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ABSTRACT
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I. INTRODUCTION

This report addresses the problem of estimating the parameters of

superimposed signals, occurring in a variety of fields ranging from radar,

sonar and oceanography to seismology and radio-astronomy.

In this section we formulate the superimposed signals problem, review

the relevant literature, and present a summary of the content and the

contributions of this report.

1.1 Formulation of the problem

Our formulation of the superimposed signals problem is motivated by the

specific problem of localizing N radiating sources using an array of M

sensors. The signal at the output of the m-th sensor can be described by

N

x (t) = a s (t-: ) + v (t). m=1,2,...,M. (1)
m mn n mn m

n=1

-T/2 < t < T/2

wee s( N I,) M
where {sn(t)}n=l are the radiated signals, [Vm(t)}m=l are additive noise

processes, and T is the observation interval. The intensities amn and the

delays vmn are parameters related to the directional patterns and relative

locations of the n-th source and the m-th sensor. Note that amn is a

function of the radiation pattern of the source in the direction of the

sensor, of the radition pattern of the sensor in the direction of the source

and of the distance between the source and the sensor. However, rmn is only

a function of the distance between the source and the sensor. Hence the

estimation of (amdn and {rmn] yields important information on the locations
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and radiation patterns of the sources.

A convenient separation of the parameters of interest is obtained by

using Fourier coefficients defined by

m(W@i . x M(t)e l dt,
T ./2 m

where wi = 2n(il+i)/T, i = 1,2,...,If and i1 is a constant. In principle

the number of required coefficients tends to infinity. However, since we

consider only finite bandwidth signals, we can use only I<( coefficients.

Taking the Fourier coefficients of (1) we obtain:

N

X(W = ae i mnS(w) + V(W ), (2)
m i mn n i m i

n=l

where Sn(wi) and Vm(0 i ) are the Fourier coefficients of sn(t) and vm(t)

respectively. Equation (2) may be expressed using vector notation as

follows:

X(oi ) = A(wi)S(Wi ) + V( i = 1,2,...,I (3)where 1 

where



X(Wi) = [xl(Wi), X2(Wi),...,M(i)]T

.S(i) = [Sl(oi), S2 (wi),...,SN(wi)]

V(( i) = [Vl((i), V2 (Wi),...'VM(wi)] T

A(o) = i (8 i ) , ai(82 ) ''*ai(eN) ]
i -1-1 -i - 2-

-jw iln -jui2n -wiImn T
( n ) = [alne , a2e ,... ,aMe ]

We use 8n to represent all the parameters of interest associated with the n-

M Mth signal, namely {aI)}n=1 and {rmn}m=l . Our main goal is to estimate the

set {n}_n=l' Note that if the spectrum of the signals is concentrated

around 1l, with a bandwidth that is small compared to 2n/T, then (3) reduces

to a single relation between the observation vector X(w1) and the

parameters, i.e. I=1. In this case it is customary to use many short

observation intervals or simply time samples, and the model becomes:

X(j) = As(j) + V(j); j=1,2,...,J3 (4)

where the dependence on the single frequency w1 is suppressed, and j is the

index of the different samples. Note that the main difference between the

narrowband case and the wideband case is that A is the same in all the I

equations specified by (4) while A(wi) is different in each of the I

equations given by (3). In this report we concentrate on the wideband case

whenever the proposed procedure can handle both the wideband case and the
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narrowband case.

Under the assumption that the number of sources is known, the least

squares estimates of {en } is given by:

I

-n{[ } =arg in Qs Q = -) i ) - A(o )S( i l -n i=l

where |1'[| denotes the Euclidean norm and 0 is the given parameter space.

Equation (5) also represents the maximum likelihood estimates under the

assumption that the noise vectors (V(wi)} are i.i.d. zero mean Gaussian with

covariance o2I.

The minimization required in (5) is not trivial since the vectors S(wi)

and the matrix A(wi) are not known to the observer. However, whenever A( i )

is known Q is minimized by choosing

SW() = [A(w.) HA( )-I A( EH (h) (6)-i1 i I -

as the estimates of S(wi), where ( )H denotes the Hermitian-transpose

operation. Substituting (6) in (5) we obtain

I

n ] arg max L X(wi) A(wi)[A(wi) A(oi)] A(wo) X(wi). (7)

-n i=l

the maximization in (7) requires a multidimensional search over all the

parameters amn and rmn and since this problem is difficult many papers and
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books have proposed suboptimum estimation schemes.

1.2 Literature Survey

A comprehensive literature survey, including more than 120 references

is included in [1]. Also see [2] for many other references not discussed in

[1]. It is beyond the scope of this report to describe every algorithm and

every set of assumptions in the hundreds of estimation schemes that have

been proposed until now. Instead we confine our attention to the techniques

that are currently the most promising.

The EM Algorithm [6]-[8]

The EM (Expectation-Maximization) algorithm was recently proposed by M.

Feder and E. Weinstein for treating the problem described above. The EM

procedure is essentially an iterative algorithm that is guaranteed to

converge to a stationary point of the likelihood function. Hence, if it

converges to the global maximum of the likelihood function the estimates are

exactly the maximum likelihood estimates. The main disadvantages of this

algorithm are:

1) If the likelihood function is not unimodal the algorithm may

converge to a local maximum. Hence, it may be necessary to

overcome this problem by appropriate measures.

