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1. Introduction

Consider a linear program with m variables and n + n' equality constraints. We denote the first n rows of

the constraint matrix by E (E is a n x m real matrix), the remaining n' rows of the constraint matrix by D (D is

a n' x m real matrix), the jth variable by x., and the per unit cost of the jth variable by a. The problem then

has the form:

Minimize a.. (P)
JJ

j=l

m

subject to e.j.x = 0 V i=1,2,...,n, (1)
j=1

= bk v (2)dkjxj = bk V k = 1,2,...,n', (2)
j=i

i. < x. < c. Vj=1,2,...,m, (3)
J J J

where bk denotes the right hand side of the kth constraint, for k= 1,2,...,n', the scalars Ij and cj denote

respectively the lower and the upper bound for the jth variable, eij denotes the (i,j)th entry of E and dKj

denotes the (k,j)th entry of D. For simplicity we assume the first n constraints all have zero right hand side

(we can convert any problem having nonzero right hand side to this form by introducing dummy variables).

Note the constraints (1) and (2) can be expressed in vector form by Ex = 0 and Dx = b respectively.

A special case of (P), network flow problems with linear side constraints (i.e. E is the node-arc incidence

matrix for a network), arise frequently in the areas of manufacturing, traffic flow, and data communication.

Conventional methods for solving such problems include Dantzig-Wolfe decomposition and Bender's

decomposition. For the special case of multicommodity network flow problems, specialized solution

methods such as the primal simplex method using basis partitioning [7] and the primal dual method of
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Jewell [6] have been developed. For a survey of multicommodity network flow methods see Assad [1] and

Kennington [7].

Let us rewrite (P) as the following convex program

Minimize h(x) + (d (P')
i=l

subject to x ( X,

where

ah() x if x EH,
h(x)

+ 0 otherwise,

0 if ,=0,
+ 0 otherwise,

H= x l<_x<c , Dx=b }, (4)

and

x {x Ex=O}. (5)

Note that h is a proper convex and lower semicontinuous function. To simplify the presentation we make

the following standing assumptions:

Assumption A: (P) is feasible, (i.e. H n x + 0).

Assumption B: D is of full row rank and each extreme point of H satisfies exactly m-n' inequality

constraints with equality.

Assumption B implies that, given any linear function mapping Rm into X, if the minimization of this

function over H has an optimal dual solution then this dual solution is unique ([13], pp. 579). Since H is

closed, bounded and [cf. Assumption A] nonempty it follows that the minimization of any linear function

over H always has an unique optimal dual solution. For any k > 1, any EIRk whose ith component we
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denote ki and any subset B of {1,2,..,k}, we will use ,8 to denote the vector whose components are ki, iEB.

For any matrix W with k columns, whose columns are indexed from 1 to k, and any subset B of {1,2,..,k}, we

will use WB to denote the matrix comprised of the columns of W whose indexes are in B.

In this paper we present a new dual descent method for solving (P) that extends the relaxation methods in

[2] and [15] by incorporating decomposition to handle the side constraints. This method, which we also call

relaxation method, emphasizes descent along coordinate directions and, on network flow problems (with

side constraints), can be implemented using primarily network data structures; these are key features

contributing to the success of the method on pure network flow problems without side constraints [3].

Although this method may be interpreted as a primal dual method in that it maintains both primal and dual

variables at each iteration and terminates when the primal variables are feasible, it is quite different from

the primal dual method of Jewell [6]. Our paper proceeds as follows: in §2 we formulate the dual of (P) as an

unconstrained minimization problem and describe the associated optimality conditions; in §3 we study ways

of generating dual descent directions, which correspond to the elementary vectors of a certain extended

dual space, using the painted index algorithm of Rockafellar [13]; in §4 we describe the relaxation method;

in §5 we describe a modification to the relaxation method that ensures finite convergence - one is an out-of-

kilter-like modification and the other is based on the notion of e-complementary slackness; in §6 we discuss

implementation of the relaxation method for network flow problems with side constraints; and in §7 we

present our conclusion and discuss extensions.

2. Dual Problem and Optimality Conditions

Using Fenchel's Duality Theorem ([10], Ch. 31) the dual program of (P') is

Minimize h (t)

subject to t E X,

where

h*( ) max (1--a)Tx (6)
x(H
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± T (7)X =- = { Xl= ETp forsomep} .

h* is a piecewise linear convex function since, for a given t, h*(u) is the maximum of a finite set

(corresponding to the set of extreme points of H) of linear functions of -u. Using (4), (6) and linear

programming duality [4] we have

= max (u-a)Tx min { max (l--a)Tx + eTDx--4T b }

subjectto Dx = b , lxec ) subjectto <x c

min max (+ DT -a)x min (8)
dP subjectto x < c 4) Ji J

j=l

where Dj denotes the jth column of D and

(rq-aj)lj if rl<aJ. (9)
g/ in) (rl-aj)cj if rl>a

Using (9) we can expand the last term in (8) to obtain

h min p(,mm ) ( Oa)4, () =

where

T' T T T + T10b)
p(;,4) I- I(u+D 4-a) + (c-) )T[+DT 4-a]+ - Tb. (

and [z] + denotes the orthogonal projection of z onto the positive orthant. Assumption B ensures that for a

given t, the argument that achieves the minimum in (10a) is unique.

Using (6) and (7), we can reformulate the above dual program as an unconstrained minimization problem

Minimize q(p) (D)

subject to no constraint on p

where q denotes the convex piecewise linear function

(11)
q(p) - h (ETp). 

We will call p, the Lagrange multiplier associated with the linear homogeneous constraints (1), the price

vector. Since [cf. Assumption B] the argument of the minimization in (10a) is uniquely determined by t, we

can define a point-to-point mapping d:R"-lR"' by



5

argmin p(ETp,4 ) (12)(p) -- arg

Then using (10a), (10b), (11) and (12) we can express q(p) explicitly as a function of p:

(13)
q(p) = IT(ETp +DT(p)-a) + (c_ p)T[ETp+D T (p)_a]+ _-(p)Tb (

We will borrow the terminology in [13] for network programming and call the vector t satisfying

t - ETp+DT(p) (14)

the tension vector associated with p.

Instead of (10b) and (12), we can use (5) and (7) to express p(p) explicitly in terms of the optimal basis for

the linear program

Max (ETp-a) T (15)
q(P) = subject to Dx = b

I c x c c.

From classical linear programming theory we know

1 T T (16)
@p) = (D;,)T(aB-EBp),

where D is partitioned into [ DB DN ] such that DB is an optimal basis matrix for (15) and a and E are

correspondingly partitioned into a = (a,, aN) and E = [E, EN]. The dual problem (D) has two advantages -

(i) the maximization problem (15) typically decomposes into many small easy-to-solve subproblems (as in the

case where (P) is a multicommodity network flow problem) and (ii) being unconstrained, (D) is amenable to

solution by a coordinate descent type method.

We now give the necessary and sufficient conditions for a primal dual pair (x, p) to be optimal for (P): Let

t denote the tension vector associated with p [cf. (14)] and define each column j (j = 1,2,...,m) to be

inactive if tj < aj,

balanced if tj = aj,

active if tj > aj.
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Then (x, p) is said to satisfy the complementary slackness condition, CS for short, if x achieves the maximum

in (15), or equivalently if x satisfies the following optimality conditions:

xj = Ij V inactive j,

Ij < xj < cj V balanced j, (CS)

xj = cj V active j

and Dx = b.

