is if Re = Ub/v > 1000, with {7, b and v the velocity, radius and viscosity of the
heavy fluid, then the fluid sinks as a turbulent thermal. A heavy thermal grows by
turbulent entrainment of ambient fluid and its radius increases linearly with distance
from the source. As a consequence of entrainment, the density difference between
the thermal and the ambient decreases with distance from the source. If the thermal
evolves in a stratified environment, the buoyancy of the thermal is continually reduced
until the thermal attains a level of neutral buoyancy (Morton, Taylor & Turner 1956).
At that point, the thermal briefly keeps sinking owing to its momentum, but its buoy-
ancy becomes positive, forcing the thermal to rebound. Oscillations about the neutral
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buoyancy height ensue until momentum is sufficiently dissipated. The thermal then
spreads as a gravity current.

The presence of particles as a source of buoyancy complicates this physical picture.
Clouds of particles may settle significantly faster than individual particles and their
motion resembles that of fluid thermals, as was first pointed out by Slack (1963).
Slack also noticed that at a certain distance from the source, called the fallout height,
the radial expansion of the cloud stops. The particles then settle from the base of
the thermal and form a bowl-shaped swarm that descends at the settling speed of
individual particles. Particles thus initially behave as in dilution and contribute to
the buoyancy of the thermal, before exiting the cloud when their individual settling
speed becomes comparable to that of the cloud. We present in chapter 2 the results
of a combined theoretical and experimental study aimed at elucidating the mixing
processes accompanying the settling of particle clouds in homogeneous and stratified
ambients. In §2.2, we present our theoretical model and numerical simulations of
the progression of a particle cloud. Comparison with experiments described in §2.3
enables us to validate our model in the case of both homogeneous (§2.4) and stratified
ambients (§2.5). The broader relevance and applications of this work are considered
in §2.6. Particular attention is given to deducing criteria for the various modes of
particle deposition from particle clouds in a stratified ambient. Our model allows us to
determine whether a particle cloud will leave a localised deposit or alternatively reach
the lower boundary while remaining particle-laden, thus giving rise to a particle-laden
gravity current.

To fully describe the shape of deposits left by particle clouds, an accurate de-
scription of the deposits resulting from particle-laden gravity currents is required.
Gravity currents occur throughout nature and commonly encountered examples in-
clude rivers flowing into the sea, lava flows and storms in the atmosphere (Simpson
1987). By definition, a gravity current occurs when relatively dense fluid is released
and spreads beneath a lighter fluid. The gravitational force then acts to generate a
horizontal pressure gradient that drives flow and thus decreases the potential energy
of the system. The first type of gravity currents to be studied consisted of a con-
stant volume of dense fluid spreading over a flat surface. This scenario was studied
in the context of toxic gas release by Von Kirman (1940) who derived a condition
on the velocity of the nose of the current. Benjamin (1972) later performed a more
thorough analysis and corrected the derivation of Von Kdrman, although his result
was identical. A similarity solution valid for long times was derived by Hoult (1972)
who was interested in the spreading of oil over water, A particularly helpful tool, the
box-model, was introduced by Huppert & Simpson (1980); the assumption that the
current is flat at all times allows great simplifications and closed form solutions in
many instances, and predicts the main features of the flow to a remarkable accuracy.

Many gravity currents carry small particles in suspension. Rivers are usually
sediment laden (Parker et al. 1987), powerful storms carry dust and water contain-
ing industrial waste is particle-laden (Simpson 1987). When the density difference
between the current and the ambient is mostly due to compositional or temperature
differences, as may be the case when fresh rivers enter the ocean, the particles are pas-
sive and are simply carried by the gravity current. However, other gravity currents are
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driven by suspended material, i.e. the density difference between the current and the
ambient is mostly due to the presence of particles in suspension. Examples of particle—
driven gravity currents include flows generated by volcanic ashes (Sparks, Carey &
Sigurdsson 1991) and underwater turbidites (Parker et al. 1987). Because the den-
sity difference between the current and the ambient is not constant, particle-laden
gravity currents do not yield a similarity solution and one must resort to box-models
or numerical simulations to elucidate their dynamics. Bonnecaze, Huppert & Lister
(1993) performed a numerical study of the horizontal spreading of suddenly released
particle-laden fluid using the shallow-water approximation. Moodie (2000) later sug-
gested the use of a time—dependent settling speed in order to take into account the
time-dependent level of turbulence in the system. More recently, three dimensional
simulations of particle-laden gravity currents have allowed a more precise study of
the shape of the nose and of lateral instabilities (Necker et al. 2002), but such sim-
ulations are still limited to relatively low Reynolds number currents (Re = 2000).
The influence of the Earth’s rotation on large scale particle-laden gravity currents
was studied using the shallow-water approximations by Hogg, Ungarish & Huppert
(2001).

Most of the earlier studies of particle-laden gravity currents have focused on
monodisperse suspensions, where particles are all of the same size and density. While
this is a natural first approximation, geological applications of gravity currents often
require a more detailed description of the deposits resulting from polydisperse grav-
ity currents (Kneller & Buckee 2000). In chapter 3, we focus on deposition patterns
resulting from turbulent and laminar gravity currents containing bidisperse sediment,
i.e. two different types of particles. In §3.1, we present new analytical results for the
length of deposits resulting from particle—driven currents by considering a box—model.
Numerical simulations of deposits left by bidisperse gravity currents are presented for
turbulent (§3.2) and laminar flow (§3.3) and allow for a better understanding of the
impact of polydispersity on the shape and particle distribution of deposits resulting
from polydisperse gravity currents.

We then turn our attention to flows where particles are initially present throughout
the fluid. We consider suspensions settling under the influence of gravity through an
ambient density stratification associate with a gradient of a diffusing component such
as a solute or heat. The simultaneous presence of settling particles and of a diffusing
component may result in flows reminiscent of double-diffusive systems. Double-
diffusive systems are marked by the presence of opposing gradients (or jumps) of
two diffusing components, such as heat and salt (Turner 1985). Such systems are
particularly relevant in oceanography, where both temperature and salinity gradients
may be present (Schmitt 1994) and also arise in magma chambers where two or morc
solutes may be present (Spera 1986).

Instabilities relying on the difference in the diffusivity of the two components may
be observed in double—diffusive systems. If hot and salty fluid overlies cold and fresh
fluid, instabilities may develop even when the total density profile is stable (Stommel,
Arons & Blanchard 1956). Because the diffusivity of heat, xr, is much larger than
that of salt, g, a sufficiently small fluid parcel displaced downward will quickly adjust
its temperature to that of its surroundings while remaining saltier than neighbouring
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fluid. The fluid parcel thus becomes heavier and its downward motion is amplified.
Fluid parcels displaced upward similarly see their motion amplified and long, thin
tubes of fluid alternately rise and sink (Veronis 1968). The so—called salt-fingers thus
increase significantly the vertical transport of heat and salt (Schmitt 1979). The size
of the fingers, &, must be such that the typical advection time of a finger is larger than
the typical diffusive time scale of heat §2 /6T € W/§, with W the vertical velocity of
the salt—finger, but smaller than the typical diffusive time scale of salt W/s < 6*/kg.
(Tritton 1988). The opposite scenario, where cold and fresh fluid overlies hot and
salty fluid, may also be unstable, A fluid parcel displaced downward again adjusts
its temperature faster than its salinity. Being fresher, it becomes lighter than its
surroundings, rises and overshoots its initial height. The repetition of this process
amplifies small disturbances and generates oscillations of growing amplitude (Baines
& Gill 1969). '

Particles settling in a density gradient may play the role of the slowly diffusing
agent in a double-diffusive system. Particle-fingers, the analog of salt-fingers, have
been observed experimentally when particles settle across a density interface in a
quiescent fluid by Green (1987) and at the base of a spreading gravity current by
Maxworthy (1999) and Parsons et al. (2001). Particles may also act to stabilise an
unstable ambient stratification as they settle in a light fluid underlying a heavier fluid.
Convective plumes then form above the suspension as particles settle and release light
fluid (Huppert et al. 1991).

The diffusion coefficient of particles in suspension may be much larger than what
would be expected from Brownian motion (Caflisch & Luke 1985). For very small
particles, of the order of 10nm, Brownian motion is dominant and determines the
magnitude of the effective diffusion coefficient. However, for larger particles, settling
velocity fluctuations due to the presence of neighbouring particles, the so-called hy-
drodynamic dispersion effect, dominate Brownian motion (Ham & Homsy 1988). The
magnitude of the diffusion coefficient therefore depends on the settling speed, particle
radius and concentration (Mucha et al. 2003, Martin, Rakotomalala & Salin 1995),
Moreover, particle diffusion is typically anisotropic, diffusion parallel to the settling
direction being greater than that perpendicular (Nicolai et al. 1995).

In chapter 4, we examine the linear stability of the settling of a particle concen-
tration gradient in a stratified fluid. In the limit of particle settling speed going to
zero, the double-diffusive stability diagram is recovered (Baines & Gill 1969). The
dependence of the stability of the system on the particle settling speed is studied
numerically. We first review the main features of thermohaline instabilities in §4.2.
Assuming a constant settling speed, we then perform a linear perturbation analysis
of the system of equations considered by Baines & Gill (1969), with the addition of
a particle concentration advection term. We present the governing equations and
the method used to analyse their stability in §4.3. Numerical simulations allow us
to determine the stability of the system for a broad range of particle settling speeds
and diffusion coefficients and the results are presented in §4.4. We study the stabil-
ity of a particle concentration gradient settling in a uniform ambient and in stable
and unstable ambient stratifications. We also investigate the influence of the relative
magnitude of the diffusivity of particle concentration and ambient density.
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In double-diffusive systems, both salt—fingers and overstable oscillations eventu-
ally break down when the amplitude of the disturbances becomes too large. Horizon-
tal layers, between which discrete changes in fluid properties arise, are then formed,
(Turner 1985). Layers also form when a statically stable salinity gradient is heated
from below, as reported by Turner (1968) and Huppert & Linden (1979). Initially,
heated fluid rises to its level of neutral buoyancy, where the density difference due
to temperature balances that due to compositional differences. As time progresses, a
well-mixed layer forms in which the temperature and salinity become constant. This
layer then transfers heat to the overlying fluid and subsequent layers develop in turn
until the whole container is marked by layers. Heating a salinity gradient from the
side also generates layering (Huppert & Turner 1978). When a density gradient is
heated (or cooled) from the side, layers form simultaneously as fluid ascends along
the wall and intrudes at its level of neutral buoyancy (Hart 1971). Theoretical in-
vestigations into the origins of layers arising from sidewall heating or cooling have
shown that both shear instabilities and sideways diffusive instabilities may be present
(Thorpe 1969, Kerr 1989). The latter results from the presence of opposing horizontal
gradients of two components of different diffusivity and their mechanism is analogous
to that of salt—fingers.

The presence of a sloping boundary provides another means of generating hori-
zontal layers in a double—diffusive system. Sloping boundaries are generally present
in magma chambers (Martin & Campbell 1988) and arise in the oceans in the form
of inclined ice shelves. A stratified ambient beneath a sloping roof may also be found
in Antarctica’s lake Vostok, which lies beneath a few kilometers of ice (Wuest &
Carmack 2000). In a fluid stably stratified by a single component, convection devel-
ops beneath an inclined wall. Because of the no—flux requirement at the boundary,
contours of constant density (isopycnals) must meet the boundary at right angles.
Beneath the inclined boundary, in a stably stratified environment, fluid is thus heavy
relative to fluid in the bulk, causing it to sink along the inclined wall (Phillips 1970).
If the system is stratified with two components of markedly different diffusivity, the
convection that develops beneath the wall due to the faster diffusing component is
opposed by the density stratification due to the slower diffusing component. Conse-
quently, a series of intrusions proceed into the ambient from the sloping wall. This
phenomena was investigated experimentally by Linden & Weber (1977) and Turner
& Chen (1974), and theoretically by Chen (1971) and Paliwal & Chen (1977).

In chapter 5, we report layering that arises from sedimentation in a density strat-
ified ambient beneath an inclined wall. The so—called Boycott effect (Boycott 1920)
occurs when a suspension of relatively heavy particles underlies an inclined wall. Par-
ticles settle away from the wall, creating a layer of clear fluid that is buoyant relative
to the bulk fluid and so ascends. As it does so, it entrains fluid from the bulk and
drags particles upward until an equilibrium is achieved where the settling of particles
is countered by the vertical motion of the fluid. The presence of a stable ambient
stratification is expected to modify this physical picture. As fluid rises along the
wall, the density difference between fluid within the Boycott layer and the ambient
suspension will diminish. If fluid within the Boycott layer reaches its level of neutral
buoyancy, it will stall and we thus expect horizontal intrusions to appear. To veriy
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this physical picture, we performed a series of experiments described in §5.3 in which
particles settled in a salt stratified ambient. The observations and measurements
made are discussed in §5.4 and a model describing the time evolution of the con-
centration of particles in the presence of steady layers is presented in §5.5. We also
present numerical simulations capturing the formation of layers by the stratified Boy-
cott effect in §5.6. The relevance of this mechanism to layering in magma chambers
1s considered in §5.7.

In many instances, compositional variations in the suspending fluid affect the set-
tling speed of particles through their influence on fluid density and viscosity. When
the particle density is close to that of the suspending fluid, variations in the ambient
fluid density may significantly modify the particle settling speed. The dilution of un-
dersea sewage clouds (Fischer 1971) and suspensions of microorganisms in the oceans
(Pedley & Kessler 1992) are examples where the particle settling speed may vary sig-
nificantly over the course of the settling process. Viscosity gradients may modify the
particle settling speed of crystals sedimenting in magma chambers (McMillan, Long
& Cross 1989). The particle size may also evolve as particles settle, if melting or
crystallisation occurs; for example, significant particle size changes arise in the melt-
ing or formation of ice crystals in marine snow (MacIntyre, Alldredge & Gotschalk
1995) and during the sedimentation of crystals in magma (Cashman 1993). Bubbles
may also increase in size as they rise in the presence of a pressure gradient (Delnoij
et al. 1997). If particles settle due to centrifugation, the centrifugal force increases
with distance from the axis of rotation, and consequently the velocity of the particles
increases, as was studied by Essington, Mattingod & Frvin (1985) in the case of a
single particle.

The presence of neighbouring particles also modifies the particle settling speed
in a suspension. Hindered settling results from the fluid upflow generated in set-
tling suspensions. As the particle concentration increases, the fluid reflux becomes
larger, thus reducing the settling speed of particles in suspension (Richardson & Zaki
1954). Kynch (1952) examined the influence of hindered settling on the evolution
of a dilute suspension of heavy particles settling in a uniform ambient and found a
variety of non-trivial solutions. Starting from an initial particle concentration jump,
one of two things may happen: if the particle concentration Increases with height,
an intertnediate region forms, joining smoothly the two regions of different particle
concentration. However, if the particle concentration decreases with height, the con-
centration jump remains sharp and propagates as a shock. Concentration jumps may
also form from continuous initial particle distributions if the particle concentration
decreases sufficiently rapidly with height.

The combined influence of hindered settling and settling speed variations has not
been previously investigated. Chapter 6 is devoted to the theoretical and experimental
investigations of hindered settling in a stably stratified ambient. In §6.2, we review the
results of Kynch (1952) for suspensions in a homogeneous ambient before extending
them to the case of a stably stratified ambient in §6.3. The stability of the resulting
motion is discussed in §6.4 and §6.5 is concerned with the experimental verification
of these results for a suspension of latex particles settling in a stable density gradient.

We proceed by introducing a few general concepts and notation which will be
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used in later sections. We have tried to use the most commonly accepted notation,
however in many cases there is no unanimous choice and we fix here the notation to
be used in the remainder of the thesis.

1.1 General Considerations

Stable density stratifications are typically obtained through variations in the concen-
tration of one or more solutes such as salt or sugar, or through temperature variations.
The added density is assumed to be proportional to the concentration of the solute,
S, and to the difference in temperature between the fluid and a reference state,
AT =T - Ty,

pr = po(1 — 6AT + 3S) (L1)

where Ty, po are the temperature and density of the fluid in the reference state and o
and /3 are respectively the temperature and solute expansion coeflicients. For small
values of AT and S, o and 3 are constant to a good approximation (Handbook of
Chemistry and Physics 1986).

Once dissolved, the solute molecules are transported by the fluid. Consider a
container of height ~ in which solute is left to reach equilibrium under the combined
influence of gravity and diffusion due to Brownian motion. If we assume no horizontal
variations and a fluid at rest, the equation governing the concentration of solute is

8,5 — U,8,8 = k8,5, (1.2)

where U, is the settling speed of an individual solute molecule, # the diffusion coef-
ficient and z the height. The relevant boundary conditions are that of no solute flux
at the base and top of the container, —U,S = k8,5 at z = 0, h and the steady state

solution 1s
—-Usz

S(z) = Ae = (1.3)
where 4 is a constant depending on the initial concentration. As a measure of the
relative importance of settling and diffusion, we consider the ratio S(h)/S(0) = e~ ",
where we defined the Péclet number as Pe = U;h/k. If settling is dominant, as is
expected to be the case for large particles, Pe > 1 and S(h)/S(0) ~ 0. If on the
other hand diffusion is dominant, Pe < 1 and S(h)/S(0) ~ 1.

To evaluate the relative importance of settling and diffusion in terms of more
fundamental quantities, we use the Stokes-Einstein relation (McQuarrie 2000)

k=2Dh E, (1.4)

va
where v is the fluid viscosity, a the particle size, k = 1.38 x 10" JK ! is Boltzmann’s
constant, T is the temperature expressed in Kelvin and B is a constant of order one
whose value depends on the nature of the solute. If a single spherical particle is settling
in a uniform fluid at low Reynolds number (Re, = U,a/v < 1), its settling speed may
be found by neglecting the inertial response of the fluid and solving for the flow around
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a translating sphere. The drag on the particle is then found to be Fy = 6rpsraly,
where ¢ is the gravitational acceleration and ps the fluid density (Batchelor 1967).
Coupling this drag with the buoyancy force on a particle 7, = dra*Apg/3, where
Ap = p, — py and p, is the particle density, yields the Stokes settling speed for a
spherical particle -

9 2
U, = Apga (1.5)
Opsv
Using equation (1.4) and (1.5), we then find
3
h
Pe ~ 2P ghpy (1.6)

pfk}T

Estimating the temperature as 300K, the density of the fluid and particles to approx-
imately 1000kg/m?, Ap/p; to be of order one and the height of the container to 30cm
as would be the case in a laboratory setting, we find that the Péclet number is of
order one for a particle radius of the order of ¢ = 10nm. In most of the cases discussed
in this thesis, the radius of the sedimenting particles considered will be of the order
of lum or greater and Brownian motion may therefore be neglected. Conversely, for
simple solute molecules such as salt and sugar, the size of a molecule is typically
about Inm and the influence of gravity is negligible. The solute is therefore subject
to diffusion and transported by the fluid, but does not settle. The equation governing
the evolution of the solute concentration, and also the temperature distribution, in
an incompressible fluid is thus the familiar advection-diffusion equation

8,5+ VS = kV2S, (1.7)

1.1.1 Suspensions

Suspensions consist of a large number of settling particles transported by an intersti-
tial fluid. We denote by ¢ the particle volume fraction

Volume of particles
¢ = . (1.8)
Volume of suspension

If we denote the density of the fluid and of the particles respectively as p; and p,,
the density of the suspension is then

p=(1-)p;+dpy. (L.9)
Similarly, we define the volume-averaged velocity of the suspension as
U= (1~ )iy + ¢, (1.10)

where u; and i, are respectively the fluid and particle velocity fields. The particles
we consider here generally have a small Reynolds number (with the exception of some
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experiments presented in chapter 2)

U, — Ur)a
Re, = (up = ug)e <1 (1.11)
v
where u, and uy are the magnitudes of the corresponding vector fields. Inertia is
thus negligible when describing the motion of the particles relative to the fluid. We
therefore assume that the particles move with velocity

i, = i — uk, (1.12)

where the z—axis is in the direction opposite to gravity, g = —gk, (Ungarish 1993).

For example, if a suspension is left to settle in a fluid at rest, the average flow field
vanishes, @ = 0, while the particles settle under the influence of gravity, i, = —u,k,
and induce a fluid back flow, @y = —¢/(1 — gb)usfc, known as reflux. Fluid reflux acts
to reduce the settling speed of neighbouring particles and u, therefore depends on ¢.
The particle settling speed is thus usually written as

us = f(d)U; (1.13)

where f(¢) captures the influence of surrounding particles and Uy is given by equation
(1.5). The average settling speed is thercfore reduced as the concentration increases,
f(é) <1and f'(¢) < 0 (Richardson & Zaki 1954).

The influence of particle concentration on the viscosity of a suspension, and in-
directly on the settling speed, was examined by Einstein (1911) who estimated the
size of molecules by measuring the influence of dilute solutes on viscosity. He found
that for small ¢, the effective viscosity of the suspension, », is related to that of
the fluid phase, vy, through v/yy = 1 + 2.5¢ + O(¢?). The direct summing of the
contribution of neighbouring particles to the settling speed of an individual parti-
cle is divergent, but this problem was circumvented by Batchelor (1972) who used
a renormalisation method to find that in the limit of small particle concentrations,
f(¢) =1-6.55¢+0(¢?). A commonly accepted empirical formula valid for moderate
values of ¢ (0 < ¢ < 15%) is that of Richardson & Zaki (1954):

f@)=Q0-¢)" n=51+01 (1.14)

To describe flows in which the fluid motion is not necessarily parallel to that
of the particles, we use the Navier-Stokes equations, appropriate for fluids with a
linear stress-strain relation (Newtonian fluids). We also make use of the Boussinesq
approximation which states that density variations are only important through their
effect on the force of gravity. The governing equations are thus those of mass and
momentum conservation (Batchelor 1967)

Bup+ ¥ - [(1— ) sy + dpiiy] = 0 (1.15)
O+ 1 Vi = _Vp+pﬁgfc+uv2a (1.16)
0
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where p is the average pressure and p; a constant reference density. In the case of
small ¢ and if the suspending fluid is incompressible, we may approximate (1.15) by
the solenoidal condition

V.4a=0. (1.17)

The particle concentration is being advected with velocity us and is also diffusing,
with diffusion constant k4. The settling speed in a suspension is defined as the
average velocity of a large number of particles, but deviations from this mean valye
act to diffuse the particle concentration and are included in k¢ (Caflisch & Luke 1985,
Ham & Homsy 1988). For a < 10nm, Brownian motion determines k¢; however, for
larger particles k4 is dominated by random settling speed fluctuations due to local
variations in ¢ (Martin, Rakotomalala & Salin 1995). Consequently, particle diffusion
is anisotropic, diffusion parallel to the settling direction being typically greater than
that perpendicular kyo, = ®kyer, ® < 1 (Nicolai et al. 1995). The equation describing
the evolution of ¢ is thus

G+ V - [(d — usk)p] = kp(Bz + Pobyy) (1.18)

Random particle coneentration fluctuations in suspensions may cause density vari-
ations which in turn generate large scale fluid motions (Hinch 1977). Such variations
occur on the scale of the container size, h, and scale as A¢p,, ~ $/2a3/2h=3/2, thus
giving rise to convective motions of typical velocity Uy, ~ g'¢!/2a32h1/20-1 where
g s the reduced density of particles, g’ = g(p, — pr)/ps (Brenner 1999). We restrict
our study to systems where the particle size (~ 10™°m) and container size (~ 107 'm)
are such that A¢s, ~ 1077 is small relative to ¢ ~ 1072 and we thus neglect the
effect of random fluctuations. We also note that the presence of a large concentration
of particles, ¢ > 15%, in a Newtonian fluid may qualitatively alter the properties of
the fluid (specifically render it non-Newtonian), for example by giving rise to a finite
yield stress (Sigworth 1996). Throughout this thesis, we shall restrict our attention to
systems with small particle concentrations so that the resulting suspension behaves
as a Newtonian fluid.

Having established the governing equations of motion and the principal notations
used, we may now proceed with our study of sedimentation in a stratified ambient.
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Chapter 2

Particle clouds

2.1 Introduction

The sudden release of a large number of particles arises in a number of geophysical
and industrial settings, the most important example being the discharge of industrial
waste mnto rivers and oceans (Biihler & Papantoniou 1999). In the case of contam-
inated waste, the deposition pattern of the particles, as well as the fate of the fluid
with which they were in contact, are important considerations.

If the motion of an isolated mass of heavy fluid is sufficiently vigorous, the fluid
sinks as a turbulent thermal. The single governing parameter of the evolution of
a thermal in a homogeneous environment is the total buoyancy @ = ¢'Vp, where
9' = g(p—ps)/py is the reduced gravity, p the density of the thermal and Vo the initial
volume of the thermal, and p; the density of the ambient fluid. In a homogeneous
ambient, even though the density difference between the thermal and the ambient is
reduced owing to the entrainment of ambient fluid, the buoyancy, @, remains constant.
In terms of the distance from the source, z, and assuming a negligible initial radius,
we find by dimensional analysis that the radius, b, velocity, U, and reduced gravity,
g', of the cloud are given by

1/2
b= az, U~ @ , g~ Q (2.1)
z z

where « is a constant. As a function of time after release, we have
b~ Ql/‘ltl/z’ [J ~ Q1/4t1/2, gl ~ Ql/4t_3/2. (22)

The numerical value of the entrainment coefficient, a, has been measured by different
authors (Scorer 1957, Woodward 1959), with values ranging from 0.13 to 0.53 and an
average value close to o = (.25.

In a homogeneous environment, thermals thus grow indefinitely in size and theo-
retically reach infinite depth (although viscous forces come into play at long times).
However, if a sinking thermal evolves in a stratified environment, its buoyancy is re-
duced by the entrainment of light ambient fluid. The thermal eventually reaches
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a level of neutral buoyancy, Zy where its density matches that of the ambient.
Considering a uniform stratification, such that the Brunt-Vaisala frequency, N =
(9/p0)"%(dp;/dz)"/? is constant, dimensional analysis indicates that

1/4

Zy = Oy N3/2 (2.3)

where () is now the initial buoyancy of the thermal. Experimental measurements of
C, (Morton et al. 1956) yield a coeflicient of C; = 2.6 £ 0.4 for the mean neutral
buoyancy height.

This physical picture is appropriate to thermals with a relatively small density
difference to the environment and with little or no initial momentum. However,
the dynamics of momentum puffs, where the initial momentum is non-negligible are
slightly different. It was demonstrated experimentally (Papantoniou, Biihler & Dracos
1990) that the entrainment coefficient is reduced with increasing initial momentum.
Maxworthy (1974) studied vortex rings, the limit of no initial buoyancy, and Escudier
& Maxworthy (1973) investigated the influence of added mass, the mass of fluid
displaced by the cloud, on the dynamics of thermals. They also demonstrated that
the rate of growth of the thermal depends on the density difference between the
thermal and the ambient. However, their results indicate that after a distance of no
more than 10 initial thermal radius, linear growth of the thermal radius holds to a
good approximation.

If particles act as the source of buoyancy, the resulting particle cloud initially
behave as a fluid thermal. However, after sinking to a given depth called the fallout
height, Z;, the particles fall out from the bottom of the thermal and the radius of
the cloud remains constant thereafter. Particle clouds in a homogeneous ambient
were studied over a limited range (from 1 to 10) of particle Reynolds number by
Rahimipour & Wilkinson (1992). These authors studied the dynamics of a cloud
with initial radius by and made of N, particles of volume V, and with individual
settling speed U,. The buoyancy of the cloud is then @ = (p, — py)N,Vp/p and
the dynamics of motion were described in terms of a cloud number N, = UsboQ 12,
which may be seen as the ratio of the individual settling speed to the descent speed
of the cloud when seen as a thermal. For N, > 1, the particles were observed to
fallout from the cloud at their individual settling speed. For N, < 1, the dynamics of
the cloud were well described by that of an equivalent fluid thermal. Particle clouds
were thus seen to go through three different phases. First the ballistic phase, where
the cloud accelerates and entrains relatively little ambient fluid since the motion 18
not vet turbulent. This phase is typically short and the cloud progresses only a few
cloud radius while in the ballistic phase. Once turbulence is well established, the
clouds enter a self-similar phase where the motion closely resembles that of a fluid
thermal. Finally, in the dispersive phase, the particles become separated from the
entrained fluid and settle with speed U,. Experiments were performed in the case of
two-dimensional particle thermals (Nakatsuji, Tamai & Murota 1990). The resulting
deposits were seen to depend critically on the ratio of the fallout height to the height
of the container, Z;/h. If Z; < h, the deposit is localised, while if Zf > h, the cloud
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spreads upon reaching the bottom of the container, giving rise to a doubly-peaked
deposit,

The recent study of Ruggaber (2000) shows that the assumption of linear en-
trainment may fail if the velocity of the cloud drops below a critical value, The
entrainment coefficient is then seen to drop from o = 0.25 by roughly 30% to values
consistent with studies of vortex rings. The diminution of the entrainment coeflicient
was also observed and quantified as a function of the cloud number by Rahimipour &
Wilkinson, (1992). Similarly, in the case of two dimensional clouds, Noh & Fernando
(1993) concluded that the entrainment coefficient depended on the particle Reynolds
number,

The case of a stratified ambient has received relatively little attention, despite
obvious applications in the oceans and atmosphere. Luketina & Wilkinson (1994)
considered a sediment cloud settling in a stratified ambient. They observed that
the cloud progresses downward until reaching the fallout height, at which point the
particles exit the cloud. The fluid remaining in the cloud then rises and oscillates
about its rebound height, Zg, at which point is spreads as a gravity current. The
frequency of oscillation is near the Brunt-Viisils frequency, N. The authors suggested
the importance of a stratified cloud number, N, = USQEIMN_I/Q, noting that the
fallout height appeared to decrease with N,.

