Performance Limits on Chemical Computation
by

George E. Homsy 11

B.S.E. Electrical Engineering and Computer Science
University of California at Berkeley, 1987

S.M. Electrical Engineering and Computer Science
Massachusetts Institute of Technology, 1997

Submitted to the Department of Electrical Engineering and Computer Science in
partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the
Massachusetts Institute of Technology

February, 2004

)
© 2004 Massachusetts Institute of’ Technology
) @H rights @ed /

P o I ... George Homsy
ment, of Elect\qca)yE'@meer /ﬂ and, Computer Science

Certified by.... oo, o SR IS
Yy / / Thomas F. Knight
/ o nior Res arch Suentlst

Accepted by..................... L

" Prof. A{‘tﬁur C. Smith
Chairman, Department Committee on Graduate Students

[MASSAGCHUSETTS INSTITUTE,

OF TECHNOLOGY

APR 15 2004

ARCHIVES

LIBRARIES

Performance Limits on Chemical Computation
by
George E. Homsy 11

Submitted to the Department of Electrical Engineering and Computer Science
on January 9th, 2004 in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

ABSTRACT

A class of novel computers uses solute concentrations of distinct chemical species as
logic signals and diffusion for signal transport. I establish a bound on the speed, density,
and error rate of such computers from first principles.

T let the chemical computer engineer choose a “design tuple” of independent param-
eters: number of chemical species, total solute concentration, signal molecule size, and
a parameter called the “cell size”. I establish a functional relation between the design
tuple, and the “performance tuple”. (operating frequency, signal density, error rate). I
give a lower bound on the probability of a logic error in one computation step, and an
upper bound on the frequency of operation, both as functions of the design tuple.

I evaluate these bounds for ssDNA oligomers, and conclude that DNA computation
has unacceptable error rates if the hybridization regions are less than eight nucleotides
in length.

Ithen argue that, given a suitable scalar-valued performance metric as a function over
performance tuples, there is a globally optimal design tuple maximizing performance.
I present two conjectures seeking to explain (a) why neurons use small molecules to
transport information, and (b) why cells have the size they do.

In part two I develop such a performance metric based on Toffoli's computation
capacity and computation density, extending and generalizing in these ways:

® as a local statistic on a uniform system, it can be evaluated for very large systems
without exhaustive counting

e it explicitly takes the error rate of the underlying physical process into account

I then show a relation between this metric, and a quantity of dynamic systems called
specific ergodicity. This is a novel result of theoretical importance, and is the central
result of part two. It allows me to unambiguously compare the utility of computers
varying vastly in speed, error rate, and signal density.

I compare the maximum possible performance of proposed DNA computers from the
literature with current commodity electronic computers, and conclude that diffusion-
driven, DNA hybridizaton based computers cannot exceed the performance of current
electronic computers by more than a factor of 40000, and probably by much less.

Thesis supervisor: Thomas F. Knight
Senior Research Scientist

For my grandfather,
George E. Homsy

Special thanks to
e From the Al lab:

— Tom Knight, Norm Margolus, Gerald Sussman, as well as Raissa D'Souza,
for getting me started on this path, and for helping to refine my view
of “The Way Things Must Be”

— @ill Pratt, Hugh Herr, and the leglab crew; some of the most amazing
engineers on the planet

— Hal Abelson, Gerald Sussman, and the “amorphous crew”: Becky Bis-
bee, Ron Weiss, Radhika Naghpal ef al.

_ Ron Wiken, the man with a plan, and the keeper of The Dangerous
Tools

— The Tom Knight crew: Bunnie, Jeremy Brown, Nick Papadakis et al.;
the Outside Thinkers

_ Dan and Jessica and the “San Francisco Axig”
— Lisa Tucker-Kellog and Vera Ketelboeter

e Bina Altera, Jody House, Emily Dotton, Ida Martinac, and Melissa Colin,
for love, compassion, and faith

e Laird Nolan, Ariane Martins, Katharina Trede, Jeremy Zucker, and Ann
Sweeney, for emotional support in hard times

¢ Etienne de la Croix, for helping me stay sane

e Monica, Marilyn, Claire, and Peggy in the graduate office, for support and
hard work, and always leaving me with a smile on my face

e Larry Frishkopf, for his understanding and patience

e Leroy, for sleeping next to me and purring me to sleep each night; and Ninja,
for cleaning my ears and purring me awake each morning

e My family: Bud, Bryn, and Rob — every bit a part of me

e my advisor, Tom Knight — for patience, inspiration, enthusiasm, wit, and
for always being true to his own Way of Happiness

Contents

I Chemical Computation

1 Introduction to Chemical Computation

1.1
1.2
1.3

Roadmap
Overview of themodel
Previous Work
1.3.1 Computation in living systems
1.3.2 Synthetic chemical computers
1.3.3 Theoretical considerations

2 Performance Envelope of Chemical Computers

2.1

2.2

2.3

2.4

2.5

Model of computation
2.1.1 Definitions
2.1.2 Relations governing performance
The Molecules:

Relations between Dy, Dr, vy, v, and L.
2.2.1 Diffusion constant scaling
222 Volumescaling
The Transport Mechanism:

Relation between Dy, AV,and f.
Geometry of the Reactor Vessel:

Relation between o, vy, AV, N,andr
Limitations on the Code:

Relation between N, L, and dexp.
25.1 Theapproach,
2.5.2 Definitions L
2.5.3 A restatement of the problem
254 Anupperboundondexp L

9

13

15
16
17
21
21
21
21
23

CONTENTS

2.6 The Gating Process:

Relation between Agy, dezp,and (€) oL 42
2.7 Discussion 45
3 Biopolymers and DNA Computation 51
3.1 Applications: DNA Computers 52
3.1.1 Chemical and mechanical properties of DNA 52
3.1.2 General characteristics of proposed in vitro DNA computers 54
3.1.3 Linear bound on mismatch energy 55
3.1.4 Some reasonable operating parameters 56
3.1.5 Performance envelope of proposed in vitro DNA computers 57
3.1.6 Discussiono 99
3.1.7 Summary of findings 66
3.2 Applications: Protein Computationinecells 68
3.2.1 Chemical and mechanical properties of proteins 68
3.2.2 Some reasonable operating parameters 70
3.2.3 Performance envelope of protein-based cellular information

processing 71
4 Conclusions on Chemical Computation 73
4.1 Review e e 74
4.1.1 Implicit restrictions on random chemistries 74
4.1.2 Errors due to randomness in chemical reaction systems . . 75
4.1.3 Transport phenomena and computation speed 75
4.1.4 DisSCUSSION . . .« = v e e e e e e 77
4.2 Speculation: Neurons vs. other cell types 78
4.3 Speculation: Why are cells the size they are? 79
IT Measuring Computation 81
5 Introduction to Computation Density 83
5.1 Computational media 85
5.2 Traits of computational media 86
5.3 Proposed taxonomy of computational systems and media 88
54 Techniques e 89

5.5 Roadmap: toward computation density of infinite, dust-like, stochas-
ticmedia. L e 91
5.5.1 Real-ization: computation density of error prone systems . 93

10

CONTENTS

5.5.2 Measurement: relation of computation capacity to specific

ergodicity for deterministic systems 94

5.5.3 How good is my gunk?: computation density of infinite,
dust-like, error-prone media 95
5.5.4 Discussiono 96
5.6 Applicationso 96
Computation Capacity and Computation Density 99
6.1 Toffoli’s computation capacity and computation density 100
6.2 A statistical approach to computation capacity 101
6.2.1 Estimation techniques 102
6.3 Eliding the distinction between program and input 104
6.4 Computation density in spatially distributed systems 106
6.5 Computation density in time-evolving systems 110
6.6 Infinite systems: Cellular Automata 115
Computation Density of Error-prone Systems 121
7.1 Error-prone systems 122
7.2 Functional effectiveness 0L, 123
7.2.1 Useful specializations 124
7.3 Functional effectiveness as a measure of computation 125
7.3.1 A proposed measure 125
7.3.2 Discussion 126
7.3.3 Applied to feedback automata 129
7.4 Estimating computation density of error-prone media 131

Computation Density, Information Density, and Specific Ergod-

icity 133
8.1 Introduction 134
8.2 Review of specific ergodicity 135
8.3 Finite feedback automata. 136
8.4 Infinite feedback automata (CA’s) 138
8.5 Error-prone infinite feedback automata (stochastic CA’s) 139

8.50.1 Discussion 139

85.2 Examples 140
Conclusions 143
9.1 ReviewofpartII 144
9.2 Computation density of a chemical computer 145

11

CONTENTS

9.2.1 Discussiono
9.2.2 DNA computers revisited
9.2.3 Comparison with electronic computers
9.3 Incompletenessof work
9.3.1 Theoretical treatment of error correction
9.3.2 Enhancement of error model
9.3.3 Weakness in specificity
94 Future Work
9.4.1 Gene Expression Logic
9.4.2 Abstract models of chemistry
943 Simulations
9.4.4 Performance bounds for electronic computers . . .

9.4.5 More thorough investigation of multicellularity

9.4.6 Sensitivity analysis of GEL systems

9.4.7 Generalization to arbitrary stochastic processes

IIT Appendices
A Sub-Additivity of Computation Capacity

B Relation between d,,;,, and dopt

12

Part 1

Chemical Computation

13

Chapter 1

Introduction to Chemical
Computation

15

CHAPTER 1. INTRODUCTION TO CHEMICAL COMPUTATION

Design parameters Intermediate Performance parameters
Relations

Figure 1.1: The basic plan of part one: establish a set of design parameters for
chemical computers, and a set of performance parameters. Then develop a set
of intermediate relations in order to show a direct functional dependence of the
performance parameters on the design parameters.

1.1 Roadmap

Part one of this thesis is concerned with chemical computers. Here, I advance a
specific abstract model for chemical computation which applies well to currently
proposed chemical computers in the literature. I develop a series of theoretical
analyses which, taken together, establish upper bounds on the “performance pa-
rameters” (speed, signal density, error rate, etc.) of chemical computers, in terms
of a set of independently chosen design parameters, as shown schematically in
figure 1.1. T then apply the results of my analyses to some specific chemical com-
putation models: DNA hybridization based computing, and protein-interaction
based computation in living cells.

In part two, I turn to the problem of direct comparison of chemical computers
with electronic computers. This is difficult because the performance parameters
of chemical computers can differ so radically from those of electronic computers:
The “sweet spot” in electronic computer design is at high speed and low error
rate, whereas chemical computers might be better toward much higher density,
but lower speed and higher error rate. What I'm looking for in part two is to find
a reasonable and general “figure of merit” for any computer — phrased in terms of
the performance parameters — which will allow me to compare chemical computers
with electronic computers in an unequivocal way. See figure 1.2 for a schematic

16

1.2. OVERVIEW OF THE MODEL

Performance parameters Evaluation Figure
function of
Merit

Figure 1.2: The basic plan of part two: Arrive at a reasonable and general “figure
of merit”, a function of the performance parameters, which allows us to evaluate
the overall usefulness of a computer as a single number.

representation.

Finally, at the end of part two, I combine these results to establish a direct
comparison between chemical and electronic computers, as shown in figure 1.3. 1
give chemical computers the benefit of the doubt, assuming all design parameters
are optimized to give the best figure of merit — while for electronic computers, I
take the performance parameters available from any given commodity-level desk-
top workstation. In this case, highly skewed in favor of chemical computers, I
conclude that chemical computers can never exceed electronic computers in per-
formance by more than a factor of about 40000, and probably by much less!.

1.2 Overview of the model

Current models of chemical computation differ from the conventional electronic
model: signals are not carried on wires, but are co-distributed in solution and
diffuse freely. Signal molecule diffusion is an important — indeed necessary — part
of chemical computer action.

In electronic computers, the sequesterment of signals to wires allows distinc-

'The actual difference in performance is probably much less due to several factors: Unknown
parameters in the chemical case, I've set at their optimal values; The bound on chemical com-
puter performance parameters is very loose (actual performance is probably much lower); And
electronic computers will continue to improve for some time yet.

17

CHAPTER 1. INTRODUCTION TO CHEMICAL COMPUTATION

Design Intermediate Performance Evaluation Figure
parameters relations parameters function of
merit

!

CHEMICAL

ELECTRONIC . I

!

Figure 1.3: Using the combined results of parts one and two, to make a direct
comparison between chemical and electronic computers.

tion of one signal from another. But in chemical computation, since signals are
spatially comingled, they must be distinguished by some other mechanism. In all
schemes proposed thus far, a different chemical species is chosen for each signal,
and the differences in chemical binding specificity distinguish the signals.

I consider three distinct “performance parameters” as being adequate to de-
scribe the performance of a computer: Spatial density of logic signals, speed
of operation, and error rate. I propose a particular set of physical restrictions
under which a chemical computer is assumed to operate, and I develop several
relations which determine an ultimate “performance envelope” within which the
performance parameters of any such chemical computer must lie.

I then investigate the size and shape of this envelope by theoretical analy-
ses: The chemically based signal distinction mechanism, combined with some
reasonable assumptions about the classes of molecules being used as signals, some
information theoretic tools, some elementary statistical mechanics, and simple
diffusion kinetics, can give us fundamental upper bounds on the extent of the
chemical computer performance envelope.

I assume the design variables the computer engineer may choose for a chemical

18

1.2. OVERVIEW OF THE MODEL

Design parameters Intermediate Performance parameters
Relations

|

number of signal speed

solute concentratior information density

molecule size/complexigy error rate

Figure 1.4: The strategy for part one of this thesis, showing the set of design
parameters I assume for a chemical computer and the set of performance param-
eters. Part one of this thesis concerns developing the “intermediate relations”, to
obtain bounds on the performance parameters in terms of the design parameters.

computer are: The operating density, the “cell size”?, the length?® of the signaling
molecules, and the number of signals. From these I derive bounds on the operating
frequency and error rate of such a computer, in terms of these independent design
variables and some constants related to the chemistry being used. This set of
analyses is diagrammed schematically in figure

The maximum operating frequency is derived from the cell size and the signal
molecule diffusion constant, which is in turn derived by applying a scaling relation
to the diffusion constant of a monomer and the signal molecule length.

A bound on the error rate is determined as follows: First, we consider the
signal molecules as being represented by codewords in a space of strings of length
L. Now, under some reasonable assumptions, the number of signals combined
with the codeword length and the base of the code determines an upper bound
on the minimum separation distance! between codewords. I apply an interaction
energy scaling relation to this minimum separation distance to obtain an upper
bound on the difference in Gibbs free energy between binding of the correct signal
molecule and an incorrect signal molecule. 1 then apply the Maxwell-Boltzmann

“To clarify: we are not actually considering physically separated cells, but to simplify the
analysis, it is convenient to quantize the spatial extent of the computer into some arbitrarily
chosen cell size.

301 more generally, the length of string needed to describe them.

*for some reasonable definition of “distance”, e.g. Hamming distance

19

CHAPTER 1. INTRODUCTION TO CHEMICAL COMPUTATION

distribution to this energy separation to find a lower bound on the fractional
occupancy of receptor sites by incorrect signal molecules. I take this fractional
occupancy as a error probability, hence arriving at a lower bound on the error
rate of the computer, in terms of the design parameters.

20

1.3. PREVIOUS WORK

1.3 Previous Work

Before developing my model in detail, I will begin by surveying relevant results
from previous work on chemical computation.

1.3.1 Computation in living systems

Monod and Jacob suggested [55] that organisms regulate gene expression using
logic-like functions. Many have since noted [69, 70, 56, 10, 16] that living sys-
tems implement logic functions using biochemical reaction networks. Smith and
Schweitzer [68] argue that in fact, many biological functions performed by cells
are 'luring complete.

1.3.2 Synthetic chemical computers

Not all work in this field has been analytic. Engineers and computer scientists have
long dreamed of a synthetic approach to designing chemical computers. In the
early 1990’s Hjelmfelt et al. [38, 39, 37| put the field on a firm theoretical footing,
by giving explicit design procedures for chemical gates, amplifiers, perceptrons,
etc. In 1994 Adleman [3] computed the solution to an instance of the Hamiltonian
Path problem in vitro using DNA hybridization. In 1995, Bray [16], Lipton [45],
Smith and Schweitzer [68], Roweiss et al. [66], and others expanded theoretically
on the work of Adleman, by proposing various Turing complete chemical computer
designs, at least on paper.

In 1997 Knight and Sussman [41] gave an example of how logic gates might
be implemented using synthetic genetic regulatory networks. Weiss et al. have
expanded upon this work, and provided more details on the approach, in [80] and
[79].

1.3.3 Theoretical considerations

Magnasco [47] has offered a proof that chemical kinetics is Turing universal. Mag-
nasco treats chemistry as abstract: He chooses an abstract set of reactions and
rate constants and then assumes a set of chemical species can be found to meet
those specifications. It is one contribution of this work to demonstrate that at
least for biopolymers, this assumption is not borne out in practice: that crosstalk
is an unavoidable consequence of chemical computation; that crosstaik is bounded

21

CHAPTER 1. INTRODUCTION TO CHEMICAL COMPUTATION

below by the density of signals used; and hence that any single-vessel chemical
reaction system based on biopolymers has bounded computation density.

This work is certainly not the first nor the only treatment of error in chemical
computation — various authors have discussed the speed and reliability of chemical
computation in considerable depth. For instance, Rose et al. [62] give a statistical
mechanical treatment of the mismatch probability in DNA computing, which they
term the “Computational Incoherence”, £. Other theoretical treatments of error
for particular models of chemical computation have been given by Roweis et al.
[65], Winfree et al. [81], Rose et al. [63, 64|, and others.

Roweis et al. [65], and Karp et al. [42] have discussed error correction tech-
niques in the context of DNA hybridization based computing. These approaches
share the premise that a certain error rate is inherent in the process of combina-
torial generation of possible solutions, and extraction of valid solutions, from a
mixture of hybridized DNAs. They discuss the error rate vs. time tradeoff attain-
able by using simple concensus-based or retry-based error detection and correction
schemes.

Another line of inquiry pertains to error minimization in the underlying chem-
ical process, rather than post facto error correction, as discussed by the above
papers. The majority of approaches to this problem center on informed choice of
ssDNA oligonucleotide signal sequences. Adleman’s original experiment used ran-
domly chosen sequences, and hinted that enlightened sequence design was likely to
give better results. Deaton et al. {20, 19, 21], Smith [67], Frutos et al. [28], Zhang
and Shin [83], Hartemink and Gifford [35], Brenneman and Condon [17], Acker-
mann and Gast [2], and Penchovsky and Ackermann [59] have all given methods
for enlightened oligonucleotide sequence design.

A completely different approach to error rate analysis comes from Bialek [15],
who discusses the relation between switching speed and spontaneous switching
time in bistable chemical switches. In the terms of this study, the spontaneous
switching time is an error rate, and the switching speed gives a maximum effec-
tive operating frequency. Bialek’s approach is distinguished from the previously
mentioned work, in at least two respects:

e it deals with a completely abstract model of chemistry; no assumptions are
made on the structure of the underlying signal molecules

e the computational model is a time-dependent switching system, rather than
a combinatorial search system as described by Adleman and subsequent
authors

22

1.3. PREVIOUS WORK

We will try in our analysis to be informed by this approach — but with more em-
phasis on both physical chemistry of error, and on systems design. Experimental
treatment of this system with our measure of computation density would provide
a first order applied test of the theory developed in this thesis.

1.3.4 Randomness, simulations, etc.

Real chemical systems behave stochastically, and this effect is especially apparent
at extremely low concentrations [30, 31]. Of course this low concentration con-
dition occurs quite frequently in biochemistry®. McAdams et al. (54][52][53]]11]
make the case very pointedly for use of stochastic methods in chemical simulation
and analysis, rather than the more conventional differential equation approach,
for treatment of gene expression systems. They move on to explicit simulations,
developing and using a simulator based on earlier theoretical work by Gillespie
[30, 31] on simulating the chemical Master equation.

Peccoud and Ycart [58] also note that gene expression must be treated stochas-
tically to obtain meaningful results, and made some analytical inroads toward un-
derstanding of species population density in a single-gene system.This paper did
not treat simulation techniques explicitly, as did the Arkin and McAdams papers.
A later paper by Goss and Peccoud|32] introduced a paradigm for reasoning about
stochastic chemical systems in terms of stochastic Petri nets. This, too, did not
treat simulation explicitly — but simulation techniques for stochastic Petri nets
are well known, and a simulator based on this formalism would likely give results
similar to Arkin and McAdams’sS.

Random chemistries have been used by Bagley and Farmer [12], who used nu-
merical simulation to demonstrate spontaneous emergence of autocatalytic net-
works and “metabolisms” in systems driven away from equilibrium by a chemo-
static “power supply”. They mention a forthcoming paper with results for syn-
thetic but non-random (polymer) chemistries, in which interaction energies and
rate constants are determined using string-matching algorithms. This paper seems
never to have appeared; I mention it here because of my independent arrival at
the idea of using string matching to produce rate constants for synthetic polymer
chemistries.

*for instance, most structural genes have a copy number of one per cell
fand results produced by derivative simulators, such as the more efficient but functionally
equivalent simulators of Gibson and Bruck [29] and of Lyons et al. [46]

23

CHAPTER 1. INTRODUCTION TO CHEMICAL COMPUTATION

24

Chapter 2

Performance Envelope of Chemical
Computers

25

CHAPTER 2. PERFORMANCE ENVELOPE OF CHEMICAL COMPUTERS

2.1 Model of computation

We assume our computer is made up of a reactor vessel containing a solution (or
a gas) of N chemical species in varying concentrations. These will be our signal
molecules, or “signals” for short. We assume the signals are chosen from some
combinatorial set S. By combinatorial, we mean all elements of & can be named
by strings of some length, say L, over an alphabet Q, of size q. Assume further
that the fraction of the reactor vessel occupied by signal molecules is bounded
above by some limit «, chosen by us as a design parameter of the computer.

Since we are representing signal levels by chemical concentrations, it is impor-
tant to distinguish between types of molecules, and instances of molecules (that
is, individual molecules). In what follows, signal will refer to a type of molecule,
and signal molecule will refer to an individual instance of such a molecule.

Each signal has one or more interaction sites, which are designed to dock with
another interaction site on another signal. This docking serves the function of
logical interaction, or gating. For purposes of this argument, we will assume each
signal has exactly one interaction site, hence interaction sites can be named by
signal names. Similarly to the above, we must distinguish between types — or
chemical species — of interaction sites, and individual instances. We will refer to a
single instance of an interaction site as a site, and to a species of interaction site
as a site class.

The computation model is as follows: We consider the reactor vessel as a
cellular automaton, with a cell size of AV and a time step of 7. Each cell is
treated as a CSTR (continuously stirred tank reactor). The logical interactions
between signals occur within the cells, and information transport is provided by
diffusion of the signal molecules to neighboring cells'. There is a relation between
the cell size and the operating frequency, since for larger cells, it will take signal
molecules longer to diffuse to adjacent cells. We will treat this relation in more
detail later.

To simplify the analysis we assume synchronous operation in time steps of
length 7 (see note?). At the beginning of each time step, in each cell, each signal 1s

1The reason for choosing diffusion-limited transport is as follows: If our computer does not
have any fine physical structure to facilitate routing and distinction of signals, then diffusion or
active mixing (e.g.: stirring) are the only reasonable options available. And, while active mixing
is appealing from the point of view of speed, it is incompatible with the Cellular Automaton
treatment — or at least trivializes it, since the entire computer is now reduced to a single cell.
The analysis in this chapter, it turns out, also covers this trivial “single cell” case — so there is
no need to do a separate analysis for the stirred computer.

2This is obviously unrealistic, since chemical reactions are asynchronous, but the difference

26

2.1. MODEL OF COMPUTATION

assumed to be in one of two states: “present”, corresponding to logic 1, or “absent”,
corresponding to logic 0. For a signal s to be “present” in a cell, means that there
are on the order of r signal molecules of type s in the cell. Conversely, for a signal
s to be “absent” in a cell, means the expected number of signal molecules of type
s in the cell is less than r - é We'll call r the “redundancy”; and for lack of a
better term, we’ll call o the signal to noise ratio®. They are both key factors in
determining the error rate of the computer, as we shall see later.

During each time step, all signal molecules in a “present” signal diffuse within
the cell and sample the other molecules in the cell for matching interaction sites.
T is chosen long enough so that the characteristic diffusion length of the signal
molecules in time 7 is at least equal to the cell size*. This guarantees each signal
molecule will sample each other type of signal molecule with high probability on
each time step.

Denote a particular site class by s. Instances of other site classes can bind to
it with varying affinities. Near the end of each time step, the fractional occupancy
of s by other site classes is assumed to be distributed according to the Maxwell-
Boltzmann distribution, where the state energies are taken to be the free energies
of association of s with each other site class®.

At the end of each time step, a point sample in time is taken of all sites in
s according to the distribution above. If s is “present”, and if the site is docked
with a site of class &', all is well. But if s is present, and docked with a site of a
different site class, a molecule error is said to have occured. If all sites of a site
class in a cell have molecule errors, a signal error is said to have occured.

We assume a model for the free energies of association as follows: Assume a
metric d(-,-) is given on &, and let s, s’ be an intended interaction, as defined
above. Now, let Ag, ¢+ be the free energy of interaction between the intended
pair of site classes s and s’. We assume that the difference in Ag’s between the
intended match for s and unintended matches for s is bounded above by a linear

should not affect the validity of the results. See, for example, [51] or [72], for a discussion of
functionally simulating synchronous cellular automata using asynchronous cellular automata.

%it is, in fact, closely related to the SNR, as we will see

*In fact, a bit larger than the cell size, to allow for signals to diffuse to neighboring cells as
well. But this will be discussed later.

*Notice this is a completely static treatment; nothing is said regarding reaction rates or
equilibration times. This is a strong position to take if we wish to bound the performance of
chemical computers above: In the bound developed in this chapter, reaction equilibration times
are assumed fast compared with diffusion times to neighboring cells. If this is not the case, this
can only slow down the effective clock speed of a chemical computer, so the bound still holds,
although more loosely.

27

CHAPTER 2. PERFORMANCE ENVELOPE OF CHEMICAL COMPUTERS

function of the distance between s’ and the unintended match:
VreS, z#5: Agye — Agyy < Agy -d(z,8),

or

VieS, r#5: Agss < Agse + Agy-d(x,8), (2.1)

where Ag; gives the slope of the linear function. Presumably, since (s, s’} is the
intended match, Ags ¢ < Ags,, 50 Ag; is positive.

2.1.1 Definitions

The following chart gives brief descriptions of the important variables needed to
analyze chemical computer performance in this model. This instantiation is geared
specifically toward biopolymers, since it assumes signals are actually physically
represented by strings, and the diffusion constant of signals follows some power-
law scaling relation in the length of the strings. Further, in section 2.1.2 below,
we assume the metric on signals is the Hamming distance. Of course, in a more
general setting, the assumptions cannot be as simple as these.

Dy Diffusion constant of monomer
L Length of signal molecules
Dy, Diffusion constant of signal molecules
AV - Cell volume
o Fractional occupancy of signal molecules in reactor
f Operating frequency
N Number of signals
q Base of signal code (size of alphabet)
dexp | Lower bound on expected separation distance of codewords
Ag; Interaction energy scaling constant
€ molecule error probability
£ signal error probability
7 effective volume of a monomer
v effective volume of a signal molecule
T redundancy

28

2.1. MODEL OF COMPUTATION

nolecul
volume
scaling

s
\
'\
N
\
N volume
v v i
L . —Trramt
.
\
v
\

s D diffusion f
o L e [B
‘i

. . “
. \
. \
\ \
. \
. }
I |
efmor Performance
€ € 1

leractio
dexp energy mpoundi Envelope
cali L4
(molecule (signal
error error
prabability} probability)

Figure 2.1: Relations and quantities governing performance of a chemical com-
puter. Shaded quantities (o, L, AV, and N) are design parameters; lightly shaded
quantities (D1, q, v1, v, and Ag,) are constants derived from the particular chem-
istry used; and unshaded quantities are resultant attributes.

2.1.2 Relations governing performance

Figure 2.1 shows the interrelations between the design variables of a chemical
computer, constants derived from the chemistry, and the resultant performance
attributes. Quantities are shown in squares; relations are shown as circles. Shaded
quantities (a, L, AV, and N) are design parameters; lightly shaded quantities (D),
g, V1, ¥, and Ag,) are constants derived from the particular chemistry used; and
unshaded quantities are resultant attributes. Of these attributes, f, €, AV, and
N itself, will be used to measure the quality of the computer, by defining the
limits of its performance envelope. I will discuss each relation in substantially
more detail below.