For each primal vector x, we define the deficit of row i to be

m

d. = e..x. .
j=1

Let d be the vector with coordinates di ( in vector form d = Ex) . We define the total deficit for x to be

n

E Id,
i=l

(the total deficit is a measure of how close x is to satisfying (1)). Then a primal dual pair (x, p) is optimal for

(P) and (D) respectively if and only if (x, p) satisfies CS and d = 0.

3. Dual Descent Directions and the Modified Painted Index Algorithm

We first compute, for a given price vector p and a direction u, the directional derivative of q at p in the

direction of -u. Using (13)we obtain

q'(p;-u) = l.v.- cv. + ±wTb, (17)
t.<a. or t.>a. or
J J J J

t.=a.,v.>O t.=a.,v .<0
J J J J J J

where q'(p;-u) denotes the directional derivative of q at p in the direction -u

q(p- Au) - q(p)
q'(p;--u) lim

40 X0
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t is given by (14),

(18)
v - ETu + DT 

and Tr is the unique vector satisfying

4?(p-Au) = t(p)- Xqi for X>O sufficientlysmall. (19)

Such vi can be computed using the optimal basis from the maximization problem (15) with the cost vector

perturbed in the direction -ETu (see Appendix A on computing Ap).

Let x satisfy CS with p, and let d = Ex. Then we have (using (18) and the definition of CS)

T T T T T (20)xTv = d u + (Dx)T = dTu + b (20)

and

= { . if t.<a. (21)
X c. if t.>a.

Combining (17), (20) and (21) we obtain:

q'(p;-u) = -C(u,p),

where

C(u,p) = dTu + E (I.-xj)j. + E (Cj.-Xj). (22)
t.=a.,v.>0 t.=a.,v.<0

Equation (22) is interesting in that its right hand side depends on the side constraints solely through the

vector v [cf. (14), (18) and (19)]. To evaluate C(u,p) we first compute the vector T satisfying (19) and then

use (18) and (22).

Clearly q is piecewise linear since q is the composition of a piecewise linear function, namely h*, with a

linear function [cf. (1 1)]. Then following an argument similar to that for Propostion 2 in [15] we obtain:

Proposition 1

q(p-Xu) = q(p)- Xq'(p;-u) V X([O,a),
where

(inf t.- a|= inf t-a . inf ta. (23)in I J s 3 s (v.(a t. <O fV. v.> 0 j active v . v.<O jinactive v (23)
J J J j
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( a is the stepsize at which some column becomes balanced.), t is given by (14) and v is given by (18), (19).

How can we generate dual descent directions for (D)? The basic idea is to apply, for a given non-optimal

primal dual pair satisfying CS, a modified version of the painted index algorithm of Rockafellar ([13], Ch.

1 OG) to either (a) generate a dual descent direction, or (b) change the primal vector so as to reduce the total

deficit while maintaining CS. In what follows we assume the reader is familiar with the notion of

elementary vectors, Tucker tableaus and painted index algorithm as described in Ch. 10 of [13].

Modified Painted Index Algorithm

Given primal dual pair (x, p) satisfying CS, let t = ETp + DT4(p) and d = Ex. If d = 0 then (x, p) satisfies

the optimality conditions so x and p solves (P) and (D) respectively. If d * 0, then we select some row s

for which ds*0. In the description that follows we assume d > 0. The case where ds < 0 may be

treated in an analogous manner.

We apply the painted index algorithm, with s as the lever index and using Bland's anticycling rule,

to the extended linear homogeneous system (whose columns are indexed from 1 to n + n' + m)
1,..,n n+l,...,n +n' n+n' + 1,..,n + n'+m

F -I 0 E W (24)

0 -I D Y 0,

where index i (corresponding to wi), i = 1,2,...,n, is painted

white if di > 0,

black if di < 0,

red if di = 0,

index n + k (corresponding to yk), k = 1,2,...,n', is painted

red

and index n + n' + j (corresponding to zj ), j = 1,2,...,m, is painted

green if j balanced and Ij < xj < cj,

black if j balanced and I. = x < cj,
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white if j balanced and Ij < xj = cj,

red if j not balanced

or if j balanced and I. = x = c..
J J J

Furthermore, we (i) use as the initial Tucker tableau one for which s is in row position and (ii) assign

the lowest priority to index s (this ensures that s is always in row position, as is shown in Appendix B

of [1 5]). At each iteration of the painted index algorithm we check if a dual descent direction can be

obtained from the current Tucker tableau as follows:

We say a component of (w, y, z) is a column (row) variable if its corresponding index is in column (row)

position of the tableau. We denote

asi = entry in row indexed by s of tableau corresponding to column variable wi.

ask = entry in row indexed by s of tableau corresponding to column variable Yk-

asj = entry in row indexed by s of tableau corresponding to column variable zj.

Applying the General Basis Theorem ([131, pp. 457) to the extended linear homogeneous system (24)

we obtain the elementary vector (u, rn, v) of C' using s (normalized so us = 1), where

C - (-d,-w,x) D x C (u,n,v) v = ETu+DTn (25)

that corresponds to the current tableau to be

1 ifi=s (26)
ui = -a if wiisa column variable

0 otherwise

I -ask if yk isacolumn variable (27)
O0 otherwise

a if Z is a column variable (28)
0 otherwise

If C(u,p) > 0 then -u is a dual descent direction and the algorithm terminates. Note from (22) that

if the tableau is such that its row indexed by s is compatible ([13], pp. 475) then -u is a dual descent

direction. This is because our choice of index painting and the definition of a compatible row imply

d > O and a di < 0 for all i such that wi is a column variable,

xj = c. for all j such that zj is a column variable, n + n' + j is red or black, and aj < 0 (29)

and x. = I. for all j such that zj is a column variable, n + n' + j is red or white, and asj > 0,
J I
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which in view of the definition of CS implies that n satisfies

4(p-Au) = 4(p)- XAn for X>O sufficientlysmall.

So using the definition of C(u,p) [cf. (14), (18), (19) and (22)] we have

C(u,p) = dTu + (-x.)v. + (c.-Xj)v
J J J i

t =a.,v >0 t =a. v.<O

whose right hand side according to (26) , (28) and (29) is positive.

We know that the painted index algorithm using Bland's priority rule terminates finitely with either a

compatible row using s or a compatible column using s (see [13], Ch. 10H). Thus we must either find a dual

descent direction -u for which C(u,p) > 0 [cf. discussion above] or else find a Tucker tableau containing a

compatible column using s. In the latter case, an incremental change towards primal feasibility is performed

as follows:

Let r* denote the index of the compatible column.

Let air* denote the entry in the compatible column corresponding to row variable w , let a kr denote

the entry in the compatible column corresponding to row variable yk, and let ajr* denote the entry in

the compatible column corresponding to row variable z..