In this chapter, we examine the settling of a large number of heavy particles
locally released in a homogeneous or stratified ambient. We consider cases where the
motion is initially sufficiently vigourous that the particle cloud assumes the form of a
turbulent thermal. An experimental study, complemented by numerical simulations,
allow us to obtain an accurate picture of the resulting flow and deposition pattern.
Most of the results presented in this chapter may be found in a paper by Bush,
Thurber & Blanchette (2003). Our theoretical model and numerical simulations are
described in §2.2. The experimental techniques employed in our study are detailed
in §2.3. Our study of particle clouds settling in a homogeneous fluid is described in
§2.4, while stratified environments are discussed in §2.5. The broader relevance and
applications of this work are considered in §2.6.

2.2 Theoretical model

We consider the release of N, heavy particles into an ambient fluid of density ps. The
particles have radius o and density p,. The ambient fluid may either be homogeneous,
in which case pf = py, of stratified, in which case pr = po(1+ N%z), where z increases
with depth from the point of release, z = 0. The result is a particle cloud of initial
buoyancy Qo = ¢'Nyppdna®/(3ps) = ¢'Vy, where ¢ = 9(pp — po)/po and Vj is the
initial volume of the particles. The Reynolds number of the cloud, Re = Ub/v, where
b is the half width of the cloud, is assumed to be large, so that the cloud initially
evolves as a turbulent thermal. The cloud thus entrains fluid as it descends and its
radius grows linearly with distance from the source, b = az.

The cloud is initially assumed to be in a self-similar phase; consequently, the
horizontal entrainment velocity is linearly related to the vertical velocity of the cloud
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through u = aw (Morton 1956). The mass flux into the cloud yields (the cloud mass
being M = pV')

d:M = dy(pV) = n dmapr?|aw] (2.4)
where p is the mean density of the cloud and 7 is a shape factor such that the volume
of the cloud is given by V = n‘%r:”. The cloud is thus treated as an oblate ellipsoid
with horizontal radius r and height nr. Scorer (1957) and subsequent studies on
thermals indicate that V' = 3r* and we hence take n = 9/(4n) in what follows. The
mean cloud density is defined as

p= oyt + 01— 0) (2.5)

where ¢ is the particle fraction in the cloud and p, is the average density of the fluid
present in the cloud. In a homogeneous ambient, fluid within the cloud has the same
density as the ambient, p, = p;, and the buoyancy is thus independent of z.

In a stratified ambient, the z-dependent buoyancy is given by

(e —p)Vyg
P (2.6)
ps(0)
Combining %pti = pf(O)NTzw, with equation (2.6), yields that the rate of change of the
buoyancy is
d,Q = -VwN>. (2.7)

Also, using Newton’s second law, we relate the cloud’s acceleration to the sum of the
buoyancy and hydrodynamic forces

4wV (p + ko)) = ps(0)Q ~ Capyrr*ul (2.8)
where k represents the added mass of the cloud and Cy is a drag coeflicient. While
Luketina & Wilkinson (1994) set C; = 1/2 and k = 1/2, values appropriate for a
rigid sphere at high Reynolds number, experimental studies in the context of vortex
rings suggest significantly smaller values. The results of Maxworthy (1974) derived
by assuming k = 0, suggest Cy = 0.02 while those of Ruggaber (2000) obtained with
particle clouds, actually yield negative values for both Cy and k, from which the
author concludes that the correct values must be negligibly small. Comparison with
our own experiments in §2.3 lead us to infer values consistent with the latter two
authors and we thus set £k = 0 and Cy = 0.02.

Equations (2.4-2.8) are non—dimensionalised using {,, = Q(I)MN’I/2 as a typical
length-scale, N=! as a time-scale, and p;(0) as a characteristic density. We define
a non-dimensional number 8 = g_lQé/ *N3%2 which represents the fraction by which
the ambient density changes between the level z = 0 and a typical neutral buoyancy
height. In non-dimensional form the governing equations are

d,V = n drar*|w| @ = —-Vuw diz =w (2.9)
V (ps(1 + k) + 82) dyw = Q — Capsrrw? 2 — BEwV — ps(1 + kywd:V (2.10)
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where p; = 1+ 82z and p = p; + 8Q/V denote the densities of the ambient and cloud
respectively and V, @, w and z are dimensionless. The particle fraction in the cloud
is given by

- PP

2.11
Py (2.11)
from which we may compute the density of the interstitial fluid in the cloud
p— prb
=P Pe? 2.12
=g (2.12)

When the vertical velocity of the cloud is exceeded by the settling speed of the
particles, the particles fallout and no longer contribute to the buoyancy of the cloud.
After fallout, we then redefine @ to be

_ (Pc - ﬂf)(V — (?50V0)9
Q= 55(0) |

This reduction of @) causes the cloud to rebound to its level of neutral buoyancy. We
considered the final height of the cloud to be the rebound height. In order to compare
with experimental results, we define the fallout height as the position of the center
of mass of the cloud plus nr at fallout. This corresponds to the leading edge of an
axisymmetric cloud of horizontal radius r.

(2.13)

Numerical simulations of the full system of equations (2.10) were performed using
a fourth order Runge-Kutta integrator. The cloud was started from rest (w =0 and
z = 0) and due to our non-dimensionalisation, Q(0) = 1. The non dimensional initial
volume of the cloud is given by V(0) = VjQy**N%?2, where V! is the dimensional
volume. The non-dimensional settling speed corresponds to the cloud number N, =
UlQy* N=1/2 where U” is the dimensional settling speed. The values of 3, V(0) and
N, were varied over a range encompassing that used in our experiments.

In order to assess the reliability of our simulations, we first explored the small 3,
small V4 limit, corresponding to a uniform ambient. The similarity solution described
by equation (2.2) was well recovered in the limit of a small initial volume. We then
proceeded to investigate the behaviour of a buoyant thermal in a stratified ambient, in
the absence of particles. The cloud was seen to reach and overshoot its level of neutral
buoyancy Zy and thereafter to oscillate about Zy. The period of oscillation was
slightly more than 2N~ as was the case in the simulations of Luketina & Wilkinson
(1994). The height of the intrusion depended largely on the entrainment coefficient
a. In particular, it was seen to be 4.04 QY*N Y2 for o = 0.15 and 1.79 Qi N1/
for a = 0.35. However, using the average value measured in our experiments, namely
a = 0.25, the intrusion height was 2.79 Qf/* N=1/2 which is seen to agree well with
experimentally measured values of Zy (Morton 1956). The intrusion height was
also seen to be rather insensitive to changes in & and Cq, as we expect since these
parameters influence the velocity of the cloud but not its composition.

35



a (om) U, {en/5) e o) Rey
0.1095 + 0.01 274+14 2.5 300 + 40
0.077 + 0.008 220+14 2.5 170 &+ 25
0.065 & 0.005 1824+ 0.8 2.5 118 =12
0.055 = 0.005 16.4 £ 0.8 2.5 90 + 12
0.039 &+ 0.004 11.3+0.5 2.5 44+ 6
0.023 £ 0.002 6.6 +£0.25 2.5 1542
0.016 £+ 0.001 7.7+ 0.25 4.2 12.3+1.2
0.010 £ 0.001 44+0.10 4.2 4.4+0.7
0.005 + 0.001 1.89 £+ 0.05 4.2 0.94+0.2
0.003 £+ 0.0005 1.62£0.05 4.2 0.48+ 0.1
0.002 £ 0.0004 0.78 £ 0.05 4.2 0.15 £+ 0.03

Table 2.1: Properties of the glass spheres used in the experiments: radius a, density
pp, measured settling speeds in water U, and particle Reynolds number Re, = Usa/v.

2.3 Experimental method

We here briefly describe our experimental methodology. A cylindrical tank of diam-
eter 45 em and depth A = 90 cm was filled with water, or with a linearly stratified
saltwater solution obtained using the Oster double~bucket system (Oster 1963). The
cylindrical tank was housed in a rectangular casing filled with water in order to elim-
inate parallax effects. The payload was released by withdrawing a plunger from a
funnel in the center of the tank. The release was made precisely at the surface of the
water in order to minimise the initial momentum of the cloud. The resulting flow
was illuminated from the side by a light sheet, and recorded with a video camera
at sufficient distance (3-4 m) to eliminate errors associated with perspective. A grid
was placed on the front face of the tank which, together with a time code generator
on the video signal, enabled the computation of cloud speeds. Reviewing the video
frames also enabled us to identify the fallout and rebound heights.

The properties of the eleven types of particles used (obtained from MO-SCI Cor-
poration) are detailed in Table 1. The settling speeds, Uy, of the individual particles
were measured in water. The particle Reynolds numbers, Re = U,a/v, based on the
individual particle settling speeds U, ranged from 0.15 to 300. Payload masscs varied
from 0.2g to 50g. The payload also contained a small volume (typically 5-10 ml) of
water which served to completely wet the particles, and so avoid the delayed onset
of turbulence which typically accompanies dry particle relcases (Ruggaber 2000). A
few drops of dye were added to the payload in order to facilitate flow visualisation,
in particular allowing us to keep track of the fluid entrained into the particle cloud.

The virtual origin is defined as the position of the thermal source inferred by
extrapolating from its far-field form and assuming that the thermal motion is every-
where self-similar. Deviations of the thermal evolution from a self-similar structure
(characterised by nonlinear dependence of cloud width on distance from the source)
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in the vicinity of the origin typically lead to an offset between the real and virtual
origins. For example, the delayed onset of turbulence for the case of large payloads
of high density particles typically results in the virtual origin being displaced forward
relative to the real origin (and so to a positive virtual origin). In our experiments,
a rough estimate of the virtual origin could be obtained by tracing the far-field evo-
lution of the cloud, deducing a mean entrainment coefficient for the cloud In its
self-similar thermal phase, and extrapolating backward. As is typically the case in
experimental investigations of turbulent thermals, indeterminacy in the virtual origin
and variations in the entrainment coefficient are at once unavoidable and difficult to
distinguish, and are the dominant source of scatter in the data.

We assume in the present study that throughout the thermal phase, the particles
remain uniformly distributed throughout the cloud. A more detailed consideration
of the interaction between the fluid and particle dynamics within the cloud was per-
formed by Ruggaber (2000). Finally, the influence of the domain boundaries was
investigated. The entrainment into the plume was significantly reduced when the
plume width became comparable to half the tank width. This constraint limited the
parameter regime explored in our study.

2.4 Homogeneous ambient

In all experiments, the cloud Reynolds number was sufficiently large than the cloud
motion was turbulent. In agreement with the observations of Rahimipour & Wilkin-
son (1994), the cloud was seen to evolve through three successive phases. In the early
stages of motion, the ballistic phase, the cloud accelerates and entrainment of am-
bient fluid is small. The motion quickly becomes self-similar and the particle cloud
then behaves as a fluid thermal. Eventually, the cloud reaches the dispersive phase
where particles fallout from the bottom of the cloud. The latter two phases are easily
distinguished while the transition from the ballistic to the self-similar phase is more
diffuse. Following fallout, particles settle in a bowl-shaped swarm within which there
is little relative motion between particles. Particles first fallout from the center of
the cloud, where the motion of the vortex motion is downward. Along the rim of
the cloud, the vortex motion is upward, delaying fallout and thus causing the typical
bowl shape. After fallout, fluid in the cloud progresses as a neutrally buoyant vortex
ring (Maxworthy 1974).

2.4.1 Cloud width

We consider the maximal horizontal extent of the cloud to be the cloud width. The
evolution of the cloud width was investigated through video recordings. We notice
that although the cloud radius eventually increases linearly, the early ballistic phase
exhibits a slower increase. The distance required to reach the self-similar phase was
seen to depend on the initial payload size. In particular, for an initial mass of particles
of 20g. the virtual origin was seen to be 10cm above the real origin. We therefore
restricted our experiments to payloads of masses between 1 and 10g.
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Figure 2-1: Dependence of the entrainment coefficient « on the particles Reynolds
number, Re,. A characteristic error bar is shown.

In the self-similar regime, the cloud width grows linearly with distance from the
source. We measured an average entrainment coefficient oo = 0.25, with values ranging
from 0.12 to 0.32, as shown in figure 2-1. When measured at a given height in the
tank, the cloud width is expected to be independent of the initial buoyancy, provided
the cloud is still in the self-similar phase. This is evident from figure 2-2 where the
cloud width at respectively 30 and 50cm is plotted against cloud buoyancy. The
scatter of the data is associated with the scatter in the entrainment coefficient. The
data on the right of the dashed line is associated with clouds already in the dispersive
phase and whose width consequently depend on the initial buoyancy. Note that more
clouds are in the dispersive phase at z = 50cm.

2.4.2 Frontal position and cloud speed

Figure 2-3 illustrates the progression of the frontal position of the cloud, Z,r as a
function of time for three particle clouds with Re, = 0.94. The transition {rom the
selt—similar phase, where Zy; ~ t1/2 to the dispersive phase, where Zy ~ t, is ev-
ident. We note also that the ballistic phase is relatively short, and is shorter for
smaller payloads. Comparing the evolution of Zj; with our numerical simulations
allowed us to infer the added mass and hydrodynamic drag coefficients, k£ and Cy
respectively. Figure 2-4 illustrates the descent rate of the 7g particle cloud (corre-
sponding to the top curve in figure 2-3) plotted with the results of our numerical
simulations. The dashed line represents the numerical results deduced using the hard
sphere results (Cy = k = 0.5) proposed by Luketina & Wilkinson (1994). These
results are clearly unsatisfactory: the cloud sinks too slowly, and the fallout height
is thus underestimated. The solid line represents the numerical results obtained us-
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Figure 2-2: Dependence of the normalised cloud width 2b/z on the normalised cloud
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remains constant in the swarm regime (left of the dashed line).

Figure 2-3: Time evolution of cloud front position Z, /bo for three payload sizes: A
lg, o 5g and o 7g. In each case Re, = 0.94. Time is non—dimensionalised by the
bo/Us. Particles settle at their individual settling speed after an initial thermal phase
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where the velocity of the cloud scales as t=1/2.
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. Figure 2-4: The numerical simulation of the 7g payload (top curve in the previous
figure). The dashed line was computed with Cy = k& = 0.5, the solid line was computed
with Cy = 0.02, £ = 0. F indicates the fallout point.

~ ing the values proposed by Maxworthy (1974) and Ruggaber (2000): C; = 0.02 and
k = 0. The numerics satisfactorily match the experimental data: the predicted and
observed cloud speeds are consistent through both the cloud and swarm phases, and
the fallout height is well reproduced. We proceed by adopting the results suggested by
Maxworthy (1974) and Ruggaber (2000) Cy = 0.02 and & = 0, in all of our numerical
simulations of particle clouds.

_ The observed cloud speed I/ measured at two depths, z = 30cm and z = 50cm,
is plotted as a function of the cloud buoyancy in figure 2-5. The cloud speed is
normalised by the particle settling speed U,. In the self-similar regime, we expect a
dependence consistent with equation (2.1) and thus of the form
I 1/2 .
U _g? |

) 2.14
U, zU, ( )

The data presented in figure 2-5 confirms this relation for cloud in the self-similar
regime, and indicates that the coefficient Cy = (3.0 = .4). In the dispersive regime,
the speed is independent of cloud buoyancy, and is comparable to the settling speed
of the individual particles, /;. The solid lines correspond to the results of the our
numerical simulations, and indicate the dependence of the cloud speeds on height and
initial cloud buoyancy. Note that the speed is recorded sufficiently far from the source
. that it is independent of the cloud’s initial volume; consequently, the numerical lines
are independent of particle Reynolds numbers.
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Figure 2-7: Dependence of the fallout height on the number of particles released,
for large particle Reynolds. The dashed lines indicate the results of our numerical
simulations for three values of Re,. The offset of the numerical lines reflects the effect
of the finite initial volume of the cloud.

2.4.3 Fallout height

Previous studies of particle clouds indicate that particles fallout when the cloud ve-
locity matches the individual settling speed of particles (Biihler & Papantoniou 1999).
This suggests, from equations (2.1)

Ql/z
Zs = Oy (2.15)

In our experiments, Z; was taken to be the height at which particles first sepa-
rated from the (dyed) cloud fluid. Figure 2-6 illustrates the dependence of Z;/by on
QY?/(U,by), where we used the initial radius of the cloud, by, to non-dimensionalise
the results. A best fit line indicates a slope of 0.68. It may be seen that for low Re,, the
fallout height increases more slowly than predicted by equation (2.15). this behavior
was also observed by Noh & Fernando (1993) and was attributed to particle-particle
interactions at low particle Reynolds number (Davis & Acrivos 1985). Numerical sim-
ulations in the homogeneous case were seen to agree very well with equation (2.15)
and predict a coefficient C3 = 3.66. These may be seen as the dashed line in figure
2-6.

At high Re,, the settling speed Uy ~ V¢'a. Substituting for Us and @ = ¢'N,V;
equation (2.15) yields the strikingly simple result Z; ~ NI}/ %a. Therefore for large
Re,, the fallout height depends only on the number of particles released and on their
radius, but not on their density (or on the density of the fluid). Figure 2-7 indicates
the observed dependence of the fallout height on a and N, for particle clouds with
4.4 < Re, < 300, along with the results of our supporting numerical simulations.
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Figure 2-8: Dependence of the cloud number at fallout N, = U,bQ~Y2 on the particle
Reynolds number.

In both the experiments and numerics, the number of particles was calculated from
the initial cloud buoyancy, particle size and density (table 2.3). In numerical sim-
ulations, the initial cloud buoyancy was varied over a range corresponding to those
examined experimentally, and three particle sizes were chosen corresponding to par-
ticle Reynolds numbers Re, = 4.4, 15 and 300. The slopes of the three resulting lines
are seen to be equal to 1, in agreement with the predicted scaling. Our simulations
indicate that the spread in the data results from the wide range of Re, considered.
For larger initial cloud volumes, used for particles with large Re,, the virtual origin is
located further above the position were particles were released and the fallout height
1s correspondingly reduced. Nevertheless, the numerics and experiments both serve to
validate the proposed scaling, and indicate that the data may be described to leading
order by

Z;=(9£2) aN}? . (2.16)

In the parameter regime 1 < Re, < 10, Rahimipour & Wilkinson (1994), observed
that the transition from the self-similar phase to the dispersive phase arises at a
critical cloud number, N, = U;b/QY? = 1. Figure 2-8 indicates the dependence of
the critical cloud number on Re, in our experimental study. Over a considerably wider
parameter regime, 0.1 < Re, < 300, our observations emphasise the importance of a
cloud number criterion for particle fallout, and indicate a mean critical cloud number
of 0.8. This value is consistent with our inferred values of Cj in (2.15) and the
entrainment coefficient, N, ~ aCs. Finally, we note that as Re, increases, the critical
cloud number increases and approaches one, which again suggests the importance of
particle—particle interactions at low Re,.
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Figure 2-9: Dependence of the fallout height on the stratified cloud number N; =
U, QY4 N=1/2 for particle clouds in a stratified ambient. The numerical results are
denoted by a solid line. For large NV;, the influence of stratification. is negligible and
the fallout height is given by the homogeneous result (dashed line). The discrepancy
between numerics and theory suggests reduced entrainment for large Re,,; the dotted
line indicates numerical simulations with o = 0.17, the mean value appropriate for
12 < Re, < 44.

2.5 Stratified ambient

In the presence of a stratified ambient, the evolution of the particle cloud may be
significantly different. We consider a linear ambient stratification so that ps(z) =
po(l + N?/gz). We consider the settling speed U, to be approximately constant
throughout the settling process. This is justified by the fact that (p, — ps)/py is
only of the order of 5%. We therefore use the settling speed corresponding to the
top of the container where p; = pp. A new lengthscale results from the presence
of a stratification, Q/*N~1/2 approximately corresponding to the level of neutral
buoyancy of a fluid thermal, Zy, see equation (2.3). The ratio of the Brunt-Vaiséla
period, 1/N, to the time taken by individual particles to travel a distance Zy, is the
stratified cloud number N, = U,Q~*N~'/2 which determines the nature of the flow
(Luketina & Wilkinson 1994).

In the case N, > 1, the initial phase is similar to the motion of a particle cloud
in a homogeneous ambient. The cloud progresses downward as a turbulent thermal
until its velocity matches the settling speed of individual particles, at which point the
particles fallout of the cloud. the particles again settle as a bowl-shaped swarm and
give rise to a localised deposit. Following fallout, the fluid contained within the cloud
descends a short distance owing to its inertia and then ascends and oscillates about it
rebound height Zg. The frequency of oscillation is close to N and as the oscillations
are being damped, the cloud spreads as a gravity current. On the other hand, when
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N, <1, the clouds reaches, and overshoats, its level of neutral buoyancy Zx while
retaining its particles. As the cloud spreads as a particle-laden gravity current, the
particles rain—out thus giving rise to a much broader deposit. The fluid contained in
the cloud once again finds itself buoyant and rises to its rebound height Zx as in the
case Ny > 1.

The fallout height depends crucially on the stratified cloud number. For small /V,,
where particles settle relatively slowly, one expects the fallout height to corresponds
to the intrusion height of a fluid thermal in a stratified ambient. Conversely, for
large N;, where the particles settle relatively fast, one expects the fallout height
to be the same as it would be in a homogeneous ambient. Figure 2-9 illustrates
the observed dependence of the fallout height on the stratified cloud number. For
N, < 1, the particles fall out over the range of depths between the maximum depth
of penetration and the neutral height expected for an equivalent fluid thermal Zy =
(26 £ 0.4)QV*N~1/2. In the small N, large N, limit, one expects fallout to be
uninfluenced by the ambient stratification and so to arise at a height appropriate for a
homogeneous ambient. The dashed line in figure 2-9 corresponds to the homogeneous
fallout height, equation (2.15), with a value of C3 = 3.77 appropriate for particles
with Re, > 12.

The computed dependence of the fallout height on N, appears in figure 2-9 as a
solid curve. The numerical simulations indicate that the transition from the stratified
to the homogeneous fallout height occurs at approximately Ny = 2. A plausible
explanation for the discrepancy between the numerics and experiments evident in
figure 2-9 is a weak dependence of the entrainment coefficient o on the particle size,
as 1s evident from figure 2-9, where a is seen to decrease weakly with increasing
Rep. A smaller entrainment coefficient implies that the cloud buoyancy is reduced
relatively slowly: the cloud thus travels faster, and the fallout height increases. This
trend is evident in the homogeneous results of figure 2-6: smaller and larger particles
have fallout heights that are systematically lower and higher, respectively, than would
arise if the entrainment coefficient were independent of particle Reynolds number. A
similar trend can be observed in the experiments of Noh & Fernando (1993). In
figure 2-9, the numerical simulations, where o = 0.25 was considered to be constant,
thus systematically underpredict the fallout heights of the larger particles {larger
Ny values). The dashed line in figure 2-9 indicates the fallout heights predicted
numerically with an entrainment coefficient o = 0.17, the mean value appropriate for
12 < Re, < 44. This discrepancy emphasises the need for further investigation of the
factors influencing the magnitude of the entrainment into particle clouds. However,
even with a constant value of & = 0.25, our model vields general agreement with
experimental data.

2.5.1 Rebound Height

The fate of the fluid that comes into contact with the particulate matter may have
considerable environmental significance if the particulate matter is contaminated.
When the particles fall out of the cloud in a stratified ambient, the fluid contained
in the cloud is buoyant relative to the ambient, and so ascends to its rebound height
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where it intrudes. We here present a simple calculation which yields a new relation
between the rebound and fallout heights (Zr and Z; respectively).

The volume of the cloud, V(z), in the thermal regime is given by
V(z) = Cia®2®, (2.17)

where Cy is a constant shape factor, and we assume that the cloud is sufliciently
far from the point of release that V4 is negligible. In a linear stratification, py =
po(1 4 N?/gz), the rate of change of the total mass of the thermal, M (z), with depth
is given by

d, M = p(2)d,V = Cy3a32%po(1 + N?/gz) . (2.18)
Integration yields the mass of the particle cloud in its thermal phase as a function of
2
3 NZ 4
M(Z) = M() + 043063/30 (% + 4; ) . (219)

If we consider that the initial mass of the cloud was entircly due to particles, the
density of fluid within the particle cloud at a height z is

(5= MG~ Mo _ 3Cs0po(5 + 2G5 (2.20)
Pl ="y T Cio® " |

The density of the fluid contained in the cloud thus increases with depth at a rate
corresponding to 3/4 of that of the ambient:

pe(z) = po (1 + S—N—Qz) : (2.21)

This simple dependence allows us to relate the rebound height to the fallout height.
For simplicity, we assume that the fluid that remains following fallout does not mix
with the ambient during its ascent. It should then rebound to a height

3
Lr = ZZ . (2.22)
While Luketina & Wilkinson (1994), did not present their data in such a way that one
can infer the relative magnitudes of Zr and Z; in their experiments, it is noteworthy
that the one experiment presented in their figure 2 is reasonably well described by
relation (2.22).

In our experiments, Zr was taken as the mean height of the neutral cloud resulting
from the intrusion of the rebounded fluid, while the observed fallout height, 2% =
(14 an)Z; was taken as the base of the cloud at fallout, where na.Z; corresponds to
the thickness of the cloud at its fallout height. Our leading order result (2.22) thus
becomes, in terms of the observed fallout height

3 3 1

Z = — - -
BTy 41+ an

Z§ =~ 06377 . (2.23)
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Figure 2-10: Dependence of the rebound height, Zr on the observed fallout height,
Z}’, for particle clouds in a stratified ambient. o denotes a bowl fallout (Ny > 1); x
denotes a dispersed fallout (N, < 1); x denotes the intermediate cases. The dashed
line is the theoretical prediction Z, = 3/47; ~ 0.63Z7. The solid line indicates the
results of the numerical simulations including entrainment after fallout.

This relation between the rebound and fallout height appears as the dashed line in
figure 2-10 along with the the observed relation between the fallout and rebound
heights for both bowl and dispersed fallouts. The fact that Zp typically exceeds the
predicted value of 27, = 0.63Z7 is consistent with the rebounding cloud entraining
relatively dense fluid as it overshoots Z;, and also as it ascends to its rebound height.

We used our numerical model to investigate the influence of entrainment following
fallout. One expects that, as the cloud overshoots and rebounds, it will entrain
surrounding fluid, but that owing to reduced cloud speeds, the entrainment coefficient
o may be diminished. The case of no entrainment a = 0 reproduces the theoretical
prediction (2.23), and is represented by the dashed curve in figure 2-10. The case
of @ = 0.25 is represented by the solid curve which agrees well with our data. Our
results thus indicate that o = 0.25 is a good estimate even as the cloud overshoots
then ascends to its rebound height.