One important introductory note is in order: Very often in the following analy-

29

CHAPTER 2. PERFORMANCE ENVELOPE OF CHEMICAL COMPUTERS

ses, I will resort to mean-field methods. That is, often instead of strictly bounding
some quantity, I will bound its expectation value. For instance, in the above defi-
nitions, I use dexp as a lower bound on the ezpected minimum separation distance
of a codeword, instead of strictly bounding the separation distance. While this
weakens the result, it allows a tractable analysis of the problem. Future work may
replace some of these mean-field analyses with strict bounds.

30

2.2. THE MOLECULES:
RELATIONS BETWEEN Di, Dy, Vi, V;,, AND L.

2.2 The Molecules:
Relations between Dy, Dj, v1, vy, and L.

We turn first to consideration of basic geometric constraints on our signal molecules:
How large are they, and how fast can they move?

2.2.1 Diffusion constant scaling

Let us first consider how the diffusion constant Dj; varies with the description
length L. Clearly, for any chemistry, the size of S increases with L. But how fast?

For the biopolymer case, we can explicitly evaluate the scaling law. First, the
diffusion constant of any particle can be expressed in terms of its radius. We have,
from DeGennes[18]:

_ kgT
N 67T7]5RD,

where 1" is temperature, 7, is the solvent viscosity, and Rp is a “characteristic
radius” of the molecule. We will assume constant temperature and constant vis-
cosity, so all we need to find a scaling law for D is to find a scaling law for Rp.
In the biopolymer case, we can treat two limits explicitly: a compact molecule
(corresponding roughly to a globular protein), and a free floating linked chain
(corresponding roughly to a strand of DNA).

(2.2)

Case 1: Compact molecule: This case will correspond to the lower limit of
Rp, so let us seek only a lower bound on Rp. The smallest value of Rp we
could achieve would be if all of the monomers of the molecule were the smallest
possible monomer, and the monomers were perfectly packed. In this case, the
minimum volume is Lvy;m, where v, is the volume of the smallest monomer.
So the minimum Rp would occur if the molecule were a perfect sphere with this
volume. Letting the radius of such a sphere be denoted R,,;,, we have:

3I/Umin 13
am) '

RD 2 Rmin = <
Or, in the parlance of computational complexity theory,
Rp = Q(LY3). (2.3)

31

CHAPTER 2. PERFORMANCE ENVELOPE OF CHEMICAL COMPUTERS

Case 2: Free fioating linked chain: We can model a free-floating linked
heteropolymer as a non-self-intersecting random walk. Flory [24] determines a
scaling law for the characteristic radius of such walks. He defines the characteristic
radius as the expected distance between the position of a randomly chosen link in
the chain, and the center of mass:

Rp = E[||7 - E[T]|l],

where 7 is a random variable giving the position of a link. Flory concludes under
these assumptions that the characteristic radius scales as:

Rp = Q(L¥%). (2.4)

Discussion: At one end of the spectrum we have compact molecules, whose
radius scales as L'/®. The radius of free floating linked chain molecules scales as
L3/5. That is, it increases faster with increasing L. We could imagine molecule
classes with even faster increase of the radius, such as rigid rods for instance.
Presumably their radius would scale essentially as L*.

Clearly all other classes of signals in which the mass of the molecule scales as
L will have radius scaling between these extremes. We have not treated classes
in which the mass does not scale with the description length. For instance, pre-
sumably a longer string is needed to describe a branched polymer of size n, than
a linear polymer of the same size.

But let us stick to the linear description length molecules for now. For these
let us say that each class of molecule has some scaling exponent -y describing the
scaling of Rp with respect to L:

Rp = Q(L"), (2.5)

where ~ is between 1/3 and 1, depending on the geometry of our signal
molecules. We will see later that although ~ affects the value of the performance
bound, it does not affect the boundedness property itself.

We combine equations 2.2 and 2.5 to deduce a scaling law for Dp:

Dr = DL (2.6)

2.2.2 Volume scaling

In subsequent sections, we will also need to have an idea of the wolume of the
reaction mixture occupied by each molecule. We already have most of the answer

32

2.2. THE MOLECULES:
RELATIONS BETWEEN D,, Dy, Vi, Vi, AND L.

above in equation 2.5: The occupied volume of the molecule scales as the cube of
the radius. So, if the radius scales as L7, then the volume must scale as L37:

vy = v LY. (2.7)

We will use this occupied volume later to calculate the redundancy of the
system from the cell size, the number of signals, and the fractional occupancy of
the reactor vessel.

33

CHAPTER 2. PERFORMANCE ENVELOPE OF CHEMICAL COMPUTERS

AV

kAV

Figure 2.2: The critical diffusion volume, V¢

2.3 The Transport Mechanism:
Relation between Dy, AV, and f .

We now explore the relation between Dy, AV, and f. Recall Dy is the diffusion
constant of the signals, and f is the maximum frequency of operation (that is, the
inverse of the cycle time 7).

Let V..;; be the critical volume associated with each signal molecule, through
which it must diffuse in order to have sampled its neighboring signal molecules
with high probability. Put another way: consider the total probability density of
the presence function of the signal molecules of a single signal s, call it f,(T;t).
This probability density may be initially concentrated around some set of discrete
initial positions, but will always evolve to fill the volume of the reactor cell uni-
formly. If the molecules are initially almost uniformly distributed throughout the
cell and each particle undergoes an independent diffusion process, then when the
characteristic width of each diffusion process is at least the characteristic radius
associated with the critical volume, then f(7Z;t) will be approximately uniform
over the critical volume. The time at which this occurs is our definition of 7, and
the characteristic volume through which each individual molecule must diffuse, we
will call V... This in turn gives us a characteristic diffusion length, s, which
varies as the cube root of V,,;;. In our case, since we are considering the reactor
as a cellular automaton, we will take as V., the volume of a cell plus its “nearest
neighbors”. And further, let us say this volume is a small multiple of AV, say
kAV (see figure 2.2).

We use the diffusion equation to reason about the relation between Dy, AV,
and f. Using

Dr =~ AX?

34

2.3. THE TRANSPORT MECHANISM:
RELATION BETWEEN D, AV, AND F .

and putting D = Dy, 7= 1/f, and AX = s, = Vcl/a = (kAV)'3 we obtain

Tit

f = Dv.23 (2.8)

crit

= D (kAV)™?? (2.9)

This relation gives us the maximum speed at which we can expect our computer
to operate, in terms of the diffusion constant, cell size, and neighborhood size.

35

CHAPTER 2. PERFORMANCE ENVELOPE OF CHEMICAL COMPUTERS

2.4 Geometry of the Reactor Vessel:
Relation between «, vy, AV, N, and r

The volume of each cell is AV, and the allowable fractional occupancy by signal
molecules is . So the maximum allowable volume of signal molecules in each
cell is at most aAV: v, < aAV. On the other hand, the maximum allowable
volume of signal molecules is given by the number of species, times the redundancy,
times the volume of a single signal molecule: v,,4, = Nrvy. Combining these two,
we have

Nrup < aAV.

And, rearranging, we have

aAV
< . 2.1
r= Nug, (0)

A note is in order: For our diffusion relation to hold, we must be working at low
densities. In other words, o <« 1. Later, when we come to detailed analysis of
proposed biochemical computation schemes, we will choose a suggested a from
typical DNA or protein concentrations given in the literature.

36

2.5. LIMITATIONS ON THE CODE:
RELATION BETWEEN N, L, AND Dpxp-

2.5 Limitations on the Code:
Relation between N, L, and dexp.

2.5.1 The approach

We will treat the relation between N, L, and dexp using an information theoretic
approach. We will show a bound on dexp — the minimum expected separation
distance (in the Hamming metric) of any code in Q% — in terms of N, the number
of codewords, and L, the string length. This bound is based on the Hamming
bound, but has been relaxed in favor of better analytic tractability.

Let S denote the space of strings of length L over an alphabet Q: S = QY. We
wish to choose a code in §: C' C S, with “nice” properties. In particular, we would
like to pick the /V strings in C such that they are as far apart as possible. We will
first show that given /N, we may choose an optimal code in which the codewords
are at least some distance dypy apart (as in figure 2.3(a)). Then, we will show
that for any code of size N, dexp — the ezpected Hamming distance between a
codeword and its nearest neighbor — is linearly related to dgp¢. This means that
even though we might be able to choose a code in which some codewords are very
far from their neighbors, we can’t find one in which the ezpected distance of a
codeword from its neighbors is larger than a value linearly related to dopt-

2.5.2 Definitions

definition: Let w be a codeword in a code C, and let d(-,-) be a metric on
codewords. The separation distance d(w) of codeword w is defined as the smallest
distance from w to any other codeword:

d(w) = zegl:cf;éw d(z,w).

definition: The minimum separation distance of a code C is the smallest
separation distance of any codeword in C:

dpin(C) = mind(w).

welC

definition: The expected separation distance of a code C is the expected
separation distance of a uniformly chosen codeword in C:

dexp(C) = Eyecld(w)]. (2.11)

37

CHAPTER 2. PERFORMANCE ENVELOPE OF CHEMICAL COMPUTERS

L ==
e
pd ::
v -
a b

Figure 2.3: A pair of codes. Note: the metric used in the figure is R?, not the
Hamming distance; the figure is schematic only.

(a) an “optimal” code, in which N = 27. The “cubelets”’ are of side 1.
dOpt = dexp = 1.

(b) another code with N = 27. In this case, d of the “big” block is 2, but

dexp = 0.53, since most codewords have d = %

38

2.5. LIMITATIONS ON THE CODE:
RELATION BETWEEN N, L, AND Dpxp.

2.5.3 A restatement of the problem

Let’s restate our problem as follows:
conditions: Given a distance § and a pairing relation {(w,w’)}, we seek a
maximal set of strings C' = {w), wy, ...wy} C § with the following properties:

l.weCifweC

2. there exists § > 0 such that, for all w, @ € C, ming,[d(z,w)] = d(w) >
and min,g(d(z, w)] = d(w) > 6

The first condition says that for each site class, its pair is also a site class.
The second says there exists a nonzero lower bound on the Hamming distance
between the “correct” match for a signal and any “incorrect” match for the same
signal; that is, the distance between a correct match for a signal and any incorrect
matches will be at least d.

Refering to the definition of dy,i,, above, we see that condition (2) is equivalent
to:

d in25-

m

question: How large can N = ||C|| possibly be, given a specified value of §7
Or conversely, given N, how large can § be? In other words, given N, what is
dein?

min

2.5.4 An upper bound on dexp

The Hamming bound is:

dppin — 1
NV (g, L,—) < ¢*

LS (2.12)

where V'(q,n,r) denotes the volume of a “sphere” of radius r in an n dimensional
Hamming space over ¢ symbols. The classic expression for V is

Vign,r) =) (7;) (g — 1)%.
=0
But this is difficult to work with because there is no general closed form expression
for it. Instead, we will work with a modified, looser version of the Hamming bound
by using a lower bound on V:
Define V(g,n,7) = ¢". Then we have the following

39

CHAPTER 2. PERFORMANCE ENVELOPE OF CHEMICAL COMPUTERS

lemma: Yg,n>7: V(g,n,r) <Vign,r)
proof:

Vig,n,r) = ¢

= [+
(e
< 2 (1)
= ;(q,n,r)

So we can write the following looser bound for our code:

Az — 1 .
NV(q, L, ~3—) = Ng“¥min~ /% < ¢b (2.13)
N < g& Cmin /2
din —1
log, N <L — ﬂlgi
diyin < 2(L — log, N) + 1 (2.14)

So, if we must have at least N signals of length L, this gives an upper bound
on the minimum distance between correct and incorrect matches. Conversely, if
we require all mismatched signals to have distance at least § from any matched
signal, we cannot choose more than g“~~1/2 gignals.

Note that this says nothing about the separation of all codewords in an arbi-
trary code of size V. In fact, in general it is possible to choose a code of size N
with minimum separation distance d,j;, as given above, but with some codewords
having a very large separation distance®. The best we can hope to do in general
is to bound the expectation value of the separation distance, given a randomly
chosen codeword. This is a bit tricky, but can be done as follows:

6 A proof of this by example is easily constructed. For instance, in Z} using the R® (Man-
hattan) metric, we may choose a pathological combination of N and [such that for this NV, the
minimum distance is almost d 4+ 1, but not quite. So the minimum distance is d, but we can
pack all the codewords tightly in one portion of the space with distance d separating them, and
leave room for a codeword that is far from all other codewords. See also figure 2.3 for a more
intuitive, schematic example.

40

2.5. LIMITATIONS ON THE CODE:
RELATION BETWEEN N, L, AND Dgxp.

definition: The optimal spacing dopt of a space S and a code-size N is the
maximum possible minimum separation distance over all codes in & of size /V:

dopt (S§,N) = chﬁaé}i{:N dinin(C)-

Since dopt (S, N) = dpyip(C) for some code C, we have (from 2.14):
dopt(S, N) < 2(L — log, N) + L. (2.15)

Now consider the following
lemma: If the optimal spacing of N and & is dopt, then for any code C'in §
of size N,

proof: For the proof, see appendix B.
Applying the lemma to inequality 2.15, we conclude:

= 4(L —log, N) +3. (2.17)

This relation has the desired form: it puts an upper bound on the expected
distance between mismatched codewords, in terms of the length of the codewords,
and how many codewords we have. As one might expect, in our model of chemical
computation, this in turn allows us to put a lower bound on the resultant error
probability. We discuss this further in the next section.

41

CHAPTER 2. PERFORMANCE ENVELOPE OF CHEMICAL COMPUTERS

2.6 The Gating Process:
Relation between Ag, d..,, and (¢)

Let’s now turn to the heart of the matter: the process of chemical interactions
taking place within the reactor vessel. To a first approximation, each interaction
takes place with a probability determined by the concentrations of the reactants;
and the Gibbs free energy of the intermediate reaction complex, AG. Presumably
our computer is designed so that signal molecules which are intended to inter-
act, do so with high probability, and signal molecules not intended to interact,
do so with low probability. This means we should design our intended interac-
tions so that they have a low AG, and try and keep things such that unintended
interactions have a high AG.

Intuitively, the more signals we pack into a small chemical conformation space,
the smaller the AG of unintended interactions will be, hence the more likely errors
will be. We can formalize this with the help of the bound on dexp developed in
the preceding section, combined with the concept of the linear interaction energy
bound, introduced at the beginning of this chapter in equation 2.1, repeated here
for reference:

Ve eS8, o458 Agex < Agey + Agy-d(z,s). (2.18)

Recall that here, (s, s') is an intended interaction; (s,) is an unintended inter-
action; and Ag, is a positive number, giving the dependency of Ag,, on d(z, s').
Assuming this relation holds, we can use the Maxwell-Boltzmann distribution and
some simple statistical reasoning to lower bound e, the probability of a molecule
error.

Let us reuse the notation of equation 2.18: Ag;, ,, will denote the free energy of
association of site s; with site s5. Now consider a site s, its intended docking mate
', and another site z which is at Hamming distance d(z,s’) from the intended
docking mate s. We wish to evaluate the probability of crosstalk; that is, if s’
is absent and z is present, what is the probability that a site instance of s will
be occupied by a site instance of z? First, consider the case where both s’ and z
are present. By the Maxwell-Boltzmann distribution, we have the probability of
occupancy of s by s" and z, respectively, as:

1

PI‘[SS’] = E exp(_Ags,s’/KT)
1
Prlsz] = Eexp(—AgS,m/KT)

42

26. THE GATING PROCESS:
RELATION BETWEEN AG,, Dgxp, AND (&)

We can explicitly compute the conditional probability that s is occupied by z,
given that it is occupied by either s’ or z:

Pr[sz]
Pr[sz] + Pr[ss']
exp(—Ags -/ KT)
exp(—Ags,s/KT) + exp(—29s:/KT)

exp(—Ags./KT)
2 exp(_Ags,s’/KT)

1
= 3 exp[(Agssr — Ags)/ KT

Pr[sz|sz U s5']

But Ags. — Ag,» < Agqid(z, '), from inequality 2.18. So Agsy — Ags, >
—Agd(z,s"). Since exp(-) is monotonic increasing, we have

1
Pr[sz|sz U ss'] > 3 exp(—Agid(z, s")/KT).

Now, this whole discussion has been for the state in which both z and s’ are
present. For the state in which only x is present, the probability that an instance
of z is bound to an instance of s is even higher. So, when signal s’ is absent,
we have a lower bound on the probability that it will appear that s’ is present
because of crosstalk from a signal z:

1
€5,z > 5 exp(—Agld(m, S,)/KT)

We wish to bound the probability of crosstalk from any signal, not just one
specific signal. We can make a very loose bound, by simply observing that the
probability of crosstalk overall is at least as great as the probability from any
specific signal. To make this bound as tight as possible, let us pick a signal as
close to s’ as possible:

1
€5 > 3 exp(—Agqid(s')/KT)
= exp(—Agd(s)/KT —In2)

where recall d(w) is the minimum separation distance of the codeword w.

43

CHAPTER 2. PERFORMANCE ENVELOPE OF CHEMICAL COMPUTERS

This is the probability of a molecule error. Now let us bound the probability
of a signal error — that is, the probability that all instances of a site class are
erroneously bound. There are r instances of site s (recall r is the redundancy). If
we take the occurence of a molecule error at each site instance to be independent,
we conclude the probability of a signal error is the rth power of the probability of
a molecule error:

> exp[—r[Agd(s)/KT +1n2]|.

Now, to get anywhere from here, we must resort to a mean-field approximation.
Namely, we will replace &, by its expectation value over all possible values of s:

Eqles)
> E,lexp[-r[Agqid(s’)/KT + n2]]]
> exp(Es[-r[Agd(s')/KT + In2]]),

€)

where the last step follows from the convexity of exp(-).
But since 7, Ag;, K, and T are constants,

E[-r[Agd(s)/KT +1n2]] = —r[(Ag/KT)E[d(s")] +In2]
= —r{(Ag1/KT)dexp +1n2].

So,

(e) > exp[—r[(Ag/KT)dexp + In2]] (2.19)

This relation gives the predicted dependence of (€) on dexp: The expected
probability of error goes down as dexp increases, and as the redundancy r in-

creases.

44

2.7. DISCUSSION

3 o0lecule
R valume

\
\
\
\
‘\
\
\
\ volume
L N '@rmim
\
\

diffusion f
DL equation) | Y [cprroeee S
\\

‘I
1 k1

: .
¥ : AN
3 .
K
() “
nteractio;
d E errar g |---- -l

Performance
exp shergy cqmpoundi Envelope
calin; L4
(molecule (signal
error error
probability) probability)

Figure 2.4: Relations and quantities governing performance of a chemical com-

puter.

2.7 Discussion

Recall figure 2.1, given at the beginning of this chapter, which shows the pa-
rameters of the chemistry, the other design parameters of the computer, and the
relations between them which give rise to the resultant performance attributes.

This figure is repeated here for reference, as figure 2.4.
Let us review the previous sections of this chapter, and collect
relations here in one place, for easy reference:

DL = DIL—W
Vv, = ’U1L37
f < Dy(kAV)~%3
aAV
r <
- N?JL

45

the relevant

CHAPTER 2. PERFORMANCE ENVELOPE OF CHEMICAL COMPUTERS

(e} > exp[-r[(Agi/KT)dexp + In2]] (2.26)

Now let’s see what we can deduce about the performance parameters f and
(€), by combining these relations.
First f, since it is simpler. Substituting 2.21 into 2.23, we have

f < DiL7(kAV) T3, (2.27)

Let us call this relation the “final f” relation, since it gives a bound on the fre-
quency of the computer, in terms of the design parameters.
Now let’s look at {g) . We start by substituting 2.24 into 2.26, to obtain

aAV Ag
<E> > exp[_N—’UL : [ﬁ . dexp + In 2]] (228)

Then we can further substitute both 2.22 and 2.25 into this, to obtain

aAV Agl

Norw Loy (L — logg N) +3) + In2]]. (2.29)

(e) > exp[—

Let us call this the “final (€)” relation, since it gives a bound on the error of
the computer, in terms of the design parameters.
Let’s do a bunch of sanity checks, to see if this all sounds reasonable:

Sanity checks on f:

e f goes as the native diffusion constant D;.

e f goes inversely as the length L.

— for compact molecules, f goes as L™Y/3

— for stringy molecules, f goes as L~%/5

— for a given L, f (the speed) is lower for stringy than for compact
molecules

e f goes inversely as AV: AV ~%® — for larger cells, the computer is slower

46

2.7. DISCUSSION

Sanity checks on (¢):

24

(g) goes inversely as a: e~

() goes inversely as AV: e=8V

1
1 1
() goes as N: e w1108V = Ne89e—F

<€> gOE€S as L: e—L_3‘V_L1_3.r

for compact signal molecules, {(¢) goes up less rapidly with L than for stringy
signal molecules

Shape of the performance envelope

varying N:

It is not surprising that (e} increases with N, all other factors being equal.
This is for two reasons: The polynomial term is due to the decrease of dexp
with increasing number of signals; and the exponential term is due to the
decrease in chemical redundancy with increasing number of signals.

f is not affected by NV in this analysis.

varying L:

One of the most interesting things about this analysis is the asymptotic de-
pendence of (¢) on L. One might think that increasing L would decrease (e).
And indeed this may be true, up to some critical value of L. But notice that
if L gets very large, (¢) will eventually be bound by the lower bound given
by equation 2.29, hence (¢} will eventually start increasing. Why is this?
Closer inspection of the form and derivation of equation 2.29 leads us to
conclude that the interaction energy portion of the error term can continue
getting better without bound, but the effective volume of the molecules as
they get larger, eventually critically limits the chemical redundancy of the
system.

f goes down with L, since larger molecules move more slowly.

In summary, both performance parameters (f and (¢)) get asymptotically
worse as L gets large. So, all other things being equal, there is some inter-
mediate value of L at which optimal performance is obtained.

varying AV:
() goes inversely as AV, since for larger AV, the chemical redundancy is

47

CHAPTER 2. PERFORMANCE ENVELOPE OF CHEMICAL COMPUTERS

higher. All other things being equal, this would make us want to choose a
larger AV to get better performance.

But, f goes inversely as AV, since if signals have to travel farther, data
movement is slower, and the operating speed suffers.

e varying o:
variations in « are not asymptotically important, since (¢) goes as e~®, and
a has the limited range (0,1). In fact, our bounds on the performance
parameters () and f are not even particularly tight for o near the ends of
its range, for at least the following reasons:

— If o approaches zero, the redundancy approaches zero also. But our
analysis of signal error probability assumed r > 1. In fact, if r < 1,
this would mean that signal molecules are very sparse, and that we
should be treating the system as a single continuous stirred tank reactor
with low concentrations. In this case the chemical concentrations are
stochastic [30], evolving according to an infinite-state Markov process
described by the Kolmogorov equations for the set of possible reactions
[58].

— If o approaches 1, then our approximation that [y — the diffusion
constant of monomers — is a constant independent of a becomes a very
bad approximation indeed. If & approaches 1, then there is little space
left for solvent, the solution becomes supersaturated, and our signal
molecules begin to precipitate. In the extreme case, the system is
solid, and D) 1s zero.

e varying q:
g is not actually an “independent” parameter, according to figure 2.4, but
it is interesting to speculate whether high- or low- radix codes would be
“better” for chemical computation. Referring back to equation 2.29, we see
our bound on (g) goes as exp[—Ag1(1 — lo;q)]' This would say that larger
g and larger Ag;, are both better for attaining lower error rates; and this is
consistent with intuition. The problem is that they are both parameters of
the chemistry being used; they cannot be chosen independently. And with
a little thought, it is certainly reasonable to believe that chemistries with

larger values of ¢ tend to have smaller values for Ag,.”

"Such an analysis is outside the scope of this discussion. But an argument would proceed

48

2.7. DISCUSSION

along lines similar to the information-theoretic argument regarding the bound on dexp of ap-
pendix B, followed by the developments in sections 2.5 and 2.6: You cannot fit an unboundedly
large amount of information into a fixed-size configuration space.

49

CHAPTER 2. PERFORMANCE ENVELOPE OF CHEMICAL COMPUTERS

a0

Chapter 3

Biopolymers and DNA
Computation

ol

CHAPTER 3. BIOPOLYMERS AND DNA COMPUTATION

3.1 Applications: DNA Computers

Typical proposals for DNA computation found in the literature use diffusion for
signal transport, and hybridization of matching regions of single stranded DNA
(ssDNA) for signal recognition and logical interaction [3, 45, 68, 16, 61, 66, 81].
In this section we will investigate the performance capabilities of such computers
by putting some reasonable numbers to our performance bound.

Bear in mind during this discussion that this is a very coarse numerical approx-
imation — The performance bound itself is very coarse, so doing better numerically
would be wasted effort. Additionally, trying to pinpoint performance limits to high
precision would be outside the scope of this work.

3.1.1 Chemical and mechanical properties of DNA

We begin by briefly summarizing the chemical and mechanical properties of DNA
relevant to our analysis.

Single stranded DNA is a heteropolymer, composed of a glycophosphate back-
bone with a single nitrogenous base covalently bonded to each sugar of the back-
bone. The bases found in “garden variety” DNA are Adenine, Thymine, Cytosine,
and Guanine, denoted A, T, C, G, respectively. To a first approximation, the
bases may be attached in any number, in any sequence. Hence ssDNA molecules
of length L can be uniquely denoted by strings in {A, T, C, G}*.

Two regions of such ssDNA may hybridize by “zipping up” into a countersense
double helix, in which bases from one ssDNA are hydrogen bonded to their corre-
sponding bases from the other ssDNA. Due to the geometry of the specific bases,
this interaction is favored if A and a T are found at corresponding positions, or if
G and C are found at corresponding positions. The pairs (4,7) and (C,G) are
called Watson-Crick pairs. The eight other pairs (¢.e.: A4, TT, CC, GG, AC,
AG, TC, TG) are called mismatches.

To a coarse approximation, good enough for our purposes, the interaction
energy of two matched countersense ssDNAs of length L may be modeled as

where L denotes the number of Watson-Crick pairs, and the Ag’s are constants.
Ag, is known as an “initiation” energy; it can be thought of as representing the

free energy of a (hypothetical) hybridized string of length 0. Approximate values

o2

3.1. APPLICATIONS: DNA COMPUTERS

of the Ag’s derived from SantaLucia [40] are shown in the table"?::

Ago 2.03%%

Agiateh | —1.67%¢

A more sophisticated energy model could be constructed by explicitly taking
into account the difference in Ag introduced by mismatches between the two
strands, rather than just counting a mismatch as contributing zero to Ag. See,
for example, the very thorough papers by Allawi [5, 6, 7] and SantaLucia [40],
detailing the Ag contribution to DNA hybridization energy for various types of
mismatch.

The average mass of a monomer of ssDNA is approximately 305%, assuming

an approximately even mixture of A, T, C, and G (see note *).

We will treat the average excluded solute volume per monomer very approx-
imately, by considering a hybridized pair of ssDNAs of length L to assume a
cylindrical shape, of diameter 2nm, and with a length of (0.34 x L)nm. We divide
the total volume of this cylinder by 2L, to obtain:

v, & 0.53nm?3.

As far as a value for v goes, we will assume very simplistically that ssDNAs
assume the form of a self-avoiding random walk, hence giving a v of 3/5, as
discussed in section 2.2.1, and in [24].

We may calculate D; in at least two different ways:

1. de novo, by the formula given in DeGennes[18] and repeated in section 2.2:

kgT

D=2
' 67”7.9RD

(3.2)

2. By obtaining D}, for some value of L, and scaling it down using relation 2.6:

D, = D, L™,

'Ag values are given at pH 7, 1.0 M[Nat], 25° C

*Age was estimated by computing AG$, for initiation with terminus (G,C), and AGS, for
initiation with terminus (A4,T), taking their mean, and doubling it (since oligomers have two
ends)

3A9match was estimated by computing AG3, for each possible nearest neighbor (NN) prop-
agation sequence, and taking the mean (weighted by their frequency in a uniform IID nucleotide
sequence)

“the spread in masses between monomer types is small, hence the average mass is relatively
independent, of the mixture of types, at least for coarse calculations

23

CHAPTER 3. BIOPOLYMERS AND DNA COMPUTATION

de novo calculation of D: To get an approximate value, we first assume a
monomer looks like a spherical “blob”, for diffusion purposes. So

4
v = E);TI'RBD,
hence "
3’U1
- 2]
b 47
and so

_ kgT [47r]1/3
3'1)1 -
For our situation, we will use room temperature and water as a solvent (7, ~

0.000938). This gives

L 67N,

b~ (1.4- 1073) (300K) l dn }1/3
LA .
6m(9 - 10—4%6_) 3-(0.53nm?3)
3
1
~ (2.5-10792
(S)(O.Snm)
~ 5-10‘10m—2
S
2
_ oot
S

scaling calculation of D;: I have not calculated D, using this technique.

