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Abstract

This is a study of fault detection for nuclear reactor systems. Basic concepts are
derived from fundamental theories on system observers. Different types of fault -
actuator fault, sensor fault, and system dynamics fault can be detected and localized
by studying the asymptotic response of an error signal constructed from the system
inputs, system outputs, and observer outputs.

False alarm and failure to detect a fault are two decision errors when noise is
considered. The goal here is to achieve a reasonable compromise. The two types of
decision errors can be characterized by their respective first hitting time of a decision
threshold. This in turn is dependent on the design of the observer and the decision
rule. Costs corresponding to these two types of decision error are defined by cost func-
tions that are in turn constructed based on experience and knowledge of the system
operation. A method has been developed in this research to find an optimal design
of the observer, the design of a frequency-dependent output filter, and a decision rule
that could achieve the desired economic goals.

This technique is applied to nuclear reactor systems and simulations are carried
out. The one-group linear nuclear reactor model is used in the observer. The system
1s modeled by a one-group linear model and by a six-group non-linear model. Results
show that this fault detection method can not only detect a fault but also localize
it at the same time by constructing specially targeted fault detection filters. These
fault detection filters are robust against measurement noise and modeling errors.
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Chapter 1

_Introduction

The objective of this report is to design and evaluate a model-based fault detec-
tion method that could be used to detect incipient system faults under closed-loop
situations in nuclear reactors.

This chapter begins with some general information on fault diagnostics and de-
tection. The specific objectives of the research are then enumerated and the relation

of the work to the on-going MIT program on reactor control is delineated.

1.1 Guidance on Automated Diagnostics

Two sources of guidance were considered for this research. These were the human
approach to process control and the experience of the nuclear industry in devising

procedures for responses to alarms.

1.1.1 Human Approach to Process Control

The human approach to process control has been extensively studied. The material
presented here is drawn from several studies. The first are works by Sheridan [1] and
Kelly [2] which are applicable to all fields of control. The second is work by Bernard
which is specific to the nuclear industry [3][4][5].

Figure 1-1 is a block diagram of the human approach to process control[6]. Four

13
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Figure 1-1: Block diagram of the human approach to process control.
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subtasks are involved. These are planning, prediction, implementation, and assess-
ment. The planning phase involves determination of the desired system response.
This is accomplished by first noting the operational objectives that have been pro-
mulgated by managerial personnel. The operator then determines the desired plant
state and the most efficient means for achieving that state given the confines of
approved procedures, engineering limitations, and regulatory requirements. If a com-
plete change in plant status (i.e., shutdown to operating) is scheduled, then the result
of the planning process may be a sequence of desired operational sub-states, each
corresponding to a specific phase in the startup.

The predictive aspect of the human approach to control involves the estimation of
expectation values. An operator is capable of controlling a complex plant in propor-
tion to his (or her) ability to anticipate that plant’s response given the application
of any of the available control options. The accuracy and range (in time) of these
predictions are in turn dependent on the validity of the operator’s mental model of
the plant’s dynamics. These models are a composite of the operator’s training includ-
ing theoretical understanding, simulated drills, and actual experience. Using such a
model and knowing both the plant’s current status and any information on trends,
the operator forms an estimate of the future behavior of the system. This predicted
response is then compared to the desired one. If a significant deviation is anticipated,
the operator will initiate corrective control action.

Implementation of the specified control action often requires the simultaneous
application of signals to several plant subsystems. While this process may be entirely
automated, the extent to which this has been done varies widely depending on the
industry in question.

The fourth phase of the control process, assessment, is characterized by inner
and outer feedback loops. Note that each of these loops is dependent on informa-
tion derived from the same sensors. The inner loop is the simplest. Feedback from
the controlled variable is used to ascertain that the required control action is being
implemented. Loops of this type are often fully automated. The outer loop fulfills

two functions. First, it provides information for use with the model. Data on plant
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trends and on the availability of equipment are preferred to mere status information
because the former facilitate prediction. Second, this outer loop permits operators
to evaluate their understanding of the plant. Specifically, if their estimates of the
controlled parameters are in error, then their model may require revision.
Adaptation of these mental models is often arduous because the only means avail-
able to the operator for detecting an imperfection in his (or her) understanding of
the plant’s dynamics is to compare current observations with previously made predic-
tions. The difference in the time scale may create a, problem. A further complication
is that discrepancies between observation and prediction may reflect valid changes in
the plant. For example, suppose the indication of condenser vacuum is lower than
normal. Is this occurring because the plant is running at full power on an unusually
hot day? Or is there a small air leak in one of the condensate return lines? If the
former is true, then the operator’s model requires revision. If the latter is the proper
explanation, then corrective action should be initiated. Unfortunately, the operator
has no means of selecting between these alternatives. Further observation, for which
there may not be time if an actual abnormality is developing, is the likely course of

action.

1.1.2  Experience of Nuclear Industry

The nuclear industry has used both event and symptom-based reasoning in an effort.
to facilitate the response of licensed personnel to abnormal situations. The event-
based method was the one adopted during the early years of the industry and it
remained in use until the Three Mile Island incident in 1979. Under the event-based
method, all possible causalities are enumerated and a unique alarm or sequence of
alarms is identified as being indicative of each casualty. The plant operators are then
required to memorize the identifying alarm sequences or to deduce the plant state

from the indicated alarms. Problems associated with this approach include:
e There is no guarantee that every conceivable casualty has been identified.
e It is difficult to instrument a plant so that there is a one-to-omne correspondence

16



between every given casualty and a single sensing device. Many casualties can
only be distinguished from one another by alarm sequences. Thus, temporal

information becomes important.
¢ The burden of memorization on the licensed personnel is excessive.

» The event-based approach with its emphasis on memorization utilizes a person’s

rule-based skills instead of his or her pattern recognition skills.

The Three Mile Island accident made obvious the deficiencies of event-based anal-
ysis. In its place, symptom-based procedures were developed. The intent is to recog-
nize and correct the symptoms of a plant casualty even though the exact cause may
not have been determined. For example, a symptom might be inadequate heat re-

~moval as evidenced by an increasing coolant temperature. The cause could be loss of
secondary coolant pumps, or overpower transient, a problem with the cooling towers,
etc. The symptom-based approach reduces the need for rote memorization. However,
it increases the complexity of procedures because there will now be multiple entry
points to emergency plans. One result has been an effort to develop computer-assisted
procedures. Another was the effort in the late 1980s to develop expert systems that

would offer advice to plant operators [5].

1.1.3 Relevance of Guidance

Automated diagnostics is a form of artificial intelligence. The most fundamental
precept of that field is that ”information is power.” The capability to diagnose an
event as to its cause is a function of the available information. As noted above, it is not
practical and probably not possible to instrument a plant so that every conceivable
casualty can be uniquely identified at the moment of its initiation. Accordingly, one
lesson to be gathered from the guidance is that an automated diagnostics system
should, at least initially, focus on the accurate identification of the symptoms as
opposed to determination of the actual initiating event. That approach is adopted
here. The initial objective is detection of the abnormality, then its confinement to a

subsystem, and finally its assignment to a specific component.
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A second lesson to be recognized in the guidance is the need for expectation values.
Humans achieve control by predicting the outcome and initiating control action only
if the predicted outcome is not expected to be as desired. The analog of the mental
model that humans utilize to form there predictions are computer-based numerical
models of plant process systems. These numerical models can be used to generate
the needed expectation values.

A third relevant factor is that humans do preplan their actions, and hence have
some idea of the demanded sequence of plant states. In the event that an outcome is

not as expected, this information may be of use in the subsequent analysis.

1.2 Scientific and Engineering Objectives

This report describes the development and demonstration of a methodology for the
automated diagnostics of nuclear reactors under conditions of closed-loop reactivity
control.

The focus is on the capability to identify failures in either the reactor itself or in
the actuator and to distinguish between those two types of failures. The motivation
for this work was a series of experiments performed in 1988-1991 by Bernard and
Wryant in which the importance of automated reasoning to the autonomous control
of spacecraft nuclear reactors was demonstrated [3]. Experiments were crafted to
illustrate the need for automated diagnostics in each of the four stages (planning,
prediction, implementation, and assessment) of the control process. For example,
among the faults illustrated were ones involving failure to achieve a demanded rate
of power rise because the actuator was in the wrong initial position and hence its
available rate of change of reactivity was too low (improper planning), inability to
halt a transient at the specified power level because the actuator had been withdrawn
too far and hence its available rate of change of reactivity was again too low (incorrect
planning), and difficulties in the attainment of the correct power level because of a
saturated sensor (invalid assessment). Automated diagnosis can resolve these types of

problems by both identifying the fault and by providing suggested corrective actions.
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The work reported here was performed jointly by the MIT Nuclear Reactor Lab-
oratory (NRL) and the MIT Department of Nuclear Engincering (NED).

The control research reported here is one component of an on-going MIT program
to develop and experimentally evaluate an integrated, fault-tolerant methodology for
the closed-loop, digital control of power and temperature in nuclear reactors. In
particular, the overall controller should provide signal validation, instrument fault
detection, é supervisory algorithm that precludes challenges to the safety system, a
number of selectable control laws, a means of reconfiguring those control laws depend-
ing on the mission, a method for verifying signal implementation, and some means
for on-line performance assessment such as automated reasoning. In addition, there
should of course be an independent safety system. Details of this approach, as ap-
plied to nuclear reactors, are given in five earlier reports. The first was prepared by
MIT for the National Science Foundation under grant CPE-831787 [4]. Tt describes
the formulation and experimental evaluation of the "reactivity constraint approach”
which is a means of precluding challenges to a reactor’s safety system as the result
of any action initiated by an automated controller. The second report was prepared
by MIT for Sandia National Laboratories (SNL) as part of the U.S. Department of

Energy’s Multi-Megawatt Reactor Program[7]. It describes the derivation and ex-
“ perimental assessment of the ”MIT-SNL Period-Generated Minimum Time Control
Laws” which are a trajectory tracking technique suitable for the rapid maneuvering of
reactor power. The third report, which was also prepared for Sandia National Labora-
tories, concerns applications of the MIT-SNL laws including their use for automated
power increases from sub-critical [8]. The fourth report, which was prepared for the
U.S. Department of Energy, concerns the extension of the reactivity constraint ap-
“ proach to the closed-loop digital control of reactors characterized by spatial dynamics
[9]. The fifth report, which was also prepared for the U.S. Department of Energy,
addressed the closed-loop digital control of mutli-modular reactors [10]. In addition
to these five reports on reactor control, MIT has also conducted an extensive study
of the use of expert systems within the nuclear industry [5]. That material bears on

the issue of autonomous control,
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1.2.1 Automated Diagnosis

Modern industrial processes are becoming more and more complex. For such systems
to function properly, i.e. to implement their desired mission, the integrity of the
plant has to be maintained. In the case of a component or system fault, not only
may the system be damaged but also catastrophic events such as an explosion, fire,
or radiation release may occur. Thus, the detection of any fault and its repair before
accidents occur is of great importance. Because of the complexity of modern processes
and the limited response time available, even an experienced operator has difficulty
in accomplishing the task of identifying the faults and implementing appropriate
corrective responses. Automated diagnostics is aimed at aiding the operator in such
tasks by using advanced techniques with the aid of modern computers.

Fault diagnosis includes fault detection, fault localization, and fault isolation.
Fault detection refers to the identification of any abnormality in the system. Fault
localization refers to the confinement of the fault to a subsystem for possible cause.
Fault isolation refers to the identification of a specific component or subsystem that
is directly responsible for the fault. For a very simple system such as one for which
every state variable can be measured, the three concepts can be accomplished by one
process. However, for most systems, the three are usually implemented separately.

Traditionally, techniques for automated diagnostics are divided into quantita-
tive and qualitative approaches with each of these two categories dealing with a
different domain. Quantitative techniques make use of the system dynamics and
filter/estimators. They arc used more for fault detection. In contrast, qualitative
techniques make use of modern reasoning and are used more for fault localization

and fault isolation.

Quantitative Methods

There are two main categories of quantitative methods, namely parameter estimation
methods and comparative model methods. However, this categorization has not been

universally adopted.
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1. Direct estimation approaches: These include all kinds of estimation techniques

for extracting information using current and recorded data. In general, these

methods are combined with statistical tests to perform diagnosis.

2. Comparative models: Because of the difficulty of simultaneously estimating

many process parameters by direct estimation, the problem is often solved by
comparing the outputs of comparative models. This is also called the residual-
generation method. One example is the observer-based fault detection filter

that was first developed by Beard at MIT in 1970’s [11].

Quantitative Methods require mathematical process models to describe the sys-
tem dynamics. The effectiveness of the fault detection is directly dependent on the
accuracy of the descriptive models. For some systems such a model is available during
the design phase. But for some other systems, such a model can not be established
easily. For example, some mechanical systems may belong to the first category, for
which mathematical models are available handily, while most biological systems be-
long to the second category, where an accurate mathematical description is hard to
establish based on our current knowledge.

For a nuclear reactor system, knowledge about the dynamics that has been devel-
oped during the past fifty years makes the use of quantitative methods possible. The
work done in this report employs observer-based fault detection techniques together

with decision theories and optimization techniques.

Qualitative Methods

Qualitative Methods include both shallow diagnostic reasoning techniques and deep

diagnostic reasoning techniques.

1. Shallow diagnostic reasoning techniques: Shallow diagnostic reasoning is used

in problems where all the faults are predefined (typically in medical diagnosis).
This technique usually consists of a fault dictionary or a diagnosis tree. Both
use look-up tables. The disadvantage of this technique is that the diagnosis is

confined by the 4 priori knowledge[12].
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9. Deep diagnostic reasoning techniques: Deep diagnostic reasoning is based on

functional or structural models of the problem domain[12]. Methods include:

(a) Constraint-based methods[13]: These methods deal with constraint satis-

faction problems. The technique consists of a constraint network that com-
prises a set of variables, each with some domain and a set of constraints.
By simulation, this technique tries to find a subset of variables that vio-
lates the constraints. Then comparison of the results with the known facts

allows the identification of conflicts that may suggest the fault.

(b) Causality - based methods: A causality model that is based on the system

structural or functional design is used for inference. The causality model

could be in the form of signed directed graphs or fault trees.

(c) Boolean logic inference: This is based on the basic true or false reasoning

with “and/or” operations.

(d) Non-Boolean logic inference (reasoning under uncertainty)

e Bayesian inference: Probabilistic reasoning based on Bayes’s theory.

e Shafer-Dempster evidence theory: Evidence theory proposed by Shafer

in 1976 that is a variation of Bayesian inference.

o Fuzzy logic: A logic that enables computers to convert human lin-
guistic terms to arithmetical expressions. It was initiated by Lotfi A.
Zadeh in 1965. The key element in fuzzy logic is the fuzzy set which is
a set of ordered pairs. Each pair contains an element and the degree of
membership of that element in the set. With fuzzy logic, notions like
“fast” or “very fast” can be formulated mathematically and processed
by computers. A summary of the concept as applied to reactor control

has been given by Bernard [14].

The cause-consequence trees (CCT) that are the basis for these qualitative meth-
ods require a great deal of effort for their construction, e.g., a CCT for a nuclear plant

requires approximately ten man-years [15]. In addition, a CCT is very plant specific,
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and does not allow feedback models [15]. But for systems where an accurate mathe-
matical model is not available and for which quantitative methods can therefore not

be carried out, qualitative methods are the only alternative.

1.2.2 MIT Program on Reactor Control

The MIT program on advanced instrumentation and reactor control originated in the
late 1970s under the direction of Professor David D. Lanning of the MIT Nuclear En-
gineering Department. Studies at that time principally concerned the development
of accurate, real-time models of various plant components such as pressurizers, steam
generators, and condensers. The existence of accurate models is, of course, fundamen-
tal to the construction of a controller. In 1980, Dr. John Deyst, Dr. John H. Hopps,
and Dr. Asok Ray, who were all from the Charles Stark Draper Laboratory (CSDL),
initiated an experimental program at the 5-MWt MIT Research Reactor (MITR-II)
to demonstrate signal validation and 1nstrument fault detection. The’ parlty space
approach ” which was subsequently used on both test and commercial reactors was
one result of this effort [16]

Once both validated signals and real-time models were available, it became pos-
sible to consider closed-loop digital controllers. A supervisory algorithm that pre-
cluded challehges to the reactor’s safety system was developed and demonstrated on
the MITR-IT by Dr. John A. Bernard in February 1983. Designated as the "MIT-
CSDL Non-Linear Digital Controller,” or NLDC, this methodology uses reactivity
constraints to determine if a change should be made to the present control signal in
order to avoid a power overshoot at some future time [17]. The "reactivity constraint
approach” was licensed by the U.S. Nuclear Regulatory Commission for general use
on the MIT Research Reactor in April 1985 and soon became the basis of an exper-
imental protocol for the on-line testing of novel control strategies under conditions
of closed-loop digital control. Funding for the MIT control program was provided
by the National Science Foundation (Dr. Royal Rostenbach, Division of Energy and
Energetics) from 1984 to 1986. Other significant results achieved with NSF support

included the design and implementation of a rule-based controller, an on-line demon-

23



stration of control law reconfiguration, and the derivation by Professor Allan F. Henry
of the alternate formulation of the dynamic period equation [14][18)[19]. In July 1986,
a project was initiated with Sandia National Laboratories (SNL) to develop control
strategies for reactor-powered spacecraft. One result of that effort was the derivation
by Dr. Bernard of the ” MIT-SNL Period-Generated Minimum Time Control Laws”
which are closed-form expressions that permit a reactor’s neutronic power to be raised
by many orders of magnitude both without overshoot and within a few seconds [20].
With the support of Dr. Kwan 5. Kwok and Mr. Pawl T. Menadier of MIT and Mr.
Frank V. Thome and Mr. Francis J. Wyant of SNL, both these laws and the NLDC
were subsequently demonstrated experimentally on SNL’s Annular Core Research Re-
actor [21]. Tn September 1985, a project was begun under the sponsorship of the U.S.
Department of Energy to extend the reactivity constraint approach to large, spatially-
dependent reactors. That work involved both the development of "faster-than-real
time” reactor models that use super-nodal methods to describe the neutron flux be-
havior and fast running thermal-hydraulic codes to characterize reactivity feedback
effects [22]. In April 1988, a program was begun under the sponsorship of Sandia
National Laboratories to investigate use for the MIT-SNL laws for the rapid startup
and control of reactor-power spacecraft [23]. Also, in 1988, joint research was initi-
ated with the Qak Ridgé National Laboratory and the U.S. Department of Energy
concerning the closed-loop digital control of power and temperature in multi-modular
reactors[24]. A complete, yet concise, summary of the MIT approach toward reactor
control was given at the ANS/NIST Conference " Fifty years with Nuclear Fission”
in April 1989 [25] and in several other, more recent publications [26](27].

1.3 Impact of Closed-Loop Control on Automated
Diagnostics

The objective of the work reported here is to automate the diagnosis of closed-loop

controllers. This in turn limits certain aspects of the problem’s complexity. Namely,
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1. Controller Response: The response of the controller is to adjust an actuator.

This adjustment is normally measured accurately, often with redundant sensors.
Hence, one can assume the availability of accurate information relative to the

actuator.

2. Controller Model: Many controllers are model-based. Moreover, even if a model
is not used in the controller itself, one was often developed in order to design
the controller. Thus, some sort of mathematical representation of the system’s

dynamics is usually available.

3. _Controller Demands: The purpose of the controller may be to maintain system

output at a steady-state value or to cause that output to track a specified
trajectory. In either case, a sequence of demanded control signals is known and

hence available for use in diagnosing system response.