2.6 Discussion

In this chapter, we have described the evolution of heavy particle clouds in homoge-
neous and stratified fluids. In a homogeneous ambient, the particle cloud descends
as a fluid thermal until reaching its fallout height, Zs, where the particles settle out
of the cloud in the form of a bowl-shaped swarm. After fallout, the entrained fluid
continues its downward motion behind the particle swarm and evolves as a neutrally
buoyant vortex ring. The deposit resulting from a discrete release of particles in a
stratified fluid depends on the relative magnitudes of depth of the container h, the
fallout height and the stratified cloud number N, = USQEIMN‘”?. For N, > 1,
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Localised Dispersed Ring

deposit deposit deposit
(U5b0)2 3 —0.68 (Usb())2 B —0.68
Re, > 0.15|Q < 12 b NA Q> o ho
Uniform
environment
1 /h\? 1 /R\?
R 4 Ny < —{— NA N, — -
e P38l \a) ”>81<a>
1
Ny <1 NA Q< % hiN? Q> A h*N?
Stratified
environment
Q1/4 Us Q1/4 ; Us
Ny >2 h > BSW — O5ﬁ NA h < BSW - OOF

Table 2.2: Criteria for the three modes of particle deposition: a localised deposit, a
dispersed deposit, and a ring deposit arising from the cloud colliding with the bottom
prior to fallout. Criteria are expressed in terms of the initial cloud buoyancy ), par-
ticle radius a, initial cloud radius by, fluid viscosity v, layer depth h, reduced gravity
of the particles ¢’ and Brunt Vaisila frequency N. For large NV;, the homogeneous
criteria become relevant. NA denotes ‘not applicable’.

particles fall out before the cloud reaches its neutral buoyancy height and descend as
a swarm with little or no spread following fallout (Biihler & Papantoniou 1999). This
gives rise to a localised deposit, provided fallout occurs before the cloud reaches the
bottom of the container. After fallout, fluid entrained by the particle cloud ascends
and intrudes at a rebound height, Zg, somewhat less than 32, For N, < 1, the
particles settle out in an irregular fashion at a depth between the intrusion height of
an equivalent fluid thermal, Zy, and the maximum penetration depth. This gives rise
to a relatively broad deposit on the lower boundary. Again, entrained fluid ascends
to, and intrudes at, a height slightly less than %Z ~. When particles fall out from the
base of the spreading neutral cloud, they may not settle as individuals; rather, a con-
vective instability initiated at the base of the cloud by the presence of a region of high
particle concentration overlying a particle—free region may prompt the emergence of
microscale particle-laden plumes. The dynamics of convective sedimentation from a
gravity current (Maxworthy 1999), therefore play an important role in the resulting
deposit and settling rate of the particles.

Finally, for both homogeneous and stratified ambients, if h < Z¢, the cloud main-
tains its thermal form throughout its descent. It consequently collides with the lower
boundary as a turbulent vortex ring. The dynamics of motion are expected to be
similar to those of atmospheric microbursts (Linden & Simpson 1983), where vortex
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stretching in the expanding vortex ring may generate high flow speeds. In the context
of barge dumping at sea, such vigorous motions may lead to scouring and resuspension
of particulate material from the sea floor, and thus leave a ring-shaped deposit. This
scenario has been observed in the two-dimensional study of Nakatsuji et al. (1990). In
a stratified ambient, the height of ascent of the cloud fluid following particle settling
will depend on the entrainment induced following contact with the bottom boundary.
If this entrainment is small, the fluid will ascend to a depth slightly less than %h.
The dependence of particle-laden gravity currents, as may emerge from the collision
of the particle cloud with the lower boundary will be considered in chapter 3.

Our study thus distinguishes between three distinct modes of particle deposition,
as summarised in table 2.2. Note that the dispersed deposits may only arise in a strat-
ified environment. We note that other factors such as polydispersity, flocculation and
reaction with the ambient may be important in the dumping of solid material. More-
over, while our experiments have yielded robust scalings describing the dynamics of
particle clouds and their subsequent deposition patterns, they also underlined the in-
determinacy in the numerical coefficients introduced by the influence of the ballistic
phase and the variability of the entrainment coefficient. In suggesting a weak depen-
dence of @ on Re, such as that evident in the study of Noh & Fernando (1993), our
study motivates further experimental studies of the factors influencing entrainment
into particle clouds. The source conditions, such as whether the particulate matter
1s wet or dry, may also influence the onset of self-similar cloud behaviour (Ruggaber
2000).

Finally, we have presented a system of ordinary differential equations describing
particle cloud dynamics in homogeneous and stratified ambients that allow for effi-
cient numerical simulation. The numerics has served to validate and determine the
limitations of our leading order results deduced from simple theory and scaling ar-
guments. The numerical model may be readily extended to describe more complex
physical situations such as payloads composed of polydisperse particles and particles
that react with the environment.
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Chapter 3

Deposits resulting from
particle-laden gravity currents

Particle-laden gravity currents arise in a wide variety of geophysical settings. For
example the deposits left by turbidites have important geological implications and
may be used to help locate oil and gas fields (Kneller 1995). The maximal distance
traveled by masses of air laden with volcanic ash may be a great security concern
(Sparks, Carey & Sigurdsson 1991). Mud flows (Simpson 1987) and crystal-laden
flows in magma chambers (Irvine 1987) are examples of viscously dominated particle-
laden gravity currents. Also, our study of particle clouds (chapter 2) has underlined
the importance of particle-laden gravity currents in the context of the dumping of
waste into rivers and oceans (Biihler & Papantoniou 1999). When a particle cloud
reaches the bottom of the container while still in its thermal phase, its deposit is
equivalent to that of a corresponding particle-laden gravity current. Being able to
infer the properties of a current from its deposit, or conversely predict the deposit
resulting from a gravity current with given properties is thus of primary importance.

Based on the classic works of Von Kdrman (1940) and Benjamin (1972), particle—
laden gravity currents have been studied numerically using the shallow-water equa-
tions (Bonnecaze, Huppert & Lister 1993). Using the similarity solution derived by
Hoult (1972), Hogg, Ungarish & Huppert (2000) found solutions in the asymptotic
limit of low particle concentration and justified the use of box-models by showing that
they provide a valid leading order approximation of the flow properties and deposits
of particle-laden gravity currents. These authors also derived an expression for the
runout length, the maximal extent of the deposit, of turbulent particle-laden gravity
currents. More recently, direct numerical simulations of two and three dimensional
particle-laden gravity currents have been performed (Hartel, Meiburg & Necker 2000),
but are still limited to relatively low Reynolds numbers (Re < 2000).

Most natural and industrial particle-laden gravity currents involve polydisperse
particles. The particle settling speed has a direct influence of the runout length
of particle-laden gravity currents and the initial distributions of particle size and
density are thus determinant in the evolution of the flow. As a first step towards
understanding the influence of polydispersity, we focus in this chapter on the shape
and particle distribution of deposits resulting from bidisperse particle-laden gravity
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currents. Currents carrying more than one type of particles were studied numerically
in some particular cases by Garcia (1994), and Bonnecaze, Huppert & Lister (1996)
and the dependence of the volume fraction of different types of particles on distance
from the source was examined. We extend these results to more general geometries
(two—dimensional planar and three—dimensional axisymmetric) and initial conditions
(fixed volume and constant volume flux).

We present here a computationally efficient model which allows for a qualitative
description of deposits left by various types of gravity currents. We also derive new
analytical results on the maximal length of deposits left by laminar gravity currents.
We begin by describing the dynamics of gravity currents in §3.1. We discuss deposits
left by turbulent and laminar gravity currents in §3.2 and §3.3 respectively. We
present our conclusions in §3.4.

3.1 Dynamics of Gravity Currents

We begin by considering two-dimensional planar gravity currents of fixed volume
spreading over a flat surface. The density difference between the current and the
ambient fluid may be due to both compositional differences and the presence of par-
ticles. The dense fluid is initially confined by a lock and is released at time zero. The
boundary condition at the top of the curreut is that no fluid may cross the interface

oh oh

e =U-7is 4u($,h(t),t)%+U(cc,h(t),t) (3.1)
where z is the horizontal coordinate, h the height of the gravity current, u the hor-
izontal velocity field and v the vertical velocity field and we have assumed that the
variations of A(z,t) in the z direction are small compared to h. We consider fully
turbulent flows, an assumption valid provided

Re = UTh > 1000 (3.2)
where U and h are typical velocity and height scales and v is the fluid viscosity (Simp-
son 1987). The horizontal velocity is then independent of height, as turbulence acts
to eliminate any systematic variations with height. By considering an incompressible
fluid, we may integrate the solenoidal condition V - @ = 0 with respect to y and find
v(z, h(t),t) = —h%, noting that u does not depend on y. The kinematic boundary
condition may thus be expressed as

Oh Oh  Ou
o T ulm )5 +ha =0 (3.3)

We consider the pressure to be hydrostatic to first order (Simpson 1987), P = gApz,
where Ap stands for the difference between the density of the current, p,. and the
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ambient, p;. Integrating the vertical Navier-Stokes momentum equation, yields

d(uh) N A(u’h) L1 d(gAph?)
ot ox 2 Oz

=0, (3.4)

This equation is often referred to as the shallow-water equation (Kundu 1990). Note
that the density difference between the ambient and the current, Ap, has contributions
from the density differences between the ambient fluid and both the current fluid p,
and the particles p,. If particles are present with particle fraction ¢, we have

Ap=(pe—p;)(1 =)+ d(p, — ps) = (pe — p7) + dop — py) (3.5)

We note that the first term of this difference is constant in time while the second
term decays due to the sedimentation of particles, i.e. the secular decrease in 0. If
pe— py > $(pp — py), the presence of the particles is not dynamically significant; the
particles are then passive tracers and are simply carried by the fluid. If conversely
o(pp — py) > pe — py, particles drive the flow. These two limiting cases result in very
different deposits.

Equations (3.3) and (3.4) are valid between z = 0 and z = z,,, the position of the
nose of the current. The boundary condition at x = 0 is that the velocity is zero, due
to the presence of a wall. We define the Froude number, Fr, such that the velocity
at the front of the current u, is given by

u, = Fr/glph (3.6)

Von Kéarmén’s analysis, based on an application of Bernouilli’s equation for steady
irrotational flows, showed that F'r remains constant. However, conservation of energy
is not applicable here as was argued by Benjamin (1972), who went on to show that
Von Karméan'’s results were nonetheless valid and found that Fr = V2 in the limit of
a very deep ambient.

Tn the case of a constant Ap, a long term similarity solution was obtained by
Hoult (1972):

1o(t) = Kt (3.7)
2Ky
4K? /1 1 9P
h(l’,t) = W(ﬁ;—z‘i‘z—) (3.9)
o7 Fr2y \ VP
K= (W) (3.10)

where V is the initial volume of the current. Notice that this solution assumes a
constant volume, i.e. no entrainment. Experiments on a flat surface are seen to agree
well with this solution for long times (Huppert & Simpson 1980). The so—called box-
model is a helpful tool introduced to approximate flows which may not be described
by this similarity solution, either because Ap is time-dependent or because the initial
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length of the current is comparable to its maximal extent. In box-models, the current
height is assumed to be constant in space.

Huppert & Simpson (1980) used box—models to find expressions for [(¢), the length
of the current, in different regimes. If we consider a two-dimensional gravity current
dominated by inertia, we may obtain the time-dependence of the velocity from a
simple scaling argument. Using our assumption that the gravity current is dominated
by inertia, we have that u? ~ gAph. Combining this with the approximation u ~ I/t
and V = [h for a planar two-dimensional current, we find that the velocity of the nose
scales like un(t) ~ (VgAp)/3¢~V3. The relevant coeflicient is found by balancing the
dynamic pressure at the nose with the difference of hydrostatic pressures far up and
downstream and yields (Simpson 1987)

un(t) = V2(VgAp)3 13, (3.11)

Experimental results yield a smaller value of this constant, typically about 1.19 (Hup-
pert & Simpson 1980).

Similarly, if the spread of the gravity current is radial, an expression for the
velocity of the front may be found by dimensional analysis. The current volume is
now given by V ~ [?h, where [ is the radius of the current. Approximating again
u ~ 1/t and considering inertially dominated currents, u® ~ gAph, we find

un(t) = V2(gApV)M4 12, (3.12)

Experimental results again lead to a smaller constant of about 1.3 (Huppert & Simp-
son 1980).

3.1.1 Sedimentation from a turbulent ambient

If the Reynolds number of the current is large, Re = uh/v > 1000, the flow is fully
turbulent and particles are evenly distributed in the vertical direction. We consider
small Reynolds number particles, Re, = Usa/v < 1, with a and U, the particle radius
and settling speed respectively, so that the vertical velocities generated by turbulence
are much greater than the settling speed of the particles. In this case, following
Bonnecaze et al. (1993), we may apply the results of Martin & Nokes (1988), who
developed models describing particle settling through a turbulent fluid in a bound
container.

The main assumption of Martin & Nokes (1988) is that fluid is well mixed every-
where, except in a thin boundary layer along the bottom of the container. Only in this
layer may particles settle out of suspension because the turbulence is not sufficiently
vigorous. The volume flux of particles out of the suspension is thus proportional to
the area of the base, A, the particle settling speed, U,, and particle volume fraction
at the base ¢(0). We consider that turbulent motions are sufficiently vigorous that
the volurme fraction is uniform in the vertical direction and thus ¢(0) = ¢ and find

adN
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where N is the volume of particles and v, the volume of one particle. Using ¢ =
v, N/(Ah), with h the height of the fluid, we have:

dp U
dt ~  h

(3.14)

The height of the deposit, f7, is proportional to the number of particles having settled
out of suspension H = vy(Ny — N)/A, where the constant N, is the initial number of
particles and -y depends only on the details of the packing. The growth rate of the

deposit is thus
dH
— =~U;¢. 15
o = 1Usd (3.15)
In the case of a spreading gravity current, the time derivative of equation (3.14)

is replaced by a material derivative:

Dy _dp  dp U

Dt dt udx h

(3.16)

where u represents the horizontal velocity of the fluid. The expression for the height
of the deposit remains the same as the deposit is not transported by the fluid.
Equations (3.13-3.16) highlight the dependence of the deposit height on the par-
ticle settling speed. In the presence of different kinds of particles, the deposition
pattern will necessarily depend on their individual settling speeds. We consider low
particle concentrations (i.e. ¢ 5 1%) so that the interaction between particles is neg-
ligible and we may deduce more compact analytical expressions. However, numerical
simulations may readily be extended to consider the influence of hindered settling.

3.2 Deposition from a Turbulent Gravity Current

We consider in turn a number of special cases. In §3.2.1, we study the deposits
left when a constant flux of particle-laden fluid leads to spreading in a rectangular
geometry. This case corresponds to sediment-laden rivers, for which the flux varies
slowly in time. In §3.2.2 we examine the sudden release of a finite volume of particle—
laden fluid. This scenario provides a leading order description of the progression of
turbidites and underwater landslides.

3.2.1 Constant Flux

We first consider a flow driven by a constant flux of particle-laden fluid, Q. We
consider steady flows, i.e. time-independent, where the flux and height of the current
are constant, as would be the case in particle-laden rivers. After a transient period of
order h/Us, the particle concentration remains steady and equation (3.16)} becomes:

dp  Usp
ua’ac N h

(3.17)
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The particle concentration thus decays with distance from the source as particles
settle to the bottom. Because both the volume flux ¢ and current height u are
constant, the velocity of the current v = Q/h is also constant and the solution is
readily found to be:

~Ugz
¢{z) = goe @ (3.18)
where ¢q is the initial concentration of sediment.

To find the deposition pattern from a bidisperse gravity current, we consider each
type separately to find that the concentration of particles of type I and I7 left in
suspension at a distance z from the source is

bi(z) = ¢led (3.19)
br(z) = ol 4 (3.20)

where Up and Uj; are the settling speeds corresponding to particles of types I and
II. In the deposit, at any given time the contributions to the height of accumulated
sediment are respectively Uy¢; and U;r¢rr. Since the flow is steady, the height has
the particularly simple form

H(.I},t) = (qubj(l‘) + U[[(Dj](ﬂ?))’}ﬂf. (3.21)

The fraction of particles I in the deposit at any given point, z, is:

—-U[a:
qub?e Q

= —Uss —Upgs "
Umﬁ?e @ +U[[(f>91—6 Q

Xi(z) (3.22)

We thus see that the only parameters influencing the form of the deposit are Uy, Uy,
#%, #%; and the volume flux Q. It is straightforward to extend this to n different types

of particles
7[)7! T
Urgle @

Y Uiple @
i=1

(3.23)

A continuous distribution of particles may be studied by considering the limit of a
large n. The denominator then becomes an integral which needs to be evaluated
numerically for most distributions of particles. As it appears that there is little
understanding to be gained from doing so, we confine ourselves to the bidisperse
limit.

Theoretically, the deposit has infinite length, although effectively particles are
absent after a typical length scale given by the volume flux divided by the settling
speed I, =~ Q/U,. The form of the deposit left by a gravity current generated by a
constant source flux and carrying two different types of particles is shown in figure
3-1. In this simulation, ¢% = ¢, = 0.5%, /2 = p. = py = 1g/cc and the particle
radii, a, satisfies a; = 2a;; = 20um. Each point of the deposit was plotted as a circle
or a dot with a probability corresponding to the local particle fraction of particles
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Figure 3-1: The dependence of deposit height, 2(z), on distance, z, from the point of
release of a bidisperse turbulent planar gravity current generated by a constant flux
Q = 1m?/s. Initial conditions are: ¢ = ¢%; = 0.5%, p,/2 = p, = p; = lg/cc and
ay = 2ayr = 20pm. Circles correspond to high particle fractions of large particles (1)
and points to high particle fraction of small particles (11 ). The height of the deposit
increases uniformly in time.

of type I and I respectively. The concentration of each particle is seen to decay
exponentially with distance from the source, with that of smaller particles decaying
more slowly, as expected from equations (3.19) and (3.20).

3.2.2 Constant Volume

We now consider the release of a constant volume of particle-laden fluid where the
interstitial fluid is the same as that in the ambient, p. = pr. The density difference
then depends only on the particle concentration: Ap = &(pp — p). To simplify nota-
tion, we define ¢ as ¢’ = g(p, — p;)/p; and ¢'¢ is now the driving force of the flow.
The three equations describing the flow, (3.16), {3.3) and {3.4) have to be solved
numerically in order to find a complete solution (Bonnecaze et al. 1993). In the limit
of deep surroundings, the shape of the deposit depends only weakly on the density of
the interstitial fluid in the gravity current, p.. However, the velocity of the gravity
current is qualitatively different for cases of p, > py and p. = py. In the latter case,
the driving force is only due to the presence of particles and decreases with time. The
current then only has a finite length, at which point all the particles have been de-
posited. The runout length may be expressed analytically using a box-model (Hogg,
Ungarish & Huppert 2000)

V = hl (3.24)
dp _ -Usp -Udl
d¢  h ~ V (3.25)

dl [g'pV
il Fry/g'¢h = Fr % (3.26)
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where the Froude number, F'r is again assumed to be a constant. Dividing equation
(3.25) by equation (3.26) yields

dp  —U,\/3P
49 _ ZUsv/olp _ W (3.27)
dl Fry/g'V3

where \ = me' Equation (3.27) may be solved using the condition that b= ¢y
at [ = 0, and yields

A 5/2

o' = g/* — ; (3.28)
The maximal extent of the current is found by setting ¢ = 0 and yields [, =
(5(15(1,/2/)\)2/5. An expression for the height of the deposit, H, as a function of po-
sition may also be found analytically. The flux of particles out of the suspension is
Us¢ and so

dH  dHdt

o et /
RIS = AV (p1)1/? (3.29)

loo )\
Hay=[ VWMgW—wA%Mﬂf (3.30)

If we introduce £ = [/1,,, the height of the deposit is then (Hogg, Ungarish & Huppert
2000)

_26Vy (8. 3,
H(¢) = T (1 563 t g6 ) : (3.31)

Notice that equations (3.24-3.26) have a singularity as t — 0. Comparing this theory
with experiments is thus only possible at long times, when the flow has relaxed from
1ts initial conditions to its assumed self~similar form.

It is worth mentioning that, despite the fact that no similarity solution exists for
the full problem of the particle driven flow, asymptotic solutions have been found
by Hogg, Ungarish & Huppert (2000). The similarity solution of Hoult (1972) and a
constant volume fraction of particles are used as a background state. One then pro-
ceeds to expand (3.24-3.26) in terms of the small parameter 7 = K 25317 /(V ¢\,
where the term (V¢?)1/4 is a reference velocity. This asymptotic expansion yields the
conclusion that the box-model actually has a much larger range of validity than might
be first expected, therefore justifying its use in many applications.

The cases of bidisperse currents, or of p. # p; may not be solved in closed form,
and we perform simple numerical integrations instead. We first express the concen-
tration, ¢, in terms of the height of the gravity current. Using the box-model, we
have u(z,t) = 2w, (t)/1(t) so that (3.16) becomes

A zuali)ds U,

dt I(t) dx h(t) (3:32)
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Equivalently, we may solve the system of equations

dt  I(t)dx h(t)d¢

1= = ot (3.33)
We note that {'(t) = un(t); therefore, solving the first equality yields:

logz = logl(t) + log(K,) (3.34)

I - g (3.35)

10

It is also straightforward to solve for the first and third terms of (3.33) to find
pele Jo 1/ns)ds — g, (3.36)
so that the general solution is
O, 1) = e Vs Jo 1M B 1 (1)) (3.37)

where F(z/l(t)) is determined by the initial conditions. Assuming that the initial

concentration of sediment is uniform yields ¢(z,t) = ¢pe=?- Jo 1/R(s)ds  The deposit
still obeys (3.15):

1
H(z,t) = / YU, pge Ve Jo 1/1(s)ds gy (3.38)
0

This equation may be solved numerically, along with equation (3.26), and the
results are shown in figure 3-2. Here we show the deposit resulting from a current
containing two types of particles with ¢¢ = ¢%, = 0.5%, p,/2 = p, = ps = lg/cc and
a; = 2ar; = 20pm. The final deposit once again has a finite length. The particles
show a more uniform distribution than in the case of a constant volume fux. For a
fixed volume, the height of the deposit initially decays relatively slowly, leading to a
convex deposit. Experiments have been done in this setting by Gladstone, Phillips &
Sparks (1998) and their results exhibit a maximum deposition located between 1 /4
and 1/3 of the runout length of the current. This discrepancy between experiments
and simulations is thought to be due to the vigourous stirring used to maintain
particles in suspension before the opening of the gate (Moodie 2000). Box-model
simulations of monodisperse gravity currents have been compared with experiment
by Hallworth, Hogg & Huppert (1998) which also exhibit a local maximum and good
agreement was found away from the point of release. Similar results were found by
Garcia (1994) when the current initially propagated down a slope of small angle before
coming to rest over a horizontal bed. The comparison between the experiments of
Gladstone, Phillips & Sparks (1988) and our simulations is thus made more difficult,
but good qualitative agreement in the shape of the deposit past the point of maximal
deposit is found.

It should be noted that all the previous experiments describe the total height and
particle fraction as a function of distance from the source, but not the dependence of
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Figure 3-2: The dependence of the deposit height, h{x), on distance, z, from the
release point for a turbulent fixed volume bidisperse gravity current. Initial conditions
are: ¢9 = ¢ = 0.5%, p,/2 = p. = py = 1g/cc and a; = 2a7; = 20pm and the initial
volume is 10m2. Circles correspond to high particle fractions of large particles (/) and
points to high particle fraction of small particles (1I), the latter propagating further
as they remain in suspension longer.

the distribution of particles on the height within the deposit. An empirical relation
describing the total height of the deposit was suggested by Bonnecaze et al. (1996);
based on the numerical prediction for one type of particles, they predicted the sum
of the different contributions. No information about the structure of the deposit was
provided. In contrast, our simulations clearly show not only the particle fraction of
each type of particle but also their distribution with height.

Our model also allows us to simulate currents where the ambient fluid is lighter
than fluid within the current. Figure 3-3 shows the deposit resulting from a gravity
current where the density of the fluid in the current p. = 1.1g/cc is greater than of
the ambient p; = 1g/cc. The particles are not dynamically significant here, account-
ing only for 1% of the initial density difference between the current and ambient.
In this configuration, the deposit theoretically has an infinite length, and the con-
centration decays exponentially with distance from the source. The particles travel
further downstream than in previous examples, because the driving force does not
decay as significantly. The maximum height of the deposit is also reduced, since the
particles are distributed over a greater distance. Note that here the initial number
of particles has been reduced by a factor of ten compared to previous simulations in
order to ensure that they are not dynamically significant, thus leading to a smaller
total deposit. From our model, it is straightforward to consider intermediate cases
where a prescribed fraction of the density difference is due to particles.

A similar analysis may be done in the case where viscous forces dominate inertial
forces in resisting the spreading of the current. The transition from inertially to
viscously dominated gravity currents occurs when viscous and inertial forces are of
the same order, that is, when the terms U2/l and vU/h* have the same magnitude.
For two-dimensional gravity currents, we find using (3.11) that the transition time
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Figure 3-3: Dependence of the deposit height, A(z), on distance, =, from the point of
release of a fixed volume, bidisperse turbulent particle-laden gravity current where the
density of the fluid in the current is greater than of the ambient, pc = 1.1ps. Here the
initial volume is 10m? and ¢% = ¢9, = 0.05% so that particles are not dynamically
significant. Circles correspond to high particle fractions of large particles (7) and
points to high particle fraction of small particles (I1).

is of the order of t,, ~ (V*/v°¢%)/7. We now proceed to study the deposits left by
laminar gravity currents, a limit expected to be relevant for ¢ > ter.

3.3 Deposits from a laminar flow

3.3.1 Constant Flux

The case of a laminar flow is very different from the turbulent one. We consider that
the velocity of the particles is u, = 7 — U,k. If both the flux () and the height of the
current h are constant, there is no vertical velocity component so that the height of
the suspension following the flow is h, = h — U,¢. Assuming steady flow, the time
component may be replaced by the distance from the source divided by the velocity of
the current ¢ — x/u. This gives rise to a deposit with a profile considerably different
from turbulent currents, as shown in figure 3-4. In this simulation, @ = 10m?/s and
¢% = ¢%; = 0.5% with a; = 2a;; = 20um and Pp/2 = pc = py = 1g/cc. Here the
particles are simply deposited at a distance that depends linearly on the height at
which they started. If we assume the initial particle distribution to be uniform, the
resulting deposit is also uniform and of finite length. Each type of particles is thus
evenly distributed over a region of length Q/U,.

3.3.2 Constant Volume

To consider the case of a constant volume release, we again make use of a box—
model. The height of the current denoted previously by 4 no longer corresponds
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Figure 3-4: The dependence of the height of the deposit, h(z), on distance from the
source, z, of a laminar, constant volume flux {@ = 10m?/s) bidisperse particle-laden
gravity current. Particles are initially present in equal concentration, ¢§ = ¢3; = 0.5%
with a;y = 2a;; = 20um and p,/2 = p. = py = 1g/cc. Circles correspond to high
particle fractions of large particles (7) and points to high particle fraction of small
particles (IT). The height of the deposit increases uniformly in time.

to the height of the suspension, hg, as particles now settle relative to fluid in the
current. The height appearing in equation (3.26) and driving the flow is now that of
the suspension. Assuming the flow is laminar and using a box-model, we deduce the
horizontal, u, and vertical, v velocity components of the flow:

_ ug(t)z
u = 0 (3.39)
o - (y (3.40)

Using the flow field given by (3.39-3.40) yields an expression for h,(t)

dh, wn (8)hs (2)
— . = MmN g 3.41
and solving for h, yields
¢
I(¢")dt'
e = h— 0,20 4 (5.42)

0

Unlike the turbulent case, the concentration of particles will remain constant within
the suspension.

To deduce the evolution of the deposit height, we need to know the flux of particles
out of the suspension. Considering the whole current, we get an equation for the total
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number of particles in suspension:

(Sl d(gol(h — U, L))
(q;t ) A dt = (3.43)
_ _¢Od(V-Usd{0 l(t')dt’):_%Usl. o

Equation (3.44) may be made into a local statement by noting that it represents the
integral of particles locally leaving the suspension between 0 and . Since the particle
concentration remains uniform, we find that the height of the deposit satisfies

dH

— = Us. 3.45
We thus have the same governing equation for the height of the deposit as in the case
of a turbulent ambient, but the concentration now remains constant until a, critical
time t* such that hs(t*) = 0, at which point all the particles have settled out of
suspension.

We derive an expression for the total length of the current using equation (3.26)
with A, now replacing h, and with a constant particle concentration ¢ = oo,

{
gg = Fr\/g’gbo (h— Usfldt) (3.46)
_ \/g,% (LGt .47

We define m(t) = fotl(t)dt and § = FTg’1/2¢(1)/2V1/4U’1

s b

length by V'/2 and time by VV2/U, in order to obtain
vm'm" =&/1 —m (3.48)

The initial conditions are m(0) = 0, m'(0) = 0. We deduce the runout length by
computing the value of m'(z) for which the current stops, i.e where m”(z) = 0.
Multiplying equation (3.48) by m’ and integrating yields

and non-dimensionalize

2 1572 _ g _ _ 2
cm™ = 3<I>(1 (1-m)*?) (3.49)
2/5
m = (g@(l - (1~ m)3/2) (3.50)

When the currents stops, m = 1 (because m” = 0) and we find m'(Z) = (5/3)%/592/5

which in dimensional form translates to

5V3/5g’1/5Fr2/5
725

1/
lop = (5/3)2/5¢0 (3.51)
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Const. Volume, V' Const. Flux, @ Reference
; 1/5
Laminar | 2-D | 1.23 (Mjﬁiﬂ) UQ Present study
178 172
VS iF 2
3p | 1.19 (—¢° s (w?]s)
, 175
Turbulent | 2-D | 1.90 (%%FTQ) O(Q/Us) Hogg et al. {2000)
30 2 1/8
30 | 128 (40207) | O(Q/ (nU,)) 2

Table 3.1: Runout length of monodisperse particle-driven gravity currents as es-
timated with a box-model. Here ¢ is the initial particle concentration, g’ =
(po — py)/py is the reduced gravity, Fr is the Froude number taken to be constant
and U, is the particle settling speed.