3.1.2 General characteristics of proposed in vitro DNA com-
puters

Typical proposals for tn vitro DNA computation found in the literature use diffu-
sion for signal transport, and hybridization of matching regions of single stranded
DNA (ssDNA) for signal recognition and logical interaction [3, 45, 68, 16, 61, 66,
81].

In all these schemes, we may denote interaction sites of ssDNA as strings over
the DNA nucleotide alphabet, @ = {A,7,G,C}. If the hybridization regions
are of length L, then our signals may be named by strings in & = QF. For any
wy,ws € S, let d(wy, ws) denote the Hamming distance between the strings w; and

04

3.1. APPLICATIONS: DNA COMPUTERS

Woy. d(-,-) is a metric on §. For any string w, let W denote the reverse complement
of w.
The problem of choosing sequences for the signaling regions has been well
studied [3, 20, 67, 83, 35, 28]. We summarize (in highly simplified form) as follows:
Consider a set of strings C = {wy, wy, ...wx} C S with the following properties:

lLweCifwel

2. for any w,w € C, E,[d(w)] = 6 and Eg[d(w)] > §

The first condition says that for each signal, its hybridization match is also a
signal. The second says the expected distance between the “correct” match for
a signal and any “incorrect” match for the same signal — that is, the expected
number of mismatched base pairs for incorrect signal matches — is at least 4.

The problem at hand is, we wish to choose such a set C, with as large a value
of ¢ as possible.

If we recall the definition of dexp given in equation 2.11, we may restate
condition (2) more simply and clearly as § < dexp- In fact, since dexp is the
largest value attainable for §, we may as well choose our signal set such that
0 = dexp. This will give us the largest possible expected mismatch distance for a
signal set of size V.

3.1.3 Linear bound on mismatch energy

Now, let’s look at the difference in interaction energies between a correct signal
match and an incorrect signal match, and argue that it obeys the linear mismatch
energy bound, as shown in equation 2.1 (later repeated as equation 2.18). Let w
be a signal, and let w be its intended match. In our DNA model, @ is the reverse
complement of w. So, by equation 3.1, the interaction energy is

Aguz = Ago + LAY atchs (3-3)

since w and W match at all indices. Now, consider any mismatch for w, call it x,
which is at distance ¢ from w: d(wW, z) = 4.
We have:

Agew = Bgo + Ny apeh (T, W) Agmatehs (3.4)

where n, .+ .1, (7, w) is the number of indices at which = and w match.

55

CHAPTER 3. BIOPOLYMERS AND DNA COMPUTATION

But since (w,z) is at least é away from a perfect match, we know

Nmatch(Tw) < L—=14 (3.5)
Npatch(@w) —L < =0 :
L —npateh(®w) > 6 (3.7)

Subtracting 3.4 from 3.3, we obtain

Agw,ﬁ - Agm,w = (L - nmatch ('Ta w))Agmatch

Now substituting 3.7, we have

Aguwm — Agzw 2 0Agmatch:
or, rearranging,
Agz,w < Agw.ﬁ —4- Agmatch'

This is precisely the linear mismatch-energy bound we are looking for. It says
simply that the difference in interaction energy for a mismatched pair versus
a matched pair is bounded above by a linear function of the magnitude of the
mismatch.

3.1.4 Some reasonable operating parameters

Typical L:

In most proposed schemes, L is proposed to be about 40. This also gives
(51 L3’y

(0.53nm°>)(40)%/°
400nm®

(9

Q

2

Typical N:

In order for our computer to be remotely useful, we should have a value for V of
at least 100 or so.

56

3.1. APPLICATIONS: DNA COMPUTERS

Typical a:

Recall « is the fraction of solution volume occupied by signals. For a typical
monomer concentration of approximately 100uzM, and using our signal molecule
“volume” v, of approximately 400nm?, this gives

1

100 pmol 6 - 10%
1024nm3

P () (400nm)(
0.024

L
~ 0.0006

)

a =

Pl

Typical AV:

If o i5 0.0006, L is 40, and N is 100 — and if we wish a redundancy of unity - this
gives a minimum value of AV of

AVrnin = N;)L
N 100 - 400nm?
- 0.0006
~ 70-105nm?
~ 0.07- pm?®.

For a more reasonable value of redundancy, say 10, we should adopt a AV closer
to 0.7um3.

3.1.5 Performance envelope of proposed in vitro DNA com-
puters

We now have all the information we need, to start evaluating the size and shape
of the performance envelope. We begin with the final-f relation, and evaluate the
bound it gives us on the operating frequency. The final- f relation is:

f < DIL™(kAV) 2
In three dimensions, the number of neighboring cells is somewhere between 6 and

27, depending on which neighborhood one chooses. For the sake of argument, let
us pick a reasonable compromise value for & of 20.

57

CHAPTER 3. BIOPOLYMERS AND DNA COMPUTATION

As discussed above, we have Dy is 500"—1893% above, L is 40, v is 3/5, and AV
is 0.7um?. So,

2
F o< (500%)(40)'3/5(20-o.mmﬁ‘)*?/f'"
2
pm 1
~ (50022)(011) o

2

LI 1
~ (500—)(0.11)——
(s))5.8um2

~ 9.5 Hz

Let us now proceed to the final-¢ relation:

AV Ag
() > el T Iger

(4(L — log, N) +3) + In2]]. (3.8)

We evaluate this bound given the parameters we have developed above.
First off, we know that NCIJ?IE/:” is just the redundancy, r, which we chose to be
10.

We know that for DNA at room temperature, %9% is about

keal
-A—gl_ o 1 .67%'

KT — gsoke

~ 28

And we evaluate 4(L —log, N) + 3 as

In 100
A(L—log, N)+3 =~ 4(40 - 1;114) +3

~ 4(40 — 3.3) +3
~ 150

But, we know that in no case should dexp be greater than L, so in this case
(few signals, large description length), we may replace the 4(L —log, N) + 3 term
with L. So,

Agy

— In2 ~ 28-40+0.7
KTdexp + In +
113.

X

o8

3.1. APPLICATIONS: DNA COMPUTERS

And finally, we compute:

(e} > exp[—10-113
~~ 10—490

which is effectively zero. Some techniques for tightening this bound are discussed
in the following section.

3.1.6 Discussion

Let’s look at some reasons the lower bound on (£} is so ridiculously small, and
discuss some ways we might tighten that bound in the future.

crosstalk, false negatives, and false positives

In section 2.6, we only treated errors due to a signal s binding instances of an
incorrect other signal. Let’s call this “crosstalk”. We didn’t consider two other
important sources of error, though:

o If 5 and &' are both present, but a molecule of class s remains unbound, a
molecule error has also occurred. Let’s call this a “false negative”.

e If 5 is present and s’ absent, but s is bound by anything else, a molecule
error has also occurred. Let’s call this a “false positive”.

To see how false negatives and positives affect the error probability, consider the
free energy diagram shown in figure 3.1. When s’ goes from being present to being
absent, this increases the Ag of complex ss’ by an amount RT In o (recall o is the
ratio of the concentration of a signal when it is present to when it is absent). We
can now see that we have two conflicting design requirements for Agerosstalk:

e in the case where s is absent, Ag.,oqst o]k Should be large to avoid excessive
crosstalk

e in the case where s’ is present, Agerosstalk Should be small enough so that
false negatives don’t become a problematic source of error

This dilemma is a classic example of the sensitivity vs. selectivity problem.

A good guess would be to choose the signal molecule set such that Agerosstalk
is about one half the magnitude of dexpAg;. Obviously, further analysis is war-
ranted to see if this is the best choice in general. But the point remains: Not

29

CHAPTER 3. BIOPOLYMERS AND DNA COMPUTATION

1 false positive
SS z

SX crosstalk l SX crosstalk
S false negative Ag crosstalk S Ok RTln(O)
dexp Ag1 1
s ok
s' present s’ absent

Figure 3.1: A free-energy diagram of states s (unbound), ss’ (correctly bound if
s’ is present), and sz (incorrectly bound), for two situations -~ On the left, s’ is
present. On the right, s’ is absent.

As can be seen, Agg;osstalk MUst be small enough to avoid false negatives in the
s'-present case, yet large enough to avoid excessive crosstalk in the s’-absent case
(see text).

all of the dexp margin is available for avoiding crosstalk; only about half of it is.
This cuts the exponent in the final-¢ relation (equation 3.8) by a factor of about
one half.

sloppy combinatorics when computing (¢) from ¢

When we computed the signal error probability from the molecule error probabil-
ity, also in section 2.6, we took the very simplistic assumption that a signal error
occurs for s if and only if molecule errors occur for all molecules of class s in a
cell. In fact, this represents a ridiculously stringent assumption, but it is easy to
work with because the signal error probability can be expressed in closed form.

Since instances of s are indistinguishable, the only manner in which a signal
error is distinguishable from a non-error, will be by counting erroneously bound
instances of s. A more general treatment of the signal error probability would
explicitly take this into account.

Consider the probability distribution of the number of molecules of class s
which are erroneously bound, call it 7ie(s). To a good approximation®, fig(s) is a

5This approximation ignores coupling between the number of other molecules available to
erroneously bind an instance of s. But, since there are plenty of other signal molecules around,

60

3.1. APPLICATIONS: DNA COMPUTERS

sum of 7 independent Bernoulli trials with expectation €, hence fie(s) is binomial:

r
ng

Pefrls) =i = 1) em =™ (39)

If we choose a threshold value m (of erroneously bound instances of s) for
which a signal error is said to occur, we have

Prlerror] = ¢ (3.10)
= Prfne(s) = m] (3.11)
> (’Z") (1l —). (3.12)

In section 2.6, we effectively set m = r, thereby taking only the single smallest
term of 3.9 as the error term. In general, we could pick a smaller value of m,
tightening the bound on (¢) due to crosstalk errors.

But obviously we can’t choose m too small, because doing so would increase
the sensitivity to false negatives. How small an m we could take is open to
investigation, which should probably be approached via numerical stmulation.

We can, however, get an idea how significant this effect is, by trying m ~ 5
and seeing where it leads. First of all, we will have trouble evaluating the sum
3.12 analytically. We can of course get a lower bound by picking the largest term
(the term for which ¢ = m). We obtain

Prlerror] > (T;Z) e (1—)72

For any ¢ smaller than %, we can show (T;Z) (1—€)72>1,s0

Prlerror] > €'/,

This corresponds roughly to an additional halving of the exponent in the final-¢
relation (equation 3.8).

and many of them are close to s’, we make the approximation that erroneous binding of all
instances of s 1s independent.

61

CHAPTER 3. BIOPOLYMERS AND DNA COMPUTATION

nonzero conformational entropy

When we approximated the Gibbs factor of an invalid (crosstalk) state sz, we un-
derestimated it substantially, since we assumed s and z would be aligned exactly
end to end. In fact, this is ridiculously improbable; there are many more confor-
mations in which z could bind to s. A more accurate treatment would explicitly
account for the conformational entropy of all possible binding conformations be-
tween s and z. Rose et al. make some progress along these lines in [62], in which
they numerically compute error probabilities by summing Ag over a large proba-
bility subset (the set of “staggered zipper” conformations) of the possible binding
conformations.

This effect also has a potentially very significant effect on the error bound,
and is a good area for additional work.

a conjecture

A reasonable conjecture we might make from the above arguments, is that we’ve
underestimated the signal error probability by approximately a power of four.
Obviously, this bears considerably more discussion. But in the next subsection, I
will proceed with computing tradeoffs between L, N, and AV, as if this conjecture
were valid. In other words, I will somewhat arbitrarily drop the factor of 4 in the
exponent of 3.8. I will also drop the In2 term for brevity, since it does not
contribute significantly to the result. Our new conjectured “approximate final-c”
relation is thus
alAV /—\91

(E) > exp[—m . ﬁ(L —].qu N)]

With this in mind we will recalculate () in the above case, and try to see if we
can get a more reasonable tradeoff between L, N, and AV.

better balancing of L, N, and AV

First, let us recalculate for the (40,100,0.7um®) case. f is unchanged at 9.5Hz,
but our estimate for the () bound is now:
{(g) > exp[-10-2.8- (40 — log,(100))]
2 exp[—10 - 102]

e 107440.

Clearly, this is still a ridiculous tradeoff toward low error, especially since the
speed is so low. Let’s try some different values.

62

3.1. APPLICATIONS: DNA COMPUTERS

Imagine we use 10-mers instead of 40-mers, and we still have 100 signals. Also,
let us put r = 4 instead of 10. « is 0.0006, as before. vy, is now (0.53nm3)(10)%° ~
33nm?. A reasonable value of AV is

rNuvy,

AV =
a

4100 - 33nm?*
0.0006
~ 22.10°nm?
= 0.022pm?,

and so f is

2
f < (500@})(10)—3/5(20-o.ozzum3)—2/3

2
pm 1
(500 .)(0.25) (0.44m3)2/5

2

pm 1
A —)(0.25)—————
(500 s (0 5)0.58;117112

~ 220 Hz.

&

Now, the conjectured (e) bound is

() > exp[—4-2.8-(10 — log, 100)]
~ exp|—T74]
10732,

Clearly, for any problem solvable in less-than-astronomical time, an error rate
of 10732 is likely to be acceptable. And the benefit in frequency and cell size is
great. So we would consider it a good tradeoff to pick L = 10, r = 4, rather than
L =40, r = 10.

Let’s go even further; let’s make the log, N term in L —log, N equal to about
half the total. If N = 100, then log, N ~ 3.3. So let’s pick L = 7. We now
have vr, & (0.53nm*)(7)%® ~ 18nm?, and AV = m%&%nj = 0.012um?®. So f is
approximately

2
Fo< (500EEy(7)5(20 - 0.012um?) 23

s
2
pm 1
~ (500——)(0.31) ————+=
(s)(0:31) (0.24pm3)2/3

63

CHAPTER 3. BIOPOLYMERS AND DNA COMPUTATION

2
pam 1

e —)(0.31]) ————
(500 s (0)0.38um2

~ 400 Hz.
And the conjectured (£) bound is

() > exp[—4-2.8-(7—-3.3)]
~ exp|—41]
~ 10718

pushing the limits: The large-N case

One claim often made in the DNA computation literature is that DNA compu-
tation may be in some ways better than electronic computation for solving large
combinatorial problems. The model here is to consider the reaction as taking
place in a single large vessel, with a large number of signal molecules (exponential
in the problem size) representing candidate solutions for the problem at hand.

Let’s try to push IV up to near-astronomical values, to see how performance is
affected. First, let’s pick a challenging problem not readily solvable with modern
electronic supercomputers. Say for instance the SAT problem with 70 variables,
as Adleman treats in [4]. This problem has 27® ~ 10?! possible solutions. To
encode signals in a reasonable manner, Adleman chooses L = 720.

Let’s also assume r = 1 is good enough for our purposes. This will give an
upper bound on performance.

The AV (the reactor volume) for this situation comes out to 1.4 - 10*°um?, or
1400m?®, which is ridiculously large but not unimagineable. But even worse, the
estimated operating frequency, assuming diffusive transport, is about 5- 1072°Hz.
This is on the astronomical time scale, meaning that diffusive transport is not
feasible for problems of this size.

One could certainly consider stirring the reactor vessel, but at some cost:

e In a stirred reactor, we lose all spatial coherence; hence there is no backing
down from the “single cell” reactor model. We can no longer trade signal
density for redundancy.

e The problem of mixing a reactor vessel containing such a huge number of
distinct chemical species, such that each species has a chance to react with
each other (or with a fixed probe) is a nontrivial problem. This is because,
with such small numbers of instances of each species (in this case, one),

64

3.1. APPLICATIONS: DNA COMPUTERS

the mixing must be completely ergodic in order for the reactions to take
place predictably. Achieving ergodic mixing in large reactors is an entire
problem field unto itself, and well outside the scope of this discussion; but
clearly there are geometric and mechanical limits on the speed at which such
mixing may be done.

In addition to these mentioned above, there is another problem lurking with ex-
tremely large N: The problem of reaction equilibration times growing arbitrarily
long.

To see this, first consider that in this model of computation I have done only a
simple static analysis of binding affinities; nothing is said about reaction rates. I
have assumed the equilibration times for the chemical interactions between signals
are at most comparable with the typical diffusion time to neighboring cells, as
discussed earlier in section 2.1. If this is not the case — that is, if the equilibration
times are much longer than the diffusion times — then I have overestimated the
maximum operating speed of the chemical computer.

How much difference might we expect this to make? First, consider that the
rate of forward progress for a binary association reaction A + B — AB goes as
the product of the concentrations: Q[%l ~ [A] - [B]. Let’s assume for simplicity
that both concentrations are equal to the average concentration of a signal which
is “present”: [A] = [B] = [S]. This nominal “present” concentration is simply =
the number of molecules of a “present” signal per unit volume. Using AV = %“,
this gives a scaling law on the nominal concentration of signals:

e
ST~ N
In turn, this means that for fixed a and vy, the reaction rate for every binary
reaction in the system scales down as ﬁ So, since the target concentration goes

as % and the reaction rate goes as ﬁ, we would expect the relaxation time for
-1

any intended reaction to scale as %_2 =

Clearly, this is bad news for the astronomically large N case: Even with a
well-stirred tank reactor, the equilibration time goes up with N. In this case not
because diffusion times go up, but because reaction rates go down with reduced
partial concentration of signal molecules.

Another way to think about this, is that for a signal molecule of type s to
interact with a signal molecule of type &', not only must s and s’ get to nominally
the same place (that is, the probability densities of their locations must substan-

tially overlap, either by diffusion or by stirring or by some other method) — but

65

CHAPTER 3. BIOPOLYMERS AND DNA COMPUTATION

r L N AV vy, AVpin {¢) bound {¢} bound
(uma) (nm3) (/_errllg) (Hz) (strict) (conjecture)

10 | 40 100 0.7 400 0.07 9.5 10~ 40 10—340

4 10 100 0.022 33 0.0055 220 10— 1% 10—32

4 7 100 0.012 18 0.003 400 1072 10— 18

1 | 720 270 1.4-10%0 || 73000 | 1.4-10%° || 5- 10— <0 ~ 0 ~0

1 14 | 10000 1.0 61 1.0 13 1037 3-1079

1 12 1000 0.075 46 0.075 85 10734 3.10°9

1 9 16 0.00075 28 0.00075 2200 10—31 3.1077

Table 3.1: Summary of findings: Conjectured and strict bounds on f and (g},
for various combinations of 7, L, N, and AV discussed in the text. Recall that o
is assumed to be 0.0006 in all cases.

they must also have the chance to find each other and interact on the microscopic
scale. The chance of them finding each other is in turn determined by the product
of their probability densities. Put another way — if signal molecule concentrations
are low, their probability densities are small, and the chance of them finding each
other to interact is smaller, so the reactions proceed more slowly. So active mixing
is not a panacea for building chemical computers with extremely large V.

pushing the limits: The high speed limit

As a final probe on the size and shape of the performance envelope of DNA
computers, let’s see how fast we might hope them to operate.

Similarly to the large- N case, we will not waste reactor volume on excessively
good error performance: We'll take r = 1, and pick L as small as possible to
achieve a conjectured error bound of 3 - 107% (see note®). I have evaluated three
such cases, with N = 10000, N = 1000, and N = 16. I picked N = 16 as a
stopping point, since trying to program a cellular automaton to accomplish any
reasonably complex task with such a small /V is already quite difficult. The speeds
of these three cases come out at 13 Hz, 85 Hz, and 2200 Hz, respectively.

3.1.7 Summary of findings

The findings of this section on DNA computation are summarized in table 3.1.

6This error bound is so high as to be unacceptable for all but the shortest computations, but
I chose it to give chemical computation the benefit of the doubt.

66

3.1. APPLICATIONS: DNA COMPUTERS

Before we leave this topic, realize that one factor I have glossed over in this

analysis is the choice of a. Recall I chose o = 0.0006 based on a 100“—11[1—Ol concen-
tration of monomers. Given a more generous choice for a, the operating frequency
will increase, up to a point at which steric hindrance becomes a significant factor
in molecular transport. The point at which this occurs is outside the scope of
this work; but let’s assume for the sake of argument that at a ~ 0.05, operating
frequency starts to drop precipitously due to steric hindrance.

With all other variables held constant, f goes as a*/3. So if we could increase

2/3
@ this far, all speeds in the table would increase by a factor of about (0%836) /)
This yields a speedup factor of about 20.

67

CHAPTER 3. BIOPOLYMERS AND DNA COMPUTATION

3.2 Applications: Protein Computation in cells

Let’s take a quick look at how good biological cells might be at computing with
proteins. To do this, we will compute the hypothetical speed and error rate of
protein-protein interaction in E. Coli, using values from the literature. First, some
very brief background on proteins.

3.2.1 Chemical and mechanical properties of proteins

A protein is, for our simple purposes’, a polymer of amino acids, which folds up

in the cytoplasm to a globular mass. There are 20 amino acids available. The
sequence of amino acids determines the details of the structure into which the
protein folds.

Each protein has one or more “active sites”, which mediates its interaction
with other molecules in solution. For our purposes, these active sites will be our
“signaling regions” — they are considered to interact with other in order to effect
the logical progress of the information processing underway in the cell.®

The surface area of an active site is typically much smaller than the total
surface area of the protein to which it belongs. This is because a good portion of
the protein’s mass is concerned with ensuring the protein folds reliably and quickly
into its “proper” shape in solution, and with stabilizing the resulting structure.

~ will be taken to be 1/3, corresponding to a dense-packed spherical blob. This
is quite nearly correct for globular (soluble) proteins.

We will take D; as the diffusion constant of a spherical blob-shaped hypothet-
ical amino acid residue of average molecular weight, by the formula given in [18]
and repeated in section 2.2:

kT

D= —10r.
' 6mnsRp

(3.13)

estimating v,: To get Rp, we must have an estimate for v;. The 20 amino acids
have somewhat different volumes, but we may compute an approximate average
volume, from the following two items:

"We will not be making special consideration here for membrane-bound proteins, proteins
with quaternary structure, or modified proteins (peptidoglycans, glycosylated proteins, etc.).
We consider only single-chain, globular, soluble proteins.

8This also is a gross simplification. Many protein active sites interact with small substrate
molecules (e.g. signalling molecules, nutritional molecules, efc.), many with binding sites on
DNA, ete.

68

3.2. APPLICATIONS: PROTEIN COMPUTATION IN CELLS

1. The partial specific volume of a soluble protein varies only slightly from pro-
. 3
tein to protein, and assumes an average value of about % (see Harpaz

[33] °. This corresponds to a v; of about 1.2 A3/Dalton.

2. The average amino acid residue in a protein has a molecular weight of 120
Daltons.

From these two, we conclude the approximate average volume per residue is

v & 1.2-120A°
0.24nm?

calculation of Dy: Recall we’re assuming a monopeptide looks like a spherical
“blob”, for diffusion purposes. So

3’()1] 1/3

RD:[47r

and so
B kgT
L 6

A 1/3
5o

Using room temperature and water as a solvent (n, ~ 0.0009%?), this gives

1 ~

(1.4-10-23%)(300@[A 11/3
')

67(9 - 10—4%—?) 3 (0.24nm?
3
1
~ (25107020
(S >(O.39nm)
~ 6.5-10—10”“—2
S
2
= 50
S

®the range of partial specific volumes of the 13 proteins represented in the Harpaz study

ranged from 0.70 to 0_750Tn13

69

CHAPTER 3. BIOPOLYMERS AND DNA COMPUTATION

3.2.2 Some reasonable operating parameters

Typical L:

According to Neidhardt and Umbarger [57], in E. Coli, L is typically about 370
(see note!®). This gives

v LY

(0.24nm*)(370)

~ 89nm?.

vrL

a

Typical N:

Again consulting Neidhardt and Umbarger, we see that 2D protein blot assays
yield an estimate of the typical number of proteins in E. Coli:

N = 1850.

Typical AV:

Assuming the overall density of a cell is approximately that of water, and knowing
the mass of a single cell [57], we have

_ 1ym?® pm?®
~95-1078-5 . =0.955
AV =95 107700 " 10124 cell

Typical a:

Recall a is the fraction of solution volume occupied by signals. Again referring to
Neidhardt and Umbarger, the dry-weight of a cell is about 2.8 - 107'%g, of which
about 55% is protein. Hence the protein mass is about 1.5 1071%g. If again we
take the specific gravity of proteins to be about 0.73 (see above), then the volume
of protein in a cell is about

1pm?
1.5-107%g - ~ 0.2um?>.
& 07308 pm
From this, we have
3
~ 0.2psm =0.2.
1pum3

10Neidhardt and Umbarger [57] give the molecular weight of a typical protein in E. Coli as
40%De, and an average molecular weight per amino acid residue as 108Da. This yields an average
length of 40kDa/108Da = 370.

70

3.2. APPLICATIONS: PROTEIN COMPUTATION IN CELLS

Typical r:

If o is 0.2, L is 370, N is 1850, and AV is 1um3, this gives an approximate value
for r:

aAV
N’UL
0.2-1um?®

1850 - 89nm?
~ 1200.

3.2.3 Performance envelope of protein-based cellular infor-
mation processing

estimating f We will now proceed to estimate f, using the final-f relation:
f < DL (kAV) 723

Again, take k as about 20, D, is 650%&3 above, L is 370, v is 1/3, and AV is
1um?®. Then

2
< (650%)(370)‘1/3(20- 1um®) =23
1
(20pm?)2/3
1
7.4pm?

2
~ (650%)(0.14)

2
~ (650%)(0.14)
~ 12 Haz.

estimating (¢): There are a couple of problems with calculating (g). First of
all, we don’t have a natural metric for measuring molecular “difference”, as we did
in the case of DNA. That is not to say none exists; just that it is not obvious how
to find it. I have done some preliminary work on an abstract chemistry model
which might be of use here, but not yet in sufficient detail to make any hypotheses
of value!l.

1 Also, “Minimal basis set” models of physical chemistry might be of use in obtaining a more
general result.

71

CHAPTER 3. BIOPOLYMERS AND DNA COMPUTATION

Another pitfall in the case of proteins, is that much of the amino acid sequence
is of little or no relevance to the structure of the active site'?. This means that
any estimate of distance based on simple Hamming distance between the entire
sequence is likely to severely overestimate differences in interaction energy, for a
randomly chosen perturbation. Obviously, in this case, our estimate of (g) is going
to be astronomically low.

Finally, the difficulty of finding a corresponding Ag; so that the linear mis-
match energy bound is obeyed, while at the same time providing a reasonably
tight bound, is not easy. First, because of the above comments regarding irrele-
vance of the majority of amino acid substitutions outside the active site; but also
because of the wide range of energetic effects of amino acid substitutions inside
the active site.

One simple way around this set of problems might be the following approach:
Let us imagine it can be shown that the number of amino acids typically relevant
to the behavior of the active site is roughly a constant fraction of the total number
of amino acids in a protein. Then we might have a chance at a reasonable distance
metric — at least in the abstract — by considering that a protein has two different
lengths: The “informationally effective length”, corresponding to the length of the
substring specifying the active site, and the “mass length”, corresponding to the
total size of the protein. The mass length would be used for calculating sizes
and diffusion constants, while the informationally effective length would be used
for estimating differences in interaction energies. But for now, we will leave this
outside the scope of the present work.

12360, for instance, the large body of literature concerning substitution of nonstandard amino
acid residues into proteins, in order to determine which residues contribute to the structure and
function of the active site

72

Chapter 4

Conclusions on Chemical
Computation

73

CHAPTER 4. CONCLUSIONS ON CHEMICAL COMPUTATION

4.1 Review

In the first part of this thesis, I have improved understanding of the speed, density,
and error rate of computation obtainable from chemical reaction systems. The
approach used differs from that seen in the literature to date, since it considers
several distinct aspects of chemical computer action, and tries to provide a more
unified, synoptic view. The issues I have considered are summarized here, along
with the most important messages and findings from each.