2) The algorithm is often slow to converge and the amount of

computation required for each iteration may be large.

In [6]-[8] Feder and Weinstein derived the EM algorithm for the general

linear Gaussian case for known signals in noise and random signals in noise

with known Gaussian statistics. Here we extend these results to the more

realistic case of non-random unknown signals in noise. We also make use of
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the EM algorithm in order to apply the polynomial approach to nonuniform

arrays.

The Covariance Eigenstructure Approach

The covariance eigenstructure approach was first proposed in the time-

domain by Schmidt [3], who called it the MUltiple Signal Identification and

Classification (MUSIC) method, and by Bienvenu [10] who developed an

equivalent frequency-domain procedure. Since its introduction, a large

number of extensions and refinements of this method have been proposed, and

this technique is therefore considered as one of the most practical for

solving the superimposed signal identification and retrieval problem. Note

however that since this method does not attempt directly or indirectly to

maximize the likelihood function, it is suboptimal. Yet, it yields good

results for sufficiently high signal to noise ratio (SNR). Its main

advantages are:

1) It relies on an algorithm which is not iterative, and hence it

eliminates the problem of converging to local stationary points.

2) The amount of computation is less than the amount required for the

EM algorithm.

Its main drawbacks are:

1) The algorithm cannot be used in problems in which there are only a

small number of observations.

2) There is no natural way to extend the algorithm to handle wideband

signals. For different extensions for wideband signals, see [9]-

[15].

In this report we show how the MUSIC algorithm can be used in the
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rather interesting and practical case of non-omnidirectional sources in the

near field of the array.

The Polynomial Approach [5], [16]-[18].

The polynomial approach in the context of maximum likelihood (ML)

estimation was introduced only recently by Bresler and Macovski [5]. This

approach is limited to the special, but important, case of linear, uniformly

spaced, narrowband arrays.

Although the starting point of this technique is precisely the ML

estimation problem described above, the algorithm proposed in [5] is not

guaranteed to yield results that are confined to the a-priori known

parameter space. However, in simulations, the algorithm converges within 5-

10 iterations to the right results, for high enough SNR. In this report we

extend the polynomial approach to nonuniform arrays.

Summary of Content and Contributions

In Section II we first briefly review the EM algorithm and then

following the approach proposed by Feder and Weinstein, we derive an EM

algorithm for the general case of superimposed, unknown deterministic

signals in noise. This extension of the work in [6]-[8] is important for

obvious reasons. However, the results are very general and require some

refinement for practical computation. This is done in the last part of

Section II in which we show how to obtain an estimation of the location and

intensity parameters by a relatively efficient EM procedure. In Section III

we describe a novel and efficient algorithm for computing the ML estimates

of superimposed signals. The algorithm is equally applicable to wideband

sources and narrowband sources and does not require a knowledge of the
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statistical properties of the signals. Typically, it requires less

iterations than the EM algorithm. In Section IV we briefly review the

eigenstructure approach and then we employ some of the ideas of Section II

to extend this approach to the estimation of the radiation patterns of the

sources as well as the location of the sources. Some users may prefer this

suboptimal approach, since it is very fast and yields good results at high

enough SNR. Section V is devoted to linear, narrowband arrays with

nonuniform sensor spacings. We make use of both the polynomial approach and

the EM algorithm.
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II. APPLICATION OF THE EM ALGORITHM TO THE ESTIMATION OF SUPERIMPOSED

UNKNOWN SIGNALS IN NOISE

In this section we briefly review the EM method and then apply it to

the ML problem described above.

II.1 The EM Method

Let X denote the observation vector and 0 represent the parameter

vector. If fx(XI8) is the conditional probability density function of x

given 8, then the ML estimate of 8 is:

8 = arg max f (XIO) = arg max ln[(f(Xlo)1, (8)
8eo - 8ee

where 8 is the parameter space.

In many cases of interest one would like to observe Y, the "complete

data", instead of X, the "incomplete data", where the relation between X and

Y is given by some non-invertible mapping:

H(Y) = X.

From Bayes' rule we have

ln{f (Xle)) = lm{f (Yjo)) - ln{fzlx(Ylx,e)) (9)

Taking the expectation of (9) over X given X and under the assumption that

the parameter is equal to 8', we obtain



L(O) = ln(f We) = Q(Ie') - H(eole') (10)

where

Qele, -- E{ln{f (YIe)IX,e8'

H(cele,') - E{ln{f ic1x(MIe Ix1e,}.

Using Jensen's inequality it is-easy to verify that

H(Oele, ) < H(_e'l_ '). (11)

The EM procedure may be described by the following sequence [20]:

(a) Initialization: set p=O, and @(P) = 00.

(b) E-step: Determine Q(_eo(P)).

(c) M-step: Choose e(P+l) to be the value of 8eO that maximizes

Q(ce lecp)).

(d) Check the convergence of 0. No - p=p+l, go to (b).

Yes - stop.