The runout lengths of deposits resulting from turbulent and laminar gravity cur-
rents are summarized in table 3.1. Similar computations have been performed for
axisymmetric currents; the results are included in table 3.1.

The results of a numerical simulation of a laminar, fixed volume bidisperse gravity
current are presented in figure 3-5. Here the initial particle concentrations are equal,
Y = 8%, pp/2 = p. = py and ar = 2ay;. The shape is now more rounded and the
separation between the two types of particles more clearly marked than for turbulent
gravity currents.

By combining the turbulent and laminar cases, it is possible to deduce a com-
plete description of the deposition pattern from the gravity current. Estimating the
Reynolds number of the current allows one to determine whether the flow is predom-
inantly turbulent or laminar. The transition between those two is expected to occurs
when the Reynolds number of the flow Re = uh/v falls below a critical value, typi-
cally of the order of 1000. We consider a simplified model where the flow is turbulent
if Re > 1000 and laminar otherwise. Because the velocity of the current is zero at
the vertical wall, the Reynolds number increases away from the source. There will
therefore always be a region near the vertical wall where the velocity of the current is
sufficiently small that the current is laminar. This region grows and eventually covers
the whole current. For the sake of simplicity, we assume that the transition between
turbulent and laminar flow occurs at a critical Reynolds number, Re., from which we
find that the transition point is
Re.v

1)~ Altyua(t) (55

Using the laminar model for x < z.,, and the turbulent model for z > z., we are
now able to obtain a description of the whole current. A simulation showing a gravity
current where the front is turbulent while the region near the vertical wall is laminar
is shown in figure 3-6. In this case, ¢9 = ¢%; = 0.5%, 0,/2 = p. = py = lg/cc and
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Figure 3-5: Dependence of the deposit height, A(z), on distance from the source, z, of
a bidisperse laminar fixed volume (V' =10m?) particle-laden gravity current. Initial
conditions are: ¢} = ¢%, = 0.5%, p,/2 = p. = p; = lg/cc and ay = 2a;; = 20pm.
Circles correspond to high particle fractions of large particles (I) and points to high
particle fraction of small particles ({7).

ar = 2a;; = 20pum. The region where the flow is laminar grows in time and exhibits a
more pronounced particle separation than in simulations where the flow was assumed
to be everywhere turbulent.

3.4 Conclusion

We have developed a theoretical model to describe the dynamics of particle-laden
gravity currents and particular attention was given to the deposits left by such cur-
rents. We have extended the results of Hogg, Ungarish & Huppert (2000), describing
the runout length of turbulent currents, to laminar particle-laden gravity currents,
which were seen to be considerably shorter than turbulent ones. The box—model
we used in our simulations allows for rapid computation of the shape of deposits as
well as the distribution of particles within them. Our model may also readily be
extended to incorporate the effects of more than two types of particles and thus pro-
vide a computationally efficient way to estimate deposits resulting from polydisperse
particle-laden gravity currents.

Our model may thus be used to predict the shape of deposits resulting from
particle clouds that reach the bottom of the container while still in their self-similar
phase. The initial radius of the current is given by the lateral extent of the cloud,
while the initial density of the fluid and concentration of particles may be obtained
by the model presented in chapter 2. We thus have means to compute the complete

time evolution of particle clouds, including the dynamics of the gravity currents they
generate.
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Figure 3-6: The dependence of the deposit height, A(x), on the distance, z, from the
point of release of a fixed volume (10m?) bidisperse particle-laden gravity current.
Here the region near the source is laminar while the head is turbulent. The transition
from turbulent to laminar is assumed to occur when the Reynolds number exceeds a
critical value Re = uh/v > Re, = 1000. Circles correspond to high particle fractions
of large particles (I) and points to high particle fraction of small particles (/7). The
region near the wall shows a more pronounced particle separation than in the case of
a fully turbulent gravity current.
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Modifications could be made to our model to allow for details of the flow which
were neglected here. We have assumed that the flow is either turbulent or laminar,
but in reality the level of turbulence varies smoothly. Moodie (2000) argued that
the turbulent mixing imposed before the release of the current decays exponentially
in time and therefore suggested to use a particle settling speed of the form U, =
Uy(1 — /%), where 6 is a typical turbulent eddy size. This modification could
readily be incorporated into our model. However, turbulence is also generated at
the head of the current and it appears that a more precise model of the level of
turbulence is needed in order to adequately describe the transition from turbulent to
laminar flow, and this shall be the subject of future consideration.

Another potentially important phenomenon which has not been taken into ac-
count here is the possibility of reentrainment of particles, that is the entrainment in
suspension of sediments deposited on the bottom. We have considered weakly turbu-
lent gravity currents, where reentrainment is negligible. However, the early stages of
turbidites are often sufficiently turbulent that reentraiment plays an important role
(Parker et al. 1987). Different models have been suggested to describe reentrainment
and a review may be found in Garcia & Parker (1991). However, a complete under-
standing of reentrainment has not been achieved yet and one must rely on empirical
results to incorporate its effect on gravity currents. We thus do not pursue the influ-
ence of reentrainment in particle-laden gravity currents here, but this shall also be
the subject of future investigation.

The bottom friction was also neglected in our simulations. This is usually modeled
by introducing a friction term in the momentum equation (Garcia 1994) of the form
Cpu?, where Cp is a constant determined experimentally. Garcia (1994) suggested
a value of Cp between 0.002 and 0.05, following the experimental measurements of
Parker et al. (1987). Adding a bottom friction term gives a more realistic picture of
the evolution of a gravity current, but provides little insight as to how to quantify
this energy loss. Garcia (1994) and Moodie (2000) also allowed for the fact that
the distribution of particles is not vertically homogeneous. Using experimental ob-
servations, Garcia (1994) determined that the bottom concentration #(y = 0) may
be written as a fraction of the vertically averaged concentration $ave. In his model,
& = &y = 0)/Paye take values between 1 and 3 and depends only on particle size.
However, it is likely that £ also depends on the level of turbulence within the current.
Owing to the irregular nature of the turbulence within the gravity currents, it has
proven difficult to estimate the value of £ from first principles. Empirical corrections
accounting for the reentrainment of particles from the bed, bottom friction and ver-
tical non-uniformities in ¢ may readily be included in our model. However, none
of them is expected to alter qualitatively the shape and particle distribution of the
deposits observed.
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Chapter 4

Particle—driven double—diffusive
instabilities

4.1 Introduction

One of the most common instabilities generated by density variations in fluids is
the Rayleigh-Bénard instability. When a planar fluid layer is heated from below,
overturning may occur, the system thus reducing its potential energy (Bénard 1901).
Instability occurs when the Rayleigh number, Ra, exceeds a critical value

_ glAph?
N Kl

Ra > Ra, (4.1)

where ¢ is the gravitational acceleration, Ap the density difference between the bot-
tom and top of the container, h the height of the container, v the kinematic viscosity
and 7 the density’s diffusivity (Rayleigh 1916). The critical Rayleigh number, Ra,,
depends on boundary conditions (657 for stress—free, constant density boundaries,
1708 for no-slip, constant density boundaries, 868 for stress—{ree, constant density flux
boundaries, 2272 for no-slip, constant density flux boundary (Chandrasekar 1963)).
However, the order of magnitude of the critical Rayleigh number is always approxi-
mately 1000.

If two diffusing components affecting the density are present in a fluid, different
types of instabilities may be observed. In contrast with the Rayleigh-Bénard insta-
bility, convective motions may be generated even though the total density gradient is
stable, dp/dz < 0, with z the vertical coordinate. For example, if hot and salty fluid
overlies cold and fresh fluid, salt—fingers may form. In the opposite scenario, where
cold and fresh fluid overlies hot and salty fluid, overstable oscillations may develop, as
described in chapter 1. The equations governing the motion of a fluid with two strat-
ifying agents of different diffusivities have been analysed extensively. Veronis (1965,
1968) investigated the linear stability of combined thermal and salinity gradients, as
well as the growth of finite amplitude instabilities. A detailed linear stability analysis
was presented soon after by Baines & Gill (1969), where the nature of the instabilities
and resulting flow structure was investigated. The complication of sloping boundaries
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was considered later by Linden & Weber (1977), and studied numerically by Paliwal
& Chen (1979). Applications to oceanography are extensively documented and were
reviewed by Schmitt (1994).

Sedimenting particles may also play the role of a destabilising agent. A region
of high particle concentration overlying a particle-depleted region may result in the
formation of particle plumes (Drake 1971, Chen 1997). Details of the instability of
a region of high sand concentration settling above a clear fluid region in a Hele-
Shaw cell were recently investigated by Véltz, Pesch & Rehberg (2001), and many
similarities with Rayleigh-Taylor instabilities (where a layer of heavy fluid overlies
lighter fluid) were observed. A similar instability may result from particles settling
through a density jump; as particles settle across a density interface, they form a
region of high concentration overlying a particle-depleted region, which then becomes
unstable (Hoyal et al. 1999). Particles settling in a density gradient may also play
the role of the slowly diffusing agent in a doublediffusive system (Houk & Green
1973). Particle fingers, the analog of salt-fingers, have been observed experimentally
when particles settle across a density interface in a quiescent fluid (Green 1987) and
at the base of a spreading gravity current by Maxworthy (1999) and Parsons, Bush
& Syvitski (2001). A stability analysis of the progression of a horizontal layer of
particle-laden fluid overlying particle—free fluid was presented by Mason (1988), in
the limit of non-diffusing particles.

A linear stability analysis of a particle concentration gradient of particles settling
in an ambient density gradient has yet to be undertaken. It is of particular interest
to determine when particles may effectively be treated as a solute and when their
non-zero settling speed must be taken into account. In this chapter, we focus on
particle-driven double—diffusive instabilities. We consider a monodisperse suspension
and assume a constant settling speed, U,. We restrict our attention to small Reynolds
number particles, Re, = U,a/v < 1, so that inertial effect may be neglected when de-
scribing the evolution of the particle concentration. We perform a linear perturbation
analysis of the system of equations considered by Baines & Gill (1969) for the anal-
ogous thermohaline system, with the addition of a particle concentration advection
term. The non-zero settling speed of particles may be treated through the introduc-
tion of a particle Péclet number, Pe, which represents the ratio of a particle advection
time scaje to an ambient density diffusive time scale Pe = (U, /h)/(h*/kr) = Ush/kr.
In geophysical contexts, Pe may range from 0 for very small particles and macro-
molecules, to O(1000) for particles of approximate size lmm settling in a salinity
gradient.

Other important non—dimensional quantities in our system are the Prandtl num-
ber, o = v/, whose values typically range from O(1) to O(1000) depending on the
stratifying agent, and the diffusivity ratio, 7 = &4/k7 with s, the particle diffusiv-
ity. For very small particles, of the order of 10nm, Brownian motion determines the
magnitude of the particle diffusion coefficient. However for larger particles, settling
speed fluctuations due to the presence of neighbouring particles, the so—called hydro-
dynamic dispersion effects, dominate the effects of Brownian motion (Caflisch & Luke
1985, Ham & Homsy 1988). The magnitude of k, therefore depends on the particle
settling speed, radius and concentration (Mucha et ol. 2003, Martin, Rakotomalala
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& Salin 1995). Moreover, particle diffusion is typically anisotropic, diffusion parallel
to the settling direction being typically greater than that perpendicular to the set-
tling direction, Kpor = Phyer, ® < 1. While numerical simulations show a relatively
large anisotropy, ranging from ® = O(1/50) (Koch 1994) to ® = O(1/10) (Mucha
et al. 2003, Kuusela & Ala-Nissila 2001), the experimental results of Nicolai et al.
(1995) suggest that ® ~ 1/5. Numerical studies also exhibit a dependence of k4 on
the container size, but experimental measurements have not confirmed such a depen-
dence. Dimensional analysis suggests that the vertical diffusion constant of particles
larger than 10nm be expressed as k4 = nall;, where n is a coefficient whose numerical
value was measured to be between 4 and 20, (Martin et al. 1994, 1995, and Davis
& Hassen 1988). The particle concentration affects the value of n, but variations are
typically smooth and sufficiently weak that, for our purposes, we may consider n to
be constant. Note that the diffusion constant of particles may be relatively large:
experimental measurements of x4 range from x4 ~ 10-®m?/s (Ham & Homsy 1988)
to kg ~ 10~°m?/s (Martin et al. 1995). Depending on the ambient stratifying agent
and on particle the particle size, the diffusivity ratio may thus takes values ranging
from 7 = 1073 for small particles settling in a temperature gradient, to 7 = 10% for
large particles settling in a salinity gradient.

We study numerically the stability of double-diffusive systems where one of the
stratifying component settles with velocity U,. We first review thermohaline double—
diffusive instabilities in §4.2. We then present the governing equations including the
effect of particle settling and discuss the method used to analyse their stability in §4.3.
Numerical simulations allow us to determine the stability of various configurations.
We present in §4.4 results describing the stability of an unstable particle concentration
gradient settling in a fluid of uniform density and also that of equal and opposite
ambient density and particle concentration gradients. We discuss the implications of
our numerical results in §4.5.

4.2 Thermohaline double—diffusion

We begin by reviewing results obtained when two diffusing components affecting
density are present in a fluid. We consider a system where the density depends on
a relatively rapidly diffusing component (7'), such as heat, and a slowly diffusing
component (S), such as salt. In a two-dimensional system, z in the horizontal and z
in the vertical, the governing equations are (Baines & Gill 1969)

po(Us + g + W) = —py + pov(Usg + Uss) (4.2)
polws + wwe + ww,) = ~p, + pov(wez + w..) — pogaT + pogBS  (4.3)
T+ uly +wT, = kp(Tew + T,) (4.4)
St +uSe + wS, = ks (Spr + S,.) (4.5)

where u, w, py and p stand for the horizontal velocity, vertical velocity, typical deunsity
and hydrodynamic pressure of the fluid respectively, and where we made use of the
Boussinesq approximation.
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Four non-dimensional parameters are required to fully describe the stability of a
given initial configuration. A Rayleigh number is needed for each component

3 3
Ry = gaATh ’ Re = gBASh | (4.6)
KTl Kl
where h is a typical height, o and 3 are the expansion coefficients associated with
heat and salt, and AT, AS are the temperature and salinity difference from bottom
to top
AT = Tbottom - Ttop: AS = Sbattom - Stop- (47)

A positive value of Ry thus corresponds to a destabilising temperature gradient,
while a positive value of Rg corresponds to a stabilising salinity gradient. Note that
for simplicity of notation, Rs contains xr rather than xg. The Prandtl number
o = v/ky and, more importantly, the ratio of the diffusivity coefficients 7 = xg/kr
are also determinant in the stability of the system. Baines & Gill (1969), considered
infinitesimal perturbations of amplitude e?* and showed that a linear stability analysis
of equations (4.2-4.5) yields a criterion for salt fingering:

R 4
B (RT A ) (48)

4

where the real part of p is positive and the imaginary part is 0 so that the mode
of instability is direct. Because S was chosen to be the slowly diffusing component,
7 < 1 and instability may occur even though the total density profile is uniform
(corresponding to Ry = Rg). Overstable oscillations may occur if the real part of p
is positive and its imaginary part is non-zero, as is the case if

"
Ry > (U+T) Rs+(1+7) (1+1) 27 (4.9)
o2 a

+1 4

Note that here again, instability may occur if the total density is uniform.

4.3 Settling particles as a stratifying agent

We perform the analogous linear stability analysis fro a system in which one of the
stratifying agents is settling particles (¢) and the other is a purely diffusing component
(T) such as heat or a solute. We consider a layer of depth h, and initially linear
ambient density and particle concentration gradients. The boundaries consist of two
infinite horizontal solid plates where we apply a no-slip boundary condition and
assume the ambient density and particle concentration to be maintained constant,
corresponding to a steady supply of particles at the top boundary. The density of the
fluid is given by

= po(l — oT" + "P—;p—%’*) (4.10)
(¥}
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where o is the expansion coefficient associated with T, pp, and py are the particle
density and reference density of the fluid in the absence of particles and at T* = 0,
respectively, and all * quantities are dimensional. We consider a two—dimensional
system, z in the horizontal and z in the vertical, with z = 0 at the bottom and
z = h at the top of the container. Taking into account the non-zero settling speed of
particles, Uy, the governing equations of motjon are

polu; +u'ul + w'ul) = —pl + pov*(uy, + ul)) (4.11)
polwi + wwy + w'wl) = —pl + pov(wl, +wl,) — pogaT* + g(p, — po)9"(4.12)
T +uT +w'l) =k (T2, +T2) (4.13)
¢+ uty +w'e; — Ushl = kg (DL, + ¢). (4.14)

where u*, w* and p* stand for the horizontal velocity, vertical velocity and hydro-
dynamic pressure of the suspension respectively. Following the experimental mea-
surements of Nicolai et al. (1995), we set ® = 1/5 in our simulations. However, we
note that the anisotropy constant was seen to have little influence on the stability
diagrams discussed here for physically reasonable values of & ranging from 1 to 1/50.

We non-dimensionalize equations (4.11-4.14) using h%/ky as a typical timescale,
h as a lengthscale, py as a density, A¢ for particle concentration variations and AT
as a typical ambient density variation. We eliminate the pressure term by taking
92(4.12) - 0,(4.11) and introduce a streamfunction ¥* such that the horizontal and
vertical velocities are given by (u*,v*) = ( =7, 43%). We consider perturbations from
a quiescent background in which the ambient density profile is linear and the particle
concentration profile is a linear gradient propagating downward with speed Us (Pe in
non—dimensional form)

W =0+ T =—24+T ¢ = —z—tPe+ ¢, (4.15)

where the primed quantities are non—dimensional and the unprimed quantities are
the non-dimensional perturbations. This allows us to neglect non-linear terms and
we are left with

é(at ~ V%)V = —RyT, + Rsg, (4.16)
(0, = V)T = 9, (4.17)
(O = 7(®8ss + 8,)¢ = ¢ + Ped,. (4.18)
with boundary conditions
V=9, =T=¢=0  atz==+1/2. (4.19)

where A¢(p, — py) and kg4 replace SAS and %5 respectively in the definition of Rg.
To investigate the stability of this system of equation, we use the method of normal
modes and assume perturbations of the form

w — ¢o(z)ept+ikz7 T — To(z)ept+ikz, ¢ — ¢o(z)ept+ikz. (420)
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The system of equation (4.16)-(4.18) then reduces to a system of ordinary differential
equation in z,

p

— ¥z — KP9%) = (92,5, — 2k™05, + k*°) + RpikT® — Rgike” =0 (4.21)
pT° + k*T° — T8, —iky)® =0 (4.22)
pg° + TPk ¢° — T¢°, — Peg? — iky® =0 (4.23)

and the boundary conditions (4.19) are now applied to functions indexed with an
0. This system of equation does not have a simple and elegant solution as does the
purely double-diffusive case. We thus resort to numerical methods to investigate its
stability.

Using the methods described by Finlayson (1972), and following Paliwal & Chen
(1979), we expand the perturbations in a series of functions of a known form

W(2) =Y and™(z), 6°(2) =Y bu¢"(z), T°(x) =) Tz  (424)

where the functions ™ (z), ¢"(z) and T™(z) are chosen to satisly the homogeneous
boundary conditions (4.19), to obey 8,..,% = Ay and to form a complete orthogonal
set

cosh(pnz)  cos{pnz) - :
g = | i Ty s 000 (4.25)
sinh(pnz) _ sinlinz) ¢ 0 g even.
sin(ip)  sin(Lyun)
n o n sin{(n + 1)7z) if n is odd,
m=¢" = { cos{(n — 1)mz) if n is even, (4.26)
where
tanh(p, /2} + tan(p,/2) = 0, coth(p,/2) — cot(u,/2) = 0. (4.27)

We then proceed to use the Galerkin method by considering the projection of cqua-
tions (4.21), (4.22) and (4.23) onto the basis functions 9", 7™ and ¢" respectively.
Each equation is integrated over —1/2 < z < 1/2 to yield an algebraic system of
equations in terms of the coefficients a,, b, and ¢,. To solve for those coeflicients,
we truncate the infinite system, keeping only the first N terms. We thus obtain a
system of equations of the form (A — pB)Z = 0, where 7 is a vector containing the
coefficients an, b, and ¢,. To find a non-trivial solution, we look for eigenvalues of
this system and the stability of the flow is determined by the real part of p.

4.4 Numerical results

We first validated our method by reproducing results for one component convection
and double—diffusive instabilities. Due to imprecisions occurring when looking for
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Figure 4-1: Critical temperature Rayleigh number Rp as a function of the particle
Rayleigh number Rgs for non-settling particles, U, = 0. a) small diffusivity ratio
T = wy/kp = 0.1 (b) large diffusivity ratio 7 = 10. The region above the solid line
is linearly unstable, while the region below is stable. The dashed line corresponds to
a uniform density Rg = Rp; the overlying region Rr > Rs has a statically unstable
density profile. In (a), the solid line crosses the dashed line at Rg = Ry = 31550 and
—189 and in (b) at Rg = Ry = 1850 and —57000 showing that instabilities may occur
even though the density gradient is statically stable. The value of the Prandt! number
is kept constant at 7, a value appropriate for aqueous systems stratified through a
temperature gradient.
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Figurc 4-2: The dependence of critical particle Rayleigh number, Rs, and most un-
stable wavenumber, k, on the Péclet number, Pe = U,i/ky, in the absence of an
ambient density gradient, Ry = 0. The solid line indicates the critical value of Rg
and the dashed line represents & (multiplied by -10* for scaling purposes). The dotted
line separates regions of direct (left) and oscillatory (right) instabilities. The value of
the Prandtl number is kept constant at 7, a value appropriate for 20um glass particles
settling in water.

cigenvalues of the system (A — pB)x = 0, a small error (< 3%) on the critical val-
ues of the Rayleigh numbers is expected from computations on systems with known
critical Rayleigh numbers. In the case Rg = 0, corresponding to Rayleigh-Bénard
convection, we observe a critical Rayleigh number near Ry = 1740, and the most
unstable wavenumber is & = 3.12, in good agreement with previous results (Chan-
drasekar 1961). In the case Pe = 0, corresponding to classic double—diffusive insta-
bilities, a stability diagram is obtained by varying Ry and looking for the critical K,
see figure 4-1. The agreement with the results of Baines & Gill (1969) is excellent.
Note that the quantitative values are different due to the use of the no-slip condi-
tion in our simulations (compared to a stress—free condition in Baines & Gill (1969)).
However, the slope of the critical Rayleigh number, dRr/dRs, in the fingering regime
(R < 0), obeys approximately 1/7 and is independent of o, in agreement with the
computations of Baines & Gill (1969). In the overstable regime (fir > 0), dRy/dRs
approaches 1 for large values of o and depends only weakly on 7. We also verified
that the results of our simulations were independent of N, as should be the case if N
is sufficiently large. Comparing results obtained with N = 48 and N = 50 showed 2
difference of less than 0.3%; we therefore used N = 48 in the simulations discussed
below. These results allow us to confidently explore cases where Pe 3 0.

76




4.4.1 Particle settling in a uniform ambient

We first consider the case of a destabilising particle concentration gradient, Rg < 0,
settling in a homogeneous ambient, Bz = 0, so that the initial density gradient
is statically unstable dp/dz > 0. Physically, this corresponds to the settling in a
homogeneous ambient of a suspension with particle concentration increasing with
height. The non-zero settling speed of particles acts to stabilise the system and we
expect the critical Rayleigh number to increase with Péclet number. The Rayleigh
number may be viewed as the ratio of the falling time of a blob of particle laden fluid
of size I to the time required for the blob to lose its excess particles through diffusion:

R (gWERAg)
T Ko/ h '

(4.28)

Note that here Rg/7 (and later Pe/7) simply corresponds to the Rayleigh (and Péclet)
number defined in terms of the diffusion constant of particles, kg If the absolute
value of this ratio exceeds a critical value, convection ensues. To include the effects of
particle settling, we instead consider the fall speed of a perturbation of size / relative
to the settling particles

_(ghze%Afﬁ)/V - U, __ —Rg—Pe
I€¢/h B T ’

(4.29)

We thus expect the critical Rayleigh number to grow linearly with increasing Péclet
number.

Simulations performed with Ry = 0 and ¢ = 7 confirm this reasoning over the
range 0 < Pe < 300 and 450 < Pe < 1500 (see figure 4-2). Here the solid line is
the critical value of Rg and the dashed line indicates the most unstable wavenumber.
The mode of instability is direct left of the dotted line and oscillatory right of the
dotted line. The slope of the critical Rg as a function of Pe, dR,/dPe, is seen to be
approximately —220 for values of Pe < 300 and —690 for Pe > 450, with a smooth
transition in the intermediate region.

A remarkable feature of figure 4-2 is that the imaginary part of the most unstable
mode becomes non—zero for Pe > 450. The mode of instability of particles with
sufficiently large Péclet numbers is thus oscillatory and the frequency of oscillations
is of order 1000k /h? and increases with Pe. This contrasts with the Rayleigh-Bénard
instability which remains direct even for large Rayleigh numbers. The mechanism of
instability is thus modified by the non-zero settling speed of the particles. In our
system, the most unstable wavenumber remains near 4 for small values of Pe, but
jumps to 7.8 at Pe = 450 and thereafter increases with Péclet number, indicating that
the non-zero settling speed of particles is determinant in the nature of the instability.

[t should be mentioned that for small Pe, as in classic Rayleigh-Bénard convection,
the Prandtl number, o = v/k7, does not influence the stability of the system. From
equation (4.21), we see that if the imaginary part of p is 0, the Prandtl number
does not influence the value of the critical Rayleigh number (where the real part of
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Figure 4-3: Dependence of the critical particle Rayleigh number, Rg, and most un-
stable wavenumber, k on the Péclet number, Pe = Ush/ky. The initial density is
uniform: an unstable ambient density gradient is opposed by a stable particle concen-
tration gradient (R = Rg > 0). Figure (a) shows computations conducted with a
small diffusivity ratio 7 = x4/x7 = 0.1 and (b) with a large diffusivity ratio, 7 = 10.
The solid lines ibndicate the critical value of Ry = Rg and the dashed line the most
unstable wavenumber & (multiplied by 10* in (a) and by 10% in (b)). The dotted
line in (a) separates regions of oscillatory (left) and direct (right) instabilities. Insta-
bilities for 7 = 10 (figure (b)) are always direct. The value of the Prandt] number
is kept constant at 7, a value appropriate for water stratified through temperature
variations.

p is also 0 and hence ¢ becomes irrelevant). Therefore, only oscillatory solutions
are influenced by ¢. The values discussed above were found for ¢ = 7, a value
corresponding to 20um glass particles settling in water (the particle diffusion constant
is then x4 ~ 1.5 x 10~"m?/s). For higher values of o, appropriate for smaller particles,
the transition to the oscillatory mode of instability occurs at smaller Péclet number,
Pe = 310 for ¢ = 70 and Pe = 270 for ¢ = 700. The slope of the critical Rayleigh
number as a function of Pe is also reduced for larger values of o, to -50 for ¢ = 70 and
-5 for ¢ = 700. The critical Rayleigh number thus appears to increase linearly with
the Reynolds number of the system, Re = Pe/o = U;h/v, with a proportionality
constant of the order of 3500. For Pe > 450, instability therefore occurs if

R
=S 4+ 3500Re < —10°. (4.30)
.

78




4.4.2 Stabilising ¢, destabilising T

We proceed by considering the case of an unstable ambient density gradient, Ry > 0,
in the presence of a stable particle concentration gradient, Rg > 0. For example,
this corresponds to a system where cold and clear fluid overlies hot and particle—
laden fluid. A similar system, albeit with discontinuous particle concentration and
ambient density, was studied experimentally by Huppert et al. (1991) and the layer
of light fluid formed above the settling suspension was seen to be unstable. The finite
settling speed of particles is expected to have a destabilising effect. In the limit of
a large settling speed, the particle concentration gradient quickly moves downward
and leaves behind an unstable density gradient. Instabilities are then analogous to
the Rayleigh-Taylor instability with only one stratifying agent.

We investigate this scenario numerically by restricting ourselves to cases where
the total density is initially uniform, dp/dz = 0, and we thus set Rs = Ry. To focus
on the effects of particle settling, we fix ¢ = 7, a value appropriate for water with
temperature acting as a stratifying agent. We consider first the case where particles
diffuse slowly relative to the ambient density, 7 = 0.1. If Pe = 0, this corresponds to
the overstable regime of the double—diffusive instability and we find a critical value
of Rg = 31900 above which the system becomes unstable to oscillations of growing
amplitude. In our simulations, the Imaginary part of the most unstable mode is
non-zero, indicating that the instability takes the form of oscillations of growing
amplitude, in agreement with the results of Baines & Gill (1969).