Case 1 If r* isof the form r*=i forsome i{1,...,n} and r* is blackthen set

1 if i=r a * if n+k isbasic a , if n+n'+j isbasic
i | a * if i is basicr z. r

0 else 0 else
O else

Case 2 If r* is of the form r* = n + n' + j for some j ( {1,...,m} and r* is black then set

a * if i is basic a * if n+k isbasic 1 if n+n'+j=r
*.| ior e l s e k-* kr z a * if n+ n'+j is basic

0 else 0 else 0 else
c else

Case3 If r* is of the form r*=i for some i(f 1,...,n} and r* is white then set



-1 ifi=r -a * if n+k isbasic -a * ifn+n'+j is basic

W. -a * if i isbasic, k r -- jr

o eise 0 else 0 elseO else

Case4 If r* isoftheform r*=n+n'+j for some j{1 ,...,m}and r* is white then set

-a * ifiisbasic -a * if n+k isbasic - 1 if n+ n' +j= r
wir kr e| -a { if n+ n'+j is basicIV. - _. --

o else 0 else
0 else

That w*, y*, and z* so defined satisfy w* = Ez*, y* = Dz* follows from applying the General Basis

Theorem ([13], pp. 457) to the extended linear homogeneous system (24) (with (w*, y*, z*) normalized

so w*r* = 1 in cases 1, 2 and w*r- = -1 in cases 3 and 4). Furthermore, our choice of index painting,

together with compatibility of the column indexed by r*, guarantees that, for la > 0 sufficiently

small, x + pz* satisfies CS with p and that x + liz* has strictly smaller total deficit than x. Note that

since both x and x + ipz* satisfy CS we always have y* = D(x + lpz*) - Dx = 0 - 0 = 0 (this can also be

seen from the fact that the indexes n + 1, ..., n + n', are always painted red).

In summary, the modified painted index algorithm either produces a dual descent direction -u given by

(26) or produces a primal direction z* as defined above that can be used to reduce the total deficit. In the

special case where E is the node-arc incidence matrix for an ordinary network, we can perform the pivoting

operation more efficiently by exploiting the network structure (see §6).

To determine whether -u given by (26) is a dual descent direction may be computationaly expensive. In

general if s is not a compatible row then the vector n given by (27) does not satisfy

4(p- hu) = 4(p) - hn for X>O sufficiently small.

(an example of this is easy to construct). For this reason C(u,p) cannot in general be determined directly from

the entries of the Tucker tableau and must be computed using (14), (18), (19) and (22). A compromise is to

instead compute a lower bound on C(u,p). It can be shown (see Lemma 1 in §5.2) that, for any n E R"', the

following quantity
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C(u,r,p) - uTd + vj.(l.-X.) + j(Cj-X.)
J J J ' i J

v.> O v.< O
J J

j balanced j balanced

where v = ETu + DTn, x is a primal vector satisfying CS with p, and d = Ex, is a lower bound on C(u,p) (this in

particular implies C(u,p) = max . C(u,n,p) = C(u,W,p), where t is given by (19)). It follows if iI is chosen by

(27) then C(u,n,p) is directly computable from the Tucker tableau, with u given by (26) and v given by (28).

Furthermore, if the lever row that generates u is compatible then C(u,n,p) = C(u,p) in which case the bound

is tight. Thusfore we can use C(u,n,p) instead of C(u,p) in the modified painted index algorithm to reduce

the computational effort per pivot.

One particular choice of the initial Tucker tableau that has proven to be computationally successful on

problems without side constraints is

for which the indexes 1 to n + n' are basic. Since the direction associated with the lever row s of this tableau

[cf. (26)] is the sth coordinate vector in R'", this implementation may be viewed as a generalized coordinate

descent or relaxation implementation whereby coordinate directions are given priorities as candidate for

dual descent. Computational tests showed that on network flow problems (without side constraints) the

coordinate directions typically contribute between 80 to 90 percent of the improvements in the dual

functional [16].
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4. The Relaxation Method

Based on the discussions in §3, we can now formally describe the relaxation method for (P) and (D). Each

iteration of the method begins with a primal dual pair (x, p) satisfying CS and returns another pair (x', p')

satisfying CS for which either (i) q(p') < q(p) or (ii) q(p') = q(p) and (total deficit of x') < (total deficit of x).

Relaxation Iteration

Step 0 Given primal dual pair (x, p) satisfying CS. Denote d = Ex.

Step 1 If d = 0 then x is primal feasible and we terminate the method. Otherwise choose a row s for

which dc is nonzero. For convenience we assume ds > 0. The case where ds < 0 may be

treated analogously.

Step 2 Apply the modified painted index algorithm with s as the lever index to the extended system

-IO E liwi
0 -I D l =

as described in §3. If the algorithm terminates with a dual descent direction -u we go to Step

4. Otherwise the algorithm terminates with a compatible column using s, in which case we go

to Step 3.

Step 3 (Primal Rectification Step)

Let

min c.-x. min I.-x. min -di 
J J J J -

z.>0 z Z.<O w. * I
J j J J i

where z*,w* are computed as discussed at the end of §3. Set x' - x + pz* and p' <-- p

(The choice of p is the largest for which CS is maintained and the magnitude of each deficit is

monotonically decreased).
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Step 4 (Dual Descent Step)

Determine a stepsize X* for which

q(p-X*u) = min {q(p- u) I X > O}.

Set p' -- p- *u and compute x' that satisfies CS with p'.

Validity and Finite Termination of the Relaxation Iteration

We will show that all steps in the relaxation iteration are executable, that the iteration terminates in a

finite number of operations, and CS is maintained. Since the modified painted index algorithm (with Bland's

priority pivoting rule) is finitely terminating, the relaxation iteration must then terminate finitely with either

a primal rectification step (Step 3) or a dual descent step (Step 4). Step 3 is clearly executable and finitely

terminating. Step 4 is executable for if there does not exist a line minimization stepsize h* in the direction

-u then since -u is a dual descent direction at p, the convexity of q would imply

q'(p-Au;-u) < 0 forall X > O.

This, in view of the piecewise linear nature of q, implies q'(p-Xu;-u) is bounded away from 0 and therefore

lim q(p-Xu) = -oo

This contradicts Assumption A. CS is trivially maintained in Step 4. In Step 3, the only change in the primal or

dual vector comes from the change in the value of some primal variable(s) whose corresponding column is

balanced. Since the amount of change p is chosen such that each such primal variable satisfies the capacity

constraints (2) it follows that CS is maintained.

Implementation of the line minimization in Step 4

Perhaps the most efficient scheme for implementing the line minimization of Step 4 is to move along the

breakpoints of q, in the descent direction -u, until the directional derivative becomes nonnegative. This

scheme also allows us to efficiently update the value of C(u,p). Algorithmically it proceeds as follows:
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Step 4a Startwith p and u such that C(u,p) > 0.

Step 4b If C(u,p) < 0 then exit (line minimization is complete). Else compute a using (23)

(a is the stepsize to the next breakpoint of q from p in the direction -u). Then

move p in the direction -u to a distance of a and update t and x:

Decrease pi by aui Vi.

Set xj v Ij V balanced j such that vj>0.

Set xj v cj V balanced j such that vj<0.

Decrease tj by avj Vj.

Update T and v using (18), (19). Upate C(u,p) using (22).

Return to Step 4b.

5. Finite Convergence of the Relaxation Method

The relaxation method that consists of successive iterations of the type described in §4 is not guaranteed

to converge to an optimal dual solution. We distinguish the following two difficulties:

(a) Only a finite number of dual descents may take place because all iterations after a finite number

end up with a primal rectification step.