1.4 Process for Automated Diagnostics

The material summarized in Sections 1.1 and 1.3 of this report suggests the following

approach to automated diagnostics:
1. Comparison of the measured system output with that which was demanded.

2. Observation of the system’s state variables and comparison of those quantities

with their expectation values.

3. Performance of a failure detection analysis to determine if the origin of any

detected problems is in the plant dynamics or in the controller.

4. Identification of the cause of the failure. (Not within the scope of this report

because this action is largely a question of the adequacy of instrumentation.)

Advantages of this approach are that it is sequential with each step increasing the
complexity of the quantitative analysis, that its initial focus is on the identification

of symptoms so that corrective action can be quickly implemented, and that it takes
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advantage of the various demanded signals that are either known or determinable
from the closed-loop controller.

The first three steps in the above sequence are mathematically implementable
provided that a model-based controller is being utilized. These steps are the focuses
of this report. The fourth step is a matter of the available data. That 1s, has the plant
been sufficiently instrumented as to permit a meaning full causal analysis? That issue

is not considered here.

1.5 Structure and Content of the Thesis

There are two main parts of the report. One is the theoretical development of the
observer-based fault detection approach and the other is the application of this ap-
proach to a nuclear reactor system. The former is addressed in Chapters 2 and 4, the
Jatter in Chapters 3 and 5.

Theories of observability and observer-based fault detection filter are the starting
points of this research, and are reviewed in Chapter 2. There are two issues that
are not covered by the current theories on observer-based fault detection, they are
the influence of noise and how to design the filter. These are the concerns of this
research. In Chapter 4, a brief review of optimal decision theory is provided to lay
the groundwork for designing a fault detection filter and corresponding decision rule
that are robust to noise influences. Then, a method that integrates the design of
the fault detection filter, a post-process filter, and the decision rule are proposed.
To achieve a desired economic goal, a nonlinear cost function is constructed and
optimized for finding the optimal design. These are presented in Chapter 4. The
construction of the cost function is the key point that links the optimization tool
with our objectives.

To apply this approach to a nuclear reactor, its dynamics and representation
models are presented in Chapter 3. Certain empirical models specific to the MIT
Research Reactor (MITR-II) are also introduced so that simulation studies can be

carried out directly. Application to a one-group linearized nuclear reactor model is
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presented in Chapter 5. The optimal design is carried out for this observer and tested
on systems using both a one-group linearized model and a six-group nonlinear model.
In both situations, the simulation results are satisfactory in the criteria that our goals
- prompt fault detection and low false alarm rate - are achieved. The fault detection
filter and decision design are robust against noise and modeling errors.

This research proposes an integrated method for designing a fault detection filter
gain and for constructing a decision rule to detect and localize a component failure
for a linear-time-invariant (LTI) system. This is an extension of the work done by
Beard in early 70’s. The method proposed in this research addresses the noise effect
and proposes a fault detection mechanism that includes a fault detection filter, a post
process output filter, and a decision rule. This research has also applied this method
to a reactor system using simulation. The work reported here is one component of an
on-going MIT program to develop and experimentally evaluate an integrated, fault-
tolerant methodology for the closed-loop, digital control of power and temperature in
nuclear reactors.

The framework of this research is shown in Figure 1-2. There are two main
branches, one the general theory development, the other is the application to nuclear
reactor. The circles in the chart are the existing theories that have been applied to

this research and the shaded squares are the original contribution of this research.
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Chapter 2

Theories on Observability and

Observer-Based Fault Detection

System observability and theories of observer-based fault detection are reviewed in
this chapter. The objective is to provide background material needed for the devel-
~opment of a fault detection technique that is robust against noise and for application
to a nuclear reactor. A brief overview of the origin and broad meaning of the basic
concepts is included.

The chapter begins with a brief description of process representation, which is the
mathematical language that is used in the rest of this report. It then introduces the
concept of a system observer, which is a dynamic system (a nominal system) with
state variables that are estimates of the state variables of another system (the target
system of interest). For an observer to be stable, i.e. for the observer state variables
to converge to those of the nominal system, certain criteria have to be satisfied. Not
every system can have a stable observer. Thus, the concept of observability is in-
troduced because it determines whether or not a stable observer can be constructed.
The relationship between observability of a system and the construction of a system
observer is discussed and relevant definitions and derivations are included. Once an
observer is constructed, the estimated state variables can be compared with measure-
ments and the differences between them can then serve as the basis for fault detection.

In the last part of the chapter, an explanation is given of how fault analysis can be
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carried out based on information from the observer and measurements.

This chapter is focused on the general concepts of observability and observer-
based fault detection. The use of these techniques in a real system setting and the
accommodation of issues such as noise and modeling errors are not addressed in this

chapter but will be discussed in the following chapters.

2.1 Process Representation

A dynamic process can be described mathematically in several ways. For example,
there are behavioral descriptions, input-output descriptions, and state-space descrip-
tions. The state-space description is the most commonly used in modern control the-
ory. Most dynamic processes, in this case that of a nuclear reactor, can be described,
at least to a reasonable approximation, using standard state variable methods.

For a continuous, linear-time-invariant (LTI) system, the state-space representa-
tion Is

x(t) = Ax(t) + Bu(t) (2.1)

§(t) = Cx(t), (2.2

and for a discrete-time LTT system, the state-space representation is

x(k+1) = Ax(k)-+ Bu(k)
yv(k) = Cx(k). (2.3)

Here x is an n-dimensional state vector, u is an r-dimensional control vector, y is an
m-dimensional output vector, A is an nxn system matrix, B is an n X7 control matrix,
and C is an m X n output matrix. Equation 2.1 is a set of n first order differential
equations that represent the plant while Equation 2.2 is a set of m linear algebraic
equations that represent the plant output (i.e. the measurement observables.) Under
this representation, the x; are the state variables. These constitute the minimum

set of information needed to describe a system, and may or may not correspond to
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physical real parameters.

The process in question may or may not be controllable or observable. The former
implies that it is possible, through application of the control u(t), to transfer the
system from any initial state to any final state in finite time. The latter implies that,
for the unforced system, it is possible to determine any initial state by use of a time

sequence of the system output.

2.2 Luenberger Observer

An “observer” is defined as a dynamic system with state variables that are estimates
of the state variables of another system. The concept was introduced in the early
1960s first by Kalman and Bucy[28], and then by Luenberger[29][30]. The concept is
.sumrna,rized here. Dénote an estimated quantity by~ Thus % is the estimate of x.
The observer system {s:

% =A%+ Bu + Ly, (2.4)

and is thus driven by the control input u and the measurement vector y. The error
in the estimate is

e=X—X (2.5)
Hence,

€ = x—X
= Ax—t—Bu—fii—Bu—Ly
= Ax+Bu-A(x—e) - Bu—LCx

~

= Ae+ (A~ LC - Ax+(B- B (2.6)

The matrices A, B and K are chosen so that the error goes to zero regardless of x
and u. Hence,

A=A-1C, (2.7)
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State
A
Figure 2-1: Block diagram of a system.
and
B=B. (2.8)
Equation 2.6 therefore becomes:
& = Ae
= (A-LC)e. (2.9)

The matrix I is undetermined. However, if the error is to go to zero, ie. if the
observer is to be stable, the real part of the eigenvalues of (A — LC) must all be
negative (i.e., lie in the left-half plane). This provides a criterion for selecting L.

Upon substitution of Equations 2.7 and 2.8, Equation 2.4 becomes:
% = Ak + Bu+ L(y - C%). (2.10)

Thus, the observer has the same form as the original system (Equations 2.1 and 2.2)
except for the presence of the term L(y—C#%). Figures 2-1 and 2-2 are block diagrams
of the original system and the observer. Both diagrams are of the same form with
the residual (y — C#) in the lower figure corresponding to the error.

In order for the residual to go to zero, the eigenvalues of (4 — LC') must all be
negative. But can we always find an L that satisfies this condition? The answer
is no. Not all systems can have a stable observer. Also some systems may have a
partially stable observer. That is, some components of the residual converge to zero

while some don’t. Then what conditions does the system have to satisfy in order for
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Figure 2-2: Block diagram of a linear observer.

it to have a stable observer? This issue can be systematically investigated after the

notion of observability is introduced.

2.3 System Observability

Observability and controllability (also called reachability) are dual concepts in con-
trol theory that are of the utmost importance. Let us start with a discussion of
observability. Most properties of controllability can be proved or argued in a similar
way.

For a system that is represented in the state space description by Equations 2.1
and 2.2 or 2.3, the initial state x(0) of a system can be uniquely determined if and
only if the system is observable. Here, the initial state includes every component.
This is the definition for observability.

The discrete-time LTI system is used here as an example. If u(k) and y(k) are

given for time steps from 0 to 7', that is for all 0 < k¥ < T, then by arranging them
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in a vector format, we have:

y(0) c
y(1) _ CA <(0) +
y(T —1) CAT-L
D 0 0 0 u(0)
CB 1? 0 0 (1) 211)
CAT-2B CAT3B ... CB D} \ u(T'-1)

The left side is the measurements. The first term on the right side is the state
evolution from the initial state and the second term on the right side is the forced
response of the system to the control. Here, the measurements and the forced response -
of the system to the control are known quantities. The initial state x(0) is unknown
and is what we want to determine. Once it is determined, all the states in later
steps (or time) can be determined as well according to the dynamics of the system.
This is done by using equations 2.3. Without loss of generality, we can subtract the

forced response from the measurement, both of which are known. Equation 2.11 then

becomes:
y(0) C
1 CA
YW Y k) = o), (2.12)
y(T —1) CAT!?
with matrix Or defined by
C
CA
Or = ‘ X (2.13)
CAT-!

This matrix is called the “T-step observability matrix”. Here we introduce an im-
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portant conclusion that will be proved in the following paragraphs. If a system is
unobservable over n steps, where n is the dimension of state vector, then it is un-
observable over any number of time steps. Equivalently, a system is observable if
and only if it is observable in n steps. This statement is, in turn, equivalent to
rank(0O,) = n.

The “if statement” in the above conclusion, i.e. a system is observable if rank(0,)
=n, can be proved using a contradiction argument. If O, does not have full rank, i.e.
rank(O,) < n, then C,CA,CA?% ... and CA™ ' must be linearly dependent. Thus,

there must exist a non-zero vector d, such that

C
CA
Ord = . d=0 (2.14)
CAT-1

Thus, if an initial condition x*(0) satisfies Equation 2.11, x*(0) + d must also satisfy
Equation 2.11. That means the system initial condition x(0} can not be uniquely
determined. Thus, by definition, the system is unobservable. So far, we have shown
that a system is observable if rank(0,) = n.

To prove the “only if statement”, we need to introduce the Cayley-Hamilton the-
orem. The determinant of an n X n matrix A can be written in the form of a charac-

teristic polynomial:
a(s) =det(s] — A) =ag+ a1s +aps® + ... + 0y 15" 1 + 5, (2.15)

where “det” is the determinant, which is a function of s. The aq to a,_; are the
polynomial coefficients of the matrix A. Then, when s is chosen to be matrix A itself,

Equation 2.15 becomes

a(A) = apl + ayA+ a;A* + ... +a,_ A"+ A" = 0. (2.16)
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Thus, the matrix A" can be written as a linear combination of matrices I, A, A%
.., A"L. Thus, adding A™ to [JAA4?.. A"7'] will not change its rank, neither
will multiplying it by a constant non-zero matrix C. So, we have Rank(0O,) =
Rank(Ont1) = Rank(Opyz) = ... Thus, if a system is unobservable over n steps,
no matter how many steps the system goes through, it remains unobservable. The
converse is also true. Namely, if a system is observable, it must be observable over n
steps. We have proved the “only if” part. The same results hold for a continuous-time

system.
To summarize, we have introduced three essentially equivalent notions for a state-

space LTI system. They are

1. A system is observable, or a pair (C, A) is observable,

2. The initial condition of a system can be determined uniquely,

C
3. The matrix O = C_A has rank n.
CAT—l
This O matrix is called the observability matrix, and it is essentially the n-step
observability matrix.

The importance of knowing whether or not a system is observable will become
clear after we discuss the properties of an observer. Before proceeding to that, another
so called “modal test” for the determination of observability is reviewed. This test
method is more convenient in terms of implementation and it can also help to visualize
the concept of observability.

Again, using a discrete-time system as an example, the “modal test” is illustrated.
If an » x n matrix 4 is diagonalizable (most real system matrices are), then it can

be decomposed into:

A= !, (2.17)
=1

where ); is the ith eigenvalue of A, v; is the ith right eigenvector of A, and w; the 1th

left eigenvector of A. Under the assumption of u = 0 that we previously proposed
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without loss of generality, we then have that the kth step output equals:

y(k) = CA*x(0)
= Civi)\fw?x((])

=1

= > Cviw!x(0)Ak (2.18)

i=1

If there exists a right eigenvector v; of A that satisfies Cv} = 0, then when we choose

a vector d = v/, it will satisfy:

> Cviw[dA} =0, (2.19)
i=1
which renders the system unobservable because any initial condition x(0) will result
in the same measurements as x(0) + d.
The modal test can be formulated as follows: a system is unobservable if and only
if
Al —A

v =0, (2.20)
C

for some complex or real number A and a non-zero vector v.
Now we have discussed the definition of system observability and methods that
can be carried out mathematically to determine it. In the following section the

relationship between observability and the design of an observer will be covered.

2.4 Selection of Observer Gain

Now we come back to the question that was raised in section 2.2. The question was
if and how we can make all the real parts of the eigenvalues of matrix (A - LC)
negative.

The eigenvalues of matrix (A — LC) can be solved as the roots of the characteristic
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polynomial equation for (A — LC). The latter is given by:
det|s] — (A — LC)| = ap + a15 + aps> + ...+ ap15" 45" =0. (2.21)

The polynomial coefficients on the right side depend on the matrices 4, C', and L.
Matrices A and C are known constants. Thus, the roots of the above polynomial
equation, which are also the eigenvalues of the matrix A, will depend on the choice

of L. If the desired eigenvalues are ayg, a;, ..., &ip—1, then we have,
(s —og)(s — ay)-..(s —an_1) = 0. (2.22)

By comparing the coefficients in equations 2.21 and 2.22 we have n? equations. Be-
cause the matrix I has n? elements, we also have n? unknowns to solve. But is there
always a solution for this L and if there is one, is it unique?

As we did in the previous section, here we introduce a theorem first and then prove
it. The theorem here states that “there exists a matrix L such that the eigenvalues
of (A — LC) can be any arbitrary self-conjugate set of complex numbers if and only
if the pair (C, A) is observable.”

If (C, A) is unobservable, from the modal test of Equation 2.20, then we have
at least one unobservable mode v} and a corresponding A;, such that Cvj = 0 and

A’U; = )\.L"U;. SO,

(A—LCY! = Av — LCvj

This means that this particular eigenvector v} of A is also an eigenvector of (A— LC),
and both the corresponding eigenvalues are );. Because this eigenvalue \; of (A~ LC)
is determined by matrix A only and does not depend on the choice of L, we can not
place this cigenvalue that is associated with eigenvector v; of (A— LC) arbitrarily by
selecting L. In summary, when the pair (C, A) is unobservable, there must exist at

least one eigenvalue of (A — LC) whose corresponding eigenvalue can not be placed
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arbitrarily.

If (C, A) is observable, then as we have shown in the previous section, it is
C

CA
equivalent to stating that the observability matrix O = ) must have rank

CAT-!

We know that under a similarity transformation, a system described by (A, B, C)
as in Equations 2.1 and 2.2, or in Equation 2.3 can also be described in the same
way by (}i, B, C‘), where the similarity transformation is carried out using any proper

matrix 1" as,
A=T7'AT, B=T"'B, C=CT, %=T'x, i=u, §=y. (2.24)

The system will not be affected by how we perceive it. A simple example of similarity
transformation is the rotation of a set of coordinates.
Assume the system is a single output system, then the €' matrix becomes a row

vector. Using O as a similarity transformation matrix, we have,

0 1 0 0 0

CA C
0 0 1 0 e 0

CA? ; CA

OA = | 1, @)

0 0 0o ... 0 1

cA” C A1

\ —G4p —d1 —a4z ... —Qp_2 —Anp-1

where ag, a1, ...a,_1 are the coefficients in the Cayley-Hamilton equation (Equation

2.16).
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Denote the first matrix on the right side of the above equation as A. That is

0 1 0 0 0
0 0 1 0 0
A= , (2.26)
0 0 0 0 1
“Gp —Gp —G2 ... —Gp-p —Gu1 |
then Equation 2.25 becomes
0A = A0, (2.27)
and
A=0407", (2.28)

The inverse matrix O~ ! exists because matrix O has full rank n. It is easy to ver-
ify that the coefficients ag,ay,...a,_; are also the coefficients of the characteristic

polynomial of matrix A

Similarly,
C
CA -
c=(10 .. o) © | =éo, (2.29)
CAn—l
where ¢ = CO~! and
c=(10..0). a0

Thus, any observable pair (C, A) can be written as (C, A) with € and A defined as in
Equations 2.30 and 2.26. It can be verified that the particular system with (C*, A*)
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defined ag

—a 1 0 ¢ 0
—a; 01 o 0
A" = : ) (2.31)
An_9 0 0 0 1
On—y 0 0 . 00
and
C”:(l 0 ... 0), (2.32)

directions, the results lead to the conclusion that any observable pair (C, A) can be
transformed to (C*, 4*) under similarity transformation of 0oL,

It can be easily verified that the eigenvalues of (A~ LC) are the same as those
of (4* — L*C*), where 4+ and C* are the pair after 3 similarity transformation 7 —
OO*~1 op (C, A), and L* = T'L. Suppose we would like the eigenvalues of (A -
LC) be placed at (ap, oy, 3 On_1), then the eigenvalues of (A — L*C*) will also

be (ayq, &1, @n_1). For a single output System, the I, anq L* are colump vectors.

f
i
L= "t ] (2.33)
A
then, (4* — L*C*) can be expressed ag
@l 10 9 . g
=001 ¢ 0
A* = : , (2.34)
Taa=li, 00 .. ¢
—*an_l‘*[;;‘l 0 0 0 0
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* are the coefficients of the characteristic polynomial of (A* — L*C™),

where —a; — [}

which can also be obtained by expanding the expression sI — (A* — L*C*) = (s —
ag)(s — 1) - (s — poy) = 8"+ bp1 8”7+ T+ bys + bo. If the desired eigenvalues
(cro, @1, .., Gtn—1) are determined, the L* can be solved by comparing the coeflicients,
I¥ = a;+b;. These are a set of (n) algebraic equations and the solutions are guaranteed
for any selection of a;. The vector L can then be solved by L = T71L*.

In summary, we have shown that for a single output system, if a pair (C, A)
is observable, then the eigenvalues of (A — LC) can be placed arbitrarily (complex
eigenvalues must be in conjugate pairs). For a multiple output system, the same
conclusion holds, but the proof is more involved and will not be demonstrated here.

The method for determining the observer gain matrix L given eigenvalues of
(A — LC) has also been illustrated. This method can also be used to determine
the feedback gain of a controllable system and is called Ackermann’ formula. In
Matlab, which is a widely used commercial computational mathematics package, this
method is implemented to calculate the observer gain given desired eigenvalues. Al-
though, theoretically, the solutions of the gain L are guaranteed and are unique, the
implementation is prone to numerical errors because of the transformations that in-
volve calculating inverse matrices. Here I will give an example to show how numerical
errors could result in wrong answers when using Matlab’s ACKER function.