In every cycle of the algorithm the likelihood function L(8) is increased,

since:

L( (P + 1 ) ) = Q(8(P +1 )_e ( p ) ) - H(e(P +1 ) le(P))

> Q(eŽ( p ) (p ) ) - H(e ( p) le( p ) ) = L(e(P)).
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The inequality holds due to (11) and due to the M-step. For proof of

convergence of this procedure, see [21].

11.2 Application to Array Processing

In this section we apply the EM method to the case of superimposed

unknown nonrandom signals. We concentrate on the wideband case described by

equations (5). The modification for the narrowband case is straightforward.

Following [6]-[8] we choose the "complete data" as the observation of

each of the signals separately. Hence

Y (() = ai(On)Sn( i ) + V (i), n = 1,2,..,N;
-n i - -n i'

(12)
i =1,2,...,I;

where the fictitious noises [Vn(Wi)) are chosen to be mutually uncorrelated,

zero mean Gaussian vectors with covariance aI satisfying

N

No2 = a2, and V V(.) = V() i = 1,2 ,I (13)
1ni 

n=l

The complete data vector is

Y_ = [Y (ho1), Y (o2),... (i)]T

where



13

~Y( ) ~T T ) T T
Y( i: [ Y , X2(wi)···,_Y (ei)]-'}i ' -2 i -N i

The Nincomplete data" (i.e. the observed data) X is defined by

T T T T
X = [XT(e1), XT(o2),...,xT(aI)] ,

and is obtained from Y by the linear transformation

X = GY,

where G is a block diagonal matrix with I blocks:

G = H. 

[H

and the matrix H is constructed of N identity matrices of size MxM,

H= [IMI M ... IM] .

We now turn to evaluate the functional Q(0e10). We recall that Y is

Gaussian with known covariance o2I and unknown mean R(M) (where the

parameter vector e includes not only the parameters {amn} and ({mn) but also

the signal parameters Sn(wi) with l_<i<I, 1<n.(N), hence
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ln{f (IX,O)} = -In det(aG2I) - 21IX - (14)- -21 ~ly (o) II
°1

and

cl_') =- K -- -y II2_- e) 112 (15)

where K represents terms independent of 0 and

= E{Ylx, e') = u(') + G (GO ) (x - G(e')). (16)

Equation (15) may be rewritten as

N I

Q(OD')e = K - ) I Yn( i) - ai(8 )S n( i ) 112 (17)2 s t ''-n -i -n n 1
1 n=1 i=l1

and using the block diagonal structure of G, equation (16) becomes:

- (w.) = a( )S( ) + 1 X() - A'()S'( ) (18)-n i in n i N i i i

The proposed EM algorithm may be summarized as follows:

(a) Guess initial values for the parameters (amn} and {Tmn } , and

construct the matrices A(wi), i=1,2,...,I. Compute initial

estimates for S(wi) using (6).

(b) E-step: Substitute in (18) the current estimates of the parameters
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and compute (yP)(Gi) for l<n<N, l(i<I.

(c) M-step: Find the maximum of (17) for each en. This is simply:

I

p+l) arg max .} i(8_)Y(P) (Wo ) 2 /11ai()I) 2
-n e n i

-n i=l

S(P+1) W) aH(=(p+1)) ( )/I I(.(op+1))i 2
n i -i -n -n n

(d) Check convergence of {On}. If not: go to step (b).

If yes: done.

Observe that the EM algorithm presented here solves iteratively the

original maximization problem over the parameters of N signals. At each

iteration we have to solve N reduced maximization problems, one for each

signal. However, even the reduced maximization problem specified by the M-

step is not trivial, since 2(M-1) parameters (amn}, U{mn } are not known.

Therefore, in the following sections we will attempt to reduce further the

computational requirements of each iteration.

11.3 Further Simplification of the EM Procedure

In this section we show how the parameters of each source can be

estimated with minimal effort. We first define two vectors:

a = (aln, a2n'* ,a mn)T n = (nln' 2n' mn

which we call the intensity vector and the delay vector of the n-th source.
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Note that one can always choose the first component of -n to be 0, and

Iian[I = 1 without loss of generality. This is true since we have extra

degrees of freedom due to the estimation of both an and (Sn(wl)). The n-th

column of A(wi ) is a function of both an and _nJ however, these parameters

separate as follows:

ai(0n ) = ti( n)an (19)

where ri(rn) is a diagonal matrix defined by

-jio 2n -jmo n
r.(a ) = diag(1, e ,..., e

1 -n

Now, the maximization problem in the M-step becomes:

I
(p+l) = a(p+l)I (P+l) ( = a (8 )Y¥ (pi)(¥ (i -) 

-n i=1

= arg max a ( ) ( i)(M (W)) ()]a::1i -n - -n -I -n -n
-n'-n i=1

The solution of the above maximization problem is given by:
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(p+l) = arg max Imax {C(n)} (20a)

-n

a(P+)= Umax (20b)
-n

where Xmax{C(_n)} is the largest eigenvalue of the matrix C(_n) defined by

C( = ) = Re{ r( Y (W )(Y( t)( )) Hri(n)}-n i -nn )i -n i 1-
i=l

and Umax is the associated eigenvector.