4.1.1 Implicit restrictions on random chemistries

This model accounts for the fact that freely chosen chemistries cannot be realistic
in the general sense: Unlike a randomly chosen chemistry, real sets of reaction sys-
tems have many implicit dependencies among the rate- and equilibrium constants.
Qur simple way of modeling this effect in this work has been to develop a “string
matching” approach to approximating equilibrium constants. In this model, the
Ag of interaction between two molecules is related to distances between their
description strings, in a string matching metric.

This has obvious direct relevance to computation schemes based on DNA hy-
bridization, since string matching provides an easy approximation for DNA hy-
bridization energy. The model developed in chapters 2 and 3 gives a relation
between oligonucleotide length, number of signals, and error probability. Given
two of these parameters, this model can inform us as to what we might expect
from the third. This, in turn, can inform us as to how to choose design parameters
for DNA computers to solve specific classes of problems.

The applicability of this approach may not be limited to DNA computation.
It is certainly imaginable that we might extend this approach to other classes
of chemistries — the only thing which is needed is to find a metric on the space
of chemical species, such that the difference in interaction energies between two
species and a common substrate, is linearly related to the distance between those
two species. This may well be possible to do in general, by constructing such
a metric from the matrix of interaction energies. But in the general case, the
constant of proportionality Ag; is likely to be very large. Chemistries which are
most useful for chemical computation, are those with small Ag;.

74

4.1. REVIEW

4.1.2 Errors due to randomness in chemical reaction sys-
tems

The second important aspect of the model given in chapters 2 and 3, is that it
accounts for the stochastic nature of chemical reaction systems, and explicitly re-
lates the rate of errors introduced into the computation to the underlying physics.
In this particular treatment, I have done so by a three part argument:

e first: imposing a Maxwell-Boltzmann distribution on the fractional occu-
pancies of bound states of signal molecules

e second: assuming synchronous operation, with a single sample of the state
occupancy determining the forward progress of the computation

e finally, choosing an arbitrary cutoff as to the fractional occupancy of cor-
rectly bound states which will give rise to “correct” forward progress of the
computation.

The first assumption is quite easy to justify, but not so the second and third. A
more convincing exposition would relax the assumptions of synchronous sampling,
and of simple cutoff logic.

In order to do this, I suspect one reasonable way would be to go directly back
to the chemical Master equation, and pursue a mathematical treatment from the
standpoint of time-coherence of stochastic processes. Such a treatment is for the
moment, outside my existing skill set. To pursue this, the first step would be to
understand enough terminology to be able to rigorously formulate the question,
and then do a literature search on related topics, to see which tools might be
applied.

Another problem with my treatment of this source of error, is that the cutoff
assumption, combined with the coarseness of my counting of the fraction of states
meeting the cutoff threshold, makes the resulting error bound ridiculously loose.
A more careful counting could improve the error bound by a factor of two or more
in the exponent.!

4.1.3 Transport phenomena and computation speed

The third important aspect of the model presented in this thesis, is that it makes
an effort to model the speed of evolution of the system in terms of physical trans-

!review the conjecture in section 3.1.6, for more details as to why this is the case

75

CHAPTER 4. CONCLUSIONS ON CHEMICAL COMPUTATION

port phenomena. Analyses of chemical computation which take these transport
phenomena into account have been somewhat lacking in the literature to date.?

To put one in the correct frame of mind, consider that in the classical com-
binatorial DNA computing case, we are talking about equilibration of chemical
systems with astronomically huge numbers of species, all present in vanishingly
small concentrations. Equilibration of such systems is necessarily slow. The es-
timate I present in section 2.3 is crude, to be sure; but it at least gives some
impression of the computation speeds we might expect from these systems.

Another important point of this treatment is that computation speed is explic-
itly related to several design parameters and physical-chemical constants. These
factors include:

1. fundamental particle size and solvent viscosity: Since in this model
signals must diffuse from one cell to its neighboring cells, the rate at which
this diffusion takes place is an important determinant in overall speed. The
diffusion constant of signal molecules is determined both by the solvent,
and by the size of a single component of the signal molecule (the “monomer
volume”, or v, as defined in chapter 2).

2. size of combinatorial space from which signal molecules are chosen:
The diffusion constant of signal molecules is also affected by how many times
larger they are than the smallest possible signal molecule. This, in turn,
affects the size of the combinatorial space from which signals can be chosen.

3. computation “cell size”: Although to my knowledge, no one has given

detailed theoretical analysis nor experimental construction to the idea of
a general chemical Cellular Automaton using diffusive transport, it seems
fair to consider it as a reasonable first approach to large-scale chemical
computation. At any rate, since the cell size is a parameter of my model, it
certainly will not reduce the computation ability of the system below that
of the “single cell” (i.e. Continuous Stirred Tank Reactor) case.
Taking cell size explicitly into account allows us to acknowledge and quantify
the link between number of signals, redundancy, and the physical size of the
signal molecules. This in turn has allowed us to make explicit the tradeoff
between number of signals and speed.?

’for instance, Adleman talks of multiple cubic meter vats of ssDNA in solution, without
taking into account the time required to process such vast amounts of fluid; much less the time
it would take for the natural chemical processes to relax to equilibrium in such an astronomically
huge, slowly mixing stochastic space

3and also the tradeoff between number of signals and error rate (see above)

76

4.1. REVIEW

4.1.4 Discussion

The results carry critical implication for the field of DNA computing, since it ap-
pears to be severely limited in computational speed. This confirms the widespread
opinion that DNA computation should perhaps be suitable for combinatorial com-
puting, but also brings into question the applicability of DNA computation to any
kind of serialized problem. Building molecular computers to attack deeply serial
problems may necessitate seeking more spatially organized approaches. One of
these might be trying to approach Drexler’s “machine phase” by spatially organiz-
ing the computational elements on some sort of scaffold. Perhaps in the near term,
a more spatially organized approach to molecular transport in solution might be
attempted, for instance by using MEMS to micromanipulate miniscule amounts
of fluid.

77

CHAPTER 4. CONCLUSIONS ON CHEMICAL COMPUTATION

4.2 Speculation: Neurons vs. other cell types

Consideration of the tradeoff between number of signals and speed gives us a new
way of thinking about information transport in neurons. Here are a few simple
observations:

Chordata have developed nervous systems in order to be able to respond
rapidly to changes in their environment. Since the organisms may be physically
large — typical distances may be a meter or more — neuronal information trans-
port needs to be physically fast (in terms of velocity; not necessarily cycle time).
But the “final- f” relation — which relates diffusion constant, molecule size, and
frequency (equation 2.27) — tells us that if molecularly encoded information is
moving fast, then the information is encoded in small molecules. This may be
why neurons use very simple molecules — ¢.e. sodium, calcium, and potassium
ions — for fast information transport.

But if information is encoded in small molecules, then in order to preserve
chemical distinguishability, very little information may be encoded in each molecule
— i.e. the number of distinguishable signals must be small?. And indeed, the num-
ber of distinguishable signals used for information transport is small; see the above
comment regarding the ions used by neurons.

In the case of isotropic diffusive transport of a small number of chemical
species, the bisection bandwidth density is not very large®. So if one wishes
to move large amounts of information from one place to another at high speed, it
seems there is no escaping the need for a routing structure, in order to relax the
condition of isotropy.

Stated another way: If we broadly categorize computing systems into “routed”
systems (e.g. electronic computers) and “unrouted” systems (e.g. chemical com-
puters), then we might make an argument — for instance based on bisection band-
width density — that routed systems have a fundamental advantage over unrouted
systems. If this is so, then it is quite clear why routed systems (e.g. nervous
systems) have evolved in nature: They confer a fundamental fitness advantage in
terms of speed and complexity of reaction to stimuli.

4this can easily be seen from the final-z relation (equation), in which we see that if L is
small, then this puts a smaller bound on log, N, and hence on N

SThis is obviously a broad statement, but I believe one which could be put on a firm theo-
retical footing with a modicum of work. This would be a good area for further study.

78

4.3. SPECULATION: WHY ARE CELLS THE SIZE THEY ARE?

4.3 Speculation: Why are cells the size they are?

As we have discussed above — in many different ways — spatial organization is
essential to pushing chemical computation past certain performance limits. Put
another way, subdivided chemical systems have an inherent advantage over uni-
form diffuse systems in terms of their computation capacity. This is because
in subdivided systems physical sequesterment of signals can increase informa-
tion density (by increasing the amount of information represented by each signal
molecule), and may also increase the speed of information propagation (by intro-
ducing anisotropy into the environment).

Let us assume for a moment that living cells represent single sites in a chemical
cellular automaton, as described in the previous chapter. Obviously, this is a gross
simplification for myriad reasons; it is by no means meant to be a complete model.
But let’s consider the implications for a few moments.

The question is posed: “How large should a cell be?”. If we try to answer this
question de nowvo, using only the ideas developed in this thesis, the answer must
be thus:

“Cells must be:

e large enough to store and process enough information to accomplish their
information processing tasks,

e large enough to have enough redundancy to not make errors in said infor-
mation processing,

e yet not so large as to waste excessive biomass on needless redundancy.”
If cells were too much smaller, their behavior would of necessity be either

e much simpler, since they have fewer signal molecule classes to work with, or

e much more random in their behavior, since their average chemical redun-
dancy would be smaller.

It’s interesting to note that living cells have evolved to have a small but greater
than one redundancy for most of their “important” information processing opera-
tions. A few examples:

e Most genes are present in approximately a copy number of one (two for
eukaryotes). Bacterial plasmids range in copy number from about 3 to 500.

79

CHAPTER 4. CONCLUSIONS ON CHEMICAL COMPUTATION

e Many repressor proteins are present in numbers from about 5 to 50 per cell.

e mRNA’s are present in small integer quantities, for genes being expressed.

On the other hand, if cells were too much larger, they might be wasting a lot
of biomass on ezcessive redundancy — their tasks are not terribly complex on an
individual basis, so they only need some reasonable redundancy (say 5 to 50) and
a reasonable number of signals, say a few thousand (corresponding roughly to the
number of structural genes).

Let’s look at some rough numbers. Say we have a hypothetical cell with 1850
structural genes, and that each corresponding protein averages 370 amino acid
residues, as in section 3.2.2. Let us assume further the cell needs an average
redundancy of 10, to minimize its error rate without being profligate. And let’s
say « is about 0.2. What is the minimum size of this cell, assuming there is
nothing else inside it?

AV NLr

&

N Ul
(1850)(370)(10)
0.2 " V) (protein)
~ 0.008um?

So the diameter of this cell, assuming sphericity, is about 0.25um. While this is
certainly a fair bit smaller than most actual cells, it seems reasonable to hypoth-
esize that if one includes all the overhead not included in this model (e.g. genetic
information storage, gene transcription machinery, structural elements, motile el-
ements, the entire metabolic apparatus, etc, etc), that living cells have evolved to
near mazimal information processing capacity for their size.

80

Part 11

Measuring Computation

81

Chapter 5

Introduction to Computation
Density

83

CHAPTER 5. INTRODUCTION TO COMPUTATION DENSITY

A significant problem in comparing electronic to chemical computers, is that
the shape of their performance envelopes is so radically different: Current elec-
tronic computers are very high speed, and very low error; whereas current schemes
for chemical computation can reach very high signal densities, but only at the ex-
pense of reduced speed and increased error rate.

Although we can calculate roughly the shape and size of the performance
envelopes for chemical and electronic computers, we cannot compare them directly,
for want of a single “figure of merit” by which to do so. In part two of this thesis, I
establish such a figure of merit, by bringing together and extending previous work
in the fields of Information Mechanics, Physics of Computation, and Cellular
Automata theory.

I start with reasonable definitions of total Computation Capacity and Com-
putation Density, as suggested by Toffoli in his paper on the Fungibility of Com-
putation. From this point, the work proceeds in three major steps:

e First, I take the idea of computation capacity — phrased by Toffoli as a
counting problem — and rephrase it in terms of a statistic. Having done
so, I can estimate the computation capacity of a system by using statistical
estimation. This also allows me to estimate the computation density of an
infinite system (which presumably has infinite computation capacity), since
my proposed statistical measure does not explicitly take the system size into
account.

¢ Second, I elucidate the link between computation density and a property
of dynamic systems called “specific ergodicity”. This gives an alternate way
of evaluating the computation density of a medium from first principles,
rather than through statistical measurement. Also, more importantly for
the analysis at hand, it gives us an upper bound on the computation density
of a medium in terms of its information storage capacity and its speed of
operation.

e Finally, I take my statistical formulation of computation capacity, and ex-
tend it to error-prone systems. I then extend the analysis to computation
density of infinite systems, by paralleling the argument mentioned above for
error-free systems.

The above arguments lead to a bound on computation density of an infinite error-
prone system in terms of information density, speed of operation, specific ergodic-
ity, and error rate. This formulation is general enough that I can reach the goal of

84

5.1. COMPUTATIONAL MEDIA

the second part of this thesis: Comparing the computation density of current elec-
tronic computers with the maximum achievable by proposed models of chemical
computation.

5.1 Computational media

It is considerably difficult to understand computation systems at a fundamental
enough level to be able to make direct comparisons between such different things
as a workstation computer and a vat of chemicals in solution! So to set the tone, I
will take a large step back, and consider computation systems from a much more
general — and somewhat philosophical — perspective. I hope the reader will bear
with me; and I promise the openness in perspective will bear fruit in the chapters
to come.

I begin by asking: What do a clock, a punch-card loom, a digital computer, a
cell, and a lava lamp have in common? One answer is that they are all computa-
tonal systems, made of computational media. We might say that “computaton”
goes on in all of them; certainly in some more than others. But what is computa-
ton, and how should we measure it? Certainly the computation taking place in a
punchcard loom is not directly comparable to that in a modern digital computer.

A definition general enough to encompass all the above items is elusive, to
put it mildly. The relations among some groups is well understood, but a broader
understanding 1s not pervasive, maybe because the progress in understanding these
relations takes place on so many distinct frontiers.

It is the goal of this second part of this thesis to contribute, in some small
measure, to such a broader understanding. First, by establishing a taxonomic
framework for classifying computatonal systems. Second, by surveying existing,
well understood relations within some classes of the taxonomy. And third, hope-
fully breaking some new ground on some of the relations not well understood.

The taxonomy I will propose comes from comparing pairs of computational
systems which differ in one respect, and enumerating the ways in which they differ.
From these differences, I establish a set of character traits which may or may not
be present in a computatonal system.

I then consider all possible subsets of these traits, and consider which subsets
are represented by well understood systems. By looking at the boundaries of these
areas, I identify open problem areas within the taxonomy.

To understand those open areas better, I adapt existing technigues which have
been used to study some types of computational systems, and try to apply those

85

CHAPTER 5. INTRODUCTION TO COMPUTATION DENSITY

techniques to the open areas.

9.2 Traits of computational media

I will introduce some traits here by comparing pairs of computational media or
systems, and seeing how they differ. Be warned, this is a “fast and loose” com-
parison. We will define things more explicitly when we get down to the chosen
problem areas.

finitude

What is the difference between a digital computer and a universal Turing Machine?
One easy answer is that one is finite and bounded; the other is not. The computer
1s a finite system; a “thing”. The Turing Machine won’t fit in a finite amount
of space; it is more like “stuff” than a thing, except that it is nonuniform (see
“structure”, below).

We can simulate the action of a computer on a TM, and to a certain point,
we can simulate the action of a TM on a computer. But clearly we can’t go all
the way, and simulate an arbitrary TM on a computer of finite size, in a finite
length of time. Some problems, astronomically huge, will be too difficult for our
computer; we will have to keep looking for larger and/or faster computers.

structure

Now consider the difference between a Turing Machine and a Cellular Automaton.
They are both unbounded systems, but the Turing Machine has a special compo-
nent, the head, which is only in one place at a time. The Turing Machine thus has
some structure to it, as contrasted by the uniformity of the cellular automaton.
The TM more closely fits our conventional definition of “machine” than does the
CA, whereas a Cellular Automaton has a “smart dust” quality, or crystalline form,
about it. The TM is “structured”, whereas the CA could be said to be “uniform”.

It is also worth noting, that the TM processes a finite amount of information
per unit time, whereas the CA, in the idealized case of infinite extent, processes
an infinite amount of information per time step.

86

5.2. TRAITS OF COMPUTATIONAL MEDIA

determinism

So far in this section I've mentioned only deterministic systems. Some of these
have finite state (e.g. the computer), whereas some have infinite state (e.g. the
CA). In some practical sense, though, it is nonsensical — except in idealization —
to consider infinite state systems as deterministic over long times, since any actual
experiment can clearly only account for a portion of the information in the initial
state.

S0, independent of whether we believe physics to be deterministic or not, it is
often useful to consider systems as being stochastic at some level of observation.
This in fact is one of the central premises of statistical mechanics.

In the abstract: If we compare a finite state machine to a Markov machine,
we have the essence of what the difference is between deterministic — or “ideal”
systems, I will call them — and stochastic, or “physical” systems.

As other examples, compare the structure of a huge array of fully tested FPGAs
to the structure of the Teramac [36] — or the structure of a conventionally designed,
massively parallel supercomputer, to the more radical design of IBM’s BlueGene
(8] project. Both Teramac and BlueGene were deliberately designed to be tolerant
to faults (either spatially and/or temporally distinct) introduced during construc-
tion or operation. They are designed for construction in a physical environment,
above absolute zero temperature, with interaction with the surroundings, hence
prone to failures. This environment is distinct from the mathematically ideal en-
vironment of finite state machines. This distinction is not merely academic nor
pedantic - for example, the number of components in BlueGene, and the length of
the computations for which the machine was intended, dictated that the machine
would likely have several component failures during any single job.

Clearly, the finite state machine is a very special case of the Markov machine.
If we have a universal Markov machine, we can easily simulate a FSM. But to go
the other way; to simulate a Markov machine with an FSM, for any appreciable
length of time, will require larger and larger amounts of FSM resources. This is
very similar to the case mentioned above, in “finitude”.

universality

The term universality is typically used when a member of a class of systems can
exhibit the behavior of any other element of the class. This is most familiar from
theoretical computer science, where we have the notion of a UTM being universal
in the class of TMs. Likewise, in practical computer engineering, we have the

87

CHAPTER 5. INTRODUCTION TO COMPUTATION DENSITY

notion of a “complete” instruction set. Or in digital hardware design, the notion
of “logical completeness” of a set of gate types.

One fundamental insight derived from universality theory, is that there exist
distinct classes of problems, some of which are strictly harder than others. Hence
a machine which can solve a problem from a harder class is considered “more
powerful” than a machine which can only solve problems from a proper subset of
that class.

But this is a coarse distinction. In many fields, we have a finer measurement:
We have “benchmarks” to distinguish between machines in the same universality
class, but with varying performance. There are few who would argue that an
Alpha processor is not more powerful, in some measurable sense, than a 6502.

One issue with benchmarks, though, is that they tend to be problem-specific.
This is because they are performance oriented rather than possibility oriented.
If someone asks you whether you would rather have a UTM or a pushdown au-
tomaton, you would clearly prefer the UTM. But if you were asked your preference
between a 1.2 GHz G4 and a network of 1000 Sun-3’s, your informed answer would
definitely depend on what kind of problem you wished to tackle.

There is an open question as to what universality means for finite systems. But
this thesis is not primarily concerned with universality; more with performance
measurement. So we will be content with this loose understanding of universality
for the present discussion.

5.3 Proposed taxonomy of computational systems
and media

Following is a proposed taxonomy of computatonal media and systems, in tabular
format. In the table cells are listed some examples of each taxon. This is obviously
not meant to be complete; some of the important examples will be discussed in
detail later.

88

5.4. TECHNIQUES

Deterministic/ Stochastic/
Ideal Physical
Programmable/ Universal/ Programmable/ Universal/
Special General Special General
Structured/ Loom/ Computer Lava lamp? Fault tolerant
Thinglike/ Machine-like Counter computer
Finite Uniform/ PROM/ FPGA Arkin gas Teramac/
Dust-like finite CA BlueGene
Structured/ ™ UTM Stoch. TM ?
Stufflike/ Machine-like
Infinite Uniform/ physical CA universal CA Stach. CA/ Gunk?
Dust-like Gunk

5.4 Techniques

Wherein we survey some techniques which have historically helped to understand
the relations between specific pairs of these taxa.

generalize

By this I mean the process of reasoning that a class of computers has a distin-
guished subclass of universal machines. The classic example is Turing’s proof of
the existence of a UTM which can simulate any TM, and the consequent realiza-
tion of the existence of a whole class of UTMs, properly contained in the class of
TMs.

Similar reasoning has been carried out in the field of cellular automata [13].

One might consider a logic-complete FPGA as a universal PROM, since it can
simulate any PROM and any logic-complete FPGA can simulate any other! .

Similarly, one might consider a digital computer with a complete instruction
set as a kind of generalized punch-card loom, from which it descended.

real-i1ze

Most often a mathematical model of computation must be modified and/or re-
stricted before a physical embodiment of it can be constructed. This can be either
in spatial extent (since we can’t build infinite systems with finite resources), in
spatial resolution, in error-rate, or other ways. In this paper I will consider real-

'Within some scale factor, of course, and subject to some constraints on routability. We have
also ignored the distinction here between FPGAs whose cells have registered vs. unregistered
outputs. Clearly a bit more work would be needed to make this statement more rigorous.

39

CHAPTER 5. INTRODUCTION TO COMPUTATION DENSITY

ization as the process of adapting the idealized notions of determinism and infinite
size to physically realizable systems.

By this I do not mean to suggest that physics is nondeterministic; I simply
mean that practically sized systems — in a world where information travels at
finite speed, at nonzero temperature, imperfectly isolated from outside influence,
and measured with finite precision — are effectively not deterministic at very long
time scales.

So what I mean by “real-izing” is to explicitly take account of these uncertain-
ties in our mathematical treatment of the system.

amortize and valuate

In some simple cases, it is easy to order finite-sized computational systems in
terms of quality, or usefulness. For instance, I can say that a computer with two
megabytes of memory is “better” than an (otherwise identical) computer with one
megabyte. Or I can say that an FPGA with 20,000 gates is “better” then one with
10,000, all other factors being equal.

But how should we put values on these qualities? Is an FPGA with 20,000
gates twice as good as one with 10,0007 That is, would I trade two FPGA’s with
10,000 gates each, for one of 20,000 gates? Probably, but not necessarily. Or
worse yet: would I trade a computer twice as fast for one with twice as much
memory? It depends on my utility function.

One way to attack this problem is to try and answer it for infinite systems
first. This may seem strange, but we will argue that it is easier to define a “value
density” for a computational medium, than it is to define a value for a computer.

Amortization can be thought of as a renormalization process by which we can,
if we're careful, assign intensive quantities to infinite media. For instance, we
might say that one universal CA is “better” than another if it runs twice as fast,
or has twice as many bits of state per cell, etc.

In some cases (discussed in more detail below), we can actually proceed from a
rank-ordering on computational systems to a numeric quantity which is intensive
to the medium. Continuing the financial metaphor, I will call this “valuation™
instead of simply comparing systems or media to order them — as we do in uni-
versality arguments — we can measure a property of each numerically.

An implied consequence of the existence of such an intensive quantity, is that
there is a corresponding extensive quantity, or “value”, defined on finite computa-
tional systems, which is approximately additive under system composition.

90

5.5, ROADMAP: TOWARD COMPUTATION DENSITY OF INFINITE,
DUST-LIKE, STOCHASTIC MEDIA

pulverize

To “pulverize”? a structured system is to abstract the functionality of the system
in such a way that it can be embedded in a uniform, unstructured system. For
instance, we can embed the capabilities of a microprocessor in an FPGA, by
carefully setting the initial state of the FPGA. Likewise, we can embed a Universal
Turing Machine in a Universal CA, by carefully setting the initial state of the CA
[78].

In order to find a medium capable enough to do such an embedding, we must
analyze a carefully designed and assembled, highly structured system, and ab-
stract some characteristic which allows a “powder” to do the same tasks. Ior
instance, for the FPGA, logical completeness of the cell set, plus some reasonable
condition on routability, guarantees that with a large enough FPGA we can build
the microprocessor we want.

For embedding the UTM in a CA, the situation is more subtle. Universality
for CAs is a slightly different concept than universality for TMs, since an ideal
CA is infinite in extent, and can therefore execute an infinite number of logical
operations per unit time. So when we think of the space-time density of logical
operations, the CA is a clear winner. Clearly we can build a UTM within a UCA
without any speed or space tradeoff, but the converse is almost certainly not true.
Presumably, there is an intermediate class of CAs which is universal for TMs, but
not for CAs.

But as I mentioned above, we are not primarily concerned with universality
here. So we will deliberately leave that discussion aside in this work.

5.5 Roadmap: toward computation density of in-
finite, dust-like, stochastic media

Much is understood about performance in structured and/or finite systems, both
deterministic and stochastic.

But to approach the problem of measuring computation in such diverse systems
as electronic VLSI circuits vs. chemical reaction systems taking place in solution,
we must try to understand computation in a more general way. There are at least
three nontrivial problems facing us in this effort:

e space vs. time tradeoffs: Electronic and chemical computers operate

*from the germanic root, “pulver”, or powder

91

CHAPTER 5. INTRODUCTION TO COMPUTATION DENSITY

at vastly disparate speeds and signal densities. In order to compare them
directly, we must develop applicable techniques for doing so. Fortunately,
there is rich literature on this topic.

e generalizing to infinite systems: Electronic computers are generally
structured, whereas the chemical computers envisioned thus far operate in
fluid phase, or in an unstructured way. In order to compare them, we must
develop a technique to “amortize and valuate”, as discussed above.

e incorporating error: Chemical computers may operate with substantially
higher error rates than their electronic counterparts. Again, we must figure
out how to Incorporate this difference into our evaluation. This corresponds
to the process labelled “real-ize”, above.

Tommaso Toffoli, in his papers on the “Fungibility of Computation” {71]|74], has
developed a structure for accomplishing the first two tasks above: Dealing with
space vs. time tradeoffs, and amortizing infinite systems. This gives us already
an approach for evaluating dust-like infinite deterministic systems. But to my
knowledge, performance has not yet been well quantified for infinite dust-like
stochastic systems. Also, much is understood about universality in the context
of deterministic and/or finite systems; but not that much about infinite dust-like
stochastic systems.

We would like to move into the area of performance/universality of infinite
dust-like stochastic systems; called “amorphous computation”, or “gunk”, by Abel-
son, Sussman, et al. [1], since chemical computation systems are reasonably well
represented by this model. To do this, we will use Toffoli’s work as a starting
point, and extend his measurement techniques to include the effect of error rate
on usable computation power. We will accomplish this in a series of steps:

1. real-ize: from deterministic, finite to stochastic, finite (see section 5.5.1,
below).

2. amortize: from deterministic, finite to deterministic, infinite (see section
5.5.2, below).

3. attempt to combine the results of the above two, to evaluate stochastic,
infinite systems (see section 5.5.3, below).

A warning: some steps of this argument are clearer than others. Some are well
supported; others are what I consider reasonable conjectures, given with support-
ing examples. Whatever one’s evaluation of the believability of the claims made

92

3.9. ROADMAP: TOWARD COMPUTATION DENSITY OF INFINITE,
DUST-LIKE, STOCHASTIC MEDIA

here, it 1s worth something to note that the final result is simple, and intuitively
reasonable.

Such a result was not originally in the scope of this thesis, but I was pressed
by the lack of results in this field to work in this direction, so that I could have
reasonable basis on which to base performance comparisons of highly dissimilar
computational media. There is more-than-ample ground here for further inquiry;
my purpose here has been simply to get the results to a maturity sufficient to
evaluate the performance of the dissimilar computational media discussed in part
I of this work.

5.5.1 Real-1zation: computation density of error prone sys-
tems

functional effectiveness and stochastic functional effectiveness

(Wherein I define the notion of functional effectiveness, and generalize it from
deterministic functions to stochastic functions)

Toffoli has proposed [71][74] what I believe is a reasonable performance metric
on deterministic, dust-like systems— that is, CAs. He begins with a definition of
“computation density” for finite CAs, and presents experimental numerical evi-
dence for the notion that this density is amortizable for infinite systems, and so
in his terms, computational media is “fungible”.3

In his discussion of computation density, Toffoli is treating only determinis-
tic systems. But he hints at a possible method for extending his definition to
stochastic systems.