Let A be a 7 X 7 matrix

_64.9000 0.0126 0.0301 0.1118 03014 1.1363  3.0137 \

2.1000 —0.0126 0 0 0 0 0
14.2000 0 —0.0301 0 0 0 0
A= 12.7000 0 0 —0.1118 0 0 0 ,
25.7000 0 0 0 —0.3014 0 0
7.5000 0 0 0 0 —1.1363 0
k 2.7000 0 0 0 0 0 —3.0137
(2.35)
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Table 2.1: Desired and Calculated Eigenvalues of (A — LC)

Desired eigenvalues | Calculated eigenvalues | Relative error (%)

-1 -1.4248 + 0.27321
-1 -1.4248 - 0.2732i
-1 -0.9490 + 0.41161
-1 -0.9490 - 0.4116i
-1 -0.7394 + 0.16071
-1 -0.7394 - 0.16071
-1 -0.7756

50.5
50.5
41.5
41.5
30.6
30.6
224

and C be a 1 x 7 vector

CZ(lOOODOO)-

(2.36)

Suppose the eigenvalues of matrix (A — LC') are to be all negative one ([-1, -1, -1, -1,

-1, -1, -1]), the ACKER function of Matlab will give the corresponding L to be

—0.00625039343443
4.29562501335193
—2.09384827924070
L =1.0e+ 04 x 0.08665238529537
0.00176883075166
0.00074990585454

\ 0.00030361491611 J

(2.37)

If we substitute this calculated values into (A — LC), we will have the eigenvalues

that are not exactly what we desired. The resulting eigenvalues and desired values

are listed in Table 2.1. There is more than a 20% error between them. The stiffness

of matrix 4 in this example causes a singularity problem while calculating the inverse

matrices and results in the big error of the gain calculation. Kautsky and Nichols

proposed improved algorithms to calculate the observer (or controller) gain for desired

pole placement in 1985 [31]. In this research, we do not specify all the poles and then

find a corresponding gain matrix L. For our purpose, pole placements are not the

ultimate goal. Other elements in L are also important for enhancing the signal-to-
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noise ratio. Thus, the procedure for obtaining an appropriate gain L is instead as

follows:
1. Choose an initial gain matrix L.
2. Calculate the eigenvalues of (A — LC).
3. Calculate a cost function that depends on the eigenvalues of (A — LC).
4. Change L to lower the cost function.
5. Repeat steps 2 to 5 until the goal is met.

In step one, we still need to solve A* where k is usually a number less than n as
explained in the next section. It is usually the case that the matrix (A — LC') is not
stiff by choosing an appropriate L. I mention this because the differential equations
describing the nuclear reactor kinetic are stiff due to two time scales in the process -

prompt neutrons and delayed neutrons.

2.5 Observer-Based Fault Detection

Originally, a system observer was used to estimate system state variables where mea-
surements are not available. These estimations are then used by a controller for
system control. Beard was the first to introduce an observer for fault detection pur-
pose in his PhD thesis that was done at MIT in 1971 [11]. The theories on applying
an observer to fault detection are reviewed in this section.

It was shown in the previous sections that when the model for the observer and the
real system match each other precisely, the estimation errors (y —§ and x — %) go to
zero if all the eigenvalues of (A — LC) are negative. But when the model differs from
the real system, even if all the eigenvalues of (A — LC') are in the left half plane, the
estimation error may not go to zero. This estimation error contains information that
can be used for fault detection. Two main causes can result in a non-zero estimation

error.
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One is changes in the dynamics of the system. These changes are of interest to
us because they are usually indications of a component fault in the system and thus
can be used for fault detection. The other is imperfections of the model. Because it
is unusual for a model to reproduce a real system perfectly, this type of estimation
Iror is present in almost al] observers and poses a major difficulty for both system
control and fault detectors that are based on observer estimations. Fortunately, by
carefully designing the observer and by constructing appropriate decision rules, the
effect of the latter will not mask totally the effect from the former and information
about the system dynamics can still be extracted. In this section, fault detection
based on a perfect model 1s discussed. The problem of the noise corruption and
model imperfectness will be investigated in later chapters.

Because we only have access to ¥, the residual (estimation error of measurements)
refers to y — ¥, where ¥ is the measurement and Y is the estimated values for Y i.e.
the output from the observer.

Here let us adopt a convention that the system parameters are denoted by a
subscript S, and those of the model with a subscript M. Estimated variables are super-
scripted by a hat () as beforé. Upon rewriting equations 2 3 using these notations,

they become:

X = A3X+Bsu,

y = Csx, (2.38)
and the model equations become

X = AMJE+BMU¢+LM(Y“5’),

»

Yy = CA,[)Z. (239)

Notice that the subscript in the model for the input signal u are expressed as uy,
meaning desired input which is to be distinguished from the real input that the

system actually receives.
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Then, the discrepancy between the system state variables and the observer state

variables € == x — X satisfies,

E = X—X

= (ASX — AM)AC) + (Bsu - BM'lld) - LM(ng - CM}A{) (240)

When the observer parameters match those of the system, i.e. assuming we have
perfect knowledge of the system, As = Apr, Bg = By, Cs = Ciy, and also assuming
that the actuator works perfectly such that u = uy, then equation 2.40 is reduced to
equation 2.9. Failure of those parameters to match each other could be the result of
either model inaccuracy or an abnormality of the system.

Now consider three types of abnormal events,

1. Actuator fault: Deviation of u from the desired value which can be expressed

as u — uy = Au.

2. Abnormality of system dynamics: Deviation of Ag and/or Bg from those of the

model, which can be expressed as Ag — Ay = AA and/or Bg — By = AB.

3. Sensor error: There is a deviation in the measurements which can be expressed

a5y = Osx + AYm.

The rest of this section is focused on these three types of possible errors.
For the first case, actuator fault, where u — uy = Au while Ag = Ay, Bs = By

and Cgs = C)y, the estimation for x becomes,
(1) = (A — LC)e(t) + BAu(t). (2.41)

The fault term Au(t) can be decomposed into time-dependent scalars and time-
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independent vectors. Comnsidering a single actuator fault, we then have

[0

Au(t)=| 1 | f(t) = ef(t), (2.42)

\ 0
where e; is a time-independent vector with the ith element being one and all other
elements being zero. Thus, e; specifies which actuator goes wrong. The f(¢) in the
above equation is a time-dependent scalar and it describes how the error in that
particular actuator specified by e; evolves in time.

If we substitute Equation 2.42 into Equation 2.41, the estimation error for state

x under a single actuator fault can be represented as
é(t) = (A — LC)e(t) + by f(1), (2.43)
which has a solution in the form of
e(t) = coe 1O 4 [ LlALOOTI f(r) g (2.44)

Here b; is the sth column of the matrix B. It is clear in Equation 2.44 that the
settled e(¢) after the first exponential decay term dies off will be in the direction
along vector b; with magnitude changing in time according to a time convolution
term that depends on f(#).

We will discuss how to utilize the results obtained so far to detect an actuator
failure in more detail later. Now we will proceed to derive similar results for changes
in the dynamics and for sensor failures.

Consider a system dynamics error, where As — Ay = AA or Bs — By = AB
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while u = uy and Cs = Oy, Then, Equation 2.40 becomes,
€=(A-LCYe+ Adx + ABu, (2.45)
which has a solution of the form
€(t) = egelA-LO | ./Ote(A‘LC)(t"T)AAx(T)dT + /Ote(A_LC)(t“T)ABu(T)dT. (2.46)

Again, decompose A4 and AR into time-dependent scalars and time-independent

vectors and consider only a single fault. We have,
AA = Aaz-jeie;, (2.47)

and

AB = Abijeie;-, (248)

where e, and €; are as defined in equation 2.42 and ' means transpose. So, e, is g

or Aby;(t) are time-dependent, scalars.
Now substitute Equations 2.47 and 2.48 nto 2.45 and separate the cases for error

in 4or B. We have, for error in 4

€ = (A—LO)e + €iAa;(ex(t))
(A - LO)G + e,;Aaij.r_,-(t), (249)

bl

and for error in B

é = (.4 — LC)E -+ e.,;Abz-j (e}u(t))
= (A= LCYe + €;Ab;ju,(t). (2.50)
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Notice that (e}x) is z;(t), the jth element of the column vector x and (efu) is uy(2),
the jth element of the column vector u. Both are time-dependent scalars. Thus,
the settled estimation error € for the case of error in A4 is along the direction e; with
magnitude proportional to (€;x)Aa;;. Similarly, the settled estimation error ¢ for the
case of error in B is along the direction e; with magnitude proportional to (efu)Ab;;.

Finally, consider the case for sensor failure. Here y = Csx + Ay,, while Ag =
Ay = A, Bs =By =B, Cs =Cy =C and u = uy. If we only consider a single

sensor failure, then Equation 2.39 becomes,
y = Ox+ e f(t), (2.51)

where e; is similar to that in the cases of actuator fault and dynamics changes. It is
a column vector with the ¢th component being one and all other components being
zero and it specifies which sensor goes wrong. The f(#) is a time-dependent scalar
that denote the magnitude of the error.

Notice that the estimation error of state variable x under sensor error will satisfy

¢ = (A—LC)e— Leif(t)
= (A-LC)e—Lf(1), (2.52)

where 1; is the i th column vector of the matrix L.
In summary, all three types of fault events will result in an estimation error that

can be expressed in an unified form of
€= (A~ LC)e—vf(t), (2.53)

where v is a time-independent column vector that is associated with the location of
the fault while f(t) is a scalar that characterizes the magnitude of the fault. Equation

2.54 has solution in the form of

t
€(t) = e 4= — [ ALy (7). (2.54)
0
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The first term on the right side dies off if L can be chosen to make all the eigenvalues
of (A — LC) in the left half plane.

The fault event that is associated with the vector v is detectable if there exists a
matrix L such that Ce is along a fixed direction in the output space and at the same
time, all eigenvalues of {4 — LC) can be placed arbitrarily [11].

It is clear that to satisfy the first condition that C'e remains in a fixed direction,

we must have
rk C[I, (A — LC), (A~ LC)Q, cey (A= LC)”_l]v =1. (2.55)

This result follows easily from Equation 2.54.

To satisfy the second condition that all eigenvalues of (A — LC) can be placed
arbitrarily, we have shown in the previous sections that we must have the observability
matrix to have rank n.

Thus, to detect a fault event associated with vector v, we must choose an appro-

priate matrix L to satisfy:
1. all eigenvalues of (A — LC') have negative real parts, and
2. rk C[I,{(A-LC),(A—LCYy, ...,(A-LC" 'lv=1

It has been proved that every vector in the state space is detectable if and only
if (A4,C) is an observable pair [11]. The proofs are skipped here and please consult
[11] for more details. The procedure to find an appropriate L such that the two
constraints can be satisfied are as follows:

Given (A, C), we define matrices C', K, and M’ as:
C' = [I - cv[(ev)Tov])TH (ev)T]C, (2.56)

K = A - Av[(cv)TCv]"H{Cv)TC, (2.57)
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and

C"
C'K
M = . . (2.58)
CfKn—l

The maximal generator order v is determined by
v =n —rank(M'). (2.59)

The maximal generator g for vector v is determined by:

1. Find the null space of M’, denoted by Z = Null(M’), such that M’ x Z has
negligible elements, and 2/« Z = I.

2. Find a vector g in the null space of M’ satisfying

C
CA '
g=0, (2.60)
CA"?
and
CA* g = CA*v, (2.61)

where 1 is defined by

CAv=0 for j=0...p~1,
CA*v £ 0. (2.62)

The matrix L constructed by

L = [pog+pAg+...pxA " + Arg - [(Cv)TCV]HCV)T



+L'[T - Cv[{Cv) v Y ew)T), (2.63)

will satisfy the two constrains. Here p, to P are the coefficients for the characteristic
polynomial with the & roots being eigenvalues of (A= LC). L'is an arbitrary matrix.
Thus p, to Pr and L' are our choice in the design.

If we perform a Laplace transform on both sides of Equation 2.53, we can have
the spectrum domain response of the measurement estimation error E(s) to the fault

signal F(s)
E(s) = L[Ce(t)] = CLE®)] = Clsl ~ (A - LAY vi(s) = G(s)F(s),  (2.64)

where £ means the Laplace operation and F(s) = Lf(2). G(s) is the transfer function
from F(s) to B (s). This relationship is very useful when we try to maximize the signal
to noise ratio during design of L.

R.V. Beard has done a superb job in proving and deriving the construction of the
matrix gain that can satisfy the two constraints for fault detection. But he didn’t
give explanations for how we should chose the arbitrary matrix I/, This may not be
an easy task without the aid of g computer. In this research, freedom in choosing
the matrix I/ and the poles p, to Pk 18 essential for our design of an optimal fault

detection filter that can function in the presence of noise.
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Chapter 3

Nuclear Reactor Dynamics and

MIT Research Reactor 11

In this chapter, the reactor dynamics and its mathematical representation are re-
viewed. Linearized reactor model and various feedback mechanism models are intro-
duced. The transfer function model that is based on the linearized state space rep-
resentation is presented. Empirical models that would be needed to apply the fault
detection technique to the MIT research reactor are developed based on MITR-II
data. These models include a temperature response model, a temperature feedback
worth model, a regulating rod reactivity worth model and a shim blade reactivity

worth model.

3.1 Reactor Dynamics

A reactor’s multiplication factor is defined as the ratio of the neutrons produced
from fission to those lost by either leakage or absorption. The reactor is sub-critical,
critical, or supercritical depending on whether the multiplication factor is less than,
equal to, or greater than unity. The quantity most fundamental to the control of
power in a nuclear reactor is the reactivity. It is defined as the fractional departure of
the multiplication factor from unity. A reactivity of zero therefore corresponds to the

critical condition. Adjustments of power in reactors described by space-independent
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kinetics are generally accomplished by positioning neutron-absorbing control rods or
rotating drums so as to temporarily alter the neutron multiplication rate. If a power
increase is desired, a control rod would be withdrawn (or a drum rotated) so as to
insert positive reactivity and thereby place the reactor on a period. (Note: Period
is defined as the power level divided by the rate of change of power. Thus, a period
of infinity corresponds to steady-state, while one equal to a small positive number
indicates a rapid power increase.) Having established a period, the power is allowed to
rise. Once the power level approaches the desired value, the control device is gradually
returned to its original position in order to reduce the reactivity to zero and to level
the power without overshoot. Reactor operation is characterized by several reactivity
feedback mechanisms. One of the most important is that a rise in fuel temperaturc
will result in the increased absorption of neutrons in reactions that do not lead to
fission. Known as the ”"Doppler” effect, this is an inherent safety feature that limits
the potential for an accident because any increase in the reactor power will cause the
fuel temperature to rise which will in turn decrease the number of neutrons available
to sustain the fission chain reaction. Another feedback mechanism is that a rise in
the temperature of the moderator (which often also serves as the coolant) will cause
there to be both more neutron leakage and less moderation. The net result is the
generation of negative reactivity. The presence of these and other feedback effects
makes reactor dynamics non-linear because the reactivity is influenced by the power
level.

Figure 3-1 is a simplified schematic of the fission process. Relative to reactor
control, the most significant feature is that there are three parallel but separate
mechanisms for the production of neutrons.

Prompt neutrons appear directly following the fission event and have lifetimes
that are quite short, typically 100 ps.

Delayed neutrons are produced following the decay by beta particle emission of
fission products that are referred to as ”precursors.” The delay in the appearance of
a delayed neutron relative to the fission is the result of the precursor half-life. About

20 different precursors have been identified and for convenience, they are combined
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Figure 3-1: Fission process showing prompt, delayed, and photo neutron production.

into six groups with half-lives ranging from 0.23 to 55 s. The average value is 12.2 s.
Table 3.1 lists the six-group precursor data for 233U,

The third mechanism for neutron production is the interaction of fission-product
gamma, rays with certain moderating materials, most notably heavy water and beryl-
lium. The appearance of photo-neutrons is delayed relative to the fission event be-
cause of the time required for the fission products to undergo radioactive decay and
emit the needed gamma rays. Prompt-, delayed-, and photo-neutrons are all pro-
duced at high energies. In order to sustain the fission reaction, these neutrons must
be slowed down or thermalized. This is accomplished by designing the reactor so
that the neutrons will collide with the nuclei of a moderating material such as water,
thereby giving up much of their kinetic energy. The efficiency of the thermalization
process decreases as moderator temperature rises. This behavior, as noted above,
contributes to safety. However, it is another factor that makes reactor dynamics non-
linear. (Note: Photo-neutrons may be represented mathematically in the same way
as delayed neutrons. Hence, the term ”delayed” is subsequently used here to refer to

both neutrons resulting from precursor decay and photo-neutrons.)
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Table 3.1: Six-Precursor Group Half Lives and Delayed Neutron Fractions for Ther-
mal Fission of 2°U [33]

Group | Half-life T /»(s) | Decay constant (1/s) | Delayed fraction §;

1 55.0 0.0126 0.00021

2 23.0 0.0301 0.00142

3 6.2 0.1118 0.00127

4 2.3 0.3014 0.00257

5) 0.61 1.1363 0.00075

6 0.23 3.0137 0.00027
Total - - 0.0065

The adjustment of reactor neutronic power requires planning because the respec-
tive appearances of prompt and delayed neutrons following fission occur on very dif-
ferent time scales. Specifically, at any given moment, the prompt neutron population
will be proportionali to the current power level while the delayed neutron population
will be a function of the previous power levels or power history. This difference has
no significance during extended steady-state operation because the previous and cur-
rent power levels are the same. However, such will not be the case during power
adjustments. For example, during power increases, the contribution of the delayed
neutrons will always be less than it would be at equilibrium and the contribution of
the prompt neutrons will therefore be correspondingly greater. Hence, upon attaining
the desired power level, the rate of increase of the delayed neutrons, unlike that of
their prompt counterparts, can not be immediately halted. Rather, the delayed nen-
tron population will continue to rise until it attains equilibrium with the precursor
population that corresponds to the reactor’s power level. Hence, if power overshoots
are to be averted, it is essential to limit the delayed neutron contribution so that,
upon attainment of the desired power, the insertion of the control mechanism will
make the rate of change of the prompt neutrons sufficiently negative so as to offset

the continued increase in the delayed neutrons.
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3.2 Mathematical Representation of Reactor Dy-
namics

As a starting point, it is assumed that the reactor’s dynamics can be adequately
described by the space-independent prompt-only kinetics equations. Then according

to the neutron balance for a fission chain system, we have [32]:

d
d—Tt‘ = 45,0 — 3,8 — DB, (3.1)

where dn/dt is the change of neutron density n, u is the number of neutron production
per fission, ¥ is the macro-scopic fission cross-section, or fission probability per unit
length, ® is the neutron flux, ¥, is the macro-scopic total absorption cross-section,
D is the diffusion coefficient, B? is the buckling defined as

AP
5

B*=— (3.2)

The three terms on the right side of equation 3.1 are the neutron production rate from
fission, the neutron absorption rate, and the leakage rate per unit volume respectively.