Equation (20) requires a search over (M-1) parameters (the components

of rn). However, even this problem can be reduced by recalling that the

delay parameters are not independent. One can express each of the delays in

Tn as a function of only two or three source location parameters. This is

true since the delays are only a function of the distance between the source

and the sensor (we assume that the speed of propagation in the medium is

known and that the sensor location is known). Now, the search is limited to

a three dimensional search over all possible individual source locations.

If one is interested in the planar case or azimuth only system, the search

is confined to only two or one dimension, respectively.

Finally, we note that the above method provides a very useful tool for

estimating the vectors {an) which in turn provide valuable information

regarding the directional properties of the sources and/or the sensors, and

also might be used to evaluate the attenuation of the medium in various
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directions.
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III. Direct Maximum Likelihood Approach

In this section we present a novel and efficient algorithm for

computing the maximum likelihood estimates of multiple signals observed by

an array of sensors. The algorithm provides estimates of parameters related

to the directional patterns of the sources {an) as well as estimates of the

location parameters of the sources {En } . Furthermore, the algorithm is

equally applicable to wideband sources and narrowband sources and does not

require a knowledge of the statistical properties of the signals. In this

section we concentrate on the wideband case. The modification for the

narrowband case is straightforward, and can be found in LIDS-P-1670.

We basically want to find a solution for equation (5). Relation (6)

enables us to update the estimates S(wi) whenever we have new estimates for

A(w i ) . The main principle of the algorithm is to perform successive

minimization operations on the parameters of each signal, holding all the

rest of the parameters fixed. For example, suppose that we want to perform

a minimization with respect to the k-th signal parameters, then Q can be

rewritten as

I

Q= IIyk(hi) - ai(6k)Sk(Wi)Il2 (21)

i=1

where ai(_k ) is the k-th column of A(wi), Sk(wi) is the k-th component of

S(wi) and Yk(wi) is given by
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Yk(wi) = X(Wi) - A(iw)S -(w (22)

where Sk(wi) is simply S(wi) with the k-th component replaced by zero.

The minimization of (21) with respect to Ok, using (6) with A(wi)

replaced by ai(ek), is given by

I

k arg min _ IY k(h i ) - ai a(ek) [ai(_ek ) ai(k )yk_ _I2

k H i=l

I

= arg max I (Yk W.)) ai(k) /II-ai(-k)II (23)
o sO

-k i=l

We now apply the assumption I[ai(Ok)112 = 1 and the decomposition (19) to

obtain:

k =arg m ax a{R } (24a)

-k = -Vmax-k -

where X-max{Rk} is the largest eigenvalue of the matrix Rk given by:

i= {et )l (rk) )(Y (wi)) k .(Hk)) (25)
d U e-k- i i l

i=1

and Umax is the associated normalized eigenvector.
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The maximization described by (24a) can be performed by a simple search

over the space of -ke induced by all possible individual source locations,

or by a simple gradient subalgorithm.

The algorithm is summarized as follows:

(a) Initialization: Select ({n', [an). Set k=l.

(b) Compute S(wi) according to (6).

(c) Compute Rk according to (22) and (25).

(d) Find -k, hk according to (24).

(e) Update the k-th column of A(wi) for l/i<I with the new k, 4ak' set

k=k+l, if k>N then k=l.

(f) Check the convergence of {an= N If yes: done n if no:

go to (b).

Observe that at each updating step (i.e., steps (b) and (e)), we

decrease the cost function Q defined in (5). Since QiO the algorithm will

converge at least to a local minimum of Q. Depending on the initial

estimates of an, vn and on the structure of Q, the local minimum may or may

not coincide with the global minimum.

This algorithm may be viewed as a modification of a special case of the

EM algorithm. According to the theory of the EM method, the estimates

generated in the M-step should be used in the E-step. This may be applied

to the present algorithm as follows. Instead of updating S(wi) using (6) in

step (b), S(wi) is updated by replacing only the k-th component by the

estimates, aH( k)Yk(t.), which can be computed in step (d), following the

computation of ek and -k. Note that aH (k)Yk(wi) is simply the value of

Sk(wi ) that minimizes (21) whenever ai(8k ) is known. It is clear that the
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last procedure typically will require more iterations than the proposed

procedure since the updating of S(wi) is done without using all the

currently available information.
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IV. EIGENSTRUCTURE APPROACH FOR ARRAY PROCESSING WITH UNKNOWN INTENSITY

COEFFICIENTS

The eigenstructure approach for array processing is examined for the

general case in which it is required to estimate parameters related to the

directional patterns of the sources {an) as well as parameters related to

the location of the sources {[n]. In recent years there has been a growing

interest in eigenstructure based methods, perhaps due to their applicability

to general array configurations and due to their simplicity and relative

efficiency. A comprehensive discussion of the method may be found in [3],

while [1] contains a literature survey of most of the recently published

results.

An assumption common to all previously published contributions in this

area is that any given source is observed by all the sensors with the same

intensity. This assumption is reasonable only if the sources are in the

far-field of the array and the sensors have identical radiation patterns.