To close the argument reasonably rigorously, it’s necessary to do a few steps
of work. I start with a quite restrictive case: replacing a computational system
with a simple deterministic function mapping a discrete finite domain to a discrete
finite range. T then ask, if we have a machine to compute this function, how much
“computation capacity” can I say is inside the machine?

[treat this problem with an information theoretic/statistical mechanical argu-
ment: I define a functional value on a deterministic system, by an expected value
over an ensemble of deterministic systems, randomly chosen from a suitable set
of initial conditions. I call this measure “functional effectiveness’.

One nice aspect of the development of functional effectiveness, is the defini-
tion can be easily extended to stochastic functions (a function whose output is a

301, in the parlance of finance theory, we miight say it was a high-liquidity asset, for which
the Law of One Price holds

93

CHAPTER 5. INTRODUCTION TO COMPUTATION DENSITY

random variable). I follow Toffoli’s hint down this path, and develop a measure of
how much computation we can expect, on average, from such a function. A simple
example, for instance, is a deterministic function with an error term introduced
into the input or the output.

I call this measure “stochastic functional effectiveness’, and illustrate it for
several simple examples.

steps toward stochastic computation density

To close the chapter, I will give a hint of things to come by suggesting that we
can divide functional effectiveness by the log of the size of the input space, to
arrive at normalized measures I will call functional density and stochastic func-
tional density, respectively. This is a simpler parallel to Toffoli’s normalization
argument for obtaining computation density (a property intrinsic to a medium)
from computational capacity (a property of a system).

This will lay the groundwork for migrating the results from the chapter on
finite, error-prone computational systems, to infinite, error prone computational
media. This result will be the basis of all applications given in this thesis, in-
cluding Amorphous Computation, DNA computation, and generalized chemical
computation.

5.5.2 Measurement: relation of computation capacity to
specific ergodicity for deterministic systems

(Wherein I take a shew the relation between computational capacity, an extensive
quantity, and specific ergodicity, an intensive quantity)

A significant obstacle to practical application of results on Toffoli’s computa-
tion density, is the difficulty of evaluating it. It is defined as a limit, and each term
of the limit sequence is exponentially more expensive to evaluate experimentally.
He hints at a way past this, by reintroducing the notion of specific ergodicity of
a dynamics, and saying that it is “intimately related” to computation capacity.
He does not elucidate further on the relation between the two, at least in all the
papers I have been able to find.

In this chapter, I try to shed some light on this relation. The approach parallels
the previous section, where we measured functional effectiveness by choosing the
expectation of a statistic over a randomly chosen input. Here, we proceed similarly
by generalizing computation capacity to an expectation over a set of spacetime
point-observations of the computational process.

94

5.5. ROADMAP: TOWARD COMPUTATION DENSITY OF INFINITE,
DUST-LIKE, STOCHASTIC MEDIA

The central idea 1s to consider the spacetime evolution of the entire system for
all time, and to observe it at a sparse set of spacetime points. The question then
becomes: How incrementally “surprising” can the system be? That is, if I start
with some sparse set of observations, and [make a single other observation, what
is the expected amount of information [will gain about the overall state evolution
of the system?

In this case, the statistic I use is the conditional entropy of my next observation,
conditioned on the values of my current set of observations. 1 will show, in turn,
that

1. For a reasonably general class of systems, this value reduces to Toffoli's
computation capacity, as defined, and

2. if we take the expectation of this value over a reasonable distribution of
starting states and observation points, the expectation reduces exactly to
the specific ergodicity, multiplied by the log of the size of the state space.

5.5.3 How good is my gunk?: computation density of infi-
nite, dust-like, error-prone media

(Wherein I combine the above results, and propose a quality measure for infinite,
dust-like, stochastic computational media)

Once we have in hand a believable measure for computation capacity of finite,
stochastic systems, and a way to measure it in terms of specific ergodicity, we can
try and generalize to infinite, dust-like systems.

First, and most easily, for dust-like systems, the size of the state space goes
exponentially with spatial size. Hence the error-free term in the stochastic func-
tional capacity - expressed previously in terms of specific ergodicity and the size
of the state space — can be rewritten in terms of the information density of the
state space. In this way, the spatial extent of the system cancels, and we have the
error-free term in our computation density, in terms of specific ergodicity.

It remains only to evaluate the error term. The error term can be thought
of as the spacetime rate of entropy production, due to errors (hence not due to
useful computation).

If we take errors to be discrete events, sparse in spacetime; and if we make the
assumption that they occur almost independently?, then we can approximate the
coarse-grained average of the spacetime entropy error rate as the product of two

4not an unreasonable assumption, if they are sparse

95

CHAPTER 5. INTRODUCTION TO COMPUTATION DENSITY

factors: The spacetime error arrival rate, and the expected entropy introduced at
each error.

5.5.4 Discussion

These results, taken together, put us in a position to be able to approximate the
computation density of infinite, dust-like, stochastic media. Admittedly, some
of the steps I have taken are on stable footing, and others are more tenuous.
However, none of them are unreasonable, and further work could no doubt improve
the rigour, clarity, precision, and scope of the results. I will note, also, that the
intuitive appeal and the simplicity of the final form of the results, speaks in some
measure for itself.

5.6 Applications

classical electronic computers In the field of conventional digital electronic
computers, much attention is paid to maximizing performance, while trying to
keep error rates to an acceptable level. “Acceptable” generally means the com-
puter is capable of performing typical tasks set before it, while maintaining an
acceptably small global error probability. Error rates are, at least historically,
extremely low, and even when they start to become a problem, application of
modest amounts of highly localized error detection and/or correction generally
reduces errors to astronomically small rates.

But this cannot be the case forever. As digital switching devices become
ever smaller, the amount of energy required to spontaneously (hence erroneously)
switch them becomes increasingly small, hence error rates per gate increase. In-
deed, in modern silicon VLSI switching devices, spontaneous alpha-particle decay
in the silicon substrate giving rise to erroneous switching is “embarrassingly fre-
quent” [9].

Additionally, a large part of the reason to be reducing gate sizes and increasing
speed, is to be able to tackle larger problems. But without error correction, the
likelihood of completing a large problem without errors becomes vanishingly small.
Indeed in massively parallel next generation supercomputers such as BlueGene [8],
the aggregate MTBF of all components of the machine will be far less than the
expected time to complete a typical problem!

So we have two confluent factors driving us to apply ever more error correction:
The use of smaller hence more error-prone gates, and the need to solve larger

96

5.6. APPLICATIONS

hence more error-prone problems. Since we are faced with the opportunity of
using smaller, faster, yet more error-prone computational media, it 1s apparent
that we need reasonable ways to compare the quality of such media on a rational
basis. In other words, we wish to develop a “figure of merit” which measures
comparatively how good or bad an error-prone computational medium is.

I will argue that computational density is such a figure of merit. If this is in
fact the case, then it becomes important to be able to evaluate computational
density for modern electronic computers. I will show how this can be done, and
will provide some numerical estimates on computational densities achievable with
state-of-the-art VLSI processors.

Cellular Automata machines Toffoli and Margolus have built a series of Cel-
lular Automaton Machines, which are fast hardware-based implementations of
finite-state CA’s [73], [75], (48], [76]. These machines are quite general, but are
intended primarily for CA modeling of physics.

More recently, Margolus has proposed a next generation CA machine [50], [49],
based on a very closely coupled (single chip) DRAM /processor architecture.

The concepts presented here will be directly applicable to evaluating the com-
putation density of such machines.

biocomputation Finally, in the concluding chapter, we will give some analysis
of the models of biochemical computation presented in chapter 3, with an eye
toward evaluating their effectiveness as a competitor to electronic computers.

97

CHAPTER 5. INTRODUCTION TO COMPUTATION DENSITY

98

Chapter 6

Computation Capacity and
Computation Density

99

CHAPTER 6. COMPUTATION CAPACITY AND COMPUTATION
DENSITY

6.1 Toffoli’s computation capacity and computa-
tion density

Computation capacity

In trying to find a reasonable figure of merit for a computing system, we will start
with Toffoli’s “computation capacity” [71][74]. He defines capacity as the log of the
number of distinct behaviors - or input/output transfer functions - a system might
display. He gives the number of distinct behaviors the symbol n. Since systems
larger in space and/or time can be expected to have an increasing number of
possible behaviors, Toffoli parametrizes n by space and time: n = n(X,T). He
then writes the computation capacity as:

Atottoli (X, T) = lgn(X, T).

He is careful to note that some computers have degenerate programs; that is,
more than one program which can give rise to the same behavior.

Example: the PROM

Toffoli uses a PROM as a simple example of a computational system. Imagine
a PROM with m address lines, and & data lines. The number of bits stored in
the PROM is k£ - 2™. The behavior is the function programmed into the PROM;
in other words, the mapping from input to output. Clearly, this system does not
have program degeneracy, so n in this case is simply the number of programs,
or 282", Tence, Aioffoli = k- 2™, or simply the number of program bits in the
PROM.

Computation density

If n(X,T) were to grow exponentially with spacetime volume, then A ool (X, T)
could be written more simply as

A=CXT,

for some constant C'. We might then call C' the “computation density”, as A
1s now an extensive quantity, and C' is its corresponding intensive quantity.

However, things are not that simple: The number of behaviors cannot be
expected to grow ezactly exponentially with spacetime volume. So, in order to
define computation density, Toffoli makes some restrictions:

100

6.2. A STATISTICAL APPROACH TO COMPUTATION CAPACITY

e he restricts his view to cellular automata,

¢ he redefines computation density as being a function of the spacetime volume
of the cellular automaton: C(X,T) = 35 A ogo1:(X, 1) , and

e finally, he defines his computation density to be the limit (if it exists) of
C(X,T) as the spatial volume of the CA goes to infinity, and the time
volume of the CA goes to zero:

o 1 AX,T)
Croffoli = i, CXT) = lim ——5r—

He goes on to present nhumerical evidence that the limit seems to exist, in all cases
he has (computationally) explored.

(6.1)

6.2 A statistical approach to computation capac-
ity

In Toffoli’s approach, we count the number of possible mappings — or transfer
functions — from input to output, and take the log of that as the computation
capacity of the box. But this may not be possible or desirable. For instance, the
number of transfer functions may be huge, and may not have a regular combi-
natorial structure —~ so it may be intractable to count exhaustively, and difficult
or impossible to compute analytically. Or as another example, say we do not
have available all different transfer functions to count, but we can sample them
at random. In this case, we may wish to simply estimate their number.

What of these cases? To approach this question, let’s consider the system
under study as a black box which is given us “preprogrammed”, and on which
we may do experiments. Our experiments are of the form: Apply an input, and
observe the output.

A reasonable approach we could use to try and count the transfer functions,
is to consider the transfer function of each box we are given as a sample of a
random variable, and then try to estimate the amount of information in the box,
by estimating the entropy of the random variable.

More concretely: Let us denote a transfer function w : I — O by a vector w,
composed of the outputs in response to each possible input:

w=<o0; > 1€l

101

CHAPTER 6. COMPUTATION CAPACITY AND COMPUTATION
DENSITY

If we regard P, the program in the box, as a uniform random variable (call
it P), and we regard the vector w as a function of P, then the capacity is the
entropy of the vector-valued random variable @, induced by applying w to P:

A tic = H(@) = H(w(P)).

stochas

6.2.1 Estimation techniques

If we have an agent presenting us with randomly programmed examples of the
black box, then how might we estimate H (@), by experimentation? We have some
set of examples, or programs, and we have some set of inputs (the components of
w). Should we spend more effort on measuring individual components of w, for
all examples we’re given, or should we measure all the components of w, for a
smaller set of examples? Put another way, should we measure the entire transfer
function for some small set of boxes? Or should we sample as many boxes as we
can, and only spot-check the transfer functions on a small set of inputs?

example: the PROM under random sampling

Let’s say our adversary is giving us randomly programmed PROMs, and let’s
imagine we elect to do only a single experiment per example given us (i.e.: per
black box). This means we apply only a single address as input. Clearly we cannot
arrive at a good measure of the capacity of the PROM in this way, since most of
the program is being wasted for every example we test: Many possible programs
are degenerate under this experiment (that is, don’t produce observably difterent
results). This happens for all programs which have the same value at the given
address. So in this case, we have done too little experimentation to accurately
measure the capacity of the system.

What of the other extreme case: Where we do lots of experiments? If we were
to do more and more measurements, we could get more information out each time
(if we chose our inputs intelligently), until we knew the entire PROM contents,
or “program” in the box.

In the PROM case, when we do this, the transfer functions we obtain from
independent program samples will be uncorrelated. That is, the transfer function
for one sample gives us no information about the transfer function for any other
sample.

Contrast this with the case in which someone gives us a black box with the same
number of input and output lines; but which contains only a binary adder with

102

6.2. A STATISTICAL APPROACH TO COMPUTATION CAPACITY

one of the operands preprogrammed (i.e.: the “program” in this case consists of
specifying one of the operands to the addition). In this case, the transfer functions
of multiple samples are correlated: The first one may look completely random,
but the more samples we inspect, the less new information is gathered each time.
In the limit, a single input (say, all zeroes) will suffice to tell us the entire transfer
function of a new sample presented to us.

With a PROM in the black box, there is much to be discovered, and each
experiment tells us very little. But with the simple adder in the black box, there
is not as much to be discovered.

Keep in mind that we are trying to estimate the amount of information in
a randomly chosen transfer function of the generic system, or of the medium.
It we are given a medium for which the vast majority of programs are “boring”,
then those vast majority are not worth considering compared to the few which
are Interesting, and we might say that the medium is “weak”. On the other hand,
a medium which does surprising things no matter which way we prepare it, is a
better general-purpose computer. For example, a medium which can count to some
large number N if we prepare it correctly is not as interesting as a medium which
can generate random permutations of N elements. For measuring computation
capacity, we don’t actually care about the detatled manner in which the medium
responds to different programs; we only care about how “surprising” its behavior
can be over the set of all possible programs. That is, how diverse is the class of
functions it can compute.

So, let’s try to estimate H(@) for the PROM. Consider a set of black boxes
prepared with all possible programmings of the PROM. Now, let an agent choose
one uniformly at random and present it to us. We may now do as many measure-
ments on the box as we wish. In this case the outcomes of any set of measurements
on different inputs are independent; the outcome for one input gives us no infor-
mation about any other input. In the parlance of probability theory:

Let I be an “input space”, O be an “output space”. Let P be the space of
programs, or functions from / to O. If 7 and O are finite, we can regard a member
of P as a vector in the vector space Q@ = (Y. An agent chooses a member of P and
gives it to us for “experimentation”. Let’s say the program given us is a sample of
the vector-valued random variable & = <o, >. Our “experimentation” consists of
applying some inputs 4 to the black box and observing the outputs. Since @ is a
vector-valued random variable, we can treat it as a collection of random variables
0;, and we can consider an “experiment” as sampling 4;, for some .

In the case of the PROM, for any chosen program in P, all components of the
vector are independent. Moreover, for the PROM, the statistical entropy for each

103

CHAPTER 6. COMPUTATION CAPACITY AND COMPUTATION
DENSITY

component is the same:

H(G:(5;) = H(Gr) for j #k
H(or) is constant over k

So, if we consider the ensemble of PROMs programmed all possible ways, pre-
sented all possible inputs, of course they will generate all possible outputs. But
a stronger statement is: for each input, the information contained in the distri-
bution of outputs will be the number of output bits, k; the output distribution
is independent of input; and the number of possible inputs is 2™. So, the total
information is (Ig||O]|) - ||I]| = k- 2™, or precisely the number of programming
bits in the PROM.

So the PROM is a very good computing medium indeed: It has a large program
space, and each program gives rise to a distinct behavior. Its computation capacity
is equal to its number of programming bits.

6.3 Eliding the distinction between program and
input

In attempting to abstract away the concreteness of existing models of computa-
tion, the question arises: How should we define “program”, and how “input”, so as
to arrive at a believable definition of computation capacity? Omne problem which
comes up when trying to work more deeply with Toffoli’s definitions, is that the
capacity is defined only for a given partition of program from input. Who is to
say that the capacity will not be different for a different choice of which lines are
“program” and which are “inputs”. Ideally, a good definition of capacity will be
invariant under this choice.

Let us return to our friend the PROM. What should we consider its “input”,
and what its “program’?

Neglecting the obvious answer for a moment, let’s ask if there is any other way
we can split up the program from the input. If there are other reasonable ways
to do so, that should not change the total computation capacity of the PROM.

Let’s consider swapping our definition of program and input, and see what
happens. The “input” now will be the entire state of the bits stored in the PROM.
So there are 2¥2" possible inputs. And the “program” will be the state of the
m address lines. So there can be no more than 2™ distinct behaviors. Clearly

104

6.3. ELIDING THE DISTINCTION BETWEEN PROGRAM AND INPUT

something is wrong here: Most of the input is being summarily ignored, while the
number of programs is way too small to elicit the full range of behaviors we would
expect from the PROM. By changing the definition of which lines we designate as
program, and which as input, we have dramatically reduced the capacity of the
PROM as Toffoli defines it.

What can be done? To go further, as stated above, we’d like a definition
which is invariant under the partition of program wvs. input. Let us investigate
whether, by modifying or expanding the definiton of capacity, we can arrive at
such a measure.

a proposal

Let’s try redefining capacity to be the supremum:

Let P be a partition of the input space into a “program” set P and an “input”
set I. Without loss of generality, assume I = {1,2,3,...,||||}. For a given P, we
have

Ap = H(W(P)))
= H[< 01,02, ...0||1| >(P)].

Intuitively, if we vary the partition P, the following effects occur:

e If we take P such that [is large and P is small, there aren’t enough distinct
programs to produce very many independent output vectors, so H becomes
small.

o Conversely, if we take P such that 7 is small and P is large, there aren’t
enough output vectors to distinguish the behaviors of all the programs, so
H again becomes small.

In general, H will be maximized when P is somewhere between all-input and
all-program.

In lieu of trying to evaluate the optimal partition in general (a hopeless task),
we choose for now to simply define A to be the maximum of H, over all possible
partitions:

Ageneralized = ngx H(W(P))

105

CHAPTER 6. COMPUTATION CAPACITY AND COMPUTATION
DENSITY

example: 2 input gate

Consider the example of an AND gate: it has 2 inputs and one output. The
possible partitions of the input bits are:

e both inputs are “program” bits
e both inputs are “input” bits

e one input is a “program” and the other is an “input”

The table shows a calculation of H(&) in each case!:

both both one program,
program input one input
D | w P | w P | w
<0,0>|<0> <>1<«<0,0,0,1> <0>|«<0,0>
<0,1>|<0> <1>|<0,1>
<1,0>|<0>
<lLl>|«<1>

[H(@) =11gl +31g3 =084 | H(@) =0 | H(@) =1 |

1

So, the computation capacity of an AND gate is 1 (as we might have guessed).

a less tractable but more restricted case

Consider the logic cell shown in figure 6.1. This is a unit cell from the QuickLogic
pASIC T series of FPGAs?. When I worked at QuickLogic, it was an open ques-
tion for us in the electronic CAD department, as to how many distinguishable
logic functions were achievable with this cell, by tying the inputs high or low or
together. We never solved this problem; we determined an exact counting was
computationally infeasible with the resources available to us at the time.

The approach above gives us an alternate way of finding the number of func-
tions achievable with this cell:

1Here we take the shorthand of denoting w(P) by @. We will often do this in the following

sections.
2The pASIC cell actually had a registered output, but that is beyond the scope of the present

discussion.

106

6.3. ELIDING THE DISTINCTION BETWEEN PROGRAM AND INPUT

— .
|/

%}

=0
L
D_.

MLl LLAIEEL G

Figure 6.1: A unit cell from the QuickLogic pASIC I series of FPGAs.

107

CHAPTER 6. COMPUTATION CAPACITY AND COMPUTATION
DENSITY

1. for each partition of program and input bits,
2. for each possible state of the input bits,
3. compute the entropy of the output, as we change the program bits.

4. finally, take the maximum over the choice of program/input partition

A side observation, is that this gives a sketch of a Monte Carlo algorithm for
estimating the computation capacity of a system?®.

“null-input” computation capacity

Since the number of functions over an input set is exponentially larger than the
number of members in the input set, it seems reasonable to conjecture that in
most cases, the (program, input) partition which gives the largest f1(w) is likely
to be skewed heavily in favor of programming bits, and away from input bits.
For example, recall the comparison between the PROM and the PROM with its
program and input bits exchanged: Having too few programming bits and too
many input bits radically reduced H(@).

For this reason, I will introduce the notion of “null-input” computation capac-
ity. This is just H (&), for the case in which all initial state is taken to be program,
and none is considered input. This simplification will become more useful when,
in the following section and the following chapter, we are dealing predominantly
with spatially uniform systems such as cellular automata.

It is also worthwhile to note that the set of gates having maximal capacity in
the null-input case, contains the set of reversible gates*. And indeed, the set of
gates having a capacity equal to the total number of inputs, is exactly the set of

3Various Monte Carlo algorithms are possible. The simplest to envision is to estimate the
transfer function entropy H (@) for each possible (program, input) partition by statistical sam-
pling techniques, then finding the maximum over the partition. If there are too many possible
partitions, we could either statistically sample from the space of partitions; or in some cases, we
can reduce the number of partitions by finding equivalence classes under equivalence of H(@),
counting the size of the equivalence classes, and sampling only one point within each equivalence
class.

4proof sketch:

First, realize H(®) cannot be larger than the number of program+input bits ||P|| + [|/||. For
a reversible gate, ||O|| = ||P|| + ||I}], so if H(@) can reach this number, then it is maximal. But
indeed, for a reversible gate, each output is distinct (otherwise it’s not reversible), so H(@) is
exactly ||OI] = [|PI{ + ||1]].

108

6.4. COMPUTATION DENSITY IN SPATIALLY DISTRIBUTED SYSTEMS

reversible gates®. For instance, the capacity of the Fredkin gate [27], or “controlled
not” gate, by this measure is exactly 2; and that of the Toffoli gate, or “controlled
swap’ gate is exactly 3.

6.4 Computation density in spatially distributed
systems

density of space-decomposable automata

Imagine we have a spatially distributed array of N identical cells, like the cell in
figure 6.1, above. Then, the size of the Program ® Input space is (2%)" = 2V,
instead of 2™. So if the capacity of a cell is denoted by A_.;, then it is conceivable
that the total capacity of the array is as large as V - A

If we wish to solve larger problems by composing a number of smaller cells in
this way, then we must couple the cells in some way (by taking some inputs of
some cells as being dependent on inputs or outputs of other cells). But intuitively,
coupling decreases the available entropy of the input and/or program, by restrict-
ing our choice to a subfield (of the Borel field which is the cross product of all the
individual input domains). That is, if we restrict the program set to a subfield
(by programming the cells not completely independently), then the entropy of the
output vector can only go down. Likewise, if we restrict the input to a subfield,
the entropy of the output vector can only go down.

In fact, it can be rigorously shown that capacity is sub-additive. That is,
any combination of two systems yields a system with et most the sum of the
computation capacities of the two individual systems. For a proof of this, see
appendix A. It is therefore apparent that if we divide the total capacity by the
size of the array to get the aggregate density of the array, we will wind up with
Carray < Cepp- If we wish to maximize Carray, we will need to allocate the state
of the array to be mostly programming bits. In this case, the size of I will be
about the same, but H({@) can be about N times as large.

®proof sketch:

A gate generates at most 2!IPIl cutput vectors, so it has a capacity no more than ||P||.
In order for it to have capacity ||P|| + [|]]|, then, ||I|| must be zero. And indeed, for it to
have maximal capacity, it must have a full complement of 2/fIl distinct output vectors. So
H(w) = H(P) = ||P||. But if H(<) = [|P]| and ||T|] = 0, this means all inputs to the gate (7,
which is null, and P, which can be obtained by reverse mapping the output) can be obtained
from the output. Which is to say, the gate is reversible.

109

CHAPTER 6. COMPUTATION CAPACITY AND COMPUTATION
DENSITY

coupling

To solve larger problems, of course in general we will need more computation
capacity. But as we have just seen, the price we will pay for increasing capacity is
decreasing density — because to tackle larger problems, in general we must couple
smaller computers to obtain larger computers.

example: coupled vs. noncoupled systems

Consider an array of N decoupled 2-input gates, each of unit capacity. The array
has 2N inputs and N outputs. If we choose one input from each gate to be
a programming bit, and the other input to be an input bit, then the program
space is 2V, and each program gives a distinct transfer function. So the aggregate
capacity is at least N. Since capacity is sub-additive (shown in appendix A), and
each gate has capacity 1, then the total capacity of the array must be exactly N.

But this is not a very useful computer, even though it has high capacity. To
make it useful (that is to say, to make it compute a more “interesting” function),
we must sacrifice some capacity by coupling the parts of the system together. Let
us consider another system with the same number of inputs and outputs, (2/V and
N, resp.), but which is made up of components internally coupled to perform a
more useful function. As an example, we will use the /NV-bit binary adder.

The N-bit binary adder can be built from about 4N two-input gates, in any
one of a number of obvious ways. Taken separately (or as an uncoupled array),
these 4V gates have capacity 4N. But because of the coupling, the total system
capacity is reduced to somewhere between N and 2N (see note 9).

6.5 Computation density in time-evolving systems

Thus far we have discussed only combinatorial networks, which map any given
input to a uniquely determined output. This is fine as far as it goes, but is
a limited way to look at general purpose computers. In order to get a better
understanding of computational dynamics, we have to consider time evolution.

6To see A < 2N, note that the capacity cannot be larger than the number of programming
bits, which in turn cannot be larger than the total number of inputs, 2N. To see A > N, note
that in the case we take one N-bit summand as the “program” and one N-bit summand as the
“nput”, we have 2V available transfer functions, so we at least have shown a partition for which
H(D)is N.

110

6.5, COMPUTATION DENSITY IN TIME-EVOLVING SYSTEMS

The simplest way to think about this is to treat the network as a pipelineable
computation resource.

In this approach, we assume that information “flows” through the network in
a coherent wavefront. If we then build deeper and deeper networks, eventually
the length of time to produce a result will be much greater than the rate at which
arguments can be presented. At this point, we can think of the network as an
logical “pipeline”, or a sort of transmission line in which logical operations take
place. We can then say that a faster pipeline with an identical set of available
functions has a higher computation density (see Toffoli’s definition, above).

Pipeline machines are of some interest, but most computations of interest are
those which have deep dependencies. If we were to try to build pipeline machines
to solve problems with deeper and deeper dependencies, the machines would take
unbounded physical resources. In addition, we may only want to solve a single
instance of the problem. In this case, building a very deep machine with many
pipeline stages is a waste of materials, since at any given time, only a tiny fraction
of the machine is being used for relevant computation. To work around this
problem, we build machines which feed their own outputs back to their inputs.

time-composed automata and feedback automata

Consider an automaton which is not necessarily spatially cellular in nature, but
whose range is identical to its domain. If we continue to apply this automaton’s
output back to its input, we have what we call a “dynamics”, in the parlance of
physics, or an “iterative map”, in the parlance of mathematics. We will call such
a machine (pictured in figure 6.2) a “feedback automaton”.

How should we measure the computation density of a feedback automaton?
Since the introduction of a time parameter, the output is no longer a function
of only the input bits. This is because, unlike the pipeline machine, there is no
defined “end”. We can continue a computation for as long as we wish.

loss of strict time-independence

At first glance, we might naively think that, because we can continue the operation
of a feedback automaton for as long as we wish, then we could get an arbitrarily
large number of functions from it, just by running it longer. Clearly this cannot
be the case for a machine of any finite size: a time-composed automaton with

"For more discussion of treating combinatorial circuits like transmission lines, see e.g. refer-
ences [22] and [49].

111

CHAPTER 6. COMPUTATION CAPACITY AND COMPUTATION

DENSITY

State
Input /

Program

Output

Figure 6.2: A feedback automaton

a finite size is a finite state machine. Since there are a finite number of initial
states, there is a finite length of time before the dynamics cycles. The number of
functions is limited by the size of the state space.

Put another way: For the pipeline machine, we can present a fresh, indepen-
dent input to the machine at every time step, so the outputs at each time can also
be independent. But with a feedback automaton, we sacrifice this independence:
since the machine is deterministic, if we know the entire machine state for any
given time, then its subsequent behavior is completely determined.