Equation 3.1 can also be written as:

1d®

—— = uZ;® - 5,8 - DB*?, (3.3)

Upon dividing both sides by X ; and then rearranging the left side, we have:

1 dd

_Z+ DB?
vpds di N

pXg

(1 )®. (3.4)

Define the multiplication factor k, the reactivity p and the mean neutron generation

time [* as
o pXy
k= 2, + DB?’ (3:5)
k-1
=% (36)
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and
1

"= . 3.7
P (3.7)
Equation 3.4 becomes:
dd p
— = —0. 3.8
e I* (3:8)

The above equation describes prompt behavior. We now extend the description to
include delayed behavior. Firstly, represent the delayed neutron fraction at thermal

energies by the symbol 3. Then, the delayed neutron source dng/dt is

2 = Buzy9), (39)

and the prompt neutron source dn,/dt becomes

d _
% = (1 — B)u%;®, (3.10)

where p3;® is the total neutron source. Assurning six-group precursors, the delayed

neutron source rate can also be written as

ng = Z MCy (1), (3.11)

where ); is the decay constant for the ith group precursor and C; is the ith group

precursor density. The latter is determined by

dC;
dt

= BiuZ;®(t) — NCi(1), (3.12)

where the first term on the right side is the ¢th precursor production rate from fis-
sion process and the second term on the right is due to precursor decay. Substitute

Equations 3.9, 3.10 and 3.11 into Equation 3.3, we have

L (- B0 + Y AC - 0l - DB (313
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Upon dividing both sides of the above equation by p¥¢, it becomes

1 do - 2.8(t) + DB*®(t)
— =(1—- ACi — . 3.14
’U}.l:Zf dt ( /8 /J,Ef Z /J,Zf ( )
Substituting the definitions for & and [*, we then have
d<I> ~ X, + DB2
- - X:C. 1
Fo0-E- T uzf Z (3.15)

Upon substituting the definition for p, moving I* to the right side and dividing both

sides by v, we then have

_ B 6

together with the equation that describes the behavior of delayed neutron precursors

as .
dci :Bz
dt — I* ()

ANCi(t) i=1,2,..6, (3.17)
where

n(t) is the amplitude function and is weighted integral of all neutrons present in the

core,
p 1s the net reactivity,

B is the effective delayed neutron fraction,

B; is the effective fractional yield of the sth group of delayed neutrons,
[* Is the prompt neutron lifetime,

A; 1s the decay constant of the ith precursor group,

C;(t) is the concentration of the sth precursor group.

The fundamental assumption that underlies the validity of the point kinetics ap-

proach is that the shape (as distinct from the magnitude) of the neutron flux is
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constant. If this is true, then the spatial and temporal behavior of the flux can be
separated. Such will be the case for small reactors for which a local perturbation in
the neutron flux is rapidly transmitted throughout the entire core. The amplitude of
the flux therefore rises or falls uniformly and the flux shape remains constant.
Equations 3.16 and 3.17 are referred to as the six-group point kinetics equations.
The precursors are divided into six groups, each with its own yield and decay pa-
rameter. It is also standard practice to formulate a one-group model. To do this,
an effective multi-group decay parameter is defined as a time-dependent weighted

average of the precursors. Thus,

Ae(t) = D ACi(t)/ > Gi(h). (3.18)

=
)
I
N
)
|
=l
g
3
—~
=
+
>
M
——
—
—
Q
——
=

(3.19)

and

C(t) = l—:n(t) - 2(DC(1), (3.20)
where symbols not previously defined are:
Ae(t) is the effective multi-group decay parameter, and
C(t) is the sum of the precursors in each group.

The value of the multi-group decay parameter varies with the precursor mix. Its value
is typically 0.076 inverse seconds at steady state. If reactor power is rising, the short-
lived precursor groups dominate and the value of the decay parameters increases.
A figure of 0.1 s7! is often assumed. Conversely, if reactor power is decreasing, the
long-lived precursor groups dominate and the value of the decay parameter decreases.
It is incorrect, but nonetheless common practice, to approximate A.(t) as a constant.

This is normally what is meant by a one-group model.
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3.3 Reactor Models

Reactor dynamics are non-linear because the rate of change of reactor power is pro-
portional to the product of reactivity and power. Also, the reactivity is dependent
on the reactor power through various power-dependent feedback mechanisms such as
fission product poisons (xenon), moderator /coolant temperature, Doppler effect, and
fuel depletion. However, if a reactor’s operation is limited to some small range about
an operating point, then it is acceptable to linearize the point kinetics equations and

use the result as the basis of a reactor model.

3.3.1 Linearized Mode]

Denote the values of the reactor power, precursor concentration, and reactivity at the
operating point by no, Co, and p, respectively and the deviation in power, precursor
concentration, and reactivity as on, 6C, and dp respectively. The six-group point

kinetics equations, (Equations 3.16 and 3.17) become:

(o +6n) _ [(po+6p) — Bl(ng + 6n) |
dt T 4 ) MG +60y), (3.21)

=1

d(Cio+5C.) _ Bilng + bn)

dt *

— )‘i(CiO + 5Cz) (3.22)

The deviations in the bOwer, precursor concentration, and reactivity are defined as-

n=n— ng, (323)
5Ci =G~ Cy, (3.24)
0p = p— py. (3.25)

If the system is at the equilibrium, then

—MNg = /\iOiO- (326)
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Expanding 3.21 and 3.22, while noting that the derivative of a constant is zero and

neglecting second order terms, yields:

d(én) _ pono + Spno — By + podn — Bén &

+ > " (MNCip + MidCY), (3.27)
dt 1 e
d . 7. 3.
60) _Bra T oo o

dt I I
Substituting 3.26 into 3.27 and 3.28, noting that § = 528, B and taking the value of

the reactivity at the operating point as zero yields:

d(é ) B n
( 'fl) _ Py _ Bén " Z)\idciy (329)
dt [ i =

d(6C%) _ Ecin
dat I

— \ibC;. (3.30)

Equations 3.29 and 3.30 were for a six-group model. A linearized one-group model

can also be derived. It is:

d(én) _ dpng B Bén
dt I *

+ AOC, (3.31)

d(sC) _ Bén

- \SC. 3.
= = A0 (3.32)

In matrix forms, the linearized six-group peint kinetics model and the linearized

one-group point kinetics model become:

[ 6a N D T TS VI VIR VIR Y O A ng
5Ch B x 0 0 0 0 o0 5C, 0
8¢, o0 —x 0 0 0 o0 e 0
5C; |= % 0o 0 -x 0 0 o0 5Cy | +| 0 |dp,
5Cy B0 0 0 -x 00 5C, 0
5Cs 5 0 0 0 0 - O 5Cs 0
3Cs B0 00 00 00 0 —x )\ G 0
{

(3.33)
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and

an —f; Ae on e
.= _ + ap. (3.34)
sC 5= oC 0

respectively.

3.3.2 Inclusion of Temperature Feedback Effects

The feedback effect that is most likely to be significant in terms of failure detection
is that associated with the temperature of the moderator/coolant. This effect occurs
for small changes of temperature and it occurs fairly quickly, in the time required
for coolant to transit the primary system. Other feedback effects do not meet these
criteria. The Doppler effect requires a very large increase in fuel temperature. Fission
product poisoning and fuel burnup occur on time scales of hours or longer. Behavior

of the moderator/coolant temperature can be modeled as [35]:

dT; (1)
dt

= Kn(t) — a(T(t) - To), (3.35)

where Ty () is the temperature of the moderator in the reactor core, T, is the sink
temperature, K is the reciprocal of the mass flow and heat capacity, and « is the

reciprocal of the time constant for system heat removal.

3.4 MIT Research Reactor I1

A distinguishing and perhaps unique characteristic of the MIT program on reactor
control and also of the joint MIT-SNL research has been the performance of on-line
experiments. Whenever possible, each control concept has been evaluated experimen-
tally on either the 5-MWt Research Reactor (MITR-II) or the Annular Core Research
Reactor (ACRR) that is operated by Sandia National Laboratories, or both.

In this research, experimental data from the reactor provided the source of infor-
mation to construct a reactor model for simulation. The fault detection technique

developed in this research has not been evaluated in a real experimental set up. It is
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highly desirable if such evaluations could be carried out at some future time. How-
ever, simulation studies were performed in which models of the MITR-IT were used.
Also, a data acquisition capability was established for use in obtaining reactor data
for the research reported here.

Here empirical models of MITR-II control mechanism and temperature worth are
presented. These models are necessary for carrying out an experimental evaluation
of fault detection methods. Frequency analysis of the measurements from normal op-
erations are conducted to gain information on the noise characteristics of the system.

The MITR-IT is a 5 MWi, light-water cooled and moderated, heavy-water re-
flected, tank-type reactor that uses plate-type, uranium-aluminide fuel. The fuel is
enriched to 93% U-235. Energy is continuously removed by forced circulation of the
primary coolant. The maximum permitted operating temperature is 55 degree C.

The nuclear instrumentation available for control experiments on the MITR-II
consists of three neutron flux sensors and a gamma-ray sensor that correlates neu-
tron power with the radioactivity (N-16) of the primary coolant. All four sensors
are directly proportional to the power over the range of interest. Measurements are
also available of the coolant flow, coolant temperature, and control mechanism po-
sition. Four independent measurements of primary cooclant flow are obtained from
the pressure differences across orifices. Primary coolant temperatures were measured
as follows: two sensors for the hot leg, two sensors for the cold leg, and one sensor
" for the temperature difference between the legs. In effect, three measurements are
available for the temperature difference. None of the sensors that form the MITR-
II's safety system are used for experiments. Also, it should be noted that the noise
and statistical characteristics of the MITR-II's flow, temperature, and neutron flux

instrumentation are similar to those in commercial reactors.

3.4.1 Temperature Effect

The temperature in the core is not available directly. Instead, the cold and hot leg
temperatures of the primary coolant are available. Thus, one alternative model is

proposed here. Consider coolant into and out of the core tank together with the core
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Ck—%Vk = En(t) - an(t), (3.36)

where Cy. (in the unit of J/(m3-K)) is the heat Capacity of the core, and Vi (m3) is the
volume of the core The left side ig the energy change rate of the core, and it comes
from two contributors. QOpe ig the energy deposition from the fission process which

can be expressed as k7, (J/5). The other s the energy loss dye to heat exchange with

h(t) = 7(Tk‘ - T;n)
= C.(T,, - Tinv = o'AT, _ (3.37)

where v is 3 constant conversion factor, 7., is the coolant outlet temperature, 7;
is the coolant inlet temperature, C, is the heat capacity of coolant and y (m3/s) is
the coolant column velocity. The AT 18 defined to be Tour ~ Ty, and of — C.visa
constant. From BEquation 3.37, we have that the quantity (I, — T, ) is proportional
to AT, Thus, we can Write

Ty~ Ton = /AT, (3.38)

- k= Kn(t) - ah(t) (3.39)
Ckfigfﬂ k= Kn(t) — ad AT (3.40)
i%l;l = K'n(t) - ¢AT (3.41)
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Here K' = K/(Cyv'Vi) and ¢ = (aa’)/(Cy'Vi) are new constants that can be deter-
mined empirically.

Simply using a different notions for the constants K’ and ¢, we have our alternative
temperature model written as

d(AT (1)

—m = Kn(t) — oAT(1). (3.42)

Note that the constants K and « are different from those in Equation 3.35. And
be reminded that one assumption that we made to arrive at the above equation is
that the coolant inlet temperature is constant. This may not be true in reality but
it is a good approximation for small power changes or short time observations. The
advantage of this model is.that the constants can be easily determined experimentally.
Experiments were designed and carried out as part of the work reported here on the
MITR-II to determine the coefficients in the model.

Firstly, the quantity % was determined as the follows. At equilibrium (both

neutron and thermal equilibrium), we have % equals zero. Thus,
K

By measuring the equilibrium temperature (Tp) at different neutron levels (ng) , we
can estimate the parameter K/a as the slope of the curve of Ty versus ng. The results
of five measurements are plotted in Figure 3-2. Here the neutron flux is measured
in stead of neutron density because of the experiment set up. Also the measurement
output has not been calibrated, but it is in a linear relationship with the neutron flux
and thus the neutron density. Assume a linear factor of N,, that is 1 measurement
unit is equals to N, neutron/cm?®. Thus, the fitted result has to be divided by N,.
The fitted slope of the curve in Figure 3-2 is 0.078. Thus, the value K is 0.078/N,,.
Next, the parameter o can be determined as follows. After a change of neutron
power level, the neutron density will attain equilibrium in about 1 minute, while the -
thermal system takes longer to reach equilibrium. For MITR-1I, it is about 5 minutes.

During this interval, the AT should change exponentially before reaching thermal
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Figure 3-2: Experimental and fitted equilibrium AT (°C) vs neutron flux ¢ measure-
ment. The slope is estimated to be 0.078.
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Figure 3-3: The profile of neutron flux (top) and AT after a power increase.

equilibrium according to Equation 3.42. Thus, the parameter o can be determined
as the slope of the curve of log(AT(t) - ATp) versus time. Here ATy is the target
equilibrium temperature. An example of the profiles of neutron flux and AT after a
power increase is presented in Figure 3-3.

The exponential part of the AT response is fitted for the slope. A total of 19
such slopes were obtained for independent power changes. Ten of those were power

decreases while nine were power increases. The results are listed in Table 3.2.

Table 3.2: Calculated a from Exponential Interpolation of AT Response after Power
Changes

o 0.0126 0.0114 0.0094 0.0107 0.0164 0.0108 0.0100
0.0120 0.0101 0.0102 0.0094 0.0073 0.0058 0.0110
0.0105 0.0047 0.0106 0.0134 0.0112

mean 0.0104

var | 6.672e-06
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Thus, we have, for the MITR-II,

d(AT(t))

o = 0.078/Nyn(t) — 0.0104AT (1), (3.44)

So far, we have developed the model to describe the temperature changes (the
change of the temperature difference between coolant outlet and inlet). Using this
model to describe the effect of coolant/moderator temperature on neutron density
has the following advantages over the model in Equation 3.35 from Weaver [35].
First, Weaver used the the core temperature to approximate the coolant/moderator
temperature while we use T}, + —;—AT. This alternative method is both more accurate
and easier for experimental implementation. Second, Newton’s law of cooling that
Weaver adopted could lead to an incorrect result in that 7 could be less than the
sink temperature. This violation of the second law of thermodynamics would lead to
oscillatory behavior in the model. By describing the temperature difference between -
coolant outlet and inlet instead of the core temperature, this problem is avoided. The
assumption in the alternative model that the coolant inlet temperature is constant is
valid and realizable.

The relationship of the coolant temperature and the reactivity worth can be mod-
eled as a linear function[33]. If we chose the operating point to be (ATy, ng), then

Equation 3.42 becomes

d(AT, + 6(AT)
dt

= K(nog + dn) — a(ATy + §(AT)). (3.45)

Expressing the relationship between the average coolant temperature 7, and AT

as

— 1
T. =T + 50T, (3.46)

the reactivity can be redefined to allow for temperature effects. For a small power
variation around a equilibrium operating point, instead of requiring the py be zero,

we require that the quantity (py — ¥ 7T.) be zero. Here, 7' is a constant. Hence, the
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deviation in reactivity becomes:

dp = p—po+7T) (3.47)
= p—po+76(AT), (3.48)

and the equilibrium condition is
po — 10(ATs) + ¢ = 0. (3.49)

Both «y and n = vT}, are constants that can be determined experimentally. The latter
1s different for different coolant inlet temperatures.
Thus, in matrix form, the one-group model including temperature feedback can

be written as:

a7 ~B/ N —yme/l n ng/1*
§C = B/I* =X 1 sc |+ o |dép
§(AT) K 0 —a S(AT) 0

A similar matrix form can be written for the six-group model that includes this
temperature feedback effect.

Above, we have used a linear model for the reactivity worth of the temperature
effect (Equation 3.47). Again, this is valid only for small variations. We also have a
non-linear empirical model for the wide range of coolant temperature worth for the
MITR-II. The temperature feedback worth curve has been measured at the MITR-II
and is displayed in Figure 3-4. Here, the temperature is defined as the average of
the primary coolant outlet temperature and the moderator outlet temperature in the
units of degree C while the reactivity worth is in the units of m3. The experimental
data was fitted, as part of the work performed here, using a fourth-order polynomial

with the fitting parameters as [0.0001 -0.0173 0.5002 -4.7914 12.0944]. Thus, we have

pr = 0.00017T* — 0.017372 + 0.500277 -- 4.7914T + 12.0944. (3.50)
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Figure 3-4: Temperature feedback worth curve for MIT Research Reactor-II.
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3.4.2 Control Mechanism

Coarse control of the power in the MITR-II is achieved by positioning a bank of
six shim blades. Once critical, the neutron flux is normally maintained constant by
adjusting the position of a fine-control regulating rod. Both the regulating rod and
the shim blades are available for experimental research. Each is normally moved at a
fixed speed of 4.25 inches per-minute. However, each can be specially equipped with
a variable speed stepping motor so that the rate of change of reactivity can be made
to vary as specified by the control laws. The minimum allowed period on the MITR-
I1 are 50-seconds steady and 30-seconds dynamic. There is a negative coeficient of
reactivity associated with the fuel, coolant, and reflector temperatures. However, its
magnitude is rather small, averaging —8 x 107°AK/K/C. The MITR-IT’s effective
delayed neutron fraction and prompt neutron lifetime are 0.00786AK/K and 1200
microseconds, respectively.

The relationship between the regulating rod height and shim bank height and their
respective reactivity worths are empirical models based on measurements done at
MITR-II. Because the absorption material (boron) contained in these control devices
burns up during operation, these models are continuously changing. However, they
can be assumed to be stable for times in the range of weeks or even months. The
measurements for these worth curves are standard calibration procedures at MITR-II
and are performed once a year.

The regulating rod worth curve in Figure 3-5 was obtained from MITR-II on May
30, 2000 and the shim bank worth curve in Figure 3-6 was obtained from MITR-II
on May 31, 2000. The data were fitted, as part of the work performed here, using

fifth-order polynomials. For the regulating rod, the fitting results are:

prr = —0.0001H%,, —0.0013H 45 + 0.0878 HY , — 3.4588H 5 + 48.3061 Hppr — 2.4395,
(3.51)
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Figure 3-5: Reactivity worth curve of the regulating rod for MITR-II.

and for shim bank, the results are:

psp = 0.0064H2, — 0.2437HY 5+ 0.3426 H2 5 — 47.9409H2 ;, + 459.1145 Hgps — 78.0678.
(3.52)

3.4.3 Frequency Analysis

Equilibrium data for MITR-IT was obtained on May 05 2001 with the thermal power

at about 4.85 MW. The time domain and frequency domain data are shown in Figure
3-7.

The variance in the time domain is 0.1209. The integration of the power spectral

density (PDS) in the frequency domain is 0.7595, which is 27 times the variance of
0.1209.

In figure 3-8, data is shown that was obtained from MITR-II on April 21, 2001,
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Figure 3-8: Collected data from MITR-II on April 21, 2001.

including neutron flux (top left), thermal power (top right), regulating rod position
(middle left), shim blade position (middle right), primary cold leg temperature (bot-
tom left), and primary hot leg temperature (bottom right). Figure 3-9 shows the
power spectrum of the neutron flux and thermal power. Figure 3-10 shows the fil-

tered power spectrum of the Figure 3-9.
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Figure 3-9: (a) Power spectrum of neutron flux (b) Power spectrum of thermal power.
The raw data was obtained from MITR-II on April 21, 2001. Reactor was at equilib-
rium with thermal power at about 4.85 MW.
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Figure 3-10: {a) Filtered power spectrum of neutron flux (b) Filtered power spectrum
of thermal power. The raw data was obtained from MITR-IT on April 21, 2001.
Reactor was at equilibrium with thermal power at about 4.85 MW.
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Chapter 4

Design of Optimal Observer-Based
Fault Detector

In this chapter, a method for performing the fault detection based on observer and
for finding the optimal gain for the observer-based fault detection is proposed. The
objective is to extend Beard’s method to address the problem of noise.