Figure 4-3a illustrates the dependence of the critical Rayleigh numbers on the
Péclet number when the particles act as the slowly diffusing agent (7 = 0.1). The solid
line represents the critical value of Rt = Rg for a given Péclet number and the dashed
line is the most unstable wavenumber (multiplied by 10* for scaling purposes). The
dotted line again separates regions of oscillatory (left) and direct (right) instability.
As the Péclet number increases, the critical Rayleigh number first increases until
Pe = 5 (where Rs = 47100), then decreases until Pe = 7. The nature of the
instability then changes abruptly. From an overstable mode, the instability becomes
direct, the imaginary part of the most unstable mode becoming 0. The most unstable
wavenumber, k, also drops discontinuously from 3.6 to 1.2. Most significantly, the
critical Rayleigh number drops sharply by an order of magnitude from 40450 to 15100.
As the Péclet number is increased further, the critical Rayleigh number decreases
further until it stabilises to a value near 1800 for Pe > 40. This indicates that the
presence of a stabilising particle concentration gradient has virtually no influence on
the stability of an ambient density gradient if the Péclet number of the particles
is larger than 40. The most unstable wavenumber and the imaginary part of the
most unstable mode also remain constant, taking values of approximately 3.1 and 0
respectively, as would be the case in the absence of particles.

Figure 4-3b illustrates the dependence of the critical Rayleigh number (solid line)
and most unstable wavenumber (dashed line), &, on the Péclet number when particles
diffuse faster than the ambient density (7 = 10). For small Péclet numbers, Pe < 7,
this corresponds to the “salt-finger” regime, with particles now playing the role of
heat. We again consider a uniform ambient density, R¢ = Ry > 0. The observed
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Figure 4-4: The dependence of the critical particle Rayleigh number, Rg, and most
unstable wavenumber, k, on the Péclet number, Pe = Ush/kyp, in an ambient of uni-
form density, with a stabilising ambient density gradient and a destabilising particle
concentration gradient (Rp = Rs < 0). Figure (a) shows computations done with a
small diffusivity ratio 7 = k4/kr = 0.1 and figure (b) with a large diffusivity ratio,
7 = 10. The solid line is the critical value of By = Rg and the dashed line indicates &
(multiplied by -10° in (a) and —10* in (b)}. The dotted line in (a) separates regions
of direct (left) and oscillatory (right) instabilities. Instabilities in (b) are always os-
cillatory. The value of the Prandtl number is kept constant at 7, a value appropriate
for water stratified through temperature variations.

qualitative dependence of Rs on Pe is similar to that observed for the case 7 = 0.1.
The mode of instability is direct and the critical Rayleigh numbers are relatively
low, Rg = Rp = 2070. As the Péclet number is increased, the critical Rayleigh
number again decreases, albeit slowly, reaching Ry = 1880 for Pe = 100. The mode
of instability is seen to remain direct for 0 < Pe < 100, and the most unstable
wavenumber is remarkably constant over this range, at ¥ = 3. The stability of a
system marked by a destabilising ambient density gradient opposed by a stabilising
particle concentration gradient is thus seen to be determined almost exclusively by
the ambient density gradient for Pe > 40.

4.4.3 Destabilising ¢, stabilising T

We now turn to the opposite case, where the ambient fluid is stably stratified and
the particle concentration is destabilising. Systems of fresh, particle— laden fluid over-
lying salty, particlefree fluid were investigated in the context of rivers intruding
in the ocean (Houk & Green 1973, Green 1987, Hoyal ef al 1999, Parsons et al.
2001). However, all these authors considered discontinuous initial cond1t10ns, making
the comparison with our simulations difficult. Particle-fingers have been observed
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for particles of order 1um (Green 1987) and instabilities caused by the formation of
a three layered system were seen for larger particles (Hoyal et al. 1999). For in-
finitesimal perturbations to grow in time, particle-fingers should descend faster than
individual particles. As was the case for particle concentration gradients settling in
a homogeneous ambient, we expect large Péclet numbers to stabilise the system and
impede the formation of particle fingers. Here, we again set R = Rg < 0 so that
the initial density is uniform and fix o = 7. Figure 4-4a shows the dependence of the
critical Rayleigh number (solid line) and most unstable wavenumber & (multiplied
by -10°, dashed line) for the case 7 = 0.1. The critical Rayleigh number decreases
sharply with Péclet number for small Pe, from Rs = —120 down to approximately
Rs = —8500 for Pe = 25. The instability mode becomes oscillatory for Pe > 5, im-
plying that “fingers” will not form in this regime but that the instabilities instead take
the form of waves of growing amplitudes. For values of Pe between approximately 20
and 60, the increase in critical Rayleigh number is very slow. However, the frequency
of the most unstable mode increases linearly with Pe, showing that the time-scale of
instability is set by the Péclet number. The most unstable wavenumber is also seen
to increase, from about £ = 4 for small Péclet numbers to & = 5.5 at Pe = 100. For
Pe > 60, the instability remains oscillatory but Rgs resumes its dependence on Pe,
with dRg/dPe = —50.

Figure 4-4b illustrates the influence of the Péclet number on the critical Rayleigh
number when particles diffuse faster than the ambient density (7 = 10), as would be
the case for glass particles with radii larger than 10pm settling in a salinity gradi-
ent. The solid line indicates the critical Rayleigh number and the dashed line is the
most unstable wavenumber (multiplied by —10* for scaling purposes). The mode of
instability is oscillatory for Pe = (), corresponding to the overstable regime of double—
diffusive systems, with particles playing the role of heat. As the Péclet number is
increased, the mode of instability is seen to remain oscillatory and the most unstable
wavenumber to increase slowly from ¥ = 3.5 at Pe = 0 to k = 4.5 at Pe — 500. The
magnitude of the critical Rayleigh number initially decreases, showing that small val-
ues of Pe destabilise the system. For Pe > 90, increasing Pe stabilises the system
and tends to impede the growth of the oscillatory instabilities as in the case 7 < 1.
For larger Péclet numbers, the magnitude of the critical Rs increases linearly. The
frequency of oscillation of the most unstable mode is also seen to increase almost
linearly with Péclet number, indicating again that the time scale of the instability
depends critically on the Péclet number and hence on the particle settling speed.

4.4.4 Influence of the diffusivity ratio, 7

The diffusivity ratio, 7 is a determinant factor in the stability of the system. If 7 > 1,
the particles diffuse faster than the ambient density, whereas if 7 < 1 particles act
as the slowly diffusing component. We here focus on the influence of variations of 7
by fixing Pe = 100 and ¢ = 7 and considering the critical Rayleigh number based on
the ambient stratification, Ry, as a function of the particle Rayleigh number Rg.
Figure 4-5a illustrates the critical Rt as a function of Rg for different diffusivity
ratios when 7 > 1. This corresponds physically to relatively large particles (a,10pm)
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Figure 4-5: Dependence of the critical values of the ambient density Rayleigh number,
Ry, on the particle Rayleigh number, Rg, for different values of the diffusivity ratio,
T = Kg/kp. The region above and to the left of a solid curve is linearly unstable
and that below and to the right is stable. a) 7 > 1, particles diffuse faster than the
ambient fluid’s density; b), 7 < 1 particles act as the slowly diffusing component.
The value of the Prandtl number is kept constant at 7, a value appropriate for water
stratified through temperature variations.

settling in an ambient stratified through variations in a solute concentration such as
salt. When a stable concentration gradient settles in an unstably stratified ambient
(Rr, Rgi0), a larger particle diffusion (increasing 7), and therefore a larger diffusivity
difference between particles and ambient density, is destabilising. This indicates that
the instability relies on the difference in diffusivities, as is the case for ordinary salt—
fingers. The influence of the Péclet number is weak in this case and the dependence
of the stability region on 7 is similar to that of thermohaline systems. For negative
Rs and Ry, corresponding to an unstable particle concentration gradient settling in a
stably stratified ambient, larger particle diffusion is seen to be stabilising. The slope
of Rr as a function of Rg is not readily affected by 7, but the region of instability is
shifted to the left. The unstable oscillations are thus damped by the large particle
diffusivity. However, even for large 7, the slope of the critical Ry as a function of
Rg remains greater than one, indicating that, for sufficiently large Rayleigh numbers,
instability may occur even when the total density gradient is statically stable.

The dependence of Ry on Rg for different values of 7 < 1 is shown in figure 4-
5b. For Ry, Rs > 0, it may be seen that increasing particle diffusivity stabilises the
system, indicating that the instability mechanism does not rely on the difference in
diffusivities but rather on the release of the potential energy from ambient density
field. The slope of the critical value of Rz as a function of Rg tends to a constant for
very small values of 7, but decreases to 0 for increasing values of Pe, showing that the
advection of particles is dominant in this regime. For negative Rg and Ry, a larger
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[ [ T>1 | T <1 j
Direct Oscillatory — direct with * Pe
Rs,Br >0 Destabilised by ' Pe Destabilised by * Pe
Destabilised by 7 Stabilised by ~ 7
Oscillatory Direct — oscillatory with * Pe
Rs, By < 0 |[ Destab. — stab. by ' Pe Stabilised by ~ Pe
Stabilised by 7 Stabilised by 7

Table 4.1: Summary of the dependence of the qualitative mode of instability on the
particle Péclet number, Pe = Uh/xr, and diffusivity ratio v = ke/Kr. The initial
density profile considered is uniform in all cases.

particle diffusion is also stabilising. In this regime, a larger particle diffusion acts to
dampen unstable oscillations, except for 7 = 1 which appears more unstable than
7 = 0.3. The qualitative dependence of the stability region on particle diffusivity is
thus similar to that observed for 7 > 1.

4.5 Conclusion

We have characterised the linear stability of a particle concentration gradient settling
in the presence of an ambient stratification. The non-zero particle settling speed
enters through the Péclet number, Pe = U,h/kr and is seen to modify the stability
of the corresponding double—diffusive system. We note that different boundary con-
ditions (stress-free and zero particle and solute flux), as well as the exact value of the
anisotropy factor ® were also considered and were seen to have little influence on the
stability diagrams presented.

In the absence of an ambient stratification, the critical particle Rayleigh num-
ber, Hg, was seen to increase approximately linearly with the Péclet number. The
mode of instability remains direct for small values of Pe but becomes overstable
(oscillatory) for larger Pe, indicating a qualitative difference with the well-known
Rayleigh-Bénard instability. The Péclet number where the transition from direct to
oscillatory instability occurs decreases slightly if the Prandt] number ¢ number is
increased, from Pe = 450 at ¢ = 7 to Pe = 270 at ¢ = 700. If we consider for
example glass particles of radius 10um settling in water, their diffusion constant is
approximately kg ~ 107%m?/s, corresponding to o = 100. For a 10cm high particle
concentration gradient, corresponding to Pe = 500, the fastest growing instabilities
are oscillatory and the critical Rayleigh number is of order 10° (compared to 10% for
a solute or temperature gradient).

Table 4.5 summarises the main results of our numerical study of the stability of a
double-diffusive system where settling particles play the role of a diffusing component
and figure 4-6 shows the curves of critical ambient density Rayleigh number, R;, as
a function of particle Rayleigh number for different values of Pe for 7 = 0.1 (figure
4-6a) and 7 = 10 (figure 4-6b). A system where the total density is uniform but such
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that hot, particle-laden fluid overlies cold, fresh fluid (Rr, Rs < 0), is stabilised by
the non-zero settling speed of particles, as was the case in the absence of an ambient
density gradient. When particles act as the quickly diffusing component (7 > 1), the
mode of instability remains oscillatory for all values of Pe and large Péclet numbers
(Pe > 90) are stabilising, although the critical Rayleigh number does not change
significantly. However, if particles diffuse slower than the ambient density, 7 < 1,
particle-fingers are predicted to appear only for values of Rg orders of magnitude
larger than in analogous double—diffusive systems. Moreover, for Pe > 5, the mode
of instability changes from direct, corresponding to particle-fingers, to oscillatory.
For particles settling in a heat water system, this corresponds to a crifical radius
of 1um; smaller particles essentially behave as a solute while the preferred mode of
instability for larger particles is oscillatory and instabilities occur only for Ry ~ 10%.
In the opposite scenario, where the total density is uniform but where cold and
clear fluid overlies hot and particle-laden fluid (Ry, Rg > 0), large Péclet numbers
were seen to be destabilising. For Pe > 7 the fastest growing mode of instability
is direct and the stability of the system is seen to depend almost exclusively on the
ambient stratification. The particle concentration gradient then fails to stabilise the
statically unstable ambient density gradient. If the ambient is stratified through an
unstable heat gradient, a concentration gradient of particles larger than 1um will be
unable to impede the development of convective instabilities; the critical size drops
to 0.1pm for systems destabilise by a salt gradient. When particles diffuse slower
than the density of the ambient fluid (7 < 1), the settling of particles thus changes
the qualitative nature of the instability from oscillatory to direct. However, when
7 > 1 (as may be the case if the ambient stratification is due to large molecules such
as sugar) larger particle diffusion is seen to be destabilising, demonstrating that the
instability mechanism relies on the diffusivity contrast between ambient density and
particle concentration, as would be the case in a double—diffusive system.
Experimental verification of the validity of the stability diagrams presented here
should be the subject of future work. The system describe here may be studied exper-
imentally by examining the stability of a suspension settling in a stratified ambient
and where particles are supplied at the top. In particular, measurements of the crit-
ical Rayleigh number of a particle concentration gradient settling in a homogeneous
ambient as a function of the particle settling speed would be very valuable to the de-
scription of certain industrial and environmental flows. In the presence of a stratified
ambient, experiments would also be valuable to help distinguish between the linear
instability discussed here and the instability resulting from the creation of a three
layer system via the finite displacement of particles, as will be discussed in chapter 6.
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Figure 4-6: Dependence of the critical ambient density Rayleigh number, Ry, on the
particle Rayleigh number Rg for different Péclet numbers for a) small diffusivity ratio
7 = kg/kr = 0.1 and b) large diffusivity ratio 7 = 10.. The region above and to the
left of a solid curve is linearly unstable and that below and to the right is stable. The
dotted line indicates the line of neutral buoyancy. The value of the Prandtl number
is kept constant at 7, a value appropriate for water stratified through temperature
variations.
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Chapter 5

Boycott effect in a stratified
ambient

5.1 Introduction

Boycott (1920) first reported that the settling rate of red blood cells could be enhanced
by tilting the container in which the suspension was kept. He also noted that particle—-
free fluid left behind by the settling of particles beneath the inclined wall (the Boycott
layer) flowed upward éwing to its positive buoyancy relative to the suspension. A
heuristic model for the descent rate of suspensions settling beneath an inclined wall
was put forward independently by Ponder (1925) and Nakamura & Kuroda, (1937).
Based on the requirement of volume conservation, the upflow of particle-free fluid is
balanced by a corresponding downflow within the suspension, thus accelerating the
descent of particles. A more complete theoretical description of the flow was later
proposed by Hill, Rothfus & Li (1977) and Acrivos & Herbolzheimer (1979) and was
verified experimentally by Leung & Probstein (1983).

The presence of a stratified ambient is expected to significantly alter the evolu-
tion of the Boycott effect. In a stable density gradient, fluid carried upward in the
Boycott layer will see its density difference with the ambient diminish. If the density
gradient is sufficiently strong, fluid in the Boycott layer may reach a height where
the density difference due to the absence of particles is balanced by that due to salt.
Horizontal intrusions are thus expected to penetrate from the inclined wall into the
suspension. Horizontal layers are also known to form in doubled-diffusive systems.
When a salinity gradient is heated from below (Turner 1985) or from the side (Hup-
pert & Turner 1978), hot fluid rises to its level of neutral buoyancy and generate layers
with typical height scaling as Apr/(dp/dz), where Apy is the density difference due
to temperature and dp/dz is the ambient density gradient. Sloping boundaries in
double—diffusive systems may also generate layers as the convective motion generated
by the faster diffusing component is opposed by the density stratification due to the
slowly diffusing component (Linden & Weber 1977).

In this chapter, we present the results of a combined experimental, theoretical and
numerical study of the Boycott effect in a stratified ambient and we compare layers
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Figure 5-1: Schematic of the Boycott effect. Particles settling beneath a wall making
an angle § to the vertical leave behind a buoyant layer of clear fluid which rises along
the wall.

resulting from intrusions of the Boycott layer in the bulk of the suspension with those
observed in double-diffusive systems. We first describe the dynamics of the Boycott
effect in homogeneous and stratified ambients in §5.2. We present our experimental
study of the stratified Boycott effect in §5.3 and a discussion of our measurements
and observations is given in §5.4. A numerical model of the evolution of the particle
concentration in a suspension marked by convecting layers is introduced in §5.5 and
we present numerical simulations of the formation of layers by the Boycott effect in
the presence of an ambient stratification in §5.6. We conclude by investigating the
applications of this layering mechanism to magma chambers in §5.7. Note that most
of these results may be found in a paper by Peacock, Blanchette & Bush (2003).

5.2 Boycott effect

5.2.1 Homogeneous ambient

We begin by describing the Boycott effect as observed in a homogeneous ambient
(Acrivos & Herbolzheimer 1979). When particles settle away an inclined wall, a layer
of clear fluid is created, the so—called Boycott layer. The density of the suspension
is greater than that of the clear fluid present in the Boycott layer. Fluid within the
Boycott layer therefore ascends owing to its buoyancy, dragging particles upward as
it does so. Eventually, an equilibrium is achieved where the settling of the particles
is countered by the vertical motion of the fluid. In steady state, the velocity perpen-
dicular to the wall, v, must balance the settling of particles, therefore scaling like the
particle settling speed U,. Using the length of the inclined wall L as a typical length

83




scale, continuity requires

u v U

In many geophysical and laboratory settings, the Reynolds number of the flow is small
and the buoyancy force in the Boycott layer is balanced by viscous forces

vy
9Ap ¢ ~ '05—2 (5.2)

where Ap is the density difference between particles and fluid, ¢ the particle concen-
tration, v the kinematic viscosity and p the density of the fluid. The velocity along
the wall and the layer thickness thus scale as

v~ U A3 6 ~ LA™Y3, (5.3)

Where A = (9/2)(L/a)?¢, is the governing non-dimensional parameter, a being the
particle size. In most practical settings, A is large with values greater than 10°. The
analysis of Hill, Rothfus & Li (1977) and later that of Acrivos & Herbolzheimer (1979)
yield a more precise result in terms of the angle of inclination @. In the initial stages of
the motion, the thickness and fluid velocity in the Boycott layer are time dependent

_ : 1/3 _ A3 (1 Y Y
d(z,t) = Ugsin 9A'/*¢ v(z,y,t) = U, cos (1 26(:}3,1&))6(:5,‘5) (5.4)

where 7 is the distance along the wall and y is perpendicular to the wall. The Boycott
layer grows until it reaches an equilibrium thickness at which point

2/3
— M3 (tan @)/312/3 A 1/3 = U.AY3 050 4\ v
é(z) = ' (tan 6) A v(z,y) A cos b 2 52 ) 3

(5.5)
From this it is seen that the flux along the wall is exactly the horizontal projection
of the inclined wall multiplied by the settling speed

ué = LU; tan 6. (5.6)

Note that the same argument can be applied when fluid containing buoyant particles,
such as bubbles overlies an inclined wall.

The rate of descent of the clear fluid interface at the top of the tank may be
determined using the fact that there must be no mean vertical flux in the tank.
There is thus a downflow in the bulk to counter the upflow of the Boycott effect. We
here neglect the thickness of the Boycott layer and assume that the flow is uniform
across the tank; these assumptions are well justified if W > 6, W being the width
of the container. Experiments show that the top interface remains nearly horizontal,
which supports the assumption of particle concentration uniformity. Thus, for a tube
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making angle # with the vertical, as in figure 5-1, the interface velocity at height y is

wily) = U, (yt;f@ + 1) (5.7)

This result was derived independently by Ponder (1925) and Nakamura & Kuroda
(1937) and is commonly referred to as the PNK equation.

5.2.2 Stratified Ambient

The presence of a stratified ambient is expected to significantly alter the evolution
of the Boycott effect. If the ambient is stably stratified by a salinity gradient, fluid
carried upwards in the Boycott layer will see its density difference with the ambient
diminish. If the density gradient dp/dy is sufficiently strong, fluid in the Boycott layer
reaches a height hy,, at which the density difference due to the absence of particles is
balanced by the density difference due to salt. This height satisfies

h
n dp
—dy=Ap ¢ 5.8
I (59
where Ap is the density difference between particles and the ambient fluid. For the
case of a constant density gradient we thus have

Ap ¢

= (5.9)

If h, is greater than the height of the container, h, one expects that the flow
is not significantly altered by the stratification. The Boycott effect then acts as a
mixing mechanism in bringing fluid from the base to the top of the tank. The density
gradient is thus eroded faster than it would be through the effect of diffusion alone.
If h, < h, fluid in the Boycott layer becomes neutrally buoyant and is expected to
intrude into the bulk giving rise to a series of layers. To test this physical picture,
we performed a series of experiments in which particles settled in a salt stratified
ambient, which we describe in §5.3

5.3 Experimental investigation

5.3.1 Experimental method

We proceed to investigate experimentally the combined influences of the Boycott
effect and ambient stratification. A schematic picture of the experimental apparatus
is presented in figure 5-2. The container was a perspex tank 25c¢m high (h = 25cm),
40cm long and 2.5cm wide, with vertical sidewalls. The top was open and the sidewalls
slotted to facilitate the introduction of a sloping wall, at an angle of 45° across the
center of the tank. Holes were drilled in the base of the tank to allow it to be filled

90




Figure 5-2: A schematic illustration of the apparatus used to study the Boycott effect
in a stratified ambient. The inclined wall was inserted after filling the tank.

from below. Vibration control mounts were used to level the system and isolate the
tank from exterior mechanical disturbances.

Two different configurations were used in the experiments. The first one in-
volved silica particles of density 2.65kg/m?® settling in stratified salt water. Using
the Richardson-Zaki formula (Richardson & Zaki 1954), it was estimated that the
particle radius was 4.1 +0.8um. The corresponding Stokes settling speed of the par-
ticles was 65um/s. The volume fraction of particles used was typically 0.3%. The
second configuration involved glass spheres of radius 17.5 & 1.5um settling in a salt
stratified solution comprising 63% glycerol and 37% water. In the absence of salt,
the kinematic viscosity of the mixture was 12.1cS, which gave a settling speed of
88+ 15um/s. The presence of salt increased the viscosity of the solution significantly,
giving a kinematic viscosity in excess of 21cS for salt-saturated solutions. To min-
imise the influence of viscosity variations, only weak salinity gradients were used in
this configuration. The effects described in chapter 2 were thus neglected, as the
settling speed of the particles varied by less than 50% in all experiments.

The tank was filled from below, and a linear salt stratification established using
Oster’s double bucket technique (Oster 1965). The volume fraction of particles in
both buckets was identical, allowing us to establish an initial state characterised by
a linear salinity gradient and a uniform particle distribution. The tank was filled in
less than four minutes, insuring than particles did not settle more than 2cm as the
tank was filled. A PME salinity probe measured the resulting density gradient, which
was initially linear. Once the tank was filled, the sloping wall was introduced; this
process took approximately four seconds and was sufficiently slow that disturbances
to the ambient fluid were minimised, but fast compared to the time taken for the
establishment of the Boycott layer (about 10 seconds). After the wall was introduced,
a particle—free layer developed underneath the inclined wall in which fluid was seen
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Figure 5-3: Progression of the top interface in a weak stratification. The dashed line
represents the position of the top interface in the absence of an inclined wall and the
solid line is equation (5.7). Experimental data confirms that the stratification does
not affect significantly the progression of the top interface.

to rise. The evolution of the system was found to depend strongly on the ratio &/h,,
as is detailed in the next section.

5.3.2 Observations

We distinguish two qualitatively different regimes: that of a weak salinity gradient
where h, > h, and that of a strong salinity gradient where h, < h. We begin by
describing the case of a weak salinity gradient.

Weak salinity gradient

If the level of neutral buoyancy is higher than the top of the tank, we do not expect in-
trusions to form. In our experiments, a Boycott layer was seen to develop underneath
the inclined wall, with a typical thickness of 2.5mm and moving with characteristic
velocity 0.5mm/s, observations consistent with equation (5.3). The layer of clear
fluid extended to the top of the suspension and a sharp interface descended from the
top of the tank. The evolution of the height of the suspension was recorded for the
glass particles scttling in a glycerol-water solution, and the results are presented in
figure 5.3.2. The solid line corresponds to the descent rate expected for particles of
radius 16mm, the smallest size present in our sample, using equation (5.7). In our
trapezoidal geometry, the interface height, H (), is governed by

%(X —H)=-UX (5.10)
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X being the length of the base of the tank. The dotted line indicates the descent rate
of the interface expected for particles in the absence of the Boycott effect.

The clear fluid transported from the base of the tank by the Boycott layer mixed
with that already present above the suspension. Introducing dye at the bottom of
the container made clear that fluid fluid from the bottom of the container was carried
all the way to the top of the suspension. The density of the clear fluid transported
from the base of the tank decreases with time. One anticipates the development of
a weak stratification in the clear upper layer, as fluid keeps rising along the wall
all the way to the top of the container. The evolution of the clear fluid interface
and the corresponding salinity profiles are presented in figure 5.3.2. Note that the
time taken between obtaining a salinity gradient and the corresponding image was
approximately one minute, the time required for immersion and withdrawal of the
salinity probe. At time ¢t = 0, the interface is at the top of the tank and the density
profile is linear throughout; the apparent small scale deviations from linearity are
due to the combination of high probe sensitivity, the weak salinity gradient and the
motion of the probe through the ambient. After 5 minutes, the profile is linear within
the suspension, and shifted downward from its original position. Above the clear fluid
interface, the profile is irregular due to mixing. Such an intermediate stage is marked
by clear salty fluid overlying a less saline suspension. After 40 minutes, particles have
settled out completely and a stratification persists, although it is not as pronounced
as it initially was. |

Increased mixing in the upper clear fluid region is generated by the salinity jump
at the interface between clear fluid and suspension. As particles settle near the inter- -
face, they leave behind buoyant fluid which rises in the form of millimetric plumes.
the plumes are visible in parts due to the fact that they entrain particles from the sus- -
pension. A related scenario arising in a polydisperse suspension has been investigated
by Kerr & Lister (1992), who deduced the influence of the associated plume-induced
mixing on the descent rate of the suspension. In our system, such mixing is negligible,
as evidenced by the good agreement between the descent rate of the suspension and
that predicted for the Boycott effect in a homogeneous ambient, figure 5.3.2. -

Strong salinity gradient

The experiments described in this section were performed using the smaller particles
(o = 4.1um) settling in salt water to avoid viscosity variations. The characteristic
thickness of the Boycott layer and flow speed were, respectively, lmm and 2mm/s,
again values consistent with equation (5.3). For h, > h, the upflow within the Boycott
layer stalled, giving rise to intrusions into the stratified ambient. The lowermost
intrusion, which we refer to as the primary intrusion, appeared first and was later .
followed by a series of overlying secondary intrusions that appeared simultaneously.

We first performed a series of experiments in order to ascertain the dependence
of the primary intrusion height, h,, on dp/dz. The density gradient was varied
from 20 to 300kg/m* and the volume fraction of particles was kept constant at
App = 5% 0.2kgm=3, which yields 1 < h/ha < 15. The results are presented
in figure 5.3.2, where it is evident that the height of the primary intrusion decreases
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Figure 5-4: Pictures and salinity profiles of the evolution of a weak salinity gradient,

h/h, = 0.5 in the presence of the Boycott effect. Picture were taken at times Omin,
5 min and 40 min.
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Figure 5-5: The dependence of the primary layer size on the ambient salinity gradient.
The layer size is inversely proportional to dp/dz, in agreement with (5.9)
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Figure 5-6: The dependence of the ratio of the primary layer size, ~p, to the neutral

buoyancy height, h,, on the initial particle concentration. The ratio hp/h, remains
constant, showing that intrusions first occur as fluid reaches a height h,,.
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* monotonically with increasing density gradient. The solid line corresponds to the neu-
tral buoyancy curve, (equation (5.9)). The dependence of h, on the particle volume
fraction was also investigated. Fixing the ambient stratification at 57 + 2kg/m*, the
particle concentration was alternately set to ¢pAp = 2.5, 5.0, 7.5 and 10 = 0.1kg/m>.
The anticipated dependence is again well supported by the data as is shown in figure
9.3.2.