(b) An infinite number of dual descents take place, but the generated sequence of dual costs does not

converge to the optimal cost.

Difficulty (a) may be bypassed by choosing an appropriate priority assignment of the indexes in the

relaxation iterations, similar to Proposition 3 in [15]:

Proposition 2 If in the relaxation method the green indexes are assigned the highest priorities and the

black and white indexes belonging to {1,2,...,n}, except for the lever index, are assigned the second highest

priorities, then the number of primal rectification steps between successive dual descent steps is finite.
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Proof: This is a special case of Proposition 3 in [15] where the indexes n + 1 up to n + n' are always painted

red.

Difficulty (b) can arise as shown by the example in [16], Appendix G. To bypass difficulty (b) we will

consider two types of modification to the relaxation iteration of §4 and show that the number of dual

descents is finite under either type.

5.1. Finite Convergence using an Out-of-Kilter modification

This modification is reminiscent of the out-of-kilter method and is easily implementable:

1. In the modified painted index algorithm, perform a dual descent only if the lever row in the Tucker

tableau is compatible, and then use as stepsize that given by (23) (i.e. the stepsize to the first

breakpoint of q from p in the direction -u given by (26)).

2. We assign higher priorities to black or white indexes of the form i, i1, ....,n}, except for the lever

index, over black or white indexes of the form n + n' + j, j E1 ,...,m}.

3. If the previous iteration terminated with a dual descent step then use the same lever index as in the

previous iteration and use the final tableau from the previous iteration as the initial tableau .

The out-of-kilter modification however places two major limitations on the method - (i) dual descent cannot

be performed until lever row becomes compatible, and (ii) the same lever index is used between consecutive

primal rectifications. For this reason we may wish to implement this modification only after sufficient large

number of dual descents have been performed. Our proof of finite convergence is similar to that used by

Rockafellar for his general out-of-kilter method (see [13], Ch. 11K). Our condition for convergence differs

from his in that we do not require the same lever index (which always corresponds to a row of E in our case)

be used at successive iterations until the corresponding deficit reaches zero, but in its place we require

modification 2.
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To prove finite convergence we need, in addition to Proposition 2, the following:

Proposition 3 The number of dual descent steps between successive primal rectification steps is finite.

Proof of Proposition 3 is given in Appendix B (it is similar to the proof of Proposition 2 but applied to the

dual of (24)).

Now suppose the relaxation method does not terminate finitely. Then Propositions 2 and 3, together with

modification 1, imply that compatible lever rows are found in an infinite number of relaxation iterations. It

can be seen [cf. the primal rectification algorithm of ([13], pp. 485) and (25)] that there exists a Tucker

tableau representing C and C' having a compatible row indexed by s if and only if the following linear

system in (w, y, z)

w w. = O ifd. = O z.= O ift. a.

I Y = 0 y=O w < { w. 0 ifd.<O z. 0 if tj = a, = t 0 -I D <0 i s
w. idO ifd >0 Z. if t = aj,,x = C.

j J J J

where x denotes the current primal vector and t denotes the tension vector given by (14), is inconsistent.

This implies the deficit of s cannot be decreased in magnitude without strictly increasing the magnitude of

other deficit(s), while fixing xj at Ij for all inactive j and fixing xj at cj for all active j. On the other hand,

modification 1 implies the primal vector does not change during each dual descent (see note below) so the

deficits are monotonically decreasing in magnitude (since the deficits are decreasing in magnitude during

each primal rectification step). It then follows that no compatible lever row can repeat with the same

combination of lever index, set of inactive j's and set of active j's - a contradiction since the number of such

combinations is finite.

Since the relaxation method maintains complementary slackness at all iterations and terminates only

when the deficit of all rows are zero, the final primal dual pair produced by the method must be optimal

(since the final primal vector is feasible for (P)). Thus we have the main result of this section:
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Proposition 4 If in the relaxation method the green indexes are assigned the highest priorities, the black

and white indexes belonging to {1,2,...,n}, except for the lever index, are assigned the second highest

priorities, and the out-of-kilter modification is implemented, then the method converges finitely.

It should be noted that using the same lever index as in the previous iteration when the previous iteration

terminated with a dual descent is a necessary condition for the method to be finitely convergent. If a

different lever index is used then the method may perform an infinite number of successive dual descents,

even if the final tableau from the previous iteration is used as the initial tableau for the current iteration

(see [16], Appendix G for such an example).

Note: The deficits do not change during each dual descent step because when the descent direction -u is

given by a compatible row [cf. (26)] we have

xJ ii J

x. = i. X v. O,
J J J

X. = C. V U. < 0,
J J J

for all balanced j, where (x, p) denotes the current primal dual pair and v is given by (27) and (28).

Then (29) implies for any price vector on the line segment joining p and p- au, where a is given by

(23), the corresponding tension vector is on the line segment joining t and t - av, where t denotes

tension vector associated with p (since n given by (27) in this case satisfies (19) for all WA[O,a]). It

follows from the choice of a [cf. (23)] that x satisfies CS with this price vector so x is unchanged.

5.2. Finite Convergence using the e-CS Modification

In this section we consider a modification based on the notion of e-complementary slackness [15] that

places virtually no additional restriction on the execution of the relaxation iterations.
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Let e be a fixed nonnegative scalar and define, for each price vector p, column j to be

e-inactive if tj < aj-e,

e-balanced if aj-e - tj saj+ s,

e-active if tj >aj + e,

where t is the tension vector associated with p [cf. (14)]. Then a primal dual pair (x, p) is said to satisfy

e-complementary slackness if

Xj = Ij bV e-inactive j,

Ij < xj < cj V e-balanced j, (e-CS)

Xj = Cj V e-active j,

Dx = b.

Foreach p,u in Rnand n in i"' we define

Ce(u,n,p)- - v.I.+ l.+ v.. + vj.c.j Tb, (30a)
a.- t.>e a.- a.- t.<-c a.- tlS-e

v.>O v.<O
J J

where

v = ETu + DTn. (30b)

We can express Ce(u,n,p) in a form analogous to (22). Let x be any primal vector that satisfies e-CS with p

and let d = Ex. Then we have [cf. (30a), (30b) and the definition of e-CS]

m

Ce(u,l,p) = v xv(l.)+ v v.(xj-c.)- nTb
J J J J J J

j=1 laj- tjl e laj- tjl- <

v.>O v.<O

= (u' E+TD)x + vj(l.-x.)+ v.(x.-c.)- nTb

Ila- tjle* la.- tjISe

J J

J Jv.>j aned v.<j e-j e-balanced j e-balanced
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where the last equality follows from the fact that Dx-b= 0 and d = Ex. It appears computing CS(u,n,p)

using (31) is more efficient than using (30a). Furthermore (31) makes it evident that, for each primal dual

pair (x, p) satisfying c-CS, if in the painting of the modified painted index algorithm we replace CS by c-CS

then each compatible lever row would yield a u and a rn [cf. (26) and (27)] for which CE(u,n,p) > 0 (since

the corresponding v is given by (28) then (29) implies uTd > 0 and x. = Ii (x. = c.) if v. > 0(v < 0) and j is £-

balanced). This observation motivates the following modified relaxation iteration:

Relaxation Iteration with e-CS modification

Same as the relaxation iteration described in §4 but with CS replaced by e-CS and C(u,p) replaced by

Ce(u,n,p) in the modified painted index algorithm, where n is computed using (27).