The fundamental idea for the optimal designing is optimal decision theory. This
approach is necessary because of two conflicting requirements. On the one hand, we
want to decrease the probability that a fault is not detected when it occurs. On the
other hand, the probability that a false alarm is indicated when no fault has occurred
should also be kept low. A compromise has to be made based on the respective costs
of the two goals. In the following, a non-linear cost function, which is a function
of the detector gain matrix L and the decision rule, is constructed. By minimizing
such a cost function, the desired compromise for assurance of fault detection without
excessive instances of false alarms is achieved.

This chapter is organized as follows. First, the basics of optimal decision theory
are reviewed. Based on the results of optimal deciston theory, a simple threshold
decision rule is established. The value for the threshold is constructed conditioned on
the choices of other degrees of freedom, namely the gain matrix L and a post-process
filter frequency a. The objective is to minimize the total average cost due to both

false alarms and non-detection.
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Now we have our performance criteria, which are the false alarms rate and the
delay in detection of a fault, and we want to use numerical optimization to design out
filters. How can be bring them together? We need quantitative statistical descriptions
for the two performance criteria. Here I propose that the false alarm rate is described
by the first hitting time of the threshold by the random signal that contains noise
only, and the speed of detecting a fault is described by the first hitting time of the
threshold by the random signal that contains both noise and the fault signal. Then
we can construct cost functions that take these two quantities as input and gives the
cost for the two events — false alarm and delay in detecting the fault. Once we have
the cost function, optimization can be carried out to obtain the optimal design for a
given performance criteria.

To implement the proposed method, the problem for estimating the average first
hitting time of the threshold level by a random process has to be solved. Two methods
are introduced to estimate this time. One is the Fokker-Plank equation which gives
an analytical solution. The other is Monte Carlo simulation. The derivation of the
Fokker-Plank equation and its solution is reviewed and the results from solving the
Fokker-Plank equation are compared with those from Monte Carlo simulations. The
pros and cons of these two methods are also briefly discussed. In implementing the
solution to the Fokker-Plank equation, frequency domain analysis is performed to
extract the effective system response time and the signal variance. Finally, the issues
that are involved in constructing cost functions are discussed. For this part, one has
to rely on his/her knowledge of the prior distribution of the fault occurrence, system
operation, and common sense. There is no right or wrong for a cost function. One

can only say if it is reasonable.

4.1 Optimal Decision Theory

In this section the optimal decision theory is reviewed.
For a two choice situation, there are a total of four possible outcomes. Let us

denote the two choices as Hy and H;. For example they can stand for the choices as:
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Hy : there is no fault; H, : there is a fault. Denote the truth as H and our judgment
of the situation as H.
Based on observations y, a decision (H) is made such that either Hy is true or H;

is true. The four types of outcomes are:

1. The decision is that there is no fault and the fact is that there is no fault, whose

probability can be written as P{H = Hy|H = Hy).

2. The decision is that there is no fault and the fact is that there is fault, whose

probability can be written as P(H = Ho|H = H,).

3. The decision is that there is a fault and the fact is that there is a fault, whose

probability can be written as P(H = H,|H = H,).

4. The decision is that there is a fault and the fact is that there is no fault, whose

probability can be written as P(H = H,|H = Hy).

A cost can be assigned to each outcome and the objective is to minimize the expec-
tation of the total cost. Assigning costs Cy, Co1, C1; and Ciy to outcomes 1, 2, 3,

and 4 respectively. The cost function is then written as:
C(H=H,H=H)=Cy;, i=0,1; 7=0,1, (4.1)
The average cost J(f), which is also called the “Bayes risk’, is defined as,

J(f) =F [C(f(y)v H)]’ (4'2)

where H is the fact, and f(y) is a decision function of observation y. The decision
H= f(y) can be either Hy or H;. The function E gives the expectation value over

both y and H. The optimal decision is then one that minimizes the average cost:

f=arg mfin J(f). (4.3)
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Thus, the average cost when we make a decision H = Hy is
E[C(Hy,H)] = CoyP(H = H,Jy) + CooP(H = Hyly),
while the average cost when we make a decision H = | is
E{C(H,, H)) = C\P(H = Hi|y) + CrwP(H = Hyly).
Thus, the optimal decision rule f(y) is

H = H07

(4.4)

(4.5)

of CoP(H =IH|y)+ CoP(H = Hyly) < CuP(H = Hyly) + CioP(H = Hyly);

H = Hl:

of CoP(H = Hhly) + CoP(H = Hyly) > CnuP(H = |y} + CoP(H = Hyly).

Using Bayes’ Rule,

Pya(y| H:) D,

( ]y) PylH(y|H1)P1 + PyIH(yle)PQ

If we substitute Eq.4.6 into Eq.4.6 and rearrange terms, we have

Bym(y|h) > A (y)=Hi Fy(Cho - Choo) =17
Pya(ylH2) <gy-p, Pr(Cor — Ciy)

Ly) =

This rule is called the likelihood ratio test.

(4.7)

In reality, there is usually no cost for outcomes 1 and 3, because we made the

correct judgment. Then Cyy and Cy; are zero.

Suppose the distribution of y given Hy: Pyu(y|Hy)), and H,: Pyu(y|H,) are as

depicted in Figure 4-1. Note that they do not necessarily have the same shape. If we

assume that Py = P, and C)g = Cp; then the likelihood ratio test gives that there

is a cutoff point. For y above this value, choose I:I(y) = Hy; For y below this point,

choose H(y) = Hy. The cutoff point is where the two distributions (P, (y|H,) and
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Figure 4-1: Diagram of probability distribution curves.

P, u(y|H:)) intersect. But, in most cases, the two 4 priori probabilities may not be
equal. Neither are the two costs (g and Cy;. Thus, a criterion has to be chosen based
on the knowledge or assumptions of the relations of Py g(y|H,) and Py u(y|H:1), Co
and Clp;. Then, the probabilities of the two types of decision errors, i.e. the probability
for failure to detect a fault P(H = Ho|H = H;) and the probability for false alarm
P(H = H,|H = Hp), are the two shadowed areas in Figure 4-1 respectively. Moving
the threshold e,, the area of the two regions change accordingly. Thus, an e, has
to be chosen to balance these two competing factors such that a preset goal can be
reached. If we have control of the distributions Py (y|Ho) or Pyg(y|H:), then by
narrowing both or either distribution widths, the two types of decision error can be
decreased at the same time. Assume that the peak value is the signal and that the
spread is caused by noise. Then, by increasing the signal-to-noise ratio, the two types
of decision error can be decreased.

These results are the guidelines for designing the observer and fault detection
filter. Our final signal is the estimation error which is the difference between the
measurements and the estimated measurements. But this signal is always corrupted
by noise and disturbances. The signal should be centered around zero if there is

no fault, while it would be non-zero if there is a fault. Measurements are taken to
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minimize the two kinds of mis-judgments, failure to detect a fanlt and false alarm.
To estimate the variance of the output signal, i.e. the spread of the peaks in figure

4-1, we can use frequency domain analysis, which is reviewed in the following section.

4.2 Frequency Domain Analysis

In this section, frequency domain analysis is performed. This tool is important in
designing a noise rejecting filter gain. Analysis for noise rejection in the fault detection
design is investigated.

Figure 4-2 is the block diagram of a system and its observer with noise and dis-
turbance added. Noise is added to the measurement and usually has high frequency.
Examples of noise include instrument noise, electronic noise and so on. Disturbance
is added to the y signal and usually has lower frequency. If the observer is used for
estimating state variables for a controller, the effects of noise and disturbance on the
system output y would be different. For fault detection purposes, the signal that we
are interested is the estimation error e. The relationship of the noise or disturbance

to the signal e can be derived from figure 4-2 as
E(s) = [I - C(s] — (A— LC)™'I| D(s). (4.8)

Thus, both the noise and disturbance have the same transfer function. W(s) in the

form of

W(s)=[I—C(sT - (A— LC)) 'L (4.9)

Thus, we will discuss only the rejection of noise. The same method can be used for
rejection of disturbances.

The process for fault detection in frequency domain is expressed in figure 4-3.
D(s) is the noise or disturbance, W(s) is the transfer function from D(s) to E(s).
The latter is the estimation error. F(s) is the fault signal, which is zero when there
is no fault. G(s) is the corresponding transfer function from F(s) to E(s). W(s) and

G(s) are given in equations 4.9 and 2.64 respectively. Thus, £/(s) has two components.
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Figure 4-2: Block diagram of a system with noise and disturbance and its observer.

One is from the fault, the signal that we want to detect. The other is from the noise.
Both W (s) and G(s) depend on the gain matrix L of the observer. The signal F(s)
is then passed through a filter that has a parameter a. The reason to add a filter
after F(s) is to ensure that the signal will have finite power. The post-processing
filter parameter a is another parameter that we need to design in order to achieve
desired goals. Lastly, the filtered signal is passed through a decision rule. In most
cases, optimal decision theory gives a simple threshold decision rule as explained in
the previous section. However, the threshold may not always be constant in time.
Hence, the last step has to be performed in time domain. The threshold value is one
more quantity that needs to be designed.

As shown in the previous section, the variance of the signal will affect the decision
rule and the resulting judgment error. The variance in the time domain is connected

to the power density in the frequency domain by Rayleigh’s theorem:
|l = [ 1Bw)Pdw/2m). (4.10)
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Figure 4-3: Block diagram of the fault detection process in frequency domain.

Thus, we can derive the relationship between the variance of e(t) and the gain L
and the a using frequency domain analysis.
Assume the ith eigenvalue of (4 — LC') to be \;, upon performing the eigenvalue

de-composition, we have

L
- 4.11
5 — )\iwm (4.11)

SI — (A — LC*)*1 = Z\ﬁfz
=1

where v; and W; are the ¢th left and right eigenvectors respectively. Then,

° 1

i=1 ®
~ 1

= I —_ 1 1 ’v’ 4.].
S Lo 19

where the vectors v; and w; are defined as

v; = Ov, (4.14)

w = WL (4.15)

2 ]

For the general case, E(s) is a n-component vector. The ath component of E(s)
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is
n
1
EQ(S) = DQ(S) — Z’U — )\ Z wtﬁDﬁ ) (416)
i=1 i =1
The notation here is that o and S are the indices to denote the number of the
components of a vector, while ¢ is the index to denote the number of the eigenvector.

After the frequency dependent filter, F(s) becomes E(s):

1
s+a’

E(s) = E(s) (4.17)

where ¢ is a positive real number. Substitute equation 4.16 into equation 4.17 and

the power spectral density of E(jw) can be obtained by:

o 1
psd = Eo(jw)EL(jw) = m[ Z%- —A szBDﬁ]
Z'B 1

*

7LL7 — /\11

[ Z vl ( Z w;‘,ﬁ,D;;,] : (4.18)

B=1

Assume that the noise vector consists of independent white noise sources. There-

fore, we have

D;(jw) D} (jw) = dis(i — 7), (4.19)

and

D;(jw) = 0. (4.20)

Thus, the psd becomes:

psd(jw) = E.(jw)Ex(jw)

da = ViaWia ViragWira \*
a? + w? ;jw—/\- ;]w—)\)
E E v; L ( ! )* En 5ads. (4.21)
’LC! 1& . Wigl;. « .
—l—u,Q1 ] W= A \Jw — Ay f=1 oA

The integral of psd along w from —o0 to co can be calculated by using the Cauchy

Integral Formula for complex functions [36]. If C' is a contour, I(C) is region included
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by C and E(C) is the region outside I(C), and the p(2)/49(2) is a rational function
for which all the zeros of q(z) are inside E(C), then we have

1 p(z) = P(Q)/Q(’l) acl(C)
P = : 4.22)
2nj e q(z) 7 — o {o, SEB(O). (
Using the above equation, we have
< d, 7,
Je =T (429

Because the eigenvalues of (A~ LC) are all at left half plane, that is Re();) < 0,

thus
/OO Z 1aw7.a . - 7"-du/Uz'azwia _ Ty Via Wiq (4 94)
—_— = TS T = = —— —‘, Py
ooa2+w211jw - A+ a) a =a+ )
and

oG Ui o, Wt g i _ o = io Wie Ui m
/ma2+w22(]w /\) B TZ(Q—FA) +9sz )\*2’(4-25)

and

aa 1 * n
Lo st f il

—oo i=14'—1 Jw = A

"2 1 2

=23 ua%(Z Wity adg) [ (a2 )(a Y )y + @m} - (4.26)

i=14¢=]

Thus, the sample variance of e(t) over a sample time of T can be expressed by a
function of the observer gam L and the filter frequency a as the sum of the right side
of equations 4.23 to 4.26 divided by the sample time 7.

Before proceeding to the next section, it may be helpful to summarize what we
have achieved so far.

Our goal is to detect if there is a fault based on the estimation error between the

output from an observer and the output from the system. Under normal conditions
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the error should be zero. If there 1s a fault, the error would not be equal to zero. For a
certain fault, the error would be along certain fixed direction. Thus, by studying the
direction of the error, the fault can be localized at the same time. The problem is a
little more complicated when noise is present, which is inevitable in any real system.
Now, the estimation error is a random process. We can no longer set our criteria to be
exactly zero, because if so, we will have false alarms probably every several seconds.
And fault detection would become meaningless. Based on optimal decision theory,
the decision rule is a simple threshold. If the signal exceeds a certain level, we believe
that there is a fault. It can be imagined that, for a certain cutoff level, the bigger the
variance of the signal, the more frequently the level would be exceeded even without
a fault. The average time for the signal to first exceed such a level corresponds to
how frequently false alarms occur. Longer would be better. On the other hand, when
a fault does indeed occur, the average time for the signal to exceed the preset level
corresponds to the average time for a fault to be detected. Thus, we would like it to
be short so a fault can be detected before damage is done. Both goals rely on solving
the first hitting time of a preset level by a random signal. Given a preset cutoff
boundary and the variance of a random Gaussian process, how can we estimate the
average first hitting time of the boundary by the random signal? Fortunately, results
from statistical physics on the Wiener process or driftless Brownian motion can be
borrowed here. The solution to this problem is presented in the following section. It
can be solved both analytically by the Fokker-Planck equation and by Monte Carlo

simulation. Each method has its advantages and disadvantages.

4.3 First Stopping Time and Fokker-Planck Equa-
tion

The first hitting time (or first stopping time) problem is illustrated in Figure 4-4.
The R(t) is the upper bound, and the L(¢) is the lower bound. They correspond to

the upper and lower thresholds of the decision rule in our case. The y(t) is a random
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lllustration of the stopping time problem
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Figure 4-4: Illustration of the stopping time problem.

signal that has a Gaussian distribution. The first hitting time ¢, is the first time that
the signal touches the boundaries. It is obvious that ¢, is also a random variable.
Thus, we can not estimate the exact value for ¢,, but its distribution and average
value.

Let R(t) and L{t) be our decision thresholds, and y(t) be our filtered estimation
error € as shown in Figure 4-3. When there is no fault, the signal e contains only noise.
If the boundaries are triggered by the signal, the decision rule will decide that a fault
has occurred. This is a false alarm because the thresholds are not triggered rby real
fault, but noise. The average first hitting time #, for this setting can then describe
how often a false alarm occurs. On the other hand, if there is a fault, the filtered
signal € will contain both noise which is random and a deterministic fault signal. If
the boundaries are triggered by this signal, the decision rule will decide that a fault
has occurred. This is a true fault detection. The average first hitting time %, for
this setting can then describe how long it takes for a real fault to be detected. In
the latter situation, we can subtract the deterministic component of the fault signal
from the boundaries, and the problem becomes the same as the former except that

now the thresholds are different. Thus, these two situations come down to the same
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mathematical problem, which I call it the average first hitting time problem. The
solution to this problem is important because it gives a quantitative description of
the performance criteria that we are concerned. We then can assign costs to each of
the performances and use optimization to achieve oy goals.

In this section the derivation of the Fokker-Planck equation for solving the first
hitting time and the solution to it are reviewed.

Consider prototype system:
9(t) = _yg} +n(t), (4.27)
where n(t) is Gaussian white noise,
(n()n(t + 7)) o%8(r). (4.28)

When 7 — oo, 4(t) is called the Wiener process or driftless Brownian motion [37].
However, relaxations or dissipations exist in many systems, and the simplest way to

handle their effects is by introducing a single relaxation time constant 7. If we regard

n(t) as an input to the system, its impulse response would be,

h(t) = e 7o), (4.29)
with Laplace transform,
1
H = 4.
© = 1 (4.30)
and power spectrum modulation,
Klw) = L (4.31)
oW % '

Our intention is to fit the above form to a system’s actual K (w) which can be quite
complicated, to extract an effective 7, and then using (4.27) to analyze the stopping

time behavior of y(t) driven by n(t), under time-varying thresholds [L(1), R(1)].
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The nominal solution to (4.27) is,
4 P
y(t) = y(0)e - +/ e~ n(t)dt, t>0, (4.32)
0

for a given n(t'),t' € [0,¢]. But, of course, n(#) is random, so y(t) can never be
evaluated for sure, and the best one can obtain for the effects of n(¢') on y(t) is in the
probabilistic sense. Namely, suppose one knows the distribution of y(0) as P(y,t = 0),
what would be the distribution of y(¢): P(y,t)? The fact that P(y, ) is determinable
by P(y,t = 0) suggesting that P(y, t) satisfies a time-evolution equation. [38]
To derive this time-evolution equation, let us take the small ¢ = At limit of (4.32)
so that,
y(At) = y(0) (1 — g) + /DAtn(tl)dt’—f* O(At?), (4.33)

T

where terms O(At*) are ignored. Thus, the increment in y,

Ay = y(At) —y(0) = *y(O)TJ + w, (4.34)

where

w = /0 M)y, (4.35)

is a random variable of zero mean, and variance

<( / Atn(t’)dt’)2>
- < /O )t /O Atn(t”)dt">

-/ ™ / @) dede”

At rAL
= / / o?o(t — t")dt'dt”
0 0

W) =

I

Q
[\

L

(4.36)

Furthermore, because n(t) is a Gaussian process, any linear time-integration of n(t)

is also a Gaussian process. Therefore y(t) by virtue of (4.32) must be a Gaussian
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At

process, so Ay, given y(0), is just a Gaussian random variable with mean —y(0)2

and variance o2At.

Therefore, the probability to find y(At) between (z,z + dz) is, under the condi-
tional probability rule,

Pr(z < y(At) < z+dz, At) / deP(z,t = 0)-Pr(z < y(At) < z+dz | y(0) = x)
(4.37)

and from our above derivations,

Pr(z < y(At) < z+dz | y(0) = x)
= Prz-z<Ay<z—z+dz]|y(0)=1)

At At
= Pr(z—:r—lrx—<w<z—z+a:—+dz.1y(0):m)
T

1 (z—z+ x@)
Therefore,
P(z,t=0) (z —z +z8h)?
Pr(z < y(At) < z +dz, At) = dz/ dz T exp (—— PN, .
So, by the definition of probability density,
o0 1 (z —z + z2)?

We are interested in the small differences between P(y,t = At) and P(y,t = 0)
for the purpose of deriving a differential equation. As At — 0, (4.38) as a funciion
of z behaves more and more like a delta-function centered at z, making it easier to
analyze the above integral. However, a bit of caution is advised because we would like
to keep all terms OQ(At) in the integral, not just the zeroth-order term. A systematic

way to explore the small At asymptote is by a Taylor expansion of P(x,t = 0) and
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then carrying out saddle-point integration. Let us rewrite (4.39) as,

2
P(z,t=0) (1—2—§* - T)
1- &

P(z, At) exp | —
- & Y Jarer a1 Bi)2 202A8/(1 — 54)?