In this report we remove this rather restrictive assumption and thus extend

the applicability of the eigenstructure approach to the case of near-field

sources and/or sensors with unknown radiation patterns.

Since there are more than one extension of the eigenstructure approach

to wideband signals we concentrate here on the narrowband case. The

modification for each of the wideband extensions described in [9]-[15] is

straightforward.

The following assumptions are made:

(a) The signals and noises are stationary over the observation

interval.
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(b) The number of sources in known and it is less than the number of

sensors.

(c) The columns of A, in equation (4), are linearly independent.

(d) The signals are not completely correlated.

(e) The noise covariance matrix is known except for a multiplicative

constant o2 .

Recalling that equation (4) describes the narrowband case, the

correlation matrices of the signal, noise and observation vectors are given

by

R= E[S SH}

C 2Z = E(N NH)

H H 2
R = E X} = AR A + cv (26)x -- S

where ( )H represents the Hermitian transpose operation. The following

theorem form the basis for the eigenstructure approach.

Theorem: Let Xk and uk, k=1,2,...,M be the eigenvalues and

corresponding eigenvectors of the matrix pencil (Rx, 20), with Xk in

decending order. Then,

1) XN+1=N+2 =N2 = XM = 2'

2) Each of the columns of A is orthogonal to the matrix U = [uN+l,

UN+2·... ,M].

Proof: See [14].

This theorem suggests that reasonable estimates of the parameters
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{-n}N 1 may be obtained by first generating an estimate U of U and then

searching over all possible values of en for vectors a(On) that are nearly

orthogonal to U. This may be written as

n = arg minj I a(n )12 (27)

-n

where 1-11 denotes the Euclidean norm. Since there is an extra degree of

freedom, there is no loss of generality in assuming that Ila(On) l = 1.

This also eliminates the trivial solution of (27). Note that (27) requires

a multidimensional search over the parameters (amn) and [{mn ] . To overcome

this difficulty we decompose a(On) as follows:

a(9 ) = V(T ) · a
-n -n -n

where

T
- =( am a2n...,amn )-n = 'ln' a2n' Hymn)

-jolICln -jW1I2n -jW°lmn
r(z ) = diag(e , e , ,e )

-n (ilna' 2n' (' bon) 

Using this notation, (27) becomes
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= arg min an l(i_) u r(Z )an, (28)-n n n n
a ,-n -n

and hence

#= arg min mn{C( )}, (29a)-n -n
-n

a = in (29b)

where 8min{C( n)) is the smallest eigenvalue of the matrix C(rn) given by

C(in) = Re{( n)IHr( n ) } , (30)
-n -n -n

and Wmin is the associated normalized eigenvector. Equation (29) requires a

simple search over the space of vectors En' induced by all possible

individual source locations.

The proposed algorithm may be summarized as follows:

(a) Estimate the observation covariance matrix:

R = 1 x(j)X()j>H

j=1

(b) Find the M-N eigenvectors, {_k', corresponding to the smallest M-N

eigenvalues of the pencil (Rx, 0), and construct the matrix:
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a a

[N+1' -N+2 M

(c) Evaluate, for all possible source locations, the "spatial

spectrum' given by:

P(D) =
min

6 {C(0))

where C(s) is defined by (30).

(d) Select the N highest peaks of P(?). The corresponding values of _

describe the source locations, and the corresponding eigenvectors

describe the intensity vectors [an).

Examples

To illustrate the behavior of the algorithm, let us consider two

examples:

Example 1. Consider a uniform linear array of five sensors separated by

half a wavelength of the actual narrowband source signals. The sources are

two narrowband emitters located in the farfield of the array. In this case,

if yn denotes the bearing of the n-th source, n=1,2, relative to the

perpendicular to the array baseline, the differential delay is given by nmr

= (mr-l)sin(yn). The first source at a bearing of -9 degrees was observed

with the intensity vector aT = [1,1,1,1,1], the second source at a bearing

of 11 degrees was observed with a = [1,.8,.6,.4,.2]. In this case the

difference in intensity may be viewed as caused by the directional pattern

of the sensors rather than the directional pattern of the sources. We
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generated 100 independent samples at a SNR of 20 dB. The spatial spectrum,

P(y), is plotted versus the angle of arrival (bearing) in Figure 1. Two

very sharp peaks are observed at -9 degrees and 110 degrees. The associated

aTestimates of the intensity vectors are al = (.99,1.0,.99,.99,.99) and

-2T = (1.0,.79,.59,.40,.20). The spurious peak at 3 degree is associated

with iT = (1.0,0.7,0.3,-0.1,-0.3) and therefore can be easily eliminated,

since under our assumptions the amn's must be positive. For comparison, we

plotted the result of the MUSIC algorithm [3] in Figure 2. Since only one

source conforms with the assumptions of MUSIC, only one peak is observed.

Example 2.