We have shown that every compatible row yields a u and a rn for which CS(u,n,p) > 0. Therefore each

relaxation iteration with c-CS modification must either find a u and a In for which CS(u,n,p) >0 or find a

compatible column using the lever index. As was shown at the end of §3, a compatible column using the

lever index yields a (-w, -y, z) in C for which moving x in the direction z would maintain c-CS with p while

strictly decreasing the total deficit. Therefore if a compatible column using the lever index is found we

perform a primal rectification step just as before.

Proposition 2 shows the number of primal rectification steps between consecutive dual descents is finite.

Therefore to prove finite termination of the relaxation method with the c-CS modification it suffices to

show the number of descents along directions -u given by (26), for which Ce(u,n,p) > 0 for some n, is finite.

To do this we first show that CE(u,n,p) > 0 implies -u is a dual descent direction at p and along -u the line

minimization stepsize is lower bounded by a positive scalar multiple of c:

Lemma 1 Let £ be a nonnegative scalar. Then for any pR1n , uER n , and nR n' , q'(p-au;-u) - -CC(u,n,p)

for all aE[0,/e(u)] where 0(u) - max { IIvII I v given by (18) and (19) for some p }.

The proof of Lemma 1 is given in Appendix C. Lemma 1 says that if CE(u,n,p) > 0 for some n then -u is

a dual descent direction at p and furthermore the line minimization stepsize in the direction of -u is at least

/0(U). This is rather surprising since, for c positive, v as given by (18) and (19) may change as the price
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vector moves along the line segment between p and p- eu/0(u) while the rate of descent in the direction -u

[cf. (17) or (22)] depends critically on v. In other words, as the price vector moves along the direction -u from

p, there may occur a change in the optimal basis to the subproblem (15) arbitrarily close to p (in Appendix D

we give an example illustrating this). At such a point, t and v as given by (18) and (19) would change, and

it is not obvious that this change would not make the directional derivative positive.

Now consider the case where e is positive (note in the case where e = 0 the relaxation iteration using e-CS

modification reduces to the relaxation iteration of §4). Since the number of distinct dual descent directions

-u used by the e-CS relaxation method is finite (recall that u is given by the row entries of some Tucker

tableau [cf. (26)] and the number of distinct Tucker tableaus is finite), the number of distinct values of rate of

descent [cf. (17), (18) and (19)] is finite and so it follows the rate of each dual descent is lower bounded by a

positive constant. By Lemma 1, the line search stepsize at each dual descent step is lower bounded by the

positive scalar e/0 where 0 - max{0(u) I u given by (26) }. Therefore we can lower bound the improvement in

the dual functional q per dual descent step by a positive constant (which depends on the problem data and e

only) and it follows the total number of dual descents is finite. This observation together with Proposition 2

yield the main result of this section:

Proposition 5 If the conditions of Proposition 2 are met then the relaxation method that uses the e-CS

modification, with e being any fixed positive scalar, terminates finitely with a primal dual pair (x, p)

satisfying e-CS and xEX.

Proof : We have already shown that, under the stated conditions, the relaxation method terminates

finitely. Since e-CS is maintained at all iterations and the method terminates only if the deficit of all rows

are zero, the final primal dual pair (x, p) produced by the method must satisfy e-CS and xEX. Q.E.D.

We note that in the e-CS relaxation method we can check for a dual descent direction (in the modified

painted index algorithm) by reading the values of u, iI, and v directly from the row entries of the Tucker

tableau [cf. (26), (27) and (28)] and then evaluate CE(u,n,p) using (30a), (30b) or (31) (in fact if we use (31) we

do not need to compute r ).
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We sense that for e small, a primal dual pair (x,p) satisfying e-CS and xEX would be close to being optimal.

We make this notion precise below (compare to Proposition 6 in [151):

Proposition 6 If (x, p) satisfies e-complementary slackness and xEX then

0 < aTx+q(p) < e~ (--Ij). (32)
j=1

Proof: Using Ex=0 and Dx=b we have

T T T(33)
a x =a x - pTEx--4(p)TDx + (p)Tb (33)

Defi ne

a a - ETp - D T(p).

Then (33) and the definition of e-complementary slackness imply

aTx =(P)b + a .c.+ + ajx. (34)
JJ _ JJ _ J3

a.>e a.<-e -e<a.<e
J J J

On the other hand [cf. (13)]

q(p) = -¢(p)Tb - a.I.- a.c..
JJ Ji

a.>O a.<O~J J

Combining (34) with (35) and we obtain

aTx + q(p) = a(xj-Ij ) + aj(xj-c j )

O<a.<e -eS a.<O
J J

from which it follows

a Tx +q (p) •J C Yr
J J

and the right hand inequality in (32) is established. To prove the left hand inequality we note that by

definition

Max pTEk-aT 
subject to [ E H

where H is given by (4), from which it follows

Max pTET-a -_ aT x ,

subject to, (E H, E , = O
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where the last inequality holds since x E H and Ex = 0. Q.E.D.

A primal dual pair satisfying the conditions of Propositon 9 may be viewed as an optimal solution to a

perturbed problem whereby each cost coefficient a. is perturbed by an amount not exceeding e. Since we

are dealing with linear programs, it is easily seen that if e is sufficiently small then every solution of the

perturbed primal problem is also a solution of the original primal problem. Therefore, for sufficiently small

e, the relaxation method with the e-CS modification terminates in a finite number of iterations with an

optimal solution to (P). The required size of e for this to occur may be estimated by

min { aTx-aTx* I x a basicfeasiblesolution of (P), aTx--aTx*:O }

divided by Ej (cj-lj), where x* denotes any optimal solution to (P).

6. Application to Network Flow Problems with Side Constraints

In this section we consider the special case of (P) where E is the node-arc incidence matrix for a directed

network. We show that by exploiting the network structure we can efficiently implement the tableau

pivots.

To improve the efficiency of tableau pivoting we will use the factorization scheme suggested by

Rockafellar ([13], Ch. 1 OF) for the two tier linear homogeneous system

[ F x = O, (36)

where

F0 x = 0 (37)

will be called the auxiliary system. Consider any Tucker tableau representing (36)

where we have partitioned the tableau row-wise to correspond to a partition of its basis such that the

indexes corresponding to the rows of A" form a basis for the auxiliary system (37). Thus if we let B", B' and
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N denote the subset of indexes that are respectively basic for (37), nonbasic for (37) but basic for (36), and

nonbasic for (36), then

(38)
XB, - A'XN , X B,, AxN , B,+- A oxN (38)

where

[A'0 Ao ]

denotes the Tucker tableau representing (37) for which B" is a basis and whose columns are partitioned to

correspond to B' and N respectively. Combining the first and the last equality in (38) we obtain

XB, = (A'OA' + AO)N,

implying

A" = A',A' + A (39)

Equation (39) allows us, instead of maintaining A' and A", to maintain A', A0' and A0 and compute the

columns of A" only when needed. This is computationally attractive if A" is a dense matrix while A0' and A0

are sparse matrices. Note when a pivot involves making an element of B' nonbasic, only A' needs to be

updated, while if a pivot involves making an element of B" nonbasic then after updating A' it will be

necessary to also update A0' and A0. In the latter case it may be necessary to also exchange an element of B'

with the index just pivoted into B" so to maintain B" as a basis for the auxiliary system (37). We will apply

the factorization scheme to the system (24) with F = [ O -I D ] and F0 = [ -I 0 E ] . This choice of

factorization allows us to efficiently store A0' and A0 in terms of a spanning tree on a network and to avoid

storing A", which has a large number of rows and is not necessarily sparse. Note we may alternately apply

the factorization scheme with F = [-I 0 E ] and F0 = [ 0 -I D ], although this does not appear to yield any

interesting result.