The reason for the above rewrite is that we would like to make the Gaussian function

inside the integral a normalized density in z. Then, by expanding P(z,¢ = 0) around

— z
Tp = 1___Et »

1 2
P(z,t=0) = P(l At,t*0)+P’-(:c—l_—zﬁ)+§P”-(:r—ﬁ) + ..

and carrying out the integration, we get,

1 1
P(z,At) = A [P (1 _z&,t: O) + 0 + §P"02At+o(At)], (4.40)

p
because the first moment vanishes under the integration, the second moment yields

o2At, and all higher moments are ignored because their contribution would be o(At).

Therefore,

P(z, At) = (1 + §> [P (z + z%,t = 0) + lP”JQAt} + o(At)

-
= P(z,t=0) + EP P'z§+ 2P" o’ At +o(At),  (4.41)

thus,
P(z,At) — P(z,t=0 P+ P 1
(Z’ ) At (Z’ ) prn) —_:_ z + é'PHO'Q + 0(1)?

so in the At — 0 limit, we obtain,

OP(y,t)  A[P(y,t)(y/7)] | o®0*P(y,t)
o £ L (4.42)

This is the Fokker-Planck equation, a PDE of the convection-diffusion type. It is a

significant result for us because P(y,t), the time-evolution of the “survival probability
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density” profile, fully determines the stopping time statistics of y(¢) from (4.27).
(4.42) can be easily generalized to multiple dimensions, in which case (4.27) be-
comes a general state-space realization of a LTI system. Therefore, the stopping time
statistics of LTI systems driven by white notse is a solvable problem, at least on paper.
Another direction is to extend (4.27) to nonlinear dynamical systems, in which case
(4.42) becomes the so-called Smoluchowski equation [38], prescribing general phase

space flow and diffusion. We will not pursue these topics here.

4.3.1 Steady State Behavior With No Absorption

Consider the steady state solution to (4.42),

oP(y, O)(y/m)]  o® O Ply,1)

Ay 2 Oy? =0

or
2
T P = 0,

where we let the absorbing boundaries [L(t), R(¢)] to be (—c0, +00). So,
o?r

However, because P(y) has the meaning of a probability density whose integral is
< 1, there should be lim,_, P’ = 0 and lim,_, o yP(y) = 0. Therefore, C must be 0.
Thus,

ol dlog P 21
—P' +yP =0 — =
g Y dy oir’
and so,
Y 4D L v
log P = —2_ —  P= v ,
o8 ol + Vro?r P ( 027) ’ (4.43)

if under normalization. Thus, at steady state, y(t) conforms to a zero-mean Gaussian

distribution with variance (y*) = ¢*7/2, or in other words the power of y(t) is o7 /2.
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This is consistent with (4.31), because the power spectrum density of n(t) is,

_Anp@))
Am = = 9

psd,(w) =

where nr(w) is the Fourier transform of n(t) under time truncation 7. Thus, the

power spectrum density of y(t) is,

o
dey(w) = K(w)'den(w) = w2+7—%3
and thus,
1 foo 1 > o2
2 - =
W) = g5 [ el = 5o [ St

which by using a Cauchy integral in the upper half plane gives,

WOH) = 52wy =

One may extend this result to,

4.3.2 Time-Dependent Solution with Absorbing Boundaries

Consider Fig. 4-4. The particular trajectory shown can be interpreted as a realization
of one microscopic particle diffusing in a 1D domain with absorbing boundaries, whose

appropriate macroscopic description should be,

OP(y,t) _ APy 0)y/n] o FPlu,1)

ot Ay 2 oyr
(4.44)

P(y=L(t),t) = P(y = R(t),t) =0, P(y,t=0)= Fy(y).

where P(y,t) is taken to be the number density profile of such particles, with initial

profile Py(y). Once y(t) touches one of the boundaries, it is taken out of the con-
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sideration for ¢, statistics. Thus ¢, statistics is completely determined by the P(y,?)
solution to (4.44) as

di-—4 [fz““ P(y, t)dy]

Pr(t <t, <t+dt|L{0) < y(0) < R(0)) = p(t)dt T2 Py (y)dy

bl

where the denominator counts the total number of particles at ¢ = 0, the numerator
counts how many particles hit the boundaries between (¢,¢ + dt) and thus contribute
to the ¢t statistics.

Define a dimensionless variable z € [0, 7],

- ;(('Z)_—_I:L(Eg, y = @ + L, (4.45)
and expand P(y,t) as
P(y,t) = an(t sin(nz), (4.46)

which automatically satisfies the boundary conditions. Because

6_:13 B T
dy  R-L’
Oz —nL wy—-L)(R-L .
a8 ~ R-IL ((R—)(L)z ) - A(t)z + 0(t),
where _ _
-.n_ R-L o —7L

are known functions, we then have,

OP(y,t 00
g:, ) > pnsin(nz) + pyncos(nz)(fiz + 7),
n=1
iP(y, t)(y/7)] _ P+yP _ EEpasin(nz) + (2 + 75 532, pun cos(nz)
ay T T 3
o? 3*P(y,t) 1/ on \2.2° .
2 8y 2 (R— L) nglpnn sin(nz).
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Collecting terms in (4.44), we obtain,

i {pn + [%2 (RJ_?_TL)Q — H pn} sin(nz) = i; pmm cos(maz)(px + v), (4.47)
with
R-1L 7wl ~_W(L/T+L).

=t T2, —
-

# R—L’ R-L T R-L

I
N1

When n # m, there is,

/07r sin(nx) cos(mz)dx

— /.Tr sin(nz + mx) + sin(nz — mzx)
0 2
- (-1)™™ 1 (—1)n—m

dz

(4.48)

When n = m, the integral is 0. So there is,

cos(mz) = Y Cpysin(nz),
n#m

e e I B Ve B COE )
7(n—+m) m(n —m) 7 (n% - m?2)

When n # m, there is,

Cnm

m

x sin(nz) cos(mz)dz

= xsin(nz + mz) + xsin(nz — mz)

2
1)n+m+1 7]'( 1)n~m+1

2(n +m) 2(n —m)

dzx

I
A~ %

(4.49)

When n = m, there is,

& s
in(m dz = ——.
/0 z sin(mz) cos(mz)dz yo
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So there is,

: 00 ) nl—1 n+m+1
zcos(mz) = ﬁsm2(7rnnz) + n; Xnmsin(nz), Xpm = ﬁ—
Therefore, the solution to (4.47) is,
nt/ omr \? 1 _ Hpan
on a - —1Pn = m Xnm Crm
p+l2(R—L) 'r]p 2n +n§npmu T )
or,
o0
Z Knmpm:
m=1
with

Knm

il

1 nt/ on \2 1L
m'[F_?(R—L) _§‘|+(1_5nm)'m(ru'Xnm+VC"m)’

1 R-L m(L/7+ L) 2n(1 — (—1)»*™) 2n(—1)mtm
= - = 5 nm — y Xnm - T 4 5
# T+R L R-L ~ ¢ 7(n? — m?) n? —m?
And the total particle number at ¢ would be,
R(t) R-L (R—-L) & pa(t)
N(t) = / Py, ydy = =
(t) b LWty - Z -

If the particle density is (4.43) at ¢ = 07, the total particle number would be

reduced to,

RO of (LO)
N(t=0%) = /R(D) L exp V) - ert (272) — ot (2.2) (4.50)
L) /molr 2 ' '

air

at t = 07, because those outside of [L(0), R(0)] are immediately caught. The surviving

particles has a truncated Gaussian distribution that has the following expansion,

P(y,t=0%) = PR Z Pa(0) sin(nx)
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(52 )

2 1 .
pa(0) = ;/0 mexp = o sin(nz)dz. {(4.51)

It turns out that there is no special function representation for the above integral,
which then has to be accounted for by numerical quadrature.

Therefore, the hitting time distribution is simply,

P(t):(1‘N(0+))6(t)+N(O+)ﬁ(t):(1‘N(0+))5(t)jt 2(R-1) 5 pa(t)

with the initial values for p, given by (4.51).

4.3.3 Fokker-Planck versus Monte Carlo simulation

The first hitting time problem can also be solved by Monte Carlo simulation. The
process and results are presented below.

An N point random sequence was generated to represent a discretization of a
signal y(t) over time 7' whose continuous Fourier transform y(w) = [ y(t)e™'dt is
in fact y(w) = 1/(Jw + 1) * n(w). n(w) is the frequency domain white noise and is
expressed as n(w) = R(w) + j * I(w) with the real part R(w) in normal distribution
N(0,.5  T'), imaginary part I(w) aiso in normal distribution N(0,.5 * T), and R{w)
and I(w) are independent. The variance of y(t) can be calculated from the Rayleigh’s
theorem.

The simulation was first run for N = 100000 and 7" = 2000. A portion of y(t) is
displayed in Figure 4-5. The probability density function of y(t) is indeed a Gaussian
distribution with a mean of zero and a variance of 0.5, which is plotted in figure 4-6.

Chose a threshold level to be 1.5, the first hitting time distribution is plotted as
a histogram in figure 4-7. The probability for 7 to be zero is the tail probability that
y > threshold, and it equals to D = 0.0339 in this example. Thus, the probability

density at 7 = 0 is a 0 function,

f(r =0) = D 6(0) (4.52)
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Figure 4-5: Sample y(t) generated from MC simulation.
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Figure 4-6: Probability density function of the y(¢) generated from Monte Carlo
simulation.
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Figure 4-7: Distribution of the first hitting time t, generated from Monte Carlo
simulation. ‘

If we remove the 4 function at time equals zero, we get a more accurate result. The
new pdf is plotted as a histogram in Figure 4-8.

The average first hitting time is thus calculated by

7= /°° tF(£)dt (4.53)

0

and for this example, 7 = 6.7419.

Although theoretically, the Fokker-Planck equation and the Monte Carlo simula-
tion should give exact solutions, during numerical implementation, approximations
are inevitable. For Fokker-Planck equation, the error comes from the truncation of
the sine wave expansion. While the accuracy of the Monte Carlo simulation depends
on the number of simulations, the number of sample points N and the sample time
dT. Sensitivity studies of the accuracies of the Fokker-Planck and Monte Carlo results
on these parameters were performed and the results are listed in tables 4.1 and 4.2.

Both calculations were for a constant threshold of [-1 2]. In Table 4.1, N (wave) is the
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Figure 4-8: Distribution of the first hitting time ¢; generated from Monte Carlo
simulation after adjustment.

number of sine waves used to for expansion. The execution time is in unit of second
and the program is run on a computer with an AMD Athlon 1.33 GHz CPU. The
results converge after N > 100. But for NV = 20, the result of the average first hitting
time 7 is already fairly good in the sense that the relative error of this calculation
and the converged result is 0.04%. and the execution time is only about 2 seconds.
In Table 4.2, the first column is the sample points that were generated, the second
column is the sample rate. The third column, the execution time is also in unit of
second and the program is run on a computer with an AMD Athlon 1.33 GHz CPU.
The last column, points for 7, is the number of points that was used for calculation
of 7. It is different from the sample point which is in terms of time. A combination
of N = 2% and dt = 0.01 gives good accuracy while keeping the execution time
reasonable.

The numerical results from solving the Fokker-Planck equation and from Monte

Carlo simulation are presented in Figure 4-9 to 4-14.
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Table 4.1: Sensitivity studies of Fokker-Planck Calculation

N (wave) | Execution Time (s) 7 | Relative Error %
200 103.2762 3.1993 0
100 27.2300 3.1993 0
40 0.3913 3.1994 0.003
30 3.1202 3.1996 0.01
20 1.8667 3.2006 0.04
10 0.4894 3.2098 0.33
3 0.4649 3.2170 0.55

Table 4.2: Sensitivity studies of Monte Carlo simulation ( threshold {-1 2], 10 simu-

lations)
Sample Points | Time Step dt | Execution Time (s) T Points for 7
221 0.001 171.1235 2.7195 5772
0.01 249.2458 3.1014 52715
0.05 1503.7 3.8142 223348
Time Step dt | Sample Points | Execution Time (s) T Points for 7
0.01 219 44.5272 3.0288 13421
221 171.1235 2.7195 b772
222 647.8998 3.1023 105458

For a symmetric constant threshold of [—2, 2], the survival probability as a function
of time is displayed in figure 4-9. The circles are results from the Fokker-Planck
equation while the stars are from the Monte Carlo simulation. The probability density
for the first stopping times obtained from the Fokker Planck equation ( circle ) and
Monte Carlo simulation (star} are shown in figure 4-10. The results agree very well.
The calculated average first stopping time T are 23.7163 and 25.2955 from Fokker
Planck equation and Monte Carlo simulation respectively with a relative error of
about 6.66%.

For asymmetric constant threshold boundaries [—1,2], the survival probability
results are shown in figure 4-11 and the probability density functions are shown in
figure 4-12. The average first stopping time 7 are 3.2006 and 3.0649 from Fokker
Planck equation and Monte Carlo simulation respectively with a relative error of
about 4.24%.

For asymmetric time varying boundaries that are depicted in figure 4-13, the

survival probability results are shown in figure 4-14. The average first stopping time
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Figure 4-9: Survival probability as functions of time from Fokker Planck equation
(circle) and Monte Carlo simulation (star) with a threshold of [-2, 2).
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Figure 4-10: Probability density for first stopping time obtained from Fokker Planck
equation (circle) and Monte Carlo simulation (star) with a threshold of [-2, 2].
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Figure 4-11: Survival probability as functions of time from Fokker Planck equation
(circle) and Monte Carlo simulation (star) with a threshold of [-1,2].
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Figure 4-12: Probability density for first stopping time obtained from Fokker Planck
equation (circle) and Monte Carlo simulation (star) with a threshold of [—1, 2].
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Figure 4-13: Illustration of the time varying boundary stopping time problem.

T are 3.5112 and 3.7512 from Fokker Planck equation and Monte Carlo simulation
respectively. The relative error of the two is about 6.83%.

Both the Monte Carlo method and the Fokker-Planck equation can be used to
solve the first stopping time problem. As illustrated above, the results from these
two methods agree to each other within a relative error of 10% . The Monte Carlo
method is more flexible and can deal with systems whose power spectrum modulation
does not satisfy equation 4.31 easily. But, for a long first stopping time, it needs a
long simulation to get a good statistics. The Fokker-Planck method is faster (more
than 100 times faster than a comparable Monte Carlo simulation). But it is limited
to a system whose power spectrum modulation can be approximated by equation
4.31. For a general LTI system, the Fokker-Planck equation can be generalized to be

multidimensional. But the computation would be much more involved.
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Figure 4-14: Survival probability as functions of time from Fokker Planck equation
(circle) and Monte Carlo simulation (star) with time varying boundaries.

4.3.4 Empirical Model

For constant symmetric boundaries, an empiriéal model can be used for estimating the
average first hitting time for a normally distributed random process. It is formulated

as

T T (e 1wl
€ V2Toy

T

= 1—_erf—(%_) (4.54)
where 7 is the average first hitting time, 7 is the effective system response time, e,
is the threshold, u is the mean, and o, is the variance of the random process. Note
that o, is different from the o in MC and FP, the later is the pre-system white noise
variance. The two are related by o = o, * \/2—/_; . The effective system response time 7
can be obtained by fitting the power spectrum to the Lorentzian spectrum function in

equation 4.31. If we know the transfer function of the system, it can also be obtained
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Figure 4-15: Comparison between the empirical model and Fokker-Planck calcula-
tions.

directly from the frequency domain calculation.
Although this empirical model is very simple, the results from this model agree
with that from the Fokker Planck very well, especially in the range from e /o, = 1.3

to e./a, = 5. A comparison is shown in Figure 4-15.

4.4 Construction of Cost Function

After we have the average first stopping times for false alarms and fault detection,
costs should be assigned to each case. The construction of cost functions should rely
on one’s knowledge of the system and common sense. There is no absolute right or
wrong for cost functions. One can only say if it is reasonable or not.

For false alarms, it is intuitive to think that a small 7, would render the fault
detection method useless. For example, from the standpoint of a reactor operation, a
false alarm rate should be measured in the time scale of weeks or even months. One
false alarm in a month may be acceptable. The lower limit of 7 is the data acquisition

sample rate, and for MITR-II it is 1 second. Scale the cost to a range of 0 to 100. An
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Figure 4-16: Cost function for false alarm.

example of a cost function for false alarms as a function of the average first hitting

time is plotted in figure 4-16. The function can be generated using equation 4.55.

If T<=1s, cost=100;

Else cost =100+ e~ T~1/5; (4.55)

On the contrary, the cost for not detecting a real fault should be large for a long
7. Ideally, a fault should be detected within seconds or minutes of its occurrence.
Thus, the cost function for the non-detection should be measured on the time scale
of a second. The cost should also level off for long 7. It is intuitive to think that
the cost would not go up forever. After all the damage has been done, it will not
cost extra after that. For example, for a reactor, an upper limit of 7 may be 3 hours.
That is if a fault is not detected for 3 hours, probably the maximum damage would
have already resulted. The lower limit of T is also the data acquisition sample rate
and it is 1 second for MITR-II. Scale the cost function to a range of 0 to 100, and

it can have the shape plotted in figure 4-17, which is generated using equation 4.56.
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Figure 4-17: Cost function for non-detection.

The 162 h is a chosen to make the two pieces of curves be connected smoothly.

If 7>=3h, cost = 100;
Elseif T>=15h, cost=100— (3 h —7)2/162 h;
Else cost =7"/162 h; (4.56)

4.5 Fault Detection Filter Design Process

The overall objective is to detect a fault that belongs to the event ensemble listed
in chapter 2, section 2.5 using a model-based observer, The estimation error of the
observer is zero for normal conditions and non-zero when a fault occurs. For some
faults, the error would be in a fixed direction, thus fault localization could also be
achieved for this set of faults. In realty, the estimation error would be a random
process. How can we make a decision under the influence of noise and disturbance
becomes complicated.

Thus, the objective becomes to design a fault detection filter and a decision rule

that would achieve desired goals. False alarms and failure to detect a fault are two in-
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evitable errors that would exist. The goal is to achieve a reasonable compromise. The
two types of decision errors can be characterized by their respective first hitting times
of a boundary by a random process. The average first hitting times are dependent
on the design of the observer and the decision rule. Costs corresponding to these
two types of decision error are defined by the cost functions constructed based on
experience and knowledge of system operations. The total average cost is minimized
over the observer gain and the decision rule until an optimal solution is found.

The optimization process can be formulated as follows.

The objective is to find optimal values for the observer gain L, the filter frequency
a and.an optimal decision policy characterized by a threshold value e, by minimizing
the total average cost J.

There are two additional constraints on the observer gain L. For the observer to
be stable and for it to be able to generate an estimation error that would be in a fixed

direction for a fault vector v, it has to satisfy that:

1. convergence: eigenvalues of {A — LC) must have negative real parts
2. detectable: 7kC[I, (A — LC),...,(A-LC)" v =1

By const'ructing the gain matrix L using Equation 2.63, the second constraint can be
rhet automatically. Then, the choice of L becomes the choice for I’ and p;. The first
constraint has to be incorporated into the cost function so that it can be satisfied by
the optimization process itself.

The procedure for optiniization is to pick a set of design of the parameters L', p;,
a, and e., and evaluate it based on the corresponding cost until a minimal of the cost
is found.

The total average cost .J can be formulated as:

J = wi1gC1o(T10) + wo1Co1(To1) + Weig ¥, Ceig (M) (4.57)

i=1

where wyg, wy; and w,;, are weighting factors, Cyg, Cp; and Co;, are cost functions, 73

and 757 are the average first hitting times, and A; is the ith eigenvalue of the matrix
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(A~ LC). Here the subscript (10) denotes false alarm and the subscript (01) denotes
failure to detect a fault. J is a function of L, a, and e,. Thus, the optimization
problem is solved by:

L a e]=arg gnin;J(L,a, e.) (4.58)

,4,€c
The procedure for the optimization scheme is as follows.