As the system evolved, a layered structure developed throughout the fluid domain
on a timescale of several minutes. Each layer was a convection cell characterised by
an intrusion at the top and a return flow within the body of the layer. This fluid
motion was made visible by the introduction of dye, as shown on figure 5-8. Figure
5-7 demonstrates that no fluid from the primary layer escapes to overlying layers. The
Boycott layer thus completely detaches from the wall at the first intrusion. When
dye was introduced at an intermediate height, it remained trapped within a single
~ layer, indicating that no fluid was exchanged between layers. The convection within
each layer is visualised in figure 5-8 through the transport of dye released from a
vertical thread. Motion away from the wall at the top of each layer is countered
at the bottom by inflow toward the wall. This convection served to mix the fluid
within each layer, eroding the initial linear density gradient and generating step-like
density profile, as shown in the salinity profiles in figurc 5-7. The layering process
was not entirely steady and layers did merge or split on occasions, in a manner
~ reminiscent of layers forming in double-diffusive systems (Tanny & Tsinober 1988).
The settling of particles prevented us from studying the long term behavior of the
layers in the presence of particles and the ultimate steady state of the layers could not
be examined. After all the particles had settled, the step-like density profile persisted
until ultimately being eroded through diffusion.

The secondary intrusions were recognisable as disturbances emerging simultane-
ously from the Boycott layer soon after the development of the primary intrusion,
as can be seen in figure 5-8. The size dependence of these intrusions on the density
gradient was investigated as previously by varying 0, p and keeping a constant particle
fraction ¢Ap = 5kg/m®. The observed dependence of mean secondary layer height
on stratification is reported in figure 5-9. The secondary layer size, h,, is smaller than
their primary counterparts. Furthermore, the scale of the secondary layers is not
inversely proportional to the density gradient of the ambient as one would anticipate
from equation (5.9). Rather a best fit line to the results on a logarithmic plot yields

the relation 0.35
A )
he = 1.34 (%) (5.11)

Observations also indicated that the secondary layer size increased with increasing
particle volume fraction. For example, for a density gradient of d,p = 150kg/m?, the
layer size increased from approximately 2cm to 2.8cm as Ap¢ increased from 5kg/ m?
to 16kg/m>. A few experiments were attempted in the glycerol and water solution,
although no useful data were obtained as too few layers were observed and no reliable
average size could be discerned. The variable viscosity also invalidates qualitative
measurements in this context. However, the secondary layers were clearly observed
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Figure 5-7: Pictures and salinity profiles of the evolution of a strong salinity gradient,
h/h, = 3.85 in the presence of the Boycott effect. Picture were taken at times Omin,
3 min and 10 min.
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Figure 5-8: Evolution of a vertical streak of dye in a strong salinity gradient, A/h, = 7.
‘FEach layer acts as a convection cells. Flow is away from the wall at the top, toward
the wall at the bottom.
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Figure 5-9: The dependence of secondary layer size, h,, on the ambient density gra-
dient dp/dz. The layers are smaller than the neutral buoyancy height. The solid line
is a best fit showing a dependence of the form h, (dp/dz)=0-38

to be larger than in the salt—water solution, by a factor of two or three.

The layers were initially tilted downward, as may be seen in figure 5-7. The
salinity at the base of any given layer decreases with time, as progressively less saline
fluid is drawn into the Boycott layer. The density of the particle—free fluid in the
Boycott layer therefore also decreases with time, and the resulting intrusion height
increases accordingly, resulting in an apparent tilt of the intrusion. However, after
the layering has evolved for sufficient time, the density within the layer is uniform
and the tilting is no longer apparent, figure 5-7. Note that this tilting mechanism 1is
distinct from that observed in thermohaline systems (Huppert & Turner 1980).

The vertical transport of particles between layers was not accomplished through
uniform settling. Rather, as a consequence of the density—jump between layers,
particle-laden plumes developed and penetrated the clear fluid interfaces (figure 5-
10). The generation of microplumes through sedimentation across a density interface
has been considered by Hoyal et al. (1999) and Parsons et al. (2001) and is influ-
enced by the increase of particle concentration required by conservation of particle
flux across the interface. A quantitative measure of the overall settling time for the
system was difficult to obtain as there was no easily discernible interface separating
suspension from particle-free fluid. However, particle settling was clearly impeded by
the presence of the layers; in the absence of layers particles settle completely within
40 minutes while they took more than an hour when layers were present.

99




melined wajl

boycott layer

suspension

Figure 5-10: The transport of particles between layers formed by the stratified Boycott
effect occurs mostly through plumes of particles.

5.4 Discussion

From our experimental investigation, we distinguish two distinct regimes, depending
on the relative magnitude of A and h,. For a weak salinity gradient, h < hy,, the
Boycott layer transports dense fluid form the base of the tank to the top, where it
mixes with clear fluid. This overturning process erodes the linear density gradient.
Once all particles have settled, the density gradient is reduced throughout the system.
Plumes of low salinity fluid are generated at the interface between the suspension and
the overlying clear fluid; as particles settle, clear light fluid is released and may entrain
suspended particles (Huppert et al. 1991). In our study, particle resuspension has
little effect on the descent of the interface and the timescale of settling in the weak
salinity limit is the same as that expected for the Boycott effect in a homogeneous
ambient.

For a strong salinity gradient, h > h,, the Boycott layer stalled, giving rise to a
series of distinct layers. A primary layer first appears with the expected vertical height
set by equation (5.9). The primary intrusion appears when clear fluid from the base
of the tank reaches its height of ncutral buoyancy. The size of the secondary layers,
estimated by equation (5.11), is less well understood. A plausible explanation is that
clear fluid within the Boycott layer entrains neighbouring sediment laden-fluid. The
Boycott layer may then be viewed as a moving sidewall in a stratified ambient. The
transfer of kinetic energy of the moving boundary to gravitational potential energy
is expected to lead to layers of thickness ‘

By ~ (5.12)

2| =
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where u is the speed of the boycott layer and N the Brunt-Viisila frequency N =
(9/p)Y*(dp/dz)}'/2. In terms of more fundamental quantities, this scaling is equivalent
to
U, L2/3g1/3 1/
s = a?Pg 2 (dp]dz)1/?

which is roughly consistent with equation (5.11). The observed increase of layer size
with volume fraction also supports this physical picture as the layer size increases
with volume fraction. However, this simple model cannot account for observations
made using 17.5um glass spheres settling in glycerol-water solutions. In that case,
Us was unchanged but the particle size, a, was increased, which one expects to result
in a smaller layer size. However, the secondary layer size in several test experiments
was seen to be larger than for smaller particles settling in salt water by a factor of
two or three.

A second possible explanation is that the Boycott layer itself becomes unstable
through the combined effects of shear and density variations. Waves are sometimes
seen to propagate along the Boycott layer interface, supporting this hypothesis. The
instability would result from the growth of such waves, eventually resulting in intru-
sions into the ambient. One expects the wavelength of such an instability to scale as
the thickness of the Boycott layer itself, §. It appears that the primary intrusion is
not affected by such an instability, presumably because the time scale of growth of
the waves is slower than the time scale related to the establishment of the primary
layer. The Boycott layer thickness is not constant in the bottom part of the tank,
but its size is limited by the first intrusion. The thickness of the Boycott layer grows
linearly in time (see equation (5.4)) until is reaches equilibrium (equation (5.5)). The
primary intrusion occurs when fluid from the bottom of the container first reaches
its level of neutral buoyancy, at which point the Boycott layer is only established in
the bottom part of the tank. The thickness above that level is constant and equal to
(hn). The intrusion impedes further growth of the Boycott layer and the thickness in
the top part of the container thus remains roughly constant until secondary intrusions
appear. If secondary layers result from an instability of the Boycott layer, their size
is then expected to scale as

_ 1 [ App\ 3 23
hs ~ (5(hn) ~ m (79;) al'ﬁ- (514)

(5.13)

This hypothesis also agrees well with the results of equation (5.11) and with the
increase in layer size observed for larger particles. However, the layer size predicted
by this scaling is independent of particle fraction, which contradicts observations
that the layer size increases slowly with particle fraction (from 2cm to 2.8cm for Apg
changing from 5kg/m? to 16kg/m?).

A discrepancy in the size of primary and secondary intrusions is also reported
in thermohaline systems with heated sidewalls (Thorpe 1969, Chen 1971). In this
system, heated fluid rises from the base to its neutral buoyancy height, where it
intrudes into the ambient. The overlying fluid adjacent to the wall is everywhere
neutrally buoyant, and temperature and salinity gradients exist perpendicular to the
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wall. The sideways diffusive instability, which relies on the presence of horizontal
gradients of both heat and salt, initially proposed by Thorpe (1969) and further
studied by Hart (1971) is then responsible for generating the secondary intrusions.
The lengthscale of secondary intrusions in the thermohaline problem was found to
scale as (0,p)/% (Hart 1971), however the constant source of energy provided by
sidewall heating gave rise to layer mergings so that the secondary layers eventually
scaled as {8,p)"'. In the stratified Boycott effect, a similar situation arises; once
the primary intrusion has developed, overlying clear fluid underneath the wall is
everywhere neutrally buoyant. However, there is no clear analog of the sideways
diffusive instability in our system. Given that we observed layer mergings, it 1s
conceivable that in the presence of a constant source of energy, such as a steady supply
of particles from above, the secondary layers would ultimately merge to give a layer
size inversely proportional to the density gradient, as in the analogous thermohaline
problem.

We have assumed here that the salinity in the Boycott layer remains constant as
fluid is carried upward. This assumption is expected to hold if the time taken for
fluid to rise in the Boycott layer across the container, ¢, is less than the diffusion
time of salt across the Boycott layer, ¢,.

L 62
& — =ty (5.15)

b = U,A1/3 K

where  is the diffusion constant of salt in water. Assuming particles settle at low
Reynolds number so that

2gA
u, = 24987 (5.16)
pv
and using equation (5.3) this assumption will hold true if
¢ ,8/3L1/3 A
ts $g KUP

This inequality holds in general for geophysical and laboratory settings; in the context
our our experiments, ty/t, ~ 50 and geophysical applications are discussed in §5.7.

If the Boycott effect is present in a stratified ambient, the gravitational potential
energy of the suspension serves to mix the stratified fluid. The efficiency with which
the system converts the gravitational potential energy of the sediment to that of the
fluid may be quantified in the following manner. The additional energy due to the
presence of particles at the start of the experiment is

P, = /v AppgzdV (5.18)

where V is the total fluid volume. After mixing, the increase in gravitational energy
of the flnid is |

@ = [ (r = p)gzav (5.19)
JV
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where p;(z) and p;(z) are the final and initial stratifications. The efficiency of the
system, &/ = ®;/®, was approximately 10% in all experiments considered. We note
that much of the energy, ®,, was dissipated through the action of the viscous drag
on individual settling particles.

5.5 Concentration evolution

Once layers are established in a closed container, they modify the evolution of the
particle concentration. Consider a container comprised of steady layers. We assume
that each layer has a volume V, and a base area A;, and that the convective motions
within each layer are sufficiently vigorous to maintain a uniform particle fraction
(Ucon > Us). This assumption is Justified by experimental data, see 85.3, showing ™
that layers formed by the Boycott effect erode an initial density gradient and evolve
to a step profile. The results of Martin & Nokes (1988) may thus be used to determine
the time evolution of the particle concentration throughout the system. Their analysis
assumes that particles are kept in suspension by the fluid motion, except in a thin
boundary layer at the bottom (and top in our case) where viscous effects become
important. Particles in the boundary layer region settle out at their Stokes settling
speed U/;. The number of particles in a layer is therefore reduced proportionally to the
settling speed and to the surface area of the base of that layer. The flux of particles
into a layer is given by the flux of particles out of the overlaying layer. Thus

d¢; U4, UsAi 1 Q

i TV v Pir1 + A (5.20)

¢ +

where ¢; is the concentration in each layer. We include a source term, ,, that may
account for new particles that form within a layer, as could be the case for crystals in
a magma chamber. This term is also constant within each layer because of convective
motions. This system of equations may easily be solved numerically and has analytical
solutions for simple source terms.

At all times, the upper layer evolves independently, acting as a source of particles
for underlying layers. We consider that the top layer evolves as in the absence of
ambient stratification, as is supported by our observations in the weak stratification
limit. The overall settling time of the system is thus obtained by combining the
Boycott settling time of each layer. For a given geometry, the total settling time
may thus be found using equation (5.10). For the trapezoldal geometry used in our
experiments, the total settling time is

T=Zti=2—% (1—%) (5.21)

where ¢;, H;, and X, are respectively the settling time, thickness and base length of
the ith layer. A limiting case of interest is that of large n, for which is it seen that
the settling time of the system tends to that of an individual particles settling in the
absence of the Boycott effect. In this limit, the layers become sufficiently small that
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Figure 5-11: The dependence of the normalised particle concentration on height in
a layered system at different times (t=0, 1, 10 and 15 min). The top 4 layers are
4cm high and the bottom layer is 8cm high. Fach layer is assumed to be well-mixed
through the stratified Boycott effect, except for the top most layer where the top
interface propagates as it would in the absence of stratification.
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the Boycott layer does not appreciably enhance settling within any given layer.

Introducing the notation A;; = UsA;/V; and denoting by ¢ the concentration
vector ¢; for = 1...n, the system of equation (5.20) may be written as

dé
- _ 7 .22
o = A+ (5.22)
where
—A11 )\2,1 0
. ' 0
0 )‘n—l,n—l /\n,nfl
0 0 ‘)\n,n

and the ith element of 7'is Q;/Vi. The general solution is

¢ = et (/t e **q(s)ds + I?) (5.23)
0

where K is an integration constant vector determined from the initial conditions.
In general, §(t) governs the long term behaviour of the solution and the term etf&
expresses the transient evolution from the initial state.

The simplest case to consider is when ¢ is constant in time, corresponding to
steady nucleation. An equilibrium concentration qz_S;q is then achieved. The equilib-
rium value is found by solving $eq = —A~1§, which yields an equilibrium concentration
in the sth layer of the form

begs = (@0t Qs + oot Qs + Q). (5.24)

AU
An important special case in the context of magma chambers is when crystals form
only at the top of the container. The equilibrium concentration in a layer is then
Geqi = Qn/UsA;. The bottom area of each layer therefore determines the final con-
centration in suspension. If crystals form uniformly throughout the chamber, then all
source terms are equal, and the concentration increases linearly with distance from
the top.

The transient term depends largely on the eigenvalues of the matrix A. If the Aig
are all different, the general solution is

A2,1 A1,2-'-An—1,ﬂ ~ A t
P1 1 Aza=Arr T (Aee=Ann) - (An,n—AL1) 1€ b
. Antyn UaAnoim
Pn—1 0 1 A — Crn_1€ Lin-1t
n,n " An—1,n—1 —U.A t
¢n 0 0 1 Cpe” Ushmn

(5.25)
The time scale of adjustment is thus determined by the X;;. If there are repeated
eigenvalues, the form of the solution is slightly altered but the dominant term remains
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of the form e~Y*.i!. From the solution (5.25), we see that the concentration in each
layer is influenced only by the overlaying layers, as one expects. The layer in which the
concentration of particles decays the slowest will eventually dominate the transient
dynamics of all the underlying layers. Therefore, the layer with the greatest value
of V;/A; will be crucial to the long-term behaviour of the system. In the case where
layers are of the same aspect ratio, (i.e.inclined rectangular cracks), the concentration
decays exponentially in time, although lower layers will lose particles slightly slower
since their time evolution must follow the evolution of overlaying layers.

A simulation of the evolution of the particle concentration for our trapezoidal
geometry with six layers, one of which is a primary layer, is shown in figure 5-11.
The concentration is initially uniform throughout, and subsequently decreases with
height. In our trapezoidal geometry, A;/V; and A, /V; both increase with height, as
does their difference. Thus, according to equation (5.20),

deip1  de
— . 5.2
7 < o <0 (5.26)

The concentration thus decreases faster in the upper than lower layers. The only
exception to this trend is the top layer, whose settling is prescribed by the Boycott
effect. We note that the presence of six layers increases the total settling time by
approximately 50%, in good agreement with our experimental observations.

5.6 Numerical simulations

We here describe a numerical model of the formation of layers resulting from the
Boycott effect in a stratified ambient. We present a simplified model which allows us
to model the system as a system of three partial differential equation involving only
one spatial variable. This allows us to monitor efficiently the time evolution of the
system and to study the layer size as a function of both particle concentration and
ambient stratification over a broad range of parameters.

The governing equations describing particles settling in a fluid containing a solute
are

ou -VP A

N i vi= 1 2Pyi+ BSG+ vV (5.27)
ot p p

as

o HE V8= kV2S (5.28)
19,

a—f+ﬁ-V¢+Us V(1 — kp)p = ks V0 (5.29)

where 7 is the velocity field, S the solute concentration ¢ the particle concentration,
A the expansion coefficient of the solute and x4 the particle diffusion constant. To
simplify computations, we neglect non-linear terms in the momentum equation since
the Reynolds number of the Boycott layer flow is small (O(1)). A Galerkin method
was used to reduce the equations to only the vertical spatial variable, allowing us to
monitor the time evolution of the flow in a reasonably small computation time.
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5.6.1 Numerical Model

Before solving (5.27-5.29) numerically, we make two simplifying assumptions. We
first impose that the particle concentration be constant in time. The analysis of
Acrivos & Herbolzheimer (1979) shows that for a uniform initial concentration do, the
concentration of particles in the bulk remains constant in time. We therefore assume
that particles are only present in the bulk and that their concentration remains ¢
over the duration of the simulation. We expect this approximation to hold away from
the top of the suspension and near equilibrium in the presence of a constant source of
particles. We also make use of experimental observations described in §5.3 and assume
that the thickness of the layer of clear fluid is constant, to a first approximation. This
is justified by our experimental observations which show no systematic thickening with
distance from the corner. We thus consider ¢ = 0 inside the Boycatt layer (z — z < §)
and ¢ = ¢y otherwise, where we consider an inclination angle of 8§ = 45°, see figure
5-1.

Following Hosoi & Dupont (1996) who studied the formation of layers resulting
from the settling of a particle concentration gradient in a horizontally stratified fluid,
we employ the Galerkin method to reduce the system to one spatial dimension. We
first assume a form of the velocity and salinity field with known horizontal dependen-
cies. We note from experimental observations that vertical upflow is greatest at the
interface between the suspension and clear fluid and that there is a weak downflow
close to the Boycott layer. The magnitude of the vertical velocity must decay with
distance from the wall, which suggests a velocity of the form:

u(z, 2,t) = f(z,t)e ¥ 22 (sin(k(z — 2) + ) — sin @) (5.30)

where k is specified from experimental parameters. This form of the velocity can be
seen to have 0 vertical flux and to vanish at the wall. Using the continuity equa-
tion and no—slip boundary conditions we can compute the corresponding horizontal
velocity field.

v(z,z,t) = —/ O u(z', z,t)dx’ (5.31)
0

We choose the salinity field, S, as the sum of a background component Sa(z,t) and
a perturbation b(z,7). The perturbation decays exponentially as did the velocity
and we require that the z—derivative vanish at the boundary, which guarantees no
horizontal S flux. Although this does not insure that there is no diffusive flux at the
boundary, the time scale of diffusion being much slower than the advection time scale
Pe = Ush/k > 1, this shortcoming is expected not to have much influence on the
results. Conservation of solute also requires that the perturbation term integrates to
0 so that it does not affect the total amount of solute in the system, which leaves us
with

00 =5t 5 o))

) (5.32)
where tan(¢) = (1 4 2tan® ®)/ tan .
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Using the Galerkin method, we chose the test functions to be of the same form
as the velocity and S fields (Hosoi & Dupont 1996). To derive equations in terms of
f(z,1), Sa(z,t) and b(z,t), we multiply the corresponding equations by test functions
(take a dot product for equation 5.27) and integrate over the domain. We consider
a domain restricted by £ = 2z and £ = W + z in the horizontal direction, and z = 0
and z = L in the vertical direction. Integration against test functions may be done
using the Mathematica software. The resulting equations are in terms of z and ¢
and involve only f(z,t), Sa(z,t) and b(z,t), from which one may readily recover the
velocity and S fields.

The parameters to specify are @, &, k and L. The relevant length scale is the size
of the layer of clear fluid so we use the length scale 1/k to non—dimensionalize the
equations. The maximum velocity occurs at a distance § from the wall, which yields

cos(2® + k&) = — sin® &. (5.33)

The decay rate —ktan® may be approximated following the results of Acrivos &
Herbolzheimer (1979), to be 1/ and § is estimated using equation (5.3). We may thus
find the wavelength k and the phase angle ®. Using the parameters corresponding to
glass particles settling in salt-stratified water mentioned in §5.3 we find

02—-16b6—16 f+0.908,,f—038,..f =0 (5.34)
6.3 8,5a +0.15 8, (bf) = '(6.3 0,,5a + 1.1 9,b) (5.35)
0.3 8,b+0.01 (f8,b+ 8, (bf)) +0.15 f3,Sa = k'(0.3 8,,b+ 0.3 8;b — 0.3 b) (5.36)

where &’ is non-dimensional.

Our algorithm was implemented using finite elements and is explicit in time with
second order accuracy in space, except for non linear terms where upwinding is used.
Second order accuracy in time is also achieved by considering

Frrl = g /22 _ g (5.37)

where F7*! is the result of a time increment of A¢ and fY/2*1/% is the result of two
time increments of At/2. Adaptive time stepping allowed us to insure that the error
of any particular step is small. The presence of shocks forced us to introduce artificial
diffusion (Hosoi & Dupont 1996). To insure that shocks do not generate spurious os-
cillations in the velocity and salinity fields, the diffusion constant is modified following
Hosoi & Dupont (1996) and is taken to be & = Kgq + |f|Az ASa Og,, where kg, is
the physical diffusion constant, ASa is the average variation of Sa in a neighborhood
of two mesh points and ©g, is a constant chosen to be as small as possible while still
preventing overshoot at the shocks. It was seen that the added term was comparable
to the physical diffusion constant, or smaller. A similar effective diffusivity was used
to trace the evolution of the solute concentration b.

The horizontal averaging associated with the Galerkin method effectively reduces
the magnitude of the Boycott effect compared to the magnitude of the diffusion of
the solute. Therefore, in order to study the dependency of the layer size on differ-
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Figure 5-12: The time evolution of the dependence of the background salinity profile S
on height in the presence of the stratified Boycott effect. Here the initial concentration
gradient is of 150kg/m*, the particle mass fraction is 5kg/m3, ¢ = 5um and pp =
2g/cc. Starting from a linear salinity gradient, a step-like profile develops, indicating
the formation of layers. Plots are shifted to the right by 0.12 for each 30s.

ent parameters, we reduced the thickness to only a couple of periods of the model
functions sin(k(z — z) + ). Experiments were performed to see if the width of the
container,W, influenced the observed layer size. For values of W ranging from one
to seven periods of the test functions, the layer size did not change in a systematic
fashion. Therefore, our results for small W should apply for larger values. This is
also justified by the fact that by making the tank narrower, we neglect only diffusive
terms and perturbations due to the Boycott layer which decay exponentially.

5.6.2 Numerical Results

To allow comparison with the experiments of §5.3, simulations were first performed
using the following parameters: a = 5um, L = 25cm, v = 10~2cm?/s, g = 9.81m/s?,
p = lg/cm® and x = 107°m?/s. The added density due to particles was varied
between 1 and 15kg/m®. The computations were started with an initial state for
which the density profile was a linear gradient, the density gradient varying between
5 and 300kg/m*. The initial velocity of the fluid was taken to be zero. Different
initial conditions were tested but the results were seen to depend weakly on initial
velocity conditions.

For most of the range mentioned above, layers were seen to form in succession from
the top and bottom boundaries. Starting from a linear S profile, the concentration
is seen to become quickly irregular. Layers of constant solute concentration then
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Figure 5-13: Numerical simulations of the stratified Boycott effect. Figure (a) il-
lustrates the dependence of the magnitude of the vertical velocity, f(y,t), on the
distance from the bottom of the container, y. Figure (b) shows the dependence of
perturbations to the background solute concentration, b(y,t) on height y. Here the
initial concentration gradient is 150kg/m,* and the initial particle mass fraction is
5kg/m?. Each spike corresponds to an intrusion and a typical layer size is of the
order of 2cm.

appear near the top and bottom of the container. This indicates regions that have
become well -mixed through the action of the Boycott effect. New layers then form in
succession from both ends, see figure 5-12. The two sets of layers eventually merge and
reach an equilibrium. The first and last layer continue to grow but on a timescale
much smaller than that of the establishment of the intermediate bulk layers. The
extremal layers were seen to grow as t'/?, compared to ¢ for the formation of the
central layers; the growth of the upper and lower layers was therefore due the salt
diffusion through the effect of the no—flux requirement at the upper and lower walls.
The central layers are of uniform size and always smaller than the extremal ones.

The initial velocity of the upflow along the wall is nearly constant. However, as
layers of constant S form, the vertical velocity drops sharply at the interfaces, sig-
naling an intrusion, as may be seen in figure 5-13a. The horizontal velocity away
from the wall also increases at the interfaces. Within each layer however, the vertical
velocity in the Boycott layer is nearly constant and is the same in all layers. Simi-
larly, the perturbations to the solute concentration b are seen to be small except at
density jumps where they exhibit a very sharp peak as can be seen in figure 5-13b.
The resulting flow pattern is thus a sequence of convection cells where the fluid moves
upwards quickly along the wall, then intrudes inwards abruptly and goes slowly down-
wards away from the wall, in a manner consistent with experiments. The time scale
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Figure 5-14: Numerical simulations of the stratified Boycott effect showing the depen-
dence of layer size on the ambient density gradient for a particle fraction of 5kg/m?,
with a = 5um, p, = 2g/cc and water as the ambient fluid. The stars are numerical
data, the solid line is the theoretical relation (5.38).

of formation of the layers was of the order of minutes, comparable to the experiments
of §5.3 where the first layer appeared after about one minute. The size of the layers
was of the order of centimeters, again in good agreement with our experiments.

Having established that our numerical simulations reproduce qualitatively the
formation of layers through the Boycott effect, we now study the dependence of the
layer size on the particle concentration and ambient density gradient in conditions
similar to those of the experiments presented of §5.3. The parameters where thus
set to: a = 10pum, L = 25cm, v = 107%m?/s, g = 9.81m/s?, p = 1000kg/m?,
# = 5-107°m?/s. The added density due to particles was varied between 5 and
75kg/m®. The computations were started with an initial state where the density
profile is that of a linear gradient in S with a density gradient varying from 15kg/m*
to 300kg/m*.

We studied the layer size as a function of both particle concentration and density
gradient. As expected from the theory and experiments, the layers became smaller
with larger density gradients and increased with larger particle concentration. The
scaling of the layer size

hy =C % (5.38)

Pz
was qualitatively recovered. Specifically, as may be seen on figure 5-14, the layer size
decreases with the density gradient. Here the particle mass fraction was 5kg/m?® and
a typical layer size is 2cm, in agreement with experimental results. We display here
results for the size of the first layer and a similar behaviour is seen for the average
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Figure 5-15: The dependence of the primary layer size on particle concentration in
the presence of a 150kg/m* density gradient. The stars are numerical data, the solid
line is the theoretical relation (5.38).

layer size. The dependence of the layer size on particle concentration also yields good
agreement with the theory, the layer size increasing almost linearly with increasing ¢y,
(figure 5-15). The data here is somewhat irregular because of the discreteness of the
number of layers, which leads to apparent discontinuities in the layer size. However,
the trend clearly supports the theory and the results are in qualitative agreement
with experiments.

The approximation of constant particle concentration made in our model does
not allow us to make precise quantitative predictions for the layer size. However,
the general agreement between numerics, experiments and scaling indicates that this
simple model contains all the physics relevant to the formation of layers by the Boycott
effect in a stratified ambient. More detailed simulations are required to describe
adequately the formation of secondary layers and will be the subject of future work.

5.7 Application to magma chambers

5.7.1 Introduction to magma chambers

Magma chambers are large reservoirs of molten material contained in solid rock within
the earth’s mantle. Their geometries vary from roughly spherical to planar, with char-
acteristic dimensions ranging from 100m to 10km {Smith 1979). Convective motions
and crystal settling have long been thought to play a role in the dynamics of magma
chambers (Darwin 1844). The chamber is typically filled rapidly with hot magma
from the Earth’s mantle and subsequently isolated; however, reinjections of magma
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Figure 5-16: Heavy particles (dark circles) settling beneath an inclined wall give rise
to an upward flowing, particle-free Boycott layer, seen as the pale layer. Conversely,
bubbles (light circles) rising above an inclined wall generate a downward flowing,
bubble-free Boycott, layer, seen as the dark layer.

from a source conduit may also arise (Huppert et al., 1982). The system is generally
cooled from above so that thermally-driven convection may be present. Through
magma differentiation, compositional gradients may develop and render the chamber
unstable to compositional convection (Spera et al., 1986}. The temperature difference
across the chamber is diminished by the convective mixing, and viscosity increases
as the chamber cools until thermally-driven convection becomes negligible (Jaupart
et al. 1995). Through magma differentiation, compositional gradients may develop
and render the chamber unstable to compositional convection (Spera et al. 1986).
Crystals, either present when the chamber was initially filled or formed as the cham-
ber cools, and small bubbles of gas or low viscosity liquids (volatiles) (Greenough et
al 1999) may subsequently come to dominate the dynamics of the magma chamber
(Jellinek et al. 2001). As the chamber cools, the concentration of crystals increases
until a crystal matrix forms and the interior of the magma chamber effectively be-
comes a porous medium (Schoofs et al. 1998). Eventually all the magma solidifies
and interior motion is suppressed.