We will assume E is the node-arc incidence matrix for a connected, directed ordinary network G, whose

nodes are numbered from 1 to n and whose arcs are numbered from n + n' + 1 to n + n' + m. In other words,

1 if there exists an arc n + n' +j leaving node i,
e.. = -1 if thereexistsanarc n+ n'+jentering node i,

0 otherwise.

Let us add to G a node n + 1 and an arc i joining node n + 1 to each node i (i = 1,2,...,n) and call the resulting

network G' (we will refer to the nodes and the arcs by their numbers). We first give a network

characterization of [A0' A0]. Since [A0' A0] is a Tucker representation of
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-I 0 E] y = 0 
Z

(the columns of [-I 0 El we index from 1 to n + n' + m) and its dual, whose basis is characterized by a spanning

tree T on G' rooted at node n + 1 (see [13], Ch. 10C), we can compute the nonzero columns of [A0' A0 ]

directly using T. More precisely, the arcs in T form B" and the arcs not in T form (B'UN)\{indexes

corresponding to the zero columns in (40)). Entries in the nonzero columns of [A0' Ao] are given by (letting

aij ° denote the entry correspond to arc i in T and arc j not in T)

1 ifi is in unique cycle of TU(J and is oriented in same direction as j,
a0 . | -1 if i is in uniquecycle of TUOJ and is oriented in opposite direction as j,

O otherwise.

We will assume T is stored in an array whose kth entry records the arc joining node k to its immediate

predecessor in T. To compute aij ° for each arc i in T and each arc j not in T requires tracing backwards

along the path from the root to each end node of j in T to see if the unique cycle of TU{j} contains i. The

greatest work however comes from performing a pivot where we exchange an element of B" for an

element of N and the resultant B" does not form a basis for the auxiliary system (40), in which case we have

to find an element of B" and an element of B' whose exchange would make B" a basis. More precisely, let

the arc of G' that is to be pivoted out of B" into N (out of N into B") be denoted i (j) and suppose the unique

cycle in TU{j} does not contain i. Then there exist an arc k in B' that connects the two components of T

\{i} (since (B'UB"U{j}) \{i} forms a basis for (36), it must contain a subset that is a basis for (40)). Then

(B"U{k}) \{i forms a basis for (40) and (B'UB"U{j}) \{i} forms a basis for (36). However, to find such k

requires searching through-the elements of B' to find an arc that joins the two components of T \{i}. A

simple scheme for this is to, for each element k in B', trace backwards along the path in T from the root to

each end node of arc k to see if the unique cycle of TU{k} contains i (if yes, then we use k). However, if n' =

(cardinality of B') is large or if T has large depth then more sophisticated data structures and algorithms

would be needed. Techniques used by dual simplex methods may be useful here because finding a k that

connects the two components of T\{i} is analogous to a dual simplex pivot.

We remark that D may possess special structure which makes solving (15) easier. One such example is the

multicommodity network flow problem [1], [7] for which E has the form

Et

E Et

· ~"" ~~""~"-~a~~~-~~-~E=F K' 1
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where E", say n" by m", is the node-arc incidence matrix for some directed network and D has the form

D =rI I ... iJ,

where I denotes the m"xm" identity matrix. Subproblem (15) then separates into m" disjoint

subproblems, where the jth (j = 1,2,...,m") subproblem has the form

K

Max E ((E)t p- ar)xr
r=l

subject to xl +x 2 + . . + xK = b.
J J J J

ir c xr. cr , r= ,...,K,
J J J

and K m/m" denotes the total number of distinct commodities, Ej" denotes the jth column of E", x.r

denotes the flow of the rth commodity on arc j, pr denotes the price vector associated with the constraint

E"x' = 0,... etc. In general, if D is block diagonal with K blocks along its diagonal then (15) decomposes

into K subproblems.

7. Conclusion and Extensions

We have described a dual descent method that extends the linear programming method in [15] to

incorporate decomposition. Two types of modifications were proposed to ensure finite convergence of the

method - one an out-of-kilter type and the other based on E-CS. In the special case of network flow

problems with side constraints the method can be efficiently implemented using network data structures.

Our method can also be extended to directly handle inequality side constraints of the form

Dx < b

(instead of first transforming the inequalities into equalities). In this case the dual variables associated with

the side constraints would be constrained to be nonnegative. Although our method may be interpreted as a

primal dual method, it is quite different from that of Jewell [6] for multicommodity network flow. His

method solves the restricted primal subproblem, itself a multicommodity network flow problem, by

enumerating all possible flow augmenting paths and then solving the path formulation of the restricted

primal subproblem (this method of solving the subproblem is equivalent to Dantzig-Wolfe decomposition
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[4] with an artificial starting basis for the master problem and with only the columns of negative reduced

cost, corresponding to the flow augmenting paths, being used in the master problem). In contrast our

method emphasizes dual coordinate descent, does not solve any restricted primal subproblem, and

generates descent directions by applying the painted index algorithm of Rockafellar.

Solution of the dual problem in the unconstrained form of (D) has been well studied. However in most of

the approaches people used variants of either the subgradient method or the steepest descent method (i.e.

the primal dual method) or methods of descent along edges of epi(q). Each of these methods has some

serious drawback - the first is not a dual descent method, the second requires large computational effort to

find each descent direction, and the third requires many dual descents when epi(q) has many edges. Our

method on the other hand is a dual descent method that places very few restrictions on the choice of

descent directions other than that they be generated from the Tucker representations of certain extended

subspace. This dual descent emphasis contrasts our method with methods, such as the primal dual method,

that emphasize moving the primal vector towards feasibility.
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Appendix A

In this appendix we demonstrate how, for each p and u, the vI satisfying (19), i.e.

4(p-Au) = ¢4(p)- Xp for A > 0 sufficiently small,

may be computed, where -4b(p) denotes the optimal dual solution to the following subproblem [cf. (15)]

Maximize (ETp-a)Tx

(Q(p))
subject to Dx = b, lI< x < c.

Let p' denote p perturbed in the direction -u and let D be partitioned into [DB DNI where B denotes

the optimal basis for Q(p'). The perturbed problem Q(p') is no harder to solve than Q(p) using standard

perturbation techniques such as lexicographical ordering. Then, for sufficiently small positive X, B is an

optimal basis for Q(p-Au) and the corresponding optimal dual variable is given by

4(p-Au) = (DJl)TrY ,

where r denotes the negative of the cost vector of Q(p- Xu), i.e.