1. Given system matrices A, C, and fault vector v, find a fault detection gain
generator g such that the estimation error would be along a fixed direction in
the output space. The gain L can be written as I = [pig+...+p, A " 1g+ Akg)-
(CV)TCV]THCV)T] + L'[I — Cv[(Cv)TCV]"Y(Cv)T] where L' is an arbitrary
matrix with proper dimensions. The algorithm for determining ¢ and % in the

above expression is described in Appendix A.

2. Choose arbitrary numbers p; to p, and an arbitrary matrix 7' and obtain the
gain matrix L. By this construction, the L is guaranteed to satisfy the constraint
that rkC[I,(A — LC),...,(A — LC)"~!|v = 1, so that the corresponding fault

signal will along the fixed direction of C'v in the output space.

3. Given matrices A,C, and L, obtain the transfer function from noise to output
W(s) and that from the fault signal to the output G(s). Here W(s) = [I —
C(sI — (A—LC)) 'L] and G(s) = C[sI — (A - LC)]'v.

4. Given W(s), estimate €2, the sample variance of the output and the system

relaxation time 7 of the filtered signal.

5. Given G(s) and a decision threshold e, , calculate the first hitting time bound-

aries Rp;(t) and Lo (t) for non-detection of the filtered signal.

6. Given €%, 7 and e,, estimate the average first hitting time 77 for a false alarm

using the Fokker-Planck equation (or Monte Carlo simulation).

7. Given boundaries Ry, (¢) and Lo, (t), €2 and 7, estimate the average first hitting
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time Tp; for non-detection using the Fokker-Planck equation (or Monte Carlo

simulation).
8. Given T, calculate the average cost from false alarm costyq.
9. Given 7p1, calculate the average cost from non-detection costos.
10. Given costig, costy, wip and wp;, obtain the total average cost J
11. Minimize J. If the minimum is found, then exit. Otherwise, return to step two.

Step one and two are to give a random try of a set of design and step three to ten
are to evaluate this design. Step three, four and six are to evaluate the first hitting
time for false alarm. Step three, four, five and seven are to evaluate the first hitting
time for fault detection. Step eight, nine and ten are to evaluate the total average
cost for this particular design. The details in each step have been covered above. The
flow chart is in Figure 4-18.

In the process of implementing the Fokker-Planck equation for estimating the
average first hitting time, two problems have to be solved. One is to extract an
effective system response time constant 7 and the signal variance. The other is to
estimate the boundaries for fault detection. These are addressed as follows.

To extract an effective system response time constant: fit the power spectrum

psd(w) to the Lorentzian spectra function in the form of

b

Lelw) = i

(4.59)

We can either do a curve fitting or by comparing the zeroth and secondth moments.

The zeroth moment of Lz(w) is b7* and the secondth moment is jiﬁ}%y Lz(w)dw =

wbr. Thus, we have

br? = psd(0)
xbr = /_Oo psd(w)dw (4.60)
(4.61)
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Figure 4-18: Procedural flow chart for optimization.

113



Solving those two equations, we can have the effective parameters of the system based

on it power spectrum:

. 7psd(0)
. psd(w)dw
b = P psd(w)dw (4.62)
T

(4.63)

One example of the fitting result is shown is figure 4-19. The example uses d =
0001

100
—65.0 0.0768 10 —64.9824 —0.0635
A= C = and L . The

~\ 650 00768 | 0 1 65.0000  0.0475
fitted b and 7 are 45.5329 and 102.9786 respectively. We can see that the Lorentzian

) as the noise power, a = 0.0105 as the frequency dependent filter, and

spectra approximation is good in this example.

To estimate the boundaries for fault detection: In the frequency domain, the fault

component of the estimation error can be written in the transfer function form of
Ce(s) = C(sI—(A—LC))~'vf/shere f is a constant corresponding to the magnitude
of the assumed step fault. Upon application of a fault detection filter and a frequency

dependent filter to the output, we have the final signal as a scalar in the form of

1
5) = v'Ce(:
e(s) v'Ce(s) Tt a
- f
= v —(A-L ! .64
v'C(sI — (A— LCY)) vs(s—l—a) (4.64)
Write the matrix (A — LC) in the eigenvalue form,

A—LC = v\w, (4.65)

=1

where n is the dimension of A — LC, v; is its #th right eigenvector, A; is the ith

eigenvalue, and w; is the ith left eigenvector. Substitute equation 4.65 into equation
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Figure 4-19: Calculated and fitted power spectrum of the noise component of the
filtered estimation error. The dash-dot line is the calculated data while the solid line
the fitted data using Lorentzian spectra function.
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4.64, we have

els) = Z s(s +a)(s — \i)

_ i(/ﬁ/(a)\@) N ki/(ala + M) . kaf (N + G)))

= 5 s+a 5= A

(4.66)

Notice that k; = v'Cvjw!v f is a scalar, and so is the final signal €(s). Thus, in the time
domain the signal € is still a sum of a constant component and exponentially decaying
components. The constant term is Y., ki/(a);) while the exponentially decaying
terms have decay constant a, A\, ...A,. Also note that the filter pole a should not

cancel the system poles );. Otherwise, the filtered signal could be unstable.
- k; k; k;
t — gy z —at 1

€O = 2Nt aaen® ThvT o

=

et (4.67)

Figure 4-20 shows the results calculated from equation 4.67 and from a simulation

implemented in Matlab Simulink. The two results are exactly equal as they should be.

) _ —65.0 0.0768 1 0
The parameters used in this example are A = , U=
65.0 —0.0768 0 1

1 —60 50
v—( ),L— , f=-—1and a = 15.

H

0 65 350
Up to here, the method for designing a fault detection filter and its implementation

have been covered. In the next chapter, an example for applying this to a nuclear

reactor model is presented.
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Figure 4-20: Time response of the filtered estimation error from calculation (dash-dot
line) and simulation (solid line) for an unit input step fault and no noise.
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Chapter 5

Application of the Fault Detection

to a Nuclear Reactor

In this chapter the results from previous chapters are applied to reactor model. The
fault types included are input fault and system dynamics fault. Sensor faults are not
examined here because they can usually be detected by sensor redundancy. Faults are
modeled as step functions because most continuous changes are normal deviations.
Faults, on the contrary, tend to be abrupt changes and any abrupt changes can be
decomposed into step functions. Faults that would change the system model structure
are not within the scope of this research.

The observer is based on the one-group linear nuclear reactor model. The fault
detection filter is designed based on this observer and the system is simulated using
the same model. The resulted design is then applied to detect faults in the six-group

nonlinear reactor model and the results are presented.

5.1 Application to One-group Reactor Model

5.1.1 Problem Analysis

For a one-group precursor reactor system, the effective decay constant A should be

treated as a time-dependent quantity. However, if we assume that the system is
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operating about an equilibrium point, then the system can be linearized and A, can

also be regarded as a constant. Thus,

Oy = 20 5.1
Y (5:1)
The effective one-group decay constant can be calculated using equation 3.18.
M) = A(0) = 2 5:2)
’ ) 30 Bi/ M

Note that A, only depends on 5; and );, and is independent of ny and I*. Using
the parameters in Table 3.1, we have A\, = 0.0768s~!. The prompt neutron life time
I* used in this research is 1 x 1074571

The system matrices according to our derivation given in Equation 3.33 are

—65.0 0.0768
A =
65.0 —0.0768
10
B = :
0
10
C = . (5.3)
0 1

Note that the ng term in the B matrix is dropped because we are using ng as
the normalization factor. All state variables including neutron density and delayed
neutron precursor densities are multiples of ng.

The observability matrix O given by

C
0= , (5.4)
CA

can be verified to have a rank of two. Thus, the pair (A4, C) is observable. As we

discussed in chapter two, the eigenvalues of (A, C) can then be placed at any location.
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For the observer to be stable, it is desired that all the eigenvalues have negative real
parts.
According to the results in Chapter two on observer-based fault detection, the

settled estimation error in the output space will be

4
Ce(t) = C /0 (A=LON=T)y £ (1) dr

t
= /e(A_LC)(t_T)vf(T)dT. (5.5)
0

For a fault in the input, the vector v is b; and in this example there is only one
10* 1

single input, thus v = b = ) = 10* ( ) f(t) is the time characteristic of
0 0

the fault modeled as a step function. Introduction of the unit step function as

S(x) = {1 - (5.6)

allows f(t) to be written as f.S(t) where f; is an unknown constant.

Thus,
t
Ce(t) = f. / eA-LOE=T S (1) dr v. (5.7)
0

If we have 7k C[I, (A— LC)]v = 1 then the settled Ce will remain in a fixed direction.
1
In this case, the fixed direction is along , while the magnitude will approach a

non-zero constant. Denote the constant as k. We then have

t
ko= fox 100 [ AR g(r)dr
0

t —T
_ pwaoty [ eSO ’ y-!
0 ¢ AN S (r)dT
—ly — gttt 0
~ gty | TRETE ] i
0 —Xl;[l — eM?]
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5 fLx100V | M VL (5.8)
0

where }; is the ith eigenvalue of (A — LCY and V = ( Vi Vs ) Here, vy and vy are
the right eigenvectors of (A — LC). Thus, given &, we can get the magnitude of the
fault by

A0
fo=kx10t VL 01 A V. (5.9)
— N2

So far, we have discussed the characteristics of the error signal for a single step
1

0
and the magnitude approaches a non-zero constant . The fault magnitude can be

input fault. The output space error signal Ce remains in a fixed direction

inferred from x.

Next, the characteristics of the error signal for a éingle step system dynamics fault
are discussed.

If we do not consider the physical meaning of the components of the system matrix
A and B, then every term can be at fault arbitrarily. But, according to the derivation
in Equation 3.33, the terms are linked by physics. It is more reasonable to look at the
possible faults due to the changes in the physical parameters instead of each term in
the matrices. Thus, possible faults of system dynamics include changes in the delayed
neutron fraction 3, prompt neutron life time I*, or effective delayed neutron precursor
decay constant ..

A fault in 8 will result in errors in a;, and a,;. Assume a step fault in 3 such that

Bs = By + foS(t). Then, the estimation error signal have the form of

¢ = (A-LC)e+eAayi(e)x) + exAay (/%)

= (A—LC)e - (f, x 10%) ! n+ (f. x 104 ! n
0
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— (A= LC)e + (fo x 10%) ( _11 ) n. (5.10)

Thus, in the output space, we have

t -1
Ce = Ce T4 (fex10M)C / A= LONE= T (r)dr ( )
0 1

= (fox 10%) T(t) ( ! ) ; (5.11)
1
where ¥(¢) is defined as
= [  A=L0)=T)) r. (5.12)

Here n(t) is a time-varying quantity and is not always directly accessible. But, in this
case, it is directly measured. Thus, the time-varying quantity ¥ (t) can be determined.

In summary, a single step fault in B results in an estimation error settled in a

—1
fixed direction along with a magnitude proportional to (f. x 10%) ¥(t).
1

A fault in )\, will result in errors in a5 and ags. Express a step fault in A, as

Aes — Aens = foS(t). We then have

é(t) = (A— LO)e(t) + erAara(ehx)(t) + exAag(eyx)(t)

= (A= LO)(t) + [ (;) C(t) — fe ((1)) C(t)

= (A—LQ)e(t) + f.C(t) ( 11 ) : (5.13)
and

? 1
Ce(t) = C'e(A_LC)t+fCC/0 e AL C (1) dr ( 1)
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- fctb(t)( ' ) (5.14)

—1

where the ®(t) is defined by
t
B(t) = C / eA-LOET (1) dr, (5.15)
0

Because we can measure C(t) directly in this case, ®(t) is a known quantity. A step
1

fault in A, thus results in an estimation error along a fixed direction ( ) with a
-1

magnitude settled at f.®(t)

A fault in [* will result in errors in ay;, ag;, and b;. Express a step fault in I* as

1/l — 1/, = f.S(t). We then have

é(t) = (A— LO)e(t) + erAay(e)x)(t) + exAan (e]x)(2) + e1 Abu(t)
:<A—Lmaﬂ@ﬂ)(é)vmy+wn)(f)nM+4;(;)um

— —1 1
—(A—Lmdﬂ+WLMﬁ)(1 )+ﬁww(0). (5.16)
This is not like the other cases that were discussed previously. Here, the direction of
the error signal is not fixed.

In summary, faults result in different characteristics in the output space error

signal as follows:

1. Step fault in input u — ug = f.S(t) results in a settled error signal that has a

1
fixed direction of (

- 9
) and a magnitude of (f. x 10¢ V! ( & ) V).
0

0 %

2

2. Step fault Bg = B, + f.S(¢) results in a settled error signal that has a fixed

direction of (
1

) with a magnitude of (f, x 10%) (%)

3. Step fault A\os — Aoyr = fcS(¢) results in a settled error signal that has a fixed
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1
direction of with a magnitude settled at f. ®(t)

-1

4. Step fault 1/15 —1/13, = f.S(t) results in a settled error signal that has no fixed

direction.

" The quantity p here corresponds to the eigenvalues of the matrix (A — LC).
The estimation error is first projected into the corresponding output direction
that the targeted fault should be along. The projected signal is then passed through
a filter. That is,

1—e %

t
E(t) :A e—a.(t—r)d'r — (517)

a

If @ is large, then the signal would be settled at a non-zero value quickly, but the
settled value would be small. On the other hand, if a is small, the settled value
would be large, but the time for the signal to settle would be long. A larger value of
a would result in a fast detection of the fault but a‘ smaller possibility of detecting
it. In contrast, a smaller @ would result in slower detection of the fault but a larger

possibility of detecting it. The step fault f in the frequency domain can be written
as f/s.

5.1.2 Fault Detection Filter Design and simulation

As discussed previously, there are two constraints that the matrix L has to satisly.

They are,
1. All eigenvalues of (A — LC) = A — L are in the left half plane.
2.tk ClIA-LO)lv=[I(A-L)v=1

The optimization goal is to minimize the total average cost for false alarms and
missed detections. A more thorough treatment would require two dimensional cost
functions, in both delay time and the magnitude of the fault. That is, we would
assign a cost function that varies according to how long the fault has occurred before

it is detected and how severe the fault is. The total average cost would then need to
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be averaged over both detection time and fault magnitude. The 4 priori probability
of fault magnitude has to be established based on the understanding of the system
and operational experience. Here, we use a fixed magnitude and average over time.
This method can be generalized to two dimensional cost functions.

For the second constraint to be confirmed, the maximal generator algorithm [11]
is used to find a set of L that will always satisfy the constraint condition. The Matlab

source code was included in Appendix A.

1
For the matrices A and C' in equation 3.33, and for the fault vector v = ( ),
0

the generator has been calculated to be

)
g= (5.18)
0

Thus, any gain matrix L that is in form of

L= [pg+ Ag)- [(Cv) OV (Cv)T + L'[I — (CV)[(Cv) Cv] 1 (Gv)T)

00 66 0 I, U, 01
—65 [
_ ( p - 1’12 ) (5.19)
22

will satisfy the second constraint. Here liy and I}, are arbitrary real numbers, p is

‘an arbitrary positive real number and —p is one eigenvalue of (4 — LC). The matrix

(A — LC) then becomes

—p  0.0768 — I
A-Lc=]| P 12 (5.20)
0 —0.0768 — I},

We can see that the two eigenvalues of A — LC are —p and —0.0768 — l5, which are
totally selectable by the designer.
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1
The fixed direction in the output space for fault vector v will be C'v = in

0
this case.

The guideline in choosing the parameters l},, I3, a, and e, is as follows. We want
a high signal-to-noise ratio for the final filtered signal. At the same time, the shorter
the dead time at the observer initialization period the better. This dead time is a
result of the first term in equation 2.54. It is obvious that in order to enhance the
signal-to-noise ratio, a small a is desirable because this means that the integration
period is longer. Thus, the noise will be smoothed out. But if a is too small, the
system becomes sluggish and the fault takes longer to be detected. The effect of the
terms in L is complicated and there is no easy way to describe it. For this particular
case, where C is an identity matrix, intuitively, we would like the L non-diagonal
terms to be close to zero. Thus the C(sI — (A — LC)™!'L can be close to I. For
the dead time of the observer to be shorter, the magni‘pude of the real parts of the
eigenvalues of (A — LC) should be larger. Remember that all the eigenvalues of
(A — LC) should have negative real parts.

As an example, the measurement noises are assumed to have powers of 1 x 10°
and 100 for measurements that are normalized by the equilibrium neutron density.
These correspond to about 1% noise-to-signal ratio.

Assume a 1 mf unit step fault in the actuator. The results for different fault
detection filter designs are illustrated in below.

First try a choice of I}, = 0, lh, = 0.1, p = 0.1 @ = 0.1 which would satisfy all
our constraints. The eigenvalues of (4 — LC') are —0.0020 and —0.0788. They have
negative real parts as they should be. Their absolute values are not big. Thus, the
signal’s standard deviation is 9. The signal for the fault component is depicted in
Figure 5-1 and the settled value is around 6.5. Thus, it is almost impossible to detect
the fault because, even with a threshold of 6.5, the average time rate for a false alarm
due to noise is about 2 seconds.

Adjust the parameters to lj, = 0, I3, = 0.002, p = 0.002 @ = 0.002 and calculate

the corresponding response. The results are that the eigenvalues of (A — LC) are
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Figure 5-1: The response of fault component of the filtered signal.
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Figure 5-2: The response of the two components of the filtered signal for the design
that I}, = 0, {5, = 0.002, p = 0.002 a = 0.002.

—0.0020 and —0.0788. The signal standard deviation is 169. The signal for the fault
component is depicted in Figure 5-2 and the settled value is around 1.62e4. Thus, if
we choose a threshold of 6000, the fault can be detected within 645 seconds (about 10
minutes) while the false alarm rate is once in 4.3385e + 274 weeks, which is a highly
unlikely event. The cost is 0.7562. But this result is not optimal.

Using the optimization that has been implemented in Matlab, the results give
cost = 0.0213, and the average false alarm rate is once per 64 weeks, average fault
detect time is 108 seconds. The design parameters are 1}, = —0.0084, I, = 0.0106,
p = 0.0135 a = 0.0160, and e, = 141.5. The standard deviation for the filtered signal
is about 22. Simulation implemented in “simulink” has been run using this design

and the results are shown in Figure 5-3. The fault is detected in 73 seconds.
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Figure 5-3: The response of the filtered estimation error signal. The upper curve is
for simulation with a 1 mf actuator fault. The lower curve is for simulation with no
fault.
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This fault detection design can not only detect a fault of the input, but also it is

only sensitive to the type of fault in the output signal that would be along the fixed

1
detection v = . Thus, the fault detection filter also localizes the fault at the
e

same time. If the fault is in ), instead, the resulting estimation error will have a fixed

1
direction of as analyzed previously. Thus, the filter that has been designed
-1

to detect actuator faults will be insensitive to a fault in A.. The simulation results

for a step error of 1.3% in A, such that the A matrix becomes

—65.0 0.0767
A = (5.21)
65.0 —0.0767

are displayed in figure 5-4. It is clear that it will not trigger the fault detection alarm.

When both error present, the fault is detected in 160 seconds.

1
For a fault that is associated with v = , the generator is g =

-1 -1
with order of £ = 1. Then the matrix L can be written as:

L = [pg+ Agl- [(CVTCYHOV)T + LI ~ (CV[(CV)TCOv] ™ (Cv)T]

V2 AR D I, 11

1
2\ -1 1 1 -1 2\ 1, b, 11
1 [ p—65.0768+1), + 1, —p+65.0768+ 1y +,

= = | . (5.22)
2\ —p+65.0768+ Iy +15, p— 65.0768 + 1y -+ Iy,

As in the previous case, P, i, li5, I, I}, are arbitrary numbers we need to
decide. Here we can see that the effect of i, I1,, I}, and 05, are very complicated
and it is difficult for human intelligence to figure out these numbers without the help
of computers.