Consider Example 1 except that here the SNR = 50 dB, y1=11 degrees

y2=
2 5 degrees and aT = a2 = (1,1,1,1,1). The spatial spectrum is plotted in

Figure 3. We observe 2 peaks at 11 and 25 degrees and 3 more spurious

peaks. The two peaks on the leftside are associated with nonphysical

intensity vectors and therefore can be eliminated by post processing. The

spurious peak at 18 degrees is associated with -S
T = (.77,.94,1.0,.92,.73)

and therefore is an ambiguous solution. Ambiguous solutions occur whenever

the continuum a(e) ("array manifold") intersects the signal subspace (the

space generated by the columns of A) in more than N points [3].
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Conc lus ions

In this section the eigenstructure approach has been used to obtain

estimates of source locations as well as estimates of the intensity vectors

{an}, simultaneously. The estimates of {an) may be useful in their own

right, but their estimation is essential, even if one is only interested in

the source locations, in cases where it is not appropriate to assume

omnidirectionality. For example, whenever a source is in the near field of

the array, its radiation pattern can rarely be assumed omnidirectional.

This is also important in applications in which it is unrealistic to assume

that the radiation pattern of each sensor is accurately known (this usually

requires frequent calibration and a large memory).

We observed that in some cases post-processing is required to eliminate

spurious solutions. The post processing decisions may rely on the sign of

the intensity vectors [{n) and on any prior knowledge concerning the source

locations and expected intensity vectors.
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V. Nonuniform Array Processing Via the Polynomial Approach

Recently an effective technique for computing the maximum likelihood

(ML) estimates of the signals was introduced by Bresler and Macovski [5] and

Kumaresan, Scharf and Shaw [17], [18]. We refer to this technique as the

"polynomial approach" since it is based on expressing the ML criterion in

terms of the prediction polynomial of the noiseless signals. The polynomial

approach relies on the assumption that the array of sensors is uniformly

spaced. It is well known [22] that the optimal sensor configuration is not

uniform under many reasonable criteria. For example, minimum bearing

variance is obtained by placing half of the sensors (with a spacing of half

of the design wavelength) at each end of the given aperture; minimum range

variance is obtained by placing one fourth- of the element at each end and

half in the middle; and optimal position estimation is obtained by placing

one third of the sensors at each end and the middle. Furthermore, when

operating long uniform arrays, often some of the sensors do not function and

their outputs must be ignored, yielding in effect a sublattice array. In

this section we present a method for extending the polynomial approach to

sublattice arrays. We treat the sublattice array output as an incomplete

data observation. Therefore the EM algorithm is directly applicable. This

algorithm was only recently applied to array processing problems by Feder

and Weinstein [6]. However, in [6] the EM algorithm is used to enable the

estimation of one signal at a time, while here it is used to enable the use

of the polynomial approach which estimates all the signals simultaneously.

Since the polynomial approach is not widely known, the basic principles of

this technique are briefly reviewed here for clarity. Note that although we
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concentrate on the array problem, all the results are equally applicable to

the corresponding time series problem discussed in [5], namely, the

estimation of superimposed complex exponential signals in noise.

This section is organized as follows. The polynomial approach for

processing data collected over a uniform array is described in V.1. In V.2

it is shown how the EM algorithm can be used to adapt the polynomial

approach to the case of sublattice arrays. Several examples of our

procedure are presented in Section V.3, and Section V.4 contains some

conclusions.

V.1 Uniform Arrays and the Polynomial Approach

Consider N narrowband radiating sources observed by a linear uniform

array composed of M sensors. The sources are assumed to be far enough from

the array, compared to the array length so that the signal wavefronts are

effectively planar over the array. The signal at the output of the m-th

sensor can be expressed by

N

Xm(t) = sn(t-(m-l)Tn) + v (t); m= 1,2,...,M,

n=1

(31)

- T/2 < t < T/2,

where (sn(t)} N=l are the radiated signals, {vm(t)} M are additive noise

processes, and T is the observation interval. The delay of the n-th

wavefront at the m-th sensor, relative to the first sensor, is given by

(m-1)rn. The parameter, .n' can be expressed in terms of the sensor

spacing, d, the propagation velocity, c, and the source bearing, yn'
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relative to the array perpendicular as

In = (d/c)sin(yn).

A convenient separation of the parameters {n IN=l to be estimated maybe

obtained by using Fourier coefficients, defined by

1 ST/2 -j0 t
X - x (t)e dt .
m T 2-T/2 m

Since we assume that the spectrum of the signals is concentrated around c0,

with a bandwidth that is small compared to zn/T, a single Fourier

coefficient is enough to completely describe the signals. Taking the

Fourier coefficients of (1) we obtain:

X e= n5e nS + V , m =1,2,...,M; (32)
m a. n m

n=1

where Sn and Vm are the Fourier coeffients of Sn(t) and vm(t) respectively.

Equation (32) may be expressed using vector notation as

X = AS + V, (33)

where

X = i[X, X2 ... IxM]
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S= [S1 S2 ... SNT

V= [V1 , V2 _...VM]T ,

A = [a , 22..._aN],

2 M-1 T
an = [1, Xn, X n ,.,hXn n=l,2,...,N]

-jwoICe O n

n

In many cases estimation is based on more than one realization of

equation (33), corresponding for example to several time samples or

observation intervals. In that case we use the index j to denote the

different realizations:

X. = ASj + j j = 1,2,...,J. (34)

Instead of estimating {(n} directly we concentrate on estimating [kn}nN=l .