T(_ u (A.2)
r = a-E(p-Au)

and r is partitioned into (rB, rN) corresponding tothe partitioning of D into [DB DN] . Combining (A.1) with

(A.2) we obtain

q)(p-Au) = (D 1)T(a-E;(pAXu)) = (D ))T(a-E(D Eu = (p) (EBDI) T u,

where E is partitioned into [EB EN] corresponding to the partitioning of D into [DB DN]. It follows

w = -(EBDBL)Tu.

In thiswaywecan update 4(p-Xu) recursivelyas A increases from zero by updating T at every A for which

the optimal basis for Q(p- Au) changes.
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Appendix B

In this appendix we prove Proposition 3 - that the number of dual descent steps between consecutive

primal rectifications is finite under the out-of-kilter modification of §5.1. We will argue by contradiction.

Suppose an infinite number of dual descents occur between some two consecutive primal rectifications.

Since the primal variable x does not change during this infinite sequence of iterations [cf. note at end of

§5.1], each of which terminates in a dual descent, the only indexes that can change colour during these

iterations are those indexes n + n' + j for which xj = Ij (each such index can change colour between red and

black) and those indexes n + n' +j for which xj = cj (each such index can change colour between red and

white). The colour of the other indexes remain unchanged. Let s denote the lever index used during these

iterations [cf. modification 3]. s must be painted either black only or white only during all these iterations

and for simplicity assume s is painted white (analogous argument holds for case where s is black). In the

modified painted index algorithm, since each green index once pivoted into row position remains in row

position from then on, each red index once pivoted into column position never returns to row position

painted red, each red index remaining in row position never changes colour and the final tableau of each

iteration is used as the initial tableau for the iteration that follows [cf. modification 3], we conclude the

following:

Observation 1 After a while, no pivot involves making a basic red or green index nonbasic or a nonbasic

red or green index basic.

Now consider what occurs at the end of each relaxation iteration. The price vector changes value and, as a

result of this change, at least one nonbasic red index of the type n + n' + j, where j E {1 ,...,m}, becomes either

black or white (at the same time some nonbasic black or white index of the same type may become red).

Then at the next relaxation iteration a pivot is performed to make one such index basic (since the same lever

index s is used). We thus conclude the following:

Observation 2 Immediately before each dual descent there is at least one nonbasic index of the type

n + n' + j, for some j E{1,...,m}. At the beginning of each iteration one such nonbasic index becomes basic.
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In what follows we will assume that enough time has passed so the statement in Observation 1 holds. Then

during each pivot either (a) a basic black or white index of the type i, where i E{1,...,n}, is made nonbasic or

(b) a basic black or white index of the type n + n' + j, where jE{1,...,m}, is made nonbasic. Since the number

of nonbasic indexes of the type n + n' +j , where jE{1,...,m}, is not increased in case (a) it follows from

Observation 1 and Observation 2 that there must be an infinite number of pivots for the form (b) (otherwise

Observation 1 implies that after a while every pivot must be making nonbasic black or white indexes of the

type i (for some iE {1,...,n}) basic, which contradicts Observation 2).

Now consider the time just before a pivot of the form (b) takes place. Let r denote the nonbasic index

that is to be made basic during the pivot step (r is either black or white by Observation 1) and, for each basic

index w, let awr denote the entry in row indexed by w and column indexed by r of the current Tucker

tableau. We need to consider two cases: case (1) r = i* for some i*E{1,...,n} and case (2) r = n + n' + j* for

some j*({1,...,m}. In case (1) we obtain, applying Lemma B (stated at the end of this appendix) with

W = 0 I D and v = (p, 4(p), t),

that

Pi* awrP + a t .+ awr (Dh(p),
w=i w=n+n'+j w=n+k

for some iE{1,..,n} for some jE{1,..,m} for some kE{1,..,n'}

where 4(p) is given by(12) or(16) and t is given by(14).

Using Observation 1 we obtain awr = 0 for all basic red indexes w, so the equation above is equivalent to

-Pi = awrPi + a t.. (B.1)
w=i w=n+n' +j

for some iE({1,..,n} for some jE{1,..,m}
w black or white w not red

Since in a pivot step of the form (b) we make nonbasic a basic black or white index of the type n + n' + j , for

some j ( {1,...,m}, which [cf. modification 2] has lower priority than any basic black or white index of the type

i, for some iE{1,...,n}, it follows from the pivoting rule in [13], pp. 476 (assuming for simplicity that i* is

white)

either a r-O and w iswhite or a <0 and w isblack, (B.2)
wr wr
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for all basic indexes w such that w = i for some i E { 1,...,n}.

For notational convenience define ai*r = 1. We can then write (B.1) as (using the fact that t. = a. if
J J

n + n' +j is not painted red)

-a P = a a.. (B.3)Iwr wr j
w=i w=n+n'+j

for some iE{1,..,n} for some jE{1,..,m}
w black or white w not red

Each term -awrPi on the left hand side of (B.3) monotically increases during each dual descent ((26) and (29)

imply each pi can only decrease (increase) during a dual descent if i is painted white (black)). Furthermore

since r indexes the pivoting column and s indexes the lever row, it must be asr *0, so -asrpS strictly

increases during the dual descent (since ps strictly decreases at each dual descent). It follows the left hand

side of (B.3) strictly increases at each dual descent. Since (B.3) holds whenever the same lever index, Tucker

tableau and index painting occur in the iterations while the right hand side of (B.3) is constant with respect

to the same lever index,Tucker tableau and index painting, it follows the same lever index, Tucker tableau

and index painting cannot recur in the iterations. This is a contradiction since the lever index is fixed in our

argument while the number of distinct Tucker tableaus and index paintings is finite. In case (2) a

contradiction is similarly obtained using an analogous argument. Q.E.D.

Lemma B Consider a real matrix W of full row rank and a Tucker tableau A representing the subspace

pair { z I Wx = 0 }, { v v = WTu 1. Then for any vector v satisfying v = WTu for some u, we have -v; = vBTAj

for all nonbasic indexes j, where v. denotes the jth component of v, A. denotes the column of A indexed by

j, B denotes the basis associated with A and vB denotes the vector with components vj, j E B.

Proof: From the definition of Tucker tableaus ([13], Ch. 10) we have A = -W, '1WN for some partition of W

into [WB WN] for which WB is invertible. Using the definition of basic and nonbasic indexes we

correspondingly partition v into ( vB, VN), where VN denotes the vector with components vj, j nonbasic. It

follows (VB, VN) = WTU = (W Tu, WNTU), SO for all nonbasic indexes j,

v. = W TU = uT =1W (vTWB)(-A.) .
J J J B B 

Q.E.D.
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Appendix C

In this appendixwe prove that if e is a nonnegative scalarthen for any pEbR", u ERn, and niER', q'(p-au;-u)

< -CC(u,n,p) for all a([0,e/0(u)] where 0(u) = max tilvll. v given by (18) and (19) for some p).

Proof: Let y be a primal vector that satisfies e-CS with p, let a be a fixed stepsize in [O,e /(u) ], and let x

be a primal vector that satisfies CS with p-au. For notational simplicity let p'=p-au and let

t' = ETp' + DT 4b(p'), t = ETp + DT((p). Then [cf. (30a) and (30b)]

Ce(u,n,p)= I v.1. + v .1. + Y VjC. + v .C .- n b, (C.1)
a.- t.>e |a.- t.Ise a.- tj<-e la.- tjIS£

v.>O v.<O
J J

where

v T DT (C.2)
v = ETu + D n,

and also [cf. (17)]

-- q(p';--u) = 1 + o.1. + o.c. + . o.c. + b . (C+3)-q'(p';-u) = E ujlj + E ujlj + E Vj~j + E Vjc.- cpTb, (C.3)
a.- t.>O a.- t.=O a.- t.<O a.- t.=O
J J J J J J J J

.>O v .<O
J J

where

v = ETu + D, (C.4)

and i satisfies

4)(p'-XAu) = 4>(p') - Xht for X >O sufficiently small.