Since the behavior of a feedback automaton is completely determined by a
single function on its state space, we might say that it has zero computation
capacity. It has, in some sense, no programmability. But this is similar to the
case with the combinatorial logic network, in which we had to split the state space
of the machine into an “Input” space, and a “Program” space: once we give up
some variety available to us in inputs, we can recover some programmability. It
is no surprise, then, that this can be done also with feedback automata.

computation capacity of finite feedback automata

Say we have a feedback automaton; how should we compute its computation
capacity? One approach is to introduce an additional input parameter 7 to our
transfer function, which will be the number of timesteps for which to run the
machine. We now have, instead of wp(I) — O, wp.(I) — O.

Let’s consider only the trivial input space (zero entropy), and the universal
program space®. This will give us a lower bound on C.

8indeed, since the “program” and the “input” are combined into a single state variable, before

112

6.5. COMPUTATION DENSITY IN TIME-EVOLVING SYSTEMS

Table 6.1: the tableau matrix of outputs of a finite, deterministic, null-input

feedback automaton.
0 1 [2 3 ... k...
P || w(P,0) | w(P,1) | w(F,2) | w(P,3) w(Py, k)
.P2 w(PQ,O) w(Pg,].) w(Pg,Q) (.U(PQ,?)) LL}(P27k)
P3 (.U(P3,0) (.()(Pg,].) W(P3,2) W(P3,3) W(Pg,k)
Pr || w(Pn,0) | w(Pmy 1) | w(P,2) | w(Pr,3) w(P, k)

Proceeding along the previous lines, let us try and evaluate the entropy of the
output vector H{@p,) over random P and 7. Since the input is trivial, & has
only one component, call it w(P, 7). This is just the state obtained by running
the state P through 7 timesteps of the dynamics. The possible outputs of the
machine are shown schematically in the tableau matrix in table 6.1.

Let us try to evaluate H(@). One problem which arises here, is taking an
expectation over a 7 chosen “uniformly” from [0, 00 >. We will define this as the
limit

(6.2)

To show this limit always exists for this class of machines, I make the following
argument:

Consider that the dynamics is finite and deterministic. This means that the
sequence of machine states starting with any starting state, eventually enters a
cycle. Moreover, the cycle is repeated ad infinitum; so for large enough ¢, only
the states in the cycle will count in the expectation over 7. That is, the initial
transient becomes less significant as ¢ becomes large.

Also, since the dynamics is deterministic, each cycle is simple. That is, each
state appearing on the cycle appears ezactly once on the cycle. So, for any given
P, as t becomes large, the Pr{w(P, 7)] term approaches either zero (for those states
on a transient), or m (for those states not on a transient), independent of 7

H(G) = - tli’rgo EPeP[ETe[D,t] g Prw(P, 7)]]]

(see note 7).
S0, for each P, the following limit exists:

Hm Ercpo(lg Priw(p, 7)]]

we start running the automaton, it makes perfect sense to completely ignore any distinction
between program and input
*here, [lorbit(P)|| denotes the length of the cycle eventually entered from state P

113

CHAPTER 6. COMPUTATION CAPACITY AND COMPUTATION
DENSITY

and its value is Ig Tor ilt(P)H if P is on an orbit, and O if P is a transient state.

Since the limit exists, we may interchange the order of the limit, and the
expectation over P in equation 6.2 to obtain:

A H(®) (6.3)

—EPeP[lg I‘mlorbitu))]v (6.4)

stochastic

where I, 1it(P) is the indicator function of whether P lies on an orbit, or is a
transient state.

We will revisit this relation later, in the section on Specific Ergodicity and its
relation to computation density.

To obtain the computation density, we should divide by X and differentiate
with respect to 7', as shown in equation 6.1. But differentiating with respect to T’
no longer makes sense — since we’re dealing with feedback automata, the capacity
no longer depends on a time parameter. The correct substitution is to replace the
differentiation by T with division by 7, the cycle time of the computer. This is
equivalent to multiplying by f, and guarantees that the computation densities of
functionally equivalent media scale in direct proportion to the execution speeds.

Putting this all together, we have a proposal for stochastic computation density
of a feedback automaton:

S
Cstochastic = f-)}gnoo YH(W) (6.5)
1 1
— _f lim —Epepllg I 1 (P)]. .
I 5 Brerle oy fobie (P (60)

114

6.6. INFINITE SYSTEMS: CELLULAR AUTOMATA

6.6 Infinite systems: Cellular Automata

Let’s try and extend these ideas from finite systems (“thing-like” computers), to
infinite media (“stuff-like” computers). This is more difficult than the analysis of
the previous section, in that we don’t have a finite set of examples for our agent to
choose from; so we must somehow sample from an infinite set of examples. Addi-
tionally, there is a normalization problem: Presumably the computation capacity
of an infinite system is infinite, so reducing it to computation density seems a bit
difficult.

This seems fairly hopeless at first glance. But if we restrict ourselves to unt-
form (“dust-like”) systems, then we have a chance. Recall infinite uniform deter-
ministic systems are cellular automata. Also recall in these systems the speed
of information propagation is finite, and the medium is uniform. So instead of
being presented with differently programmed examples, we can sparsely sample
just one system and learn all we need to about the dynamics!®, in order to judge
its computation density.

We start with the following assumptions:

1. We have a certain computational substance available for a given spacetime
extent (X, T).

2. The substance is uniform — that is, we can relocate computations by space-
time translation!!.

3. The complete dynamics is given by the combination of substance and initial
state.

4. The dynamics is deterministic.
5. The dynamics is reversible.

6. Information flow is local — that is, the speed of information propagation is
finite.
a different approach: spacetime entropy rate as computation density

Recall what we've done so far: Whereas Toffoli is concerned with counting the
number of possible functions of a system, we have generalized this definition to how

19%ssuming it has enough randomness in the initial state

"note this also implies that the information density of the system state is uniform

115

CHAPTER 6. COMPUTATION CAPACITY AND COMPUTATION
DENSITY

surprising a randomly chosen function can be. This is our new way of estimating
the number of distinct behaviors the system can display.

A deterministic dynamics maps an initial state to an infinite sequence of output
states. Usually we consider a dynamics as being a function from states to states.
For this analysis, though, it is convenient to consider instead the function from
states to infinite sequences of states induced by the dynamics. The task before
us then becomes: We want to know the spatial density of how “surprising” this
function can be, per unit of time.

examples:

e identity dynamics: The identity dynamics is as boring as they get: If we
look at one site, at any particular moment, we know everything about it,
for all time. So however many sites we observe, we know all about them for
all time. Our rate of surprise 1s zero.

¢ random states at each time: This system presents a new, random state
at each time (hence, note, it is not actually a dynamics in the sense we are
considering). It is very surprising: we get one site’s worth of information
per unit space, per unit time. But it’s not a “function”: the output bears no
relation to the input. No deterministic finite-state computer can generate
this amount of “surprise” over long periods of time (since it will eventually
exhaust the state space).

So, to go any further, we need to define “surprising”, for a deterministic system.
Fortunately, the concept of statistical entropy again comes to the rescue.
“Surprising” implies incomplete knowledge or nondeterminism. Since at the
moment we're not considering nondeterminism, we need to relax our knowledge
requirements. We do this by observing only a part of the system — for instance,
by spatial subsampling; temporal subsampling; spatial windowing; temporal win-
dowing; random sampling; etc... The point is that, in general, at only a subset
of spacetime points is the state known a priori. This is perfectly appropriate and
reasonable anyway, since we're dealing with infinite spacetime.
Consider Toffoli’s expression for computation capacity:
1{0
lim — |==logn(X,T
Consider first the inner expression:
0
— logn{X,T
[57 108)]

T=0

116

6.6. INFINITE SYSTEMS: CELLULAR AUTOMATA

This is a function of X, the spatial volume of the system. And it is, for that
spatial volume, the nitial arriwal rate of new information about the system, as
we evolve it through one time step. Now, the whole expression

can be thought of as the spatial density of the inner expression; or the spatial
density of the initial arrival rate of new information.

So, let’s imagine we have an initial set of state observations at some set of
spatial locations, for a particular moment'?2. We can treat the value of subsequent
observations on the same set of locations as a random variable, and compute its
entropy arrival rate. Further, we can divide this entropy rate by the number of
locations we’re observing, to reach a quantity analogous to Toffoli’s computation
density.

There are two important questions which may be nagging the reader:

1. How should we treat the subsequent observations as a random variable?

2. Why should the entropy arrival rate be independent of the details of the
location set?

The first is easy. Since we don’t have any a priori information regarding the state
outside our location set, we choose the random variable as being uniformly dis-
tributed over all states which are consistent with our observations on the location
set.

The answer to the second question is it isn’t: The entropy arrival rate on our
location set depends on what the set looks like. For instance, if the location set is
a concentrated region larger than the neighborhood!3, then sites near the middle
of the region are initially independent of the sites outside (see figure 6.3). In other
words, since information only travels at a finite speed, subsequent values of points
near the middle of the region depend only on things we already know (the state
within the region), so the initial entropy rate at such points is obviously lower
than it would be at isolated points.

Let’s look at an easy upper bound. Clearly the entropy rate per site is bounded
above by the information content of a site, since that’s all there is to know about

12we can later relax this to be a set of observations of some sites at possibly different moments
in time
!3that is, the size of the neighborhood used in computing the subsequent value at any site

117

CHAPTER 6. COMPUTATION CAPACITY AND COMPUTATION
DENSITY

(b)

Figure 6.3: Two location sets of the same size, undergoing one timestep. Shaded
areas represent unknown state, and unshaded areas represent known state. The
location set is the known state in the bottom of each column.

(a): Information about unknown state “Hows” into the location set only around
the edges. Some elements of the location set (in this case, namely, the center
square) receive no information at all in the first timestep. In general, information
enters the location set slowly.

(b): Information about unknow state flows into the location set from many
more sites, since there is more edge. In general, information enters the location
set 1apidly.

118

6.6. INFINITE SYSTEMS: CELLULAR AUTOMATA

a site for any point in time (¢f. the random “dynamics”, above) — No dynamics
will be able to sustain this rate of surprise, for an indefinitely long time. So in
the case of a real dynamics, if we want the marimum conditional entropy rate
near the beginning of our observations, we will pick spacetime sites which are
causally disconnected, or are loosely connected. This suggests we pick sites which
are spacelike separated (i.e. further apart in space than they are in time), such
as is shown in figure 6.3(b).

This approach also simplifies the calculation greatly, since this bound can be
computed by calculating the entropy arrival rate at a single site.

Notice that I have been lazy about the transition from a set of observations
at a single moment, to a set of observations at distinct spacetime points. This
1s okay, since because computations can be relocated in time (¢f. assumption 2,
above), as long as our observations are far enough apart in space, it doesn’t matter
if they are exactly at the same time; only that they are causally disconnected (i.e.
spacelike separated).

So the question becomes: what is the expected entropy rate for a single site?
For the moment, [will call this quantity h;, and put as my proposal without
further justification,

_ [
Cstochastic = th’
for an infinite, dust-like, deterministic medium (i.e. a CA)!.

We will come back to the quantity h; in considerably more detail in chapter 8,
where we shall relate it to the concept of specific ergodicity — a concept developed
by Toffoli and Margolus.

"Note the additional division by AV, not reflected in equation 6.6. This i3 because equation
6.6 assumes X is unitless. In order to account for the actual physical size of the sites, we write
AX = AV - X, where X is unitless, and AX is the total physical size of the automaton. Then
division by AX instead of X results in an extra factor of %

119

CHAPTER 6. COMPUTATION CAPACITY AND COMPUTATION
DENSITY

120

Chapter 7

Computation Density of
Error-prone Systems

121

CHAPTER 7. COMPUTATION DENSITY OF ERROR-PRONE SYSTEMS

7.1 Error-prone systems

Toffoli’s analysis is only for deterministic systems. But he gives a hint that, for
error-prone systems, one could generalize n to the number of behaviors per space-
time volume due to deliberate programming, as opposed to “errors” or randomness.
Since we wish to evaluate error-prone computers against each other, most impor-
tant for us now is to learn how to partition computation capacity into useful and
non-useful parts — in other words, how to generalize computation capacity and
computation density to error-prone systems.

We wish to analyze computation systems in which the output, o, is not uniquely
determined by the input z.

To guide us, we have a couple of conditions:

o (i) for a system with error rate zero, computation capacity should degenerate
to A¢off> and

e (ii) for a system so error-prone that its output is not causally related to its
input, computation capacity should go to zero.

In terms of the discussion in chapter 6, we may say the computation density of
an error-free computer is the Shannon entropy associated with a uniform random
choice of transfer function, each of which renders a distinct output state vector.
But what of an error-prone computer? Clearly if noise is introduced into the
system, the effective computation capacity will be smaller; but by how much?

122

7.2. FUNCTIONAL EFFECTIVENESS

7.2 Functional effectiveness

To address this question, we introduce the concept of functional effectiveness.
This will allow us to talk about how much effective computation we can get out of
a function, if it is noisy. The effectiveness of a noisy function should be inversely
related to the unpredictability of its output, if we know the ideal function'; and
should be progressively related to the unpredictability of its output, if we don’t
know the ideal function®.

More rigorously, say we have a function f which we can evaluate, but only with
error. That is, we have a stochastic function, call it §, over the same domain as
f. We wish to be able to quantify how close § is to f. Clearly if § is deterministic
(equal to the value of some function g(z) on each input 7), and if g(s) = f(¢) for all
¢, then g is effectively equal to f. That is, a sample of § can be used to compute
a sample of f ezactly. But in the more general case, a sample of § leaves some
uncertainty as to the corresponding value of f.

How much uncertainty? If there is no uncertainty at all, we wish to say the
Junctional effectiveness of § is equal to that of f. If there is no information at all
gained about f from the sample of g, we will say the functional effectiveness of
g as a model for f is zero. And we wish to have some suitable measure for the
intermediate cases — the most interesting cases — in which some information about
f is gleaned from taking samples of 3.

Let’s call the domain D, and for the moment let us assume D is finite. This
allows us to talk about vectors instead of functions: We will denote a function
f(-) by a vector f, of output values taken over the points of D. That is, if D =
{i1,%2, ..., %}, then we will denote f(-) by f=< f(in), f(32), f(i3), ..., f(im) >.

Now if, as above, we have a function f{-) over a finite domain D, and a
stochastic function g, let us define the functional effectiveness of § as a model for
f as follows:

£(9,f) = H(g) — H(3lf), (7.1)
where H(-) denotes Shannon entropy?.
If we compare with the informal terminology at the beginning of this section,
H(g) is the ’usefulness’ term, and H(§|f) is the 'noise’ term.

!let us call this the 'noise’ term

%let us call this the 'usefulness’ term

3In this paper, when we speak of the Shannon entropy of a stochastic function, we mean
the entropy of the vector- valued random variable induced by sampling the stochastlc function
once at each domain point: H(F) = H(g(i1),9(32), g(23), ..., §(%:»)), where the §(ix) are distinct
outcomes.

123

CHAPTER 7. COMPUTATION DENSITY OF ERROR-PRONE SYSTEMS

If we rewrite this in a more symmetric form, it immediately suggests itself as
the mutual information of g and f:

£@.5) = H@-HEGH (7.2)
= H(@, /)~ HE) - H(fD) (7.3)
= 1,/) (7.4)

This seems reasonable: If §(-) is deterministic and identical to f(-), then the

is
noise term is zero, and £(§, f) = H(g) = H(f). Conversely, if samples of g are
causally unrelated to (independent of) f, then H(G|f) = H(3), and s0 £(3, f) = 0.

7.2.1 Useful specializations

One quite restrictive, but useful specialization is when:

e all points of j are independent (§(¢,)||3(¢), for a # b))
e all points of § have identical entropies (H(§(s)) = Houtpur = const)

e all points of § have identical entropies, conditioned on their input values (

—

H(g(la”f) = Hautpuﬂf’u,nction = const)
In this case we have

= H(g(r)) + H(g(i2)) + ... + H(g(im))
= mHoutputv

and by a similar argument, we have

-

H(§|f) - mHoutpuﬂfunction'

So in this restricted case, we have

—

g(ga f) = m(Houtput - Houtpuﬂfunction)- (75)

124

7.3. FUNCTIONAL EFFECTIVENESS AS A MEASURE OF
COMPUTATION

ey

7.3 Functional effectiveness as a measure of com-
putation

7.3.1 A proposed measure
computation capacity as a statistical entropy over inputs

Now that we have a relation between computation capacity and entropy (as dis-
cussed in chapter 6), and a relation between entropy and functional effectiveness
(from the previous section), we can propose and evaluate a generalized defini-
tion of computation capacity — for error-prone systems — in terms of functional
effectiveness.

Qur first step 1s to encapsulate the computation capacity of a system in terms
of a single function. Our approach will be to consider a computer as a mapping €
from the space of all (program & input) tuples, to outputs. Of course, all of this
will be parametrized by the space and time volume of the computer, as above.

So, we start with?®:

Cxr:P®I—=0.

This induces a family of transfer functions wpe, parametrized by the program
P, as follows:

wp(I) =C(P,T).

Previously, we had A¢og(X,T) = logn{X,T), where n(X,T) is the number
of transfer functions achievable in a spacetime volume (X,T). We then demon-
strated that A(X,T) = H (Gx1), where Oxr 18 (the vector associated with) a
transfer function chosen uniformly at random from the space of alt achievable
transfer functions, 1. However, this relies on knowing which transfer functions
are achievable. We can modify the definition slightly, to obviate that requirement:
Instead of picking a transfer function w uniformly at random, we instead pick a
program P uniformly at random. This produces an induced stochastic function
wp(I)=C (P, I). We can measure the entropy of wp by realizing that the entropy
of a vector-valued random variable is simply the entropy of the joint probability
distributions of its components:

Hwp) = H(wp(in),wp(ia), - wp(im))-

-
4Tp, the following discussion, we will often drop the X and T subscripting, and leave it implicit.

125

CHAPTER 7. COMPUTATION DENSITY OF ERROR-PRONE SYSTEMS

We will propose this as a more generalized measure of computation capacity:

Apmposed (Cx;r) = H(wp).

Clearly, since each transfer function is a result of a distinct program, the
entropy of the transfer function of a randomly chosen program is at most the
entropy of a randomly chosen transfer function:

H(wp) < H(w).

functional effectiveness of a perturbed computer

To treat capacity as a question of functional effectiveness, we first introduce an
error-prone computer which is a perturbation of C — let’s call it C. C will have the
same domain and range as C, but 1t is an error-prone computer which we propose

as a model for C:)
CX,T PRI —O.

Now, just as we had the induced family of transfer functions wp, above, we can
find an induced family of error-prone transfer functions, defined as follows:

@p(I) = C(P,).

Now, again taking P uniformly at random, we can propose the computation
capacity of C as being the functional effectiveness of Wz as a model for wp:

Aproposed(éX:T) = E(wp,wp)
= H(Gp) - H@plop).

7.3.2 Discussion
reduction to Atoff in deterministic case

In the deterministic case, the model & p is identical to the ideal wp. So H(wp|wp) =
H(op|lwp) = 0, so the effectiveness of the model is just the entropy in choice of
function:

Aproposed(CX.T) = E(J)P’wﬁ)

= H(wp) — H(wplwp)
H{wp)
= AtOH(X,T)

126

7.3. FUNCTIONAL EFFECTIVENESS AS A MEASURE OF
COMPUTATION

zero in completely random case

In the case where the output of the computer is completely uncorrelated with
(i.e.: statistically independent of) the input, we have H (@ p|wp) = H{wg), and so

Aproposed Cxr) = E(Wp,wp)
= H(@p) — H(Wplwp)
-0

Recall our criteria at the beginning of this chapter. These two boundary
conditions illustrate that our proposed measure meets the criteria.

More examples

We will continue to use our friend the PROM, but now with different types of error
behavior, in order to illustrate that our new definition of A is both reasonable,
and general enough to be useful.

Example i: the base case: Recall our PROM has & address lines and m
output lines. The number of programming bits is thus m - 2%, and the number
of programs is 272" Each program results in a distinct transfer function, so
H(wp) =m 2~

Example ii: some output bits are stuck: Let us imagine that in our
perturbed PROM C, some of the m output lines are permanently stuck at some
value, and that only m' of the output lines are still functioning normally. In
this case, only the m’ programming bits of each row which correspond with the
working output lines make any difference at all to the transfer function. This
induces a partltlon of the program space into 2(m—m")-2" equal-sized partitions,
each of size 22" , such that all programs in any partition give rise to the same
transfer function. Hence &p is uniformly distributed, but over a set of size om’ 2k
and H(wp) = m'- 2%, Now, since @3 is completely determined by wp, We can
conclude that H(wg|lws) = 0. So finally,

A(C) = H(wp) - H(@plwp)
= H(wp)
= m .2k

That is, the computation capacity of the PROM is reduced by a factor of m
we would expect.

127

CHAPTER 7. COMPUTATION DENSITY OF ERROR-PRONE SYSTEMS

Example iii: some (fixed set of) output bits are random: Let us say
m’' outputs still function correctly, but the remainder, instead of being stuck, are
random (with some distribution independent of the input). We take a sample
of the perturbed transfer function @, by applying each input and collecting the
vector of outputs. We compute the entropy of @ by the entropy of the joint
distribution of the components of @. Each component of & has m' bits given
by the correctly functioning outputs, and m — m' bits which are independently
distributed, according to the same distribution for each sample (let us call this
distribution f1). So the joint entropy of all components of @ is the joint entropy
of all the bits given by correctly functioning outputs, plus 2% times the entropy of
the distribution of a sample of fi:

H(op)=m' 28 + hy - 2F,

where h; denotes the entropy of fi.

Now, to compute H(@p|wp), we make the following observation: I we know
wp, then we know m' bits of each sample of wp. The remaining m — m’ bits in
each component of & are independent of wp, and independent of each other, and
identically distributed with entropy hi. So,

H(LDP|WP) = hl . Zk,
hence

A(C) = H(wp)— H(wplwp)
= (m'--Qk-l-hl'Qk)_hl‘zlc

= m' .2k

Again, the computation capacity of the PROM is reduced by a factor of %’
Note that example (ii) above is just a special case of example (iii), in which
hy = 0.

Example iv: all output bits err independently with probability e:
In this case, we can treat each output line individually, since they are indepen-
dent. Since the outputs already have full entropy of 2% bits each, perturbing the
output cannot introduce any additional entropy. So H(&p) = m - 2%, To com-
pute H(&plwp), consider the perturbed output as a vector of m - 2% bits, each of
which matches the corresponding unperturbed bit with probability 1 —e. So with
probability 1 — € per bit, the perturbation introduces zero entropy into the output

128

7.3. FUNCTIONAL EFFECTIVENESS AS A MEASURE OF
COMPUTATION

vector, and with proability € per bit, the perturbation introduces an expected
entropy of 1 bit into the output vector. H(@p|wp) is thus:

H(Qplb)p) =m:- Qk T €.
This gives
A(C) = H(@p) — H(wplwp)
= m-2*—¢e.m-2*
= (1—¢)-m-2~

So the computation capacity is reduced in this case by a factor of 1 — e. Again,
this is not surprising.

7.3.3 Applied to feedback automata

'To treat computation capacity of an error-prone feedback automaton as a question
of functional effectiveness, we adopt an argument similar to that of section 6.5.
We restrict ourselves to the null-input case, and we think of the state evolution w
as a function of time and the program:

wx :P®{1,2,3,...T} — O.

Note that the T subscript has been dropped from the transfer function, w. This
1s because the “size” of the computer in the feedback automaton case is no longer
a function of T. We should, however, note that the computation density must be
linearly related to the operating frequency, f, since f determines how many states
the computer can reach in a given amount of time.

Let us choose a noisy experimental model for our computer Cx. Let us call it
Cx, and let Wx (S0, 1") be the corresponding stochastic transfer function, defined
by applying the given initial state to the “noisy” computer, and evaluating the
output state at time T. Since we are considering only the null-input case, the
vector w has only one component, so we will just equate the vector and its single
component.

We may ask: How effective is Cx as a model for Cx? It turns out that the
functional effectiveness £(Wx, wy) meets the criteria posed above at the beginning
of this section, for our generalized definition of computational capacity.

We propose the following formal definition of A, in the nondeterministic feed-
back automaton case:

Aproposed(X) = €(@x,wx)
= H(uJX)—H((Z)Xl(.«JX).

129

CHAPTER 7. COMPUTATION DENSITY OF ERROR-PRONE SYSTEMS

Hence, we can directly compute the corresponding computation density:

1 1
o :

proposed = AT)}l_rgc E[H(WX) — H(@x|wx)|.

Since o= = f and AX = AV - X, where AV is the physical size of a site, we may
put this in the slightly more agreeable form:

o1 N
Cproposed - AV ')}EHOO —H (wx) = H(@x |wx)]

We will treat this expression in more detail in the following section.

130

74. ESTIMATING COMPUTATION DENSITY OF ERROR-PRONE MEDIA

7.4 Estimating computation density of error-prone
media

Let’s see how we might be able to estimate or evaluate the expression for the
computation density of an infinite, uniform, error prone feedback automaton, in
a real-world case. We start with

C'plroposed - % ')gljnoo l[H(WX) — H(wx|wx)].
First, note the two terms inside the limit. We can think of the two terms as
the error-free term and the error term, respectively. That is, the H(wx) term
measures the total amount of “unpredictability” in the system, due to both errors
and computation, given limited observations as discussed in section 6.6; and the
H{wx|wx) term measures the amount of unpredictability due to errors alone. So,

assuming the limit exists of each term individually, we may write

1
proposed = AV T xLl, X - dim — H(Ox|wx). (7.6)

J
AV X5 X

We will revisit the first term in the following chapter, when we discuss specific
ergodicity and its relation to computation capacity. The second term — the error
term — we will pay closer attention to now.

Imagine errors occur as discrete events, and that they are sparse in spacetime.
That is to say, the rule of the stochastic CA is such that, given any input state at
a site and its surrounding neighborhood, a single “correct” outcome state carries
most of the probability for the next state at that site. The correct output state
may of course depend on the input state; indeed it must if the CA is to do anything
remotely interesting. For errors to be sparse in spacetime, this means that the
probability of the output state being incorrect is small: Prlerror] < 1.

Let us say the probability of an error at each state transition is 6, and let
us say the expected entropy increase per error occurence is given by Hj. Since
errors are sparse in spacetime, that means they are nearly independent. So we
may tally up the total expected entropy per timestep to be introduced into the
system thusly:

C

Higia) = X - h(d) - Hs.
Here, h(6) denotes the binary entropy function h(§) = —[0 lgr+(1-6)lg .
Substituting this into the second term in equation 7.6, we obtain

foo..1
Cproposed T AV)(121100 }H(WX — = h(d) - Hs. (7.7)

CHAPTER 7. COMPUTATION DENSITY OF ERROR-PRONE SYSTEMS

So, we have reexpressed almost all the terms in Cproposed in terms of local

properties of the medium. The only term left untreated is the limx . %H (wx)
term. That is the subject of the next chapter.

132

Chapter 8

Computation Density, Information
Density, and Specific Ergodicity

133

CHAPTER 8. COMPUTATION DENSITY, INF ORMATION DENSITY, AND
SPECIFIC ERGODICITY

8.1 Introduction

In this chapter we will build off the results in chapters 6 and 7 to find a relation
between Margolus and Toffoli’s specific ergodicity, and stochastic computation
density, for infinite, dust-like, deterministic systems. Following this, we will gen-
eralize the result to infinite, dust-like, stochastic systems.

Let us begin by summarizing what we've done so far:

1. In section 6.2, we generalized Agoffoli to Agtochastic’

Agtochastic = H(w) = H(W(P))-

This gave us a basis from which to work on further extensions of the defi-
nitions of computation capacity and density, which 1s most of the work in
part IT of this thesis.

9. Tn section 6.5, for feedback automata, we generalized the notion of “hehavior”

to include time-dependent behavior. We redeveloped the definition of H(®)
from a classical definition of statistical entropy, to an expectation over 2
¢ime variable which ranges Over [0,00 >. We noted a relation between this
and the expected size of orbits of the system:

1
Agtochastic = —Eperlle Horbit(P)HIOTbit(P)]’
and said we would come back to the topic later, which we now do.

3. In section 6.6, for infinite dust-like systems, we redeveloped Cyoffoli from a
spatial derivative of a time derivative, to the initial entropy production rate

per site, subject to a suitable a priort probability distribution:

Cstochastic = thl'

The problem with (2) is that it only applies thus far to finite systems.; and the
problem with (3) is that it hasn’t been evaluated for feedback systems. In this
chapter we will consider a CA, which is both an infinite dust-like system, and a
feedback system, and see what we can learn about its computation density.