Under the assumption that the vectors [Vj])=1 are i.i.d. zero mean and

Gaussian with covariance o2 I, the maximum likelihood estimates are given by

J
AN a - AS. 11 (35)
{iX}nl = arg min {R} R IXj ASj (35)
nl n=1 XCUC j=1

where II-'I denotes the Euclidean norm and UC stands for the unit circle

which is the parameter space, in this case.
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The minimization required in (35) is not trivial since the vectors {Sj)

and the matrix A are not known to the observer. However, whenever A is

known, R is minimized by choosing

. = (AHA)-1AHX. (36)
-j -a

as the estimate of S., for j=1,2,...,J, where ( )H represents the Hermitian-

transpose operation. Substituting (36) in (37) we obtain:

J J

R= I iIj- A(AH A)-IHXf A = -XjPXj, (37)

j=1 j=l

where

H -1 H
P. = I - A(AHA) A

The polynomial approach relies on the introduction of the polynomial

b(z) = b0zN + blzN- 1 +...+ bN, whose zeros are the parameters of interest

{kn)nN=l . Observe that by definition the Mx(M-N) Toeplitz matrix B defined

by
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bN lbN-_ .. b0

H bN bN .. b0B = Nb N N bN_ 0 ' b0

*bN N-1 , 0 e

is orthogonal to A, i.e. BHA = 0, and hence PB = B(BHB)-lBH. Now the

minimization in (35) can be expressed in terms of the coefficients ({bi}N=

as

J _j
b = arg min jxJB(B B Bx., (38)

b-b j-=1

where b = [bN, bN-_l,...,b]T, and 0b is the space of all the vectors whose

associated polynomials have zeros only on the unit circle. It can be shown

that since b(z) has its roots on the unit circle, its coefficient vector is

a-conjugate-symmetrico i.e. b = a[bobl,...,bN]H where a is a constant of

unit modulus.

The algorithm for the minimization required in (38) is based on the

relation

Bj. = X.b, (39)

where Xj is the (M-N)x(N+l) matrix defined by:
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Xj = [X.(N+1:M), X.(N:M-1),...,Xj.(:M-N)],

and Xj(k:r) describes a subvector of Xj consisting of all of the components

from the k-th component to the r-th component. Substituting (39) in (38) we

obtain:

b = arg min b C b, C = 2 2.(B4B) -..

bS j=1

This relation is used in the minimization algorithm [5], [16]-[18]. The

algorithm starts with any initial estimate b ( 0 ) of b and proceeds as

follows:

a) Initialization k=0, b=b(O)

b) Compute C(k) according to (40) using b(k) to construct the matrix

B(k).

c) Find b ( k+ l ) = min bHC(k)b
beeb

d) Check convergence. NO - k = k+l, go to (b).

YES - Continued.

e) Find the roots of the polynomial b(k+l)(z) whose coefficients are

given by b( k+ l )

In [1] the relation b = a[bO,bl,...,bN]H was incorporated in step (c) to

yield a simple quadratic minimization problem. We now turn to the more

practical situation of nonuniform arrays.
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V.2 Sublattice Arrays and the EM Algorithm

In this paper we are primarily interested in the problem where the

measurements are taken along a sublattice arrays of M' sensors. The

sublattice array may be described by a binary vector, 1, of length M. The

m-th component of 1 is 1 if the mr-th sensor of the full array is part of the

subarray, and it is zero if the sensor is missing. Equation (34) may be

converted to describe a sublattice array through a left-multiplication by a

transformation matrix G. The M'xM matrix G is constructed by eliminating

all the zero rows in diag(l). For example an array of three elements in

positions 1,2,5 is described by 1T = (1,1,0,0,1) and

0 0 0 o

G = 0 1 0 0 0

Multiplying equation (34) by G we obtain, for a given sublattice array, the

equation:

Y. = GX. = G(AS.+V.), j = 1,2,...,J (41)
-j -j -3 -a

We refer to {(Xj as the (unavailable) "complete data* and to {Yj} as the

observed data. Let Y = [YT , Y T,...,Y]T denote the observation vector and

0 = [_AS 1 , AS2,...,ASJ] represent the parameter vector. If f(Y1e) is the

conditional probability density function of y given 0, then the maximum

likelihood estimate of 0 is:
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0 = arg max f (Y10) = arg max ln{ff(YIO)} (42)
80 o80

where 0 is the parameter space. In order to use the polynomial approach it

would be useful to express Y in terms of the complete data vector

X = [4T, T XT]T. This relation is given by

Y = FX , (43)

where F is the block diagonal matrix with J blocks:

F [=
.= 'G

The application of the EM algorithm to the problem at hand requires

only the determination of Q(810'). We recall that X is Gaussian with given

covariance a2I and unknown mean 0, where 0 = ( T ...,T)T and

0. = AS. j = 1,2,...,J.

Hence,

lncf (xlo)) = -MJ..ln{,r, 2 _ -IIX11 2 + 11112 - ox - x

Therefore,
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Q(cele,) = X - - Iel 2 He(44)

where K represents all the terms independent of e and

_ = EXIXy,O'} = e' + F (FF )- (Y-F') . (45)

Note that the specific 0 that maximizes (17) is the same 0 that minimizes

the functional

J J

R, = IX- 1 2 I -- j 1 12 IIX - AS l12. (46)

j=i j=l

Hence, the M-step of the EM algorithm maybe performed by using the

polynomial approach for minimizing (46).