At the base of solidified magma chambers, compositionally distinct layers are often
observed. These layers have been reported in Greenland (Hodson 1998), Québec
(Loncarevic et al. 1990) and South Africa (Jaupart et al. 1995), and their origins are
the subject of this letter. The individual layers are typically less than one meter deep
and the strata may span up to 100m. In the majority of cases, the composition of
the layers varies monotonically with height and the mean density within each layer
decreases with height. Vesicular rock layers, those exhibiting high concentrations of
volatiles, have been seen in Taiwan (Greenough et al. 1999) and Washington state
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(McMillan et al. 1989). Vesicular layers form near the top of the chamber and
usually only a few such layers are observed, with depths of order 20cm. A variety
of mechanisms have been proposed to explain the formation of layers in solidified
magma chambers, but have been difficult to confirm owing to the complexity of the
system, the number and indeterminacy of the governing parameters and difficulties
in obtaining reliable data.

One explanation for the existence of layers at the bottom of a magma chamber
is the repeated injection of melt (Huppert et al. 1982), (Jaupart et al. 1995): new
magma is introduced periodically at the base, each injection leading to the formation
of a new layer. An alternative mechanism relies on episodic crystal settling from a
convecting chamber cooled from above (Sparks et al. 1993); when the concentration
of crystals becomes sufficiently large, convection is unable to keep them in suspension,
leading to a deposition event. The repetition of this process yields a layered deposit.
Another proposed layering mechanism relies on the time-periodic nucleation of two
chemical species of crystals; (Hort et al. 1993, McMillan et al. 1989). Irvine (1987)
and subsequently Hodson (1998) proposed that layers are the result of deposition from
particle-driven gravity currents; if a large guantity of crystalline matter generated
within the chamber is suddenly released from the top of the chamber, it will sink and
spread as a gravity current along the base of the chamber. Particles then sediment
out as the current spreads, leaving a deposit that thins with distance from the source.
While the dynamics of particle-laden gravity currents are well understood (Bonnecaze
et al. 1993), the origin of the required large mass of particles is unclear.

A number of explanations for the existence of layers in solidified magma chambers
rely on the presence of convecting layers within the molten chamber (Hodson 1998);
however, the origin of such layers remains uncertain. Double—diffusive convection
has been suggested as a possible origin (Jaupart et al. 1995); however, in magma
chambers the temperature and compositional gradients are not independent, and
numerical simulations suggest that no such steady layers may form (Spera et al.
1986). Time dependent layers may form by the heating from below of a compositional
gradient (Turner 1968, Huppert et al. 1979); a similar mechanism may operate in
porous media (Schoofs et al. 1998), and so may be relevant in the limit of high crystal
concentration. Alternative mechanisms for layer formation in magma chambers rely
on sidewall cooling (or heating) of a density gradient (Jaupart et al. 1995, Huppert
et al. 1980). Heating of a tilted interface in the presence of a chemical gradient may
also lead to layer formation (Chen 1971).

The ability of particles to play the role of a diffusing component in a double—
diffusive system has been well established. Green (1987) examined the convective
instability arising in a stably stratified system marked by hot particle-laden fluid
overlying cold fluid and explained the resulting plumes by analogy with salt fingering
(Turner 1985). In the presence of a horizontal density gradient, settling particles may
also generate convecting layers: Mendenhall & Mason (1923) observed layers when a
polydisperse suspension, vertically stratified through differential settling, was heated
from the side. In this section, we investigate the possibility that layering through
the Boycott effect in a stratified ambient, as discussed earlier in this chapter, may be
responsible for the observed layers in magma chambers.
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Parameters Value References 7
Height 100m to 10km McMillan et ol. (1989), Smith (1979)

7 . 10" to 10' Poise Shaw (1972), McMillan et al. (1989)

P 2.5 t0 3.0 g/cm® | McMillan et al. (1989), Huppert, et al. (1993)
¢ crystals 0% to 10%vol. Huppert et al. (1993}, Smith (1979)
¢ bubbles 0% to 10%vol, Sahagian et al. (1994), McMillan et al. (1989)
Crystal size 0.1mm to 3cm Huppert et a. (1993), Jellinek et al. (2001)
Bubble size 0.1mm to 2em Sahagian et al. (1994), McMillan et al. (1989) |

% 0% to 5% Hodson (1998), Spera et al. (1986)

K 107! to 10~ Bm?/s Jellinek et al. (2001)

Table 5.1: Estimates for the range of relevant physical parameters in magma chambers

5.7.2 The stratified Boycott effect in magma chambers

Layer formation through the stratified Boycott effect requires the combination of
three factors: sloping walls, positively or negatively buoyant suspended material and
a stratified ambient. The geometry of magma chambers is such that the presence of
sloping walls is inevitable. Crystals are present in magma chambers (Sparks et al.
1993) and those that do not attach themselves to the boundaries will settle in the
bulk. Similarly, volatiles nucleating throughout the chamber will be suspended in the
magma (Jaupart et al. 1995). As the magma chamber cools sufficiently that thermal
convection is suppressed, thermal or compositional gradients may result in a stable
stratification (Hodson 1998). Thus all the components necessary for the formation of
convecting layers through the stratified Boycott effect are generally present in magma
chambers. We proceed by describing the relevant parameters in more detail.

The size of crystals and bubbles in magma chambers varies widely, but is usually
assumed to be of the order of 1mm (Sahagian et af. 1994). The density difference
between crystals and the ambient magma is approximately 0.5g/cm3, while that of
bubbles is approximately 2.5g/cm® (Huppert et al, 1993). Bubble volume fractions
are usually less than 10% (Sahagian et al. 1994) while crystal concentrations may be
arbitrarily Jarge. The Boycott effect is only significant for concentrations greater than
0.1%: if too few particles are present, the upflow in the Boycott layer is comparable to
the particle settling speed. Temperature and compositional variations, in addition to
the presence of particles, significantly affect the magma, viscosity. A typical estimate
for the viscosity of the molten magma, 7, is 5 x 10° Poise (Shaw 1972), but estimates
vary by a factor of 10*. Throughout the body of the chamber, compositional gradients
may form through magma differentiation, and it is commonly thought that the total
density changes by approximately 5% from top to bottom, Si0;, being the principal
stratifying agent (Spera et al. 1986, Hodson 1998). The parameters relevant to the
dynamics of magma chambers are summarized in Table 5.1.

We proceed by quantifying the time and length scales that would characterise
layers formed in a magma chamber by the stratified Boycott effect. Considering a
compositional diffusion coefficient of 107*?m?/s (Jellinek et al. 2001), we see from
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Figure 5-17: The stratified Boycott effect may form convecting layers in magma
chambers. As the top layer cools, crystals may form and sink to the bottom, resulting
in a particle-laden gravity current that spreads and deposits a layer of crystals at
the base of the chamber. Repetition of this process may yield a layered deposit
corresponding to the strata observed in solidified magma chambers.

equation (5. 17) that tq/t; ~ 10%; consequently, the Boycott effect is expected to
operate within magma chambers. For a chamber height of 100m, if the density
varies by 5% about a mean density of 2500kg,/m?, the resulting density gradient
is dp/dy = (0.05 - 2500kgm—?)/100m = 1.25kg/m*. The particle weight fraction for
magma containing 1% of crystals is approximately 0.01 - 500kg/m’= 5kg/m?®. Using
equation (5.9), this yields a typical convecting layer size of about 4m. Given the
broad range of particle concentrations and density gradients, however, this layer size
could conceivably vary from 1m to 1km. Equation (5.3) yields a timescale of layer
development ¢ = H/v of the order of one month; however, the wide range of particle
sizes and viscosities allows for this timescale to vary from days to years. Finally, we
note that crystallisation in the bulk will continually drive the Boycott effect and thus
maintain the convecting layers.

5..7.3 Discussion

Magma chambers marked by the stratified Boycott effect may leave layered deposits
such as those found in field observations via two distinct mechanisms. The chamber
can solidify as a whole, the layered rock structure thus being a record of the succession
of frozen convecting cells either driven by crystals (A in figure 5.7.2) or bubbles (B).
Alternatively the presence of convecting layers could generate layered deposits at
the base of the chamber. Since each layer acts as a well-mixed convecting cell, one
expects it to maintain a relatively uniform temperature within. The crystallisation
of an appreciable quantity of magma may occur when the temperature in the upper,
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and therefore coolest, layer falls below a critical value, (C); the resulting crystals
would then sink and spread as a gravity current, depositing a layer of crystals (D).
The thickness of this deposit is expected to be smaller than that of the convecting
layers in the bulk of the chamber (and determined by the volume fraction of particles
that settle out), consistent with observations of layers having a thickness of order
20cm (Hodson 1998). The repetition of this process, through the crystallisation of
successive layers, then leads to a layered accummulation at the bottom of the chamber’
(E). According to this physical picture, the layers observed within the solidified
chambers are a signature of the cooling of successive layers within the chamber.

Our discussion of the Boycott effect has focused on the physical picture appro-
priate for monodisperse suspensions, but crystals and bubbles in a magma chamber
are likely to be of various sizes. The influence of polydispersity on the Boycott effect
was examined by Schaflinger (1985) and the dynamics of the flow are qualitatively
unchanged; the layer formation mechanism is therefore not likely to be influenced
by polydispersity. However, the simultaneous presence of volatiles and crystals in a
magma chamber could lead to the formation of two Boycott layers, as shown in figure
9-16. Both of these Boycott layers may generate convective motions in a stratified
ambient, which would then interact in the body of the chamber. The Boycott layer
with the largest volume flux is then expected to dominate and prescribe the vertical
extent of the horizontal layers.
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Chapter 6

Hindered settling in a stratified
ambient

6.1 Introduction

The locally averaged settling speed, u,, of small Reynolds number spherical particles,
Re, = usa/v < 1, is typically written as

= 1O, = (o) 2200, (6.1)

where Uy is the Stokes settling speed of a single particle in an unbounded ambient,
¢ the particle volume fraction, a the particle radius, v the kinematic viscosity, ¢ the
gravitational acceleration and p, and py the particle and fluid densities respectively
(Batchelor 1967). The presence of neighbouring particles generates a fluid reflux
which acts to reduce the settling speed of an individual particle, i.e. f(¢) < 1 and
f'(¢) < 0 (Richardson & Zaki 1954). The influence of hindered settling on the
evolution of a suspension was investigated by (Kynch 1952). The derivative of the
particle flux

V(9) = ggwn (6.2)

was found to be a determinant factor in the qualitative behaviour of the system.
Starting from an initial particle concentration jump, one of two things may happen:
if dV(#)/dz < 0, the two regions of different concentration move away from each
other and are joined by an expansion fan, an intermediate region where ¢ varies
continuously. However, if dV($)/dz > 0, the concentration jump remains sharp and
propagates as a shock. Concentration jumps may also form from continuous initial
particle distributions if dV'(#)/dz becomes infinite.

The settling speed of particles may change significantly over the course of the
sedimenting process. Almost all the components of equation (6.1) (namely q, Pf,
v, g) may vary as particles settle. The presence of a density gradient will modify
the buoyancy of the particles as they settle, as could be the case for microorganisms
settling in the ocean (Pedley & Kessler 1992). Crystals settling in magma chambers
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may see their settling speed change owing to vertical viscosity gradients (Hodson 1998)
or variations in their own size as melting or crystallisation occurs (Cashman 1993).
Centrifugation of particles provides an example where the body force on the particles
changes during the settling process (Essington, Mattingod & Ervin 1985). In this
chapter, we elucidate the combined influence of inhomogeneities in the suspending
fluid and hindered settling effects on the time evolution of the particle concentration
of a suspension.

We focus on settling speed variations due to a stable density gradient. As particles
settle, the density difference between particles and the ambient diminishes, causing
a reduction in settling speed. As a measure of the magnitude of the settling speed
variation, we consider the relative velocity variation y = (up — ug)/uo, where u, and
uy are respectively the settling speed at the top and bottom of the suspension. When
settling speed variations arise only {rom density gradients, v reduces to

Po — Ph

= , 6.3
y P (6.3)

with p, and p the density at the top and bottom of the suspension, respectively.
Particles having a density close to that of the ambient fluid are thus subject to larger
relative velocity variations.

The influence of a density gradient on the settling speed of a single particle was
studied by Oster & Yamamoto (1963), who demonstrated that the settling speed
adjusts to the surrounding conditions on a time scale #44; ~ a?/v. The ratio of the
adjustment time to the time required for a particle to settle a distance equal to its
radius, ¢, = a/U,, is thus equal to the particle Reynolds number, Re, = Usa/v. We
here focus our attention on particles with Re, < 1, which allows us to assume that
the settling speed adjusts instantaneously and thus depends only on local parameters.

The combination of density gradients and particle concentration gradients may
give rise to large scale fluid motions. Instabilities may develop if a region of high
particle concentration overlies a particle—depleted region. Details of the instability of
a region of high sand concentration settling above a clear fluid region in a vertical
Hele-Shaw cell were recently investigated by Voltz, Pesch & Rehberg (2001) and many
similarities with a classic Rayleigh-Taylor instability were observed. A similar insta-
bility may result from particles settling through a density jump. If a particle-laden
fluid overlies a heavier, particle-free fluid, the initial density profile may be stable.
However, as particles settle across the density interface, they form a region of high
concentration above a particle-free region. The resulting three-layer system may then
become unstable and the form of the resulting instabilities have been examined by
Hoyal, Bursik & Atkinson (1999) and Parsons, Bush & Syvitski (2001). We consider
similar systems where instabilities may result from particle concentration variations
caused by the presence of an ambient stratification.

In this chapter, we first review the results of Kynch (1952) in §6.2 before extending
them to the case of an inhomogeneous ambient in §6.3. The stability of the resulting
motion is discussed in §6.4 and §6.5 is concerned with the experimental verification
of these results for a suspension of latex particles settling in a density gradient.
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6.2 Hindered settling

We begin by considering the effects of particle-particle interactions on the time evo-
lution of the particle concentration in a homogeneous ambient. Because the settling
speed decreases with increasing particle concentration, a front of particles settling
above a particle-free region will be quickly eroded as particles ahead of the front
settle faster than those behind it. Conversely, the interface between particle—free and
particle-laden regions above a suspension will remain sharp as particles above the
interface fall faster than those in the bulk of the suspension. We proceed to quantify
the influence of hindered settling following the approach of Kynch (1952).

We consider the equation of conservation of particles

(93(;5 - az(us¢) =0. (64)

Here ¢ denotes time and z height, taken to be increasing upwards. The relative im-
portance of particle settling and particle diffusion is prescribed by the Péclet number
FPe = ush/ky, with K, the diffusion coefficient of particles and A the height of the
container. We consider the large Péclet number limit in which particle diffusion may
be neglected. We consider that the settling speed and concentration are uniform in
any horizontal plane so that we may restrict ourselves to one spatial dimension. The
development of instabilities that violate this condition will be considered in §6.4. We
suppose the settling speed to be of the form (6.1), assuming that only local param-
eters have an impact on the settling speed. We consider monodisperse suspensions:
a and pp, are the same for all particles. For the moment we restrict our attention to
homogeneous ambients, so that u, depends exclusively on ¢.

We may then rewrite (6.4) as
&t — UV ()8, = 0. (6.5)

Using the method of characteristics (e.g. Debnath 1997), it may be seen that the
concentration of particles remains constant along straight lines described by

dz
— = =U,V(9). .
() (6.6
Note that for small values of ¢, approximately below 15%, f (¢) is nearly one and varies
slowly so that /() is positive and decreasing (Richardson & Zaki 1954). Given the
initial particle concentration, one may thus follow along characteristics and deduce
the concentration at later times.

Two notable complications may occur. The first one results from divergent charac-
teristics. If a discontinuity in ¢ exists at height M and is such that the concentration
above, ¢,, yields characteristics with slope larger than the concentration below, ¢,

=UV () > UV () (6.7)

then there is a region of the z¢-plane through which no characteristics pass, see figure
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Figure 6-1: The evolution of particle concentration in a homogeneous ambient. a)
Formation of an expansion fan from an initial discontinuity in particle concentration.
Here V (¢2) < V(¢1), where V' (¢) is define in (6.2), so that characteristics travel faster
in the underlying region z < m. b) Formation of a shock from a continuous initial
distribution. Here V'(¢) increases with z. The bottom region shows the accumulation
of particles at their packing concentration, ¢,.

6-1a. The discontinuity at M should then be repiaced by a linear interpolation such
that ¢(M +€) = ¢ and $(M —e€) = ¢;. The problem is then well-posed and a unique
solution is found following characteristics. Taking the limit ¢ — 0 recovers the case
of a discontinuity as illustrated in figure 6-1b. The concentration at any point (z,t)
in the expansion fan, ¢;(z,t), thus satisfies

z—M=—UV(p)t. (6.8)

If characteristics are converging, particle concentration discontinuities will form.
When two characteristics meet, the concentration of particles cannot be found through
the use of equation (6.5) alone. Because the concentration becomes discontinuous,
a discrete form of equation (6.4) is needed to track the progression of the shock.
Labeling the region above the shock with index @ and the region below with index b,
conservation of particles then requires

$a(Usf(0a) + U;) = ¢ (Us f () + Uj) (6.9)

where U, is the propagation speed of the jump in particle concentration. The shock
thus moves through the suspension with speed

o OGS (ds) — daf(da)
U= U =, (6.10)

provided V(¢,) > V(¢); otherwise, no shocks form. In particular, if there are no par-
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ticles in the above region, ¢, = 0, the jump is simply seen to propagate with velocity
Uj = ~U,s f(¢y). If the initial concentration is continuous but such that characteristics
meet, the time-evolution of the concentration is found following characteristics until
they reach a shock, as shown in figure 6-1b. It may be seen that the first charac-
teristics to meet originate from points infinitesimally close, which we denote zp and
zy + €, with ¢ = 0. Denoting the initial particle distribution by do(z), the time at
which characteristics intersect, ¢, satisfies

Zg — UsV(go(20))t = 20 + € — UV ({2 + €)) (6.11)

Taking the limit e — 0 and solving for ¢ yields

1 1
dz 120
The first occurrence of a shock is thus found by minimising the above expression.
Denoting the maximum of dV(¢¢)/dz by 2., the point at which characteristics first

cross has coordinates

1 1 _ V(¢O(Zm))
tj = a—-——deo)l and Zj = Zm — _—dV(qio)[ (613)
dz Zm dz Zm

At later times, the shock progresses with speed U; (equation (6.10)).

As particles reach the bottom of the container, their concentration reaches a max-
imum that will be approximately equal to the solid packing concentration (¢p = 65%)
(Torquato & Truskett 2000). The bottom of the container is thus a source of charac-
teristics of slope — U,V (). Note that these lines are expected to have a positive slope
to account for the accumulation of particles at the bottom. Similarly, characteristics
of slope —U,V(0) originate from the top of the suspension if no new particles are
introduced. In a homogeneous ambient, these upper and lower boundary conditions
are sufficient to track the evolution of ¢.

6.3 Stratified ambient

We now allow the density of the fluid p; to be a function of z, so that the settling speed
U, also depends on height. We consider low particle concentrations (¢ < 1) so that
the fluid reflux is weak (Ures ~ u,¢). The upward motion of the ambient stratification
resulting from the accumulation of particles at the bottom of the container may thus
be neglected. We thus have that U,(z) is time independent and we may thus rewrite
equation (6.4) as

at¢ - U, V(¢)az¢ = ¢’f(¢)azUs (614)

Using the method of characteristics, we obtain the following system of equations

1 dz  dg
U V(e) — ¢f()d.U,
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This system cannot be solved in general but special cases may be investigated in
detail.

6.3.1 Neglecting Particle—Particle Interactions

We first consider the case of very low particle concentration so that hindered settling
is of negligible importance, but allow the settling speed to vary with height. Taking
f(¢) =1, the system (6.15) reduces to

dz_ do

dt = ——= = -2
Us  ¢d.U’

(6.16)

which has a general solution of the form

bz, t) = b%p (t + /f Cf]—z) (6.17)

where F'(n) is an unspecified function to be determined from initial conditions.

If we consider the case of a linear density gradient, the settling speed is of the form
Us(z) = (ug + I'z), where the velocity gradient is T' = (uy, — ug)/h. The top interface
propagates downward from the initial position z;(0) = h with speed U,, from which
we find z;(t) = (upe " —ug)/T. If the initial concentration is uniform, ¢(z,0) = ¢,
the complete solution is

b(z,t) = ¢ if z < z(¢)
=0 otherwise (6.18)

The concentration is thus seen to increase with time uniformly within the suspension.
Note that the concentration remains uniform in space because of the assumed linear
density gradient and would vary with height for other forms of Uy(z). The concen-
tration of particles increases exponentially in time. When expressed in terms of the
height of the suspension, z;, the concentration obeys

Uy + I'h

o 6.19
Ug + FZI ( )

$(z:) = o
6.3.2 Including hindered settling

We now include the effects of hindered settling and assume the settling speed to be
of the form uy(z, ¢) = f(¢)(uo + 'z). The system (6.14) then takes the form

 dz 1 d¢
= T F TV ~ T F @) (6:20)

Solving for the first and third terms we find

Ky = P(¢) - I't (6.21)
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and for the second and third terms
Ky = ¢ f(o)Us (6.22)

where we define P(¢) = [* dc/(cf(c)). Since K is in effect dependent on K3, the
1/2
general solution is

Tt = P(9) + F(Us0f(6)) (6.23)

This solution may only be expressed implicitly, but simple initial conditions yield
explicit expressions.

We first consider a step-function as an initial condition: ¢ = ¢; if 0 < z < m,
¢ = ¢pif m <z < h and ¢ = 0 otherwise, as shown in figure 6-1a. Note that the
characteristics are still described by dz/dt = —(ug + I'z)V (¢). For general ¢;, ¢, the
solution is

d(z1) = PTTt+P(6)  iH0< [(;’fﬁjz) (w0 +T2) ~ gl < m
fo

PTYTt+ P(¢y))  ifm <] (uo + Tz) — UO]% <h (6.29)

p2f (¢2)
We consider the function V(¢) to be decreasing with ¢, a dependence that has been
verified experimentally for low particle concentrations (¢ < 15%) by Richardson &
Zaki (1954). If ¢1 < ¢, the regious of concentration P~}(T't + P(¢)) and P~(T'¢ +
P(¢,)) drift apart and are joined by an expansion fan. For any point (z,t) in that
region, the concentration is given by P~}T't + P(¢,,)), where ¢,, satisfies

1 [P Tt + P(dm)) f(PHIt + P(d))) uo +T2) —
m= g D f () ot Tl 029

Because dV(#)/dé < 0, we must have that ¢ < ¢, < ¢2; the concentration of the
suspension may thus be determined everywhere. Using the Richardson-Zaki formula,
f(¢) = (1 — ¢)*, the concentration evolution may be computed numerically. Figure
6-2 illustrates the evolution of a suspension settling in a stable linearly stratified
ambient; initial particle concentrations are ¢, = 0.01 and ¢, = 0.03 respectively
above and below z = 20cm. The position of the top interface z may be found by
integrating

dzz-
dt
with the initial condition 2,(0) = A,

= f(¢)(uo + I'z) (6.26)

If ¢1 > ¢, the two regions described by equation (6.24) will overlap, leading to the
formation of a shock across which the concentration changes abruptly. The presence
of a discontinuity again forces the use of a discrete statement of particle conservation.
If we denote the downward speed of the shock as U;, and the concentration above
and below the shock respectively as ¢, and ¢, we find that the jump propagates with

125




Figure 6-2: Theoretical predictions of the progression of an initial concentration jump
of particles of radius 50um and density 1.19g/cc settling in a stable linear density
gradient with density 1g/cc at the top and 1.18g/cc at the bottom. Initial particle
concentrations are ¢; = 0.01 below z = 20cm and ¢, = 0.03 above z = 20cm.
Characteristics are divergent, leading to the formation of an expansion fan.

speed
dz; duf(¢s) — Paf(¢a)

dt B — Pa

The position of the shock, z;, may thus be obtained by integrating this equation in
time. The position of the top interface is given, as previously, by equation (6.26).
Using the Richardson-Zaki formula (1.14) allows for the numerical computation of
the time evolution of the particle concentration. Figure 6-3 shows the evolution of a
particle jump settling in a linear stratification, with initial concentrations ¢; = 0.03
and ¢, = 0.01, respectively, below and above z = 12cm. Note that in the case
dV(¢)/d¢ > 0, corresponding to ¢ > 15%, the solution given in (6.24) may be
applied by interchanging the values of ¢; and ¢,.

In general, the function V(@) need not be monotonous. Around a local minimum
of V(¢) corresponding to an inflection point in the flux function df(¢), both an
expansion fan and a shock will form. Consider a case where ¢ < ¢ and V(é1) >
V(¢2) but V has a local minimum between ¢, and ¢, a simple expansion fan is not
a solution since characteristics would travel slower in the expansion fan than in the
upper region. The concentration then increases from P~!'(I't + P{¢;)) continuously
up to an intermediate value, ¢,, at which point it jumps to P~1(T't + P(¢2)). The
concentration ¢, is such that the shock travels exactly at the same speed as the
characteristics associated with ¢,

Cbsf(d)s) - Pil(l_\t + P(¢2))f(P71(Ft + P(¢2))) =V
$s — P1(Tt+ P(¢))

= Uy(z,t) = Us(2) (6.27)

(6s). (6.28)
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Figure 6-3: Theoretical prediction for the progression of a concentration Jump of par-
ticles of radius 50um and density 1.19g/cc settling in a stable linear density gradient
with density 1g/cc at the top and 1.18g/cc at the bottom. Initial concentrations
are ¢, = 0.03 below z = 12em and ¢, = 0.01 above 2z = 20cm. Characteristics are
convergent, thus the concentration jump remains sharp. The rate of descent of the
upper interface and concentration jump are notably different,

as may be seen in figure 6-4. As particles settle, the ambient fluid density becomes
larger and the concentrations increase. Eventually, P~YTt 4+ P(¢,)) exceeds the
concentration corresponding to a minimum of V(¢), and only a shock remains. A
similar scenario may arise in the vicinity of a maximum of V(#), with the values of
¢1 and ¢, inverted.

If the settling speed depends on height in a non-linear fashion, we may still com-
pute numerically the time evolution of the particle concentration, and the positions
of the top interface and concentration jumps. Starting from a uniform initial particle
concentration and using the Richardson-Zaki formula (1.14), ¢ may be computed as
a function of time by solving numerically equations (6.15). Following along charac-
teristics given by dz/dt = —U,[¢(1 — ¢)>']', the quantity K, = Usé(1 — ¢)>! remains
constant, which allows us to find ¢ everywhere. In the presence of a stable ambient
stratification, the concentration of particles increases with time, thus enhancing the
influence of hindered settling. The speed of the top interface obeys equation (6.26)
and so

H

% = ~U(z)1 — ¢(z;, 1)]*, (6.29)
which may be integrated, using z;(0) = h, to yield its position as a function of time.
The evolution of an initial concentration jump may also be computed numerically.
We consider the case where the concentration above the shock, ¢,, is less than that
below the shock, ¢, so that the settling process remains stable. If in addition the
concentration of particles is everywhere smaller than 15%, the concentration jump
remains sharp and the velocity of the shock is given by equation (6.10). Making use
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Figure 6-4: In the vicinity of a local minimum of the characteristics slope V(¢) =
[#f(8)), corresponding to an inflection point of the flux ¢f(¢), both an expansion
fan and a shock may form. The transition occurs at a point ¢, where characteristics
propagates at the same speed as the shock between ¢, and ¢,. If particles settle 1n
a stably stratified ambient, the concentrations increase with time and eventually the
concentration in the bottom region P~1(I't + P(¢1)) exceeds the minimum of V()
and only a shock remains.

of the Richardson-Zaki formula and computing the concentrations ‘of the bottom and
top regions as in the case of a uniform initial ambient, we may track the position of
the concentration jump as a function of time.

6.4 Convective instabilities

We consider a physical system where an initial particle concentration ¢;(z) settles in
a fluid whose density increases with depth dps/dz < 0. If the particles are denser
than the ambient fluid, p, > py, a region of high particle concentration overlying a
particle-depleted region has a statically unstable density gradient, and so may give
rise to large—scale convective overturning. We derive in this section criteria describing
when an unstable density gradient is formed by particles settling in a stably stratified
ambient; both discrete and continuous stratifications are considered.