134

8.2. REVIEW OF SPECIFIC ERGODICITY

8.2 Review of specific ergodicity

We will start with a finite feedback automaton, and show the relation between
its value of Agichastic and its specific ergodicity 7. But first, let us review the
definition of specific ergodicity.

Consider a reversible dynamics on a state space P. The dynamics implicitly
partitions P into a disjoint set of orbits. The intuitive idea behind specific er-
godicity is this: If we call a system which visits all of its state space in a single
cycle ergodic', then a system with more smaller cycles is somehow “less ergodic”.
Toffoli makes this more concrete as follows:

If we choose a state from P with random incidence, we can consider that we
have chosen two values implicitly: an orbit?, and an indez in that orbit. The total
amount of information in the state we’ve chosen is the log of the size of the state
space:

Ht()ta] = lg ”PH
Of this total, some of the information is which orbit the state is on, and the
remainder is the expected information contained in the index.

To see this, let o denote an orbit chosen uniformly at random, and s denote a
state chosen uniformly at random. Also, for any state s, let o(s) denote the orbit
on which s lies. Then we may write:

Hopie = —ZPr | lg(Pr[o

= —HP—HXO:IIOII[lg(HOII)—lg(IIPH)]

. —ﬁZHoulgmom LS el

= Ig(|PI]) - HPHZIIOngHOII)
and
1
index — ngg(IIO(S))
1
= WZO:HOng(HOH),

'note this is not the mathematical definition of ergodicity of a dynamics on a continuous
state space
2or an attractor basin, in the case of an irreversible dynamics

135

CHAPTER 8. COMPUTATION DENSITY, INFORMATION DENSITY, AND
SPECIFIC ERGODICITY

Note that Hipqex + Horbit = Htota_l’ as one would ex.pect.
We now define the specific ergodicity of the dynamics as

H-

_ index _
H total

We can think of 7 as the portion of information in a randomly chosen state, which
specifies only the indez of the state on its orbit.

Let us examine some extreme cases: If there is only one orbit and it covers
the entire state space, then H;,qox = Higtal, and 7=1. In this case the system
is completely ergodic. If at the other extreme, each state is its own trivial orbit,
then Hjpdex = 0, hence n = 0. In this case the system is as far from ergodic as is
possible.

8.3 Finite feedback automata

Recall from section 6.5, our proposed definitions of computation capacity and
computation density for finite feedback automata:

1
Astochastic = —Epep(lg ||0rbit(P)||Iorbit(P)]’

and . 1
Cstochastic = _f .)}Eréo }EPE”P[Ig ||0rb1t(P)||Iorblt(P)]

Let us rewrite the definition of Ag,chastic I the terminology of section 8.2,
above. We will first treat the case of a reversible automaton (that is, an automaton
whose dynamics is invertible), and then give a sketch of an argument for an
irreversible automaton.

case i: reversible automaton For a reversible automaton, I i is always 1.
So

Astochastic = —Ererlls m]

Rewritten in terms of section 8.2,
1
Agtochastic = T > 1gllo(s)]I.
ki

136

8.3. FINITE FEEDBACK AUTOMATA

But notice this is exactly H;

|)
index So we can write

A H.

stochastic = index
= nHioals

where H, .1, as always, denotes the total amount of state information of the
system.

This of course is valid for finite CA’s also, but in this case we can say something
more about the total state information: Since the automaton is made up of X
equivalent cells, each containing the same amount of initial state information (let’s
call it Hy), we have Hy,;,] = XH). So in this case

A ZXHlT],

stochastic

and

f
Cstochastic = AV Hin.

case ii: irreversible automaton For an irreversible automaton, the specific
ergodicity is defined slightly differently. D’Souza [23] takes as a starting assump-
tion that the number of states which should be counted from any starting state
in the irreversible case is the total number of states reachable from the starting
state. Since the set of reachable states is the orbit, plus some initial transient, we
may write the set of states reachable from s as

r(s) = o(s) Ut(s),

where o(s) is the orbit, and ¢(s) is the transient. D’Souza then defines the specific

H
ergodicity as ﬁmdﬂli, where H!

tota index has the modified definition:

Hipdex = 7 2)

Clearly, H. 1. 2= Hipdex: since ||r(s)|| > ||o(s)]| for any s.
We may now revisit our expression for Agtochastic in the irreversible case. In

particular, we can easily show it is less than X Hn:

1

Astochastic - —EPGP[lgHorbit(P)HIorbit(P)]

137

CHAPTER 8. COMPUTATION DENSITY, INFORMATION DENSITY, AND
SPECIFIC ERGODICITY

(AN

1
__Epe‘P[lg m]

1

= nggIIO(s)ll
1

< H—,PﬂglgHT(S)H

index

stochastic < Hi’ndex
correspondingly Cgy o chastic < Z%Hln. In other words, introducing irreversibility
Into a system by “kicking out” some states from orbits, onto transients, can only
have a negative impact on computation capacity.

Recall the goal of Part II of this thesis: we seek an upper bound on computation
capacity and computation density. Since reversible automata are “best in class”,
it will suffice to treat only the reversible case in the search for an upper bound.
For brevity and clarity, from this point forward we will consider only reversible
automata, allowing us to drop the inequality notation with the understanding
that the bound also holds for irreversible automata.

So in the irreversible case we have 4 = nHota1 = X Hin, and

8.4 Infinite feedback automata (CA’s)

Note that the two expressions for Ag o hastic and Cstochastic, above, both im-
plicitly depend on X, the size of the CA. [have left the subscripts out throughout
this chapter, for brevity, but in general we must write

Astochastic(X) = XHm(X),

and

= %HW(X)-

If n actually approaches some fixed value as X — oo, then of course C(X) will
also approach a fixed value asymptotically: If

C,

stochastic (X)

lim 7(X) =7

X—00

then
)}1_1',20 Cstochastic(X) = A7 H17- (8.1)

138

8.5. ERROR-PRONE INFINITE FEEDBACK AUTOMATA (STOCHASTIC
CA’S)

Now, in [74], Toffoli presents numerical evidence that 7 may actually converge
for almost all CA’s. To prove this is, as far as [know, an open problem. What
can be said is that, if this conjecture is true, then the limit in equation 8.1 exists;
hence the medium has a well-defined computation density, given by

f
CStOChaStiC = _A_VWHI- (8.2)

8.5 Error-prone infinite feedback automata (stochas-
tic CA’s)

We can combine the results from section 7.4 and section 8.4 to arrive at an expres-
sion for computation density of stochastic, infinite, dust-like feedback automaton
(i.e. a randomized cellular automaton):

We substitute the expression for Cstochastic from equation 8.2 for the deter-
ministic term in equation 7.7, yielding

Cstochastic -ALVnHl—Af—V-h(é)-Ha (8.3)
- Lina - no)- a4 (5.4

for a stochastic CA in the sparse error limit.

8.5.1 Discussion

Let’s take a moment to reflect on this equation. The two principle objectives of
part II of this thesis are

L. to arrive at an expression for computation density of an error-prone, infinite,
unstructured medium, and

2. to recast the expression entirely in terms of other intensive properties, which
are measurable.

It appears that we have reached this goal; in 8.4 we have Cstochastic for such a

medium, in terms which are both easily understood and easily measured®. With

*Perhaps with the exception of 7, which may be difficult to measure in a reasonable amount
of time. Keep in mind, however, that 7 is bounded above by 1, so putting an upper bound on
computation density doesn’t require an explicit evaluation of 7.

139

CHAPTER 8. COMPUTATION DENSITY, INFORMATION DENSITY, AND
SPECIFIC ERGODICITY

this as basis, we can form a model for comparing many various types of compu-
tational media. We will do some of this comparison in the next chapter, between
DNA computers and electronic computers. But for now, think about equation
8.4 more broadly, as a good starting point for measurement and comparison of
computational systems of many disparate — and seemingly incomparable - types.

8.5.2 Examples

amorphous computers, or “gunk” : Abelson et al. [1] have proposed a
model of computation comprising massive numbers of unsynchronized, randomly
distributed, identically programmed, error-prone computational elements. These
elements can each communicate to their “neighbors” ; that is, the other elements
within a certain range; but they must do so isotropically — there is no a prior:
routing. Typical algorithms in this model involve a “discovery” phase, in which
all processors investigate the topology of their local connections; and gradient-like
indices are set up by means of message passing algorithms, by which individual
processors may estimate their global position. This location process allows for the
establishment of a kind of “virtual routing” structure.

The typical algorithm then proceeds to the next phase, which I will call the
“execution” phase, in which the problem at hand is solved — usually with greatly
increased simplicity, speed, and efficiency, thanks to the virtual routing structure
laid out in the discovery phase.

Certainly this model appears amenable to analysis using our measure of com-
putation density: the information density is easily computable, the cycle time is
known, and presumably the error rate and H; are easy to measure or estimate.
The problem remaining is to estimate or measure 1. Keep in mind: it is trivial
to bound 7, since it may not be greater than one. But in many cases, especially
those with very large H, and low communication bandwidth, 7 may be very small
indeed. In fact, for most if not all algorithms which have been written for this
computation model, H, is much, much larger than the typical message size passed
from peer to peer.

In any case, clearly this is fertile ground for future research.

in vitro biocomputers: In vitro biocomputers — in particular, DNA computers
— are quite amenable to analysis using the techniques developed here. In fact, DNA
computation (and in vivo biocomputation — see below) was one of the original
motivations for pursuing this line of inquiry.

140

8.5. ERROR-PRONE INFINITE FEEDBACK AUTOMATA (STOCHASTIC
CA’S)

In chapter 3, we gave some analysis and results on DNA computation. [t will
be the goal of the next chapter to revisit those results in more detail, and to
compare them with performance results of typical electronic computers.

in vivo biocomputers: In addition to the brief (and somewhat sloppy) analysis
of a hypothetical protein interaction computational model given in chapter 3, we
might envision other uses for the theory given here, in analyzing and predicting
results from in vivo biocomputation efforts.

Recent work in functional genomics and molecular cell biology suggests that
functional complementation of cells becomes increasingly difficult to achieve, as
the computational complexity of the complementation increases. It is interesting
to speculate whether wild-type cells have, in fact, adapted to using all their com-
putational resources for self-maintainance and for reproduction. If so, this would
suggest that any functional complementation to wild-type cells is likely to reduce
evolutionary fitness relative to unmodified cells.

Theoretical analysis of this question might be attempted through a differential,
or “small signal” analysis of variation of computation density with signal density,
in a closed reactor cell. And in turn, experimental verification and suggestions
for theory might be garnered from work on “minimal organisms”, currently being
done in the Knight lab [43] and elsewhere.

CA machines / high density array processors: It is also worth noting that,
in addition to applications of this theory to more “outrageous” models of compu-
tation such as biocomputation and amorphous computation, it is also applicable
to slightly more mainstream hardware — such as Cellular Automaton machines,
high density SIMD array processors, FPGA’s, etc. Application of this theory
to such systems gives us an objective basis for comparing theoretical maximum
performance of particular instances of these various types of machines.

It also seems likely that marginal analysis - suggested above for biocomputers
— might also be applicable to analysis of distributed hardware resource allocation
problems. Examples might include:

» predicting optimal allocation of real-estate for routing resources vs. compu-
tation resources in FPGA cell design, to maximize customer benefit

 predicting optimal allocation of real-estate for memory resources vs. com-
putation resources in hybrid memory/high density gate array chip designs,
such as those described in [50] and [49]

141

CHAPTER 8. COMPUTATION DENSITY, INFORMATION DENSITY, AND
SPECIFIC ERGODICITY

e optimizing the tradeoff between transistor density and error rate, in ex-
tremely high density VLSI designs

142

Chapter 9

Conclusions

143

CHAPTER 9. CONCLUSIONS

Part I of this thesis was concerned with estimating the performance envelope of
chemical computers. Part II has been concerned with the fungibility of computa-
tion, and of establishing a single, intensive valuation function for all computational
media. I have argued that computation density is such a valuation function.

This final chapter will attempt to synthesize these two parts, by establishing
limits on the computation density of chemical computers.

9.1 Review of part 11

We begin with a brief review of what we’ve done so far in part II:

1.

In chapter 6, we rephrased Toffoli’s counting formula for computation capac-
ity into a statistical expectation (a statistical entropy, in fact). The results
are valid for finite, deterministic, combinatorial systems.

. In sections 6.5 et seq., we extended this statistical definition of computation

capacity from combinatorial functions, to feedback automata. The results
in this case are valid for finite, deterministic feedback automata.

Finally, in section 6.6, we further extended the statistical definition of com-
putation capacity from a global (extensive) to a local (intensive) definition,
in an attempt to establish a measure of computation density! for infinite,
unstructured (uniform) systems. The results in this chapter are valid for
infinite, deterministic, uniform feedback automata (CA’s).

Moving on, in chapter 7, we extended the statistical definition of computa-
tion capacity from deterministic to nondeterministic systems. The results
here are valid for finite, error-prone combinatorial systems.

. In sections 7.3 et seq., we applied similar generalizations to (2) and (3),

above, to establish a measure of computation density for infinite, error-prone
feedback automata.

. And finally, in chapter 8, we have shown a relation between Toffoli’s “spe-

cific ergodicity”, information density, and our computation density of infinite
uniform systems. This allows us to state computation density of infinite uni-
form systems both deterministic and stochastic, entirely in terms of intensive
quantities.

lstated entirely in terms of intensive quantities

144

9.2. COMPUTATION DENSITY OF A CHEMICAL COMPUTER

All the above work has put us in a position to estimate the computation density
of infinite, uniform, error-prone computation systems; in fact, this has been the
ultimate goal of part II of this work, up to and including chapter 2.

Now we will move on to more specific applications: first to chemical computers
in general, and finally to DNA computers. This last effort will allow us to compare
the performance of DNA computers with that of their more conventional cousins
— modern electronic computers - on a firmer theoretical footing than previously
possible.

9.2 Computation density of a chemical computer

Recall our analysis of the performance envelope of chemical computers from chap-
ter 2. There, we computed bounds on f and (¢) as a function of N, L, and AV.
This gave roughly the shape of the performance envelope, but didn’t directly
address the issue of comparability or valuation of radically different computers.
By contrast, the entire goal of part II of this thesis has been comparability: We
now have in hand a reasonable measure of the specific value of a computational
medium — the computation density. So it is here, finally, that we can use the fruits
of part IT to put a valuation on chemical computation media.

To review: We treat a chemical computing medium as a stochastic cellular
automaton, via the embedding outlined in chapter 2. The fixed parameters of the
medium are determined by the chemistry we are using. The variable parameters,
or “design parameters”, are chosen by us as we embed a particular computational
model into our chemistry. These design parameters will be, for the purposes of
this discussion, N, L, and AV, or equivalently, N, L, a, and r.

We begin by combining the performance bounds on f and {(¢) — as developed
in chapter 2 — with the valuation equation: equation 8.4 from section 8.5.

The valuation equation for chemical computers is:

We will assume n = 1 for simplicity?, so in this case

f
C = 2 [Hi = h(o) - Hy)

%at any rate, n cannot be larger than 1

145

CHAPTER 9. CONCLUSIONS

Recall H, is the amount of stored information at each site. For N binary signals
per site, as in our chemical computation model, H; is simply the number of signals:

H1:N.

Next, recall h(8) - Hy is the expected number of bits of error per cell, per time
step. Since there are N signals, and each signal represents one bit of information,
this is approximately N - h{(8) - 1 (see note *). So

¢ =L NI ns).
AV
Now to combine the results: We substitute our expression for f from section 2.7,
to yield

f

¢ = xyNi- h(8)] (9.1)
< NDp(KAV)Y AV~ 1 - h(8)) (9.2)
= ND, LK 23(AV)™53(1 — h(8)). (9.3)

Referring to section 2.4, we have AV > N—;”L from equation 2.10, so

Q oY
AV < =
= Nrup Nrou ¥’

or
o
AV < (O,
- (NT"Ul)
Hence we can express a bound on C for a chemical computer, in terms of the
design parameters N, «, r, and L:

C < N7 LSTE3(2L)E3(1 — n(6))
T

= Di(NVE)™* ()L — h(6)).
T
Recall that here, § is the specific error rate per site per timestep. In particular,
it is bounded below by N (g). So in our mean-field approximation in which we
replace = by its expectation over signals, we obtain an approximate bound on C
as:

C < Dy(NK)P ()L (1= (N (). (9.4)

TU1

3in the limit in which errors are sparse in spacetime, hence nearly independent

146

9.2. COMPUTATION DENSITY OF A CHEMICAL COMPUTER

9.2.1 Discussion

Several things are worth noting about equation 9.4:

e (' scales down with N
e (scales down with r

o (' scales down with [

These three, taken together, indicate that trying to improve the computation
density of a chemical computing medium by increasing N, L, or r, is doomed to
failure. As we argued before in section 6.4, the key to solving large problems is
applying enough error correction to the computation, to guarantee a high proba-
bility that the computation will complete without encountering an uncorrectable
error. Doing this requires coupling; and as we stated earlier, coupling — while
necessary for solving large problems — actually reduces the computation capacity
of the medium. A similar corollary obtains here: To solve large problems, we
must reduce the probability of uncorrectable errors. To do so, we must increase
either NV, L, or r. But doing so, while it may reduce error probability, will also
necessarily reduce computation density.
A couple of other things worth noting about equation 9.4 are:

¢ o is bounded: Since o cannot, by definition, be larger than L, increasing o
without bound to improve computation density is not physically realizable.

e For small error rates, C' is not heavily dependent on (e): If the
average expected error rate (€) is quite small, note that C is not affected
very severely. This makes sense, for a couple of reasons:

— 1n the presence of mildly imperfect, operation, application of a small
amount of error correction goes a long way: and

— we would expect that computation capacity should be a continuous
function of the design parameters - it is prima facie disbelievable that
there would somehow be 3 discontinuity in computation capacity as
the error probability went from zero to some very small value.

147

CHAPTER 9. CONCLUSIONS

r | L N AV f () bound C
(um?) (Hz) (conjecture) (%)
10 | 40 | 100 0.7 9.5 10440 1400
4 110 | 100 0.022 220 10732 1-10°
41 7 100 0.012 400 10718 3.3-10°
1 [720] 2™ [14-10®°[5.107% ~ 0 4.2-10719
1] 14 | 10000 1.0 13 3-107° 1.3-10°
1 | 12 | 1000 0.075 85 3.107° 1.1-10°
1|9 16 0.00075 2200 3-107° 4.7-107

Table 9.1: Bound on computation density for DNA computers with various values
of r, N, AV, and L. « is assumed to be 0.0006 in all cases.

9.2.2 DNA computers revisited

In section 3.1.6, we discussed the shape and size of the performance envelope of
DNA computers. This came in the form of a functional dependence of f and (¢)
on the design parameters of the computer: r, L, N, and AV. Recall, the results
of these computations for a few different design points were shown in table 3.1.

Now, let us augment table 3.1 with another column, in which we evaluate the
computation density for each row in the table. We have:

f
C = £ N[L = h(N (&)

Since the error rate is small for the cases listed in the table, we will just consider for
the moment that hA(N ()) = 0. Evaluation for the first case proceeds as follows:

9.5Hz
<
— 0.7pm? (100)

bits
s pm?
And so forth for the other rows in the table.
The augmented table is shown in figure 9.1.

C

~ 1400

9.2.3 Comparison with electronic computers

Before we compare these performance limits with conventional electronic comput-
ing media, a couple of notes are in order:

148

9.2. COMPUTATION DENSITY OF A CHEMICAL COMPUTER

dimensionality of integration: In typical electronic integrated circuits, the
dimensionality of the medium is for all intents and purposes, two. This is for
several reasons:

1. such circuits are produced using lithographic processes, hence are inherently
two dimensional. Integration in the third dimension would require a method
of routing signals in the third dimension, as well as a method of fabricating
with high density in the third dimension.

2. such circuits typically dissipate (relatively) large amounts of energy per
equivalent gate operation. This gives rise to a cooling problem - in typ-
ical cases we must dedicate the third dimension to the removal of heat?. For
more in-depth discussion of this and related issues, consult [25], [14], [51],
etc.

narrowness of optimal design region: If we review the sets of design pa-
rameters given above in section 9.2.2, it is intuitively apparent that as we reduce
r and L, the error rate is effectively zero for much of the time, and then rises
rapidly to an unacceptably high level. This is because, if we are trying to solve
extremely large problems, we have two competing goals: We want speed, but we
also want a lower error rate as the problems become larger. The combination
of these factors makes the cutoff of the “acceptable” region of design parameters
very narrow: By the time the computer becomes fast enough, it is also starting
to have a very high error rate. This effect will already be familiar to those who
have worked on extremely high density, high speed VLSI circuit design.

programmability: In the chemical computer case, there are no dedicated rout-
ing resources; whereas for instance in a high density electronic Cellular Automaton
machine, there are most likely at least one — and possible more — dedicated and
distinct routing channels for each spatial dimension®. The lack of such dedicated

4There are several levels at which the heat dissipation problem is relevant. So-called “adi-
abatic circuit design” [82], [77], [26] avoids, to the extent possible, passing current across any
nontrivial voltage difference. This technique, by avoiding commutation power, holds the promise
of minimizing switching power dissipation to near the thermodynamic limit.

At a finer level is a fundmental thermodynamic limitation on irreversible computation pro-
cesses, given by Landauer [44]. This limit states that any logically irreversible operation must
dissipate free energy at least equal to kg ln2 per bit lost in the computation.

®or more general routing structures, such as routing which behaves locally as hypercube
routing, etc.

149

CHAPTER 9. CONCLUSIONS

routing channels can be thought of as a source of information loss, or dissipation.
For instance, if we compare a two-dimensional system in which each site has four
distinct information channels — each coming from one ordinal direction and car-
rying one bit per timestep — vs. a system which has four indistinct information
channels, each coming from one direction and carrying one bit per timestep, but
which are indistinguishable, we can calculate that we have lost more than half of
the incoming information at each site, per timestep®.

On the one hand, this makes the problem of programming a chemical com-
puter very foreign to us; developing algorithms for such computers is likely to
be difficult. On the other hand, presumably the anisotropy in routing in the
electronic case comes at some cost — wires occupy space; they are not free. An
interesting area for further research would be to delve more deeply into this im-
plicit tradeoff: Certainly anisotropic (“routable”) computers can simulate isotropic
(“nonroutable”) computers. Presumably the reverse is also true; but the question
is: at what cost to computation density? A more rigorous treatment of the trade-
offs in computation density between routable and nonroutable systems would be a
theoretically interesting problem to tackle, and would also have direct application
to the theory of programming chemical computers.

numbers: Let’s try and put some approximate numbers to this comparison.

We will take 1um? as the size of a transistor in an electronic computing
medium. We will assume the switching time of such a transistor is on the or-
der of 1ns. We will assume planes of transistors may be stacked (for instance,
in liquid-cooled stacks), with an interplanar spacing of 10mm. Lastly, we assume
a logic gate of unit computation capacity requires four transistors to implement.
All of these assumptions should be regarded as pessimistic for modern electronic
computational media.

We compute the computation density thusly: The cell size is

AV = 4-1pm®.10mm
= 40000pm®.

61,6t’s assume each information channel is modeled by a Bernoulli trial per timestep, in the
absence of any a priori information. Then the incoming information in the distinguishable-
channel case is four bits per timestep. But the indistinguishable-channel case has only five
possible outcomes: {0,1,2,3,4}, corresponding to the number of ones arriving at each timestep.
The probability distribution is binomial: ﬁ -{1,4,6,4,1}. The incoming information is approx-
imately 1.86 bits. So we have lost about 2.14 bits, or 53% of the information.

150

9.3. INCOMPLETENESS OF WORK

And the number of signals per cell (N) is one. So

1GHz

Celectronic - 40000um3 ’ (lblt)
bi
— 25. 10—5__1t¥53_
ns - um

conclusion: The best computation density obtainable from the idealized DNA

computers in table 9.1 is about 0. 047% (see note”). If we set o all the way
up to 0.05, the chemical computer may be able to run about 20 times faster

(as discussed in section 3.1.7), giving a capacity of almost lnsb—lfng In contrast,

the computation density achieved by commodity desktop workstatlons is about
25.10" 5 _bits
IS ;LHI3

So we can conclude that current electronic technology comes within a factor
of 40000 of a hypothetical best-case chemical computer using DNA, operating
at @ = 0.05. Since we have been not 5o generous with our electronic model of
computation, and very generous with our chemical model, it is almost certain
that the margin is much narrower, even with current electronic technology. Add
to this the following factors:

e electronics can easily improve by another factor of 100 to 1000 in speed-density
terms before statistical limitations become crippling, and

o we have no idea what 7 actually is for DNA computers, but 1 is certainly
Very generous.

Given these factors, we can conclude that chemical computers and electronic com-
puters are closer to equivalent in maximum achievable computation density, than
1s generally appreciated in the chemical computation community.

9.3 Incompleteness of work

This section summarizes the major assumptions and areas of incompleteness in
this work. The next section discusses possible areas for generalization and expan-
sion.

note the change of units from the figures quoted in the table

151

CHAPTER 9. CONCLUSIONS

9.3.1 Theoretical treatment of error correction

I have not explicitly treated error correction in this discusson. The believability
of the arguments presented here — in particular, the coupling argument in section
6.4 — would be greatly improved by such a treatment.

To do this, one might argue roughly that error correction, giving an exponential
reduction in error rate with a linear increase in number of signals used, does not
affect the computational density of a computing medium. If one could show that
if we have a medium X of computational density A, and we transform X to X’
by applying error correction, that the computational density of X’ is at most A.
Perhaps by an argument that transforming X to X' amounts to coarse-graining
spacetime, resulting in decreased error rate, but with correspondingly decreased
spacetime density.

One might also try to make an argument that my expression for computational
density implies that if a “good” [60] family of error correcting codes is used, com-
putational density can be af most preserved, because it is asymptotically defined.
This certainly would not mean that error correction is worthless; it simply puts it
in perspective: the programmer seeking to complete a computation of given finite
size T with a probability of error p in a medium of density C' must choose to apply
error correction of a quality sufficient that her computation will terminate with
the correct answer, with probability at least 1 — p. If the medium is very good,
it can complete her computation with high probability with no error correction.
The worse the medium is (that is, the smaller C is), the higher the quality of the
error correction she must choose, and hence the more of the medium she must
use in order to complete the fixed size computation with her desired probability
of success.

9.3.2 Enhancement of error model

As noted in our discussion in section 3.1.6, the bound we put on dexp — the
expected minimum separation distance between nearest neighbor codewords —
could stand to be a lot better. For review, the shortcomings listed there include:

e crosstalk, false positives, and false negatives: In our calculation of the
free energy of an erroneous binding, we assumed standard concentrations for
all signals, and only calculated the difference in free energy for a “crosstalk”
type error; that is, an incorrect molecule binding to a signaling site. We
did not explicitly account for false positives (i.e. a site which should not
be bound, is bound), or false negatives (i.e. a site which should be bound,

152

94. FUTURE WORK

is not bound). As discussed in the conjectures section, this effect probably
roughly squares the error probability, but certainly a much more thorough
treatment is warranted.

* sloppy combinatorics in calculating (¢) from ¢ In calculating the
probability of a signal error from the probability of a molecule error, we
took a very stringent condition; that is, a signal error occurs if and only if
all signal molecules for that class are erroneously bound. This also roughly
squares the error probability, but again, better analysis is warranted.

» nonzero conformational entropy: We have ignored conformational en-
tropy of signal molecules, and conformational entropy is presumably much
lower in the correctly bound state than in an unbound or erroneously bound
state. Hence, we have substantially overestimated the difference in free en-
ergy between a correctly bound state, and an unbound or erroneously bound
state. So we have underestimated the error probability. Currently I have no
method of estimating the magnitude of this effect.

9.3.3 Weakness in specificity

The model developed in this thesis is cumbersome, to put it mildly. It is quite
possible, even likely, that additional insight might lead to a simpler, more elegant,
and more general approach to the problem. Such an approach might take the
form of a general theory regarding expected predictability of stochastic processes
of the form found in chemistry (see section 9.4.7, below).

9.4 Future Work

9.4.1 Gene Expression Logic

If we could develop reasonable insight on scaling of hybridization mismatch ener-
gies between DNA and DNA binding proteins, we could probably obtain a similar
bound for Gene Expression Logic. The mechanism of this bound may eventu-
ally shed light on the reasons underlying the experimental difficulty of “functional
complementation” of living organisms.