The following relations are useful for the actual proposed procedure.

Using the block diagonal structure of F and the relations GGH = I and GHG =

diag(l), equation (45) maybe rewritten as:

Xj = diag()O + GBY. (47)j - -a -j

where 1 is the complement of 1 (zeros and ones are interchanged). The

parameter vector ej is simply the estimate of ASj obtained in the previous

cycle and therefore (47) may be written also as:
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(p ) = diag(l)(A(A A) A }( p ) + GY~_ = diag(l){(I-B(BHB)-B I)X } ( ) +

-a --j , -- -j

+ GHY.,
-j

using the notation of the polynomial approach. As one would expect,

equation (47) states that the components of Xj that correspond to existing

sensors are always equal to the observed data, i.e. the corresponding

components of Yj.

The proposed EM algorithm may be summarized as follows:

(a) Initialization: Select initial values for {Xn N=1 find the

corresponding b (0 )

Compute: A1=GA; Sj=(AlA)- )IA J.;

X ) = diag(i)AS + GHY. (See (47))
j - j -j

Set: p=0.

(b) Use the minimization algorithm for uniform arrays:
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(b.1) Constuct . = )(N+:M), , :M-N)]
.1 --

set k=O, b = b ( p )

(b.2) Construct B using bk).

I

Compute C = H(B) j.

j=l

(k+1) H
(b.3) Compute b = arg min bHCb

bleb1

(b.4) Check convergence of bl. No - k=k+l; go to (b.2).

Yes - b = b(k+l) continue.

(c) Construct B using b(P)

Compute:

X(p1) = diag(l)(I - B(B HB) IBH(P) + GY..

a
(d) Check the convergence of Xj. No - p=p+l, go to (b).

Yes - continue.

(e) Find the roots of the polynomial b( P ) (z) whose coefficients are

given by b_
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V.3 Examples

To illustrate the behavior of the algorithm, let us consider two

examples:

Example 1: Consider a uniform linear array of 6 sensors separated by half a

wavelength of the actual narrowband source signals. Now, assume that the

two middle sensors are missing (i.e. 1T = (1 0 0 1 1)) this is the

optimal configuration for bearing estimation when the given aperture is 2.5

wavelengths and the number of sensors is limited to 4.

The sources are two narrowband emitters located in the far field of the

array. One source is located at a bearing of 10 degrees, while the second

source is located at a bearing of 25 degrees. We generated only 10

independent samples with a SNR of 30 dB. The initial guess was (I0) = 30,

7(0) = 17 ° . The algorithm converged to within one degree of the right

result in 8 iterations, as shown in Table 1.

Example 2: Consider example 1 where the array is reconfigured so that 1T =

(1 0 1 0 0 1). Note that only 3 sensors are used and they are separated by

one wavelength and 1.5 wavelengths. Nevertheless, the algorithm converged

to within one degree of the right result in only 7 iterations, as shown in

Table 2. The initial guess was y(O) = 30, y(O) = 35 ° .

V.4 Summary

We have proposed a novel EM algorithm for the estimation of

superimposed signals observed by nonuniform arrays. The algorithm is

efficient and provides accurate results even when the number of samples is

small and the sensors are separated by more than half a wavelength.
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Note that convergence theorems exist for the EM method. However,

convergence theorems for the polynomial approach are not yet available and

therefore further investigation is required to prove the convergence of the

proposed technique. Finally we would like to emphasize that the EM

algorithm is guaranteed to converge to a local maximum of the likelihood

function. Thus we would expect that the algorithm described here will

converge to the globally optimum result only if the initial estimates are

good enough. Fast initial estimates can be obtained by using simpler

methods such as the MLM, MEM or the MUSIC techniques (see [1] for a review

of these methods).
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Iterations T1 12

No. degrees degrees

0 3.00 17.0

1 6.15 19.38

2 7.29 20.49

3 8.16 21.47

4 8.78 22.30

5 9.23 22.95

6 9.55 23.46

7 9.77 23.83

8 9.93 24.12

9 10.04 24.32

10 10.12 24.47

Table 1: Evolution of the algorithm for 1T = (1 1 0 0 1 1).
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Iterations A T

No. degrees degrees

0 3.00 35.00

1 -0.01 18.13

2 3.46 18.27

3 7.18 20.16

4 8.74 21.90

5 9.39 23.01

6 9.68 23.69

7 9.84 24.10

8 9.92 24.35

9 9.96 24.51

10 9.99 24.61

Table 2: Evolution of the algorithm for IT = (1 0 0 1).
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Figure Captions

Figure 1: Spatial spectrum of the proposed procedure for two far-field
sources.

Figure 2: Spatial spectrum of the MUSIC procedure for the case of
Figure 1.

Figure 3: Spatial spectrum of the proposed procedure for two far-field
sources with equal intensity vectors.
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Spatial spectrum
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Spatial spectrum
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