A simple criterion may be obtained for the formation of an unstable density profile
from sedimentation across a stable density jump. Consider a fluid of density p; con-
taining an initial particle concentration ¢; overlying a fluid of density p, and particle
concentration ¢; (see figure 6-5). Conservation of particle flux across the interface
requires that the concentration of particles having settled through the density jump,
oy, be given by

(Pp — £v)
If ¢, > ¢, the resulting density profile is statically unstable. In particular, if the
concentration above and below the density jump are initially equal, ¢; = ¢y, the
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Figure 6-5: If particles settle through an ambient density jump, ¢; < ¢, instabil-
ities may develop if the concentration below the jump, is greater than the initial
concentration in the bottom region ¢, > ¢,.

bottom region will become statically unstable owing to the development of a high
concentration particle layer in its upper extremities.

We now turn our attention to systems where particles settle in a continuous, stable
stratification. For example, consider a uniform concentration of particles settling in
a stable density gradient overlying a region of constant density (but with no density
jump). The concentration of particles increases in the stably stratified region but
remains constant in the region of constant density. As particles settle, a region of
high particle concentration forms at the top of the layer of constant density and the
resulting density profile is unstable. Hindered settling facilitates the formation of
such instabilities by further increasing the concentration of particles in the stratified
layer. We wish to characterise initial conditions under which a stable initial particle
concentration may generate an unstable density profile. In the following argument, we
neglect hindered settling in order to obtain a simpler criterion which is valid to order
¢, but neglects terms of order ¢?. A similar derivation including hindered settling
effects may be done by the same reasoning but would require the use of curnbersome
notation.

We begin by recalling that, in the absence of hindered settling, the quantity
Ky = Us¢ is constant along characteristics of slope dz/dt = ~Us(z). We define a
function a(z) = [7(U,(2'))~'dz’ such that characteristics passing through a point
(z,t) originate from the point (z, 0), with

zo =a a(z) + ). ' (6.31)
The concentration of particles at any point (2,t) below the top interface is then

_ Us(m)i(2)  Ugla(a(2) + 1) di(a~ (a(2) + 1))
AR e A P U.(2)

(6.32)
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where ¢; is the initial particle concentration.

Because the settling speed changes only owing to variations in the ambient fluid
density, ps(2), we have

Us(z0) _ pp — pyl20)

= : 6.33
Us(z) oy —ps(2) (6.35)

The total density of the suspension then becomes, using (6.32) and (6.33),
plz,t) = pp(2) + il20)(0p — 05 (20)}. (6.34)

Using the definition of a(z) and equation (6.31) we find the derivative of the total

density to be ‘
) (6.35)
20

A simple result may be found if we further assume that the initial concentration of
particles is uniform. We then find that an unstable density profile, dp/dz > 0, is

formed if

dp; > ¢ilz0) (———pp - pf(zO)) dpy

dz pp = pplz) ) dz
where it should be noted that the derivative of p; with respect to z is everywhere neg-
ative (or zero). For a given z, 29(¢) ranges over all values such that z; > z. In particu-
lar, if the density gradient vanishes (dps/dz = 0) beneath a stratified region, particle
settling will always result in a statically unstable density profile. This criterion also
indicates that if the fluid density gradient increases with depth (d?ps/dz® > 0) then
no statically unstable profile may develop due to particle settling. We note that larger
particle concentrations will more readily generate unstable density profiles, which is
to be expected since particles act as the destabilising agent. Also, this criterion will
always be satisfied if the fluid density tends to a constant for large depths, dps/dz =0
for z = —o0. :

dpy
. ¢z(zo) E

d_p
dz

_ dpy
dz

Pp— R (20) dos
z + ;;_—/)’;(7) ((Pp = ps(z0)) —

z

(6.36)

z z0

The formation of a statically unstable density profile does not necessarily lead to
large—scale convective overturning. The analogy with the Rayleigh-Bénard instability
serves to show that viscous effects may be sufficiently strong to suppress dynamical
instabilities, as was observed when very low particle concentrations settling across a
density jump remained stable (Parsons et al. 2001). The size of the unstable region,
d(t), typically grows as particle settle and we may then define a time—dependent
Rayleigh number
gApd?
PRV
where Ap is the density difference across the unstable region and x4 the diffusivity
of particles. If the unstable region becomes sufficiently large, the Rayleigh number
exceeds a critical value above which convective motions are observed. The onset of
instability may thus be considerably delayed before the unstable region reaches its
critical size. Another stabilising factor is the downward propagation of the unstable

Ra = (6.37)
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Figure 6-6: A schematic illustration of the apparatus used in our experimental study.
The tank is filled from below via the Oster double-bucket technique to obtain a stably
stratified ambient with either a suspension of uniform concentration or a particle
concentration jump.

region, as was discussed in chapter 4; the value of the critical Rayleigh number in-
creases almost linearly with the particle settling speed. Larger particles thus require
a larger particle concentration difference across the unstable region before becoming
unstable.

6.5 Experiments

A series of experiments were conducted in order to investigate the evolution of a
suspension settling in a stably stratified ambient. Particular attention was given to
tracking the position of the top interface and examining the stability of the resulting
motion. The experimental apparatus, shown schematically in figure 6-6, consists of
a Plexiglas tank 40cm high, 5cm wide and 2.5e¢m thick. Vibration control mounts
isolated the container from mechanical disturbances and were used to level the Sys-
tem and so ensured that no Boycott effect was present (Boycott 1920). Bangs Labs
polymer beads of density 1.19g/cc and radius 4948um were used and the smallest
particles present, with radius 41um, determined the progression of the top inter-
face. Salt water was used as a suspending fluid and linear density gradients were
generated via the Oster double-bucket technique (Oster 1965). Non-linear density
gradients were generated by varying the flow rates between the two buckets. The
container was filled from below with progressively heavier fluid. The filling process
took approximately one minute, in which time particles settled less than 2cm. Pre-
cise measurements of the density profile were performed using a PME salinity probe
calibrated using an Anton Parr DMA 35 densitometer. The salinity variations also
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prompted viscosity variations of the salt water solution of up to 50% (Handbook of
Chemistry and Physics 1986). From the density and viscosity profile so deduced, we
could evaluate the settling speed as a function of height using equation (6.1). The
settling speed typically varied by a factor of v = 2 over the depth of the tank.

Two distinct initial particle distributions were considered. To produce an initially
uniform distribution of particles, an equal volume fraction of particles were added
to each of the two source buckets used for filling. To produce a system marked
by an initial particle concentration jump, a given volume fraction of particles was
initially present in each source bucket; at the appropriate time, particles were added
simultaneously to both buckets so that the concentration increased abruptly and
remained constant thereafter.

The time evolution of concentration jumps and the top interface were measured
from video recordings. The camera was located 4m away from the container in order to
eliminate parallax effects. The position of the top interface was defined as the position
where the reflected light intensity increased abruptly from a value corresponding to
particle—free fluid to that of the suspension. Similarly, the position of a jump in
particle concentration was defined as the position where the light intensity changed
abruptly. Qualitative observations of the particle concentration were deduced by
measuring the intensity of the reflected light using Digimage software (Dalziel 1993)
Images of the development of instabilities were captured using Digimage and contrasts
were enhanced using Matlab.

6.5.1 Time evolution of the top interface

Figure 6-7 shows the progression of the top interface in the presence of relatively (a)
weak and (b) strong stratifications. The stars indicate experimental measurements
while the solid line was computed via equation (6.29). Computations deduced through
the neglect of hindered settling are also plotted as the dashed line for the sake of
comparison. In both experiments, the initial particle concentration is 1.5%. In the
case v = 0.4 (figure 6-7a), the ambient stratification is predicted to cause the particle
concentration to increase to 2.2% by the time the suspension is completely settled out.
Although no quantitative measurements could be made of the particle concentration,
variations in the reflected light intensity indicated that ¢ increased appreciably as
the particles settled. For small values of 7, the total settling time may be predicted
to within an error of approximately 5% by neglecting hindered settling. Moreover,
because the settling speed of the particles only varies by a factor of 0.4, the progression
of the top interface is nearly linear.

In the strong stratification case v = 3.1 (figure 6-7b) the presence of the ambient
stratification greatly affects the sedimentation process. The concentration is pre-
dicted to increase from 1.5% to approximately 5.9% by the time the interface reaches
the bottom of the container. In order to predict accurately the progression of the
interface, the effects of both hindered settling and of the ambient stratification must
be taken into account, as may be seen from the relatively large error (20%) obtained
by neglecting hindered settling. The theoretical prediction (6.29) is seen to yield good
agreement with experimental measurements for both small and large .
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Figure 6-7: Position of the top interface of a suspension with ¢; = 1.5% settling in
a stratified ambient for (a) weak density gradient, v = 0.4 and (b) strong density
gradient, v = 3.1. The dashed curves correspond to the theoretical predictions (6.19)
deduced by neglecting hindered settling and the solid curves are obtained by com-
bining equations (6.15) and (6.26). The stars indicate experimental measurements of
the progression of the top interface. A typical error bar is shown. The corresponding
density profile is shown on the top right.

6.5.2 Concentration Jump

The progression of a concentration jump in shown in figure 6-8 for particles settling
in relatively (a) weak and (b) strong density gradients. In both experiments, initial
particle concentrations above and below the interface are, respectively, ¢, = 0.5%
and ¢, = 2.0%. The stars indicate experimental measurements and the solid lines
the theoretical predictions. Computations made neglecting hindered settling are also
plotted as the dashed line for the sake of comparison. The dotted line indicates the
observed progression of the top interface. It may be seen in both experiments that
the top interface propagates faster than the concentration jump, as one expects on
the basis of equation (6.27).

For v = 1.0 (figure 6-8a), the ambient stratification is predicted to cause the
particle concentrations to increase to ¢, = 0.9% and ¢, = 4.0% by the time the
concentration jump reaches the bottom of the container. As was the case for the top
interface, systems with small values of v are marked by a nearly linear progression of
the concentration jump. Qualitative observations of the particle concentration again
showed that ¢ increased significantly as settling proceeded. For v = 2.3 (figure 6-8b),
the progression of the concentration jump is clearly non linear and the final particle
concentrations are predicted to be larger, ¢, = 1.4% and ¢, = 5.9%, respectively.
Neglecting hindered settling greatly underpredicts the position of the concentration
jump as indicated by the dashed curve in figure 6-8b. Experimental results are again
well described by the theory of §6.3.
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Figure 6-8: Progression of a particle concentration jump with phi, = 0.5% and ¢ =
2.0% settling in a stably stratified ambient for (a) weak density gradient v = 1.0 and
(b) strong density gradient v = 2.3. The dashed curves corresponding to theoretical
predictions deduced by neglecting hindered settling ((6.26 with f(¢) = 1) and the
solid curves are obtained by combining equations (6.15) and (6.24). The stars are
experimental measurements of the progression of the concentration jump and the
dotted line indicates the recorded progression of the top interface. A typical error bar
is shown. The corresponding density profile is shown on the top right.
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6.5.3 Instability

Our experimental arrangement was such that the criterion (6.36) could only be qual-
itatively verified. In particular, the precise point where instability first develops is
difficult to observe because of the presence of suspended particles both above and
below the region of instability. The presence of instabilities was observed through the
formation of large scale structures such as plumes and convection rolls that could be
observed through variations in the reflected light intensity.

Particles settling in a linear density gradient or in a concave density profile,
d’py/dz? > 0, were seen to remain stable: particles settled as individuals without
generating any large scale convective motions. However, an initially uniform concen-
tration of particles settling through a density jump was seen to give rise to particle
plumes in the bottom region, in accord with previous observations (Hoyal et al. 1999,
Parsons et al. 2001). Uniform initial particle concentrations settling in a stably
stratified ambient where the density tends to a constant toward the bottom of the
tank also developed instabilities. The observed plumes typically had a characteristic
scale of 4mm and velocity of 1em /s, values consistent with plumes formed through
corresponding Rayleigh-Taylor instabilities. Two counter—rotating convective rolls
with typical speed lcm/s could also be observed, showing a vigourous upflow near
the center of the container and downflow along the walls. Figure 6-9 summarises the
stability characteristics of a number of generic density profiles.

Images were captured of the instability resulting from an initially uniform concen-
tration of particles settling in a stable linear density gradient matching continuously
onto an underlying region of constant density. The resulting convective motions are
apparent in figures 6-10 and 6-11 (Matlab and Digimage were used to enhance con-
trasts). The initial and final density profiles are shown in figure 6-10d. The pictures
shown in figure 6-10 were taken almost 10 minutes after the filling of the tank, by
which time the particle concentration had increased significantly in the stratified re-
gion, computations showing that the concentration in the top region should be in
excess of 3%.

It may be seen in figure 6-10(a,b,c) that the region of high particle concentration
does not progress downward. In the absence of instability, the high ¢ region would
have traveled approximately 1.5¢m between the times images (a) and (C) were cap-
tured. Instead, in the 5 minutes following the apparition of the first particle plumes,
the region of high concentration remained stationary and sheds particle plumes into
the underlying region. Convection rolls were also observed, transporting particles on
a timescale much faster than that of particle settling and ensuring that the lower
region was well-mixed. The initial density profile (figure 6-10d) shows a linear am.
bient density gradient in the region where particles settled as individuals (above
~ 29¢m), but a nearly constant density in the region where instabilities developed
(below ~ 29cm). This profile indicates that convective instability developed in the
region where the density gradient vanished, in agreement with criterion (6.36). Also,
the final density profile shows that limited mixing occurred at the top of the region
of constant density, but no significant entrainment of fluid from the stably stratified
region could be observed. Once instability was initiated, particles were transported
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Figure 6-9: A schematic illustration indicating the stability of a uniform particle
concentration settling in stably stratified ambients. (a) If the fluid density gradient
is constant or decreases with height according to (6.36), the resulting total density
profile will remain staiically stable. (b, ¢) A uniform initial particle concentration
settling in a density profile such that the fluid density gradient vanishes with depth
becomes statically unstable and (d) density jumps also result in the formation of
instabilities.
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Figure 6-10: The convective motion prompted by an initially uniform concentration
of particles settling in density gradient overlying a region of constant density. The
corresponding initial and final density profiles are shown in (d). Scale bars in figures
(a,b,c) are lem long. The formation of centimetric plumes driven by a higher con-
centration of particles overlying a region of lower particle concentration is observed.
Pictures were taken at 30 sec intervals and the region of high concentration is seen
to remain stationary while shedding particle plumes. Note that the contrasts were
accentuated using Matlab; particles are also present in the lower region.
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TFigure 6-11: Images of the top interface as it settles through {a) a stably stratified
ambient (z = 30cm) and later through (b) a region of constant density (z = 28cm).
The initial and final density profiles are shown in figure 6-10d. The density remains
approximately constant for z < 29cm an decreases linearly for z > 29cm. In (a),
the top interface is horizontal and relatively sharp when particles settle in a density
gradient and do not generate large scale fluid motion. In (b), the top interface reaches
a region of constant density in which particles generate convective rolls causing the
top interface to become diffuse and tilted. The scale bars are l1cm long.
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primarily through convective rolls, with speeds of the order of lcm/s that exceeded
the settling speed of particles by an order of magnitude. The region of uniform den-
sity was thus well-mixed and the particle concentration was uniform below a certain
level (approximately z = 28cm).

Figure 6-11 illustrates the progression of the top interface (a) above the unstable
region and (b) through the unstable region. While the top interface was in a stably
stratified region it remained horizontal and relatively sharp (figure 6-11a). The veloc-
ity of the top interface was not appreciably affected by the presence of instabilities in
the lower region. However, as the top interface reached the homogeneous region, its
downward velocity increased and exceeded the settling speed of individual particles.
The interface also became increasingly diffuse and appeared significantly tilted (figure
6-11b) as convective rolls appreciably distorted the horizontal interface.

6.6 Conclusion

By generalising the results of Kynch (1952) to the case of an ambient with vertical
settling speed variations, we have obtained means to predict the time evolution of
the concentration of particles settling in a stratified ambient. The basic scenarios of
shock and expansion fan are similar to those arising in a homogeneous environment
as considered by Kynch (1952). However, the stratified case is richer due to the
time dependence of the particle concentration; specifically, the presence of a settling
speed gradient causes the particle concentration to increase in time, thus enhancing
the influence of hindered settling. In the case of a linear settling speed gradient,
an analytical expression describing the particle concentration was found {equation
6.24). The validity of the theoretical predictions describing the progression of the top
interface (equation 6.26) and that of concentration jumps (equation 6.27) was verified
experimentally by measuring the time evolution of a suspension of latex particles
settling in salt stratified water. Good quantitative agreement was found, and the
relative importance of hindered settling and ambient stratification could be readily
distinguished.

Our experimental system was such that random particle concentration fluctuations
were negligible compared to particle concentration variations due to the ambient
stratification. Random fluctuations occurs on the scale of the container and typically
are of order (Brenner 1999)

(op = py)¢'/%a¥?
p 372

Ay ~ (6.38)
The particle concentration variations due to the presence of an ambient density gra-
dient scale as Ay, ~ ¢h(dp/dz) and in our experiments were dominant relative to
AV
Db 0 (pp—py)
Ay,  h32 ¢V2h(dp/dz)

Random particle concentration fluctuations were also small relative to the mean parti-

107* (6.39)
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cle concentration, A, /¢ ~ 10~% and convective motions were not discernible when
particles settled in a stable linear density gradient or in a uniform ambient, confirming
that random fluctuations in ¢ were negligible in our system.

In the presence of a density gradient, sedimentation may lead to the formation of
convective instabilities through the development of gravitationally unstable density
profiles. Such instabilities modify qualitatively the physical picture described in sec-
tions §6.2 and §6.3 and dominate the time evolution of the system. We developed
a criterion for the stability of a suspension settling in a stably stratified ambient
(equation 6.36) of which experiments provided good qualitative agreement. A sim-
ilar criterion may be obtained for cases where the settling speed variations are due
to viscosity rather than density gradients. Viscosity gradients are easily handled by
replacing equation (6.33) with a corresponding expression in terms of the viscosity
variation

Us(z) _ v(2)
Us(z)  v(z)

Variations in settling speed resulting from variations in particle size may be taken
into account using a similar approach.

(6.40)

Systems where an unstable ambient density profile is stabilised by varying par-
ticle concentrations are known to become unstable as settling particles release light
fluid underlying heavier fluid (Huppert et al. 1991). In our experiments, the am-
bient stratification was always statically stable so that such instabilities were not
observed. The initial particle concentration profile was also statically stable, being
either uniform or increasing with depth, in contrast with the experiments of Hoyal ef
al. (1999) and Parsons et al. (2001) where the lower region was initially particle—{ree.
Therefore, particle concentration variations generated by settling through an ambient
stratification were the only cause of the convective motions observed.

When an initially uniform particle concentration settled in a density gradient
overlying a region of constant density, convective rolls similar to those forming in a
Rayleigh-Taylor instability were observed. The top interface was also seen to become
diffuse and tilted as it reached the region of instability, owing to the presence of the
convective rolls. Instabilities observed in our experiments are qualitatively different
from double—diffusive sedimentation (DDS). Double—diffusive instabilities typically
form millimeter-scale, sparsely distributed particle—fingers rather than the relatively
large convective rolls observed in our experiments. Also, particle-fingers are initiated
directly whereas in our experiments approximately 10 minutes were required before
the apparition of the first convective rolls. This delay suggests that a region of high
particle concentration must be established in a region of little or no fluid density
gradient before convective motions are initiated. Experimental observations thus
support the simple physical picture presented in §6.5.3 and confirm that particle—
driven instabilities may be a dominant feature of sedimentation in a stratified ambient.

Convective motions are expected to dominate the transport of particles if the
velocity of the convective rolls is large relative to the settling speed of particles

Ucon Apl?
= > 1 6.41
Us (op — ps)a? ( )
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where Apis a typical ambient density variation across the unstable region and ! is the
height of the unstable region. The instability mechanism presented in §6.5.3 is thus
likely to be important as particle-laden rivers enter the oceans. As particles settle out
of the fresh river water into the denser underlying ocean, their concentration increases
which may cause the formation of particle plumes to dominate the particle transport.
Also, suspensions settling through the thermocline in the ocean are likely to satisfy
(6.36) once they have reached a region of almost uniform density and the subsequent
transport of particles is expected to occur mostly through convective rolls.

141




142




Chapter 7

Conclusions

Five different problems involving particle settling in an inhomogeneous suspending
fluid have been considered. We first investigated systems in which particles are present
only in a confined region: a localised release of particles sinking vertically and de-
posits resulting from the horizontal spreading of particle-laden gravity currents. We
then turned our attention to suspensions where particles are present throughout the
fluid and studied instabilities resulting from particle concentration gradients settling
in an ambient stratification. We also considered layering and mixing resulting from
sedimentation beneath an inclined wall. Finally, interactions between hindered set-
tling and ambient stratification were investigated. These problems find applications
in a variety of geophysical flows where crystals, sediment, or dust settle in magma
chambers, oceans or the atmosphere respectively. Applications are also found in a
variety of industrial settings; for example, in the release of waste in the oceans and
atmosphere.

In chapter 2, we studied the behaviour of turbulent particle clouds. Using results
describing the motion of fluid thermals in homogeneous and stratified ambients, we
described the initial stages of the motion of particle clouds. This description is valid
until particles rain out from the bottom of the cloud and the radial expansion of the
cloud stops. Our experimental approach allowed us to characterise the motion of
the cloud and the fallout height in both homogeneous and stratified ambients. In the
latter case, the fluid left behind after fallout is buoyant and rises to its level of neutral
buoyancy where it intrudes as a gravity current. We derived a criterion describing
the various types of deposits resulting from particle clouds, distinguishing between
localised, dispersed and ring-shaped deposits. Deposition patterns of contaminated
waste in the oceans are an important environmental concern and may be predicted
from our results.

Our numerical model gives a good description of the evolution of particle clouds at
little computational cost. Comparison between numerical simulations and experimen-
tal results allowed us to determine that much of the discrepancies between particle
clouds and fluid thermal results from the dependence of the entrainment coefficient
on the particle Reynolds number. An experimental study focusing on this aspect of
the problem should therefore be the subject of future work.

Particle-laden gravity currents were modeled in chapter 3. Particle clouds reach-
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ing the bottom of the container while still in their swarm phase provide a direct
application of such gravity currents. As particles settle out of suspension, the driving
force of the current is reduced until the fluid comes to a stop and all particles are de-
posited at the bottom. We developed theoretical models describing the runout length
of particle-laden gravity currents and presented numerical simulations of deposits
left by such currents. Particular attention was given to flows containing two different
types of particles in order to give insight into polydisperse currents. We focused our
attention on the deposits of such currents, a problem of interest in oil exploration.
We distinguish between deposits resulting from turbulent currents, where the parti-
cle concentration is kept uniform by vigourous eddy motions, and laminar currents,
where particles simply settle vertically relative to the fluid.

Using box-models, we developed new theoretical predictions for the length of
deposits of laminar gravity currents. QOur numerical simulations also allowed us to
characterise the shape and distribution of particles in deposits left by turbulent and
laminar gravity currents with either fixed volume or volume flux. A potentially im-
portant aspect of the flow which was not included in our model is the reentrainment
of particle from the lower boundary of the container. When the current is sufficiently
turbulent, reentrainment may be an important feature of geophysical flows (Garcia
& Parker 1991). Future work will focus on the inclusion of this effect in numerical
simulations.

In chapter 4, we studied numerically the linear stability of double-diffusive systems
where one of the diffusing components has a non—zero settling speed. In particular,
we determined the critical particle size below which particles behave essentially as
a solute and above which their settling speed qualitatively alters the stability of the
system. For glass particles settling in temperature—stratified water, this critical size
was found to be of order 1um. Using equations describing double—diffusive systems,
and adding a term describing the advection of particle concentration, we have in-
vestigated numerically the conditions under which instabilities may develop. In the
presence of particles only, the non—zero settling speed was seen to stabilise systems
that would otherwise be subject to Rayleigh-Bénard instabilities. For sufficiently
large Péclet numbers (Pe > 450}, the mode of instability becomes oscillatory, a qual-
itatively different behaviour from instabilities arising from non—-settling components
such as heat or salt, where the instability is direct. When both static (heat) and
settling (particles) components are present, the non—zero settling speed again acts
to stabilise systems where the particle concentration is unstable and to inhibit the
formation of particle-fingers. Large Péclet numbers tend to destabilise systems where
the ambient density gradient is destabilising (corresponding to the overstable regime
of thermohaline systems) and, as Pe increases, the stability of the system tends to
be determined by the ambient density gradient only.

No precise experimental measurements of particle—driven double—diffusive insta-
bilities have yet been reported. The conditions under which a particle concentration
gradient settling in a homogeneous ambient first becomes unstable shall be investi-
gated experimentally in the future. Particle-fingers have been observed as particles
settle across a density jump (Green 1987, Hoyal ei al. 1999) but no critical Rayleigh
number measurements have been provided. Although the presence of a continuously
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varying particle concentration renders the onset of instability difficult to observe,
both particle-fingers and overstable instabilities may be generated in the laboratory
and studied in detail. The conditions under which a particle concentration gradient
settling in a homogeneous ambient first becomes unstable shall also be Investigated
in the future.

In chapter 5, we turned our attention to the flow generated by a suspension of
particles settling beneath an inclined wall (the Boycott effect) in a stratified ambient.
The layer of clear fluid forming underneath the wall is buoyant and generates a rapid
upflow bringing upward heavy bottom fluid. The Boycott effect thus acts as a mixing
mechanism for stably stratified fluid, albeit with low energy efficiency, and the ambient
density gradient is eroded much faster than it would be through diffusive effects
alone. If the density of the ambient fluid decreases sufficiently with height, fluid in
the Boycott layer reaches its level of neutral buoyancy, where it intrudes into the
bulk of the suspension and generates horizontal layers. These layers are analogous to
those formed by the lateral heating of a density gradient and those formed in double—
diffusive systems in the presence of a sloping boundary. Our experimental study
allowed us to study the size of layers formed by the stratified Boycott as a function
of the ambient density gradient and particle concentration. Two types of layers
were observed, as is the case in double-diffusive systems with a sloping boundary.
Numerical simulations were performed and captured the formation mechanism of the
first type of layers, resulting from fluid from the bottom of the container reaching
its level of neutral buoyancy. However, our model assumed a constant Boycott layer
thickness, which restricted its applicability to relatively short times. A more detailed
numerical investigation of this problem should be the subject of future work.

Application of the stratified Boycott effect to magma chambers, where crystals
settle in stratified magma beneath a sloping roof, was also presented. Comparison
of the magnitude of the flow resulting from the Boycott effect with those resulting
from direct settling and diffusion shows that the dynamics of magma chambers may
be dominated by the Boycott effect, provided no thermally-driven convection oceurs
throughout the chamber. Although the uncertainty of the geophysical parameters
involved precludes a precise description of layer formation in magma chambers, it is
plausible that the layered deposits found at the bottom of solidified magma chambers
are a signature of the presence of layers formed through the action of the stratified
Boycott effect.

Finally, we studied in chapter 6 a classical sedimentation phenomenon, hindered
settling, in combination with settling speed variations. We focused on stably stratified
systems where the particle settling speed varied significantly over the course of the
setting process (of order 50%). As particles settle, the settling speed reduction causes
the particle volume fraction to increase, which in turns enhances the effects of hin-
dered settling. Previous work describing hindered settling effects in a homogeneous
ambient was extended to cases where the settling speed varies significantly during
the sedimentation process. The time evolution of the particle concentration was thus
computed, allowing us to predict the progression of the particle free — suspension
interface and of particle concentration jumps. Through an experimental study, our
theoretical results were confirmed and the relative importance of hindered settling
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and ambient stratification could be readily distinguished. It was also observed that
particles settling in a density gradient overlying a region of constant density could
give rise to convection rolls and particle plumes, reminiscent of those generated in
Rayleigh-Bénard convection. Instability occurs when a region of high particle con-
centration forms above a region of relatively low particle concentration, which corre-
sponds to a statically unstable density profile. A criterion for the formation of such
instabilities in a stably stratified ambient was presented and was qualitatively verified
experimentally.

Precise measurements of the exact conditions under which instability occurs could
not be made in our experimental set—up as the presence of particles throughout the
system impeded direct observations of the onset of instability. Quantitative verifica-
tion of our stability criterion thus requires more precise flow visualisation techniques
and shall be the subject of future work. Detailed numerical simulations of this type of
instability allowing for a better comparison with classical Rayleigh-Bénard convection
would also be of interest and should be the subject of future investigation.

Experiments, numerical simulations and analytical methods have been employed
to paint as complete a picture as possible of the most important features of a number
of flows involving sedimentation in stably stratified ambients. The combination of
these three approaches provides a detailed and realistic description of the dynamics
of suspensions in a variety of contexts. It is with this philosophy in mind that future
work will be conducted.
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