153

CHAPTER 9. CONCLUSIONS

9.4.2 Abstract models of chemistry

One might formalize this approach for all chemistries, by adopting a “toy model”
of chemistry, and showing how it applies to real chemistry within some bounds.
Ample precedent for this can be found in Hart and Istrail's work [34] on protein
folding in a lattice model. Such a toy model might be a model in which chemicals
were represented by oddly-shaped, fully connected cubic sublattices in 3-space.

A dangling question here is how to reduce the blocks model produced in this
way, to a formal mathematical abstraction. This would probably entail describing
the interaction surfaces as bit strings, defining an interaction energy between
pairs of bit strings, and defining the scaling of the “size” property of a molecule
in relation to the length of the bit string required to describe the binding site.

9.4.3 Simulations

Given the energy and size derivations from such an abstract chemistry model, one
could write the chemical kinetic equations describing the (stochastic) dynamics of
blocks model chemical systems. One need not write a complete simulator, since
they have already been written by Arkin[11], Lyons et al. [46], Gibson[29], and
others. One need only write a “logical preprocessor”, which takes as input a desired
set of logical relations and a specified signal size, and chooses a set of blocks-model
“species” which supposedly interact in the desired logical pattern. It will output
as simulation parameters, rate constants for all the reactions between the chosen
species. The rate constants will be computed from the implicit temperature, the
calculated “size” of the species, and the interaction energies computed from the
blocks model.

The theory predicts that the computational density of a blocks-model com-
putational medium is almost-independent of the specific computation, and the
specific signals chosen. The following set of experiments could provide numerical
support for this hypothesis:

e Run a parallelizable computation on a short, fat computer and a long, thin
computer and verify the aggregate error rate is similar.

e Run a parallelizable computation on a short, fat computer and a short,
thin computer, and verify the aggregate error rate scales exponentially in
thickness.

e Run a parallelizable computation on a long, thin computer and a short, thin
computer. Verify the aggregate error rate scales exponentially in length.

154

9.4. FUTURE WORK

e Run a parallelizable computation on a short, thin computer. Note a bad
error rate. Then rescale the computer by applying error correction, and
rerun the computation. Note a better error rate. Compare the calculated
computational capacities of both computers.

9.4.4 Performance bounds for electronic computers

It is conceivable that an analysis similar to that in Part I could be applied to elec-
tronic computers. That is, one could define a design tuple which was appropriate
for electronic computers, and carry through a similar set of arguments to place
bounds on the accessible performance envelope. Such an analysis would involve
defining assumptions on the physical construction and mode of operation of the
class of computers being considered.

For instance, one might start by formalizing the structure of standard litho-
graphically etched CMOS integrated circuits, and take as the design tuple a set
such as:

e minimum feature size
e capacitance density of active circuit elements to substrate
e dopant concentration
e operating voltage
The analysis might proceed as follows:
e compute information storage density from feature size

e compute expected variance in device parameters from feature size and dopant
concentration

e compute error probability per gate operation from variance in device pa-
rameters and operating voltage (and temperature)

e compute operating speed from feature size, capacitance density, and oper-
ating voltage

‘Then one could combine the resulting bounds on error probability and operating
speed into a bound on the computation density of this class of electronic computer,
similar to the analysis I have done for chemical computers in Part I1.

Other such analyses could be done, of course, for differently defined classes of
electronic computers.

155

CHAPTER 9. CONCLUSIONS

9.4.5 More thorough investigation of multicellularity

Taking a closer look at the amount of computation performed by single cells,
and trying to carry through the argument suggested in section 4.3, regarding the
evolutionary necessity of multicellularity.

9.4.6 Sensitivity analysis of GEL systems

Consider two reactor vessels, one of which is already heavily computationally
loaded, and the other of which is not. It is intuitively clear that we can build a
better computer in the less-loaded reactor than in the more-loaded. To give more
substance to this argument and quantify the sensitivity of chemical computers
to “functional supplementation” would be a valuable contribution. Specifically, if
cells are already heavily functionally loaded as suggested above in the evolution
argument, then it is not surprising that some GEL systems which are predicted to
work, simply do not when added to a cell’s existing gene expression mechanism.

9.4.7 Generalization to arbitrary stochastic processes

A much more general goal is suggested by interpreting this work in a much broader
context: That of stochastic processes. More specifically, to try and quantify the
amount of useful computation which can be performed by a stochastic process.
Fredkin and Toffoli [71] propose a measure of the amount of useful computation
extractable from a dynamical system, but theirs is deterministic. D’Souza et
al. [23] also treat deterministic and reversible systems, citing the determinism
and reversibility of physical law. But they don’t explicitly treat the question
of how errors (for instance, those introduced by thermal interaction with the
environment) can be practically treated, other than to suggest using more degrees
of freedom of the system to represent each logical quantity. The weakness with
this approach is one of dynamical mixing: The internal degrees of freedom initially
inside one bit of information will likely cross couple to other degrees of freedom
over time, causing the initial state of the bit to be eventually lost. To directly
treat the mixing problem, for instance by fundamentally quantifying the rate of
logical entropy produced by the mixing of the dynamics, vs. the density of stored
information in the computation, would be a valuable addition to the state of
knowledge in this field.

156

Part 111

Appendices

157

Appendix A

Sub-Additivity of Computation
Capacity

159

APPENDIX A. SUB-ADDITIVITY OF COMPUTATION CAPACITY

Definition:

let f and g be binary combinatorial circults with stochastic computation ca-
pacities Ay and A, respectively. Let f be described by Oy = F(Iy), and let g be
described by O, = G(I;). Then we will say a stateless combination of f and g is
a wiring together of f and g in which:

1. inputs may be wired together

2. outputs may not be wired together

3. inputs of f may be determined by (wired to) outputs of g
4. inputs of g may be determined by outputs of f, and

5. finally, the entire circuit remains combinatorial in nature; that is, the com-
bined output is still a function of the reduced input set.

Lemma (sub-additivity for null-input systems):

Let f and g be binary combinatorial circuits with null-input stochastic com-
putation capacities Ay and Ay, respectively. Let fg be a stateless combination of
f and g, and let its null-input stochastic computation capacity be denoted Ag,.
Then Aj, < Af + Ay
Proof:

Any wiring together of inputs may be expressed as a restriction on the input
space. Or, taken another way, the inputs I; and I, to the two subsystems are not
independent.

Also, any wiring of inputs of f to outputs of g or vice versa can again be
expressed as a restriction on the allowable input space. If inputs of f are wired to
outputs of g, for example, then we have It 1s dependent on Oy, which is in turn
dependent (in fact, determined by) I,. So [y is dependent on I, or I¢ and I, are
not independent.

The definition of statistical computation capacity gives us:

A;=1(1;,05) = H(I;)— H(IOy)
Ag = I(IgaOg) = H(Ig) - H(Iglog)
Agy = 1(Ig,055) = H(Isg) = H(I5Ofq)

= H(Ofg) - H(Ofgu,fg)

where the final equality follows from the symmetry of I(-, .

160

case i: independent If /; and I, are independent, then the first term is triv-
ially: H{Ojy) = H(Oy) + H(O4). The second term can be written as follows:
H(Ogq|lq) = H(Of|lIzy) + H(Og|ls,). Since Oy is independent of {, and wice
versa, H(O¢|lt,) = H(Oy|I;), and H(O,|I;,) = H(O,4|1,). So we have
Azg = H(Op)+ H(Og) — H(Of|Iy) — H(O,1,)
= Af + Ag

case ii: dependent In the dependent case, we have
H(Opy) = H(Op) + H(Og) = 1{04,0y)
and
H(Opollyg) = H(OflIpg) + H(OglIfg) — I{Oy, Ogl1yq)
= H(O4|I;) + H(Og|ly) — I(Oy, Ogliyy)

(because Oy is uniquely determined by I; and Oy is uniquely determined by I,).
So,

A;g = H(Oy)+ H(O,) — I(04,0,)
—H(Ofllf) - H(Ogllg) + I(Ofv Og”fg)
= Ar+ A, — [1(0f,00) = (O, Oy|Iy)]

But, since I(Oy, Og|Is4) < 1(Oy, 0y), the term in square brackets is at least zero,
hence
Apg < Ap+ A,

QED.

Lemma (sub-additivity for generalized systems): Let f and g be binary
combinatorial circuits with generalized stochastic computation capacities A 5 and
Ay, respectively. Let fg be a stateless combination of f and g, and let its gener-
alized stochastic computation capacity be denoted As,. Then A;, < As + A,

Proof: First, let P; be a partition of Iy, and P, be a partition of I,. Then we
will denote the composition of these two partitions as Ptq. We have the definition
of generalized stochastic computational capacity for the combined system with no
restrictions:
Apg = H(Ogg) + sup H(O1yp,,|Orq)-
g

161

APPENDIX A. SUB-ADDITIVITY OF COMPUTATION CAPACITY

If some inputs and/or outputs are tied together, this may be written as a restric-
tion on the space of possible outputs Oy, (since O; and Oy are not independent).
Let us write this restriction in terms of an arbitrary function:

@(Ofa Og) =0.
Now we can write the expression for Af, with the restriction applied:

Agq = H(Op4|0(0f,0,) = 0) + Sup H(Oygp,,|044,0(0y, 0y) = 0).
fg

Since the restriction ©(Oy, O4) = 0 can only reduce entropies of distributions
to which it is applied, we can remove the restriction and replace equality with
inequality:

Agg < H(Oygg) + S;llp H(Ofgpfg |Ofg)1
fa

where systems f and g are Independent. But where they are independent, the
entropy terms can be split:

Afg < H(Of)+H(Og)

+ Spup[H(OfPfg |Of9) + H(ngfy |Of9)]
fg

= H(Of) + H(O,)
+ SUP[H(OfPf |0sg) + H(Ogp,|Or,)]

Ptq

= H(Of)+ H(O,)
+ SUP[H(OfPfIOf) + H(Ogp,|0,)]

= H(Of)+H(Og)
— —
+sup H(Ogp,|Of) + sup H(Oyp,|0y)
f]
= Af + Ag

where the first step follows from the independence of Of on P,, the second from
the independence of Of on Oy, and the third again from the independence of Oy
on P,.

Hence, Afg < Af + Ag

QED

162

Appendix B

Relation between d ,;,, and dopt

163

APPENDIX B. RELATION BETWEEN Dy AND Dopr

lemma:

If the optimal spacing of NV and S is dopt, then for any code C in S of size N,

dexp (C)

Eld(w)]
< 2(dgpt (S, N) +1).

proof:

We use a refinement argument:

Let d(:,-) be the Hamming metric. Assume dopt(V,S) = d. That is, any code
of N codewords in & must have a minimum separation distance at least equal to
d. Now consider an arbitrary code C of N codewords in §. We want to show
an upper bound on the expected value of the separation distance of a randomly
chosen codeword in C.

We start by rewriting E[d]:

Eld]

d(w)
C

S
m

7,

¢

1

-
[

where n,; denotes the number of codewords in C with d = 2.
Define m; and g; as follows:

(F+1){d+1)—-1
m] = Z ni
1=5{d+1)
(F+1)(d+1)-1
i=j(d+1)
Then
(G+1)(d+1)-1
q = > in
i=j(d+1)
(F+D(d+1)—1
< G+DE+Y) D> m
i=5(d+1)

= (j+1)(d+ 1)m;.

164

So,
1] &= oo
1—V qu' Z] + 1 (B])
4=0 j=0

But notice the following: mgy = ng, since no codeword has d < d. So,

1 & 1 &
=1 j=0

We combine equations B.1 and B.2 to obtain:

d-l—l

Eld] < i

Now, for the moment assume d is odd. Each codeword in the set corresponding to
m; has d between j(d+1) and (7+1)(d+1)—1, inclusive. So, we may circumscribe
every codeword with d 4+ 1 < d < 2d + 1 by a ball of radius %, every codeword
with 2d + 2 < d < 3d + 2 by a ball of radius 2d2+2, etc., and these balls will touch
each other only at their boundaries (by the triangle 1nequahty).

Now, if there is one codeword with a ball of radius %, we can fit two balls
of radius d“le within it, and they will touch only at their boundaries. Likewise, if
there is a codeword with a ball of radius %, we can fit three balls of radius %
within it, and they will touch only at their boundaries, and so on. Imagine there
were enough space in balls of radius at least 222 and greater, to fit an extra ball

of radius d“gl in for each codeword with d = d. ThlS condition is:

moy + 2m3 -+ 3m4 + ... 2 mop.

If this condition were to obtain, then we could replace the code C' with a code
of the same size, but with a minimum separation of d + 1. But we know this to
be impossible, by the definition of d. So the condition must not be true. In other
words,

Mo + 2ma + 3my +4ms + ... < mo.

So,

my + 2my + 3mg +4dmg + ... < 2mgy + 2myq + 2ma + ...

But the left side is 3(7 + 1)m;, and the right side is just 2N. So,

165

APPENDIX B. RELATION BETWEEN Dyy AND Dopr

Eld] < TZ(J'Jrl)mj
d+1
N -2N

= 2(d+1).

QED

166

Bibliography

[1] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. F. Knight, R. Nag-
pal, E. Rauch, G. J. Sussman, and R. Weiss. Amorphous computing. Com-
munications of the ACM, 43(5):74-82, 2000.

[2] J. Ackermann and F. U. Gast. Word design for biomolecular information
processing. Z. Naturforsch. A, 58:157-161, 2003.

[3] L. M. Adleman. Molecular computation of solutions to combinatorial prob-
lems. Science, 266(5187):1021, 1994.

[4] Leonard M. Adleman.

[5] Hatim T. Allawi and John SantaLucia Jr. Thermodynamics and NMR of
internal G-T mismatches in DNA. Biochemistry, 36:10581-10594, 1997.

[6] Hatim T. Allawi and John SantaLucia Jr. Nearest neighbor thermodynamic
parameters for internal G-A mismatches in DNA. Biochemistry, 37:2170-
92179, 1998.

[7] Hatim T. Allawi and John SantaLucia Jr. Thermodynamics of internal C-T
mismatches in DNA. Nucleic Acids Research, 26(11):2694-2701, 1998.

[8] F. Allen, G. Almasi, W. Andreoni, D. Beece, B. J. Berne, A. Bright,
J. Brunheroto, C. Cascaval, J. Castanos, P. Coteus, P. Crumley, A. Curioni,
M. Denneau, W. Donath, M. Eleftheriou, B. Fitch, B. Fleischer, C. J. Geor-
giou, R. Germain, M. Giampapa, D. Gresh, M. Gupta, R. Haring, H. Ho,
P. Hochschild, S. Hummel, T. Jonas, D. Lieber, G. Martyna, K. Maturu,
J. Moreira, D. Newns, M. Newton, R. Phithower, T. Picunko, J. Pitera,
M. Pitman, R. Rand, A. Royyuru, V. Salapura, A. Sanomiya, R. Shah,
Y. Sham, S. Singh, M. Snir, F. Suits, R. Swetz, W. C. Swope, N. Vish-
numurthy, T. J. C. Ward, H. Warren, and R. Zhou. Blue gene: A vision

167

BIBLIOGRAPHY

for protein science using a petaflop supercomputer. IBM Systems Journal,
40(2):310-327, 2001.

[9] IBM T.J. Watson Research Center anonymous.

[10] A. Arkin and J. Ross. Computational functions in biochemical reaction net-
works. Biophysical Journal, 67:560-578, August 1994.

[11] Adam Arkin, John Ross, and Harley H. McAdams. Stochastic kinetic analysis
of developmental pathway bifurcation in phage A-infected escherichia coli
cells. Genetics, 149:1633-1648, August 1998.

[12] Richard J. Bagley and J. Doyne Farmer. Spontaneous emergence of a
metabolism. In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen,
editors, Artificial Life II, SFI Studies in the Sciences of Complexity, vol-
ume 10, pages 93 — 140. Addison-Wesley, 1991.

[13] Edwin Banks. Information Processing and Transmission in Cellular Au-
tomata. PhD thesis, Massachusetts Institute of Technology, 1971.

[14] Charles H. Bennett. The thermodynamics of computation — a review. Intl.
J. Theor. Phys., 21(12):905 — 940, 1982.

[15] William Bialek. stability and noise in biochemical switches. LANL Condensed
Matter Physics Archive, 2000.

[16] Dennis Bray. Protein molecules as computational elements in living cells.
Nature, 376:307-312, July 1995.

[17] Arwen Brenneman and Anne Condon. Strand design for biomolecular com-
putation. Theor. Computer Science, 287:39-58, 2002.

[18] Pierre-Gilles de Gennes. Scaling concepts in polymer physics. Cornell Uni-
versity Press, Ithaca, N.Y., 1979.

[19] R. Deaton, J. Chen, H. Bi, and J. A. Rose. A software tool for generating
non-crosshybridizing libraries of DNA oligonucleotides. In DNA Computing,
volume 2568 of Lect. Notes in Computer Sci., pages 252-261. Springer-Verlag,
Berlin, 2003.

[20] R. Deaton, M. Garzon, R. E. Murphy, J. A. Rose, D. R. Franceschetti, and
S. E. Stevens. Phys. Rev. Lett., 80:417-, 1998.

168

BIBLIOGRAPHY

[21] R. Deaton, J. W. Kim, and J. Chen. Design and test of noncrosshybridiz-
ing oligonucleotide building blocks for DNA computers and nanostructures.
Applied Physics Letters, 82:1305-1307, 2003.

[22] M. Denneau. The Yorktown simulation engine. In 19th Design Automation
Conference, pages 55-59. IEEE, 1982.

(23] Raissa M. D’Souza. Macroscopic order from reversible and stochastic lattice
growth models. PhD thesis, Massachusetts Institute of Technology, 1999.

[24] Paul J. Flory. Statistical mechanics of chain molecules. Interscience Publish-
ers, New York, 1969.

[25] Michael P. Frank. Reversibility for Efficient Computing. PhD thesis, Mas-
sachusetts Institute of Technology, 1999.

[26] Michael P. Frank, Carlin Vieri, M. Josephine Ammer, Nicole Love, Norman
Margolus, and Jr. Thomas F. Knight. A scalable reversible computer in
silicon. In Proc. of the ISCA Workshop, Barcelona, 1998.

[27] Edward Fredkin and Tommaso Toffoli. Conservative logic. Int. J. Theor.
Phys., 21:219-253, 1982.

[28] A. Frutos, Q. Liu, A. Thiel, A. Sanner, A. Condon, L. Smith, and R. Corn.
Nueleic Acids Research, 25:4748—, 1997.

[29] M. A. Gibson and J. Bruck. Efficient exact stochastic simulation of chem-
ical systems with many species and many channels. J. Phys. Chem. A,
104(9):1876-1889, 2000.

[30] Daniel T. Gillespie. A general method for numerically simulating the stochas-
tic time evolution of coupled chemical reactions. Journal of Computational
Physics, 22:403-434, 1976,

[31] Daniel T. Gillespie. A rigorous derivation of the chemical master equation.
Physica A, 188:404-425, 1992.

[32] Peter J. E. Goss and Jean Peccoud. Quantitative modeling of stochastic
systems in molecular biology by using stochastic petri nets. Proc. Natl. Acad.
Sci. USA, 1995:6750-6755, June 1998.

[33] Harpaz, Gerstein, and Chothia. Structure 2, pages 641-649, 1994.

169

BIBLIOGRAPHY

[34] W. E. Hart and S. Istrail. Lattice and off-lattice side chain models of protein
folding: Linear time structure prediction better than 86 J. Comput. Biol.,
4(3):241-259, 1997.

[35] A. Hartemink and D. Gifford. In H. R. Rubin and D. H. Wood, editors,
DNA Based Computers I1I, pages 25-. American Mathematical Society, Prov-
idence, RI, 1999.

[36] J. R. Heath, P. J. Kuekes, G. S. Snider, and R. S. Williams. A defect-
tolerant computer architecture: Opportunities for nanotechnology. Science,
280(5370):1716-1721, 1998.

[37] A. Hjelmfelt and J. Ross. Mass coupled chemical systems with computational
properties. J. Phys. Chem., 97:7988-7992, 1993.

[38] A. Hjelmfelt, E. D. Weinberger, and J. Ross. Chemical implementation of
neural networks and turing machines. Proc. Natl. Acad. Sci., 88:10983-10987,
December 1991.

[39] A. Hjelmfelt, E. D. Weinberger, and J. Ross. Chemical implementation of
finite state machines. Proc. Natl. Acad. Sci., 89:883-387, 1992.

[40] John SantalLucia Jr. A unified view of polymer, dumbbell, and oligonu-
cleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. USA,
95:1460-1465, February 1998.

[41] Thomas F. Knight Jr. and Gerald Jay Sussman. Cellular gate technology.
In Unconventional Models of Computation, pages 257-272, Singapore, New
York, 1998. Springer.

[42] R. M. Karp, C. Kenyon, and O. Waarts. Error-resilient DNA computation.
Random Structures and Algorithms, 15:450-466, 1999.

[43] Thomas F. Knight. Microbial engineering.
http://www.ai.mit.edu/people/tk/ce/microbial-engineering.html.

[44] Rolf Landauer. Irreversibility and heat generation in the computing process.
IBM J. Rsch. Devel., 5:183-191, 1961.

[45] R. J. Lipton. DNA solution of hard computational problems. Science,
268:542-545, 1995.

170

BIBLIOGRAPHY

[46] Eric Lyons, Larry Lok, and Drew Endy. Stochastirator: Using a stochastic
mathematical framework to simulate chemical and biological reaction net-
works. http://opnsrcbio.molsci.org/stochastirator /stoch-main.html.

[47] Marcelo O . Magnasco. Chemical kinetics is turing universal. Phys. Rev.
Lett., 78(6):1190-1193, 1997.

[48] Norman Margolus. CAM-8: A computer architecture based on cellular au-
tomata. In A. Lawniczak and R. Kapral, editors, Pattern Formation and
Lattice Gas Automata, pages 167-187. American Mathematical Society, 1996.

[49] Norman Margolus. An FPGA architecture for DRAM-based systolic com-
putations. In Arnold et al., editor, Proc. IEEE Workshop on FPGAs for
Custom Computing Machines, pages 2-11. IEEE Computer Society, 1997.

[50] Norman Margolus. An embedded DRAM architecture for large-scale spatial-
lattice computations. In Proc. 27th Annual Intl. Symposium on Computer
Architecture, pages 149-160. IEEE Computer Society, 2000.

[51) Norman H. Margolus. Physics and Computation. PhD thesis, Massachusetts
Institute of Technology, Laboratory for Computer Science, 1988. MIT/LCS
Tech Report 415.

[62] Harley H. McAdams and Adam Arkin. Stochastic mechanisms in gene ex-
pression. Proc. Natl. Acad. Sci., 94:814-819, February 1997.

[53] Harley H. McAdams and Adam Arkin. Simulation of prokaryotic genetic
circuits. Annu. Rev. Biophys. Biomol. Struc., 27:199-224, 1998.

[54] Harley H. McAdams and Lucy Shapiro. Circuit simulation of genetic net-
works. Science, 269:650-656, August 1995.

[55] J. Monod and F. Jacob. Cellular Regulatory Mechanisms, pages 389-401.
Cold Spring Harbor, New York, 1961.

[56] Frederick C. Neidhardt and Michael A. Savageau. Regulation beyond the
operon. In Frederick C. Neidhardt, editor, Escherichia Coli and Salmonella,
pages 1310-1324. ASM Press, Washington, D.C., 2 edition, 1992.

[57] Frederick C. Neidhardt and H. Edwin Umbarger. Chemical composition of
escherichia coli. In Frederick C. Neidhardt, editor, Escherichia Coli and
Salmonella, pages 13-16. ASM Press, Washington, D.C., 2 edition, 1992.

171

BIBLIOGRAPHY

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

|68]

[69]

[70]

Jean Peccoud and Bernard Ycart. Markovian modelling of gene product
synthesis. Theoretical Population Biology, 48:222-234, 1995.

R. Penchovsky and J. Ackermann. DNA library design for molecular compu-
tation. J. Comput. Biol., 10:215-229, 2003.

Oliver Pretzel. Error-correcting codes and finite fields. Oxford University
Press, New York, 1992.

J. H. Reif. Parallel molecular computation. In Seventh Annual ACM Symp.
on Parallel Algorithms and Architectures, pages 213-223, 1995.

J. A. Rose, R. J. Deaton, D. R. Franceschetti, M. Garzon, and
S. E. Stevens Jr. Hybridization error for DNA mixtures of N species.
http://engronline.ee.memphis.edu/molec/Misc/ci.pdf, 1999.

J. A. Rose, R. J. Deaton, M. Hagiya, and A. Suyama. Equilibrium analysis
of the efficiency of an autonomous molecular computer. Phys. Rev. E, 65,
2002.

J. A. Rose, M. Hagiya, R. J. Deaton, and A. Suyama. A DNA-based in vitro
genetic program. J. Biol. Phys., 28:493-498, 2002.

S. Roweis and E. Winfree. On the reduction of errors in DNA computation.
J. Computational Biol., 6:65-75, 1999.

S. Roweis, E. Winfree, R. Burgoyne, N. V. Chelyapov, M. F. Goodman,
P. W. K. Rothemund, and L. M. Adleman. A sticker-based model for DNA
computation. J. Computational Biol., 5:615-629, 1998.

W. D. Smith. In R. J. Lipton and E. B. Baum, editors, DNA Based Com-
puters, pages 121-. American Mathematical Society, Providence, RI, 1996.

Warren D. Smith and Allan Schweitzer. DNA computers in vitro and vivo.
Technical Report 983, NECI, Princeton, NJ, April 1995.

M. Sugita. J. Theor. Biol., 4:179-192, 1963.

R. Thomas. Boolean formalization of genetic control circuits. J. Theor. Biol.,
42:563-585, 1973.

172

BIBLIOGRAPHY

[71] T. Toffoli. Four topics in lattice gases: Ergodicity, relativity, information
flow, and rule compression for parallel lattice-gas machines. In R. Monaco,
editor, Discrete Kinetic Theory, Lattice Gas Dynamics and Foundations of
Hydrodynamics, pages 343-354. World Scientific, 1989.

[72] Tommaso Toffoli. Cellular Automata Mechanics. PhD thesis, University of
Michigan, 1977. Comp. Comm. Sci. Dept. Tech Report 208.

[73] Tommaso Toffoli. CAM: A high-performance cellular automata machine.
Physica D, 10:117-127, 1984.

[74] Tommaso Toffoli. Action, or the fungibility of computation. In Anthony J. G.
Hey, editor, Feynman and Computation, chapter 21, pages 349 — 392. Perseus
Books, Reading, MA, 1999.

[75] Tommaso Toffoli and Norman Margolus. The CAM-7 multiprocessor: A
cellular automata machine. Technical Report LCS-TM-289, MIT Laboratory
for Computer Science, 1985.

[76] Tommaso Toffoli and Norman Margolus. Cellular Automata Machines: A
New Environment for Modeling. MIT Press, 1987.

[77] Carlin Vieri, M. Josephine Ammer, Michael Frank, Norman Margolus, and
Jr. Thomas F. Knight. A fully reversible asymptotically zero energy micro-
processor. In Proc. of the ISCA Workshop, Barcelona, 1998.

[78] John von Neumann. Theory of Self-Reproducing Automate. Univ. of Illinois
Press, 1966. completed and edited by Arthur Burks.

[79] Ron Weiss, George Homsy, and Thomas F. Knight. Toward in vive digital cir-
cuits. In Proceedings of the DIMACS workshop on Evolution as Computation,
Princeton, NJ, January 1999,

[80] Ron Weiss, George Homsy, and Radhika Nagpal. Programming biological
cells. In Fighth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Wild and Crazy Ideas Session,
San Jose, California, October 1998.

[81] Erik Winfree. Simulations of computing by self-assembly. In Prelim. Proc.
Fourth Internat. Meeting on DNA Based Computers, pages 213-239. Univer-
sity of Pennsylvania, 1998.

173

BIBLIOGRAPHY

[82] Saed G. Younis and Thomas F. Knight. Practical implementa-
tion of charge recovering asymptotically zero power CMOS, 1992.
http://www.ai.mit.edu/people/tk/lowpower/crl.ps.

[83] B. T. Zhang and S. Y. Shin. In Proceedings of the Third Annual Genetic
Programming Conference, University of Wisconsin at Madison, 1998, pages
735-, San Francisco, 1998. Morgan Kauffman.

174