Using (C. 1), (C.2) and the fact

|I Vjj J ad- tj>e (C.5)

. j) ajt<-

we obtain

C(uI,p) = v.1. + vjYj + v. Tb

a.- t.>c la.- t lse a.- t.< -E
J J jlJ J J

+ Y v.(l-y.) + Y v.(c.-y.)
laI- tj

-< e
la.- tjl

< - e

v.>O v.<O
J J
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= (ETu)l . + (ETu)y + 5 (ETu)c.
J J i J J

a.- t.>E la.- tI s a.- t.< -E
J J J Ji

+ . v/.(I-Y.) + ~ v.(c.-y). (C.6)
laj- tjl<e laj- tjile

v.>O v.<O
3 J

On the other hand x satisfies CS with p' and therefore

1. Vj ) a.- t'j> (C.7)
x . =Vj aj- t'j<°, and Dx-b = 0.

s a.- t'.<

From the definition of 0(u) we have

a.-t'. > 0 if a.-t. > e,

a.-t'. < 0 if a.-t. < -e,

which together with (C.7) yields

|X { j and Dx-b = 0.
c. V j) aj- tj < -£

Then combining (C.3), (C.4) with (C.8) we obtain

-q'(p';-u)= , (EJu)l. + (ETu)x. + E (ETu)c.. (C.9)
a.- t.>e la.- tja.E ai- ti<-e

Combining (C.6) with (C.9) and we obtain

Ce(u,n,p) + q'(p';-u) = (EjTu)(yj-.j.) + Z v.j(l-Y j ) + Vj.(Cj-yj).

la.- tj-e I la- tjl- Cala- tjl-e

v.>O v.<O
J J

Since b-Dy = 0 and b-Dx = 0 we have D(y-x) = 0, so nTD(y-x) = 0, and using (C.5) and (C.8) we obtain

0 = (DTri)(yj-x.). (C. 10)
a.j- t.jl<

Adding (C.10)to Ce(u,n,p)+q'(p';-u) gives

Ce(u,n,p)+q'(p';-u) = vj(yj-xj) + vj(l.-y j) + ' vj(cj-yj)

Ia.- tji -5 a.- tj I <e la- tj a e
v.>O v.<O
J J
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=v(l-x) + v v(C.(-X.). (C.11)
laj- tjlI<C Ia.- tjl-e

v.>O v.<O
J J

The right hand side of (C.1 1) is nonpositive and so it follows

q'(p'; - u) - C(u,n,p) .

Q.E.D.
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Appendix D

In this appendix we give a numerical example to illustrate the essential features of the relaxation method

of §4 using the e-CS modification of §5.2. We will show that, during a dual descent step, even if v as given

by (18) and (19) changes at stepsizes that are arbitrarily close to zero, the line minimization stepsize remains

bounded away from zero.

Consider the following linear program:

Minimize - x2

-X1 - 2x 2 = 0
subject to

x1 + x2 + x 3 = M/2

-M< Xl<M, -M< x2- M, O<x 3 <M,

where M is a sufficiently large scalar. To put into the form of (P), we set a = (0, -1, 0), E = [-1 -2 0],

D=[1 1 1], b=M/2, I1 =1 2=-M, I3=0, c, =c 2 =c 3 =M.

This problem is primal feasible since (-M, M/2, M) is a feasible primal vector. Let e=½ and let the initial

price vector p = - 8, where 6 is a positive scalar < .

Relaxation iteration 1

The subproblem (15) associated with the above linear program is

Maximize 5x I + (1+28)x 2

subject to x 1 + x2 + x3 = M/2

-M <xl 1 M, -M < x2 < M, O < x3 c M,

which has column 1 in the optimal basis, an optimal primal solution of x=(-M/2, M, 0) and optimal dual

solution of 4(p)=-8 with associated reduced cost a-t = a-E T p-D T 4(p) = (0, -1-S, ). Then
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d = Ex = M/2-2M = -3M/2. Columns 1 and 3 are e-balanced and column 2 is e-active so the initial Tucker

tableau is:

Z1 Z2 Z3 r = red

g r b b = black

leverrow -II w, b -1 -2 0 g = green

y, r 1 1 1

The corresponding u, n, and v are respectively [cf. analog of (26)-(28) for black lever index] -1, 0 and (1,2, 0).

Using (31) we have

3 M
Ce(u,n,p)=ud + vl( -x) = M+(- )=M > 0,

2 2

and therefore -u = 1 is a dual descent direction at p.

Now we perform a line minimization in the direction of -u. We first compute v and v given respectively

by(19) and (18). Using Appendix A we obtain =-uEBDB' =-uEl =-1 sothat v= ETu + DTp = (1, 2, 0) - (1, 1, 1)

= (0, 1, -1). The rate of descent is given by [cf. (17)]

1 3
q'(p;-u) = ub - v2c2 - 31 = -M - (M) + (0) -M.

3 - 2MC + (O) 2 2

The first breakpoint of q in the direction -u from p occurs at stepsize [cf. (23)]

a = min min{8+1 , 8} 8.

Set p -- p-au = 0

At p= O the subproblem (15) with p perturbed in the direction of -u has column 3 in the optimal basis,

an optimal primal solution of x = (-M, M, M/2) and optimal dual solution of ¢((p) = 0 with associated reduced

cost a-t = (0, -1, 0). Since column 3 is in optimal basis we have i = -uEBDB' = -uE 3=0 and v = ETu + DT =

(1, 2, 0) - (0, 0, 0) = (1, 2, 0) . The rate of descent is then given by

q'(p;-u) = Tb - vll - v2c2 = 0 - (-M) - 2(M) = -M
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and therefore -u is still a direction of descent. The second breakpoint moving in the direction -u occurs at

stepsize [cf. (23)]

a = mnin a
-2 2

Set p - p-au = .

At p = I the subproblem (15) with p perturbed in the direction of -u has column 2 in the optimal basis,

an optimal primal solution of x = (-M, M/2, M) and optimal dual solution of ¢D(p) = 0 with associated reduced

cost a-t = (½, 0, 0). Since column 2 is in optimal basis then v = -uEBDB 1' = -uE2 = -2 and v = ETu + DTW = (1, 2,

0) - (2, 2, 2) = (-1, 0, -2). The rate of descent is then

q'(p;-u) = pb - U1ll - v3c3 = -M + (-M) + 2M = 0,

which is nonnegative and so line minimization terminates. The current deficit is Ex = -(-M) -2(M/2)= 0 so

relaxation method terminates.

The important observation to make in this example is that the first breakpoint in a dual descent step at

which v changes value can occur arbitrarily close to the starting price vector (in our example 8 can be

arbitrarily small) yet despite this change the line minimization stepsize is still bounded away from zero [cf.

Lemma 1].
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