Optimization was carried out for this direction. The optimal results are L' =
—-31.0 0.01

0.0 33.0
are shown in Figure 5-5. In Figure 5-5, both curves are for one-group observer and

,p =330, a = 0.002, e, = 160. The simulation was run and results
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Figure 5-4: The response of the filtered signal. Both curves have a 1.3% error in A,.
The upper curve also has a 1 mf actuator fault. |
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Figure 5-5: The response of the filtered signal. The system is a one-group linear
nuclear reactor model while the observer is a one-group linear nuclear reactor model.
The lower curve is when there is no fault. The upper curve is with a 1% ) step fanlt.
Both with noise added to the measurements.

one-group system. The upper curve has a step fault of 1% in )., while the lower curve
do not have any fault. We can see that when there is no fault in this direction, the
fault detection signal is a random signal with mean of zero and standard deviation of
about 36. With a decision threshold of 160, the average false alarm rate is once per

15 weeks, while the average detection time for a 1% fault in A, is 125 seconds.

5.2 Application to Six-group Non-linear Reactor

Model

To test the robustness of the fault detection filter against modeling error, the designs

that have been obtained based on a one-group linear model are applied to a system
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simulated by a six-group nonlinear model. The implementation of the simulations is
done, again, using “simulink” of the Matlab package.

For a fault in the actuator that will result in the output fault signal in the fixed

1
direction of v = , the filtered signal standard deviation ¢ without fault is 27,
0

while the settled signal is around 300. The simulation is run for 1eb seconds, with
and without a 1mpg actuator step fault. In the former run, there is no false alarm
reported. In the latter run the fanlt is detected in 105 seconds. The two responses are
shown in Figure 5-6. This confirms our belief that the modeling error would behave
similarly to a measurement noise on the effect on the detection of a actuator fault.
Thus, by constructing a targeted fault detection filter, the modeling error would not
affect our ability to detect the fault signal that is along the targeted direction of an
actuator fault.

In Figure 5-7, both curves are for one-group observer and six-group nonlinear
systemn. The upper curve has a step fault of 1% in \., while the lower curve do not
have any fault. We can see that, even without a true fault, the signal is not centered
around zero. Remember that we are trying to detect a fault in the six-by-six system
matrix Ag using a two-by-two matrix in the observer. There is the modeling error due
to the increase of dimension in the system matrix. Also the system has a non-linear
term due to the coupling between input reactivity and neutron density. Thus, these
modeling errors do affect our ability to detect a system dynamics fault. If we still
use the same design as in the previous section, we will get false alarms almost once
every ten minutes. That is not acceptable in real world. However, if we take this
modeling error into account when choosing the threshold, we can revise the threshold
to 260. The average false alarm rate then becomes once per tens of weeks while the

fault detection time is about 300 seconds. This performance is acceptable.
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Figure 5-6: The response of the filtered signal. The system is a six-group nonlinear
nuclear reactor model while the observer is a one-group linear nuclear reactor model.
The lower curve is when there is no fault. The upper curve is with a 1mg actuator
step fault. Both with noise added to the measurements.
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Figure 5-7: The response of the filtered signal. The system is a six-group nonlinear

nuclear reactor model while the observer is a one-group linear nuclear reactor model.

The lower curve is when there is no fault. The upper curve is with a 1% A step fault.
Both with noise added to the measurements.
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Chapter 6

Summary

The motivation of this research was a series of experiments that were done by Dr.
John A. Bernard and Francis J. Wyant during 1988 to 1992, in which the need
for antomated fault detections for an autonomous spacecraft nuclear reactor was

demonstrated [3].

The methods that were available are quantitative methods versus qualitative ones.

as listed in Section 1.2.1. For a system like nuclear reactor, the quantitative methods
are more desirable for two reasons. First, a mathematical description of the process
is already available during design phase which makes a quantitative method possible.
Second, a qualitative method needs the cause-consequence trees (CCT) which requires
a great deal of effort for their construction, e.g. a CCT for a nuclear plant requires
approximately ten man-years [15]. In addition, a CCT is plant specific and does
not allow feedback. Within the quantitative methods, I prefer the observer-based
method which compares the outputs of the system to that from a model than the
direct estimation approach because of the difficulty of simultaneously estimating many
process parameters by direct estimation. Furthermore, because there is no accurate
models for the actuators, the direct estimation approach can not detect faults in the
actuators while the observer-based method has the potential to detect and localize all
three types of faults - system dynamics fault, and sensor fault - based on the system
process model only.

However, immediate application of the observer-based fault detection to a nuclear
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reactor was not possible because of two unsolved problems, the noise effect and the
modeling error effect. The existing theories on observer-based fault detection were
only good for deterministic processes. While for any real application, all the signals
are random due to the noise. To overcome these problems, my research involved the
following tasks, as was shown in Fig. 1-2.

I first designed the overall fault-detection scheme for a linear invariant system
(LTI) with measurement noises. To implement this scheme, I introduced the con-
cept of first hitting time to quantitatively describe the performance criteria. I then
constructed cost functions which are direct mapping from real world judgments into
mathematical descriptions. Then, a optimization procedure was developed to mini-
mize the total average cost and obtain an optimal design of the fault detection pro-
cess. The method developed in the research for applying the observer-based method
to noisy processes is in a general form that can be applied to any LTI system with
noise. Only the constructions of cost functions are subject to specific requirements.
Although in this report, the noise is modeled as Gaussian White noise, this is not
a necessary requirement. To use the Fokker-Planck equation or my empirical model
for estimating the first hitting time, the noise must be Gaussian but not necessarily
White. For a more general case where the noise is not Gaussian, the first hitting
time can be estimated using Monte Carlo simulation. Thus, the method developed in
this research can be applied to general cases where the noise is not Gaussian White
noise. But as mentioned before, using Monte Carlo simulation is costly in terms of
execution time.

This general method was applied to a nuclear reactor model. Simulation results
have shown that the desired performance can be met using the optimal design ob-
tained for a nuclear reactor system described by the point-kinetic equations with
measurement noises added. In addition, even with modeling errors that exist be-
tween a one-group linear reactor model and a six-group non-linear reactor model, it
is still possible to detect the three types of faults. However, because a real system
is much more complicated than the models we tested, unexpected modeling errors

could exist. Thus, it remains to implement the method on an actual reactor and
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this requires calibrated system models and a systematic investigation of the modeling
error effects.

What have been accomplished in this research is illustrated as follows.

The starting point of this research are the theories on observer and observer-
based fault detection filters that were developed in 1961 by Kalman and 1971 by
Beard respectively. Only deterministic situations are discussed in these theories. My
research extended this approach to address stochastic signals when noise is present.
In the design of the fault detection filter, there are total of n x n degrees of freedom,
only n of which have clear physical meaning. The other degrees of freedom have
not been addressed at all in the current theories. But in fact, they are important in
controlling the final signal’s sensitivity to noise and true faults. There is no analytical
solution to the determination of these “mysterious” numbers. I proposed to design
them by using numerical optimization.

On one hand, because of the noise, there will be false alarms and delays in detect-
ing true faults. Minimization of these two problems is our criteria for performance.
On the other hand we have a total of [(n x n) + 2| degrees of freedom in the design
that can be tuned by a numerical optimization. (The other two degrees of freedom
are the post-processing filter frequency and the decision threshold.) How can we link
them together? We have to have a mathematical description of our performance cri-
teria so that those criteria can be implemented in the optimization procedure. In
this research, I proposed to use the average first hitting time which is defined as the
average first time of a threshold being triggered by a random process. The random
process could be the filtered signal that was driven by noise only or by both noise
and a fault.

The first hitting time problem can be solved either by Monte Carlo simulation or
Fokker-Planck calculation. Both methods are implemented and tested against each
other. The former is more flexible and more general, but requires more execution
time, especially for a long hitting time. Because the first hitting time has to be
evaluated for each optimization step, a slow algorithm would greatly slow down the

optimization process. On the other hand, Fokker-Planck gives an analytical solution
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results are compared with those from the Fokker-Planck calculation. The accuracy is

This method was applied to a nuclear reactor. The mode] is g one-group linearized

were constructed for MITR-II.
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Appendix A

Algorithm for Determining the

Maximal Generator

A.1 Algorithm for Determining the Maximal Gen-
erator

The following algorithm [11] determines the The maximal generator g for vector v
and system (A4, C).
Given n x n system matrices A and C and the n-vector v, matrices C’, K, and

M' are defined as

C' =1 - cv[(Cv)Tev] T (ev)TIC (A1)
K = A— Avicv)Tov]Hev)T|e (A.2)
Cl
C'K
M = ' : (A.3)
C!Kn—l

where I is the identity matrix.
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The maximal generator order v is determined by

p=n—rank(M’). (A.4)

The maximal generator g for vector v is determined by:

1. Find the null space of M, denoted by Z = Null(M'), such that M’ + Z has
negligible elements, and Z' + Z = .

2. Find a vector g in the null space of M’ satisfying

C
CA
g=20 (A.5)
CAU—2
CA" g = CAtv (A.6)

where p is defined by

CAv=0 for j=0...u—1
CA*V #0 (A.7)

141



A.2 Matlab Source Code

%%
% beard.m %
% find the mazimal generator for n-vector f and system (A,C) %

% g is the generator, qp is the rank of M. %
% Qing Li 2001 %
%%

function [g,qp] = beard(A,C,f)

%  Cxf can not be zero %
if norm{Cxf) < eps
fprintf (1,'Cxf = %f, stop\n', norm(Cxf));
break;

end;

Cp = C — Csf / ((Cxf)'%Cxf) * (Cx£)' x C;
K = A — Axf / ((C+f)'*xCx£f) * (Cxf)' * C;
m = size(C,1);
n = size(C,2);
Omega = eye(n);
qp = 0;
for L =0:n-1,
for j=1:m,
v = (Cp(jy) * K°L)';
w = Omega * v;
if norm(w) > 1000+eps,
gp = qp + 1;
Omega = Omega — w*w' / (w'*V);
end;
end;
end,
for L =0: n—qp-1,
forj=1:m,

v = (C(j,)) » K'L)';

142




w = Omega * v;
if norm(w) > 1000+eps,
Omega = Omega — wxw' / (w'xv);
Jlast = j;
wlast = w;
end; 40
end;
end;
if norm(Omega) > 1000xeps
fprintf (1,'#* beard: (A,C) is not an observable pair.\n');
break;
end;
nu = n — qp;
mu = (;
while norm(C+A "muxf} < 1000xeps, mu = mu + 1; end;
% mnormalize ¢ % 50
g = C(jlast,:)*A"muxf/(C(jlast,:)*A~(nu—1)+wlast)xwlast;
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Appendix B

Sample Matlab Codes for Finding
the Optimal Solution to the Fault

Detector Design and Decision Rule

RREBRGRT TR %% %% %
% cfuntest. m %
BRER%R% %% T %% %%

clear all; more off;

global A CL D v df e_c a sigma tau,

A = [-65. 0.0768; 65. —0.0768];
% z(1): neutron density [number/cm 3], usually 1e8 %

% z(2): delayed neutron precursor density, usually lell % 10
C=[001]
v =[1; Of;

beta = 0.0065; milli_-beta = le—3 * beta;
delta_u = milli_beta; % control rod error %

£ = delta_u * led; % delta_K / K: reactivity error. f is around 0.065 %
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% baseline sigma of noise is one percent of signal %

d =[le—4; 100 ] * 1.0;

X0 =]
% L12 > A12, less stiff B
0.002 % L22 > A22, modifies eigenvalue(2) %
0.002 % -eigenvolue(1) (-p) fired */
0.002 % a is frequency scale of post-processing filter */
6000 % proposed cutoff level [error*s] */

)i
% cfun(X0); %
% break; %

X0 = [
—0.503505 0537805 0.020166 0.004179 233.163338
I

% cfun(X0); %

X = fminsearch(@cfun, X0, ...
optimset(’LargeScale’, ’off’, ...
’Display’, ’off’, ...
'MaxIter’, 20000)...
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BRRGRRRG % RTTRRTU T T TR T % % % % % % % % % % % % % CE

% cfun.m : cost function %
% X(1) = 12, X(2)=122, X(3)=p, X(4) = a, X(5)=e—c %
% 112, 122 arbitrary real number %
% X(3) arbitrary positive real number, -X(8) is o eigenvalue of (A-LC) %
% X(5) e positive real number %
% A, C are system maotrices, v is fault vector %
% d(s) is white noise power vector, which is a constant %
% f(s) is fault signal %

BREET TN N %R R R BT TN %% % %% BT % %% %% %% % CE

function cost = cfun(X)
global A C L D v d f ec a sigma tay;

L=/[X(3)—65X(1)
65 X(2) J;

D = A-L*C;
a = abs(X (4));
e_c = abs(X (5));

[DV DD] = eig(D),
dd = abs([diag(DD); a]);
maezw = 100 * maz(dd);

% Find the Lz spectral function parameters %
psdn0 = eds(0);

psdnint = quadl(@eds, —maxw, maxw);

tau = psdn0 * pi / psdnint;

bn = psdnint/tau/pi;

y_sigma = sqrt(psdnint/2/pi);

% sigma for the pre-system noise

sigma = y.sigma * sqrt(2/tau);

% calculate the average first hitting time for the false alarm %
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if e.c >= 1 * y_sigma,

avg-ts = tau / max(eps,erfc(e_c/sqrt(2)/y_sigma)) / 2 / pi;

else
Hbound = e_c;
Lbound = -e_g;
Ncut = 30,

p0 = zeros(Ncut,1);
for n = 1 : Ncut,
buf = sprintf(’exp(-(4f*x+(%f)). 2).*sin(%f*x)’, ...
(Hbound—-Lbound)/pi/sigma/sqrt(tau), ...
Lbound/sigma/sqrt{tau), n);
pO(n) = 2 / pi / sqrt(pi*sigma~2*tau) * quadl(buf,0,pi);
end,;
mu =1/ tau;
nu = pi * ( Lbound / tau) / (Hbound — Lbound);
¢ = 1: Neut;
N = ¢’ * ones(1,Ncut);
M = ones(Ncut,1) * ¢;
M = M — diag(diag(M));
NMI = (=1).~(N+M+1);

Kts = diag(l / tau — (c * sigma * pi / (Hbound-Lbound))."2/2—mu/2) + ...

M *(mu*2*N*NMI + ...
nu*2/pi*N *(1+NM1)) ./ (N2 - M"2);

[VKts DKts] = eig(Kts);
WKts = inv(VKts);
twocolumn_N = zeros(Ncut,2);
avg_ts = 0;
for n = 1 : Ncut

for k = 1 : Ncut

twocolumn_N(n,1) = twocolumn_N(n,1) + ...
(1 = (-1)"k ) / k * VKts(k,n) * WKts(nk) * p0(k);

end

twocolumn_N(n,2) = DKts(n,n);

twocolumn_N(n,1) = twocolumn_N(n,1) * (Hbound—Lbound) / pi;

if ( twocolumn_N(n,2) <= —10*eps )

avg_ts = avg ts — twocolumn_N{(n,1) / twocolumn_N{n,2);
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end
end
avg_ts — real(avg_ts);
if avg ts <= 100*eps,
avg_ts = 100*eps;
end

end

% calculate the average first hitling time for foult detection %
t0 = 0; tmax = 100. / min(dd); t = t0 : 0.1 : tmax;
twocolumn = twocolumn_with_a (C,v,D,a);
value = abs(f * twocolumn_value(twocolumn,t}));
f ts = 1e25;
for k = 1 : length(t),
if value(k) > e_c
f_ts = t(k);
break;
end

end

cost_miss = costmiss(f_ts);

cost.false = costfalse{avg_ts/604800);

cost_initial = .1 * (costmiss(abs(1/D(1,1))) + costmiss(abs(1/D(2,2))));

cost_cond = .01 * (cond(L)/1le4}"2;

cost = cost_miss 4+ cost_false + cost_initial + cost_cond;

if (=D(1,1) <= 100*eps) | (—D(2,2) <= 100*eps) | (a <= 100*eps)

cost = 1e20;

end

forintf(1, *X = %f % %f %f %f\n’, X);
fprintf(1, ’false alarm = %f (wk)\n’, avg_ts/604800);
fprintf(1, *fault detect = %f (s)\n’, f.ts ),

% forintf(1, ‘signal/noise = %\n’, f*twocolumn(1,1)/y_sigma ); %

fprintf{l, - \n’);

fprintf(1, ’costmiss = %f\n’, cost_miss);
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fprintf(1,
fprintf(1,
fprintf(1,
fprintf{1,

'costfalse = f\n’, cost_false);

’costinitial = %f\n’, cost_initial);

’cost_cond = %f\n’, cost_cond);

"total cost = %f\n\n’, cost);
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BERRUL TR TR T %% T %X TN % T T % %% % %% %% %% %% CE

% eds.m %
% calculate the twice filtered error signal psd from noise %
% W =1I- C(sI-D)~(-1)L; %
% v is the fault detection filter %
% 1/(s+a) is the frequency dependent filter %

BEEET T TR R T T TR TN T T % %% % % % % %% % % % % % % CE
function ed = eds(z)
global C ALwv d a;
D = A - L*C;
Imatriz = eye(size(C,1));
for n =1 : length(z)
Ws = Imatrizc — C*nwv(z(n)* *Imatric—D)*L;
Us = (C*) * ¥Ws / (x(n)*i + a);
ed(n) = abs(Us).”2 * d;

end;
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RGN RERRT R T T T RN T RN % %% %% % % %

% twocolumn_without_a.m %

TRN%%%%% %% %% %% %% %% %% % % % % %

% twocolumn representation for (C*u)’*(C*(s-D)~-1/s/(s+a)*v) %
function twocolumn = twocolumn_with_a (C,v.D,a)

twocolumn = zeros(size(D,1)+2,2);

twocolumn(1,1) = (C*v)’*(C*inv(0-D)+*v)/a;

twocolummn(1,2) = 0;

twocolumn(2,1) = (C*v)’*(C*inv{(-a*eye(size(D,1))-D)*v)/{(-a);

twocolumn(2,2) = —a;
[V.e] = eig(D); e = diag(e);
W = inv(V);

for n = 1 : size(D,1),
twocolumn(n+2,1) = (C*v)’*C*V(: ,n)*W(n,:)*v/e(n)/(e(n)+a);
twocolumn{n+2,2) = e(n);

end;

function value = twocolumn_value(twocolumn,t)
value = t * 0;
for n = 1 : size(twocolumn,1),
value = value + twocolumn(n,1) * exp(twocolumn(n,2)*t);

end;

151

10



GETRR TR R TR T %%
% costmiss.m %

BRBTTTT R %% % T % %

% the cost curve for non-detection %
% the non-detection rate is measured in the time scale of second %

% a fault should be detected in seconds or minutes %

function cost = costmiss(taumiss)
tau_scale = 200,

cost = 1 — (taumiss/tau_scale+1).”—2.2;

RRG %% % T %% %% % %
% costfalse.m %
%% %% %BE TR TR RN % T %

% the cost curve for false alarm %
% the folse alarm rate be measured in the time scale of at weeks %

% for example one false alarm in a month is reasonable %

function cost = costfalse (taufalse)
tau_scale = 8;

cost = (taufalse/tau_scale + 1).7—3;
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